Sample records for magnetic body forces

  1. Interaction Forces Between Multiple Bodies in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Joffe, Benjamin

    1996-01-01

    Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.

  2. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Technical Reports Server (NTRS)

    Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

    2003-01-01

    At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

  3. Nonlinear oscillation of a rigid body over high- Tc superconductors supported by electro-magnetic forces

    NASA Astrophysics Data System (ADS)

    Sugiura, T.; Ogawa, S.; Ura, H.

    2005-10-01

    Characteristics of high- Tc superconducting levitation systems are no contact support and stable levitation without control. They can be applied to supporting mechanisms in machines, such as linear-drives and magnetically levitated trains. But small damping due to noncontact support and nonlinearity in the magnetic force can easily cause complicated phenomena of nonlinear dynamics. This research deals with nonlinear oscillation of a rigid bar supported at its both ends by electro-magnetic forces between superconductors and permanent magnets as a simple modeling of the above application. Deriving the equation of motion, we discussed an effect of nonlinearity in the magnetic force on dynamics of the levitated body: occurrence of combination resonance in the asymmetrical system. Numerical analyses and experiments were also carried out, and their results confirmed the above theoretical prediction.

  4. Lorentz Body Force Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2003-01-01

    The Lorentz force induced by a traveling magnetic field (TMF) in a cylindrical container has been calculated. The force can be used to control flow in dectrically conducting melts and the direction of the magnetic field and resulting flow can be reversed. A TMF can be used to partially cancel flow driven by buoyancy. The penetration of the field into the cylinder decreases as the frequency increases, and there exists an optimal value of frequency for which the resulting force is a maximum. Expressions for the Lorentz force in the limiting cases of low frequency and infinite cylinder are also given and compared to the numerical calculations.

  5. Calculation of forces on magnetized bodies using COSMIC NASTRAN

    NASA Technical Reports Server (NTRS)

    Sheerer, John

    1987-01-01

    The methods described may be used with a high degree of confidence for calculations of magnetic traction forces normal to a surface. In this circumstance all models agree, and test cases have resulted in theoretically correct results. It is shown that the tangential forces are in practice negligible. The surface pole method is preferable to the virtual work method because of the necessity for more than one NASTRAN run in the latter case, and because distributed forces are obtained. The derivation of local forces from the Maxwell stress method involves an undesirable degree of manipulation of the problem and produces a result in contradiction of the surface pole method.

  6. Magnetic Force Switches for Magnetic Fluid Micromixing

    NASA Astrophysics Data System (ADS)

    Wei, Zung-Hang; Lee, Chiun-Peng; Lai, Mei-Feng

    2010-01-01

    A magnetic fluid micromixer with energy-saving magnetic force switches that can manipulate the magnetic fluid flow is proposed. The micromixer of high mixing efficiency uses single-domain micro magnets that have strong magnetic anisotropy to produce the magnetic force for the mixing. By altering the magnetization directions of the magnets that have different aspect ratios and coercivities, open and closed magnetic fluxes can be produced around each magnet cluster. For open magnetic flux, the mixing efficiency is numerically found to increase with the saturation magnetization of the magnets. On the contrary, the magnet clusters barely affects the mixing efficiency in the case of closed magnetic flux. Due to the different magnetic forces produced in open and closed magnetic fluxes, the magnetic fluid mixing can be switched on and off.

  7. Magnetic elements for switching magnetization magnetic force microscopy tips.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cambel, V.; Elias, P.; Gregusova, D.

    2010-09-01

    Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, lowmore » switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.« less

  8. Is the 2nd Law of Thermodynamics Conditioned? Separating Heat and Cold by a Magnetic Body Force and the Principle for a Non-Carnot Engine

    NASA Astrophysics Data System (ADS)

    Luo, Weili

    2017-11-01

    A new type of heat engine has been proposed in 2005 that defies fundamental thermodynamic law: A specifically designed magnetic body force can reverse heat flow from high temperature to low temperature. This mechanism can drive heat to higher temperature, rendering the possibility to re-use the ``waste heat''. As the result, the efficiency is much higher than that of the Carnot Engine. In a recent paper a realization of this proposed mechanism is reported: by using a specific configuration of temperature and magnetic field gradients, we observed that magnetic body force suppresses the gravito-thermal convective heat when the gradients of temperature and field are anti-parallel to each other. This driving force stops the heat flow of approaching to thermal equilibrium in the system, causing the temperature difference across the sample to increase with applied fields. In this work, I will discuss the driving mechanism for this phenomenon and its application in the proposed engine. This remarkable result suggests that the 2nd law of thermodynamics maybe conditioned and needs to be re-examined.

  9. Force-moment line element method for flexible slender bodies in Stokes flow.

    PubMed

    Jiang, H; Yang, B

    2013-09-01

    The hydrodynamics of flexible slender bodies in Stokes flow is studied by taking into account the fluid-structure interaction through both forces and coupled moments. The fluid subjected to line sources of forces and moments is described by using integral equations. Meanwhile, the flexible slender body is modeled using finite beam elements. The two sides are linked through interfacial continuity conditions. Upon discretization, it results in a higher-order line element method for efficient and accurate solution of slender-body hydrodynamics. Four examples are presented to demonstrate the validity and efficiency of the present method: (a) hydrodynamics of a flexible slender rod subjected to a torque at one end, (b) hydrodynamics of a flexible slender rod subjected to a bending moment at one end, (c) hydrodynamics of a flexible slender rod subjected to a cyclic force, and (d) hydrodynamics of a flexible slender rod with a magnetized head within a rotating magnetic field. Examples (a) and (b) may serve as benchmark solutions and examples (c) and (d) show how planar and spiral waves can be excited in a slender body.

  10. High-force magnetic tweezers with force feedback for biological applications.

    PubMed

    Kollmannsberger, Philip; Fabry, Ben

    2007-11-01

    Magnetic micromanipulation using magnetic tweezers is a versatile biophysical technique and has been used for single-molecule unfolding, rheology measurements, and studies of force-regulated processes in living cells. This article describes an inexpensive magnetic tweezer setup for the application of precisely controlled forces up to 100 nN onto 5 microm magnetic beads. High precision of the force is achieved by a parametric force calibration method together with a real-time control of the magnetic tweezer position and current. High forces are achieved by bead-magnet distances of only a few micrometers. Applying such high forces can be used to characterize the local viscoelasticity of soft materials in the nonlinear regime, or to study force-regulated processes and mechanochemical signal transduction in living cells. The setup can be easily adapted to any inverted microscope.

  11. Longitudinal magnet forces?

    NASA Astrophysics Data System (ADS)

    Graneau, P.

    1984-03-01

    The Ampere electrodynamics of metallic conductors and experiments supporting it predict that the interaction of a current-carrying wire with its own magnetic field should produce longitudinal mechanical forces in the conductor, existing in addition to the transverse Lorentz forces. The longitudinal forces should stretch the conductor and have been referred to as Ampere tension. In 1964 it was discovered that a current pulse would break a straight copper wire into many fragments without visible melting. A metallurgical examination of the pieces confirmed that the metal parted in the solid state. The same observation has now been made with aluminum wires. In the latest experiments the wire was bent into a semicircle and arc-connected to a capacitor discharge circuit. The arc connections ruled out rupture by Lorentz hoop tension and indicated the longitudinal forces may also arise in circular magnet windings. Explanations of wire fragmentation by thermal shock, longitudinal stress waves, Lorentz pinch-off, bending stresses, and material defects have been considered and found unconvincing. Computed Ampere tensions would be sufficient to fracture hot wires. The Ampere tension would double the hoop tension normally expected in dipole magnets. This should be borne in mind in the design of large dipole magnets contemplated for MHD power generators and railgun accelerators.

  12. BaHigh-force magnetic tweezers with force feedback for biological applications

    NASA Astrophysics Data System (ADS)

    Kollmannsberger, Philip; Fabry, Ben

    2007-11-01

    Magnetic micromanipulation using magnetic tweezers is a versatile biophysical technique and has been used for single-molecule unfolding, rheology measurements, and studies of force-regulated processes in living cells. This article describes an inexpensive magnetic tweezer setup for the application of precisely controlled forces up to 100nN onto 5μm magnetic beads. High precision of the force is achieved by a parametric force calibration method together with a real-time control of the magnetic tweezer position and current. High forces are achieved by bead-magnet distances of only a few micrometers. Applying such high forces can be used to characterize the local viscoelasticity of soft materials in the nonlinear regime, or to study force-regulated processes and mechanochemical signal transduction in living cells. The setup can be easily adapted to any inverted microscope.

  13. Using Magnetic Forces to Probe the Gravi-response of Swimming Paramecium

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Valles, James M., Jr.

    2004-03-01

    Paramecium Caudatum, a single celled ciliate, alters its swimming behavior when subjected to different gravity environments (e.g. centrifugation and micro-gravity). To dissect the mechanisms behind this gravi-response and that of other biological systems, we are developing the use of magnetic body forces as a means of creating a rapidly tunable, simulated variable gravity environment. Since biological materials are weakly diamagnetic, we must subject them to intense inhomogeneous magnetic fields with characteristic field-field gradient products on the order of 16 T^2/cm. We will describe experiments on Paramecium Caudatum in which we adjust their net buoyancy with magnetic forces and measure the resulting changes in their swimming behavior.

  14. Experimental studies of protozoan response to intense magnetic fields and forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine

    Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general

  15. Mechanical manipulation of magnetic nanoparticles by magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jinyun; Zhang, Wenxiao; Li, Yiquan; Zhu, Hanxing; Qiu, Renxi; Song, Zhengxun; Wang, Zuobin; Li, Dayou

    2017-12-01

    A method has been developed in this work for the mechanical manipulation of magnetic nanoparticles (MNPs). A helical curve was designed as the capture path to pick up and remove the target nanoparticle on a mica surface by a magnetic probe based on the magnetic force microscope (MFM). There were magnetic, tangential and pushing forces acting on the target particle during the approaching process when the tip followed the helical curve as the capture path. The magnetic force was significant when the tip was closer to the particle. The target particle can be attached on the surface of the magnetic probe tip and then be picked up after the tip retracted from the mica surface. Theoretical analysis and experimental results were presented for the pick-up and removal of MNPs. With this method, the precision and flexibility of manipulation of MNPs were improved significantly compared to the pushing or sliding of the target object away from the corresponding original location following a planned path.

  16. Magnetically-induced forces on a ferromagnetic HT-9 first wall/blanket module

    NASA Astrophysics Data System (ADS)

    Lechtenberg, T. A.; Dahms, C. F.; Attaya, H.

    1984-05-01

    A model of the Starfire commercial tokamak reactor was used as the basis for calculating magnetic loads induced on typical fusion reactor first wall components fabricated of ferromagnetic material. The component analyzed was the first wall/blanket module because this structure experiences the greatest neutron fluence level and is the component for which the low swelling ferromagnetic Sandvik alloy, HT-9, may have the greatest benefit. The magnitudes of the magnetic body forces calculated were consistent with analyses performed on structures within other types of reactors. The loads generated within the module structure by the magnetic forces were found to be of the same order of magnitude as those arising from other sources such as pressure differential, dead weight, temperature distribution. Only small structural design modifications would be required if the magnetic alloy, Sandvik HT-9 were utilized.

  17. Modeling the Sedimentation of Red Blood Cells in Flow under Strong External Magnetic Body Force using a Lattice Boltzmann Fictitious Domain Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xing; Lin, Guang

    To model the sedimentation of the red blood cell (RBC) in a square duct and a circular pipe, the recently developed technique derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method (LBM-DLM/FD) is extended to employ the mesoscopic network model for simulations of the sedimentation of the RBC in flow. The flow is simulated by the lattice Boltzmann method with a strong magnetic body force, while the network model is used for modeling RBC deformation. The fluid-RBC interactions are enforced by the Lagrange multiplier. The sedimentation of the RBC in a square duct and a circularmore » pipe is simulated, revealing the capacity of the current method for modeling the sedimentation of RBC in various flows. Numerical results illustrate that that the terminal setting velocity increases with the increment of the exerted body force. The deformation of the RBC has significant effect on the terminal setting velocity due to the change of the frontal area. The larger the exerted force is, the smaller the frontal area and the larger deformation of the RBC are.« less

  18. Mechanisms explaining Coulomb's electric force & Lorentz's magnetic force from a classical perspective

    NASA Astrophysics Data System (ADS)

    Correnti, Dan S.

    2018-06-01

    The underlying mechanisms of the fundamental electric and magnetic forces are not clear in current models; they are mainly mathematical constructs. This study examines the underlying physics from a classical viewpoint to explain Coulomb's electric force and Lorentz's magnetic force. This is accomplished by building upon already established physics. Although no new physics is introduced, extension of existing models is made by close examination. We all know that an electron carries a bound cylindrical B-field (CBF) as it translates. Here, we show how the electron CBF plays an intrinsic role in the generation of the electric and magnetic forces.

  19. Retentive force and magnetic flux leakage of magnetic attachment in various keeper and magnetic assembly combinations.

    PubMed

    Hasegawa, Mikage; Umekawa, Yoshitada; Nagai, Eiich; Ishigami, Tomohiko

    2011-04-01

    Magnetic attachments are commonly used for overdentures. However, it can be difficult to identify and provide the same type and size of magnetic assembly and keeper if a repair becomes necessary. Therefore, the size and type may not match. This study evaluated the retentive force and magnetic flux strength and leakage of magnetic attachments in different combinations of keepers and magnetic assemblies. For 6 magnet-keeper combinations using 4 sizes of magnets (GIGAUSS D400, D600, D800, and D1000) (n=5), retentive force was measured 5 times at a crosshead speed of 5 mm/min in a universal testing machine. Magnetic flux strength was measured using a Hall Effect Gaussmeter. Data were statistically analyzed using a 1-way ANOVA, and between-group differences were analyzed with Tukey's HSD post hoc test (α=.05). The mean retentive force of the same-size magnet-keeper combinations was 3.2 N for GIGAUSS D400 and 5.1 N for GIGAUSS D600, but was significantly reduced when using larger magnets (P<.05). Magnetic flux leakage was significantly lower for corresponding size combinations. Size differences influence the retentive force and magnetic flux strength of magnetic attachments. Retentive force decreased due to the closed field structure becoming incomplete and due to magnetic field leakage. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  20. Repulsive vacuum-induced forces on a magnetic particle

    NASA Astrophysics Data System (ADS)

    Sinha, Kanupriya

    2018-03-01

    We study the possibility of obtaining a repulsive vacuum-induced force for a magnetic point particle near a surface. Considering the toy model of a particle with an electric-dipole transition and a large magnetic spin, we analyze the interplay between the repulsive magnetic-dipole and the attractive electric-dipole contributions to the total Casimir-Polder force. Particularly noting that the magnetic-dipole interaction is longer ranged than the electric dipole due to the difference in their respective characteristic transition frequencies, we find a regime where the repulsive magnetic contribution to the total force can potentially exceed the attractive electric part in magnitude for a sufficiently large spin. We analyze ways to further enhance the magnitude of the repulsive magnetic Casimir-Polder force for an excited particle, such as by preparing it in a "super-radiant" magnetic sublevel and designing surface resonances close to the magnetic transition frequency.

  1. Tidal dissipation in rotating fluid bodies: the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Lin, Yufeng; Ogilvie, Gordon I.

    2018-02-01

    We investigate effects of the presence of a magnetic field on tidal dissipation in rotating fluid bodies. We consider a simplified model consisting of a rigid core and a fluid envelope, permeated by a background magnetic field (either a dipolar field or a uniform axial field). The wave-like tidal responses in the fluid layer are in the form of magnetic Coriolis waves, which are restored by both the Coriolis force and the Lorentz force. Energy dissipation occurs through viscous damping and Ohmic damping of these waves. Our numerical results show that the tidal dissipation can be dominated by Ohmic damping even with a weak magnetic field. The presence of a magnetic field smooths out the complicated frequency dependence of the dissipation rate, and broadens the frequency spectrum of the dissipation rate, depending on the strength of the background magnetic field. However, the frequency-averaged dissipation is independent of the strength and structure of the magnetic field, and of the dissipative parameters in the approximation that the wave-like response is driven only by the Coriolis force acting on the non-wavelike tidal flow. Indeed, the frequency-averaged dissipation quantity is in good agreement with previous analytical results in the absence of magnetic fields. Our results suggest that the frequency-averaged tidal dissipation of the wave-like perturbations is insensitive to detailed damping mechanisms and dissipative properties.

  2. Force sensor using changes in magnetic flux

    NASA Technical Reports Server (NTRS)

    Pickens, Herman L. (Inventor); Richard, James A. (Inventor)

    2012-01-01

    A force sensor includes a magnetostrictive material and a magnetic field generator positioned in proximity thereto. A magnetic field is induced in and surrounding the magnetostrictive material such that lines of magnetic flux pass through the magnetostrictive material. A sensor positioned in the vicinity of the magnetostrictive material measures changes in one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux.

  3. Force characteristic analysis of a magnetic gravity compensator with annular magnet array for magnetic levitation positioning system

    NASA Astrophysics Data System (ADS)

    Zhou, Yiheng; Kou, Baoquan; Liu, Peng; Zhang, He; Xing, Feng; Yang, Xiaobao

    2018-05-01

    Magnetic levitation positioning system (MLPS) is considered to be the state of the art in inspection and manufacturing systems in vacuum. In this paper, a magnetic gravity compensator with annular magnet array (AMA-MGC) for MLPS is proposed. Benefiting from the double-layer annular Halbach magnet array on the stator, the proposed AMA-MGC possesses the advantages of symmetrical force, high force density and small force fluctuation. Firstly, the basic structure and operation principle of the AMA-MGC are introduced. Secondly, the basic characteristics of the AMA-MGC such as magnetic field distribution, levitation force, parasitic force and parasitic torque are analyzed by the three-dimensional finite element analysis (3-D FEA). Thirdly, the influence of structural parameters on force density and force fluctuation is investigated, which is conductive to the design and optimization of the AMA-MGC. Finally, a prototype of the AMA-MGC is constructed, and the experiment shows good agreement with the 3-D FEA results.

  4. Magnetic domain structure imaging near sample surface with alternating magnetic force microscopy by using AC magnetic field modulated superparamagnetic tip.

    PubMed

    Cao, Yongze; Nakayama, Shota; Kumar, Pawan; Zhao, Yue; Kinoshita, Yukinori; Yoshimura, Satoru; Saito, Hitoshi

    2018-05-03

    For magnetic domain imaging with a very high spatial resolution by magnetic force microscopy the tip-sample distance should be as small as possible. However, magnetic imaging near sample surface is very difficult with conventional MFM because the interactive forces between tip and sample includes van der Waals and electrostatic forces along with magnetic force. In this study, we proposed an alternating magnetic force microscopy (A-MFM) which extract only magnetic force near sample surface without any topographic and electrical crosstalk. In the present method, the magnetization of a FeCo-GdOx superparamagnetic tip is modulated by an external AC magnetic field in order to measure the magnetic domain structure without any perturbation from the other forces near the sample surface. Moreover, it is demonstrated that the proposed method can also measure the strength and identify the polarities of the second derivative of the perpendicular stray field from a thin-film permanent magnet with DC demagnetized state and remanent state. © 2018 IOP Publishing Ltd.

  5. Forces between permanent magnets: experiments and model

    NASA Astrophysics Data System (ADS)

    González, Manuel I.

    2017-03-01

    This work describes a very simple, low-cost experimental setup designed for measuring the force between permanent magnets. The experiment consists of placing one of the magnets on a balance, attaching the other magnet to a vertical height gauge, aligning carefully both magnets and measuring the load on the balance as a function of the gauge reading. A theoretical model is proposed to compute the force, assuming uniform magnetisation and based on laws and techniques accessible to undergraduate students. A comparison between the model and the experimental results is made, and good agreement is found at all distances investigated. In particular, it is also found that the force behaves as r -4 at large distances, as expected.

  6. Effect of magnet/slot combination on triple-frequency magnetic force and vibration of permanent magnet motors

    NASA Astrophysics Data System (ADS)

    Huo, Mina; Wang, Shiyu; Xiu, Jie; Cao, Shuqian

    2013-10-01

    The relationship between magnet/slot combination and magnetic forces including unbalanced magnetic force (UMF) and cogging torque (CT) of permanent magnet (PM) motors is investigated by using superposition principle and mechanical and magnetic symmetries. The results show that magnetic force can be produced by all magnets passing a single slot, by all slots passing a single magnet, or by eccentricity, which respectively correspond to three frequency components. The results further show that net force/torque can be classified into three typical cases: UMF is suppressed and CT is excited, UMF excited and CT suppressed, and UMF and CT both suppressed, and consequently possible vibrations include three unique groups: rotational modes, translational modes, and balanced modes. The conclusion that combinations with the greatest common divisor (GCD) greater than unity can avoid UMF is mathematically verified, and at the same time lower CT harmonics are preliminarily addressed by the typical excitations. The above findings can create simple guidelines for the suppression of certain UMF and/or CT by using suitable combinations, which in turn can present approach to yield a more desirable response in high performance applications. The superposition effect and predicted relationship are verified by the transient magnetic Finite Element method. Since this work is motivated by symmetries, comparisons are made in order to give further insight into the inner force and vibration behaviors of general rotary power-transmission systems.

  7. Paramagnetic Beads and Magnetically Mediated Strain Enhance Cardiomyogenesis in Mouse Embryoid Bodies

    PubMed Central

    Geuss, Laura R.; Wu, Douglas C.; Ramamoorthy, Divya; Alford, Corinne D.; Suggs, Laura J.

    2014-01-01

    Mechanical forces play an important role in proper embryologic development, and similarly such forces can directly impact pluripotency and differentiation of mouse embryonic stem cells (mESC) in vitro. In addition, manipulation of the embryoid body (EB) microenvironment, such as by incorporation of microspheres or microparticles, can similarly influence fate determination. In this study, we developed a mechanical stimulation regimen using permanent neodymium magnets to magnetically attract cells within an EB. Arginine-Glycine-Aspartic Acid (RGD)-conjugated paramagnetic beads were incorporated into the interior of the EBs during aggregation, allowing us to exert force on individual cells using short-term magnetization. EBs were stimulated for one hour at different magnetic field strengths, subsequently exerting a range of force intensity on the cells at different stages of early EB development. Our results demonstrated that following exposure to a 0.2 Tesla magnetic field, ESCs respond to magnetically mediated strain by activating Protein Kinase A (PKA) and increasing phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) expression. The timing of stimulation can also be tailored to guide ESC differentiation: the combination of bone morphogenetic protein 4 (BMP4) supplementation with one hour of magnetic attraction on Day 3 enhances cardiomyogenesis by increasing contractile activity and the percentage of sarcomeric α-actin-expressing cells compared to control samples with BMP4 alone. Interestingly, we also observed that the beads alone had some impact on differentiation by increasingly slightly, albeit not significantly, the percentage of cardiomyocytes. Together these results suggest that magnetically mediated strain can be used to enhance the percentage of mouse ESC-derived cardiomyocytes over current differentiation protocols. PMID:25501004

  8. Experimental verification of radial magnetic levitation force on the cylindrical magnets in ferrofluid dampers

    NASA Astrophysics Data System (ADS)

    Yang, Wenming; Wang, Pengkai; Hao, Ruican; Ma, Buchuan

    2017-03-01

    Analytical and numerical calculation methods of the radial magnetic levitation force on the cylindrical magnets in cylindrical vessels filled with ferrofluid was reviewed. An experimental apparatus to measure this force was designed and tailored, which could measure the forces in a range of 0-2.0 N with an accuracy of 0.001 N. After calibrated, this apparatus was used to study the radial magnetic levitation force experimentally. The results showed that the numerical method overestimates this force, while the analytical ones underestimate it. The maximum deviation between the numerical results and the experimental ones was 18.5%, while that between the experimental results with the analytical ones attained 68.5%. The latter deviation narrowed with the lengthening of the magnets. With the aids of the experimental verification of the radial magnetic levitation force, the effect of eccentric distance of magnets on the viscous energy dissipation in ferrofluid dampers could be assessed. It was shown that ignorance of the eccentricity of magnets during the estimation could overestimate the viscous dissipation in ferrofluid dampers.

  9. Hyper-resistive forced magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vekstein, G., E-mail: g.vekstein@manchester.ac.uk

    We study Taylor's model of forced magnetic reconnection mediated by plasma hyper-resistivity. This includes both linear and nonlinear regimes of the process. It is shown how the onset of plasmoid instability occurs in the strongly nonlinear regime of forced reconnection.

  10. The Role of Magnetic Forces in Biology and Medicine

    PubMed Central

    Roth, Bradley J

    2011-01-01

    The Lorentz force (the force acting on currents in a magnetic field) plays an increasingly larger role in techniques to image current and conductivity. This review will summarize several applications involving the Lorentz force, including 1) magneto-acoustic imaging of current, 2) “Hall effect” imaging, 3) ultrasonically-induced Lorentz force imaging of conductivity, 4) magneto-acoustic tomography with magnetic induction, and 5) Lorentz force imaging of action currents using magnetic resonance imaging. PMID:21321309

  11. Long-lived magnetism on chondrite parent bodies

    NASA Astrophysics Data System (ADS)

    Shah, Jay; Bates, Helena C.; Muxworthy, Adrian R.; Hezel, Dominik C.; Russell, Sara S.; Genge, Matthew J.

    2017-10-01

    We present evidence for both early- and late-stage magnetic activity on the CV and L/LL parent bodies respectively from chondrules in Vigarano and Bjurböle. Using micro-CT scans to re-orientate chondrules to their in-situ positions, we present a new micron-scale protocol for the paleomagnetic conglomerate test. The paleomagnetic conglomerate test determines at 95% confidence, whether clasts within a conglomerate were magnetized before or after agglomeration, i.e., for a chondritic meteorite whether the chondrules carry a pre- or post-accretionary remanent magnetization. We found both meteorites passed the conglomerate test, i.e., the chondrules had randomly orientated magnetizations. Vigarano's heterogeneous magnetization is likely of shock origin, due to the 10 to 20 GPa impacts that brecciated its precursor material on the parent body and transported it to re-accrete as the Vigarano breccia. The magnetization was likely acquired during the break-up of the original body, indicating a CV parent body dynamo was active ∼9 Ma after Solar System formation. Bjurböle's magnetization is due to tetrataenite, which transformed from taenite as the parent body cooled to below 320 °C, when an ambient magnetic field imparted a remanence. We argue either the high intrinsic anisotropy of tetrataenite or brecciation on the parent body manifests as a randomly orientated distribution, and a L/LL parent body dynamo must have been active at least 80 to 140 Ma after peak metamorphism. Primitive chondrites did not originate from entirely primitive, never molten and/or differentiated parent bodies. Primitive chondrite parent bodies consisted of a differentiated interior sustaining a long-lived magnetic dynamo, encrusted by a layer of incrementally accreted primitive meteoritic material. The different ages of carbonaceous and ordinary chondrite parent bodies might indicate a general difference between carbonaceous and ordinary chondrite parent bodies, and/or formation location in the

  12. Passive force balancing of an active magnetic regenerative liquefier

    NASA Astrophysics Data System (ADS)

    Teyber, R.; Meinhardt, K.; Thomsen, E.; Polikarpov, E.; Cui, J.; Rowe, A.; Holladay, J.; Barclay, J.

    2018-04-01

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Implementation details are investigated which affirm the potential of the proposed methodology.

  13. Magnetic moment of solar plasma and the Kelvin force: -The driving force of plasma up-flow -

    NASA Astrophysics Data System (ADS)

    Shibasaki, Kiyoto

    2017-04-01

    Thermal plasma in the solar atmosphere is magnetized (diamagnetic). The magnetic moment does not disappear by collisions because complete gyration is not a necessary condition to have magnetic moment. Magnetized fluid is subjected to Kelvin force in non-uniform magnetic field. Generally, magnetic field strength decreases upwards in the solar atmosphere, hence the Kelvin force is directed upwards along the field. This force is not included in the fluid treatment of MHD. By adding the Kelvin force to the MHD equation of motion, we can expect temperature dependent plasma flows along the field which are reported by many observations. The temperature dependence of the flow speed is explained by temperature dependence of magnetic moment. From the observed parameters, we can infer physical parameters in the solar atmosphere such as scale length of the magnetic field strength and the friction force acting on the flowing plasma. In case of closed magnetic field lines, loop-top concentration of hot plasma is expected which is frequently observed.

  14. Magnetic forces in high-Tc superconducting bearings

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1991-01-01

    In September 1987, researchers at Cornell levitated a small rotor on superconducting bearings at 10,000 rpm. In April 1989, a speed of 120,000 rpm was achieved in a passive bearing with no active control. The bearing material used was YBa2Cu307. There is no evidence that the rotation speed has any significant effect on the lift force. Magnetic force measurements between a permanent rare-earth magnet and high T(sub c) superconducting material versus vertical and lateral displacements were made. A large hysteresis loop results for large displacements, while minor loops result for small displacements. These minor loops seem to give a slope proportional to the magnetic stiffness, and are probably indicative of flux pinning forces. Experiments of rotary speed versus time show a linear decay in a vacuum. Measurements of magnetic dipole over a high-T(sub c) superconducting disc of YBCO show that the lateral vibrations of levitated rotors were measured which indicates that transverse flux motion in the superconductor will create dissipation. As a result of these force measurements, an optimum shape for the superconductor bearing pads which gives good lateral and axial stability was designed. Recent force measurements on melt-quench processed superconductors indicate a substantial increase in levitation force and magnetic stiffness over free sintered materials. As a result, application of high-T(sub c) superconducting bearings are beginning to show great promise at this time.

  15. Nature of the electromagnetic force between classical magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2017-09-01

    The Lorentz force law of classical electrodynamics states that the force 𝑭𝑭 exerted by the magnetic induction 𝑩𝑩 on a particle of charge 𝑞𝑞 moving with velocity 𝑽𝑽 is given by 𝑭𝑭 = 𝑞𝑞𝑽𝑽 × 𝑩𝑩. Since this force is orthogonal to the direction of motion, the magnetic field is said to be incapable of performing mechanical work. Yet there is no denying that a permanent magnet can readily perform mechanical work by pushing/pulling on another permanent magnet or by attracting pieces of magnetizable material such as scrap iron or iron filings. We explain this apparent contradiction by examining the magnetic Lorentz force acting on an Amperian current loop, which is the model for a magnetic dipole. We then extend the discussion by analyzing the Einstein-Laub model of magnetic dipoles in the presence of external magnetic fields.

  16. Magnetic human body communication.

    PubMed

    Park, Jiwoong; Mercier, Patrick P

    2015-01-01

    This paper presents a new human body communication (HBC) technique that employs magnetic resonance for data transfer in wireless body-area networks (BANs). Unlike electric field HBC (eHBC) links, which do not necessarily travel well through many biological tissues, the proposed magnetic HBC (mHBC) link easily travels through tissue, offering significantly reduced path loss and, as a result, reduced transceiver power consumption. In this paper the proposed mHBC concept is validated via finite element method simulations and measurements. It is demonstrated that path loss across the body under various postures varies from 10-20 dB, which is significantly lower than alternative BAN techniques.

  17. Passive force balancing of an active magnetic regenerative liquefier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teyber, R.; Meinhardt, K.; Thomsen, E.

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Finally, implementation details aremore » investigated which affirm the potential of the proposed methodology.« less

  18. Passive force balancing of an active magnetic regenerative liquefier

    DOE PAGES

    Teyber, R.; Meinhardt, K.; Thomsen, E.; ...

    2017-11-02

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Finally, implementation details aremore » investigated which affirm the potential of the proposed methodology.« less

  19. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.

    2015-05-19

    A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  20. Driving reconnection in sheared magnetic configurations with forced fluctuations

    NASA Astrophysics Data System (ADS)

    Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David

    2018-02-01

    We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.

  1. Fractionation of Magnetic Microspheres in a Microfluidic Spiral: Interplay between Magnetic and Hydrodynamic Forces

    PubMed Central

    Hayden, M. E.; Häfeli, U. O.

    2017-01-01

    Magnetic forces and curvature-induced hydrodynamic drag have both been studied and employed in continuous microfluidic particle separation and enrichment schemes. Here we combine the two. We investigate consequences of applying an outwardly directed magnetic force to a dilute suspension of magnetic microspheres circulating in a spiral microfluidic channel. This force is realized with an array of permanent magnets arranged to produce a magnetic field with octupolar symmetry about the spiral axis. At low flow rates particles cluster around an apparent streamline of the flow near the outer wall of the turn. At high flow rates this equilibrium is disrupted by the induced secondary (Dean) flow and a new equilibrium is established near the inner wall of the turn. A model incorporating key forces involved in establishing these equilibria is described, and is used to extract quantitative information about the magnitude of local Dean drag forces from experimental data. Steady-state fractionation of suspensions by particle size under the combined influence of magnetic and hydrodynamic forces is demonstrated. Extensions of this work could lead to new continuous microscale particle sorting and enrichment processes with improved fidelity and specificity. PMID:28107472

  2. Tunneling magnetic force microscopy

    NASA Technical Reports Server (NTRS)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  3. Vertical and lateral forces when a permanent magnet above a superconductor traverses in arbitrary directions

    NASA Astrophysics Data System (ADS)

    Yang, Yong

    2008-12-01

    In an actual levitation system composed of high temperature superconductors (HTSs) and permanent magnets (PMs), the levitating bodies may traverse in arbitrary directions. Many previous researchers assumed that the levitating bodies moved in a vertical direction or a lateral direction in order to simplify the problem. In this paper, the vertical and lateral forces acting on the PM are calculated by the modified frozen-image method when a PM above an HTS traverses in arbitrary directions. In order to study the effects of the movement directions on the vertical and lateral forces, comparisons of the forces that act on a PM traversing in a tilted direction with those that act on a PM traversing in a vertical direction or a lateral direction have been presented.

  4. Control of aqueous droplets using magnetic and electrostatic forces.

    PubMed

    Ohashi, Tetsuo; Kuyama, Hiroki; Suzuki, Koichi; Nakamura, Shin

    2008-04-07

    Basic control operations were successfully performed on an aqueous droplet using both magnetic and electrostatic forces. In our droplet-based microfluidics, magnetic beads were incorporated in an aqueous droplet as a force mediator. This report describes droplet anchoring and separation of the beads from the droplet using a combination of magnetic and electrostatic forces. When an aqueous droplet is placed in an oil-filled reservoir, the droplet sinks to the bottom, under which an electrode had been placed. The droplet was adsorbed (or anchored) to the bottom surface on the electrode when a DC voltage was applied to the electrode. The magnetic beads were removed with magnetic force after the droplet had been anchored. Surfactant addition into droplet solution was very effective for the elimination of electric charge, which resulted in the stable adsorption of a droplet to hydrophobic substrate under an applied voltage of DC 0.5-3 kV. In a sequential process, small volume of aqueous liquid was successfully transferred using both magnetic and electrostatic forces.

  5. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  6. Verifying Magnetic Force on a Conductor

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2011-01-01

    The laboratory measurement of the magnetic force acting on a straight wire of length "l" carrying a current of intensity "i" in a magnetic field "B" is usually made using current balances, which are offered by various physics apparatus suppliers' catalogues. These balances require an adequate magnet and commonly allow only the measurement of the…

  7. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  8. The use of electromagnetic body forces to enhance the quality of laser welds

    NASA Astrophysics Data System (ADS)

    Ambrosy, Guenter; Berger, P.; Huegel, H.; Lindenau, D.

    2003-11-01

    The use of electromagnetic body forces in laser beam welding of aluminum alloys is a new method to shape the geometry and to enhance the quality of the weld seams. In this new approach, electromagnetic volume forces are utilized by applying magnetic fields and electric currents of various origins. Acting in the liquid metal, they directly affect the flow field and can lead to favourable conditions for the melt dynamics and energy coupling. Numerous welds with full and partial penetration using both CO2 and Nd:YAG lasers demonstrate that this method directly influences the seam geometry and top-bead topography as well as the penetration depth and the evolution of pores and cracks. In the case of full penetration, it is also possible to lift or to lower the weld pool. The method, therefore, can be used to shape the geometry and to enhance the quality of the weld seam. Depending on the orientation of an external magnetic field, significant impacts are achieved in CO2 welding, even without an external current: the shape of the cross-sectional area can be increased of up to 50% and also the seam width is changed. Whereas for such conditions with Nd:YAG lasers no significant effect could be observed, it turned out that, when an external electric current is applied, similar effects are present with both wavelengths. In further investigations, the effect of electromagnetic body forces resulting from the interaction of an external current and its self-induced magnetic field was studied. Hereby, the current was fed into the workpiece via a tungsten electrode or a filler wire. The resulting phenomena are the same independent from wavelength and means of current feed.

  9. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

    2014-05-20

    A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  10. Asymmetrically localized proteins stabilize basal bodies against ciliary beating forces

    PubMed Central

    Galati, Domenico F.

    2016-01-01

    Basal bodies are radially symmetric, microtubule-rich structures that nucleate and anchor motile cilia. Ciliary beating produces asymmetric mechanical forces that are resisted by basal bodies. To resist these forces, distinct regions within the basal body ultrastructure and the microtubules themselves must be stable. However, the molecular components that stabilize basal bodies remain poorly defined. Here, we determine that Fop1 functionally interacts with the established basal body stability components Bld10 and Poc1. We find that Fop1 and microtubule glutamylation incorporate into basal bodies at distinct stages of assembly, culminating in their asymmetric enrichment at specific triplet microtubule regions that are predicted to experience the greatest mechanical force from ciliary beating. Both Fop1 and microtubule glutamylation are required to stabilize basal bodies against ciliary beating forces. Our studies reveal that microtubule glutamylation and Bld10, Poc1, and Fop1 stabilize basal bodies against the forces produced by ciliary beating via distinct yet interdependent mechanisms. PMID:27807131

  11. Lateral restoring force on a magnet levitated above a superconductor

    NASA Technical Reports Server (NTRS)

    Davis, L. C.

    1990-01-01

    The lateral restoring force on a magnet levitated above a superconductor is calculated as a function of displacement from its original position at rest using Bean's critical-state model to describe flux pinning. The force is linear for small displacements and saturates at large displacements. In the absence of edge effects the force always attracts the magnet to its original position. Thus it is a restoring force that contributes to the stability of the levitated magnet. In the case of a thick superconductor slab, the origin of the force is a magnetic dipole layer consisting of positive and negative supercurrents induced on the trailing side of the magnet. The qualitative behavior is consistent with experiments reported to date. Effects due to the finite thickness of the superconductor slab and the granular nature of high-Tc materials are also considered.

  12. Contact force with magnetic-guided catheter ablation.

    PubMed

    Bessière, Francis; Zikry, Christopher; Rivard, Lena; Dyrda, Katia; Khairy, Paul

    2018-05-01

    Achieving adequate catheter tip-tissue contact is essential for delivering robust radiofrequency (RF) ablation lesions. We measured the contact force generated by a remote magnetic-guided catheter navigation system. A plexiglass model with an integrated scale was fashioned to mimic transvenous and retrograde access to sites in the right atrium and right and left ventricles. An 8 Fr RF ablation catheter was steered by remote magnetic guidance at fields of 0.08 and 0.10 T, with and without a long sheath positioned at the entrance of the chamber. Ten contact force readings were taken at each setting, with the scale recalibrated prior to each measurement. Generalized estimating equations were used to compare contact force measurements while adjusting for the non-independent data structure. A total of 240 contact force measurements were taken. Without a long sheath, contact forces with magnetic fields of 0.10 T (n = 60) and 0.08 T (n = 60) were similar (6.1 ± 1.4 g vs. 6.0 ± 1.3 g, P = 0.089). Contact forces were not significantly different with simulated transvenous (n = 80) and retrograde aortic (n = 40) approaches (6.2 ± 1.4 g vs. 5.7 ± 1.2 g, P = 0.132). The contact force increased substantially with a long sheath (P < 0.001) and was significantly higher with 0.10 T (n = 60) vs. 0.08 T (n = 60) fields (20.4 ± 0.6 g vs. 18.0 ± 0.5 g, P < 0.001). Magnetic fields of 0.08 and 0.10 T provide stable catheter contact forces, as reflected by the small variability between measurements. The average contact force is approximately 6 g without a sheath and increases to 20 g with a long sheath positioned at the entrance of the chamber of interest.

  13. Extending the Range for Force Calibration in Magnetic Tweezers

    PubMed Central

    Daldrop, Peter; Brutzer, Hergen; Huhle, Alexander; Kauert, Dominik J.; Seidel, Ralf

    2015-01-01

    Magnetic tweezers are a wide-spread tool used to study the mechanics and the function of a large variety of biomolecules and biomolecular machines. This tool uses a magnetic particle and a strong magnetic field gradient to apply defined forces to the molecule of interest. Forces are typically quantified by analyzing the lateral fluctuations of the biomolecule-tethered particle in the direction perpendicular to the applied force. Since the magnetic field pins the anisotropy axis of the particle, the lateral fluctuations follow the geometry of a pendulum with a short pendulum length along and a long pendulum length perpendicular to the field lines. Typically, the short pendulum geometry is used for force calibration by power-spectral-density (PSD) analysis, because the movement of the bead in this direction can be approximated by a simple translational motion. Here, we provide a detailed analysis of the fluctuations according to the long pendulum geometry and show that for this direction, both the translational and the rotational motions of the particle have to be considered. We provide analytical formulas for the PSD of this coupled system that agree well with PSDs obtained in experiments and simulations and that finally allow a faithful quantification of the magnetic force for the long pendulum geometry. We furthermore demonstrate that this methodology allows the calibration of much larger forces than the short pendulum geometry in a tether-length-dependent manner. In addition, the accuracy of determination of the absolute force is improved. Our force calibration based on the long pendulum geometry will facilitate high-resolution magnetic-tweezers experiments that rely on short molecules and large forces, as well as highly parallelized measurements that use low frame rates. PMID:25992733

  14. Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets

    NASA Astrophysics Data System (ADS)

    Prat-Camps, J.; Teo, C.; Rusconi, C. C.; Wieczorek, W.; Romero-Isart, O.

    2017-09-01

    We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet in the Meissner state without applying any external field. The trapping potential created by such induced-only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated from the environment. We propose to use it as an ultrasensitive force and inertial sensor. A magnetomechanical readout of its displacement can be performed by using superconducting quantum interference devices. An analysis using current technology shows that force and acceleration sensitivities on the order of 10-23 N /√{Hz } (for a 100-nm magnet) and 10-14 g /√{Hz } (for a 10-mm magnet) might be within reach in a cryogenic environment. Such remarkable sensitivities, both in force and acceleration, can be used for a variety of purposes, from designing ultrasensitive inertial sensors for technological applications (e.g., gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of magnetic origin and gravitational physics.

  15. Magnetic dynamos in accreting planetary bodies

    NASA Astrophysics Data System (ADS)

    Golabek, G.; Labrosse, S.; Gerya, T.; Morishima, R.; Tackley, P. J.

    2012-12-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies.

  16. Forces and moments on a slender, cavitating body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hailey, C.E.; Clark, E.L.; Buffington, R.J.

    1988-01-01

    Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with thismore » code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.« less

  17. Axial force in a superconductor magnet journal bearing

    NASA Astrophysics Data System (ADS)

    Postrekhin, E.; Chong, Wang; Ki Bui, Ma; Chen, Quark; Chu, Wei-Kan

    Using superconductors and magnets, a journal bearing could be made from a permanent magnet cylinder in a superconductor ring. We have assembled a prototype superconductor magnet journal bearing of this configuration, and investigated the behavior of the axial force that it can provide. We have put together a numerical model of the interaction between the permanent magnet and the superconductor that is capable of describing these experimental results semi-quantitatively. Combining direct experimental measurements and using the numerical models proposed, we have achieved a qualitative understanding of the behavior of the axial force and its relationship of to the dimensions of the magnet and material quality such as the homogeneity of the superconductor that constitute the bearing.

  18. DNA Micromanipulation Using Novel High-Force, In-Plane Magnetic Tweezer

    NASA Astrophysics Data System (ADS)

    McAndrew, Christopher; Mehl, Patrick; Sarkar, Abhijit

    2010-03-01

    We report the development of a magnetic force transducer that can apply piconewton forces on single DNA molecules in the focus plane allowing continuous high precision tethered-bead tracking. The DNA constructs, proteins, and buffer are introduced into a 200μL closed cell created using two glass slides separated by rigid spacers interspersed within a thin viscoelastic perimeter wall. This closed cell configuration isolates our sample and produces low-noise force-extension measurements. Specially-drawn micropipettes are used for capturing the polystyrene bead, pulling on the magnetic sphere, introducing proteins of interest, and maintaining flow. Various high-precision micromanipulators allow us to move pipettes and stage as required. The polystyrene bead is first grabbed, and held using suction; then the magnetic particle at the other end of the DNA is pulled by a force created by either two small (1mm x 2mm x 4mm) bar magnets or a micro magnet-tipped pipette. Changes in the end-to-end length of the DNA are observable in real time. We will present force extension data obtained using the magnetic tweezer.

  19. Magnetic force and work: an accessible example

    NASA Astrophysics Data System (ADS)

    Gates, Joshua

    2014-05-01

    Despite their physics instructors’ arguments to the contrary, introductory students can observe situations in which there seems to be compelling evidence for magnetic force doing work. The counterarguments are often highly technical and require physics knowledge beyond the experience of novice students, however. A simple example is presented which can illustrate that all may not be what it seems when energy transfer and the magnetic force are involved. Excel and Python simulations of the process are also provided.

  20. Active magnetic force microscopy of Sr-ferrite magnet by stimulating magnetization under an AC magnetic field: Direct observation of reversible and irreversible magnetization processes

    NASA Astrophysics Data System (ADS)

    Cao, Yongze; Kumar, Pawan; Zhao, Yue; Yoshimura, Satoru; Saito, Hitoshi

    2018-05-01

    Understanding the dynamic magnetization process of magnetic materials is crucial to improving their fundamental properties and technological applications. Here, we propose active magnetic force microscopy for observing reversible and irreversible magnetization processes by stimulating magnetization with an AC magnetic field based on alternating magnetic force microscopy with a sensitive superparamagnetic tip. This approach simultaneously measures sample's DC and AC magnetic fields. We used this microscopy approach to an anisotropic Sr-ferrite (SrF) sintered magnet. This is a single domain type magnet where magnetization mainly changes via magnetic rotation. The proposed method can directly observe the reversible and irreversible magnetization processes of SrF and clearly reveal magnetic domain evolution of SrF (without stimulating magnetization—stimulating reversible magnetization—stimulating irreversible magnetization switching) by slowly increasing the amplitude of the external AC magnetic field. This microscopy approach can evaluate magnetic inhomogeneity and explain the local magnetic process within the permanent magnet.

  1. Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, C. E.; Yamada, M.; Ji, H.

    Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force ismore » found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.« less

  2. Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes

    DOE PAGES

    Myers, C. E.; Yamada, M.; Ji, H.; ...

    2016-11-22

    Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force ismore » found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.« less

  3. Perihelion precession from power law central force and magnetic-like force

    NASA Astrophysics Data System (ADS)

    Xu, Feng

    2011-04-01

    By the Laplace-Runge-Lenz (LRL) vector, we analyzed perihelion precessions of orbit with arbitrary eccentricity from perturbations of 1) power law central force and 2) fThusmagnetic-like force. Exact and analytically closed expressions for the precession rate are derived in both cases. In the central force case, we give a further expansion expression of precession rate in orders of eccentricity, and a rule judging pro- or retrograde precession is also given. We applied the result of central force to precessions of a planet in 1) Schwarzschild space-time, for which the formula for the Mercury’s 43”/century is reproduced, and 2) spherically distributed dark matter, for which we find a formula that is a generalization of the result derived by others for circular orbit. In the magnetic case, the use of the LRL vector proves to be simple and efficient. An example of magnetic-like perturbation is also discussed.

  4. Perihelion precession from power law central force and magnetic-like force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Feng

    2011-04-15

    By the Laplace-Runge-Lenz (LRL) vector, we analyzed perihelion precessions of orbit with arbitrary eccentricity from perturbations of 1) power law central force and 2) fThusmagnetic-like force. Exact and analytically closed expressions for the precession rate are derived in both cases. In the central force case, we give a further expansion expression of precession rate in orders of eccentricity, and a rule judging pro- or retrograde precession is also given. We applied the result of central force to precessions of a planet in 1) Schwarzschild space-time, for which the formula for the Mercury's 43''/century is reproduced, and 2) spherically distributed darkmore » matter, for which we find a formula that is a generalization of the result derived by others for circular orbit. In the magnetic case, the use of the LRL vector proves to be simple and efficient. An example of magnetic-like perturbation is also discussed.« less

  5. Drag measurements on a laminar-flow body of revolution in the 13-inch magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1989-01-01

    Low speed wind tunnel drag force measurements were taken on a laminar flow body of revolution free of support interference. This body was tested at zero incidence in the NASA Langley 13 in. Magnetic Suspension and Balance System (MSBS). The primary objective of these tests was to substantiate the drag force measuring capabilities of the 13 in. MSBS. The drag force calibrations and wind-on repeatability data provide a means of assessing these capabilities. Additional investigations include: (1) the effects of fixing transition; (2) the effects of fins installed in the tail; and (3) surface flow visualization using both liquid crystals and oil flow. Also two simple drag prediction codes were used to assess their usefulness in estimating overall body drag.

  6. A novel constant-force scanning probe incorporating mechanical-magnetic coupled structures.

    PubMed

    Wang, Hongxi; Zhao, Jian; Gao, Renjing; Yang, Yintang

    2011-07-01

    A one-dimensional scanning probe with constant measuring force is designed and fabricated by utilizing the negative stiffness of the magnetic coupled structure, which mainly consists of the magnetic structure, the parallel guidance mechanism, and the pre-stressed spring. Based on the theory of material mechanics and the equivalent surface current model for computing the magnetic force, the analytical model of the scanning probe subjected to multi-forces is established, and the nonlinear relationship between the measuring force and the probe displacement is obtained. The practicability of introducing magnetic coupled structure in the constant-force probe is validated by the consistency of the results in numerical simulation and experiments.

  7. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-10-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  8. [Evaluation of three dimensional orthodontic force produced by magnet of fix appliance].

    PubMed

    Dai, Xin; Hou, Zhi-ming; Yao, Ge; Wen, Jing-long

    2008-12-01

    To analyze the feature and magnitude of three dimensional orthodontic force produced by the magnet of fix appliance. Forces detected by universal fatigue test system included the attractive and repulsive,the inclined and rotated orthodontic forces of two magnets in different air gaps, and the integrated inclined and rotated orthodontic forces of two magnets and NiTi wire. The attractive and repulsive forces of two magnets were 4.68 to 0.45 N and 3.00 to 0.40 N respectively in the air gaps of 0 to 5 mm. The inclined orthodontic forces were 1.54 to 1.67 N, 0.63 to 0.69 N, 0.47 to 0.54 N when the magnets were vertically inclined 10 degrees to 40 degrees in the air gaps of 0, 1, 2mm. The rotated orthodontic forces were 0.97 to 1.32 N, 0.53 to 0.59 N, 0.39 to 0.48 N when the magnets were horizontally rotated 10 degrees to 40 degrees in the air gaps of 0, 1, 2mm. The integrated orthodontic force of two magnets and 0.014-inch NiTi wire was 0.32 to 0.5 N when the magnets was vertically inclined 10 degrees to 40 degrees in the air gap of 4 mm. The integrated orthodontic force of two magnets and 0.012-inch NiTi wire was 0.32 to 0.39 N when the magnets were horizontally rotated 10 degrees to 40 degrees in the air gap of 3 mm. Magnets made into orthodontic brackets to some extent could replace the mechanical orthodontic force produced by orthodontic wires and elastics.

  9. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  10. Increase in pediatric magnet-related foreign bodies requiring emergency care.

    PubMed

    Silverman, Jonathan A; Brown, Julie C; Willis, Margaret M; Ebel, Beth E

    2013-12-01

    We describe magnetic foreign body injuries among children and obtain national estimates of magnetic foreign body injury incidence over time. We searched the National Electronic Injury Surveillance System for cases of magnetic foreign bodies in children younger than 21 years in the United States, from 2002 to 2011. Cases were analyzed by location: alimentary or respiratory tract, nasal cavity, ear canal, or genital area. We identified 893 cases of magnetic foreign bodies, corresponding to 22,581 magnetic foreign body cases during a 10-year period (95% confidence interval [CI] 17,694 to 27,469). Most magnetic foreign bodies were ingested (74%) or intranasal (21%). Mean age was 5.2 years for ingested magnetic foreign bodies and 10.1 years for nasal magnetic foreign bodies (difference 4.9; 95% CI 4.1 to 5.6), suggesting different circumstances of injury. The incidence of pediatric magnet ingestions increased from 2002 to 2003 from 0.57 cases per 100,000 children per year (95% CI 0.22 to 0.92) to a peak in 2010 to 2011 of 3.06 cases per 100,000 children per year (95% CI 2.16 to 3.96). Most ingested magnetic foreign bodies (73%) and multiple magnet ingestions (91%) occurred in 2007 or later. Patients were admitted in 15.7% of multiple magnet ingestions versus 2.3% of single magnet ingestions (difference 13.4%; 95% CI 2.8% to 24.0%). Magnet-related injuries are an increasing public health problem for young children, as well for older children who may use magnets for play or to imitate piercings. Education and improved magnet safety standards may decrease the risk small magnets pose to children. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  11. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.

    PubMed

    Geng, Yanan; Wu, Weida

    2014-05-01

    We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.

  12. Efficient nonparametric n -body force fields from machine learning

    NASA Astrophysics Data System (ADS)

    Glielmo, Aldo; Zeni, Claudio; De Vita, Alessandro

    2018-05-01

    We provide a definition and explicit expressions for n -body Gaussian process (GP) kernels, which can learn any interatomic interaction occurring in a physical system, up to n -body contributions, for any value of n . The series is complete, as it can be shown that the "universal approximator" squared exponential kernel can be written as a sum of n -body kernels. These recipes enable the choice of optimally efficient force models for each target system, as confirmed by extensive testing on various materials. We furthermore describe how the n -body kernels can be "mapped" on equivalent representations that provide database-size-independent predictions and are thus crucially more efficient. We explicitly carry out this mapping procedure for the first nontrivial (three-body) kernel of the series, and we show that this reproduces the GP-predicted forces with meV /Å accuracy while being orders of magnitude faster. These results pave the way to using novel force models (here named "M-FFs") that are computationally as fast as their corresponding standard parametrized n -body force fields, while retaining the nonparametric character, the ease of training and validation, and the accuracy of the best recently proposed machine-learning potentials.

  13. A magnetic micro-manipulator for application of three dimensional forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punyabrahma, P.; Jayanth, G. R.

    2015-02-15

    Magnetic manipulation finds diverse applications in actuation, characterization, and manipulation of micro- and nano-scale samples. This paper presents the design and development of a novel magnetic micro-manipulator for application of three-dimensional forces on a magnetic micro-bead. A simple analytical model is proposed to obtain the forces of interaction between the magnetic micro-manipulator and a magnetic micro-bead. Subsequently, guidelines are proposed to perform systematic design and analysis of the micro-manipulator. The designed micro-manipulator is fabricated and evaluated. The manipulator is experimentally demonstrated to possess an electrical bandwidth of about 1 MHz. The ability of the micro-manipulator to apply both in-plane andmore » out-of-plane forces is demonstrated by actuating permanent-magnet micro-beads attached to micro-cantilever beams. The deformations of the micro-cantilevers are also employed to calibrate the dependence of in-plane and out-of-plane forces on the position of the micro-bead relative to the micro-manipulator. The experimentally obtained dependences are found to agree well with theory.« less

  14. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    PubMed

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  15. Electromagnetic Forces in a Hybrid Magnetic-Bearing Switched-Reluctance Motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.

    2008-01-01

    Analysis and experimental measurement of the electromagnetic force loads on the hybrid rotor in a novel hybrid magnetic-bearing switched-reluctance motor (MBSRM) have been performed. A MBSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The MBSRM discussed in this report has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of four stator poles, while a second set of four stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Static torque and radial force analysis were done for rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental and the theoretical radial force loads predictions was obtained with typical magnetic bearing derating factors applied to the predictions.

  16. Varying the effective buoyancy of cells using magnetic force

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Valles, James M.

    2004-06-01

    We introduce a magnetic force buoyancy variation (MFBV) technique that employs intense inhomogeneous magnetic fields to vary the effective buoyancy of cells and other diamagnetic systems in solution. Nonswimming Paramecia have been suspended, forced to sediment and driven to rise in solution using MFBV. Details of their response to MFBV have been used to determine the magnetic susceptibility of a single Paramecium. The use of MFBV as a means by which to suspend cell cultures indefinitely is also described.

  17. Safety Implications of High-Field MRI: Actuation of Endogenous Magnetic Iron Oxides in the Human Body

    PubMed Central

    Dobson, Jon; Bowtell, Richard; Garcia-Prieto, Ana; Pankhurst, Quentin

    2009-01-01

    Background Magnetic Resonance Imaging scanners have become ubiquitous in hospitals and high-field systems (greater than 3 Tesla) are becoming increasingly common. In light of recent European Union moves to limit high-field exposure for those working with MRI scanners, we have evaluated the potential for detrimental cellular effects via nanomagnetic actuation of endogenous iron oxides in the body. Methodology Theoretical models and experimental data on the composition and magnetic properties of endogenous iron oxides in human tissue were used to analyze the forces on iron oxide particles. Principal Finding and Conclusions Results show that, even at 9.4 Tesla, forces on these particles are unlikely to disrupt normal cellular function via nanomagnetic actuation. PMID:19412550

  18. Levitation and lateral forces between a point magnetic dipole and a superconducting sphere

    NASA Astrophysics Data System (ADS)

    H, M. Al-Khateeb; M, K. Alqadi; F, Y. Alzoubi; B, Albiss; M, K. Hasan (Qaseer; N, Y. Ayoub

    2016-05-01

    The dipole-dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.

  19. Change in knee contact force with simulated change in body weight.

    PubMed

    Knarr, Brian A; Higginson, Jill S; Zeni, Joseph A

    2016-02-01

    The relationship between obesity, weight gain and progression of knee osteoarthritis is well supported, suggesting that excessive joint loading may be a mechanism responsible for cartilage deterioration. Examining the influence of weight gain on joint compressive forces is difficult, as both muscles and ground reaction forces can have a significant impact on the forces experienced during gait. While previous studies have examined the relationship between body weight and knee forces, these studies have used models that were not validated using experimental data. Therefore, the objective of this study was to evaluate the relationship between changes in body weight and changes in knee joint contact forces for an individual's gait pattern using musculoskeletal modeling that is validated against known internal compressive forces. Optimal weighting constants were determined for three subjects to generate valid predictions of knee contact forces (KCFs) using in vivo data collection with instrumented total knee arthroplasty. A total of five simulations per walking trial were generated for each subject, from 80% to 120% body weight in 10% increments, resulting in 50 total simulations. The change in peak KCF with respect to body weight was found to be constant and subject-specific, predominantly determined by the peak force during the baseline condition at 100% body weight. This relationship may be further altered by any change in kinematics or body mass distribution that may occur as a result of a change in body weight or exercise program.

  20. Lorentz force electrical impedance tomography using magnetic field measurements.

    PubMed

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  1. Lorentz force electrical impedance tomography using magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  2. On the Unsteady-Motion Theory of Magnetic Forces for Maglev

    DTIC Science & Technology

    1993-11-01

    DivisionEnergy Technology Division Forces for Maglev Energy Technology DivisionEnergy Technology Division by S. S. Chen, S. Zhu, and Y. Cai APQ 4 袲...On the Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S. Chen, S. Zhu, and Y. Cai Energy Technology Division November 1993 Work supported...vi On The Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S

  3. Magnetic dynamos in accreting planetary bodies

    NASA Astrophysics Data System (ADS)

    Golabek, Gregor; Labrosse, Stéphane; Gerya, Taras; Morishima, Ryuji; Tackley, Paul

    2013-04-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies. [1] Weiss, B.P. et al., Science, 322, 713-716, 2008. [2] Richardson, D. C. et al., Icarus, 143, 45-59, 2000. [3] Gerya, T.V and Yuen, D.J., Phys. Earth Planet. Int., 163, 83-105, 2007. [4] Monteux, J. et al., Geophys. Res. Lett., 34, L24201, 2007. [5] Aubert, J. et al

  4. The change in retentive force of magnetic attachment by abrasion.

    PubMed

    Huang, Yuanjin; Tawada, Yasuyuki; Hata, Yoshiaki; Watanabe, Fumihiko

    2008-07-01

    Magnets are frequently applied to removable dentures as retentive attachments. A magnet-retained removable overdenture might be slightly shifted from side to side by eccentric movement in the mouth, and the surface of magnetic attachment may be worn as a result. However, the relationship between the retentive force of magnetic attachment and its surface abrasion has not been reported. The purpose of this research is to investigate this relationship. Ten Mgfit DX 400 magnetic attachments for natural tooth roots were used for this experiment. The magnetic attachments were embedded in autopolymerizing acrylic resin, and ten pairs of specimens were fabricated. A 5-mm repeated gliding motion was applied on each pair of specimens until 30 000, 50 000, or 90 000 cycles had been achieved. The abrasion machine was under 5 kg loading, and the slide speed was 60 times/min. The retentive force of magnetic attachment was measured with a tension gauge at (1) before gliding; (2) after 30 000 gliding cycles; (3)after 50 000 gliding cycles; or (4) after 90 000 gliding cycles. The average change of retentive force of ten magnetic attachments after 30 000, 50 000, and 90 000 gliding cycles was 0.016 N, 0.003 N, and -0.008 N, respectively. The change was statistically analyzed using a paired-sample t test, which showed that the number of gliding cycles did not affect the retentive force of magnetic attachment significantly. The surface of magnetic attachment after gliding was observed by a microscope, and the abrasion of this attachment surface is clearly seen.

  5. Measurement and calculation of forces in a magnetic journal bearing actuator

    NASA Technical Reports Server (NTRS)

    Knight, Josiah; Mccaul, Edward; Xia, Zule

    1991-01-01

    Numerical calculations and experimental measurements of forces from an actuator of the type used in active magnetic journal bearings are presented. The calculations are based on solution of the scalar magnetic potential field in and near the gap regions. The predicted forces from single magnet with steady current are compared with experimental measurements in the same geometry. The measured forces are smaller than calculated ones in the principal direction but are larger than calculated in the normal direction. This combination of results indicate that material and spatial effects other than saturation play roles in determining the force available from an actuator.

  6. A Study of Laminar Compressible Viscous Pipe Flow Accelerated by an Axial Body Force, with Application to Magnetogasdynamics

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1961-01-01

    A study is made of the steady laminar flow of a compressible viscous fluid in a circular pipe when the fluid is accelerated by an axial body force. The application of the theory to the magnetofluidmechanics of an electrically conducting gas accelerated by electric and magnetic fields is discussed. Constant viscosity, thermal conductivity, and electrical conductivity are assumed. Fully developed flow velocity and temperature profiles are shown, and detailed results of the accelerating flow development, including velocity and pressure as functions of distance, are given for the case where the axial body force is constant and for the case where it is a linear function of velocity. From these results are determined the pipe entry length and the pressure difference required.

  7. [Studies on reduction of repellent force of rare earth magnets--concerning tooth intrusion].

    PubMed

    Kitsugi, A

    1992-12-01

    The purpose of this investigation was to evaluate the sealing effect of the repelling force of the magnets with ferromagnetic stainless steel and also to examine the reduction pattern along with the change of the relative position of the magnets. The Nd-Fe-B magnet as rare earth magnet, and SUSXM 27, YEP-3, SUS 416 as ferromagnetic stainless steel were used in this experiment. The findings were as follows: 1. There was a little decrease of the repelling force of the magnets sealed with ferromagnetic stainless steel. On the other hand, no significant differences in the repelling force sealed with any kind of ferromagnetic stainless steel were found. 2. Direct contact of the repelling force of the phi 4.0 x 1.5 mm magnets sealed with SUSXM 27 of 0.2 mm in thickness was 242 gf. According to relative horizontal 1.2 mm movement keeping direct contact, the vertical and horizontal components of the repelling force were of the same value. 3. The repelling force of the phi 10.0 x 1.8 mm magnets sealed with SUSXM 27 of 0.2 mm in thickness was 815 gf. It showed more than 300 gf of vertical component of the repelling force when the magnets shifted to 3.0 mm horizontally when in contact. 4. It is suggested that the repelling force of the Nd-Fe-B magnets will be clinically useful for the intrusion of molar teeth.

  8. How Can Magnetic Forces Do Work? Investigating the Problem with Students

    ERIC Educational Resources Information Center

    Onorato, Pasquale; De Ambrosis, Anna

    2013-01-01

    We present a sequence of activities aimed at promoting both learning about magnetic forces and students' reflection about the conceptual bridge between magnetic forces on a moving charge and on a current-carrying wire in a magnetic field. The activity sequence, designed for students in high school or on introductory physics courses, has been…

  9. What is the force on a magnetic dipole?

    NASA Astrophysics Data System (ADS)

    Franklin, Jerrold

    2018-05-01

    This paper will be of interest to physics graduate students and faculty. We show that attempts to modify the force on a magnetic dipole by introducing either hidden momentum or internal forces are not correct. The standard textbook result {F}={{\

  10. A three-dimensional finite element evaluation of magnetic attachment attractive force and the influence of the magnetic circuit.

    PubMed

    Kumano, Hirokazu; Nakamura, Yoshinori; Kanbara, Ryo; Takada, Yukyo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-01-01

    The finite element method has been considered to be excellent evaluative technique to study magnetic circuit optimization. The present study analyzed and quantitatively evaluated the different effects of magnetic circuit on attractive force and magnetic flux density using a three-dimensional finite element method for comparative evaluation. The diameter of a non-magnetic material in the shield disk of a magnetic assembly was variably increased by 0.1 mm to a maximum 2.0 mm in this study design. The analysis results demonstrate that attractive force increases until the diameter of the non-magnetic spacing material reaches a diameter of 0.5 mm where it peaks and then decreases as the overall diameter increases over 0.5 mm. The present analysis suggested that the attractive force for a magnetic attachment is optimized with an appropriate magnetic assembly shield disk diameter using a non-magnetic material to effectively change the magnetic circuit efficiency and resulting retention.

  11. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  12. Energy buildup in sheared force-free magnetic fields

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  13. A study on the changes in attractive force of magnetic attachments for overdenture.

    PubMed

    Leem, Han-Wool; Cho, In-Ho; Lee, Jong-Hyuk; Choi, Yu-Sung

    2016-02-01

    Although magnetic attachment is used frequently for overdenture, it is reported that attractive force can be decreased by abrasion and corrosion. The purpose of this study was to establish the clinical basis about considerations and long term prognosis of overdenture using magnetic attachments by investigating the change in attractive force of magnetic attachment applied to the patients. Among the patients treated with overdenture using magnetic attachments in Dankook University Dental Hospital, attractive force records of 61 magnetic attachments of 20 subjects who re-visited from July 2013 to June 2014 were analyzed. Dental magnet tester (Aichi Micro Intelligent Co., Aichi, Japan) was used for measurement. The magnetic attachments used in this study were Magfit IP-B Flat, Magfit DX400, Magfit DX600 and Magfit DX800 (Aichi Steel Co., Aichi, Japan) filled with Neodymium (NdFeB), a rare-earth magnet. Reduction ratio of attractive force had no significant correlation with conditional variables to which attachments were applied, and was higher when the maintenance period was longer (P<.05, r=.361). Reduction ratio of attractive force was significantly higher in the subject group in which attachments were used over 9 years than within 9 years (P<.05). Furthermore, 16.39% of total magnetic attachments showed detachment of keeper or assembly. Attractive force of magnetic attachment is maintained regardless of conditional variables and reduction ratio increased as the maintenance period became longer. Further study on adhesive material, attachment method and design improvement to prevent detachment of magnetic attachment is needed.

  14. A study on the changes in attractive force of magnetic attachments for overdenture

    PubMed Central

    Lee, Jong-Hyuk; Choi, Yu-Sung

    2016-01-01

    PURPOSE Although magnetic attachment is used frequently for overdenture, it is reported that attractive force can be decreased by abrasion and corrosion. The purpose of this study was to establish the clinical basis about considerations and long term prognosis of overdenture using magnetic attachments by investigating the change in attractive force of magnetic attachment applied to the patients. MATERIALS AND METHODS Among the patients treated with overdenture using magnetic attachments in Dankook University Dental Hospital, attractive force records of 61 magnetic attachments of 20 subjects who re-visited from July 2013 to June 2014 were analyzed. Dental magnet tester (Aichi Micro Intelligent Co., Aichi, Japan) was used for measurement. The magnetic attachments used in this study were Magfit IP-B Flat, Magfit DX400, Magfit DX600 and Magfit DX800 (Aichi Steel Co., Aichi, Japan) filled with Neodymium (NdFeB), a rare-earth magnet. RESULTS Reduction ratio of attractive force had no significant correlation with conditional variables to which attachments were applied, and was higher when the maintenance period was longer (P<.05, r=.361). Reduction ratio of attractive force was significantly higher in the subject group in which attachments were used over 9 years than within 9 years (P<.05). Furthermore, 16.39% of total magnetic attachments showed detachment of keeper or assembly. CONCLUSION Attractive force of magnetic attachment is maintained regardless of conditional variables and reduction ratio increased as the maintenance period became longer. Further study on adhesive material, attachment method and design improvement to prevent detachment of magnetic attachment is needed. PMID:26949482

  15. Design of Feedforward Controller to Reduce Force Ripple for Linear Motor using Halbach Magnet Array with T Shape Magnet

    NASA Astrophysics Data System (ADS)

    Kim, Moojong; Kim, Jinyoung; Lee, Moon G.

    Recently, in micro/nano fabrication equipments, linear motors are widely used as an actuator to position workpiece, machining tool and measurement head. To control them faster and more precise, the motor should have high actuating force and small force ripple. High actuating force enable us to more workpiece with high acceleration. Eventually, it may provide higher throughput. Force ripple gives detrimental effect on the precision and tracking performance of the equipments. In order to accomplish more precise motion, it is important to make lower the force ripple. Force ripple is categorized into cogging and mutual ripple. First is dependent on the shape of magnets and/or core. The second is not dependent on them but dependent on current commutation. In this work, coreless mover i.e. coil winding is applied to the linear motor to avoid the cogging ripple. Therefore, the mutual ripple is only considered to be minimized. Ideal Halbach magnet array has continuously varying magnetization. The THMA (Halbach magnet array with T shape magnets) is proposed to approximate the ideal one. The THMA can not produce ideal sinusoidal flux, therefore, the linear motor with THMA and sinusoidal commutation of current generates the mutual force ripple. In this paper, in order to compensate mutual force ripple by feedforward(FF) controller, we calculate the optimized commutation of input current. The ripple is lower than 1.17% of actuating force if the commutation current agree with the magnetic flux from THMA. The performance of feedforward(FF) controller is verified by experiment.

  16. Theory for measurements of penetration depth in magnetic superconductors by magnetic force microscopy and scanning SQUID microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Bulaevskii, Lev N.

    2012-07-01

    The working principle of magnetic force microscopy and scanning SQUID microscopy is introducing a magnetic source near a superconductor and measuring the magnetic field distribution near the superconductor, from which one can obtain the penetration depth. We investigate the magnetic field distribution near the surface of a magnetic superconductor when a magnetic source is placed close to the superconductor, which can be used to extract both the penetration depth λL and magnetic susceptibility χ by magnetic force microscopy or scanning SQUID microscopy. When the magnetic moments are parallel to the surface, one extracts λL/1-4πχ. When the moments are perpendicular to the surface, one obtains λL. By changing the orientation of the crystal, one thus is able to extract both χ and λL.

  17. Radiation-reaction force on a small charged body to second order

    NASA Astrophysics Data System (ADS)

    Moxon, Jordan; Flanagan, Éanna

    2018-05-01

    In classical electrodynamics, an accelerating charged body emits radiation and experiences a corresponding radiation-reaction force, or self-force. We extend to higher order in the total charge a previous rigorous derivation of the electromagnetic self-force in flat spacetime by Gralla, Harte, and Wald. The method introduced by Gralla, Harte, and Wald computes the self-force from the Maxwell field equations and conservation of stress-energy in a limit where the charge, size, and mass of the body go to zero, and it does not require regularization of a singular self-field. For our higher-order computation, an adjustment of the definition of the mass of the body is necessary to avoid including self-energy from the electromagnetic field sourced by the body in the distant past. We derive the evolution equations for the mass, spin, and center-of-mass position of the body through second order. We derive, for the first time, the second-order acceleration dependence of the evolution of the spin (self-torque), as well as a mixing between the extended body effects and the acceleration-dependent effects on the overall body motion.

  18. Probing of multiple magnetic responses in magnetic inductors using atomic force microscopy.

    PubMed

    Park, Seongjae; Seo, Hosung; Seol, Daehee; Yoon, Young-Hwan; Kim, Mi Yang; Kim, Yunseok

    2016-02-08

    Even though nanoscale analysis of magnetic properties is of significant interest, probing methods are relatively less developed compared to the significance of the technique, which has multiple potential applications. Here, we demonstrate an approach for probing various magnetic properties associated with eddy current, coil current and magnetic domains in magnetic inductors using multidimensional magnetic force microscopy (MMFM). The MMFM images provide combined magnetic responses from the three different origins, however, each contribution to the MMFM response can be differentiated through analysis based on the bias dependence of the response. In particular, the bias dependent MMFM images show locally different eddy current behavior with values dependent on the type of materials that comprise the MI. This approach for probing magnetic responses can be further extended to the analysis of local physical features.

  19. Quantitative modeling of forces in electromagnetic tweezers

    NASA Astrophysics Data System (ADS)

    Bijamov, Alex; Shubitidze, Fridon; Oliver, Piercen M.; Vezenov, Dmitri V.

    2010-11-01

    This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.

  20. Separating the influence of electric charges in magnetic force microscopy images of inhomogeneous metal samples

    NASA Astrophysics Data System (ADS)

    Arenas, Mónica P.; Lanzoni, Evandro M.; Pacheco, Clara J.; Costa, Carlos A. R.; Eckstein, Carlos B.; de Almeida, Luiz H.; Rebello, João M. A.; Deneke, Christoph F.; Pereira, Gabriela R.

    2018-01-01

    In this study, we investigate artifacts arising from electric charges present in magnetic force microscopy images. Therefore, we use two austenitic steel samples with different microstructural conditions. Furthermore, we examine the influence of the surface preparation, like etching, in magnetic force images. Using Kelvin probe force microscopy we can quantify the charges present on the surface. Our results show that electrical charges give rise to a signature in the magnetic force microscopy, which is indistinguishable from a magnetic signal. Our results on two differently aged steel samples demonstrate that the magnetic force microscopy images need to be interpreted with care and must be corrected due to the influence of electrical charges present. We discuss three approaches, how to identify these artifacts - parallel acquisition of magnetic force and electric force images on the same position, sample surface preparation to decrease the presence of charges and inversion of the magnetic polarization in two succeeding measurement.

  1. Characterization of magnetic force microscopy probe tip remagnetization for measurements in external in-plane magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weis, Tanja; Engel, Dieter; Ehresmann, Arno

    2008-12-15

    A quantitative analysis of magnetic force microscopy (MFM) images taken in external in-plane magnetic fields is difficult because of the influence of the magnetic field on the magnetization state of the magnetic probe tip. We prepared calibration samples by ion bombardment induced magnetic patterning with a topographically flat magnetic pattern magnetically stable in a certain external magnetic field range for a quantitative characterization of the MFM probe tip magnetization in point-dipole approximation.

  2. Magnetic tweezers optimized to exert high forces over extended distances from the magnet in multicellular systems

    NASA Astrophysics Data System (ADS)

    Selvaggi, L.; Pasakarnis, L.; Brunner, D.; Aegerter, C. M.

    2018-04-01

    Magnetic tweezers are mainly divided into two classes depending on the ability of applying torque or forces to the magnetic probe. We focused on the second category and designed a device composed by a single electromagnet equipped with a core having a special asymmetric profile to exert forces as large as 230 pN-2.8 μm Dynabeads at distances in excess of 100 μm from the magnetic tip. Compared to existing solutions our magnetic tweezers overcome important limitations, opening new experimental paths for the study of a wide range of materials in a variety of biophysical research settings. We discuss the benefits and drawbacks of different magnet core characteristics, which led us to design the current core profile. To demonstrate the usefulness of our magnetic tweezers, we determined the microrheological properties inside embryos of Drosophila melanogaster during the syncytial stage. Measurements in different locations along the dorsal-ventral axis of the embryos showed little variation, with a slight increase in cytoplasm viscosity at the periphery of the embryos. The mean cytoplasm viscosity we obtain by active force exertion inside the embryos is comparable to that determined passively using high-speed video microrheology.

  3. Detecting the gravitational sensitivity of Paramecium caudatum using magnetic forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Valles, James M., Jr.

    2006-03-01

    Under normal conditions, Paramecium cells regulate their swimming speed in response to the pN level mechanical force of gravity. This regulation, known as gravikinesis, is more pronounced when the external force is increased by methods such as centrifugation. Here we present a novel technique that simulates gravity fields using the interactions between strong inhomogeneous magnetic fields and cells. We are able to achieve variable gravities spanning from 10xg to -8xg; where g is earth's gravity. Our experiments show that the swimming speed regulation of Paramecium caudatum to magnetically simulated gravity is a true physiological response. In addition, they reveal a maximum propulsion force for paramecia. This advance establishes a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.

  4. On the use of high-gradient magnetic force field in capturing airborne particles

    DOE PAGES

    Cheng, Mengdawn; Murphy, Bart L.; Moon, Ji Won; ...

    2018-06-01

    Airborne particles in the environment are generally smaller than a couple of microns. Use of magnetic force to collect aerosol particles thus has not been popular as the other means. There are billions of airborne particles emitted by a host of man-made sources with the particle size smaller than 1 µm and possess some magnetic susceptibility. We are thus interested in the use of high-gradient magnetic collection to extract the magnetic fraction in an aerosol population. Here in this study, we reported that the magnetic force is the dominant force in collection of ferromagnetic particles of mobility equivalent size largermore » than or equal to 50 nm in a high-gradient permanent-magnetic aerosol collector, while the diffusiophoretic force is responsible for particles smaller than 10 nm. Both forces compete for particles in between these two sizes in the magnetic aerosol collector designed for this study. To enable a wide-range effective collection of aerosol particles across entire size spectrum from a few nanometers to tens of a micron, the ORNL-designed high-gradient magnetic collector would require the use of an engineered matrix. Thus, the matrix design for a specific application becomes application specific. Irrespective of the collection efficiency, the use of permanent magnets to collect magnetic particles is feasible and also highly selective because it tunes into the magnetic susceptibility of the particles as well as the size. Lastly, the use of permanent magnets enables the collector to be operated at a minimal power requirement, which is a critical factor in long-term field operation.« less

  5. On the use of high-gradient magnetic force field in capturing airborne particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Murphy, Bart L.; Moon, Ji Won

    Airborne particles in the environment are generally smaller than a couple of microns. Use of magnetic force to collect aerosol particles thus has not been popular as the other means. There are billions of airborne particles emitted by a host of man-made sources with the particle size smaller than 1 µm and possess some magnetic susceptibility. We are thus interested in the use of high-gradient magnetic collection to extract the magnetic fraction in an aerosol population. Here in this study, we reported that the magnetic force is the dominant force in collection of ferromagnetic particles of mobility equivalent size largermore » than or equal to 50 nm in a high-gradient permanent-magnetic aerosol collector, while the diffusiophoretic force is responsible for particles smaller than 10 nm. Both forces compete for particles in between these two sizes in the magnetic aerosol collector designed for this study. To enable a wide-range effective collection of aerosol particles across entire size spectrum from a few nanometers to tens of a micron, the ORNL-designed high-gradient magnetic collector would require the use of an engineered matrix. Thus, the matrix design for a specific application becomes application specific. Irrespective of the collection efficiency, the use of permanent magnets to collect magnetic particles is feasible and also highly selective because it tunes into the magnetic susceptibility of the particles as well as the size. Lastly, the use of permanent magnets enables the collector to be operated at a minimal power requirement, which is a critical factor in long-term field operation.« less

  6. The rate of separation of magnetic lines of force in a random magnetic field.

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1973-01-01

    The mixing of magnetic lines of force, as represented by their rate of separation, as a function of distance along the magnetic field, is considered with emphasis on neighboring lines of force. This effect is particularly important in understanding the transport of charged particles perpendicular to the average magnetic field. The calculation is carried out in the approximation that the separation changes by an amount small compared with the correlation scale normal to the field, in a distance along the field of a few correlation scales. It is found that the rate of separation is very sensitive to the precise form of the power spectrum. Application to the interplanetary and interstellar magnetic fields is discussed, and it is shown that in some cases field lines, much closer together than the correlation scale, separate at a rate which is effectively as rapid as if they were many correlation lengths apart.

  7. Influence of repeated insertion-removal cycles on the force and magnetic flux leakage of magnetic attachments: an in vitro study.

    PubMed

    Hao, Zhichao; Chao, Yonglie; Meng, Yukun; Yin, Hongmin

    2014-08-01

    Magnetic attachments are widely used in overdentures and maxillofacial prostheses. Because the patient will routinely have to insert and remove a removable prosthesis, the retentive force and magnetic flux leakage of the magnetic attachments after repeated insertion and removal must be evaluated to assess their clinical performance. The purpose of this in vitro study was to investigate the retentive force and flux leakage of magnetic attachments after repeated insertion and removal. Magfit EX600W magnet-keeper combinations (n=5) were used in this study. After 5000, 10,000, and 20,000 insertion-removal cycles, the retentive force of the magnetic attachments was measured 5 times at a crosshead speed of 5 mm/min with a universal testing machine. Magnetic flux leakage at 3 positions (P1, the upper surface of the magnet; P2, the lower surface of the keeper; and P3, the lateral side of the magnetic attachment set) was evaluated with a gaussmeter. Data were statistically analyzed by 1-way ANOVA (α=.05). The morphology of the abraded surfaces for both the magnet and the keeper was observed with an optical microscope (5×). The mean retentive force decreased significantly after 5000, 10,000, and 20,000 insertion-removal movements (P<.05). Significant differences of flux leakage were also observed at P1 after 5000 cycles and 10,000 cycles, at P2 after 5000 cycles, and at P3 after 5000, 10,000, and 20,000 insertion-removal cycles (P < .05). However, no significant differences in flux leakage were evident after 20,000 cycles at P1 and 10,000 cycles and 20,000 cycles at P2. Repeated insertion and removal influenced the retentive force and magnetic flux leakage of the magnetic attachments. Retentive force decreased significantly after repeated insertion-removal cycles, whereas the variation of magnetic flux leakage depended on refitting cycles and positions of the magnetic attachments. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by

  8. Nonlinear Force-free Coronal Magnetic Stereoscopy

    NASA Astrophysics Data System (ADS)

    Chifu, Iulia; Wiegelmann, Thomas; Inhester, Bernd

    2017-03-01

    Insights into the 3D structure of the solar coronal magnetic field have been obtained in the past by two completely different approaches. The first approach are nonlinear force-free field (NLFFF) extrapolations, which use photospheric vector magnetograms as boundary condition. The second approach uses stereoscopy of coronal magnetic loops observed in EUV coronal images from different vantage points. Both approaches have their strengths and weaknesses. Extrapolation methods are sensitive to noise and inconsistencies in the boundary data, and the accuracy of stereoscopy is affected by the ability of identifying the same structure in different images and by the separation angle between the view directions. As a consequence, for the same observational data, the 3D coronal magnetic fields computed with the two methods do not necessarily coincide. In an earlier work (Paper I) we extended our NLFFF optimization code by including stereoscopic constrains. The method was successfully tested with synthetic data, and within this work, we apply the newly developed code to a combined data set from SDO/HMI, SDO/AIA, and the two STEREO spacecraft. The extended method (called S-NLFFF) contains an additional term that monitors and minimizes the angle between the local magnetic field direction and the orientation of the 3D coronal loops reconstructed by stereoscopy. We find that when we prescribe the shape of the 3D stereoscopically reconstructed loops, the S-NLFFF method leads to a much better agreement between the modeled field and the stereoscopically reconstructed loops. We also find an appreciable decrease by a factor of two in the angle between the current and the magnetic field. This indicates the improved quality of the force-free solution obtained by S-NLFFF.

  9. Drag measurements on a laminar flow body of revolution in Langley's 13 inch magnetic suspension and balance system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1988-01-01

    Low-speed wind tunnel drag force measurements were taken on a laminar flow body of revolution free of support interference. This body was tested at zero incidence in the NASA Langley 13 inch Magnetic Suspension and Balance System (MSBS). The primary objective of these tests was to substantiate the drag force measuring capabilities of the 13 inch MSBS. A secondary objective was to obtain support interference free drag measurements on an axisymmetric body of interest. Both objectives were met. The drag force calibrations and wind-on repeatability data provide a means of assessing the drag force measuring capabilities of the 13 inch MSBS. The measured drag coefficients for this body are of interest to researchers actively involved in designing minimum drag fuselage shapes. Additional investigations included: the effects of fixing transition; the effects of fins installed in the tail; surface flow visualizations using both liquid crystals and oil flow; and base pressure measurements using a one-channel telemetry system. Two drag prediction codes were used to assess their usefulness in estimating overall body drag. These theoretical results did not compare well with the measured values because of the following: incorrect or non-existent modeling of a laminar separation bubble on the body and incorrect of non-existent estimates of base pressure drag.

  10. Study on magnetic force of electromagnetic levitation circular knitting machine

    NASA Astrophysics Data System (ADS)

    Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.

    2018-06-01

    The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.

  11. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump.

    PubMed

    Pai, C N; Shinshi, T; Shimokohbe, A

    2010-01-01

    Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response.

  12. [A functional orthodontic magnetic appliance (FOMA) after Vardimon. 1. A three-dimensional analysis of the force system of the attractive magnets].

    PubMed

    Bourauel, C; Vardimon, A D; Drescher, D; Schmuth, G P

    1995-09-01

    The functional magnetic system (FMS) is a removable functional appliance which induces mandibular advance by means of mandibular and maxillary magnets in an attracting configuration. The maxillary and mandibular plates are each equipped with 2 cylindrically shaped cobalt-samarium magnets, 4 mm in diameter and 3 mm in height, which are welded into stainless steel housings. The force system of this magnetic configuration was analyzed using the orthodontic measurement and simulation system (OMSS). OMSS simulated the mandibular jaw movements by separating the installed magnets vertically, corresponding to a mouth opening of X = -10 mm, transversally (right excursion, +/left excursion, -) at Y = +/- 10 mm and sagittally (anterior displacement, +/posterior displacement, -) at Z = +/- 10 mm. The resulting 2D and 3D force/displacement diagrams elucidate the outstanding centripetal-spatial orientation characteristics of the functional magnetic appliance in reference to the full overlap brought about by the attraction of the mandibular magnet by the maxillary magnet. The maximum centripetal forces reached a value of approximately FY, max = 0.65 N for the vertical attracting force at full overlap of the mandibular and maxillary magnets (X = 0.55 mm, Y = Z = 0 mm), a value of FY, max = 0.65 N for the medial shearing force at a partial transversal overlap Z = 0, Y = +/- 2 mm and Y = +/- 6 mm), and for the sagittal shearing force a value of FZ, max = 1.2 N at a partial sagittal overlap of the magnets (Y = 0 mm, Z = +/- 2 mm).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Principle and Basic Characteristics of Variable-Magnetic-Force Memory Motors

    NASA Astrophysics Data System (ADS)

    Sakai, Kazuto; Yuki, Kazuaki; Hashiba, Yutaka; Takahashi, Norio; Yasui, Kazuya; Kovudhikulrungsri, Lilit

    A reduction in the power consumed by motors is required for energy saving in the case of electrical appliances and electric vehicles (EV). The motors used for operating these apparatus operate at variable speeds. Further, the motors operate with small load in stationary mode and with large load in start-up mode. A permanent magnet motor can operate at the rated power with a high efficiency. However, the efficiency is lower at small load or high speed because the large constant magnetic force results in substantial core loss. Furthermore, the flux-weakening current that depresses voltage at high speed leads to significant copper loss. Therefore, we have developed a new technique for controlling the magnetic force of permanent magnet on the basis of the load or speed of the motor. In this paper, we propose the novel motor that can vary magnetic flux and we clarify the principle.

  14. Magnetic Check Valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  15. Magnetic forces and magnetized biomaterials provide dynamic flux information during bone regeneration.

    PubMed

    Russo, Alessandro; Bianchi, Michele; Sartori, Maria; Parrilli, Annapaola; Panseri, Silvia; Ortolani, Alessandro; Sandri, Monica; Boi, Marco; Salter, Donald M; Maltarello, Maria Cristina; Giavaresi, Gianluca; Fini, Milena; Dediu, Valentin; Tampieri, Anna; Marcacci, Maurilio

    2016-03-01

    The fascinating prospect to direct tissue regeneration by magnetic activation has been recently explored. In this study we investigate the possibility to boost bone regeneration in an experimental defect in rabbit femoral condyle by combining static magnetic fields and magnetic biomaterials. NdFeB permanent magnets are implanted close to biomimetic collagen/hydroxyapatite resorbable scaffolds magnetized according to two different protocols . Permanent magnet only or non-magnetic scaffolds are used as controls. Bone tissue regeneration is evaluated at 12 weeks from surgery from a histological, histomorphometric and biomechanical point of view. The reorganization of the magnetized collagen fibers under the effect of the static magnetic field generated by the permanent magnet produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. In contrast, only partial defect healing is achieved within the control groups. We ascribe the peculiar bone regeneration to the transfer of micro-environmental information, mediated by collagen fibrils magnetized by magnetic nanoparticles, under the effect of the static magnetic field. These results open new perspectives on the possibility to improve implant fixation and control the morphology and maturity of regenerated bone providing "in site" forces by synergically combining static magnetic fields and biomaterials.

  16. Self-forces on static bodies in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Taylor, Peter

    2016-03-01

    I will present exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Non-perturbatively, these results are identical in all dimensions. Meaningful point particle limits are quite different, however. I will discuss how such limits are defined and evaluated, resulting in simple ``regularization algorithms'' which can be used in concrete calculations. In them, self-interaction is shown to be progressively less important in higher numbers of dimensions, generically competing in magnitude with increasingly high-order extended-body effects. Conversely, self-interaction effects can be relatively large in 1 + 1 and 2 + 1 dimensions. It will further be shown that there is considerable freedom to use different ``effective fields'' in the laws of motion. Different choices give rise to different inertias, gravitational forces, and electromagnetic or scalar self-forces. However, the particular combinations of these quantities which are observable remain invariant under all possible field redefinitions.

  17. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  18. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  19. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  20. New measuring system for the distribution of a magnetic force by using an optical fiber

    NASA Astrophysics Data System (ADS)

    Ishigaki, H.; Oya, T.; Itoh, M.; Hida, A.; Iwata, K.

    1993-01-01

    A new measuring system using an optical fiber and a position sensing photodetector was developed to measure a three-dimensional distribution of a magnetic force. A steel ball attached to a cantilever made of an optical fiber generated force in a magnetic field. The displacement of the ball due to the force was detected by a position-sensing photodetector with the capability of detecting two-directional coordinates of the position. By scanning the sensing system in a magnetic field, we obtained distributions of two-directional component of the magnetic force vector. The component represents the gradient of a squared magnetic field. The usefulness of the system for measuring the magnetic field distribution in a narrow clearance and for evaluating superconducting machine components such as magnetic bearings was verified experimentally.

  1. Magnetic force microscopy study on wide adjacent track erasure in perpendicular magnetic write heads

    NASA Astrophysics Data System (ADS)

    Ruksasakchai, P.; Saengkaew, K.; Cheowanish, I.; Damrongsak, B.

    2017-09-01

    We used a phase-contrast magnetic force microscopy (MFM) to observe and analyze the failure of magnetic write heads due to the WATEr problem, which limits the off-track performance. During MFM imaging, the magnetic write head was energized by a DC current. The induced out-of-plane magnetic field was then detected by scanning a MFM probe across the surface of the magnetic write head. MFM images were then mapped with WATEr measured results from a spin stand method. Results showed that WATEr effect can be generated by several factors, i.e. the structure of magnetic domains and walls from material discontinuities and the magnetic field leakage at different locations on magnetic write heads. Understanding WATEr mechanisms is useful for design and process development engineers.

  2. Magnetically induced rotor vibration in dual-stator permanent magnet motors

    NASA Astrophysics Data System (ADS)

    Xie, Bang; Wang, Shiyu; Wang, Yaoyao; Zhao, Zhifu; Xiu, Jie

    2015-07-01

    Magnetically induced vibration is a major concern in permanent magnet (PM) motors, which is especially true for dual-stator motors. This work develops a two-dimensional model of the rotor by using energy method, and employs this model to examine the rigid- and elastic-body vibrations induced by the inner stator tooth passage force and that by the outer. The analytical results imply that there exist three typical vibration modes. Their presence or absence depends on the combination of magnet/slot, force's frequency and amplitude, the relative position between two stators, and other structural parameters. The combination and relative position affect these modes via altering the force phase. The predicted results are verified by magnetic force wave analysis by finite element method (FEM) and comparison with the existing results. Potential directions are also given with the anticipation of bringing forth more interesting and useful findings. As an engineering application, the magnetically induced vibration can be first reduced via the combination and then a suitable relative position.

  3. [Measurements of the flux densities of static magnetic fields generated by two types of dental magnetic attachments and their retentive forces].

    PubMed

    Xu, Chun; Chao, Yong-lie; Du, Li; Yang, Ling

    2004-05-01

    To measure and analyze the flux densities of static magnetic fields generated by two types of commonly used dental magnetic attachments and their retentive forces, and to provide guidance for the clinical application of magnetic attachments. A digital Gaussmeter was used to measure the flux densities of static magnetic fields generated by two types of magnetic attachments, under four circumstances: open-field circuit; closed-field circuit; keeper and magnet slid laterally for a certain distance; and existence of air gap between keeper and magnet. The retentive forces of the magnetic attachments in standard closed-field circuit, with the keeper and magnet sliding laterally for a certain distance or with a certain air gap between keeper and magnet were measured by a tensile testing machine. There were flux leakages under both the open-field circuit and closed-field circuit of the two types of magnetic attachments. The flux densities on the surfaces of MAGNEDISC 800 (MD800) and MAGFIT EX600W (EX600) magnetic attachments under open-field circuit were 275.0 mT and 147.0 mT respectively. The flux leakages under closed-field circuit were smaller than those under open-field circuit. The respective flux densities on the surfaces of MD800 and EX600 magnetic attachments decreased to 11.4 mT and 4.5 mT under closed-field circuit. The flux density around the magnetic attachment decreased as the distance from the surface of the attachment increased. When keeper and magnet slid laterally for a certain distance or when air gap existed between keeper and magnet, the flux leakage increased in comparison with that under closed-field circuit. Under the standard closed-field circuit, the two types of magnetic attachments achieved the largest retentive forces. The retentive forces of MD800 and EX600 magnetic attachments under the standard closed-field circuit were 6.20 N and 4.80 N respectively. The retentive forces decreased with the sliding distance or with the increase of air gap

  4. Forced heat loss from body surface reduces heat flow to body surface.

    PubMed

    Berman, A

    2010-01-01

    Heat stress is commonly relieved by forced evaporation from body surfaces. The mode of heat stress relief by heat extraction from the periphery is not clear, although it reduces rectal temperature. Radiant surface temperature (Ts) of the right half of the body surface was examined by thermovision in 4 lactating Holstein cows (30 kg of milk/d) during 7 repeated cycles of forced evaporation created by 30s of wetting followed by 4.5 min of forced airflow. Wetting was performed by an array of sprinklers (0.76 m(3)/h), and forced airflow (>3m/s velocity) over the right side of the body surface was produced by fans mounted at a height of 3m above the ground. Sprinkling wetted the hind legs, rump, and chest, but not the lower abdomen side, front legs, or neck. The animals were maintained in shade at an air temperature of 28 degrees C and relative humidity of 47%. Coat thickness was 1 to 2mm, so Ts closely represented skin temperature. Mean Ts of 5 x 20cm areas on the upper and lower hind and front legs, rump, chest, abdomen side, and neck were obtained by converting to temperature their respective gray intensity in single frames obtained at 10-s intervals. Little change occurred in Ts during the first wetting (0.1+/-0.6 degrees C), but it decreased rapidly thereafter (1.6+/-0.6 degrees C in the fifth wetting). The Ts also decreased, to a smaller extent, in areas that remained dry (0.7+/-1.0 degrees C). In all body sites, a plateau in Ts was reached by 2 min after wetting. The difference between dry and wet areas in the first cooling cycle was approximately 1.2 degrees C. The Ts of different body areas decreased during consecutive cooling cycles and reached a plateau by 3 cooling cycles in dry sites (front leg, neck, abdomen side), by 5 cooling cycles in the hind leg, and 7 cooling cycles in the rump and chest. The reduction in mean Ts produced by 7 cycles was 4.0 to 6.0 degrees C in wetted areas and 1.6 to 3.7 degrees C in sites that were not wetted. Initial rectal

  5. Fundamental study of phosphor separation by controlling magnetic force

    NASA Astrophysics Data System (ADS)

    Wada, Kohei; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2013-11-01

    The phosphor wastes consist of phosphors with different emission colors, green (LAP), red (YOX), blue (BAM) and white (HP). It is required to recover and reuse the rare earth phosphors with high market value. In this study, we tried to separate the phosphor using the magnetic separation by HTS bulk magnet utilizing the differences of magnetic susceptibility by the type of phosphors. We succeeded in the successive separation of HP with low market value from YOX and BAM including the rare earth using the magnetic Archimedes method. In this method, vertical and radial components of the magnetic force were used.

  6. Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, S. Baris; Coskun, Elvan

    2015-03-01

    Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.

  7. Force-free magnetic fields - The magneto-frictional method

    NASA Technical Reports Server (NTRS)

    Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.

    1986-01-01

    The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.

  8. Evaluation of the attractive force of different types of new-generation magnetic attachment systems.

    PubMed

    Akin, Hakan; Coskun, M Emre; Akin, E Gulsah; Ozdemir, A Kemal

    2011-03-01

    Rare earth magnets have been used in prosthodontics, but their tendency for corrosion in the oral cavity and insufficient attractive forces limit long-term clinical application. The purpose of this study was to evaluate the attractive force of different types of new-generation magnetic attachment systems. The attractive force of the neodymium-iron-boron (Nd-Fe-B) and samarium-cobalt (Sm-Co) magnetic attachment systems, including closed-field (Hilop and Hicorex) and open-field (Dyna and Steco) systems, was measured in a universal testing machine (n=5). The data were statistically evaluated with 1-way ANOVA and post hoc Tukey-Kramer multiple comparison test (α=.05). The closed-field systems exhibited greater (P<.001) attractive force than the open-field systems. Moreover, there was a statistically significant difference in attractive force between Nd-Fe-B and Sm-Co magnets (P<.001). The strongest attractive force was found with the Hilop system (9.2 N), and the lowest force was found with the Steco system (2.3 N). The new generation of Nd-Fe-B closed-field magnets, along with improved technology, provides sufficient denture retention for clinical application. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  9. Mass determination with the magnetic levitation method—proposal for a new design of electromechanical system

    NASA Astrophysics Data System (ADS)

    Kajastie, H.; Riski, K.; Satrapinski, A.

    2009-06-01

    The method for realization of the kilogram using 'superconducting magnetic levitation' was re-evaluated at MIKES. The realization of the kilogram based on the traditional levitation method is limited by the imperfections of the superconducting materials and the indefinable dependence between supplied electrical energy and the gravitational potential energy of the superconducting mass. This indefiniteness is proportional to the applied magnetic field and is caused by increasing losses and trapped magnetic fluxes. A new design of an electromechanical system for the levitation method is proposed. In the proposed system the required magnetic field and the corresponding force are reduced, as the mass of the body (hanging from a mass comparator) is compensated by the reference weight on the mass comparator. The direction of the magnetic force can be upward (levitation force, when the body is over the coil) or downward (repulsive force, when the body is under the coil). The initial force to move the body from the coil is not needed and magnetic field sensitivity is increased, providing linearization of displacement versus applied current. This new construction allows a lower magnetic induction, reduces energy losses compared with previous designs of electromechanical system and reduces the corresponding systematic error.

  10. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    PubMed

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.

  11. Force measurements of a magnetic micro actuator proposed for a microvalve array

    NASA Astrophysics Data System (ADS)

    Chang, Pauline J.; Chang, Frank W.; Yuen, Michelle C.; Otillar, Robert; Horsley, David A.

    2014-03-01

    Low-cost, easily-fabricated and power-efficient microvalves are necessary for many microfluidic lab-on-a-chip applications. In this study, we present a simple, low-power, scalable, CMOS-compatible magnetic actuator for microvalve applications composed of a paramagnetic bead as the ball valve over a picoliter reaction well etched into a silicon substrate. The paramagnetic bead, composed of either pure FeSi or magnetite in a SiO2 matrix, is actuated by the local magnetic field gradient generated by a microcoil in an aqueous environment, and the reaction well is situated at the microcoil center. A permanent magnet beneath the microvalve device provides an external magnetic biasing field that magnetizes the bead, enabling bidirectional actuation and reducing the current required to actuate the bead to a level below 10 mA. The vertical and radial magnetic forces exerted on the bead by the microcoil were measured for both pure FeSi and composite beads and agree well with the predictions of 2D axisymmetric finite element method models. Vertical forces were within a range of 13-80 nN, and radial forces were 11-60 nN depending on the bead type. The threshold current required to initiate bead actuation was measured as a function of bead diameter and is found to scale inversely with volume for small beads, as expected based on the magnetic force model. To provide an estimate of the stiction force acting between the bead and the passivation layer on the substrate, repeated actuation trials were used to study the bead throw distance for substrates coated with silicon dioxide, Parylene-C, and photoresist. The stiction observed was lowest for a photoresist-coated substrate, while silicon dioxide and Parylene-C coated substrates exhibited similar levels of stiction.

  12. Magnetic resonance force microscopy with a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  13. Magnetic resonance force microscopy with a paramagnetic probe

    NASA Astrophysics Data System (ADS)

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    We consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  14. Magnetic resonance force microscopy with a paramagnetic probe

    DOE PAGES

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  15. Magnetic Force and Work: An Accessible Example

    ERIC Educational Resources Information Center

    Gates, Joshua

    2014-01-01

    Despite their physics instructors' arguments to the contrary, introductory students can observe situations in which there seems to be compelling evidence for magnetic force doing work. The counterarguments are often highly technical and require physics knowledge beyond the experience of novice students, however. A simple example is presented…

  16. Magnetic spheres as foreign body into the bladder.

    PubMed

    Graziottin, Tulio M; de Freitas G Soares, Daniel; Da Ros, Carlos T; Sogari, Paulo R; Telöken, Cláudio; Laste, Paulo Roberto

    2013-10-01

    A great variety of foreign bodies in the lower urinary tract have been described; many of them are self-inflicted by the patient with masturbatory purposes. Depending on the nature of the foreign body the diagnostic and management might be challenging. We report a case of an unusual magnetic self-inserted foreign body into the bladder for autoerotism and briefly discuss the diagnostic and therapeutic implications in this challenging situation. We describe all the steps we have used to adequately diagnose the problem, describe the foreign body and treatments for the patient. Related articles were found by utilizing the PubMed database and are summarized in this study.   The management approach must be planned according to the nature of the foreign body and should minimize bladder and urethral trauma. However, most of cases can be managed endoscopically. Removal of magnetic foreign body may be quite challenging, requiring high-level surgical skills and minimally invasive techniques resulting in fast recovery and low complication rate. © 2012 International Society for Sexual Medicine.

  17. Relationship between body composition and vertical ground reaction forces in obese children when walking.

    PubMed

    Villarrasa-Sapiña, Israel; Serra-Añó, Pilar; Pardo-Ibáñez, Alberto; Gonzalez, Luis-Millán; García-Massó, Xavier

    2017-01-01

    Obesity is now a serious worldwide challenge, especially in children. This condition can cause a number of different health problems, including musculoskeletal disorders, some of which are due to mechanical stress caused by excess body weight. The aim of this study was to determine the association between body composition and the vertical ground reaction force produced during walking in obese children. Sixteen children participated in the study, six females and ten males [11.5 (1.2) years old, 69.8 (15.5) kg, 1.56 (0.09) m, and 28.36 (3.74) kg/m 2 of body mass index (BMI)]. Total weight, lean mass and fat mass were measured by dual-energy X-ray absorptiometry and vertical forces while walking were obtained by a force platform. The vertical force variables analysed were impact and propulsive forces, and the rate of development of both. Multiple regression models for each vertical force parameter were calculated using the body composition variables as input. The impact force regression model was found to be positively related to the weight of obese children and negatively related to lean mass. The regression model showed lean mass was positively related to the propulsive rate. Finally, regression models for impact and propulsive force showed a direct relationship with body weight. Impact force is positively related to the weight of obese children, but lean mass helps to reduce the impact force in this population. Exercise could help obese persons to reduce their total body weight and increase their lean mass, thus reducing impact forces during sports and other activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Internal Stresses Lead to Net Forces and Torques on Extended Elastic Bodies

    NASA Astrophysics Data System (ADS)

    Aharoni, Hillel; Kolinski, John M.; Moshe, Michael; Meirzada, Idan; Sharon, Eran

    2016-09-01

    A geometrically frustrated elastic body will develop residual stresses arising from the mismatch between the intrinsic geometry of the body and the geometry of the ambient space. We analyze these stresses for an ambient space with gradients in its intrinsic curvature, and show that residual stresses generate effective forces and torques on the center of mass of the body. We analytically calculate these forces in two dimensions, and experimentally demonstrate their action by the migration of a non-Euclidean gel disc in a curved Hele-Shaw cell. An extension of our analysis to higher dimensions shows that these forces are also generated in three dimensions, but are negligible compared to gravity.

  19. Nonlinear gravitational self-force: Field outside a small body

    NASA Astrophysics Data System (ADS)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  20. Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals

    NASA Astrophysics Data System (ADS)

    Zou, Jibin; Li, Xuehui; Lu, Yongping; Hu, Jianhui

    2002-11-01

    The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively.

  1. Magnetic force micropiston: an integrated force/microfluidic device for the application of compressive forces in a confined environment.

    PubMed

    Fisher, J K; Kleckner, N

    2014-02-01

    Cellular biology takes place inside confining spaces. For example, bacteria grow in crevices, red blood cells squeeze through capillaries, and chromosomes replicate inside the nucleus. Frequently, the extent of this confinement varies. Bacteria grow longer and divide, red blood cells move through smaller and smaller passages as they travel to capillary beds, and replication doubles the amount of DNA inside the nucleus. This increase in confinement, either due to a decrease in the available space or an increase in the amount of material contained in a constant volume, has the potential to squeeze and stress objects in ways that may lead to changes in morphology, dynamics, and ultimately biological function. Here, we describe a device developed to probe the interplay between confinement and the mechanical properties of cells and cellular structures, and forces that arise due to changes in a structure's state. In this system, the manipulation of a magnetic bead exerts a compressive force upon a target contained in the confining space of a microfluidic channel. This magnetic force microfluidic piston is constructed in such a way that we can measure (a) target compliance and changes in compliance as induced by changes in buffer, extract, or biochemical composition, (b) target expansion force generated by changes in the same parameters, and (c) the effects of compression stress on a target's structure and function. Beyond these issues, our system has general applicability to a variety of questions requiring the combination of mechanical forces, confinement, and optical imaging.

  2. Magnetic force micropiston: An integrated force/microfluidic device for the application of compressive forces in a confined environment

    NASA Astrophysics Data System (ADS)

    Fisher, J. K.; Kleckner, N.

    2014-02-01

    Cellular biology takes place inside confining spaces. For example, bacteria grow in crevices, red blood cells squeeze through capillaries, and chromosomes replicate inside the nucleus. Frequently, the extent of this confinement varies. Bacteria grow longer and divide, red blood cells move through smaller and smaller passages as they travel to capillary beds, and replication doubles the amount of DNA inside the nucleus. This increase in confinement, either due to a decrease in the available space or an increase in the amount of material contained in a constant volume, has the potential to squeeze and stress objects in ways that may lead to changes in morphology, dynamics, and ultimately biological function. Here, we describe a device developed to probe the interplay between confinement and the mechanical properties of cells and cellular structures, and forces that arise due to changes in a structure's state. In this system, the manipulation of a magnetic bead exerts a compressive force upon a target contained in the confining space of a microfluidic channel. This magnetic force microfluidic piston is constructed in such a way that we can measure (a) target compliance and changes in compliance as induced by changes in buffer, extract, or biochemical composition, (b) target expansion force generated by changes in the same parameters, and (c) the effects of compression stress on a target's structure and function. Beyond these issues, our system has general applicability to a variety of questions requiring the combination of mechanical forces, confinement, and optical imaging.

  3. Principle and Basic Characteristics of a Hybrid Variable-Magnetic-Force Motor

    NASA Astrophysics Data System (ADS)

    Sakai, Kazuto; Kuramochi, Satoru

    Reduction in the power consumed by motors is important for energy saving in the case of electrical appliances and electric vehicles (EVs). The motors used for operating these devices operate at variable speeds. Further, the motors operate with a small load in the stationary mode and a large load in the starting mode. A permanent magnet motor can be operated at the rated power with a high efficiency. However, the efficiency is low at a small load or at a high speed because the large constant magnetic force results in substantial core loss. Furthermore, the flux-weakening current that decreases the voltage at a high speed leads to significant copper loss and core loss. Therefore, we have developed a new technique for controlling the magnetic force of a permanent magnet on the basis of the load or speed of the motor. In this paper, we propose a novel motor that can vary the magnetic flux of a permanent magnet and clarify the principle and basic characteristics of the motor. The new motor has a permanent magnet that is magnetized by the magnetizing coil of the stator. The analysis results show that the magnetic flux linkage of the motor can be changed from 37% to 100% that a high torque can be produced.

  4. Fabrication of cobalt magnetic nanostructures using atomic force microscope lithography.

    PubMed

    Chu, Haena; Yun, Seonghun; Lee, Haiwon

    2013-12-01

    Cobalt nanopatterns are promising assemblies for patterned magnetic storage applications. The fabrication of cobalt magnetic nanostructures on n-tridecylamine x hydrochloride (TDA x HCl) self-assembled monolayer (SAM) modified silicon surfaces using direct writing atomic force microscope (AFM) lithography for localized electrochemical reduction of cobalt ions was demonstrated. The ions were reduced to form metal nanowires along the direction of the electricfield between the AFM tip and the substrate. In this lithography process, TDA x HCI SAMs play an important role in the lithography process for improving the resolution of cobalt nanopatterns by preventing nonspecific reduction of cobalt ions on the unwritten background. Cobalt nanowires and nanodots with width of 225 +/- 26 nm and diameter of 208 +/- 28 nm were successfully fabricated. Platinium-coated polydimethylsiloxane (PDMS) stamp was used fabricating bulk cobalt structures which can be detected by energy dispersive X-ray spectroscopy for element analysis and the physical and magnetic properties of these cobalt nanopatterns were characterized using AFM and magnetic force microscope.

  5. Magnetic force microscopy studies in bulk polycrystalline iron

    NASA Astrophysics Data System (ADS)

    Abuthahir, J.; Kumar, Anish

    2018-02-01

    The paper presents magnetic force microscopy (MFM) studies on the effect of crystallographic orientation and external magnetic field on magnetic microstructure in a bulk polycrystalline iron specimen. The magneto crystalline anisotropic effect on the domain structure is characterized with the support of electron backscatter diffraction study. The distinct variations in magnetic domain structure are observed based on the crystallographic orientation of the grain surface normal with respect to the cube axis i.e. the easy axis of magnetization. Further, the local magnetization behavior is studied in-situ by MFM in presence of external magnetic field in the range of -2000 to 2000 Oe. Various micro-magnetization phenomena such as reversible and irreversible domain wall movements, expansion and contraction of domains, Barkhausen jump, bowing of a pinned domain wall and nucleation of a spike domain are visualized. The respective changes in the magnetic microstructure are compared with the bulk magnetization obtained using vibrating sample magnetometer. Bowing of a domain wall, pinned at two points, upon application of magnetic field is used to estimate the domain wall energy density. The MFM studies in presence of external field applied in two perpendicular directions are used to reveal the influence of the crystalline anisotropy on the local micro-magnetization.

  6. Detecting the magnetic response of iron oxide capped organosilane nanostructures using magnetic sample modulation and atomic force microscopy.

    PubMed

    Li, Jie-Ren; Lewandowski, Brian R; Xu, Song; Garno, Jayne C

    2009-06-15

    A new imaging strategy using atomic force microscopy (AFM) is demonstrated for mapping magnetic domains at size regimes below 100 nm. The AFM-based imaging mode is referred to as magnetic sample modulation (MSM), since the flux of an AC-generated electromagnetic field is used to induce physical movement of magnetic nanomaterials on surfaces during imaging. The AFM is operated in contact mode using a soft, nonmagnetic tip to detect the physical motion of the sample. By slowly scanning an AFM probe across a vibrating area of the sample, the frequency and amplitude of vibration induced by the magnetic field is tracked by changes in tip deflection. Thus, the AFM tip serves as a force and motion sensor for mapping the vibrational response of magnetic nanomaterials. Essentially, MSM is a hybrid of contact mode AFM combined with selective modulation of magnetic domains. The positional feedback loop for MSM imaging is the same as that used for force modulation and contact mode AFM; however, the vibration of the sample is analyzed using channels of a lock-in amplifier. The investigations are facilitated by nanofabrication methods combining particle lithography with organic vapor deposition and electroless deposition of iron oxide, to prepare designed test platforms of magnetic materials at nanometer length scales. Custom test platforms furnished suitable surfaces for MSM characterizations at the level of individual metal nanostructures.

  7. A magnetic gradient induced force in NMR restricted diffusion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magneticmore » properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.« less

  8. Sources of spurious force oscillations from an immersed boundary method for moving-body problems

    NASA Astrophysics Data System (ADS)

    Lee, Jongho; Kim, Jungwoo; Choi, Haecheon; Yang, Kyung-Soo

    2011-04-01

    When a discrete-forcing immersed boundary method is applied to moving-body problems, it produces spurious force oscillations on a solid body. In the present study, we identify two sources of these force oscillations. One source is from the spatial discontinuity in the pressure across the immersed boundary when a grid point located inside a solid body becomes that of fluid with a body motion. The addition of mass source/sink together with momentum forcing proposed by Kim et al. [J. Kim, D. Kim, H. Choi, An immersed-boundary finite volume method for simulations of flow in complex geometries, Journal of Computational Physics 171 (2001) 132-150] reduces the spurious force oscillations by alleviating this pressure discontinuity. The other source is from the temporal discontinuity in the velocity at the grid points where fluid becomes solid with a body motion. The magnitude of velocity discontinuity decreases with decreasing the grid spacing near the immersed boundary. Four moving-body problems are simulated by varying the grid spacing at a fixed computational time step and at a constant CFL number, respectively. It is found that the spurious force oscillations decrease with decreasing the grid spacing and increasing the computational time step size, but they depend more on the grid spacing than on the computational time step size.

  9. Numerical studies on the force characteristic of superconducting linear synchronous motor with HTS bulk magnet

    NASA Astrophysics Data System (ADS)

    Tang, Junjie; Li, Jing; Li, Xiang; Han, Le

    2018-03-01

    High temperature superconductor (HTS) bulks have significant potential use in linear motor application act as quasi-permanent magnet to replace traditional magnets. Force characteristic between HTS bulk magnet and traveling magnetic field was investigated with numerical simulation and experimental measurement in this paper. Influences of bulk height and number on the force characteristic were studied by the finite element model considering the nonlinear E-J relationship. Study was also made on addition of a back iron plate to the bulk magnet. Besides, force characteristic of bulk was compared with the permanent magnet results. The small initial decrease of the thrust could be explained by inside superconducting current redistribution. It was found that efficiency of linear motor did not increase by adding more bulk magnets. The bulk magnet will be remagnetized instead of erasing trapped field with the increase of the traveling magnetic field strength. The conclusions are helpful in prediction and design the linear motor with HTS bulk magnet.

  10. Design and damping force characterization of a new magnetorheological damper activated by permanent magnet flux dispersion

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hoon; Han, Chulhee; Choi, Seung-Bok

    2018-01-01

    This work proposes a novel type of tunable magnetorheological (MR) damper operated based solely on the location of a permanent magnet incorporated into the piston. To create a larger damping force variation in comparison with the previous model, a different design configuration of the permanent-magnet-based MR (PMMR) damper is introduced to provide magnetic flux dispersion in two magnetic circuits by utilizing two materials with different magnetic reluctance. After discussing the design configuration and some advantages of the newly designed mechanism, the magnetic dispersion principle is analyzed through both the formulated analytical model of the magnetic circuit and the computer simulation based on the magnetic finite element method. Sequentially, the principal design parameters of the damper are determined and fabricated. Then, experiments are conducted to evaluate the variation in damping force depending on the location of the magnet. It is demonstrated that the new design and magnetic dispersion concept are valid showing higher damping force than the previous model. In addition, a curved structure of the two materials is further fabricated and tested to realize the linearity of the damping force variation.

  11. A repulsive magnetic force driven translation micromirror

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; Zuo, Hui; He, Siyuan

    2017-10-01

    This paper presents a repulsive magnetic force driven micromirror with large displacement and high surface quality which well solves the limitation of the previous design, i.e. large variation in translation starting position and low repeatability, caused by the touching points between the moving film and substrate before and in operation. The new design utilizes a driving mechanism, i.e. permanent magnet ring above and electromagnet underneath the moving film, to lift the moving film from touching the substrate and generate a repulsive magnetic force (instead of attractive force in the previous design) to push the moving film up and away from the substrate for translation. Due to the touching, the previous design has to pre-oscillate for 20-30 min at 1 Hz before usage (after resting for a few hours) to reduce the starting position variation from ~15 µm to 3-4 µm. Even after the pre-oscillation, the repeatability is still low, which is 14.2% because of the touching in operation. In the design presented in this paper, the touching between the moving film and the substrate is completely eliminated before and in operation. As a result, the starting position of the translating mirror is constant each time and the repeatability is  <1%. In addition, this design does not need the residual stress gradient to curve up the moving film. The maximum displacement of 144 µm can be achieved when 140 mA current is applied on the electromagnet. As an application, the micromirror is used as the movable mirror in a Michelson interferometer to measure the wavelength of a laser beam. The result shows a measurement accuracy of 2.19% for a 532 nm laser beam.

  12. Comparison of forced-air warming systems with lower body blankets using a copper manikin of the human body.

    PubMed

    Bräuer, A; English, M J M; Lorenz, N; Steinmetz, N; Perl, T; Braun, U; Weyland, W

    2003-01-01

    Forced-air warming has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with lower body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of six complete lower body warming systems. Heat transfer of forced-air warmers can be described as follows:[1]Qdot;=h.DeltaT.A where Qdot; = heat transfer [W], h = heat exchange coefficient [W m-2 degrees C-1], DeltaT = temperature gradient between blanket and surface [ degrees C], A = covered area [m2]. We tested the following forced-air warmers in a previously validated copper manikin of the human body: (1) Bair Hugger and lower body blanket (Augustine Medical Inc., Eden Prairie, MN); (2) Thermacare and lower body blanket (Gaymar Industries, Orchard Park, NY); (3) WarmAir and lower body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (4) Warm-Gard(R) and lower body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (5) Warm-Gard and reusable lower body blanket (Luis Gibeck AB); and (6) WarmTouch and lower body blanket (Mallinckrodt Medical Inc., St. Luis, MO). Heat flux and surface temperature were measured with 16 calibrated heat flux transducers. Blanket temperature was measured using 16 thermocouples. DeltaT was varied between -10 and +10 degrees C and h was determined by a linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, because similar mean skin temperatures have been found in volunteers. The area covered by the blankets was estimated to be 0.54 m2. Heat transfer from the blanket to the manikin was different for surface temperatures between 36 degrees C and 38 degrees C. At a surface temperature of 36 degrees C the heat transfer was higher (between 13.4 W to 18.3 W) than at surface temperatures of 38 degrees C (8-11.5 W). The highest heat transfer was delivered by the Thermacare system (8.3-18.3 W), the

  13. Drag and Lift Forces Between a Rotating Conductive Sphere and a Cylindrical Magnet

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Youngquist, Robert C.

    2017-01-01

    Modeling the interaction between a non-uniform magnetic field and a rotating conductive object allows study of the drag force which is used in applications such as eddy current braking and linear induction motors as well as the transition to a repulsive force that is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two step mathematics process is developed to find a closed form solution in terms of only two eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.

  14. Drag and lift forces between a rotating conductive sphere and a cylindrical magnet

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.

    2018-06-01

    Modeling the interaction between a non-uniform magnetic field and a rotating conductive object provides insight into the drag force, which is used in applications such as eddy current braking and linear induction motors, as well as the transition to a repulsive force, which is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two-step mathematical process is developed to find a closed-form solution in terms of only three eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate-level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.

  15. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.

    2001-01-01

    The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.

  16. Flow and Force Equations for a Body Revolving in a Fluid

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1930-01-01

    Part I gives a general method for finding the steady-flow velocity relative to a body in plane curvilinear motion, whence the pressure is found by Bernoulli's energy principle. Integration of the pressure supplies basic formulas for the zonal forces and moments on the revolving body. Part II, applying this steady-flow method, finds the velocity and pressure at all points of the flow inside and outside an ellipsoid and some of its limiting forms, and graphs those quantities for the latter forms. Part III finds the pressure, and thence the zonal force and moment, on hulls in plane curvilinear flight. Part IV derives general equations for the resultant fluid forces and moments on trisymmetrical bodies moving through a perfect fluid, and in some cases compares the moment values with those found for bodies moving in air. Part V furnishes ready formulas for potential coefficients and inertia coefficients for an ellipsoid and its limiting forms. Thence are derived tables giving numerical values of those coefficients for a comprehensive range of shapes.

  17. Self-induced pinning of vortices in the presence of ac driving force in magnetic superconductors

    NASA Astrophysics Data System (ADS)

    Bulaevskii, Lev N.; Lin, Shi-Zeng

    2012-12-01

    We derive the response of the magnetic superconductors in the vortex state to the ac Lorentz force, FL(t)=Facsin(ωt), taking into account the interaction of vortices with the magnetic moments described by the relaxation dynamics (polaronic effect). At low amplitudes of the driving force Fac the dissipation in the system is suppressed due to the enhancement of the effective viscosity at low frequencies and due to formation of the magnetic pinning at high frequencies ω. In the adiabatic limit with low frequencies ω and high amplitude of the driving force Fac, the vortex and magnetic polarization form a vortex polaron when FL(t) is small. When FL increases, the vortex polaron accelerates and at a threshold driving force, the vortex polaron dissociates and the motion of vortex and the relaxation of magnetization are decoupled. When FL decreases, the vortex is retrapped by the background of remnant magnetization and they again form vortex polaron. This process repeats when FL(t) increases in the opposite direction. Remarkably, after dissociation, decoupled vortices move in the periodic potential induced by magnetization which remains for some periods of time due to retardation after the decoupling. At this stage vortices oscillate with high frequencies determined by the Lorentz force at the moment of dissociation. We derive also the creep rate of vortices and show that magnetic moments suppress creep rate.

  18. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function.

    PubMed

    Gahl, Trevor J; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.

  19. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    NASA Astrophysics Data System (ADS)

    Valenzuela, S. O.; Jorge, G. A.; Rodríguez, E.

    1999-11-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give rise to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction, which represents a promising field with regard to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.

  20. Embedding Circular Force-Free Flux Ropes in Potential Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Torok, T.; Mikic, Z.; Linker, J.

    2013-12-01

    We propose a method for constructing approximate force-free equilibria in active regions that locally have a potential bipolar-type magnetic field with a thin force-free flux rope embedded inside it. The flux rope has a circular-arc axis and circular cross-section in which the interior magnetic field is predominantly toroidal (axial). Its magnetic pressure is balanced outside by that of the poloidal (azimuthal) field created at the boundary by the electric current sheathing the flux rope. To facilitate the implementation of the method in our numerical magnetohydrodynamic (MHD) code, the entire solution is described in terms of the vector potential of the magnetic field. The parameters of the flux rope can be chosen so that a subsequent MHD relaxation of the constructed configuration under line-tied conditions at the boundary provides a numerically exact equilibrium. Such equilibria are an approximation for the magnetic configuration preceding solar eruptions, which can be triggered in our model by imposing suitable photospheric flows beneath the flux rope. The proposed method is a useful tool for constructing pre-eruption magnetic fields in data-driven simulations of solar active events. Research supported by NASA's Heliophysics Theory and LWS Programs, and NSF/SHINE and NSF/FESD.

  1. The local stability of the magnetized advection-dominated discs with the radial viscous force

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, S. M.; Shadmehri, M.

    2018-06-01

    We study local stability of the advection-dominated optically thick (slim) and optically thin discs with purely toroidal magnetic field and the radial viscous force using a linear perturbation analysis. Our dispersion relation indicates that the presence of magnetic fields and radial viscous force cannot give rise to any new mode of the instability. We find, however, that growth rate of the thermal mode in the slim discs and that of the acoustic modes in the slim and optically thin discs are dramatically affected by the radial viscous force. This force tends to strongly decrease the growth rate of the outward-propagating acoustic mode (O-mode) in the short-wavelength limit, but it causes a slim disc to become thermally more unstable. This means that growth rate of the thermal mode increases in the presence of radial viscous force. This enhancement is more significant when the viscosity parameter is large. The growth rates of the thermal and acoustic modes depend on the magnetic field. Although the instability of O-mode for a stronger magnetic field case has a higher growth rate, the thermal mode of the slim discs can be suppressed when the magnetic field is strong. The inertial-acoustic instability of a magnetized disc may explain the quasi-periodic oscillations (QPOs) from the black holes.

  2. Force direction patterns promote whole body stability even in hip-flexed walking, but not upper body stability in human upright walking

    NASA Astrophysics Data System (ADS)

    Müller, Roy; Rode, Christian; Aminiaghdam, Soran; Vielemeyer, Johanna; Blickhan, Reinhard

    2017-11-01

    Directing the ground reaction forces to a focal point above the centre of mass of the whole body promotes whole body stability in human and animal gaits similar to a physical pendulum. Here we show that this is the case in human hip-flexed walking as well. For all upper body orientations (upright, 25°, 50°, maximum), the focal point was well above the centre of mass of the whole body, suggesting its general relevance for walking. Deviations of the forces' lines of action from the focal point increased with upper body inclination from 25 to 43 mm root mean square deviation (RMSD). With respect to the upper body in upright gait, the resulting force also passed near a focal point (17 mm RMSD between the net forces' lines of action and focal point), but this point was 18 cm below its centre of mass. While this behaviour mimics an unstable inverted pendulum, it leads to resulting torques of alternating sign in accordance with periodic upper body motion and probably provides for low metabolic cost of upright gait by keeping hip torques small. Stabilization of the upper body is a consequence of other mechanisms, e.g. hip reflexes or muscle preflexes.

  3. Harmonic Fluxes and Electromagnetic Forces of Concentric Winding Brushless Permanent Magnet Motor

    NASA Astrophysics Data System (ADS)

    Ishibashi, Fuminori; Takemasa, Ryo; Matsushita, Makoto; Nishizawa, Takashi; Noda, Shinichi

    Brushless permanent magnet motors have been widely used in home applications and industrial fields. These days, high efficiency and low noise motors are demanded from the view point of environment. Electromagnetic noise and iron loss of the motor are produced by the harmonic fluxes and electromagnetic forces. However, order and space pattern of these have not been discussed in detail. In this paper, fluxes, electromagnetic forces and magneto-motive forces of brushless permanent magnet motors with concentric winding were analyzed analytically, experimentally and numerically. Time harmonic fluxes and time electromagnetic forces in the air gap were measured by search coils on the inner surface of the stator teeth and analyzed by FEM. Space pattern of time harmonic fluxes and time electromagnetic forces were worked out with experiments and FEM. Magneto motive forces due to concentric winding were analyzed with equations and checked by FEM.

  4. Flow and Force Equations for a Body Revolving in a Fluid

    NASA Technical Reports Server (NTRS)

    Zahm, A. F.

    1979-01-01

    A general method for finding the steady flow velocity relative to a body in plane curvilinear motion, whence the pressure is found by Bernoulli's energy principle is described. Integration of the pressure supplies basic formulas for the zonal forces and moments on the revolving body. The application of the steady flow method for calculating the velocity and pressure at all points of the flow inside and outside an ellipsoid and some of its limiting forms is presented and graphs those quantities for the latter forms. In some useful cases experimental pressures are plotted for comparison with theoretical. The pressure, and thence the zonal force and moment, on hulls in plane curvilinear flight are calculated. General equations for the resultant fluid forces and moments on trisymmetrical bodies moving through a perfect fluid are derived. Formulas for potential coefficients and inertia coefficients for an ellipsoid and its limiting forms are presented.

  5. Gravitational body forces focus North American intraplate earthquakes

    USGS Publications Warehouse

    Levandowski, William Brower; Zellman, Mark; Briggs, Richard

    2017-01-01

    Earthquakes far from tectonic plate boundaries generally exploit ancient faults, but not all intraplate faults are equally active. The North American Great Plains exemplify such intraplate earthquake localization, with both natural and induced seismicity generally clustered in discrete zones. Here we use seismic velocity, gravity and topography to generate a 3D lithospheric density model of the region; subsequent finite-element modelling shows that seismicity focuses in regions of high-gravity-derived deviatoric stress. Furthermore, predicted principal stress directions generally align with those observed independently in earthquake moment tensors and borehole breakouts. Body forces therefore appear to control the state of stress and thus the location and style of intraplate earthquakes in the central United States with no influence from mantle convection or crustal weakness necessary. These results show that mapping where gravitational body forces encourage seismicity is crucial to understanding and appraising intraplate seismic hazard.

  6. Gravitational body forces focus North American intraplate earthquakes

    PubMed Central

    Levandowski, Will; Zellman, Mark; Briggs, Rich

    2017-01-01

    Earthquakes far from tectonic plate boundaries generally exploit ancient faults, but not all intraplate faults are equally active. The North American Great Plains exemplify such intraplate earthquake localization, with both natural and induced seismicity generally clustered in discrete zones. Here we use seismic velocity, gravity and topography to generate a 3D lithospheric density model of the region; subsequent finite-element modelling shows that seismicity focuses in regions of high-gravity-derived deviatoric stress. Furthermore, predicted principal stress directions generally align with those observed independently in earthquake moment tensors and borehole breakouts. Body forces therefore appear to control the state of stress and thus the location and style of intraplate earthquakes in the central United States with no influence from mantle convection or crustal weakness necessary. These results show that mapping where gravitational body forces encourage seismicity is crucial to understanding and appraising intraplate seismic hazard. PMID:28211459

  7. Distinguishing ferritin from apoferritin using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Nocera, Tanya M.; Zeng, Yuzhi; Agarwal, Gunjan

    2014-11-01

    Estimating the amount of iron-replete ferritin versus iron-deficient apoferritin proteins is important in biomedical and nanotechnology applications. This work introduces a simple and novel approach to quantify ferritin by using magnetic force microscopy (MFM). We demonstrate how high magnetic moment probes enhance the magnitude of MFM signal, thus enabling accurate quantitative estimation of ferritin content in ferritin/apoferritin mixtures in vitro. We envisage MFM could be adapted to accurately determine ferritin content in protein mixtures or in small aliquots of clinical samples.

  8. Multiple degree-of-freedom force and moment measurement for static propulsion testing using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Stuart, Keith; Bartosh, Blake

    1993-01-01

    Innovative Information Systems (IIS), Inc. is in the process of designing and fabricating a high bandwidth force and moment measuring device (i.e. the Magnetic Thruster Test Stand). This device will use active magnetic suspension to allow direct measurements of the forces and torques generated by the rocket engines of the missile under test. The principle of operation of the Magnetic Thruster Test Stand (MTTS) is based on the ability to perform very precise, high bandwidth force and position measurements on an object suspended in a magnetic field. This ability exists due to the fact that the digital servo control mechanism that performs the magnetic suspension uses high bandwidth (10 kHz) position data (via an eddy-current proximity sensor) to determine the amount of force required to maintain stable suspension at a particular point. This force is converted into required electromagnet coil current, which is then output to a current amplifier driving the coils. A discussion of how the coil current and magnetic gap distance (the distance between the electromagnet and the object being suspended) is used to determine the forces being applied from the suspended assembly is presented.

  9. Biomechanics of pressure ulcer in body tissues interacting with external forces during locomotion.

    PubMed

    Mak, Arthur F T; Zhang, Ming; Tam, Eric W C

    2010-08-15

    Forces acting on the body via various external surfaces during locomotion are needed to support the body under gravity, control posture, and overcome inertia. Examples include the forces acting on the body via the seating surfaces during wheelchair propulsion, the forces acting on the plantar foot tissues via the insole during gait, and the forces acting on the residual-limb tissues via the prosthetic socket during various movement activities. Excessive exposure to unwarranted stresses at the body-support interfaces could lead to tissue breakdowns commonly known as pressure ulcers, often presented as deep-tissue injuries around bony prominences or as surface damage on the skin. In this article, we review the literature that describes how the involved tissues respond to epidermal loading, taking into account both experimental and computational findings from in vivo and in vitro studies. In particular, we discuss related literature about internal tissue deformation and stresses, microcirculatory responses, and histological, cellular, and molecular observations.

  10. Comparison of forced-air warming systems with upper body blankets using a copper manikin of the human body.

    PubMed

    Bräuer, A; English, M J M; Steinmetz, N; Lorenz, N; Perl, T; Braun, U; Weyland, W

    2002-09-01

    Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0

  11. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function

    PubMed Central

    Gahl, Trevor J.; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices. PMID:29867315

  12. Core Problem: Does the CV Parent Body Magnetization require differentiation?

    NASA Astrophysics Data System (ADS)

    O'Brien, T.; Tarduno, J. A.; Smirnov, A. V.

    2016-12-01

    Evidence for the presence of past dynamos from magnetic studies of meteorites can provide key information on the nature and evolution of parent bodies. However, the suggestion of a past core dynamo for the CV parent body based on the study of the Allende meteorite has led to a paradox: a core dynamo requires differentiation, evidence for which is missing in the meteorite record. The key parameter used to distinguish core dynamo versus external field mechanisms is absolute field paleointensity, with high values (>>1 μT) favoring the former. Here we explore the fundamental requirements for absolute field intensity measurement in the Allende meteorite: single domain grains that are non-interacting. Magnetic hysteresis and directional data define strong magnetic interactions, negating a standard interpretation of paleointensity measurements in terms of absolute paleofield values. The Allende low field magnetic susceptibility is dominated by magnetite and FeNi grains, whereas the magnetic remanence is carried by an iron sulfide whose remanence-carrying capacity increases with laboratory cycling at constant field values, indicating reordering. The iron sulfide and FeNi grains are in close proximity, providing mineralogical context for interactions. We interpret the magnetization of Allende to record the intense early solar wind with metal-sulfide interactions amplifying the field, giving the false impression of a higher field value in some prior studies. An undifferentiated CV parent body is thus compatible with Allende's magnetization. Early solar wind magnetization should be the null hypothesis for evaluating the source of magnetization for chondrites and other meteorites.

  13. Self-forces on static bodies in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Harte, Abraham I.; Flanagan, Éanna É.; Taylor, Peter

    2016-06-01

    We derive exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Nonperturbatively, our results are identical in all dimensions. Meaningful point particle limits are quite different in different dimensions, however. These limits are defined and evaluated, resulting in simple "regularization algorithms" which can be used in concrete calculations. In these limits, self-interaction is shown to be progressively less important in higher numbers of dimensions; it generically competes in magnitude with increasingly high-order extended-body effects. Conversely, we show that self-interaction effects can be relatively large in 1 +1 and 2 +1 dimensions. Our motivations for this work are twofold: First, no previous derivation of the self-force has been provided in arbitrary dimensions, and heuristic arguments presented by different authors have resulted in conflicting conclusions. Second, the static self-force problem in arbitrary dimensions provides a valuable test bed with which to continue the development of general, nonperturbative methods in the theory of motion. Several new insights are obtained in this direction, including a significantly improved understanding of the renormalization process. We also show that there is considerable freedom to use different "effective fields" in the laws of motion—a freedom which can be exploited to optimally simplify specific problems. Different choices give rise to different inertias, gravitational forces, and electromagnetic or scalar self-forces, but there is a sense in which none of these quantities are individually accessible to experiment. Certain combinations are observable, however, and these remain invariant under all possible field redefinitions.

  14. A linear magnetic motor and generator

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1980-01-01

    In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.

  15. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.

    PubMed

    Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H

    2011-12-06

    Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.

  16. Study on magnetic properties of magnetic minerals in the quartzofeldspathic schist by using magnetic force microscope

    NASA Astrophysics Data System (ADS)

    Ni, C. H.; Chen, Y. H.

    2016-12-01

    The pseudotachylyte generated from the fault sliding during an earthquake plays an important role in the geology. In general, the pseudotachylyte vein has a magnetic susceptibility which is higher than wall rocks attributed by the fine-grained magnetic minerals. In this study, the fault pseudotachylyte formed by frictional melting in quartzofeldspathic schist rocks from Alpine Fault, New Zealand, was investigated. The scanning electron microscopy (SEM) was used to obtain the morphology of magnetic minerals and magnetic force microscopy (MFM) was utilized to observe magnetic domain structures. We want to realize how the growth process of magnetic minerals affects magnetic structures and magnetic properties. It was observed exsoluted-titanomagnetite was especially around outer edge of pseudotachylyte. These titanomagnetite had a single domain (SD) and distributed paralleling to the direction of exsolution. In contrast, the magnetic minerals (magnetite) in the pseudotachylyte vein had two different magnetic structures: one is the detrital magnetite showed multiple domains (MD) without regular arrangement, which may be indicated the thermal remanent magnetization (TRM). One the other is neoformed fine-grained magnetite scattering in the matrix and showed SD to pseudo-single-domain (PSD) and their magnetic direction was perpendicular to the direction of pseudotachylyte veins, suggesting the chemical remanent magnetization (CRM). However, the macroscopic magnetic property, based on Day's plot, measured from superconducting quantum interference device (SQUID) was shown the sample belonged to MD structures. These results indicated that MFM is a more powerful and precise tool to figure out the magnetic structure. The related studies will be further investigated.

  17. A Miniature Magnetic-Force-Based Three-Axis AC Magnetic Sensor with Piezoelectric/Vibrational Energy-Harvesting Functions.

    PubMed

    Hung, Chiao-Fang; Yeh, Po-Chen; Chung, Tien-Kan

    2017-02-08

    In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic-mechanical-piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect) to convert x -axis and y -axis in-plane and z -axis magnetic fields into piezoelectric voltage outputs. Under the x -axis magnetic field (sine-wave, 100 Hz, 0.2-3.2 gauss) and the z -axis magnetic field (sine-wave, 142 Hz, 0.2-3.2 gauss), the voltage output with the sensitivity of the sensor are 1.13-26.15 mV with 8.79 mV/gauss and 1.31-8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x -axis vibration (sine-wave, 100 Hz, 3.5 g) and z -axis vibration (sine-wave, 142 Hz, 3.8 g), the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on.

  18. The relationship between the force and separation of miniature magnets used in dentistry.

    PubMed

    Darvell, Brian W; Gilding, Brian H

    2018-06-01

    Miniature magnets are used in dentistry, principally for the retention of prosthetic devices. The relationship between force and separation of a magnet and its keeper, or, equivalently, two such magnets, has been neither defined theoretically nor described practically in any detail suitable for these applications. The present paper addresses this lacuna. A magnet is considered as a conglomeration of magnetic poles distributed over a surface or a solid in three-dimensional space, with the interaction of poles governed by the Coulomb law. This leads to a suite of mathematical models. These models are analysed for their description of the relationship between the force and the separation of two magnets. It is shown that at a large distance of separation, an inverse power law must apply. The power is necessarily integer and at least two. All possibilities are exhausted. Complementarily, under reasonable assumptions, it is shown that at a small distance of separation, the force remains finite. The outcome is in accordance with practical experience, and at odds with the use of simple conceptual models. Consequences relevant to the usage of magnets in dentistry are discussed. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  19. Vertically polarizing undulator with dynamic compensation of magnetic forces

    DOE PAGES

    Strelnikov, N.; Vasserman, I.; Xu, J.; ...

    2017-01-20

    As part of the R&D program of the LCLS-II project, a novel 3.4-meter-long undulator prototype with horizontal magnetic field and dynamic force compensation has recently been developed at the Advanced Photon Source (APS). Some previous steps in this development were the shorter 0.8-meter-long and 2.8-meter-long prototypes. Extensive mechanical and magnetic testing was carried out for each prototype, and each prototype was magnetically tuned using magnetic shims. Furthermore, the resulting performance of the 3.4-meter-long undulator prototype meets all requirements for the LCLS-II insertion device, including limits on the field integrals, phase errors, higher-order magnetic moments, and electron-beam trajectory for all operationalmore » gaps, as well as the reproducibility and accuracy of the gap settings.« less

  20. Forced three-dimensional magnetic reconnection due to linkage of magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Otto, A.

    1995-01-01

    During periods of southward interplanetary magnetic field (IMF) orientation the magnetic field geometry at the dayside magnetopause is susceptible to magnetic reconnection. It has been suggested that reconnection may occur in a localized manner at several patches on the magnetopause. A major problem with this picture is the interaction of magnetic flux ropes which are generated by different reconnection processes. An individual flux rope is bent elbowlike where it intersects the magnetopause and the magnetic field changes from magnetospheric to interplanetary magnetic field orientation. Multiple patches of reconnection can lead to the formation of interlinked magnetic flux tubes. Although the corresponding flux is connected to the IMF the northward and southward connected branches are hooked into each other and cannot develop independently. We have studied this problem in the framework of three-dimensional magnetohydrodynamic simulations. The results indicate that a singular current sheet forms at the interface of two interlinked flux tubes if no resistivity is present in the simulation. This current sheet is strongly tilted compared to the original current sheet. In the presence of resistivity the interaction of the two flux tubes forces a fast reconnection process which generates helically twisted closed magnetospheric flux. This linkage induced reconnection generates a boundary layer with layers of open and closed magnetospheric flux and may account for the brightening of auroral arcs poleward of the boundary between open and closed magnetic flux.

  1. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE Data Explorer

    Myers, Clayton E. [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); ] (ORCID:0000000345398406); Yamada, Maasaki [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000349961649); Ji, Hantao [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China] (ORCID:0000000196009963); Yoo, Jongsoo [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000338811995); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:000000016289858X); Jara-Almonte, Jonathan [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); ] (ORCID:0000000307606198); Savcheva, Antonia [Harvard†“ Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA] (ORCID:000000025598046X); DeLuca, Edward E. [Harvard†“ Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA] (ORCID:0000000174162895)

    2015-12-11

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun’s corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such ‘failed torus’ events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.

  2. Ellipsoids (v1.0): 3-D magnetic modelling of ellipsoidal bodies

    NASA Astrophysics Data System (ADS)

    Takahashi, Diego; Oliveira, Vanderlei C., Jr.

    2017-09-01

    A considerable amount of literature has been published on the magnetic modelling of uniformly magnetized ellipsoids since the second half of the nineteenth century. Ellipsoids have flexibility to represent a wide range of geometrical forms, are the only known bodies which can be uniformly magnetized in the presence of a uniform inducing field and are the only finite bodies for which the self-demagnetization can be treated analytically. This property makes ellipsoids particularly useful for modelling compact orebodies having high susceptibility. In this case, neglecting the self-demagnetization may strongly mislead the interpretation of these bodies by using magnetic methods. A number of previous studies consider that the self-demagnetization can be neglected for the case in which the geological body has an isotropic susceptibility lower than or equal to 0.1 SI. This limiting value, however, seems to be determined empirically and there has been no discussion about how this value was determined. In addition, the geoscientific community lacks an easy-to-use tool to simulate the magnetic field produced by uniformly magnetized ellipsoids. Here, we present an integrated review of the magnetic modelling of arbitrarily oriented triaxial, prolate and oblate ellipsoids. Our review includes ellipsoids with both induced and remanent magnetization, as well as with isotropic or anisotropic susceptibility. We also discuss the ambiguity between confocal ellipsoids with the same magnetic moment and propose a way of determining the isotropic susceptibility above which the self-demagnetization must be taken into consideration. Tests with synthetic data validate our approach. Finally, we provide a set of routines to model the magnetic field produced by ellipsoids. The routines are written in Python language as part of the Fatiando a Terra, which is an open-source library for modelling and inversion in geophysics.

  3. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    NASA Astrophysics Data System (ADS)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  4. Equatorial sandhoppers use body scans to detect the earth's magnetic field.

    PubMed

    Ugolini, A

    2006-01-01

    Adults of Talorchestia martensii were individually released in a confined environment, with and without the natural magnetic field, under the sun and in a dark room. The sandhoppers scanned the horizontal component of the magnetic field by left and right oscillations of the entire major body axis. The frequency of this behaviour increased in a zeroed magnetic field, as did the frequencies of other behavioural indicators that reflect the difficulty in identifying the ecologically efficient orientation direction (sea-land axis). Therefore, like head scans in birds, body scans seem to be used by equatorial sandhoppers to detect the magnetic symmetry plane.

  5. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  6. Observation of force-detected nuclear magnetic resonance in a homogeneous field

    PubMed Central

    Madsen, L. A.; Leskowitz, G. M.; Weitekamp, D. P.

    2004-01-01

    We report the experimental realization of BOOMERANG (better observation of magnetization, enhanced resolution, and no gradient), a sensitive and general method of magnetic resonance. The prototype millimeter-scale NMR spectrometer shows signal and noise levels in agreement with the design principles. We present 1H and 19F NMR in both solid and liquid samples, including time-domain Fourier transform NMR spectroscopy, multiple-pulse echoes, and heteronuclear J spectroscopy. By measuring a 1H-19F J coupling, this last experiment accomplishes chemically specific spectroscopy with force-detected NMR. In BOOMERANG, an assembly of permanent magnets provides a homogeneous field throughout the sample, while a harmonically suspended part of the assembly, a detector, is mechanically driven by spin-dependent forces. By placing the sample in a homogeneous field, signal dephasing by diffusion in a field gradient is made negligible, enabling application to liquids, in contrast to other force-detection methods. The design appears readily scalable to μm-scale samples where it should have sensitivity advantages over inductive detection with microcoils and where it holds great promise for application of magnetic resonance in biology, chemistry, physics, and surface science. We briefly discuss extensions of the BOOMERANG method to the μm and nm scales. PMID:15326302

  7. The effect of power-law body forces on a thermally driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1986-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  8. The effect of power law body forces on a thermally-driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  9. Transformation of body force localized near the surface of a half-space into equivalent surface stresses.

    PubMed

    Rouge, Clémence; Lhémery, Alain; Ségur, Damien

    2013-10-01

    An electromagnetic acoustic transducer (EMAT) or a laser used to generate elastic waves in a component is often described as a source of body force confined in a layer close to the surface. On the other hand, models for elastic wave radiation more efficiently handle sources described as distributions of surface stresses. Equivalent surface stresses can be obtained by integrating the body force with respect to depth. They are assumed to generate the same field as the one that would be generated by the body force. Such an integration scheme can be applied to Lorentz force for conventional EMAT configuration. When applied to magnetostrictive force generated by an EMAT in a ferromagnetic material, the same scheme fails, predicting a null stress. Transforming body force into equivalent surface stresses therefore, requires taking into account higher order terms of the force moments, the zeroth order being the simple force integration over the depth. In this paper, such a transformation is derived up to the second order, assuming that body forces are localized at depths shorter than the ultrasonic wavelength. Two formulations are obtained, each having some advantages depending on the application sought. They apply regardless of the nature of the force considered.

  10. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  11. Levitation force of small clearance superconductor-magnet system under non-coaxial condition

    NASA Astrophysics Data System (ADS)

    Xu, Jimin; Jin, Yingze; Yuan, Xiaoyang; Miao, Xusheng

    2017-03-01

    A novel superconducting tilting-pad bearing was proposed for the advanced research of reusable liquid hydrogen turbopump in liquid rocket. The bearing is a combination of superconducting magnetic bearing and hydrodynamic fluid-film bearing. Since the viscosity of cryogenic fuel to activate superconducting state and form hydrodynamic fluid-film is very low, bearing clearance will be very small. This study focuses on the investigation of superconducting levitation force in this kind of small clearance superconductor-magnet system. Based on Bean critical state model and three-dimensional finite element method, an analysis method is presented to obtain the levitation force under such situation. Since the complicated operational conditions and structural arrangement for application in liquid rocket, center lines of bulk superconductor and magnet rotor will usually be in non-coaxial state. Superconducting levitation forces in axial direction and radial direction under non-coaxial situation are also analyzed by the presented method.

  12. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation.

    PubMed

    Vrijsen, N H; Jansen, J W; Compter, J C; Lomonova, E A

    2013-07-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.

  13. A multiplexed magnetic tweezer with precision particle tracking and bi-directional force control.

    PubMed

    Johnson, Keith C; Clemmens, Emilie; Mahmoud, Hani; Kirkpatrick, Robin; Vizcarra, Juan C; Thomas, Wendy E

    2017-01-01

    In the past two decades, methods have been developed to measure the mechanical properties of single biomolecules. One of these methods, Magnetic tweezers, is amenable to aquisition of data on many single molecules simultaneously, but to take full advantage of this "multiplexing" ability, it is necessary to simultaneously incorprorate many capabilities that ahve been only demonstrated separately. Our custom built magnetic tweezer combines high multiplexing, precision bead tracking, and bi-directional force control into a flexible and stable platform for examining single molecule behavior. This was accomplished using electromagnets, which provide high temporal control of force while achieving force levels similar to permanent magnets via large paramagnetic beads. Here we describe the instrument and its ability to apply 2-260 pN of force on up to 120 beads simultaneously, with a maximum spatial precision of 12 nm using a variety of bead sizes and experimental techniques. We also demonstrate a novel method for increasing the precision of force estimations on heterogeneous paramagnetic beads using a combination of density separation and bi-directional force correlation which reduces the coefficient of variation of force from 27% to 6%. We then use the instrument to examine the force dependence of uncoiling and recoiling velocity of type 1 fimbriae from Eschericia coli ( E. coli ) bacteria, and see similar results to previous studies. This platform provides a simple, effective, and flexible method for efficiently gathering single molecule force spectroscopy measurements.

  14. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.

    PubMed

    Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J

    2010-11-16

    Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.

  15. Temperature and field direction dependences of first-order reversal curve (FORC) diagrams of hot-deformed Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Yomogita, Takahiro; Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Sepehri-Amin, Hossein; Ohkubo, Tadakatsu; Hono, Kazuhiro; Akiya, Takahiro; Hioki, Keiko; Hattori, Atsushi

    2018-02-01

    First-order reversal curve (FORC) diagram has been previously adopted for the analyses of magnetization reversal process and/or quantitative evaluation of coercivity and interaction field dispersions in various magnetic samples. Although these kinds of information are valuable for permanent magnets, previously reported FORC diagrams of sintered Nd-Fe-B magnets exhibit very complicated patterns. In this paper, we have studied the FORC diagrams of hot-deformed Nd-Fe-B magnets under various conditions. Contrary to the previous reports on sintered Nd-Fe-B magnets, the FORC diagram of the hot-deformed Nd-Fe-B magnet exhibits a very simple pattern consisting of a strong spot and a weak line. From this FORC diagram pattern, it is revealed that the coercivity dispersion of the hot-deformed Nd-Fe-B magnets is surprisingly small. Moreover, this feature of the FORC diagram pattern is very robust and unaffected by changes in various conditions such as grain boundary diffusion process, temperature, and field direction, whereas these conditions significantly change the coercivity and the shape of magnetization curve. This fact indicates that the magnetization reversal process of the hot-deformed Nd-Fe-B magnets is almost unchanged against these conditions.

  16. First order reversal curves (FORC) analysis of individual magnetic nanostructures using micro-Hall magnetometry

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Eibisch, Paul; Akbari, Maryam; Porrati, Fabrizio; Huth, Michael; Müller, Jens

    2016-11-01

    Alongside the development of artificially created magnetic nanostructures, micro-Hall magnetometry has proven to be a versatile tool to obtain high-resolution hysteresis loop data and access dynamical properties. Here we explore the application of First Order Reversal Curves (FORC)—a technique well-established in the field of paleomagnetism for studying grain-size and interaction effects in magnetic rocks—to individual and dipolar-coupled arrays of magnetic nanostructures using micro-Hall sensors. A proof-of-principle experiment performed on a macroscopic piece of a floppy disk as a reference sample well known in the literature demonstrates that the FORC diagrams obtained by magnetic stray field measurements using home-built magnetometers are in good agreement with magnetization data obtained by a commercial vibrating sample magnetometer. We discuss in detail the FORC diagrams and their interpretation of three different representative magnetic systems, prepared by the direct-write Focused Electron Beam Induced Deposition (FEBID) technique: (1) an isolated Co-nanoisland showing a simple square-shaped hysteresis loop, (2) a more complex CoFe-alloy nanoisland exhibiting a wasp-waist-type hysteresis, and (3) a cluster of interacting Co-nanoislands. Our findings reveal that the combination of FORC and micro-Hall magnetometry is a promising tool to investigate complex magnetization reversal processes within individual or small ensembles of nanomagnets grown by FEBID or other fabrication methods. The method provides sub-μm spatial resolution and bridges the gap of FORC analysis, commonly used for studying macroscopic samples and rather large arrays, to studies of small ensembles of interacting nanoparticles with the high moment sensitivity inherent to micro-Hall magnetometry.

  17. First order reversal curves (FORC) analysis of individual magnetic nanostructures using micro-Hall magnetometry.

    PubMed

    Pohlit, Merlin; Eibisch, Paul; Akbari, Maryam; Porrati, Fabrizio; Huth, Michael; Müller, Jens

    2016-11-01

    Alongside the development of artificially created magnetic nanostructures, micro-Hall magnetometry has proven to be a versatile tool to obtain high-resolution hysteresis loop data and access dynamical properties. Here we explore the application of First Order Reversal Curves (FORC)-a technique well-established in the field of paleomagnetism for studying grain-size and interaction effects in magnetic rocks-to individual and dipolar-coupled arrays of magnetic nanostructures using micro-Hall sensors. A proof-of-principle experiment performed on a macroscopic piece of a floppy disk as a reference sample well known in the literature demonstrates that the FORC diagrams obtained by magnetic stray field measurements using home-built magnetometers are in good agreement with magnetization data obtained by a commercial vibrating sample magnetometer. We discuss in detail the FORC diagrams and their interpretation of three different representative magnetic systems, prepared by the direct-write Focused Electron Beam Induced Deposition (FEBID) technique: (1) an isolated Co-nanoisland showing a simple square-shaped hysteresis loop, (2) a more complex CoFe-alloy nanoisland exhibiting a wasp-waist-type hysteresis, and (3) a cluster of interacting Co-nanoislands. Our findings reveal that the combination of FORC and micro-Hall magnetometry is a promising tool to investigate complex magnetization reversal processes within individual or small ensembles of nanomagnets grown by FEBID or other fabrication methods. The method provides sub-μm spatial resolution and bridges the gap of FORC analysis, commonly used for studying macroscopic samples and rather large arrays, to studies of small ensembles of interacting nanoparticles with the high moment sensitivity inherent to micro-Hall magnetometry.

  18. Three-axis force actuator for a magnetic bearing

    NASA Technical Reports Server (NTRS)

    Gondhalekar, Vijay (Inventor)

    1998-01-01

    This invention features a three-axis force actuator that axially, radially and rotatably supports a bearing member for frictionless rotation about an axis of rotation generally coincident with a Z-axis. Also featured is a magnetic bearing having such an actuator. The actuator includes an inner member, a magnetic member and a pole assembly having a ring member and four pole extending therefrom. The poles are equi-angular spaced from each other and radially spaced about the Z-axis. The inner member extends along the Z-axis and is a highly magnetic permeable material. The magnetic member is formed about the inner member outer surface, extends along the Z-axis and is configured so one magnetic pole polarity is located at its outer surface and the other polarity pole is located at its inner surface. Preferably, the magnetic member is a radially magnetized permanent magnet. The inner surface of the ring member is magnetically coupled to the magnetic member and a face of each pole is coupled to the bearing member. The magnetic member, the pole assembly, the inner member and the bearing member cooperate to generate a magnetic field that radially and rotatably supports a rotating member secured to the bearing member. The actuator further includes a plurality of electromagnetic coils. Preferably, a coil is formed about each pole and at least 2 coils are formed about the inner member. When energized, the electromagnetic coils generate a modulated magnetic field that stabilizes the rotating member in the desired operational position.

  19. Magnetically operated check valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor); Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  20. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1993-03-01

    A magnetically operated check valve is disclosed having, in one aspect, a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  1. Magnetically operated check valve

    NASA Astrophysics Data System (ADS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-06-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  2. Kinesin-microtubule interactions during gliding assays under magnetic force

    NASA Astrophysics Data System (ADS)

    Fallesen, Todd L.

    Conventional kinesin is a motor protein capable of converting the chemical energy of ATP into mechanical work. In the cell, this is used to actively transport vesicles through the intracellular matrix. The relationship between the velocity of a single kinesin, as it works against an increasing opposing load, has been well studied. The relationship between the velocity of a cargo being moved by multiple kinesin motors against an opposing load has not been established. A major difficulty in determining the force-velocity relationship for multiple motors is determining the number of motors that are moving a cargo against an opposing load. Here I report on a novel method for detaching microtubules bound to a superparamagnetic bead from kinesin anchor points in an upside down gliding assay using a uniform magnetic field perpendicular to the direction of microtubule travel. The anchor points are presumably kinesin motors bound to the surface which microtubules are gliding over. Determining the distance between anchor points, d, allows the calculation of the average number of kinesins, n, that are moving a microtubule. It is possible to calculate the fraction of motors able to move microtubules as well, which is determined to be ˜ 5%. Using a uniform magnetic field parallel to the direction of microtubule travel, it is possible to impart a uniform magnetic field on a microtubule bound to a superparamagnetic bead. We are able to decrease the average velocity of microtubules driven by multiple kinesin motors moving against an opposing force. Using the average number of kinesins on a microtubule, we estimate that there are an average 2-7 kinesins acting against the opposing force. By fitting Gaussians to the smoothed distributions of microtubule velocities acting against an opposing force, multiple velocities are seen, presumably for n, n-1, n-2, etc motors acting together. When these velocities are scaled for the average number of motors on a microtubule, the force

  3. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has notmore » yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.« less

  4. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE PAGES

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; ...

    2015-12-23

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has notmore » yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.« less

  5. Visco-Resistive MHD Modeling Benchmark of Forced Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Hegna, C. C.; Sovinec, C. R.; Callen, J. D.; Ferraro, N. M.

    2016-10-01

    The presence of externally-applied 3D magnetic fields can affect important phenomena in tokamaks, including mode locking, disruptions, and edge localized modes. External fields penetrate into the plasma and can lead to forced magnetic reconnection (FMR), and hence magnetic islands, on resonant surfaces if the local plasma rotation relative to the external field is slow. Preliminary visco-resistive MHD simulations of FMR in a slab geometry are consistent with theory. Specifically, linear simulations exhibit proper scaling of the penetrated field with resistivity, viscosity, and flow, and nonlinear simulations exhibit a bifurcation from a flow-screened to a field-penetrated, magnetic island state as the external field is increased, due to the 3D electromagnetic force. These results will be compared to simulations of FMR in a circular cross-section, cylindrical geometry by way of a benchmark between the NIMROD and M3D-C1 extended-MHD codes. Because neither this geometry nor the MHD model has the physics of poloidal flow damping, the theory of will be expanded to include poloidal flow effects. The resulting theory will be tested with linear and nonlinear simulations that vary the resistivity, viscosity, flow, and external field. Supported by OFES DoE Grants DE-FG02-92ER54139, DE-FG02-86ER53218, DE-AC02-09CH11466, and the SciDAC Center for Extended MHD Modeling.

  6. Intrinsic Magnetic Properties of the Lunar Body

    NASA Technical Reports Server (NTRS)

    Behannon, Kenneth W.

    1968-01-01

    Preliminary analysis of magnetic measurements by Explorer 35 in lunar orbit suggested an upper limit of 4 x 10(exp 20) gauss-cm3 for the magnetic moment of the moon. A more detailed analysis of a larger body of Explorer 35 data from measurements in the earth's magnetic tail has subsequently been performed. Reversal of the ambient tail field by 180deg when the moon and spacecraft traverse the neutral sheet permits a separation of permanent and induced field contributions to the total field observed near the moon. When compared to calculated permanent and induced field effects, the results of this analysis lead to new upper limits of 102' gauss-cm3 on the lunar magnetic moment and 4y on the lunar surface field. Limiting the moment induced in the moon by the magnetotail field permits an upper limit of 1.8 to be set on the bulk relative magnetic permeability of the moon.

  7. A Miniature Magnetic-Force-Based Three-Axis AC Magnetic Sensor with Piezoelectric/Vibrational Energy-Harvesting Functions

    PubMed Central

    Hung, Chiao-Fang; Yeh, Po-Chen; Chung, Tien-Kan

    2017-01-01

    In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic–mechanical–piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect) to convert x-axis and y-axis in-plane and z-axis magnetic fields into piezoelectric voltage outputs. Under the x-axis magnetic field (sine-wave, 100 Hz, 0.2–3.2 gauss) and the z-axis magnetic field (sine-wave, 142 Hz, 0.2–3.2 gauss), the voltage output with the sensitivity of the sensor are 1.13–26.15 mV with 8.79 mV/gauss and 1.31–8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x-axis vibration (sine-wave, 100 Hz, 3.5 g) and z-axis vibration (sine-wave, 142 Hz, 3.8 g), the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on. PMID:28208693

  8. Proton magnetic resonance spectroscopy for assessment of human body composition.

    PubMed

    Kamba, M; Kimura, K; Koda, M; Ogawa, T

    2001-02-01

    The usefulness of magnetic resonance spectroscopy (MRS)-based techniques for assessment of human body composition has not been established. We compared a proton MRS-based technique with the total body water (TBW) method to determine the usefulness of the former technique for assessment of human body composition. Proton magnetic resonance spectra of the chest to abdomen, abdomen to pelvis, and pelvis to thigh regions were obtained from 16 volunteers by using single, free induction decay measurement with a clinical magnetic resonance system operating at 1.5 T. The MRS-derived metabolite ratio was determined as the ratio of fat methyl and methylene proton resonance to water proton resonance. The peak areas for the chest to abdomen and the pelvis to thigh regions were normalized to an external reference (approximately 2200 g benzene) and a weighted average of the MRS-derived metabolite ratios for the 2 positions was calculated. TBW for each subject was determined by the deuterium oxide dilution technique. The MRS-derived metabolite ratios were significantly correlated with the ratio of body fat to lean body mass estimated by TBW. The MRS-derived metabolite ratio for the abdomen to pelvis region correlated best with the ratio of body fat to lean body mass on simple regression analyses (r = 0.918). The MRS-derived metabolite ratio for the abdomen to pelvis region and that for the pelvis to thigh region were selected for a multivariate regression model (R = 0.947, adjusted R(2) = 0.881). This MRS-based technique is sufficiently accurate for assessment of human body composition.

  9. A portable Halbach magnet that can be opened and closed without force: The NMR-CUFF

    NASA Astrophysics Data System (ADS)

    Windt, Carel W.; Soltner, Helmut; Dusschoten, Dagmar van; Blümler, Peter

    2011-01-01

    Portable equipment for nuclear magnetic resonance (NMR) is becoming increasingly attractive for use in a variety of applications. One of the main scientific challenges in making NMR portable is the design of light-weight magnets that possess a strong and homogeneous field. Existing NMR magnets can provide such magnetic fields, but only for small samples or in small regions, or are rather heavy. Here we show a simple yet elegant concept for a Halbach-type permanent magnet ring, which can be opened and closed with minimal mechanical force. An analytical solution for an ideal Halbach magnet shows that the magnetic forces cancel if the structure is opened at an angle of 35.3° relative to its poles. A first prototype weighed only 3.1 kg, and provided a flux density of 0.57 T with a homogeneity better than 200 ppm over a spherical volume of 5 mm in diameter without shimming. The force needed to close it was found to be about 20 N. As a demonstration, intact plants were imaged and water (xylem) flow measured. Magnets of this type (NMR-CUFF = Cut-open, Uniform, Force Free) are ideal for portable use and are eminently suited to investigate small or slender objects that are part of a larger or immobile whole, such as branches on a tree, growing fruit on a plant, or non-metallic tubing in industrial installations. This new concept in permanent-magnet design enables the construction of openable, yet strong and homogeneous magnets, which aside from use in NMR or MRI could also be of interest for applications in accelerators, motors, or magnetic bearings.

  10. Magnetic levitation-based Martian and Lunar gravity simulator

    NASA Technical Reports Server (NTRS)

    Valles, J. M. Jr; Maris, H. J.; Seidel, G. M.; Tang, J.; Yao, W.

    2005-01-01

    Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  11. Magnetic levitation-based Martian and Lunar gravity simulator.

    PubMed

    Valles, J M; Maris, H J; Seidel, G M; Tang, J; Yao, W

    2005-01-01

    Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  12. Variable force, eddy-current or magnetic damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E. (Inventor)

    1985-01-01

    An object of the invention is to provide variable damping for resonant vibrations which may occur at different rotational speeds in the range of rpms in which a rotating machine is operated. A variable force damper in accordance with the invention includes a rotating mass carried on a shaft which is supported by a bearing in a resilient cage. The cage is attached to a support plate whose rim extends into an annular groove in a housing. Variable damping is effected by tabs of electrically conducting nonmagnetic material which extend radially from the cage. The tabs at an index position lie between the pole face of respective C shaped magnets. The magnets are attached by cantilever spring members to the housing.

  13. Evaluating and improving the performance of thin film force sensors within body and device interfaces.

    PubMed

    Likitlersuang, Jirapat; Leineweber, Matthew J; Andrysek, Jan

    2017-10-01

    Thin film force sensors are commonly used within biomechanical systems, and at the interface of the human body and medical and non-medical devices. However, limited information is available about their performance in such applications. The aims of this study were to evaluate and determine ways to improve the performance of thin film (FlexiForce) sensors at the body/device interface. Using a custom apparatus designed to load the sensors under simulated body/device conditions, two aspects were explored relating to sensor calibration and application. The findings revealed accuracy errors of 23.3±17.6% for force measurements at the body/device interface with conventional techniques of sensor calibration and application. Applying a thin rigid disc between the sensor and human body and calibrating the sensor using compliant surfaces was found to substantially reduce measurement errors to 2.9±2.0%. The use of alternative calibration and application procedures is recommended to gain acceptable measurement performance from thin film force sensors in body/device applications. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Dynamic forces over the interface between a seated human body and a rigid seat during vertical whole-body vibration.

    PubMed

    Liu, Chi; Qiu, Yi; Griffin, Michael J

    2017-08-16

    Biodynamic responses of the seated human body are usually measured and modelled assuming a single point of vibration excitation. With vertical vibration excitation, this study investigated how forces are distributed over the body-seat interface. Vertical and fore-and-aft forces were measured beneath the ischial tuberosities, middle thighs, and front thighs of 14 subjects sitting on a rigid flat seat in three postures with different thigh contact while exposed to random vertical vibration at three magnitudes. Measures of apparent mass were calculated from transfer functions between the vertical acceleration of the seat and the vertical or fore-and-aft forces measured at the three locations, and the sum of these forces. When sitting normally or sitting with a high footrest, vertical forces at the ischial tuberosities dominated the vertical apparent mass. With feet unsupported to give increased thigh contact, vertical forces at the front thighs were dominant around 8Hz. Around 3-7Hz, fore-and-aft forces at the middle thighs dominated the fore-and-aft cross-axis apparent mass. Around 8-10Hz, fore-and-aft forces were dominant at the ischial tuberosities with feet supported but at the front thighs with feet unsupported. All apparent masses were nonlinear: as the vibration magnitude increased the resonance frequencies decreased. With feet unsupported, the nonlinearity in the apparent mass was greater at the front thighs than at the ischial tuberosities. It is concluded that when the thighs are supported on a seat it is not appropriate to assume the body has a single point of vibration excitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Two-Dimensional Lorentz Force Image Reconstruction for Magnetoacoustic Tomography with Magnetic Induction

    NASA Astrophysics Data System (ADS)

    Li, Yi-Ling; Liu, Zhen-Bo; Ma, Qing-Yu; Guo, Xia-Sheng; Zhang, Dong

    2010-08-01

    Magnetoacoustic tomography with magnetic induction has shown potential applications in imaging the electrical impedance for biological tissues. We present a novel methodology for the inverse problem solution of the 2-D Lorentz force distribution reconstruction based on the acoustic straight line propagation theory. The magnetic induction and acoustic generation as well as acoustic detection are theoretically provided as explicit formulae and also validated by the numerical simulations for a multilayered cylindrical phantom model. The reconstructed 2-D Lorentz force distribution reveals not only the conductivity configuration in terms of shape and size but also the amplitude value of the Lorentz force in the examined layer. This study provides a basis for further study of conductivity distribution reconstruction of MAT-MI in medical imaging.

  16. On some properties of force-free magnetic fields in infinite regions of space

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1984-01-01

    Techniques for solving boundary value problems (BVP) for a force free magnetic field (FFF) in infinite space are presented. A priori inequalities are defined which must be satisfied by the force-free equations. It is shown that upper bounds may be calculated for the magnetic energy of the region provided the value of the magnetic normal component at the boundary of the region can be shown to decay sufficiently fast at infinity. The results are employed to prove a nonexistence theorem for the BVP for the FFF in the spatial region. The implications of the theory for modeling the origins of solar flares are discussed.

  17. Laboratory study of low-β forces in arched, line-tied magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Ji, H.; Yoo, J.; Jara-Almonte, J.; Fox, W.

    2016-11-01

    The loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be applied to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruptions [Myers et al., Nature 528, 526 (2015)]. The verification of magnetic force balance also confirms the low-β assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical

  18. Laboratory study of low- β forces in arched, line-tied magnetic flux ropes

    DOE PAGES

    Myers, C. E.; Yamada, M.; Ji, H.; ...

    2016-11-04

    Here, the loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be appliedmore » to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruption. The verification of magnetic force balance also confirms the low-beta assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co

  19. Laboratory study of low- β forces in arched, line-tied magnetic flux ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, C. E.; Yamada, M.; Ji, H.

    Here, the loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be appliedmore » to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruption. The verification of magnetic force balance also confirms the low-beta assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co

  20. Effects of force load, muscle fatigue and extremely low frequency magnetic stimulation on EEG signals during side arm lateral raise task.

    PubMed

    Wang, Ying; Cao, Liu; Hao, Dongmei; Rong, Yao; Yang, Lin; Zhang, Song; Chen, Fei; Zheng, Dingchang

    2017-05-01

    This study was to quantitatively investigate the effects of force load, muscle fatigue and extremely low frequency (ELF) magnetic stimulation on electroencephalography (EEG) signal features during side arm lateral raise task. EEG signals were recorded by a BIOSEMI Active Two system with Pin-Type active-electrodes from 18 healthy subjects when they performed the right arm side lateral raise task (90° away from the body) with three different loads (0 kg, 1 kg and 3 kg; their order was randomized among the subjects) on the forearm. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as non-fatigue status and the last 10 s before the subject was exhausted as fatigue status. The subject was then given a 5 min resting between different loads. Two days later, the same experiment was performed on each subject except that ELF magnetic stimulation was applied to the subject's deltoid muscle during the 5 min resting period. EEG features from C3 and C4 electrodes including the power of alpha, beta and gamma and sample entropy were analyzed and compared between different loads, non-fatigue/fatigue status, and with/without ELF magnetic stimulation. The key results were associated with the change of the power of alpha band. From both C3-EEG and C4-EEG, with 1 kg and 3 kg force loads, the power of alpha band was significantly smaller than that from 0 kg for both non-fatigue and fatigue periods (all p  <  0.05). However, no significant difference of the power in alpha between 1 kg and 3 kg was observed (p  >  0.05 for all the force loads except C4-EEG with ELF simulation). The power of alpha band at fatigue status was significantly increased for both C3-EEG and C4-EEG when compared with the non-fatigue status (p  <  0.01 for all the force loads except 3 kg force from C4-EEG). With magnetic stimulation, the powers of alpha from C3-EEG and C4-EEG were significantly

  1. Magnetic tweezers: micromanipulation and force measurement at the molecular level.

    PubMed Central

    Gosse, Charlie; Croquette, Vincent

    2002-01-01

    Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness approximately 10(-7) N/m. Thus, they can be manipulated in three dimensions at a speed of approximately 10 microm/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators. PMID:12023254

  2. Enhancing and targeting nucleic acid delivery by magnetic force.

    PubMed

    Plank, Christian; Anton, Martina; Rudolph, Carsten; Rosenecker, Joseph; Krötz, Florian

    2003-08-01

    Insufficient contact of inherently highly active nucleic acid delivery systems with target cells is a primary reason for their often observed limited efficacy. Physical methods of targeting can overcome this limitation and reduce the risk of undesired side effects due to non-target site delivery. The authors and others have developed a novel means of physical targeting, exploiting magnetic force acting on nucleic acid vectors associated with magnetic particles in order to mediate the rapid contact of vectors with target cells. Here, the principles of magnetic drug and nucleic acid delivery are reviewed, and the facts and potentials of the technique for research and therapeutic applications are discussed. Magnetically enhanced nucleic acid delivery - magnetofection - is universally applicable to viral and non-viral vectors, is extraordinarily rapid, simple and yields saturation level transfection at low dose in vitro. The method is useful for site-specific vector targeting in vivo. Exploiting the full potential of the technique requires an interdisciplinary research effort in magnetic field physics, magnetic particle chemistry, pharmaceutical formulation and medical application.

  3. Spot Surface Labeling of Magnetic Microbeads and Application in Biological Force Measurements

    NASA Astrophysics Data System (ADS)

    Estes, Ashley; O'Brien, E. Tim; Hill, David; Superfine, Richard

    2006-11-01

    Biological force measurements on single molecules and macromolecular structures often use microbeads for the application of force. These techniques are often complicated by multiple attachments and nonspecific binding. In one set of experiments, we are applying a magnetic force microscope that allows us to pull on magnetic beads attached to ciliated human bronchial epithelial cells. These experiments provide a means to measure the stall force of cilia and understand how cilia propel fluids. However, because we are using beads with diameters of one and 2.8 microns, and the diameter of human airway cilia is approximately 200 nm, we cannot be assured that the bead is bound to a single cilium. To address this, we have developed a sputter coating technique to block the biotin binding capability of the streptavidin labeled bead over its entire surface except for a small spot. These beads may also have applications in other biological experiments such as DNA force experiments in which binding of a single target to an individual bead is critical.

  4. Management of foreign body ingestions in children: button batteries and magnets.

    PubMed

    Kodituwakku, Ronan; Palmer, Sarah; Paul, Siba Prosad

    2017-04-27

    Foreign body ingestion and foreign body aspiration commonly affect young children between 6 months and 6 years. A large number of these events remain unwitnessed and asymptomatic while the swallowed foreign body traverses the gastrointestinal tract and is passed in the stool. Recent literature has shown an increase in morbidity associated with button battery and (neomydium) magnet ingestions in children, particularly over the last decade. Early identification and management in a time critical manner is required in cases where button batteries get lodged in the oesophagus or multiple magnets are swallowed. Deaths, although rare, have been reported with these dangerous foreign body ingestions in children where diagnoses were delayed. Nurses through their direct contact with children in different clinical settings play a vital role in managing foreign body ingestions.

  5. Three-body correlations and conditional forces in suspensions of active hard disks

    NASA Astrophysics Data System (ADS)

    Härtel, Andreas; Richard, David; Speck, Thomas

    2018-01-01

    Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to the direction of propulsion and the positions of the surrounding particles. We further relate our theory to the effective swimming speed of the active disks, which is relevant for the physics of MIPS. To test and validate our theory, we additionally run particle-resolved computer simulations, for which we explicitly calculate the three-body forces. In this context, we discuss the modeling of active Brownian swimmers with nearly hard interaction potentials. We find very good agreement between our simulations and numerical solutions of our theory, especially for the nonequilibrium pair-distribution function. For our analytical results, we carefully discuss their range of validity in the context of the different levels of approximation we applied. This discussion allows us to study the individual contribution of particles to three-body forces and to the emerging structure. Thus, our work sheds light on the collective behavior, provides the basis for further studies of correlations in active suspensions, and makes a step towards an emerging liquid state theory.

  6. Optical pulling and pushing forces exerted on silicon nanospheres with strong coherent interaction between electric and magnetic resonances.

    PubMed

    Liu, Hongfeng; Panmai, Mingcheng; Peng, Yuanyuan; Lan, Sheng

    2017-05-29

    We investigated theoretically and numerically the optical pulling and pushing forces acting on silicon (Si) nanospheres (NSs) with strong coherent interaction between electric and magnetic resonances. We examined the optical pulling and pushing forces exerted on Si NSs by two interfering waves and revealed the underlying physical mechanism from the viewpoint of electric- and magnetic-dipole manipulation. As compared with a polystyrene (PS) NS, it was found that the optical pulling force for a Si NS with the same size is enlarged by nearly two orders of magnitude. In addition to the optical pulling force appearing at the long-wavelength side of the magnetic dipole resonance, very large optical pushing force is observed at the magnetic quadrupole resonance. The correlation between the optical pulling/pushing force and the directional scattering characterized by the ratio of the forward to backward scattering was revealed. More interestingly, it was found that the high-order electric and magnetic resonances in large Si NSs play an important role in producing optical pulling force which can be generated by not only s-polarized wave but also p-polarized one. Our finding indicates that the strong coherent interaction between the electric and magnetic resonances existing in nanoparticles with large refractive indices can be exploited to manipulate the optical force acting on them and the correlation between the optical force and the directional scattering can be used as guidance. The engineering and manipulation of optical forces will find potential applications in the trapping, transport and sorting of nanoparticles.

  7. Force analysis of magnetic bearings with power-saving controls

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.

    1992-01-01

    Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. For most operating conditions, the existence of the bias current requires more power than alternative methods that do not use conventional bias. Two such methods are examined which diminish or eliminate bias current. In the typical bias control scheme it is found that for a harmonic control force command into a voltage limited transconductance amplifier, the desired force output is obtained only up to certain combinations of force amplitude and frequency. Above these values, the force amplitude is reduced and a phase lag occurs. The power saving alternative control schemes typically exhibit such deficiencies at even lower command frequencies and amplitudes. To assess the severity of these effects, a time history analysis of the force output is performed for the bias method and the alternative methods. Results of the analysis show that the alternative approaches may be viable. The various control methods examined were mathematically modeled using nondimensionalized variables to facilitate comparison of the various methods.

  8. Magnetic forces and localized resonances in electron transfer through quantum rings.

    PubMed

    Poniedziałek, M R; Szafran, B

    2010-11-24

    We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.

  9. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    PubMed Central

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  10. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy.

    PubMed

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-18

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  11. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  12. Investigation of Body Force Effects on Flow Boiling Critical Heat Flux

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Mudawar, Issam; Hasan, Mohammad M.

    2002-01-01

    The bubble coalescence and interfacial instabilities that are important to modeling critical heat flux (CHF) in reduced-gravity systems can be sensitive to even minute body forces. Understanding these complex phenomena is vital to the design and safe implementation of two-phase thermal management loops proposed for space and planetary-based thermal systems. While reduced gravity conditions cannot be accurately simulated in 1g ground-based experiments, such experiments can help isolate the effects of the various forces (body force, surface tension force and inertia) which influence flow boiling CHF. In this project, the effects of the component of body force perpendicular to a heated wall were examined by conducting 1g flow boiling experiments at different orientations. FC-72 liquid was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface at conditions approaching CHF. High-speed video imaging was employed to capture dominant CHF mechanisms. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed great sensitivity to orientation for flow velocities below 0.2 m/s, where very small CHF values where measured, especially with downflow and downward-facing heated wall orientations. High flow velocities dampened the effects of orientation considerably. Figure I shows representative images for the different CHF regimes. The Wavy Vapor Layer regime was dominant for all high velocities and most orientations, while all other regimes were encountered at low velocities, in the downflow and/or downward-facing heated wall orientations. The Interfacial Lift-off model was modified to predict the effects of orientation on CHF for the dominant Wavy Vapor Layer regime. The photographic study captured a fairly continuous wavy vapor layer travelling along the heated wall while permitting liquid

  13. Magnetic Force Microscopy Investigation of Magnetic Domains in Nd2Fe14B

    NASA Astrophysics Data System (ADS)

    Talari, Mahesh Kumar; Markandeyulu, G.; Rao, K. Prasad

    2010-07-01

    Remenance and coercivity in Nd2Fe14B materials are strongly dependent on the microstructural aspects like phases morphology and grain size. The coercivity (Hc) of a magnetic material varies inversely with the grain size (D) and there is a critical size below which Hc∝D6. Domain wall pinning by grain boundaries and foreign phases is the important mechanism in explaining the improvement in coercivity and remenance. Nd2Fe14B intermetallic compound with stochiometric composition was prepared from pure elements (Nd -99.5%, Fe—99.95%, B -99.99%) by arc melting in argon atmosphere. Magnetic Force Microscope (MFM) gives high-resolution magnetic domain structural information of ferromagnetic samples. DI-3100 Scanning Probe Microscope with MESP probes was used For MFM characterization of the samples. Magnetic domains observed in cast ingots were very long (up to 40 μm were observed) and approximately 1-5 μm wide due to high anisotropy of the compounds. Magnetic domains have displayed different image contrast and morphologies at different locations of the samples. The domain morphologies and image contrast obtained in this analysis were explained in this paper.

  14. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  15. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 1: Technology and Terminology.

    PubMed

    Siegel, Marilyn J; Kaza, Ravi K; Bolus, David N; Boll, Daniel T; Rofsky, Neil M; De Cecco, Carlo N; Foley, W Dennis; Morgan, Desiree E; Schoepf, U Joseph; Sahani, Dushyant V; Shuman, William P; Vrtiska, Terri J; Yeh, Benjamin M; Berland, Lincoln L

    This is the first of a series of 4 white papers that represent Expert Consensus Documents developed by the Society of Computed Body Tomography and Magnetic Resonance through its task force on dual-energy computed tomography (DECT). This article, part 1, describes the fundamentals of the physical basis for DECT and the technology of DECT and proposes uniform nomenclature to account for differences in proprietary terms among manufacturers.

  16. Magnetic force induced tristability for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Li, Xin-Qiang; Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-10-01

    This paper presents a novel dielectric elastomer actuator (DEA) with three stable states. By introducing magnetic forces and coupling them with two cone dielectric elastomer (DE) films, an inherent tristability for the DEA is obtained with a compact design. It is easy to switch between the three stable states by controlling the voltages applied to the DE films. A theoretical model of the system’s potential energy that contains the free energy of the DEs and the potential energy of the applied magnetic field was developed for the tristable mechanism. The experimental results demonstrate that controllable transitions between the three stable states can be achieved with this design by applying over-critical voltages to the various DE films. The maximum dynamic range of the DEA can exceed 53.8% of the total length of the device and the DE’s creep speed was accelerated under the action of the magnetic field.

  17. SPH for impact force and ricochet behavior of water-entry bodies

    NASA Astrophysics Data System (ADS)

    Omidvar, Pourya; Farghadani, Omid; Nikeghbali, Pooyan

    The numerical modeling of fluid interaction with a bouncing body has many applications in scientific and engineering application. In this paper, the problem of water impact of a body on free-surface is investigated, where the fixed ghost boundary condition is added to the open source code SPHysics2D1 to rectify the oscillations in pressure distributions with the repulsive boundary condition. First, after introducing the methodology of SPH and the option of boundary conditions, the still water problem is simulated using two types of boundary conditions. It is shown that the fixed ghost boundary condition gives a better result for a hydrostatics pressure. Then, the dam-break problem, which is a bench mark test case in SPH, is simulated and compared with available data. In order to show the behavior of the hydrostatics forces on bodies, a fix/floating cylinder is placed on free surface looking carefully at the force and heaving profile. Finally, the impact of a body on free-surface is successfully simulated for different impact angles and velocities.

  18. Task III: Development of an Effective Computational Methodology for Body Force Representation of High-speed Rotor 37

    NASA Technical Reports Server (NTRS)

    Tan, Choon-Sooi; Suder, Kenneth (Technical Monitor)

    2003-01-01

    A framework for an effective computational methodology for characterizing the stability and the impact of distortion in high-speed multi-stage compressor is being developed. The methodology consists of using a few isolated-blade row Navier-Stokes solutions for each blade row to construct a body force database. The purpose of the body force database is to replace each blade row in a multi-stage compressor by a body force distribution to produce same pressure rise and flow turning. To do this, each body force database is generated in such a way that it can respond to the changes in local flow conditions. Once the database is generated, no hrther Navier-Stokes computations are necessary. The process is repeated for every blade row in the multi-stage compressor. The body forces are then embedded as source terms in an Euler solver. The method is developed to have the capability to compute the performance in a flow that has radial as well as circumferential non-uniformity with a length scale larger than a blade pitch; thus it can potentially be used to characterize the stability of a compressor under design. It is these two latter features as well as the accompanying procedure to obtain the body force representation that distinguish the present methodology from the streamline curvature method. The overall computational procedures have been developed. A dimensional analysis was carried out to determine the local flow conditions for parameterizing the magnitudes of the local body force representation of blade rows. An Euler solver was modified to embed the body forces as source terms. The results from the dimensional analysis show that the body forces can be parameterized in terms of the two relative flow angles, the relative Mach number, and the Reynolds number. For flow in a high-speed transonic blade row, they can be parameterized in terms of the local relative Mach number alone.

  19. Design of a magnetic force exciter for a small-scale windmill using a piezo-composite generating element

    NASA Astrophysics Data System (ADS)

    Luong, Hung Truyen; Goo, Nam Seo

    2011-03-01

    We introduce a design for a magnetic force exciter that applies vibration to a piezo-composite generating element (PCGE) for a small-scale windmill to convert wind energy into electrical energy. The windmill can be used to harvest wind energy in urban regions. The magnetic force exciter consists of exciting magnets attached to the device's input rotor, and a secondary magnet that is fixed at the tip of the PCGE. Under an applied wind force, the input rotor rotates to create a magnetic force interaction to excite the PCGE. Deformation of the PCGE enables it to generate the electric power. Experiments were performed to test power generation and battery charging capabilities. In a battery charging test, the charging time for a 40 mAh battery is approximately 1.5 hours for a wind speed of 2.5 m/s. Our experimental results show that the prototype can harvest energy in urban areas with low wind speeds, and convert the wasted wind energy into electricity for city use.

  20. Effect of altered core body temperature on glottal closing force.

    PubMed

    Wadie, Mikhail; Li, Juan; Sasaki, Clarence T

    2011-10-01

    A basic function of the larynx is to provide sphincteric protection of the lower airway, initiated by a brain stem-mediated glottal closure reflex. Glottal closing force is defined as the measured pressure generated between the vocal folds during glottal closure. One of the factors thought to affect the glottal closure reflex is a variation in core body temperature. Four adult male Yorkshire pigs were used in this study. The subjects were studied under control conditions (37 degreesC), hyperthermic conditions (38 degrees C to 41 degrees C), and hypothermic conditions (36 degrees C to 34 degrees C). We demonstrated that the glottal closing force increased significantly with an increase in core body temperature and also decreased significantly with decreased core body temperature. These results are supported by neurophysiological changes demonstrated by other studies in pups and adult dogs in response to altered core body temperatures. The mechanism for these responses is thought to reside centrally, rather than in the peripheral nervous system. We hope that a better understanding of these aspects of glottal closure will alter the care of many patients with postanesthesia hypothermia and many sedated inmates and will also further enhance preventive measures needed to decrease the incidence of sudden infant death syndrome in overheated or febrile infants.

  1. Remanent Magnetization: Signature of Many-Body Localization in Quantum Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Ros, V.; Müller, M.

    2017-06-01

    We study the remanent magnetization in antiferromagnetic, many-body localized quantum spin chains, initialized in a fully magnetized state. Its long time limit is an order parameter for the localization transition, which is readily accessible by standard experimental probes in magnets. We analytically calculate its value in the strong-disorder regime exploiting the explicit construction of quasilocal conserved quantities of the localized phase. We discuss analogies in cold atomic systems.

  2. MEMS-based Force-clamp Analysis of the Role of Body Stiffness in C. elegans Touch Sensation

    PubMed Central

    Petzold, Bryan C.; Park, Sung-Jin; Mazzochette, Eileen A.; Goodman, Miriam B.; Pruitt, Beth L.

    2013-01-01

    Touch is enabled by mechanoreceptor neurons in the skin and plays an essential role in our everyday lives, but is among the least understood of our five basic senses. Force applied to the skin deforms these neurons and activates ion channels within them. Despite the importance of the mechanics of the skin in determining mechanoreceptor neuron deformation and ultimately touch sensation, the role of mechanics in touch sensitivity is poorly understood. Here, we use the model organism Caenorhabditis elegans to directly test the hypothesis that body mechanics modulate touch sensitivity. We demonstrate a microelectromechanical system (MEMS)-based force clamp that can apply calibrated forces to freely crawling C. elegans worms and measure touch-evoked avoidance responses. This approach reveals that wild-type animals sense forces < 1 μN and indentation depths < 1 μm. We use both genetic manipulation of the skin and optogenetic modulation of body wall muscles to alter body mechanics. We find that small changes in body stiffness dramatically affect force sensitivity, while having only modest effects on indentation sensitivity. We investigate the theoretical body deformation predicted under applied force and conclude that local mechanical loads induce inward bending deformation of the skin to drive touch sensation in C. elegans. PMID:23598612

  3. Ground reaction forces during level ground walking with body weight unloading

    PubMed Central

    Barela, Ana M. F.; de Freitas, Paulo B.; Celestino, Melissa L.; Camargo, Marcela R.; Barela, José A.

    2014-01-01

    Background: Partial body weight support (BWS) systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF) parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old) walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate. PMID:25590450

  4. 3-T MRI safety assessments of magnetic dental attachments and castable magnetic alloys

    PubMed Central

    Miyata, K; Abe, Y; Ishii, T; Ishigami, T; Ohtani, K; Nagai, E; Ohyama, T; Umekawa, Y; Nakabayashi, S

    2015-01-01

    Objectives: To assess the safety of different magnetic dental attachments during 3-T MRI according to the American Society for Testing and Materials F2182-09 and F2052-06e1 standard testing methods and to develop a method to determine MRI compatibility by measuring magnetically induced torque. Methods: The temperature elevations, magnetically induced forces and torques of a ferromagnetic stainless steel keeper, a coping comprising a keeper and a cast magnetic alloy coping were measured on MRI systems. Results: The coping comprising a keeper demonstrated the maximum temperature increase (1.42 °C) for the whole-body-averaged specific absorption rate and was calculated as 2.1 W kg−1 with the saline phantom. All deflection angles exceeded 45°. The cast magnetic alloy coping had the greatest deflection force (0.33 N) during 3-T MRI and torque (1.015 mN m) during 0.3-T MRI. Conclusions: The tested devices showed minimal radiofrequency (RF)-induced heating in a 3-T MR environment, but the cast magnetic alloy coping showed a magnetically induced deflection force and torque approximately eight times that of the keepers. For safety, magnetic dental attachments should be inspected before and after MRI and large prostheses containing cast magnetic alloy should be removed. Although magnetic dental attachments may pose no great risk of RF-induced heating or magnetically induced torque during 3-T MRI, their magnetically induced deflection forces tended to exceed acceptable limits. Therefore, the inspection of such devices before and after MRI is important for patient safety. PMID:25785821

  5. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  6. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, M.L.; Mueller, F.M.; Smith, J.L.

    1991-04-09

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency. 15 figures.

  7. Properties of pseudo magnetism acting between bodies

    NASA Astrophysics Data System (ADS)

    Deva, Anish; Baruah, Abhinav Ray; Sarma, Arun

    A non-contact force has been found to be always acting between two bodies kept close to each other in different media. The properties of the force are different as compared to other non-contact forces such as gravitation and electrostatics, as was shown in our previous work. The aim of this paper is to find how the force behaves when two objects are brought near each other, one being completely immersed in the medium and the other kept just outside. The magnitude of the force in each medium has been calculated through experiments and then compared with each other. The discrepancies obtained between these magnitudes (10-5 N in water and 10-6 N in engine oil) and the varied oscillation patterns (amplitude and frequency) obtained from graphs have shown that the force behaves differently with different media. In general, the frequency of the force has been found to be of the order 10-2 Hz. The behaviour has also been found to depend on the nature of the material and shape of the object. This correlation has been ascertained by using a Gauss meter to measure the force acting between two objects and also that of an individual object. The polarity of the force i.e. whether attractive or repulsive, has been found to vary across the length of the objects and graphs have been plotted to demonstrate this property.

  8. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  9. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections atmore » the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.« less

  10. Conductive atomic force microscopy measurements of nanopillar magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Evarts, E. R.; Hogg, C.; Bain, J. A.; Majetich, S. A.

    2009-03-01

    Magnetic tunnel junctions have been studied extensively for their magnetoresistance and potential uses in magnetic logic and data storage devices, but little is known about how their performance will scale with size. Here we examined the electronic behavior of 12 nm diameter magnetic tunnel junctions fabricated by a novel nanomasking process. Scanning electron microscopy images indicated feature diameter of 12 nm, and atomic force microscopy showed a height of 5 nm suggesting that unmasked regions have been milled on average to the oxide barrier layer, and areas should have the remnants of the free layer exposed with no remaining nanoparticle. Electrical contact was made to individual nanopillars using a doped-diamond-coated atomic force microscopy probe with a 40 nm radius of curvature at the tip. Off pillar we observed a resistance of 8.1 x 10^5 φ, while on pillar we found a resistance of 2.85 x 10^6 φ. Based on the RA product for this film, 120 φ-μm^2, a 12 nm diameter cylinder with perfect contact would have a resistance of 1.06 x 10^6 φ. The larger experimental value is consistent with a smaller contact area due to damaging the pillar during the ion milling process. The magnetoresistance characteristics of these magnetic tunnel junctions will be discussed.

  11. Transport of particles by magnetic forces and cellular blood flow in a model microvessel

    NASA Astrophysics Data System (ADS)

    Freund, J. B.; Shapiro, B.

    2012-05-01

    The transport of particles (diameter 0.56 μm) by magnetic forces in a small blood vessel (diameter D = 16.9 μm, mean velocity U = 2.89 mm/s, red cell volume fraction Hc = 0.22) is studied using a simulation model that explicitly includes hydrodynamic interactions with realistically deformable red blood cells. A biomedical application of such a system is targeted drug or hyperthermia delivery, for which transport to the vessel wall is essential for localizing therapy. In the absence of magnetic forces, it is seen that interactions with the unsteadily flowing red cells cause lateral particle velocity fluctuations with an approximately normal distribution with variance σ = 140 μm/s. The resulting dispersion is over 100 times faster than expected for Brownian diffusion, which we neglect. Magnetic forces relative to the drag force on a hypothetically fixed particle at the vessel center are selected to range from Ψ = 0.006 to 0.204. The stronger forces quickly drive the magnetic particles to the vessel wall, though in this case the red cells impede margination; for weaker forces, many of the particles are marginated more quickly than might be predicted for a homogeneous fluid by the apparently chaotic stirring induced by the motions of the red cells. A corresponding non-dimensional parameter Ψ', which is based on the characteristic fluctuation velocity σ rather than the centerline velocity, explains the switch-over between these behaviors. Forces that are applied parallel to the vessel are seen to have a surprisingly strong effect due to the streamwise-asymmetric orientation of the flowing blood cells. In essence, the cells act as low-Reynolds number analogs of turning vanes, causing streamwise accelerated particles to be directed toward the vessel center and streamwise decelerated particles to be directed toward the vessel wall.

  12. Forces on a current-carrying wire in a magnetic field: the macro-micro connection

    NASA Astrophysics Data System (ADS)

    Karam, R.; Kneubil, F. B.; Robilotta, M. R.

    2017-09-01

    The classic problem of determining the force on a current-carrying wire in a magnetic field is critically analysed. A common explanation found in many introductory textbooks is to represent the force on the wire as the sum of the forces on charge carriers. In this approach neither the nature of the forces involved nor their application points are fully discussed. In this paper we provide an alternative microscopic explanation that is suitable for introductory electromagnetism courses at university level. By considering the wire as a superposition of a positive and a negative cylindrical charge distributions, we show that the electrons are subject to both magnetic and electric forces, whereas the ionic lattice of the metal is dragged by an electric force. Furthermore, an analysis of the orders of magnitude involved in the problem gives counterintuitive results with valuable educational potential. We argue that this approach allows one to discuss different aspects of the physical knowledge, which are relevant in physics education.

  13. Nonlinear generation of large-scale magnetic fields in forced spherical shell dynamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livermore, P. W.; Hughes, D. W.; Tobias, S. M.

    2010-03-15

    In an earlier paper [P. W. Livermore, D. W. Hughes, and S. M. Tobias, ''The role of helicity and stretching in forced kinematic dynamos in a spherical shell'', Phys. Fluids 19, 057101 (2007)], we considered the kinematic dynamo action resulting from a forced helical flow in a spherical shell. Although mean field electrodynamics suggests that the resulting magnetic field should have a significant mean (axisymmetric) component, we found no evidence for this; the dynamo action was distinctly small scale. Here we extend our investigation into the nonlinear regime in which the magnetic field reacts back on the velocity via themore » Lorentz force. Our main result is somewhat surprising, namely, that nonlinear effects lead to a considerable change in the structure of the magnetic field, its final state having a significant mean component. By investigating the dominant flow-field interactions, we isolate the dynamo mechanism and show schematically how the generation process differs between the kinematic and nonlinear regimes. In addition, we are able to calculate some components of the transport coefficient {alpha} and thus discuss our results within the context of mean field electrodynamics.« less

  14. Non-inverse-square force-distance law for long thin magnets-revisited.

    PubMed

    Darvell, Brian W; Gilding, Brian H

    2012-05-01

    It had previously been shown that the inverse-square law does not apply to the force-distance relationship in the case of a long, thin magnet with one end in close proximity to its image in a permeable plane when simple point-like poles are assumed. Treating the system instead as having a 'polar disc', arising from an assumed bundle of dipoles, led to a double integral that could only be evaluated numerically, and a relationship that still did not match observed behavior. Using an elaborate 'stretched' exponential polynomial to represent the position of an 'elastic' polar disc resulted in a fair representation of the physical response, but this was essentially merely the fitting of an arbitrary function. The present purpose was therefore to find an explicit formula for the force-distance relationship in the polar-disc problem and assess its fit to the previously obtained experimental data. Starting from Coulomb's law a corrected integral formula for the force-distance relationship was derived. The integral in this formula was evaluated explicitly using rescaling, changes of order of integration, reduction by symmetry, and change of variables. The resulting formula was then fitted to data that had been obtained for the force exerted by eighty-five rod-shaped magnets (Alnico V, 3 mm diameter, 170 mm long) perpendicular to a large steel plate, as a function of distance, at small separations (<5 mm). Subsequently, the fit of alternative functions was explored. An explicit formula in terms of elliptic integrals was obtained for the polar-disc problem. Despite the greater fidelity, this too was found not to fit the observed physical behavior. Given that failure, nevertheless a simple formula that conforms closely and parsimoniously to the actual magnet data was found. A key feature remains the marked departure from inverse-square behavior. The failure of the explicit formula to fit the data indicates an inadequate model of the physical system. Nonetheless it constitutes

  15. Magnetic force driven magnetoelectric effect in bi-cantilever composites

    NASA Astrophysics Data System (ADS)

    Zhang, Ru; Wu, Gaojian; Zhang, Ning

    2017-12-01

    The magnetic force driven magnetoelectric (ME) effect in bi-cantilever Mn-Zn-Ferrite /PZT composites is presented. Compared with single cantilever, the ME voltage coefficient in bi-cantilever composite is a little lower and the resonance frequency is higher, but the bi-cantilever structure is advantageous for integration. When the magnetic gap is 3 mm, the ME voltage coefficient can achieve 6.2 Vcm-1Oe-1 at resonance under optimum bias field Hm=1030 Oe; when the magnetic gap is 1.5 mm, the ME voltage coefficient can get the value as high as 4.4 Vcm-1Oe-1 under much lower bias field H=340 Oe. The stable ME effect in bi-cantilever composites has important potential application in the design of new type ME device.

  16. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, R.F.

    1996-02-27

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw`s Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements. 32 figs.

  17. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, Richard F.

    1996-01-01

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw's Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements.

  18. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    NASA Astrophysics Data System (ADS)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  19. Student understanding of the direction of the magnetic force on a charged particle

    NASA Astrophysics Data System (ADS)

    Scaife, Thomas M.; Heckler, Andrew F.

    2010-08-01

    We study student understanding of the direction of the magnetic force experienced by a charged particle moving through a homogeneous magnetic field in both the magnetic pole and field line representations of the magnetic field. In five studies, we administer a series of simple questions in either written or interview format. Our results indicate that although students begin at the same low level of performance in both representations, they answer correctly more often in the field line representation than in the pole representation after instruction. This difference is due in part to more students believing that charges are attracted to magnetic poles than believing that charges are pushed along magnetic field lines. Although traditional instruction is fairly effective in teaching students to answer correctly up to a few weeks following instruction, especially for the field line representation, some students revert to their initial misconceptions several months after instruction. The responses reveal persistent and largely random sign errors in the direction of the force. The sign errors are largely nonsystematic and due to confusion about the direction of the magnetic field and the execution and choice of the right-hand rule and lack of recognition of the noncommutativity of the cross product.

  20. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range

    NASA Astrophysics Data System (ADS)

    Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  1. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range.

    PubMed

    Çelik, Ümit; Karcı, Özgür; Uysallı, Yiğit; Özer, H Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ∼500 μW, and ∼141.8 nm pp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  2. Tidal Forces in Dyonic Reissner-Nördstrom Black Hole

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Kousar, Lubna

    2018-03-01

    This paper investigates the tidal as well as magnetic charge effects produced in dyonic Reissner-Nordström black hole. We evaluate Newtonian radial acceleration using radial geodesics for freely falling test particles. We establish system of equations governing radial and angular tidal forces using geodesic deviation equation and discuss their solutions for bodies falling freely towards this black hole. The radial tidal force turns out to be compressing outside the event horizon whereas the angular tidal force changes sign between event and Cauchy horizons unlike Schwarzschild black hole. The radial geodesic component starts decreasing in dyonic Reissner-Nordström black hole unlike Schwarzschild case. We conclude that magnetic charge strongly affects the radial as well as angular components of tidal force.

  3. The magnetofection method: using magnetic force to enhance gene delivery.

    PubMed

    Plank, Christian; Schillinger, Ulrike; Scherer, Franz; Bergemann, Christian; Rémy, Jean-Serge; Krötz, Florian; Anton, Martina; Lausier, Jim; Rosenecker, Joseph

    2003-05-01

    In order to enhance and target gene delivery we have previously established a novel method, termed magnetofection, which uses magnetic force acting on gene vectors that are associated with magnetic particles. Here we review the benefits, the mechanism and the potential of the method with regard to overcoming physical limitations to gene delivery. Magnetic particle chemistry and physics are discussed, followed by a detailed presentation of vector formulation and optimization work. While magnetofection does not necessarily improve the overall performance of any given standard gene transfer method in vitro, its major potential lies in the extraordinarily rapid and efficient transfection at low vector doses and the possibility of remotely controlled vector targeting in vivo.

  4. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karcı, Özgür; Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara; Dede, Münir

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hardmore » disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.« less

  5. Direct current force sensing device based on compressive spring, permanent magnet, and coil-wound magnetostrictive/piezoelectric laminate.

    PubMed

    Leung, Chung Ming; Or, Siu Wing; Ho, S L

    2013-12-01

    A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.

  6. Magnetism of Minor Bodies in the Solar System: From 433 Eros, passing Braille, Steins, and Lutetia towards Churyumov-Gerasimenko and 1999 JU3.

    NASA Astrophysics Data System (ADS)

    Hercik, David; Auster, Hans-Ulrich; Heinisch, Philip; Richter, Ingo; Glassmeier, Karl-Heinz

    2015-04-01

    Minor bodies in the solar system, such as asteroids and comets, are important sources of information for our knowledge of the solar system formation. Besides other aspects, estimation of a magnetization state of such bodies might prove important in understanding the early aggregation phases of the protoplanetary disk, showing the level of importance of the magnetic forces in the processes involved. Meteorites' magnetization measurements suggest that primitive bodies consist of magnetized material. However, space observations from various flybys give to date diverse results for a global magnetization estimation. The flybys at Braille and Gaspra indicate possible higher magnetization (~ 10-3 Am2/kg), while flybys at Steins and Lutetia show no significant values in the global field change illustrating low global magnetization. Furthermore, the interpretation of remote (during flybys) measurements is very difficult. For correct estimates on the local magnetization one needs (in the best case) multi-point surface measurements. Single point observation has been done by NEAR-Shoemaker on 433 Eros asteroid, revealing no signature in magnetic field that could have origin in asteroid magnetization. Similar results, no magnetization observed, have been provided by evaluation of recent data from ROMAP (Philae lander) and RPC-MAG (Rosetta orbiter) instruments from comet 67P/Churyumov-Gerasimenko. The ROMAP instrument provided measurements from multiple points of the cometary surface as well as data along ballistic path between multiple touchdowns, which support the conclusion of no global magnetization. However, even in case of the in-situ on surface observations the magnetization estimate has a limiting spatial resolution that is dependent on the distance from the surface (~ 50 cm in case of ROMAP). To get information about possible smaller magnetized grains distribution and magnetization strength, the sensor shall be placed as close as possible to the surface. For such

  7. Development of a Force Measurement Device for Lower-Body Muscular Strength Measuring of Skaters

    NASA Astrophysics Data System (ADS)

    Kim, Dong Ki; Lee, Jeong Tae

    This paper presents a force measurement system that can measure a lower-body muscular strength of skaters. The precise measurement and analysis of the left and right lower-body strength of skaters is necessary, because a left/right lower-body strength balance is helpful to improve the athletes' performance and to protect them from injury. The system is constructed with a skate sliding board, a couple of sensor-units with load cell, indicator and control box, guard, force pad, and support bracket. The developed force measurement system is calibrated by the calibration setup, and the uncertainty of the force sensing unit on the left is within 0.087% and the uncertainty of the force sensing unit on the right is within 0.109%. In order to check the feasibility of the developed measurement device, a kinematic analysis is conducted with skater. As a result, the subject shows the deviation of left and right of 12.1 N with respect to average strength and 39.1 N with respect to the maximum strength. This evaluation results are reliable enough to make it possible to measure a lower-body muscular strength of skaters. The use of this measurement system will be expected to correct the posture of skaters and record the sports dynamics data for each athlete. It is believed that through the development of this equipment, skaters in elementary, middle, high schools, colleges, and the professional level have the systematic training to compete with world-class skaters.

  8. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Jiajia; Shi, Zongqian; Jia, Shenli; Zhang, Pengbo

    2017-04-01

    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system.

  9. MEMS-Based Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Butler, Mark C.; Elgammal, Ramez A.; George, Thomas; Hunt, Brian; Weitekamp, Daniel P.

    2006-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy allows assignment of molecular structure by acquiring the energy spectrum of nuclear spins in a molecule, and by interpreting the symmetry and positions of resonance lines in the spectrum. As such, NMR has become one of the most versatile and ubiquitous spectroscopic methods. Despite these tremendous successes, NMR experiments suffer from inherent low sensitivity due to the relatively low energy of photons in the radio frequency (rt) region of the electromagnetic spectrum. Here, we describe a high-resolution spectroscopy in samples with diameters in the micron range and below. We have reported design and fabrication of force-detected nuclear magnetic resonance (FDNMR).

  10. Force determination in lateral magnetic tweezers combined with TIRF microscopy.

    PubMed

    Madariaga-Marcos, J; Hormeño, S; Pastrana, C L; Fisher, G L M; Dillingham, M S; Moreno-Herrero, F

    2018-03-01

    Combining single-molecule techniques with fluorescence microscopy has attracted much interest because it allows the correlation of mechanical measurements with directly visualized DNA : protein interactions. In particular, its combination with total internal reflection fluorescence microscopy (TIRF) is advantageous because of the high signal-to-noise ratio this technique achieves. This, however, requires stretching long DNA molecules across the surface of a flow cell to maximize polymer exposure to the excitation light. In this work, we develop a module to laterally stretch DNA molecules at a constant force, which can be easily implemented in regular or combined magnetic tweezers (MT)-TIRF setups. The pulling module is further characterized in standard flow cells of different thicknesses and glass capillaries, using two types of micrometer size superparamagnetic beads, long DNA molecules, and a home-built device to rotate capillaries with mrad precision. The force range achieved by the magnetic pulling module was between 0.1 and 30 pN. A formalism for estimating forces in flow-stretched tethered beads is also proposed, and the results compared with those of lateral MT, demonstrating that lateral MT achieve higher forces with lower dispersion. Finally, we show the compatibility with TIRF microscopy and the parallelization of measurements by characterizing DNA binding by the centromere-binding protein ParB from Bacillus subtilis. Simultaneous MT pulling and fluorescence imaging demonstrate the non-specific binding of BsParB on DNA under conditions restrictive to condensation.

  11. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOEpatents

    Viswanathan, Tito

    2015-10-27

    A method of separating a liquid hydrocarbon material from a body of water, includes: (a) mixing magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the magnetic carbon-metal nanocomposites each to be adhered by the liquid hydrocarbon material to form a mixture; (b) applying a magnetic force to the mixture to attract the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material; and (c) removing the body of water from the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material while maintaining the applied magnetic force. The magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material, for a period of time effective to allow the carbon-metal nanocomposites to be formed.

  12. Electric contributions to magnetic force microscopy response from graphene and MoS{sub 2} nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lu Hua, E-mail: luhua.li@deakin.edu.au; Chen, Ying

    Magnetic force microscopy (MFM) signals have recently been detected from whole pieces of mechanically exfoliated graphene and molybdenum disulfide (MoS{sub 2}) nanosheets, and magnetism of the two nanomaterials was claimed based on these observations. However, non-magnetic interactions or artefacts are commonly associated with MFM signals, which make the interpretation of MFM signals not straightforward. A systematic investigation has been done to examine possible sources of the MFM signals from graphene and MoS{sub 2} nanosheets and whether the MFM signals can be correlated with magnetism. It is found that the MFM signals have significant non-magnetic contributions due to capacitive and electrostaticmore » interactions between the nanosheets and conductive cantilever tip, as demonstrated by electric force microscopy and scanning Kevin probe microscopy analyses. In addition, the MFM signals of graphene and MoS{sub 2} nanosheets are not responsive to reversed magnetic field of the magnetic cantilever tip. Therefore, the observed MFM response is mainly from electric artefacts and not compelling enough to correlate with magnetism of graphene and MoS{sub 2} nanosheets.« less

  13. The influence of inhomogeneous magnetic field over a NdFeB guideway on levitation force of the HTS bulk maglev system

    NASA Astrophysics Data System (ADS)

    Zhao, Lifeng; Deng, Jiangtao; Li, Linbo; Feng, Ning; Wei, Pu; Lei, Wei; Jiang, Jing; Wang, Xiqin; Zhang, Yong; Zhao, Yong

    2018-04-01

    Dynamic responses of high temperature superconducting bulk to inhomogeneous magnetic field distribution of permanent magnet guideway, as well as enlarged amplitude of magnetic field obtained by partially covering the permanent magnet guideway (PMG) with iron sheets in different thickness, are investigated. Experiments show that the instantaneous levitation force increases with the increase of the variation rate of magnetic field (dB/dt). Meanwhile, inhomogeneous magnetic field from PMG causes the decay of levitation force. The decay of levitation force almost increases linearly with the increase of alternating magnetic field amplitude. It should be very important for the application of high-speed maglev system.

  14. A novel 3D-printed mechanical actuator using centrifugal force for magnetic resonance elastography.

    PubMed

    Neumann, Wiebke; Schad, Lothar R; Zollner, Frank G

    2017-07-01

    Magnetic resonance elastography (MRE) is a technique for the quantification of tissue stiffness during MR examinations. It requires consistent methods for mechanical shear wave induction to the region of interest in the human body to reliably quantify elastic properties of soft tissues. This work proposes a novel 3D-printed mechanical actuator using the principle of centrifugal force for wave induction. The driver consists of a 3D-printed turbine vibrator powered by compressed air (located inside the scanner room) and an active driver controlling the pressure of inflowing air (placed outside the scanner room). The generated force of the proposed actuator increases for higher actuation frequencies as opposed to conventionally used air cushions. There, the displacement amplitude decreases with increasing actuation frequency resulting in a smaller signal-to-noise ratio. An initial phantom study is presented which demonstrates the feasibility of the actuator for MRE. The wave-actuation frequency was regulated in a range between 15 Hz and 60 Hz for force measurements and proved sufficiently stable (± 0.3 Hz) for any given nominal frequency. The generated forces depend on the weight of the eccentric unbalance within the turbine and ranged between 0.67 N to 2.70 N (for 15 Hz) and 3.09 N to 7.77 N (for 60 Hz). Therefore, the generated force of the presented actuator increases with rotational speed of the turbine and offers an elegant solution for sufficiently large wave actuation at higher frequencies. In future work, we will investigate an optimal ratio of the weight of unbalance to the size of turbine for appropriately large but tolerable wave actuation for a given nominal frequency.

  15. Report of the Task Force on SSC Magnet System Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1984-10-01

    The Task Force on SSC Magnet Systems test Site was appointed by Maury Tigner, Director of the SSC, Phase 1 in August 1984. In brief, the charge asked the Task Force to make a critical evaluation of potential test sites for a major SSC magnet System Test Facility (STF) with regard to: (1) availability of the needed space, utilities, staff and other requirements on the desired time scale; and (2) the cost of preparing the sites for the tests and for operating the facilities during the test period. The charge further suggests that, by virtue of existing facilities and availabilitymore » of experienced staff, BNL and FNAL are the two best candidate sites and that is therefore appears appropriate to restrict the considerations of the Task Force to these sites. During the subsequent deliberations of the Task Force, no new facts were revealed that altered the assumptions of the charge in this regard. The charge does not ask for a specific site recommendation for the STF. Indeed, an agreement on such a recommendation would be difficult to achieve considering the composition of the Task Force, wherein a large fraction of the membership is drawn from the two contending laboratories. Instead, we have attempted to describe the purpose of the facility, outline a productive test program, list the major facilities required, carefully review the laboratories` responses to the facility requirements, and make objective comparisons of the specific features and capabilities offered.« less

  16. Gravity and magnetic modeling of granitic bodies in Central Portugal

    NASA Astrophysics Data System (ADS)

    Machadinho, Ana; Figueiredo, Fernando; Pereira, Alcides

    2015-04-01

    A better understanding of the subsurface geometry of the granitic bodies in Central Portugal is the main goal of this work. The results are also relevant for the assessment of the geothermal potential of the same region. The study area is located in the Central Iberian Zone where the Beiras granite batholith outcrops. These variscan granitoids were emplaced into the "Complexo Xisto-Grauváquico" (CXG), a thick and monotonous megasequences of metapelites and metagreywackes. This metasedimentary sequence is affected by the Variscan deformation phases and a late Proterozoic to Cambrian age has been generally assumed for this rocks. The granitoids in the region are attributed to the magmatic activity associated to the post-collisional stages of the Variscan orogeny during the D3 stage. The granitic bodies in the study area are considered syn-D3 and late to post-D3. To achieve the goal of the research, magnetic and gravimetric surveys where performed in order to obtain the Bouguer and magnetic anomalies. All the standard corrections were applied to the gravimetric and magnetic data. Considering and integrating all the available geological data and physical proprieties (density and magnetic susceptibility) the mentioned potential fields were simultaneously modeled. In this way it was possible to characterize the subsurface geometry of the granitic bodies in the studied region. The modeling results show that the regional tectonic setting controls the geometry of the granitic bodies as well as the structure of the host CXG metasedimentary sequence. Through the modeling of the potential field the overall geometry, average and maximum depths of the granitic bodies in the study area was obtained. Some late to post-D3 plutons outcrop in spatial continuity and as they have similar ages, a common feeding zone is assumed as the most likely scenario. The sin-D3 pluton is more abrupt and vertical, suggesting the presence of a fault contact with the late-D3 pluton. According to the

  17. 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Balkaya, Çağlayan; Ekinci, Yunus Levent; Göktürkler, Gökhan; Turan, Seçil

    2017-01-01

    3D non-linear inversion of total field magnetic anomalies caused by vertical-sided prismatic bodies has been achieved by differential evolution (DE), which is one of the population-based evolutionary algorithms. We have demonstrated the efficiency of the algorithm on both synthetic and field magnetic anomalies by estimating horizontal distances from the origin in both north and east directions, depths to the top and bottom of the bodies, inclination and declination angles of the magnetization, and intensity of magnetization of the causative bodies. In the synthetic anomaly case, we have considered both noise-free and noisy data sets due to two vertical-sided prismatic bodies in a non-magnetic medium. For the field case, airborne magnetic anomalies originated from intrusive granitoids at the eastern part of the Biga Peninsula (NW Turkey) which is composed of various kinds of sedimentary, metamorphic and igneous rocks, have been inverted and interpreted. Since the granitoids are the outcropped rocks in the field, the estimations for the top depths of two prisms representing the magnetic bodies were excluded during inversion studies. Estimated bottom depths are in good agreement with the ones obtained by a different approach based on 3D modelling of pseudogravity anomalies. Accuracy of the estimated parameters from both cases has been also investigated via probability density functions. Based on the tests in the present study, it can be concluded that DE is a useful tool for the parameter estimation of source bodies using magnetic anomalies.

  18. Magnetic Control of Convection in Electrically Nonconducting Fluids

    NASA Technical Reports Server (NTRS)

    Huang, Jie; Gray, Donald D.; Edwards, Boyd F.

    1999-01-01

    Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.

  19. Measurement of the adhesion force between particles for high gradient magnetic separation of pneumatic conveyed powder products

    NASA Astrophysics Data System (ADS)

    Senkawa, K.; Nakai, Y.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    In the industrial plants such as foods, medicines or industrial materials, there are big amount of issues on contamination by metallic wear debris originated from pipes of manufacturing lines. In this study, we developed a high gradient magnetic separation system (HGMS) under the dry process by using superconducting magnet to remove the ferromagnetic particles. One of the major problems of dry HGMS systems is, however, the blockage of magnetic filter caused by particle coagulation or deposition. In order to actualize the magnetic separation without blockage, we introduced pneumatic conveyance system as a new method to feed the powder. It is important to increase the drag force acting on the sufficiently dispersed particles, which require strong magnetic fields. To generate the strong magnetic fields, HGMS technique was examined which consists of a magnetic filter and a superconducting solenoid magnet. As a result of the magnetic separation experiment, it was shown that the separation efficiency changes due to the difference of the cohesive property of the particles. On the basis of the result, the adhesion force which acts between the ferromagnetic particles and the medium particles used for the magnetic separation was measured by Atomic Force Microscope (AFM), and cohesion of particles was studied from the aspect of interparticle interaction. We assessed a suitable flow velocity for magnetic separation according to the cohesive property of each particle based on the result.

  20. Dual-body magnetic helical robot for drilling and cargo delivery in human blood vessels

    NASA Astrophysics Data System (ADS)

    Lee, Wonseo; Jeon, Seungmun; Nam, Jaekwang; Jang, Gunhee

    2015-05-01

    We propose a novel dual-body magnetic helical robot (DMHR) manipulated by a magnetic navigation system. The proposed DMHR can generate helical motions to navigate in human blood vessels and to drill blood clots by an external rotating magnetic field. It can also generate release motions which are relative rotational motions between dual-bodies to release the carrying cargos to a target region by controlling the magnitude of an external magnetic field. Constraint equations were derived to selectively manipulate helical and release motions by controlling external magnetic fields. The DMHR was prototyped and various experiments were conducted to demonstrate its motions and verify its manipulation methods.

  1. Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Chengshan

    2017-12-01

    Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM) above a cylindrical high temperature superconductor (HTS) moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC), however, the lateral stiffness in field cooling (FC) and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.

  2. Examining the Magnetic Properties of LaCoO3 Thin Films Using Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Berg, Morgann; Posadas, Agham; de Lozanne, Alex; Demkov, Alexander

    2011-03-01

    In contrast to the non-magnetic ground state of bulk LaCo O3 (LCO) at low temperatures, ferromagnetism has been observed in elastically strained thin film specimens. The origins of ferromagnetism in strained LCO thin films have been obscured by conflicting experimental results. Pulsed laser deposition (PLD) is the current standard of preparation techniques used to grow thin films of LCO, but results from thin film LCO samples prepared by PLD have been questioned on the basis of chemical inhomogeneity and film defects. Using magnetic force microscopy, we investigate the microscale magnetic properties of strained thin films of LCO prepared by molecular beam epitaxy and deposited on lanthanum aluminate and strontium titanate substrates. We observe these properties across a temperature range surrounding the Curie temperature (Tc ~ 80 K) and compare our results to global magnetic characteristics of these films as measured by a SQUID magnetometer. Supported by NSF-DMR and NSF-IGERT.

  3. Novel concepts in near-field optics: from magnetic near-field to optical forces

    NASA Astrophysics Data System (ADS)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  4. Nonlinear Modeling of Forced Magnetic Reconnection with Transient Perturbations

    NASA Astrophysics Data System (ADS)

    Beidler, Matthew T.; Callen, James D.; Hegna, Chris C.; Sovinec, Carl R.

    2017-10-01

    Externally applied 3D magnetic fields in tokamaks can penetrate into the plasma and lead to forced magnetic reconnection, and hence magnetic islands, on resonant surfaces. Analytic theory has been reasonably successful in describing many aspects of this paradigm with regard to describing the time asymptotic-steady state. However, understanding the nonlinear evolution into a low-slip, field-penetrated state, especially how MHD events such as sawteeth and ELMs precipitate this transition, is in its early development. We present nonlinear computations employing the extended-MHD code NIMROD, building on previous work by incorporating a temporally varying external perturbation as a simple model for an MHD event that produces resonant magnetic signals. A parametric series of proof-of-principle computations and accompanying analytical theory characterize the transition into a mode-locked state with an emphasis on detailing the temporal evolution properties. Supported by DOE OFES Grants DE-FG02-92ER54139, DE-FG02-86ER53218, and the U.S. DOE FES Postdoctoral Research program administered by ORISE and managed by ORAU under DOE contract DE-SC0014664.

  5. Towards an on-chip platform for the controlled application of forces via magnetic particles: A novel device for mechanobiology

    NASA Astrophysics Data System (ADS)

    Monticelli, M.; Albisetti, E.; Petti, D.; Conca, D. V.; Falcone, M.; Sharma, P. P.; Bertacco, R.

    2015-05-01

    In-vitro tests and analyses are of fundamental importance for investigating biological mechanisms in cells and bio-molecules. The controlled application of forces to activate specific bio-pathways and investigate their effects, mimicking the role of the cellular environment, is becoming a prominent approach in this field. In this work, we present a non-invasive magnetic on-chip platform which allows for the manipulation of magnetic particles, through micrometric magnetic conduits of Permalloy patterned on-chip. We show, from simulations and experiments, that this technology permits to exert a finely controlled force on magnetic beads along the chip surface. This force can be tuned from few to hundreds pN by applying a variable external magnetic field.

  6. Influence of experimental methods on crossing in magnetic force-gap hysteresis curve of HTS maglev system

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Qin, Yujie; Dang, Qiaohong; Wang, Jiasu

    2010-12-01

    The crossing in magnetic levitation force-gap hysteresis curve of melt high-temperature superconductor (HTS) vs. NdFeB permanent magnet (PM) was experimentally studied. One HTS bulk and PM was used in the experiments. Four experimental methods were employed combining of high/low speed of movement of PM with/without heat insulation materials (HIM) enclosed respectively. Experimental results show that crossing of the levitation force-gap curve is related to experimental methods. A crossing occurs in the magnetic force-gap curve while the PM moves approaching to and departing from the sample with high or low speed of movement without HIM enclosed. When the PM is enclosed with HIM during the measurement procedures, there is no crossing in the force-gap curve no matter high speed or low speed of movement of the PM. It was found experimentally that, with the increase of the moving speed of the PM, the maximum magnitude of levitation force of the HTS increases also. The results are interpreted based on Maxwell theories and flux flow-creep models of HTS.

  7. Film Condensation with and Without Body Force in Boundary-Layer Flow of Vapor Over a Flat Plate

    NASA Technical Reports Server (NTRS)

    Chung, Paul M.

    1961-01-01

    Laminar film condensation under the simultaneous influence of gas-liquid interface shear and body force (g force) is analyzed over a flat plate. Important parameters governing condensation and heat transfer of pure vapor are determined. Mixtures of condensable vapor and noncondensable gas are also analyzed. The conditions under which the body force has a significant influence on condensation are determined.

  8. A rolling locomotion method for untethered magnetic microrobots

    NASA Astrophysics Data System (ADS)

    Hou, Max T.; Shen, Hui-Mei; Jiang, Guan-Lin; Lu, Chiang-Ni; Hsu, I.-Jen; Yeh, J. Andrew

    2010-01-01

    It is a challenge to achieve free and efficient motion of microrobots on arbitrary surfaces. We report a rolling locomotion method for a magnetic microrobot with a rectangular body (300×200×50 μm3); this method is based on an external rotating magnetic field. The magnetic force, accompanied by normal and friction forces, enables the successive rotations of the microrobot. A magnetic field with a rotational speed of 2 rps rolls the microrobot, giving it a translation speed of 1.4 mm/s. With this locomotion ability, microrobots can move along a line or curve and can climb slopes or stairs.

  9. On the numerical computation of nonlinear force-free magnetic fields. [from solar photosphere

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Sun, M. T.; Chang, H. M.; Hagyard, M. J.; Gary, G. A.

    1990-01-01

    An algorithm has been developed to extrapolate nonlinear force-free magnetic fields from the photosphere, given the proper boundary conditions. This paper presents the results of this work, describing the mathematical formalism that was developed, the numerical techniques employed, and comments on the stability criteria and accuracy developed for these numerical schemes. An analytical solution is used for a benchmark test; the results show that the computational accuracy for the case of a nonlinear force-free magnetic field was on the order of a few percent (less than 5 percent). This newly developed scheme was applied to analyze a solar vector magnetogram, and the results were compared with the results deduced from the classical potential field method. The comparison shows that additional physical features of the vector magnetogram were revealed in the nonlinear force-free case.

  10. Radiative heat transfer and nonequilibrium Casimir-Lifshitz force in many-body systems with planar geometry

    NASA Astrophysics Data System (ADS)

    Latella, Ivan; Ben-Abdallah, Philippe; Biehs, Svend-Age; Antezza, Mauro; Messina, Riccardo

    2017-05-01

    A general theory of photon-mediated energy and momentum transfer in N -body planar systems out of thermal equilibrium is introduced. It is based on the combination of the scattering theory and the fluctuational-electrodynamics approach in many-body systems. By making a Landauer-like formulation of the heat transfer problem, explicit formulas for the energy transmission coefficients between two distinct slabs as well as the self-coupling coefficients are derived and expressed in terms of the reflection and transmission coefficients of the single bodies. We also show how to calculate local equilibrium temperatures in such systems. An analogous formulation is introduced to quantify momentum transfer coefficients describing Casimir-Lifshitz forces out of thermal equilibrium. Forces at thermal equilibrium are readily obtained as a particular case. As an illustration of this general theoretical framework, we show on three-body systems how the presence of a fourth slab can impact equilibrium temperatures in heat-transfer problems and equilibrium positions resulting from the forces acting on the system.

  11. Imaging Local Magnetic Domain Rearrangement in Strained LaCoO3 Thin Films Using Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Berg, Morgann; Leon, Neliza; Posadas, Agham; Lee, Alfred; Kim, Jeehoon; de Lozanne, Alex; Demkov, Alex

    2012-02-01

    Previous studies we have conducted on thin films of lanthanum cobaltate (LCO) under tensile strain have revealed a tendency toward local magnetic domain rearrangement into streak-like configurations near the ferromagnetic to paramagnetic phase transition. Moreover, the persistence of these streak-like characteristics to lower temperatures after field-cooling appears to be linked to the strength of the applied magnetic field in which these films are field-cooled. This tendency has not yet been verified for thin films of LCO under compressive strain which could indicate whether this magnetic domain rearrangement is intrinsic to thin film samples of LCO or is merely an effect of tensile strain. Using magnetic force microscopy, we investigate the microscale magnetic properties of a thin film of LCO under compressive strain, prepared by molecular beam epitaxy and deposited on a lanthanum aluminate substrate. We observe these properties across a wide temperature range and compare our results to global magnetic characteristics of this film as measured by a SQUID magnetometer.

  12. Simultaneous Single-Molecule Force and Fluorescence Sampling of DNA Nanostructure Conformations Using Magnetic Tweezers.

    PubMed

    Kemmerich, Felix E; Swoboda, Marko; Kauert, Dominik J; Grieb, M Svea; Hahn, Steffen; Schwarz, Friedrich W; Seidel, Ralf; Schlierf, Michael

    2016-01-13

    We present a hybrid single-molecule technique combining magnetic tweezers and Förster resonance energy transfer (FRET) measurements. Through applying external forces to a paramagnetic sphere, we induce conformational changes in DNA nanostructures, which are detected in two output channels simultaneously. First, by tracking a magnetic bead with high spatial and temporal resolution, we observe overall DNA length changes along the force axis. Second, the measured FRET efficiency between two fluorescent probes monitors local conformational changes. The synchronized orthogonal readout in different observation channels will facilitate deciphering the complex mechanisms of biomolecular machines.

  13. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOEpatents

    Viswanathan, Tito

    2014-02-11

    A method for separating a liquid hydrocarbon material from a body of water. In one embodiment, the method includes the steps of mixing a plurality of magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the plurality of magnetic carbon-metal nanocomposites each to be adhered by an amount of the liquid hydrocarbon material to form a mixture, applying a magnetic force to the mixture to attract the plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material, and removing said plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material from said body of water while maintaining the applied magnetic force, wherein the plurality of magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material.

  14. Hypervelocity impacts and magnetization of small bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Chen, Guangqing; Ahrens, Thomas J.; Hide, Raymond

    1995-01-01

    The observed magnetism of asteroids such as Gaspra and Ida (and other small bodies in the solar system including the Moon and meteorites) may have resulted from an impact-induced shock wave producing a thermodynamic state in which iron-nickel alloy, dispersed in a silicate matrix, is driven from the usual low-temperature, low-pressure, alpha, kaemacite, phase to the paramagnetic, epsilon (hcp), phase. The magnetization was acquired upon rarefaction and reentry into the ferromagnetic, alpha, structure. The degree of remagnetization depends on the strength of the ambient field, which may have been associated with a Solar-System-wide magnetic field. A transient field induced by the impact event itself may have resulted in a significant, or possibly, even a dominant contribution, as well. The scaling law of Housen et al. (Housen, K. R., R. M. Schmidt, and K. A. Holsapple 1991) for catastrophic asteroid impact disaggregation imposes a constraint on the degree to which small planetary bodies may be magnetized and yet survive fragmentation by the same event. Our modeling results show it is possible that Ida was magnetized when a large impact fractured a 125 +/- 22-km-radius protoasteroid to form the Koronis family. Similarly, we calculate that Gaspra could be a magnetized fragment of a 45 +/- 15 km-radius protoasteroid.

  15. Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill

    NASA Astrophysics Data System (ADS)

    Truyen Luong, Hung; Goo, Nam Seo

    2012-02-01

    A piezocomposite generating element (PCGE) can be used to convert ambient vibrations into electrical energy that can be stored and used to power other devices. This paper introduces a design of a magnetic force exciter for a small-scale windmill that vibrates a PCGE to convert wind energy into electrical energy. A small-scale windmill was designed to be sensitive to low-speed wind in urban regions for the purpose of collecting wind energy. The magnetic force exciter consists of exciting magnets attached to the device’s input rotor and a secondary magnet fixed at the tip of the PCGE. The PCGE is fixed to a clamp that can be adjusted to slide on the windmill’s frame in order to change the gap between exciting and secondary magnets. Under an applied wind force, the input rotor rotates to create a magnetic force interaction that excites the PCGE. The deformation of the PCGE enables it to generate electric power. Experiments were performed with different numbers of exciting magnets and different gaps between the exciting and secondary magnets to determine the optimal configuration for generating the peak voltage and harvesting the maximum wind energy for the same range of wind speeds. In a battery-charging test, the charging time for a 40 mA h battery was approximately 3 h for natural wind in an urban region. The experimental results show that the prototype can harvest energy in urban regions with low wind speeds and convert the wasted wind energy into electricity for city use.

  16. Introduction to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045

  17. Estimating Three-Dimensional Orientation of Human Body Parts by Inertial/Magnetic Sensing

    PubMed Central

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation. PMID:22319365

  18. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing.

    PubMed

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation.

  19. Optimum dimensions of power solenoids for magnetic suspension

    NASA Technical Reports Server (NTRS)

    Kaznacheyev, B. A.

    1985-01-01

    Design optimization of power solenoids for controllable and stabilizable magnetic suspensions with force compensation in a wind tunnel is shown. It is assumed that the model of a levitating body is a sphere of ferromagnetic material with constant magnetic permeability. This sphere, with a radius much smaller than its distance from the solenoid above, is to be maintained in position on the solenoid axis by balance of the vertical electromagnetic force and the force of gravitation. The necessary vertical (axial) force generated by the solenoid is expressed as a function of relevant system dimensions, solenoid design parameters, and physical properties of the body. Three families of curves are obtained which depict the solenoid power for a given force as a function of the solenoid length with either outside radius or inside radius as a variable parameter and as a function of the outside radius with inside radius as a variable parameter. The curves indicate the optimum solenoid length and outside radius, for minimum power, corresponding to a given outside radius and inside radius, respectively.

  20. Waves in Radial Gravity Using Magnetic Fluid

    NASA Technical Reports Server (NTRS)

    Ohlsen, D. R.; Hart, J. E.; Weidman, P. D.

    1999-01-01

    Terrestrial laboratory experiments studying various fluid dynamical processes are constrained, by being in an Earth laboratory, to have a gravitational body force which is uniform and unidirectional. Therefore fluid free-surfaces are horizontal and flat. Such free surfaces must have a vertical solid boundary to keep the fluid from spreading horizontally along a gravitational potential surface. In atmospheric, oceanic, or stellar fluid flows that have a horizontal scale of about one-tenth the body radius or larger, sphericity is important in the dynamics. Further, fluids in spherical geometry can cover an entire domain without any sidewall effects, i.e. have truly periodic boundary conditions. We describe spherical body-force laboratory experiments using ferrofluid. Ferrofluids are dilute suspensions of magnetic dipoles, for example magnetite particles of order 10 nm diameter, suspended in a carrier fluid. Ferrofluids are subject to an additional body force in the presence of an applied magnetic field gradient. We use this body force to conduct laboratory experiments in spherical geometry. The present study is a laboratory technique improvement. The apparatus is cylindrically axisymmetric. A cylindrical ceramic magnet is embedded in a smooth, solid, spherical PVC ball. The geopotential field and its gradient, the body force, were made nearly spherical by careful choice of magnet height-to-diameter ratio and magnet size relative to the PVC ball size. Terrestrial gravity is eliminated from the dynamics by immersing the "planet" and its ferrofluid "ocean" in an immiscible silicone oil/freon mixture of the same density. Thus the earth gravity is removed from the dynamics of the ferrofluid/oil interface and the only dynamically active force there is the radial magnetic gravity. The entire apparatus can rotate, and waves are forced on the ferrofluid surface by exterior magnets. The biggest improvement in technique is in the wave visualization. Fluorescing dye is added to

  1. Tactile sensor of hardness recognition based on magnetic anomaly detection

    NASA Astrophysics Data System (ADS)

    Xue, Lingyun; Zhang, Dongfang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Hardness, as one kind of tactile sensing, plays an important role in the field of intelligent robot application such as gripping, agricultural harvesting, prosthetic hand and so on. Recently, with the rapid development of magnetic field sensing technology with high performance, a number of magnetic sensors have been developed for intelligent application. The tunnel Magnetoresistance(TMR) based on magnetoresistance principal works as the sensitive element to detect the magnetic field and it has proven its excellent ability of weak magnetic detection. In the paper, a new method based on magnetic anomaly detection was proposed to detect the hardness in the tactile way. The sensor is composed of elastic body, ferrous probe, TMR element, permanent magnet. When the elastic body embedded with ferrous probe touches the object under the certain size of force, deformation of elastic body will produce. Correspondingly, the ferrous probe will be forced to displace and the background magnetic field will be distorted. The distorted magnetic field was detected by TMR elements and the output signal at different time can be sampled. The slope of magnetic signal with the sampling time is different for object with different hardness. The result indicated that the magnetic anomaly sensor can recognize the hardness rapidly within 150ms after the tactile moment. The hardness sensor based on magnetic anomaly detection principal proposed in the paper has the advantages of simple structure, low cost, rapid response and it has shown great application potential in the field of intelligent robot.

  2. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOEpatents

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  3. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOEpatents

    Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.

    1995-11-07

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.

  4. Direct Measurements of the Penetration Depth in a Superconducting Film using Magnetic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Nazaretski; J Thibodaux; I Vekhter

    2011-12-31

    We report the local measurements of the magnetic penetration depth in a superconducting Nb film using magnetic force microscopy (MFM). We developed a method for quantitative extraction of the penetration depth from single-parameter simultaneous fits to the lateral and height profiles of the MFM signal, and demonstrate that the obtained value is in excellent agreement with that obtained from the bulk magnetization measurements.

  5. Enhancement of Feedback Efficiency by Active Galactic Nucleus Outflows via the Magnetic Tension Force in the Inhomogeneous Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahina, Yuta; Ohsuga, Ken; Nomura, Mariko, E-mail: asahina@cfca.jp

    By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tensionmore » force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.« less

  6. Effect of transcranial magnetic stimulation on force of finger pinch

    NASA Astrophysics Data System (ADS)

    Odagaki, Masato; Fukuda, Hiroshi; Hiwaki, Osamu

    2009-04-01

    Transcranial magnetic stimulation (TMS) is used to explore many aspects of brain function, and to treat neurological disorders. Cortical motor neuronal activation by TMS over the primary motor cortex (M1) produces efferent signals that pass through the corticospinal tracts. Motor-evoked potentials (MEPs) are observed in muscles innervated by the stimulated motor cortex. TMS can cause a silent period (SP) following MEP in voluntary electromyography (EMG). The present study examined the effects of TMS eliciting MEP and SP on the force of pinching using two fingers. Subjects pinched a wooden block with the thumb and index finger. TMS was applied to M1 during the pinch task. EMG of first dorsal interosseous muscles and pinch forces were measured. Force output increased after the TMS, and then oscillated. The results indicated that the motor control system to keep isotonic forces of the muscles participated in the finger pinch was disrupted by the TMS.

  7. Revealing bending and force in a soft body through a plant root inspired approach

    PubMed Central

    Lucarotti, Chiara; Totaro, Massimo; Sadeghi, Ali; Mazzolai, Barbara; Beccai, Lucia

    2015-01-01

    An emerging challenge in soft robotics research is to reveal mechanical solicitations in a soft body. Nature provides amazing clues to develop unconventional components that are capable of compliant interactions with the environment and living beings, avoiding mechanical and algorithmic complexity of robotic design. We inspire from plant-root mechanoperception and develop a strategy able to reveal bending and applied force in a soft body with only two sensing elements of the same kind, and a null computational effort. The stretching processes that lead to opposite tissue deformations on the two sides of the root wall are emulated with two tactile sensing elements, made of soft and stretchable materials, which conform to reversible changes in the shape of the body they are built in and follow its deformations. Comparing the two sensory responses, we can discriminate the concave and the convex side of the bent body. Hence, we propose a new strategy to reveal in a soft body the maximum bending angle (or the maximum deflection) and the externally applied force according to the body's mechanical configuration. PMID:25739743

  8. Three-Body Forces and the Limit of Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu; Suzuki, Toshio; Holt, Jason D.; Schwenk, Achim; Akaishi, Yoshinori

    2010-07-01

    The limit of neutron-rich nuclei, the neutron drip line, evolves regularly from light to medium-mass nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body systems. This leads to repulsive contributions to the interactions among excess neutrons that change the location of the neutron drip line from O28 to the experimentally observed O24. Since the mechanism is robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.

  9. Magnetic resonance force microscopy quantum computer with tellurium donors in silicon.

    PubMed

    Berman, G P; Doolen, G D; Hammel, P C; Tsifrinovich, V I

    2001-03-26

    We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations.

  10. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-07

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  11. Comparative study of the surface characteristics, microstructure, and magnetic retentive forces of laser-welded dowel-keepers and cast dowel-keepers for use with magnetic attachments.

    PubMed

    Chao, Yonglie; Du, Li; Yang, Ling

    2005-05-01

    Information regarding the merits and problems associated with connecting a keeper to a dowel and coping using a laser welding technique has not been explored extensively in the dental literature. This in vitro study compared the surface characteristics, microstructure, and magnetic retentive forces for a dowel and coping-keeper mechanism fabricated using a laser welding process and a cast-to casting technique. Five cast-to and 6 laser-welded dowel and coping-keeper specimens were tested. Using 5 freestanding keepers as the control group, the surface characteristics and microstructures of the specimens were examined by means of stereomicroscopy, metallographic microscopy, and scanning electron microscopy (SEM). Energy-dispersive spectroscopic (EDS) microanalysis with SEM provided elemental concentration information for the test specimens. The vertical magnetic retentive forces (N) of the 3 groups were measured using a universal testing machine. The results were statistically compared using 1-way analysis of variance and the Newman-Keuls multiple range test (alpha =.05). The laser-welded dowel-keeper generally maintained its original surface smoothness as well as the original microstructure. Elements diffused readily through the fusion zone. The surface of the cast dowel-keeper became rough with the formation of an oxide layer, the microstructure changed, and there was only limited elemental diffusion in the fusion zone. The average vertical magnetic retentive force of the laser-welded group, the cast group, and the control group were 4.2 +/- 0.2 N, 3.8 +/- 0.3 N, and 5.6 +/- 0.3 N, respectively. Statistically significant differences in vertical magnetic retentive force were found between the control group and both the laser-welded and cast groups (P <.01). Compared with the cast dowel-keepers, the average vertical magnetic retentive force of the laser-welded dowel-keepers was significantly higher (P <.05). The laser welding technique had less influence on the

  12. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  13. Corticospinal control of the thumb-index grip depends on precision of force control: a transcranial magnetic stimulation and functional magnetic resonance imagery study in humans.

    PubMed

    Bonnard, M; Galléa, C; De Graaf, J B; Pailhous, J

    2007-02-01

    The corticospinal system (CS) is well known to be of major importance for controlling the thumb-index grip, in particular for force grading. However, for a given force level, the way in which the involvement of this system could vary with increasing demands on precise force control is not well-known. Using transcranial magnetic stimulation and functional magnetic resonance imagery, the present experiments investigated whether increasing the precision demands while keeping the averaged force level similar during an isometric dynamic low-force control task, involving the thumb-index grip, does affect the corticospinal excitability to the thumb-index muscles and the activation of the motor cortices, primary and non-primary (supplementary motor area, dorsal and ventral premotor and in the contralateral area), at the origin of the CS. With transcranial magnetic stimulation, we showed that, when precision demands increased, the CS excitability increased to either the first dorsal interosseus or the opponens pollicis, and never to both, for similar ongoing electromyographic activation patterns of these muscles. With functional magnetic resonance imagery, we demonstrated that, for the same averaged force level, the amplitude of blood oxygen level-dependent signal increased in relation to the precision demands in the hand area of the contralateral primary motor cortex in the contralateral supplementary motor area, ventral and dorsal premotor area. Together these results show that, during the course of force generation, the CS integrates online top-down information to precisely fit the motor output to the task's constraints and that its multiple cortical origins are involved in this process, with the ventral premotor area appearing to have a special role.

  14. Numerical study of the magnetized friction force

    NASA Astrophysics Data System (ADS)

    Fedotov, A. V.; Bruhwiler, D. L.; Sidorin, A. O.; Abell, D. T.; Ben-Zvi, I.; Busby, R.; Cary, J. R.; Litvinenko, V. N.

    2006-07-01

    Fundamental advances in experimental nuclear physics will require ion beams with orders of magnitude luminosity increase and temperature reduction. One of the most promising particle accelerator techniques for achieving these goals is electron cooling, where the ion beam repeatedly transfers thermal energy to a copropagating electron beam. The dynamical friction force on a fully ionized gold ion moving through magnetized and unmagnetized electron distributions has been simulated, using molecular dynamics techniques that resolve close binary collisions. We present a comprehensive examination of theoretical models in use by the electron cooling community. Differences in these models are clarified, enabling the accurate design of future electron cooling systems for relativistic ion accelerators.

  15. Resistance of domain walls created by means of a magnetic force microscope in transversally magnetized epitaxial Fe wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassel, C.; Stienen, S.; Roemer, F. M.

    2009-07-20

    Magnetic domain walls are created in a controllable way in transversally magnetized epitaxial Fe wires on GaAs(110) by approaching a magnetic force microscope (MFM) tip. The electrical resistance-change due to the addition of these domain walls is measured. The anisotropic magnetoresistance as well as the intrinsic domain wall resistance contribute to the resistance-change. The efficiency of this procedure is proven by MFM images, which are obtained subsequent to the domain wall creation at a larger sample-to-probe distance. The contribution of the anisotropic magnetoresistance is calculated using micromagnetic calculations, thus making it possible to quantify the intrinsic domain wall resistance.

  16. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramírez-Salgado, J.; Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx; Castro-Domínguez, B.

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite wasmore » detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.« less

  17. On the Evolution of Pulsatile Flow Subject to a Transverse Impulse Body Force

    NASA Astrophysics Data System (ADS)

    di Labbio, Giuseppe; Keshavarz-Motamed, Zahra; Kadem, Lyes

    2014-11-01

    In the event of an unexpected abrupt traffic stop or car accident, automotive passengers will experience an abrupt body deceleration. This may lead to tearing or dissection of the aortic wall known as Blunt Traumatic Aortic Rupture (BTAR). BTAR is the second leading cause of death in automotive accidents and, although quite frequent, the mechanisms leading to BTAR are still not clearly identified, particularly the contribution of the flow field. As such, this work is intended to provide a fundamental framework for the investigation of the flow contribution to BTAR. In this fundamental study, pulsatile flow in a three-dimensional, straight pipe of circular cross-section is subjected to a unidirectional, transverse, impulse body force applied on a strictly bounded volume of fluid. These models were simulated using the Computational Fluid Dynamics (CFD) software FLUENT. The evolution of fluid field characteristics was investigated during and after the application of the force. The application of the force significantly modified the flow field. The force induces a transverse pressure gradient causing the development of secondary flow structures that dissipate the energy added by the acceleration. Once the force ceases to act, these structures are carried downstream and gradually dissipate their excess energy.

  18. Magnetic force study for the helical afterburner for the European XFEL

    NASA Astrophysics Data System (ADS)

    Li, Peng; Wei, Tao; Li, Yuhui; Pflueger, Joachim

    2017-05-01

    At present the SASE3 undulator line at the European XFEL is using a planar undulator producing linear polarized soft Xray radiation only. In order to satisfy the demand for circular polarized radiation a helical undulator system, the so-called afterburner is in construction. It will be operated as a radiator using the pre-bunched beam of the SASE3 undulator system. Among several options for the magnetic structure the Apple-X geometry was chosen. This is a pure permanent magnet undulator using NdFeB material. Four magnet arrays are arranged symmetrically the beam axis. Polarization can be changed by adjusting the phase shift (PS) between the two orthogonal structures. The field strength can be adjusted either by gap adjustment or alternatively by the amplitude shift (AS) scheme. For an engineering design the maximum values of forces and torques on each of the components under worst case operational conditions are important. The superposition principle is used to reduce calculation time. It is found that the maximum forces Fx, Fy and Fz for a 2m long Apple-X undulator are 1.8*104N, 2.4*104N and 2.3*104N, respectively. More results are presented in this paper.

  19. Ultra-high field magnets for whole-body MRI

    NASA Astrophysics Data System (ADS)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200-870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000-20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  20. The effect of low force chiropractic adjustments for 4 weeks on body surface electromagnetic field.

    PubMed

    Zhang, John; Snyder, Brian J

    2005-01-01

    To study the effects of 4 weeks of low-force chiropractic adjustments on body surface electromagnetic fields (EMFs). Thirty-five chiropractic students randomly assigned into control (17 subjects) and experimental groups (28 subjects). A triaxial fluxgate magnetometer was used for EMF detection. The subjects' body surface EMF was determined in the prone position before and after the chiropractic adjustment. A Toftness low-force chiropractic adjustment was applied to the cervical, thoracic, lumbar, and sacral areas as determined by the practitioner. Heart rate variability analysis was recorded once a week to determine autonomic nervous system activity in both the control and experimental groups. The EMF on the subjects' body surface decreased after chiropractic adjustment at the cervical, thoracic, lumbar, and sacral regions in all 6 visits during the 4-week treatment period. The EMF showed a downtrend over the 4-week period after the low-force adjustment. The same changes were not observed in the control group. The chiropractic adjustment group had a slight decrease in heart rate over the 4-week treatment period, and no significant change was observed in the control group. Heart rate variability analysis did not show consistent changes before and after the low-force adjustments during the treatment period. Low-force chiropractic adjustment in the cervical and thoracic areas resulted in a consistent reduction of the body surface EMF after 4 weeks of active treatment. No statistically significant differences were found in the heart rate and heart rate variability in the 4-week study.

  1. Elastic properties of a magnetic fluid with an air cavity retained by levitation forces

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Boev, M. L.; Tan, Myo Min; Karpova, G. V.; Roslyakova, L. I.

    2013-01-01

    The paper describes the process of an air cavity rising in a magnetic fluid filling a tube with a bottom, transport, and retention of the cavity by magnetic levitation forces. The elastic and dissipative properties of a vibratory system with an inertial element that is a column of a magnetic fluid over an air cavity are considered. The possibility of using a transported air cavity as a movable reflector for a sound wave is evaluated.

  2. Design of the superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Li, Y.; Wang, Q.; Dai, Y.; Ni, Z.; Zhu, X.; Li, L.; Zhao, B.; Chen, S.

    2017-02-01

    A superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging is designed and fabricated in Institute of Electrical Engineering, Chinese Academy of Sciences. In this paper, the electromagnetic design methods of the main coils and compensating coils are presented. Sensitivity analysis is performed for all superconducting coils. The design of the superconducting shimming coils is also presented and the design of electromagnetic decoupling of the Z2 coils from the main coils is introduced. Stress and strain analysis with both averaged and detailed models is performed with finite element method. A quench simulation code with anisotropic continuum model and control volume method is developed by us and is verified by experimental study. By means of the quench simulation code, the quench protection system for the 9.4 T magnet is designed for the main coils, the compensating coils and the shimming coils. The magnet cryostat design with zero helium boiling-off technology is also introduced.

  3. Quantitative magnetic resonance (QMR) measurement of changes in body composition of neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    The survival of low birth weight pigs in particular may depend on energy stores in the body. QMR (quantitative magnetic resonance) is a new approach to measuring total body fat, lean and water. These measurements are based on quantifying protons associated with lipid and water molecules in the body...

  4. Magnetic particle motions within living cells. Physical theory and techniques.

    PubMed Central

    Valberg, P A; Butler, J P

    1987-01-01

    Body tissues are not ferromagnetic, but ferromagnetic particles can be present as contaminants or as probes in the lungs and in other organs. The magnetic domains of these particles can be aligned by momentary application of an external magnetic field; the magnitude and time course of the resultant remanent field depend on the quantity of magnetic material and the degree of particle motion. The interpretation of magnetometric data requires an understanding of particle magnetization, agglomeration, random motion, and both rotation and translation in response to magnetic fields. We present physical principles relevant to magnetometry and suggest models for intracellular particle motion driven by thermal, elastic, or cellular forces. The design principles of instrumentation for magnetizing intracellular particles and for detecting weak remanent magnetic fields are described. Such magnetic measurements can be used for noninvasive studies of particle clearance from the body or of particle motion within body tissues and cells. Assumptions inherent to this experimental approach and possible sources of artifact are considered and evaluated. PMID:3676435

  5. Temporal and preparation effects in the magnetic nanoparticles of Apis mellifera body parts

    NASA Astrophysics Data System (ADS)

    Chambarelli, L. L.; Pinho, M. A.; Abraçado, L. G.; Esquivel, D. M. S.; Wajnberg, E.

    Magnetic nanoparticles in the Apis mellifera abdomens are well accepted as involved in their magnetoreception mechanism. The effects of sample preparation on the time evolution of magnetic particles in the honeybee body parts (antennae, head, thorax and abdomen) were investigated by Ferromagnetic Resonance (FMR) at room temperature (RT), for about 100 days. Three preparations were tested: (a) washed with water (WT); (b) as (a), kept in glutaraldehyde 2.5% in 0.1 M cacodylate buffer (pH 7.4) for 24 h and washed with cacodylate buffer (C); (c) as (a), kept in glutaraldehyde 2.5% for 24 h and washed with glutaraldehyde 2.5% in cacodylate buffer (GLC). The four body parts of young and adult worker presented magnetic nanoparticles. The Mn 2+ lines are observed except for the antennae spectra. The high field (HF) and low field (LF) components previously observed in the spectra of social insects, are confirmed in these spectra. The HF line is present in all spectra while the LF is easily observed in the spectra of the young bee and it appears as a baseline shift in spectra of some adult parts. The HF intensity of the abdomen is commonly one order of magnitude larger than any other body parts. This is the first systematic study on the conservation of magnetic material in all body parts of bees. The results show that the time evolution of the spectra depends on the body part, conserving solution and bee age. Further measurements are necessary to understand these effects and extend it to other social insects.

  6. A comparative study of dynamically expanding force-free, constant-alpha magnetic configurations with applications to magnetic clouds

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Burlaga, L. F.; Osherovich, V. A.; Lepping, R. P.

    1992-01-01

    We contrast two different solutions of the constant alpha, force-free MHD equation, both of which have been suggested as models for magnetic clouds: a solution in cylindrical coordinates and one in spherical coordinates. In line with the observation that magnetic clouds expand, we generalize these static models and construct their expanding counterparts. We find that expansion introduces in both cases a large asymmetry in the field strength signature which is in the same sense as that seen the the data, i.e. towards the leading edge of the cloud. We then do a least squares fit of the respective models to one-spacecraft data on a magnetic cloud. We find that the fitting routine converges in both cases. However, while purely formally we cannot distinguish between the two models using data from one spacecraft, the field components in the 'spherical' model have features not compatible with data on magnetic clouds.

  7. Vertically polarizing undulator with the dynamic compensation of magnetic forces for the next generation of light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelnikov, N.; Budker Institute of Nuclear Physics, Novosibirsk 630090; Trakhtenberg, E.

    2014-11-15

    A short prototype (847-mm-long) of an Insertion Device (ID) with the dynamic compensation of ID magnetic forces has been designed, built, and tested at the Advanced Photon Source (APS) of the Argonne National Laboratory. The ID magnetic forces were compensated by the set of conical springs placed along the ID strongback. Well-controlled exponential characteristics of conical springs permitted a very close fit to the ID magnetic forces. Several effects related to the imperfections of actual springs, their mounting and tuning, and how these factors affect the prototype performance has been studied. Finally, series of tests to determine the accuracy andmore » reproducibility of the ID magnetic gap settings have been carried out. Based on the magnetic measurements of the ID B{sub eff}, it has been demonstrated that the magnetic gaps within an operating range were controlled accurately and reproducibly within ±1 μm. Successful tests of this ID prototype led to the design of a 3-m long device based on the same concept. The 3-m long prototype is currently under construction. It represents R and D efforts by the APS toward APS Upgrade Project goals as well as the future generation of IDs for the Linac Coherent Light Source (LCLS)« less

  8. GNSS orbit determination by precise modeling of non-gravitational forces acting on satellite's body

    NASA Astrophysics Data System (ADS)

    Wielgosz, Agata; Kalarus, Maciej; Liwosz, Tomasz

    2016-04-01

    Satellites orbiting around Earth are affected by gravitational forces and non-gravitational perturbations (NGP). While the perturbations caused by gravitational forces, which are due to central body gravity (including high-precision geopotential field) and its changes (due to secular variations and tides), solar bodies attraction and relativistic effects are well-modeled, the perturbations caused by the non-gravitational forces are the most limiting factor in Precise Orbit Determination (POD). In this work we focused on very precise non-gravitational force modeling for medium Earth orbit satellites by applying the various models of solar radiation pressure including changes in solar irradiance and Earth/Moon shadow transition, Earth albedo and thermal radiation. For computing influence of aforementioned forces on spacecraft the analytical box-wing satellite model was applied. Smaller effects like antenna thrust or spacecraft thermal radiation were also included. In the process of orbit determination we compared the orbit with analytically computed NGP with the standard procedure in which CODE model is fitted for NGP recovery. We considered satellites from several systems and on different orbits and for different periods: when the satellite is all the time in full sunlight and when transits the umbra and penumbra regions.

  9. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor

    PubMed Central

    Dennis, John Ojur; Ahmad, Farooq; Khir, M. Haris Bin Md; Hamid, Nor Hisham Bin

    2015-01-01

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972

  10. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.

    PubMed

    Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham

    2015-07-27

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.

  11. Many-body interferometry of magnetic polaron dynamics

    NASA Astrophysics Data System (ADS)

    Ashida, Yuto; Schmidt, Richard; Tarruell, Leticia; Demler, Eugene

    2018-02-01

    The physics of quantum impurities coupled to a many-body environment is among the most important paradigms of condensed-matter physics. In particular, the formation of polarons, quasiparticles dressed by the polarization cloud, is key to the understanding of transport, optical response, and induced interactions in a variety of materials. Despite recent remarkable developments in ultracold atoms and solid-state materials, the direct measurement of their ultimate building block, the polaron cloud, has remained a fundamental challenge. We propose and analyze a platform to probe time-resolved dynamics of polaron-cloud formation with an interferometric protocol. We consider an impurity atom immersed in a two-component Bose-Einstein condensate where the impurity generates spin-wave excitations that can be directly measured by the Ramsey interference of surrounding atoms. The dressing by spin waves leads to the formation of magnetic polarons and reveals a unique interplay between few- and many-body physics that is signified by single- and multi-frequency oscillatory dynamics corresponding to the formation of many-body bound states. Finally, we discuss concrete experimental implementations in ultracold atoms.

  12. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  13. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  14. Quantitative nuclear magnetic resonance to measure body composition in infants and children

    USDA-ARS?s Scientific Manuscript database

    Quantitative Nuclear Magnetic Resonance (QMR) is being used in human adults to obtain measures of total body fat (FM) with high precision. The current study assessed a device specially designed to accommodate infants and children between 3 and 50 kg (EchoMRI-AH™). Body composition of 113 infants and...

  15. The generation of magnetic fields in astrophysical bodies. X - Magnetic buoyancy and the solar dynamo

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1975-01-01

    The magnetic field appearing as bipolar magnetic regions at the surface of the sun represents the lines of force from a general azimuthal field of the order of 100 gauss somewhere beneath the surface. The amplification time, as a consequence of the nonuniform rotation, is of the order of 10 years. But magnetic buoyancy brings the azimuthal field up through much of the convective zone in a time rather less than 10 years, raising the question of where the azimuthal field can be retained long enough to be amplified. We show that magnetic fields can be retained for long periods of time in the stable radiative region beneath the convective zone, but unfortunately the solar dynamo cannot function there because turbulent diffusion is an essential part of its operation. The only possible conclusion appears to be that the dynamo operates principally in the very lowest levels of the convective zone at depths of 150,000 km or more, where the gas density is 0.1 g/cu cm, and the fields are limited to 50 gauss.

  16. Effect of unbalanced magnetic pull and hydraulic seal force on the vibration of large rotor-bearing systems

    NASA Astrophysics Data System (ADS)

    Song, Z.; Guo, P.; Liu, Y.

    2014-03-01

    The influence of unbalanced magnetic pull (UMP) and hydraulic seal force on the vibration of large rotor-bearing systems is studied. The UMP caused by rotor eccentricity imposes important effects on rotating machinery, especially for large generators such as water turbine generator sets, because these machines operate above their first critical speed in some instances and are supported by oil film bearings. A magnetic stiffness matrix for studying the effects of the UMP is proposed. The magnetic stiffness matrix can be generated by decomposing the expression of air gap magnetic field energy. Two vibration models are constructed using the Lagrange equation. The difference between the two models lies in the boundary support condition: one has rigid support and the other has elastic bearing support. The influence of the magnetic stiffness and elastic support on the critical speed of the rotor is studied using Lyapunov nonlinear vibration stability theory. The vibration amplitude of the rotor is calculated, taking the magnetic stiffness and horizontal centrifugal force into account. The unbalanced hydraulic seal force is produced because of the asymmetry of seal clearance. This imbalance is one of the factors that causes self-excited vibration in rotating machinery, and is as important as the UMP for large water turbine generator sets. The rotor-bearing system is supported by an oil film journal bearing, whose characteristic also impose considerable influence on vibration. On the basis of the above-mentioned conditions, a three-dimensional finite element model of the rotating system that includes the oil film journal bearing is constructed. The effect of the UMP and unbalanced hydraulic seal force is considered in the construction, and studied in relation to the magnetic parameters, seal parameters, journal bearing stiffness, and outer diameter of the rotating machine critical speed. Conclusions may benefit the dynamic design and optimized operation of large rotating

  17. Flow force and torque on submerged bodies in lattice-Boltzmann methods via momentum exchange.

    PubMed

    Giovacchini, Juan P; Ortiz, Omar E

    2015-12-01

    We review the momentum exchange method to compute the flow force and torque on a submerged body in lattice-Boltzmann methods by presenting an alternative derivation. Our derivation does not depend on a particular implementation of the boundary conditions at the body surface, and it relies on general principles. After the introduction of the momentum exchange method in lattice-Boltzmann methods, some formulations were introduced to compute the fluid force on static and moving bodies. These formulations were introduced in a rather intuitive, ad hoc way. In our derivation, we recover the proposals most frequently used, in some cases with minor corrections, gaining some insight into the two most used formulations. At the end, we present some numerical tests to compare different approaches on a well-known benchmark test that support the correctness of the formulas derived.

  18. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force.

    PubMed

    Shimizu, Kazunori; Ito, Akira; Yoshida, Tatsuro; Yamada, Yoichi; Ueda, Minoru; Honda, Hiroyuki

    2007-08-01

    An in vitro reconstruction of three-dimensional (3D) tissues without the use of scaffolds may be an alternative strategy for tissue engineering. We have developed a novel tissue engineering strategy, termed magnetic force-based tissue engineering (Mag-TE), in which magnetite cationic liposomes (MCLs) with a positive charge at the liposomal surface, and magnetic force were used to construct 3D tissue without scaffolds. In this study, human mesenchymal stem cells (MSCs) magnetically labeled with MCLs were seeded onto an ultra-low attachment culture surface, and a magnet (4000 G) was placed on the reverse side. The MSCs formed multilayered sheet-like structures after a 24-h culture period. MSCs in the sheets constructed by Mag-TE maintained an in vitro ability to differentiate into osteoblasts, adipocytes, or chondrocytes after a 21-day culture period using each induction medium. Using an electromagnet, MSC sheets constructed by Mag-TE were harvested and transplanted into the bone defect in the crania of nude rats. Histological observation revealed that new bone surrounded by osteoblast-like cells was formed in the defect area 14 days after transplantation with MSC sheets, whereas no bone formation was observed in control rats without the transplant. These results indicated that Mag-TE could be used for the transplantation of MSC sheets using magnetite nanoparticles and magnetic force, providing novel methodology for bone tissue engineering.

  19. Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.

    2017-05-01

    The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.

  20. Influence of Waiting Time on the Levitation Force Between a Permanent Magnet and a Superconductor

    NASA Astrophysics Data System (ADS)

    Zhang, Xing-Yi; Zhou, You-He; Zhou, Jun

    This paper describes the experimental results of the levitation force of single-grained YBaCuO bulk superconductors preparing by the top-seeded melt-growth method with different waiting time tw below an NdFeB permanent magnet. It was found that waiting time has large effects on the zero-field-cooled (ZFC) and field-cooled (FC) levitation force, and the levitation force shows aging characteristics at the liquid nitrogen temperature.

  1. A Highly Parallelized Special-Purpose Computer for Many-Body Simulations with an Arbitrary Central Force: MD-GRAPE

    NASA Astrophysics Data System (ADS)

    Fukushige, Toshiyuki; Taiji, Makoto; Makino, Junichiro; Ebisuzaki, Toshikazu; Sugimoto, Daiichiro

    1996-09-01

    We have developed a parallel, pipelined special-purpose computer for N-body simulations, MD-GRAPE (for "GRAvity PipE"). In gravitational N- body simulations, almost all computing time is spent on the calculation of interactions between particles. GRAPE is specialized hardware to calculate these interactions. It is used with a general-purpose front-end computer that performs all calculations other than the force calculation. MD-GRAPE is the first parallel GRAPE that can calculate an arbitrary central force. A force different from a pure 1/r potential is necessary for N-body simulations with periodic boundary conditions using the Ewald or particle-particle/particle-mesh (P^3^M) method. MD-GRAPE accelerates the calculation of particle-particle force for these algorithms. An MD- GRAPE board has four MD chips and its peak performance is 4.2 GFLOPS. On an MD-GRAPE board, a cosmological N-body simulation takes 6O0(N/10^6^)^3/2^ s per step for the Ewald method, where N is the number of particles, and would take 24O(N/10^6^) s per step for the P^3^M method, in a uniform distribution of particles.

  2. Influence of the surface magnetic field of a cylindrical permanent magnet on the maximum levitation force in high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Xian-Feng; Liu, Yuan

    2006-06-01

    In this paper we present the dependence of the maximum levitation force (FzMax) of a high-Tc superconductor on the surface magnetic field (Bs) of a cylindrical permanent magnet, based on the Bean critical state model and Ampère's law. A transition point of Bs is found at which the relation between FzMax and Bs changes: while the surface magnetic field is less than the transition point the dependence is subjected to a nonlinear function, otherwise it is a linear one. The two different relations are estimated to correspond to partial penetration of the shielding currents in the interior of the superconductor below the transition point and complete penetration above it, respectively. Furthermore, the influence of the geometrical properties of superconductors on the transition point of Bs is discussed, which shows a quadratic polynomial function between the transition points and the radii and the thickness of superconductors. Some optimum contours of the transition point of Bs are presented in order to achieve large levitation forces.

  3. Scattering-matrix approach to Casimir-Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messina, Riccardo; Antezza, Mauro; CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095, Montpellier

    2011-10-15

    We study the radiative heat transfer and the Casimir-Lifshitz force occurring between two bodies in a system out of thermal equilibrium. We consider bodies of arbitrary shape and dielectric properties, held at two different temperatures and immersed in environmental radiation at a third different temperature. We derive explicit closed-form analytic expressions for the correlations of the electromagnetic field and for the heat transfer and Casimir-Lifshitz force in terms of the bodies' scattering matrices. We then consider some particular cases which we investigate in detail: the atom-surface and the slab-slab configurations.

  4. Viscoelastic Properties Measurement of Human Lymphocytes by Atomic Force Microscopy Based on Magnetic Beads Cell Isolation.

    PubMed

    Mi Li; Lianqing Liu; Xiubin Xiao; Ning Xi; Yuechao Wang

    2016-07-01

    Cell mechanics has been proved to be an effective biomarker for indicating cellular states. The advent of atomic force microscopy (AFM) provides an exciting instrument for measuring the mechanical properties of single cells. However, current AFM single-cell mechanical measurements are commonly performed on cell lines cultured in vitro which are quite different from the primary cells in the human body. Investigating the mechanical properties of primary cells from clinical environments can help us to better understand cell behaviors. Here, by combining AFM with magnetic beads cell isolation, the viscoelastic properties of human primary B lymphocytes were quantitatively measured. B lymphocytes were isolated from the peripheral blood of healthy volunteers by density gradient centrifugation and CD19 magnetic beads cell isolation. The activity and specificity of the isolated cells were confirmed by fluorescence microscopy. AFM imaging revealed the surface topography and geometric parameters of B lymphocytes. The instantaneous modulus and relaxation time of living B lymphocytes were measured by AFM indenting technique, showing that the instantaneous modulus of human normal B lymphocytes was 2-3 kPa and the relaxation times were 0.03-0.06 s and 0.35-0.55 s. The differences in cellular visocoelastic properties between primary B lymphocytes and cell lines cultured in vitro were analyzed. The study proves the capability of AFM in quantifying the viscoelastic properties of individual specific primary cells from the blood sample of clinical patients, which will improve our understanding of the behaviors of cells in the human body.

  5. Electromotive force and large-scale magnetic dynamo in a turbulent flow with a mean shear.

    PubMed

    Rogachevskii, Igor; Kleeorin, Nathan

    2003-09-01

    An effect of sheared large-scale motions on a mean electromotive force in a nonrotating turbulent flow of a conducting fluid is studied. It is demonstrated that in a homogeneous divergence-free turbulent flow the alpha effect does not exist, however a mean magnetic field can be generated even in a nonrotating turbulence with an imposed mean velocity shear due to a "shear-current" effect. A mean velocity shear results in an anisotropy of turbulent magnetic diffusion. A contribution to the electromotive force related to the symmetric parts of the gradient tensor of the mean magnetic field (the kappa effect) is found in nonrotating turbulent flows with a mean shear. The kappa effect and turbulent magnetic diffusion reduce the growth rate of the mean magnetic field. It is shown that a mean magnetic field can be generated when the exponent of the energy spectrum of the background turbulence (without the mean velocity shear) is less than 2. The shear-current effect was studied using two different methods: the tau approximation (the Orszag third-order closure procedure) and the stochastic calculus (the path integral representation of the solution of the induction equation, Feynman-Kac formula, and Cameron-Martin-Girsanov theorem). Astrophysical applications of the obtained results are discussed.

  6. Internal resonance of an elastic body levitated above high-Tc superconducting bulks

    NASA Astrophysics Data System (ADS)

    Kokuzawa, T.; Toshihiko, S.; Yoshizawa, M.

    2010-06-01

    In high-Tc superconducting magnetic levitation systems, levitated bodies can keep stable levitation with no contact and no control and thus their damping is very small. Thanks to these features, their applications to various apparatus are expected. However, on account of their small damping, the nonlinearity of electromagnetic levitation force can give notable effects upon motion of the levitated bodies. Therefore this nonlinearity must be taken into account to accurately analyze the dynamical behavior of the levitated bodies. Structures of such a levitated body can show elastic deformation if the large electromagnetic force acts on it. Therefore, we need to deal with the model as an elastic body. As mentioned above, nonlinear characteristics easily appear in this elastic vibration on account of the small damping. Especially when the ratio of the natural frequencies of the eigenmodes is integer, internal resonance can occur. This nonlinear resonance is derived from nonlinear interactions among the eigenmodes of the elastic levitated body. This kind of internal resonance of an elastic body appearing in high-Tc superconducting levitation systems has not been studied so far. This research especially deals with internal resonance of a beam supported at both its ends by electromagnetic forces acting on permanent magnets. The governing equation with the nonlinear boundary conditions for the dynamics of a levitated beam has been derived. Numerical results show internal resonance of the 1st mode and the 3rd mode. Experimental results are qualitatively in good agreement with numerical ones.

  7. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  8. G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics

    DOE PAGES

    Collins, Liam; Belianinov, Alex; Proksch, Roger; ...

    2016-05-09

    We develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Also, 3 G-Mode MFM is implemented and compared to traditional heterodyne based MFM on model systems including domain structures in ferromagnetic Yttrium Iron Garnet (YIG) and electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstratemore » its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode coupling phenomena. Finally we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any AFM platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties as well as their mutual interactions.« less

  9. A moving control volume method for smooth computation of hydrodynamic forces and torques on immersed bodies

    NASA Astrophysics Data System (ADS)

    Nangia, Nishant; Patankar, Neelesh A.; Bhalla, Amneet P. S.

    2017-11-01

    Fictitious domain methods for simulating fluid-structure interaction (FSI) have been gaining popularity in the past few decades because of their robustness in handling arbitrarily moving bodies. Often the transient net hydrodynamic forces and torques on the body are desired quantities for these types of simulations. In past studies using immersed boundary (IB) methods, force measurements are contaminated with spurious oscillations due to evaluation of possibly discontinuous spatial velocity of pressure gradients within or on the surface of the body. Based on an application of the Reynolds transport theorem, we present a moving control volume (CV) approach to computing the net forces and torques on a moving body immersed in a fluid. The approach is shown to be accurate for a wide array of FSI problems, including flow past stationary and moving objects, Stokes flow, and high Reynolds number free-swimming. The approach only requires far-field (smooth) velocity and pressure information, thereby suppressing spurious force oscillations and eliminating the need for any filtering. The proposed moving CV method is not limited to a specific IB method and is straightforward to implement within an existing parallel FSI simulation software. This work is supported by NSF (Award Numbers SI2-SSI-1450374, SI2-SSI-1450327, and DGE-1324585), the US Department of Energy, Office of Science, ASCR (Award Number DE-AC02-05CH11231), and NIH (Award Number HL117163).

  10. A Magnetic Set-Up to Help Teach Newton's Laws

    ERIC Educational Resources Information Center

    Panijpan, Bhinyo; Sujarittham, Thanida; Arayathanitkul, Kwan; Tanamatayarat, Jintawat; Nopparatjamjomras, Suchai

    2009-01-01

    A set-up comprising a magnetic disc, a solenoid and a mechanical balance was used to teach first-year physics students Newton's third law with the help of a free body diagram. The image of a floating magnet immobilized by the solenoid's repulsive force should help dispel a common misconception of students as regards the first law: that stationary…

  11. Experimental measure of retinal impact force resulting from intraocular foreign body dropped onto retina through media of differing viscosity.

    PubMed

    Ernst, Benjamin J; Velez-Montoya, Raul; Kujundzic, Damir; Kujundzic, Elmira; Olson, Jeffrey L

    2013-07-01

    To evaluate and compare the perfluorocarbon liquid, silicone oil, and viscoelastic against standard saline, in their ability to dampen the impact force of a foreign body, dropped within the eye. In an experimental surgical model in where cohesive and adhesive forces of the substances are not enough to float heavy-than-water foreign bodies. A model of ophthalmic surgery was constructed. A BB pellet was dropped from 24 mm onto a force transducer through four different fluids: balanced salt solution, perfluoro-n-octane, viscoelastic, and silicone oil. The impact energy (force) for each case was measured and recorded by the force transducer. The mean force of impact for each fluid was compared using the Student t-test. Silicone oil resulted in the lowest force of impact. Both silicone oil and viscoelastic dampened the impact an order of magnitude more than perfluoro-n-octane and balanced salt solution. Silicone oil and viscoelastic cushioned the force from a dropped BB. They may be useful adjuncts to prevent iatrogenic retinal injury during vitrectomy for intraocular foreign body removal. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  12. Meta-Stable Magnetic Domain States That Prevent Reliable Absolute Palaeointensity Experiments Revealed By Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    de Groot, L. V.; Fabian, K.; Bakelaar, I. A.; Dekkers, M. J.

    2014-12-01

    Obtaining reliable estimates of the absolute palaeointensity of the Earth's magnetic field is notoriously difficult. Many methods to obtain paleointensities from suitable records such as lavas and archeological artifacts involve heating the samples. These heating steps are believed to induce 'magnetic alteration' - a process that is still poorly understood but prevents obtaining correct paleointensity estimates. To observe this magnetic alteration directly we imaged the magnetic domain state of titanomagnetite particles - a common carrier of the magnetic remanence in samples used for paleointensity studies. We selected samples from the 1971-flow of Mt. Etna from a site that systematically yields underestimates of the known intensity of the paleofield - in spite of rigorous testing by various groups. Magnetic Force Microscope images were taken before and after a heating step typically used in absolute palaeointensity experiments. Before heating, the samples feature distinct, blocky domains that sometimes seem to resemble a classical magnetite domain structure. After imparting a partial thermo-remanent magnetization at a temperature often critical to paleointensity experiments (250 °C) the domain state of the same titanomagnetite grains changes into curvier, wavy domains. Furthermore, these structures appeared to be unstable over time: after one-year storage in a magnetic field-free environment the domain states evolved into a viscous remanent magnetization state. Our observations may qualitatively explain reported underestimates from technically successful paleointensity experiments for this site and other sites reported previously. Furthermore the occurrence of intriguing observations such as 'the drawer storage effect' by Shaar et al (EPSL, 2011), and viscous magnetizations observed by Muxworthy and Williams (JGR, 2006) may be (partially) explained by our observations. The major implications of our study for all palaeointensity methods involving heating may be

  13. Mapping magnetized geologic structures from space: The effect of orbital and body parameters

    NASA Technical Reports Server (NTRS)

    Schnetzler, C. C.; Taylor, P. T.; Langel, R. A.

    1984-01-01

    When comparing previous satellite magnetometer missions (such as MAGSAT) with proposed new programs (for example, Geopotential Research Mission, GRM) it is important to quantify the difference in scientific information obtained. The ability to resolve separate magnetic blocks (simulating geological units) is used as a parameter for evaluating the expected geologic information from each mission. The effect of satellite orbital altitude on the ability to resolve two magnetic blocks with varying separations is evaluated and quantified. A systematic, nonlinear, relationship exists between resolution and distance between magnetic blocks as a function of orbital altitude. The proposed GRM would provide an order-of-magnitude greater anomaly resolution than the earlier MAGSAT mission for widely separated bodies. The resolution achieved at any particular altitude varies depending on the location of the bodies and orientation.

  14. A Smart Magnetically Active Nanovehicle for on-Demand Targeted Drug Delivery: Where van der Waals Force Balances the Magnetic Interaction.

    PubMed

    Panja, Sudipta; Maji, Somnath; Maiti, Tapas K; Chattopadhyay, Santanu

    2015-11-04

    The magnetic field is a promising external stimulus for controlled and targeted delivery of therapeutic agents. Here, we focused on the preparation of a novel magnetically active polymeric micelle (MAPM) for magnetically targeted controlled drug delivery. To accomplish this, a number of superparamagnetic as well as biocompatible hybrid micelles were prepared by grafting four armed pentaerythretol poly(ε-caprolactone) (PE-PCL) onto the surface of Fe3O4 magnetic nanoparticles (MNPs) of two different ranges of size (∼5 nm and ∼15 nm). PE-PCL (four-armed) was synthesized by ring-opening polymerization, and it has been subsequently grafted onto the surface of modified MNP through urethane (-NHCO-) linkage. Polymer-immobilized MNP (5 and 15 nm) showed peculiar dispersion behavior. One displayed uniform dispersion of MNP (5 nm), while the other (15 nm) revealed associated structure. This type of size dependent contradictory dispersion behavior was realized by taking the van der Waals force as well as magnetic dipole-dipole force into consideration. The uniformly dispersed polymer immobilized MNP (5 nm) was used for the preparation of MAPM. The hydrodynamic size and bulk morphology of MAPM were studied by dynamic light scattering and high-resolution transmission electron microscopy. The anticancer drug (DOX) was encapsulated into the MAPM. The magnetic field triggers cell uptake of MAPM micelles preferentially toward targeted cells compare to untargeted ones. The cell viabilities of MAMP, DOX-encapsulated MAPM, and free DOX were studied against HeLa cell by MTT assay. In vitro release profile displayed about 51.5% release of DOX from MAPM (just after 1 h) under the influence of high frequency alternating magnetic field (HFAMF; prepared in-house device). The DOX release rate has also been tailored by on-demand application of HFAMF.

  15. Mechanical evidence that flamingos can support their body on one leg with little active muscular force.

    PubMed

    Chang, Young-Hui; Ting, Lena H

    2017-05-01

    Flamingos (Phoenicopteridae) often stand and sleep on one leg for long periods, but it is unknown how much active muscle contractile force they use for the mechanical demands of standing on one leg: body weight support and maintaining balance. First, we demonstrated that flamingo cadavers could passively support body weight on one leg without any muscle activity while adopting a stable, unchanging, joint posture resembling that seen in live flamingos. By contrast, the cadaveric flamingo could not be stably held in a two-legged pose, suggesting a greater necessity for active muscle force to stabilize two-legged versus one-legged postures. Our results suggest that flamingos engage a passively engaged gravitational stay apparatus (proximally located) for weight support during one-legged standing. Second, we discovered that live flamingos standing on one leg have markedly reduced body sway during quiescent versus alert behaviours, with the point of force application directly under the distal joint, reducing the need for muscular joint torque. Taken together, our results highlight the possibility that flamingos stand for long durations on one leg without exacting high muscular forces and, thus, with little energetic expenditure. © 2017 The Author(s).

  16. Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy.

    PubMed

    Gan, Tiansheng; Gong, Xiangjun; Schönherr, Holger; Zhang, Guangzhao

    2016-12-01

    Microrheology of growing biofilms provides insightful information about its structural evolution and properties. In this study, the authors have investigated the microrheology of Escherichia coli (strain HCB1) biofilms at different indentation depth (δ) by using magnetic force modulation atomic force microscopy as a function of disturbing frequency (f). As δ increases, the dynamic stiffness (k s ) for the biofilms in the early stage significantly increases. However, it levels off when the biofilms are matured. The facts indicate that the biofilms change from inhomogeneous to homogeneous in structure. Moreover, k s is scaled to f, which coincides with the rheology of soft glasses. The exponent increases with the incubation time, indicating the fluidization of biofilms. In contrast, the upper layer of the matured biofilms is solidlike in that the storage modulus is always larger than the loss modulus, and its viscoelasticity is slightly influenced by the shear stress.

  17. Computational studies of steering nanoparticles with magnetic gradients

    NASA Astrophysics Data System (ADS)

    Aylak, Sultan Suleyman

    Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative, and reconstructive treatments in the human body at the cellular and subcellular level in a controllable manner have recently been proposed. The concept of a MRI-guided nanorobotic system is based on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules to a specific target. However, the maximum magnetic gradient specifications of existing clinical MRI systems are not capable of driving magnetic nanocapsules against the blood flow. This thesis presents the visualization of nanoparticles inside blood vessel, Graphical User Interface (GUI) for updating file including initial parameters and demonstrating the simulation of particles and C++ code for computing magnetic forces and fluidic forces. The visualization and GUI were designed using Virtual Reality Modeling Language (VRML), MATLAB and C#. The addition of software for MRI-guided nanorobotic system provides simulation results. Preliminary simulation results demonstrate that external magnetic field causes aggregation of nanoparticles while they flow in the vessel. This is a promising result --in accordance with similar experimental results- and encourages further investigation on the nanoparticle-based self-assembly structures for use in nanorobotic drug delivery.

  18. Potential of mean force between like-charged nanoparticles: Many-body effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie

    2016-03-01

    Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles.

  19. The effect of the Coriolis force on the stability of rotating magnetic stars

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    The effect of the Coriolis force on the stability of rotating magnetic stars in hydrostatic equilibrium is investigated by using the method of the energy principle. It is shown that this effect is to inhibit the onset of instability.

  20. The effect of the Coriolis force on the stability of rotating magnetic stars.

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    The effect of the Coriolis force on the stability of rotating magnetic stars in hydrostatic equilibrium is investigated by using the method of the energy principle. It is shown that this effect is to inhibit the onset of instability.

  1. Suspension force control of bearingless permanent magnet slice motor based on flux linkage identification.

    PubMed

    Zhu, Suming; Zhu, Huangqiu

    2015-07-01

    The control accuracy and dynamic performance of suspension force are confined in the traditional bearingless permanent magnet slice motor (BPMSM) control strategies because the suspension force control is indirectly achieved by adopting a closed loop of displacement only. Besides, the phase information in suspension force control relies on accurate measurement of rotor position, making the control system more complex. In this paper, a new suspension force control strategy with displacement and radial suspension force double closed loops is proposed, the flux linkage of motor windings is identified based on voltage-current model and the flexibility of motor control can be improved greatly. Simulation and experimental results show that the proposed suspension force control strategy is effective to realize the stable operation of the BPMSM. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Evaluation of mechanical deformation and distributive magnetic loads with different mechanical constraints in two parallel conducting bars

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Young; Lee, Se-Hee

    2017-08-01

    Mechanical deformation, bending deformation, and distributive magnetic loads were evaluated numerically and experimentally for conducting materials excited with high current. Until now, many research works have extensively studied the area of magnetic force and mechanical deformation by using coupled approaches such as multiphysics solvers. In coupled analysis for magnetoelastic problems, some articles and commercial software have presented the resultant mechanical deformation and stress on the body. To evaluate the mechanical deformation, the Lorentz force density method (LZ) and the Maxwell stress tensor method (MX) have been widely used for conducting materials. However, it is difficult to find any experimental verification regarding mechanical deformation or bending deformation due to magnetic force density. Therefore, we compared our numerical results to those from experiments with two parallel conducting bars to verify our numerical setup for bending deformation. Before showing this, the basic and interesting coupled simulation was conducted to test the mechanical deformations by the LZ (body force density) and the MX (surface force density) methods. This resulted in MX gave the same total force as LZ, but the local force distribution in MX introduced an incorrect mechanical deformation in the simulation of a solid conductor.

  3. Study of 11Li+p elastic scattering using BHF formalism with three body force

    NASA Astrophysics Data System (ADS)

    Sharma, Manjari; Haider, W.

    2018-04-01

    In the present work we have analyzed the elastic scattering data of 11Li + p at 62, 68.4 and 75 MeV/nucleon, using the microscopic optical potential calculated within the framework of Brueckner-Hartree-Fock formalism (BHF). The calculation uses Argonne v18 and Urbana v14 inter-nucleon potentials and the Urbana IX (UVIX) model of three body force. The required nucleon-density distributions for 11Li are obtained using the semi-phenomenological model for nuclear density distributions. The optical potential has been obtained by folding the g-matrices as calculated in BHF (with and without three body forces) over the nucleon density distributions. We have used the exact method for calculating both the direct and the exchange parts of the spin-orbit potential. Our results reveal that the spin-orbit potential significantly contributes to 11Li+p elastic scattering at all three incident energies. Further, the calculated spin-orbit potential in BHF is much smaller and more diffused as compared with the phenomenological spin-orbit potential. The analysis reveals that the calculated microscopic optical potentials, with and without three body force using BHF approach with phenomenological form of density distribution, provides satisfactory agreement with the elastic scattering data for 11Li+p.

  4. Magnetothermal Convection of Air in a Shallow Vessel under the Application of an Axisymmetric Magnetic Force

    NASA Astrophysics Data System (ADS)

    Maki, Syou; Tanaka, Keito; Morimoto, Shotaro

    2017-02-01

    We examined, by three-dimensional numerical computations, the magnetothermal convection of air (a paramagnetic substance) enclosed in a cylindrical vessel with a Rayleigh-Benard model under the application of an axisymmetric magnetic force at the center of a solenoidal superconducting magnet. Axisymmetric steady convective flows were induced when the magnitude of the radial component of the magnetic force (fmR) was 1.0 and 5.0 times that of the gravitational force at the vessel sidewall; e.g., the hot air was concentrated at the vessel center and the cold air was driven to the vicinity of the vessel sidewall. This flow pattern was similar to the case of water (a diamagnetic substance), although the axisymmetric arrangements of hot and cold water were the reverse of the present convection of air. When fmR was 0.5 times that of the gravitational force, the axisymmetric flows appeared only in the vicinity of the vessel sidewall. Unsteady convective rolls simultaneously occurred in the vessel center, and they repeatedly combined and separated from each other. When fmR was 0.1 times that of the gravitational force, there were barely any axisymmetric flows in the close vicinity of the vessel sidewall, while the initial convective flows remained in most other parts of the vessel. Thus, we varied the magnitude of fmR and clarified the transitional processes of isothermal and velocity distributions of magnetothermal convection. We discuss those convective flows with the magnitude and direction of fmR.

  5. Expanded Equations for Torque and Force on a Cylindrical Permanent Magnet Core in a Large-Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1997-01-01

    The expanded equations for torque and force on a cylindrical permanent magnet core in a large-gap magnetic suspension system are presented. The core is assumed to be uniformly magnetized, and equations are developed for two orientations of the magnetization vector. One orientation is parallel to the axis of symmetry, and the other is perpendicular to this axis. Fields and gradients produced by suspension system electromagnets are assumed to be calculated at a point in inertial space which coincides with the origin of the core axis system in its initial alignment. Fields at a given point in the core are defined by expanding the fields produced at the origin as a Taylor series. The assumption is made that the fields can be adequately defined by expansion up to second-order terms. Examination of the expanded equations for the case where the magnetization vector is perpendicular to the axis of symmetry reveals that some of the second-order gradient terms provide a method of generating torque about the axis of magnetization and therefore provide the ability to produce six-degree-of-freedom control.

  6. Visualization and quantification of magnetic nanoparticles into vesicular systems by combined atomic and magnetic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, C.; Department of Physics, SAPIENZA University of Rome, Piazzale A. Moro 5, 00185, Rome; Corsetti, S.

    2015-06-23

    We report a phenomenological approach for the quantification of the diameter of magnetic nanoparticles (MNPs) incorporated in non-ionic surfactant vesicles (niosomes) using magnetic force microscopy (MFM). After a simple specimen preparation, i.e., by putting a drop of solution containing MNPs-loaded niosomes on flat substrates, topography and MFM phase images are collected. To attempt the quantification of the diameter of entrapped MNPs, the method is calibrated on the sole MNPs deposited on the same substrates by analyzing the MFM signal as a function of the MNP diameter (at fixed tip-sample distance) and of the tip-sample distance (for selected MNPs). After calibration,more » the effective diameter of the MNPs entrapped in some niosomes is quantitatively deduced from MFM images.« less

  7. Design considerations of electromagnetic force in a direct drive permanent magnet brushless motor

    NASA Astrophysics Data System (ADS)

    Chen, H. S.; Tsai, M. C.

    2008-04-01

    In this paper, a numerical study of electromagnetic force associated with the width of stator teeth, width of rotor back iron, and slot opening for a ten-pole nine-slot direct drive permanent magnet brushless motor is presented. The study calculates the amplitude of the electromagnetic force on the rotating rotor by using the finite-element method. The results show that the amplitude of electromagnetic force, which may cause the noise and vibration of motors, changes with the variation of these above mentioned three factors. The relationship between the considerations of output torque and the minimization of noise and vibration is also established in this paper.

  8. Influence of the Reynolds number on normal forces of slender bodies of revolution

    NASA Technical Reports Server (NTRS)

    Hartmann, K.

    1982-01-01

    Comprehensive force, moment, and pressure distribution measurements as well as flow visualization experiments were carried out to determine the influence of the Reynolds number on nonlinear normal forces of slender bodies of revolution. Experiments were performed in transonic wind tunnels at angles of attack up to 90 deg in the Mach number range 0.5 to 2.2 at variable Reynolds numbers. The results were analysed theoretically and an empirical theory was developed which describes the test results satisfactory.

  9. Soldier-relevant body borne loads increase knee joint contact force during a run-to-stop maneuver.

    PubMed

    Ramsay, John W; Hancock, Clifford L; O'Donovan, Meghan P; Brown, Tyler N

    2016-12-08

    The purpose of this study was to understand the effects of load carriage on human performance, specifically during a run-to-stop (RTS) task. Using OpenSim analysis tools, knee joint contact force, grounds reaction force, leg stiffness and lower extremity joint angles and moments were determined for nine male military personnel performing a RTS under three load configurations (light, ~6kg, medium, ~20kg, and heavy, ~40kg). Subject-based means for each biomechanical variable were submitted to repeated measures ANOVA to test the effects of load. During the RTS, body borne load significantly increased peak knee joint contact force by 1.2 BW (p<0.001) and peak vertical (p<0.001) and anterior-posterior (p=0.002) ground reaction forces by 0.6 BW and 0.3 BW, respectively. Body borne load also had a significant effect on hip (p=0.026) posture with the medium load and knee (p=0.046) posture with the heavy load. With the heavy load, participants exhibited a substantial, albeit non-significant increase in leg stiffness (p=0.073 and d=0.615). Increases in joint contact force exhibited during the RTS were primarily due to greater GRFs that impact the soldier with each incremental addition of body borne load. The stiff leg, extended knee and large braking force the soldiers exhibited with the heavy load suggests their injury risk may be greatest with that specific load configuration. Further work is needed to determine if the biomechanical profile exhibited with the heavy load configuration translates to unsafe shear forces at the knee joint and consequently, a higher likelihood of injury. Published by Elsevier Ltd.

  10. Force sensing using 3D displacement measurements in linear elastic bodies

    NASA Astrophysics Data System (ADS)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  11. Fully Suspended, Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig With Forced Excitation

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Montague, Gerald; Duffy, Kirsten; Mehmed, Oral; Johnson, Dexter; Jansen, Ralph

    2004-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig, a significant advancement in the Dynamic Spin Rig (DSR), is used to perform vibration tests of turbomachinery blades and components under rotating and nonrotating conditions in a vacuum. The rig has as its critical components three magnetic bearings: two heteropolar radial active magnetic bearings and a magnetic thrust bearing. The bearing configuration allows full vertical rotor magnetic suspension along with a feed-forward control feature, which will enable the excitation of various natural blade modes in bladed disk test articles. The theoretical, mechanical, electrical, and electronic aspects of the rig are discussed. Also presented are the forced-excitation results of a fully levitated, rotating and nonrotating, unbladed rotor and a fully levitated, rotating and nonrotating, bladed rotor in which a pair of blades was arranged 180 degrees apart from each other. These tests include the bounce mode excitation of the rotor in which the rotor was excited at the blade natural frequency of 144 Hz. The rotor natural mode frequency of 355 Hz was discerned from the plot of acceleration versus frequency. For nonrotating blades, a blade-tip excitation amplitude of approximately 100 g/A was achieved at the first-bending critical (approximately 144 Hz) and at the first-torsional and second-bending blade modes. A blade-tip displacement of 70 mils was achieved at the first-bending critical by exciting the blades at a forced-excitation phase angle of 908 relative to the vertical plane containing the blades while simultaneously rotating the shaft at 3000 rpm.

  12. Localization and Retrieval of an Eyelid Metallic Foreign Body With an Oscillating Magnet and High-Resolution Ultrasonography.

    PubMed

    Yoo, Sylvia H; Rootman, Dan B; Goh, Alice; Savar, Aaron; Goldberg, Robert A

    2016-01-01

    A patient was found to have a metallic foreign body in the left anterior orbit on CT imaging, but the foreign body was not evident on clinical examination. On high-resolution ultrasonography, an object was identified in the left upper eyelid; however, the typical shadow with metallic foreign bodies was not seen. A high-power oscillating magnet was then applied to the eyelid, which revealed a subcutaneous metallic foreign body in the left upper eyelid. When used in conjunction, the high-resolution ultrasound and oscillating magnet successfully localized and facilitated retrieval of the metallic foreign body from the left upper eyelid.

  13. Rigid-body rotation of an electron cloud in divergent magnetic fields

    DOE PAGES

    Fruchtman, A.; Gueroult, R.; Fisch, N. J.

    2013-07-10

    For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions acceleratedmore » by the electric field. Furthermore, the focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.« less

  14. Rigid-body rotation of an electron cloud in divergent magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruchtman, A.; Gueroult, R.; Fisch, N. J.

    2013-07-15

    For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions acceleratedmore » by the electric field. The focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.« less

  15. Current sheet formation in a sheared force-free-magnetic field. [in sun

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard

    1989-01-01

    This paper presents the results of a study showing how continuous shearing motion of magnetic footpoints in a tenuous, infinitely conducting plasma can lead to the development of current sheets, despite the absence of such sheets or even of neutral points in the initial state. The calculations discussed here verify the earlier suggestion by Low and Wolfson (1988) that extended current sheets should form due to the shearing of a force-free quadrupolar magnetic field. More generally, this work augments earlier studies suggesting that the appearance of discontinuities - current sheets - may be a necessary consequence of the topological invariance imposed on the magnetic field geometry of an ideal MHD system by virtue of its infinite conductivity. In the context of solar physics, the work shows how the gradual and continuous motion of magnetic footpoints at the solar photosphere may lead to the buildup of magnetic energy that can then be released explosively when finite conductivity effects become important and lead to the rapid dissipation of current sheets. Such energy release may be important in solar flares, coronal mass ejections, and other eruptive events.

  16. Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target.

    PubMed

    Nacev, A; Weinberg, I N; Stepanov, P Y; Kupfer, S; Mair, L O; Urdaneta, M G; Shimoji, M; Fricke, S T; Shapiro, B

    2015-01-14

    The ability to use magnets external to the body to focus therapy to deep tissue targets has remained an elusive goal in magnetic drug targeting. Researchers have hitherto been able to manipulate magnetic nanotherapeutics in vivo with nearby magnets but have remained unable to focus these therapies to targets deep within the body using magnets external to the body. One of the factors that has made focusing of therapy to central targets between magnets challenging is Samuel Earnshaw's theorem as applied to Maxwell's equations. These mathematical formulations imply that external static magnets cannot create a stable potential energy well between them. We posited that fast magnetic pulses could act on ferromagnetic rods before they could realign with the magnetic field. Mathematically, this is equivalent to reversing the sign of the potential energy term in Earnshaw's theorem, thus enabling a quasi-static stable trap between magnets. With in vitro experiments, we demonstrated that quick, shaped magnetic pulses can be successfully used to create inward pointing magnetic forces that, on average, enable external magnets to concentrate ferromagnetic rods to a central location.

  17. The effect of spatial discretization upon traveling wave body forcing of a turbulent wall-bounded flow

    NASA Astrophysics Data System (ADS)

    You, Soyoung; Goldstein, David

    2015-11-01

    DNS is employed to simulate turbulent channel flow subject to a traveling wave body force field near the wall. The regions in which forces are applied are made progressively more discrete in a sequence of simulations to explore the boundaries between the effects of discrete flow actuators and spatially continuum actuation. The continuum body force field is designed to correspond to the ``optimal'' resolvent mode of McKeon and Sharma (2010), which has the L2 norm of σ1. That is, the normalized harmonic forcing that gives the largest disturbance energy is the first singular mode with the gain of σ1. 2D and 3D resolvent modes are examined at a modest Reτ of 180. For code validation, nominal flow simulations without discretized forcing are compared to previous work by Sharma and Goldstein (2014) in which we find that as we increase the forcing amplitude there is a decrease in the mean velocity and an increase in turbulent kinetic energy. The same force field is then sampled into isolated sub-domains to emulate the effect of discrete physical actuators. Several cases will be presented to explore the dependencies between the level of discretization and the turbulent flow behavior.

  18. Apparatus having reduced mechanical forces for supporting high magnetic fields

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of supporting extremely high magnetic fields suitable for plasma confinement, wherein forces experienced by the conducting elements are significantly reduced over those which are present as a result of the generation of such high fields by conventional techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  19. Constraint Force Equation Methodology for Modeling Multi-Body Stage Separation Dynamics

    NASA Technical Reports Server (NTRS)

    Toniolo, Matthew D.; Tartabini, Paul V.; Pamadi, Bandu N.; Hotchko, Nathaniel

    2008-01-01

    This paper discusses a generalized approach to the multi-body separation problems in a launch vehicle staging environment based on constraint force methodology and its implementation into the Program to Optimize Simulated Trajectories II (POST2), a widely used trajectory design and optimization tool. This development facilitates the inclusion of stage separation analysis into POST2 for seamless end-to-end simulations of launch vehicle trajectories, thus simplifying the overall implementation and providing a range of modeling and optimization capabilities that are standard features in POST2. Analysis and results are presented for two test cases that validate the constraint force equation methodology in a stand-alone mode and its implementation in POST2.

  20. Does Using a Visual-Representation Tool Foster Students' Ability to Identify Forces and Construct Free-Body Diagrams?

    ERIC Educational Resources Information Center

    Savinainen, Antti; Makynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2013-01-01

    Earlier research has shown that after physics instruction, many students have difficulties with the force concept, and with constructing free-body diagrams (FBDs). It has been suggested that treating forces as interactions could help students to identify forces as well as to construct the correct FBDs. While there is evidence that identifying…

  1. Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2013-12-01

    One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.

  2. Effect of head pitch and roll orientations on magnetically induced vertigo.

    PubMed

    Mian, Omar S; Li, Yan; Antunes, Andre; Glover, Paul M; Day, Brian L

    2016-02-15

    Lying supine in a strong magnetic field, such as in magnetic resonance imaging scanners, can induce a perception of whole-body rotation. The leading hypothesis to explain this invokes a Lorentz force mechanism acting on vestibular endolymph that acts to stimulate semicircular canals. The hypothesis predicts that the perception of whole-body rotation will depend on head orientation in the field. Results showed that the direction and magnitude of apparent whole-body rotation while stationary in a 7 T magnetic field is influenced by head orientation. The data are compatible with the Lorentz force hypothesis of magnetic vestibular stimulation and furthermore demonstrate the operation of a spatial transformation process from head-referenced vestibular signals to Earth-referenced body motion. High strength static magnetic fields are known to induce vertigo, believed to be via stimulation of the vestibular system. The leading hypothesis (Lorentz forces) predicts that the induced vertigo should depend on the orientation of the magnetic field relative to the head. In this study we examined the effect of static head pitch (-80 to +40 deg; 12 participants) and roll (-40 to +40 deg; 11 participants) on qualitative and quantitative aspects of vertigo experienced in the dark by healthy humans when exposed to the static uniform magnetic field inside a 7 T MRI scanner. Three participants were additionally examined at 180 deg pitch and roll orientations. The effect of roll orientation on horizontal and vertical nystagmus was also measured and was found to affect only the vertical component. Vertigo was most discomforting when head pitch was around 60 deg extension and was mildest when it was around 20 deg flexion. Quantitative analysis of vertigo focused on the induced perception of horizontal-plane rotation reported online with the aid of hand-held switches. Head orientation had effects on both the magnitude and the direction of this perceived rotation. The data suggest

  3. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere: Rice convection model simulations combined with modified Dungey force-balanced magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, Matina; Wang, Chih-Ping; Lyons, Larry R.

    2011-12-01

    Transport of plasma sheet particles into the inner magnetosphere is crucial to the development of the region 2 (R2) field-aligned current system (FAC), which results in the shielding of the penetration electric field and the formation of subauroral polarization streams (SAPS) and the Harang reversal, phenomena closely associated with storms and substorms. In addition to the electric field, this transport is also strongly affected by the magnetic field, which changes with plasma pressure and is distinctly different from the dipole field in the inner plasma sheet. To determine the feedback of force-balanced magnetic field to the transport, we have integrated the Rice convection model (RCM) with a modified Dungey magnetic field solver to obtain the required force balance in the equatorial plane. Comparing our results with those from a RCM run using a T96 magnetic field, we find that transport under a force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-Earth region and weaker shielding of the penetration electric field. As a result, plasma sheet protons and electrons penetrate farther earthward, and their inner edges become closer together and more azimuthally symmetric than in the T96 case. The Harang reversal extends farther dawnward, and the SAPS become more confined in radial and latitudinal extents. The magnitudes of azimuthal pressure gradient, the inner edges of thermal protons and electrons, the latitudinal range of the Harang reversal, and the radial and latitudinal widths of the SAPS from the force-balanced run are found to be more consistent with observations.

  4. Effects of adding whole body vibration to squat training on isometric force/time characteristics.

    PubMed

    Lamont, Hugh S; Cramer, Joel T; Bemben, Debra A; Shehab, Randa L; Anderson, Mark A; Bemben, Michael G

    2010-01-01

    Resistance training interventions aimed at increasing lower-body power and rates of force development have produced varying results. Recent studies have suggested that whole-body low-frequency vibration (WBLFV) may elicit an acute postactivation potentiation response, leading to acute improvements in power and force development. Potentially, the use of WBLFV between sets of resistance training rather than during training itself may lead to increased recruitment and synchronization of high-threshold motor units, minimize fatigue potential, and facilitate the chronic adaptation to resistance exercise. The purpose of this study was to determine the effects of applying TriPlaner, WBLFV, prior to and then intermittently between sets of Smith machine squats on short-term adaptations in explosive isometric force expression. Thirty recreationally resistance trained men aged 18-30 were randomly assigned to 1 of 3 groups: resistance training only (SQT, n = 11), resistance plus whole-body vibration (SQTV, n = 13), or active control (CON, n = 6). An isometric squat test was performed prior to and following a 6-week periodized Smith machine squat program. Whole-body low-frequency vibration was applied 180 seconds prior to the first work set (50 Hz, 2-4 mm, 30 seconds) and intermittently (50 Hz, 4-6 mm, 3 x 10 seconds, 60 seconds between exposures) within a 240-second interset rest period. Subjects were instructed to assume a quarter squat posture while positioning their feet directly under their center of mass, which was modified using a handheld goniometer to a knee angle of 135 +/- 5 degrees . Instructions were given to subjects to apply force as fast and as hard as possible for 3.5 seconds. Isometric force (N) and rates of force development (N.s(-1)) were recorded from the onset of contraction (F(0)) to time points corresponding to 30, 50, 80, 100, 150, and 250 milliseconds, as well as the peak isometric rate of force development (PISORFD), and rate of force development to

  5. Investigation of Factors Affecting Body Temperature Changes During Routine Clinical Head Magnetic Resonance Imaging

    PubMed Central

    Kim, Myeong Seong

    2016-01-01

    Background Pulsed radiofrequency (RF) magnetic fields, required to produce magnetic resonance imaging (MRI) signals from tissue during the MRI procedure have been shown to heat tissues. Objectives To investigate the relationship between body temperature rise and the RF power deposited during routine clinical MRI procedures, and to determine the correlation between this effect and the body’s physiological response. Patients and Methods We investigated 69 patients from the Korean national cancer center to identify the main factors that contribute to an increase in body temperature (external factors and the body’s response) during a clinical brain MRI. A routine protocol sequence of MRI scans (1.5 T and 3.0 T) was performed. The patient’s tympanic temperature was recorded before and immediately after the MRI procedure and compared with changes in variables related to the body’s physiological response to heat. Results Our investigation of the physiological response to RF heating indicated a link between increasing age and body temperature. A higher increase in body temperature was observed in older patients after a 3.0-T MRI (r = 0.07, P = 0.29 for 1.5-T MRI; r = 0.45, P = 0.002 for 3.0-T MRI). The relationship between age and body heat was related to the heart rate (HR) and changes in HR during the MRI procedure; a higher RF power combined with a reduction in HR resulted in an increase in body temperature. Conclusion A higher magnetic field strength and a decrease in the HR resulted in an increase in body temperature during the MRI procedure. PMID:27895872

  6. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells.

    PubMed

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-07-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.

  7. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells

    PubMed Central

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-01-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. Three dimensional-Magnetic Twisting Cytometry (3D-MTC) is a technique for applying local mechanical stresses on living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real time acquisition of a living cell’s mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC – microscopy platform takes around 20 days to construct and the experimental procedures require ~4 days when carried out by a life sciences graduate student. PMID:28686583

  8. Radiation pressure excitation of Low Temperature Atomic Force & Magnetic Force Microscope (LT-AFM/MFM) for Imaging

    NASA Astrophysics Data System (ADS)

    Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team

    2015-03-01

    We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.

  9. Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid

    NASA Astrophysics Data System (ADS)

    Hoof, Sebastian; Nand Gosvami, Nitya; Hoogenboom, Bart W.

    2012-12-01

    Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here, we show that a high-quality resonance (Q >20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity—as expressed via the minimum detectable force gradient—is hardly affected, because of the enhanced quality factor. Through the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up that includes magnetic actuation of the cantilevers and that can be easily implemented in any AFM system that is compatible with an inverted optical microscope.

  10. Development of magnet configurations for magnetic immunostaining

    NASA Astrophysics Data System (ADS)

    Kaneko, Miki; Chikaki, Shinichi; Matsuda, Sachiko; Kuwahata, Akihiro; Namita, Masayuki; Saito, Itsuro; Sakamoto, Satoshi; Kusakabe, Moriaki; Sekino, Masaki

    2018-05-01

    Magnetic immunostaining using a magnet and antibody-labeled fluorescent ferrite (FF) beads is established as a rapid immunostaining. In this study, we proposed the novel configuration of magnets with the large magnetic field gradient and the strong magnetic force for magnetic immunostaining. To confirm the usefulness of the proposed magnet configuration, we performed numerical analysis of the magnetic characteristics of the proposed magnets, and the magnetic immunostaining with FF beads. It was revealed that the proposed magnets generated the strong magnetic force and promoted the immunoreaction rapidly.

  11. Lodestone: Nature's own permanent magnet

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1976-01-01

    Magnetic hysteresis and microstructural details are presented which explain why the class of magnetic iron ores defined as proto-lodestones, can behave as permanent magnets, i.e. lodestones. Certain of these proto-lodestones which are not permanent magnets can be made into permanent magnets by charging in a field greater than 1000 oersted. This fact, other experimental observations, and field evidence from antiquity and the middle ages, which seems to indicate that lodestones are found as localized patches within massive ore bodies, suggests that lightning might be responsible for the charging of lodestones. The large remanent magnetization, high values of coercive force, and good time stability for the remanent magnetization are all characteristics of proto-lodestone iron ores which behave magnetically as fine scale ( 10 micrometer) intergrowths when subjected to magnetic hysteresis analysis. The magnetic results are easily understood by analysis of the complex proto lodestone microstructural patterns observable at the micrometer scale and less.

  12. Emergence of nonwhite noise in Langevin dynamics with magnetic Lorentz force

    NASA Astrophysics Data System (ADS)

    Chun, Hyun-Myung; Durang, Xavier; Noh, Jae Dong

    2018-03-01

    We investigate the low mass limit of Langevin dynamics for a charged Brownian particle driven by a magnetic Lorentz force. In the low mass limit, velocity variables relaxing quickly are coarse-grained out to yield effective dynamics for position variables. Without the Lorentz force, the low mass limit is equivalent to the high friction limit. Both cases share the same Langevin equation that is obtained by setting the mass to zero. The equivalence breaks down in the presence of the Lorentz force. The low mass limit cannot be achieved by setting the mass to zero. The limit is also distinct from the large friction limit. We derive the effective equations of motion in the low mass limit. The resulting stochastic differential equation involves a nonwhite noise whose correlation matrix has antisymmetric components. We demonstrate the importance of the nonwhite noise by investigating the heat dissipation by a driven Brownian particle, where the emergent nonwhite noise has a physically measurable effect.

  13. The Use of Magnets for Introducing Primary School Students to Some Properties of Forces through Small-Group Pedagogy

    ERIC Educational Resources Information Center

    Carruthers, Rebecca; de Berg, Kevin

    2010-01-01

    Seventeen Grade Six students were divided into small groups to study the concept of forces in the context of magnets and their properties. The researcher, a pre-service primary school teacher, encouraged the students into conversation about magnets and it was found that, without hesitation, they talked about their prior experience of magnets. The…

  14. Magnetodynamic stability of a fluid cylinder under the Lundquist force-free magnetic field

    NASA Astrophysics Data System (ADS)

    Radwan, Ahmed E.; Halawa, Mohamed A.

    1990-04-01

    The magnetodynamic (in)stability of a conducting fluid cylinder subject to the capillarity and electromagnetic forces has been developed. The cylinder is pervaded by a uniform magnetic field but embedded in the Lundquist force-free varying field that allows for flowing a current surrounding the fluid. A general eigenvalue relation is derived based on a study of the equilibrium and perturbed states. The stability criterion is discussed analytically in general terms. The surface tension is destabilizing for small axisymmetric mode and stable for all others. The principle of the exchange of stability is allowed for the present problem due to the non-uniform behavior of the force-free field. Each of the axial and transverse force-free fields separately exerts a stabilizing influence in the most dangerous mode but the combined contribution of them is strongly destabilizing. Whether the model is acted upon the electromagnetic force (with the Lundquist field) the stability restrictions or/and the capillarity force are identified. Several reported works can be recovered as limiting cases with appropriate simplifications.

  15. [Intestinal volvulus caused by the ingestion of magnet balls: unexpected risk in children].

    PubMed

    Kubačková, D; Nosek, J; Třeška, V; Vacek, V; Pizingerová, K

    2015-05-01

    The occurrence of swallowed foreign bodies in the digestive system is a common problem in children with the highest incidence in children aged six months to five years. Most swallowed objects leave the human body per vias naturales while 10-20% of swallowed foreign bodies need to be removed with an endoscope. Serious and life-threatening situations are caused by the ingestion of foreign bodies in about 1% of all cases. The authors present a case of a two-year-old girl diagnosed with acute abdomen for which she was operated on. A small bowel volvulus and several intestinal fistulas were found intraoperatively. The cause of this finding was the ingestion of magnetic balls and a swallowed metal body drawn to them by magnetic force. If more than one magnetic body is ingested, it is necessary to admit the patient to hospital and to remove these foreign bodies using an endoscope. The position of the magnets which is not changing in a location inaccessible for an endoscope during 2448 hours is an indication for urgent operation.

  16. Magnetic force driven magnetoelectric effect in Mn-Zn-ferrite/PZT composites

    NASA Astrophysics Data System (ADS)

    Zhang, Ru; Jin, Lei; Wu, Gaojian; Zhang, Ning

    2017-03-01

    Several magnetoelectric devices with different structures were prepared using Mn-Zn-ferrite/PZT composite. Its magnetoelectric effect, which arose from piezoelectric effects driven by magnetic force between ferromagnets, has been studied. Experiments showed that the magnetoelectric effects in these devices are much stronger than that observed from the samples relied on magnetostrictive effect. Additionally, the magnetoelectric effect obtained from the devices based on bending piezoelectric effect at resonant point is about one order of magnitude larger than that resulted from ones that rely on stretch mode. Furthermore, magnetoelectric voltage coefficient as high as 7 V cm-1 Oe-1 with zero bias magnetic field was observed in the device with cantilever structure, which was also based on bending piezoelectric effect.

  17. Measurement and calculation of levitation forces between magnets and granular superconductors

    NASA Technical Reports Server (NTRS)

    Johansen, T. H.; Bratsberg, H.; Baziljevich, M.; Hetland, P. O.; Riise, A. B.

    1995-01-01

    Recent developments indicate that exploitation of the phenomenon of magnetic levitation may become one of the most important near-term applications of high-T(sub c) superconductivity. Because of this, the interaction between a strong permanent magnet(PM) and bulk high-T(sub c) superconductor (HTSC) is currently a subject of much interest. We have studied central features of the mechanics of PM-HTSC systems of simple geometries. Here we report experimental results for the components of the levitation force, their associated stiffness and mechanical ac-loss. To analyze the observed behavior a theoretical framework based on critical-state considerations is developed. It will be shown that all the mechanical properties can be explained consistently at a quantitative level wing a minimum of model parameters.

  18. Dynamics of Permanent-Magnet Biased Active Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Fukata, Satoru; Yutani, Kazuyuki

    1996-01-01

    Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.

  19. A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage.

    PubMed

    Choi, Young-Man; Lee, Moon G; Gweon, Dae-Gab; Jeong, Jaehwa

    2009-04-01

    Next-generation lithography requires a high precision stage, which is compatible with a high vacuum condition. A magnetic levitation stage with six degrees-of-freedom is considered state-of-the-art technology for a high vacuum condition. The noncontact characteristic of magnetic levitation enables high precision positioning as well as no particle generation. To position the stage against gravity, z-directional electromagnetic levitation mechanisms are widely used. However, if electromagnetic actuators for levitation are used, heat is inevitably generated, which deforms the structures and degrades accuracy of the stage. Thus, a gravity compensator is required. In this paper, we propose a new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. The novel Halbach magnetic bearing exerts a force four times larger than a conventional magnetic bearing with the same volume. We also discuss the complementary characteristics of the two magnetic bearings. By modifying the height of the center magnet in a Halbach magnetic bearing, a performance compromise between levitating force density and force uniformity is obtained. The Halbach linear active magnetic bearing can be a good solution for magnetic levitation stages because of its large and uniform levitation force.

  20. Parametric Amplification Protocol for Frequency-Modulated Magnetic Resonance Force Microscopy Signals

    NASA Astrophysics Data System (ADS)

    Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John

    2011-03-01

    We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.

  1. Magnetic susceptibility variations in Loess sequences and their relationship to astronomical forcing

    NASA Technical Reports Server (NTRS)

    Verosub, Kenneth L.; Singer, Michael J.

    1992-01-01

    The long, well-exposed and often continuous sequences of loess found throughout the world are generally thought to provide an excellent opportunity for studying long-term, large-scale environmental change during the last few million years. In recent years, the most fruitful loess studies have been those involving the deposits of the loess in China. One of the most intriguing results of that work has been the discovery of an apparent correlation between variations in the magnetic susceptibility of the loess sequence and the oxygen isotope record of the deep sea. This correlation implies that magnetic susceptibility variations are being driven by astronomical parameters. However, the basic data have been interpreted in various ways by different authors, most of whom assumed that the magnetic minerals in the loess have not been affected by post-depositional processes. Using a chemical extraction procedure that allows us to separate the contribution of secondary pedogenic magnetic minerals from primary inherited magnetic minerals, we have found that the magnetic susceptibility of the Chinese paleosols is largely due to a pedogenic component which is present to a lesser degree in the loess. We have also found that the smaller inherited component of the magnetic susceptibility is about the same in the paleosols and the loess. These results demonstrate the need for additional study of the processes that create magnetic susceptibility variations in order to interpret properly the role of astronomical forcing in producing these variations.

  2. A Lorentz force actuated magnetic field sensor with capacitive read-out

    NASA Astrophysics Data System (ADS)

    Stifter, M.; Steiner, H.; Kainz, A.; Keplinger, F.; Hortschitz, W.; Sauter, T.

    2013-05-01

    We present a novel design of a resonant magnetic field sensor with capacitive read-out permitting wafer level production. The device consists of a single-crystal silicon cantilever manufactured from the device layer of an SOI wafer. Cantilevers represent a very simple structure with respect to manufacturing and function. On the top of the structure, a gold lead carries AC currents that generate alternating Lorentz forces in an external magnetic field. The free end oscillation of the actuated cantilever depends on the eigenfrequencies of the structure. Particularly, the specific design of a U-shaped structure provides a larger force-to-stiffness-ratio than standard cantilevers. The electrodes for detecting cantilever deflections are separately fabricated on a Pyrex glass-wafer. They form the counterpart to the lead on the freely vibrating planar structure. Both wafers are mounted on top of each other. A custom SU-8 bonding process on wafer level creates a gap which defines the equilibrium distance between sensing electrodes and the vibrating structure. Additionally to the capacitive read-out, the cantilever oscillation was simultaneously measured with laser Doppler vibrometry through proper windows in the SOI handle wafer. Advantages and disadvantages of the asynchronous capacitive measurement configuration are discussed quantitatively and presented by a comprehensive experimental characterization of the device under test.

  3. Constraints on magnetic energy and mantle conductivity from the forced nutations of the earth

    NASA Technical Reports Server (NTRS)

    Buffett, Bruce A.

    1992-01-01

    The possibility of a presence of a conducting layer at the base of the mantle, as suggested by Knittle and Jeanloz (1986, 1989), was examined using observations of the earth's nutations. Evidence favoring the presence of a conducting layer is found in the effect of ohmic dissipation, which can cause the amplitude of the earth's nutation to be out-of-phase with tidal forcings. It is shown that the earth's magnetic field can produce observable signatures in the forced nutations of the earth when a thin conducting layer is located at the base of the mantle. The present theoretical calculations are compared with VLBI determinations of forced nutations.

  4. Analytic Solution of the Problem of Additive Formation of an Inhomogeneous Elastic Spherical Body in an Arbitrary Nonstationary Central Force Field

    NASA Astrophysics Data System (ADS)

    Parshin, D. A.

    2017-09-01

    We study the processes of additive formation of spherically shaped rigid bodies due to the uniform accretion of additional matter to their surface in an arbitrary centrally symmetric force field. A special case of such a field can be the gravitational or electrostatic force field. We consider the elastic deformation of the formed body. The body is assumed to be isotropic with elasticmoduli arbitrarily varying along the radial coordinate.We assume that arbitrary initial circular stresses can arise in the additional material added to the body in the process of its formation. In the framework of linear mechanics of growing bodies, the mathematical model of the processes under study is constructed in the quasistatic approximation. The boundary value problems describing the development of stress-strain state of the object under study before the beginning of the process and during the entire process of its formation are posed. The closed analytic solutions of the posed problems are constructed by quadratures for some general types of material inhomogeneity. Important typical characteristics of the mechanical behavior of spherical bodies additively formed in the central force field are revealed. These characteristics substantially distinguish such bodies from the already completely composed bodies similar in dimensions and properties which are placed in the force field and are described by problems of mechanics of deformable solids in the classical statement disregarding the mechanical aspects of additive processes.

  5. Effect of gender, facial dimensions, body mass index and type of functional occlusion on bite force.

    PubMed

    Koç, Duygu; Doğan, Arife; Bek, Bülent

    2011-01-01

    Some factors such as gender, age, craniofacial morphology, body structure, occlusal contact patterns may affect the maximum bite force. Thus, the purposes of this study were to determine the mean maximum bite force in individuals with normal occlusion, and to examine the effect of gender, facial dimensions, body mass index (BMI), type of functional occlusion (canine guidance and group function occlusion) and balancing side interferences on it. Thirty-four individuals aged 19-20 years-old were selected for this study. Maximum bite force was measured with strain-gauge transducers at first molar region. Facial dimensions were defined by standardized frontal photographs as follows: anterior total facial height (ATFH), bizygomathic facial width (BFW) and intergonial width (IGW). BMI was calculated using the equation weight/height². The type of functional occlusion and the balancing side interferences of the subjects were identified by clinical examination. Bite force was found to be significantly higher in men than women (p<0.05). While there was a negative correlation between the bite force and ATFH/BFW, ATFH/IGW ratios in men (p<0.05), women did not show any statistically significant correlation (p>0.05). BMI and bite force correlation was not statistically significant (p>0.05). The average bite force did not differ in subjects with canine guidance or group function occlusion and in the presence of balancing side interferences (p>0.05). Data suggest that bite force is affected by gender. However, BMI, type of functional occlusion and the presence of balancing side interferences did not exert a meaningful influence on bite force. In addition, transverse facial dimensions showed correlation with bite force in only men.

  6. Effects of pulsed electromagnetic field vibration on tooth movement induced by magnetic and mechanical forces: a preliminary study.

    PubMed

    Darendeliler, M Ali; Zea, A; Shen, G; Zoellner, H

    2007-12-01

    This study was designed to determine whether or not high-frequency and low-magnitude vibration affects orthodontic tooth movement caused by magnetic or/and mechanical forces. Forty-four 7-week-old Wistar rats were randomly divided into four groups, with each group further divided into experimental and control subgroups. Neodymium-Iron-Boron (Nd-Fe-B) magnets and Sentalloy closed coil springs were placed between maxillary or mandibular first molars and incisors to activate tooth movement. The animals of experimental subgroups were exposed to the vibration induced by pulsed electromagnetic fields (PEMF) whilst the control subgroups were under normal atmosphere. The experiment lasted for 14 days and all of the animals were sacrificed for examination. The changes in the space between the molar and incisor were measured to indicate the amount of tooth movement. The coil springs, either with sham or active magnets, move molar much more than magnets alone, regardless of absence or presence of PEMF (p < 0.001). Under PEMF, the coil spring moved significantly more amount of tooth movement than that of coil-magnet combination (p < 0.01), as did the magnets compared to sham magnets (p < 0.019). Under a non-PEMF scenario, there was no significant difference in tooth movement between coil spring and coil-magnets combination, nor was there difference between magnets and sham magnets. It is suggested that the PEMF-induced vibration may enhance the effect of mechanical and magnetic forces on tooth movement.

  7. Magnetism and mineralogy of Almahata Sitta polymict ureilite (= asteroid 2008 TC3): Implications for the ureilite parent body magnetic field

    NASA Astrophysics Data System (ADS)

    Hoffmann, Viktor H.; Hochleitner, Rupert; Torii, Masayuki; Funaki, Minoru; Mikouchi, Takashi; Kaliwoda, Melanie; Jenniskens, Peter; Shaddad, Muawia H.

    2011-10-01

    The Almahata Sitta meteorite is the first case of recovered extraterrestrial material originating from an asteroid that was detected in near Earth space shortly before entering and exploding in the high atmosphere. The aims of our project within the 2008 TC3 consortium were investigating Almahata Sitta's (AS) magnetic signature, phase composition and mineralogy, focussing on the opaque minerals, and gaining new insights into the magnetism of the ureilite parent body (UPB). We report on the general magnetic properties and behavior of Almahata Sitta and try to place the results in context with the existing data set on ureilites and ureilite parent body models. The magnetic signature of AS is dominated by a set of low-Ni kamacites with large grain sizes. Additional contributions come from micron-sized kamacites, suessite, (Cr) troilite, and daubreelite, mainly found in the olivine grains adjacent to carbon-rich veins. Our results show that the paleomagnetic signal is of extraterrestrial origin as can be seen by comparing with laboratory produced magnetic records (IRM). Four types of kamacite (I-IV) have been recognized in the sample. The elemental composition of the ureilite vein metal Kamacite I (particularly Co) clearly differs from the other kamacites (II-IV), which are considered to be indigenous. Element ratios of kamacite I indicate that it was introduced into the UPB by an impactor, supporting the conclusions of Gabriel and Pack (2009).

  8. Cogging force investigation of a free piston permanent magnet linear generator

    NASA Astrophysics Data System (ADS)

    Abdalla, I. I.; Zainal, A. E. Z.; Ramlan, N. A.; Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2017-10-01

    Better performance and higher efficiency of the vehicles can be achieved by using free piston engine, in which the piston is connected directly to the linear generator and waiving of any mechanical means. The free piston engine has the ability to overcome or reduce many of the challenges, such as the carbon dioxide (CO2) emission and fossil fuel consumption. The cogging force produces undesired vibration and acoustic noise in the generator. However, the cogging force must be minimized as much as possible, in order to have a high performance. This paper studies the effects of ferromagnetic materials on the cogging force of the permanent magnet linear generator (PMLG) to be used in a free piston engine using nonlinear finite-element analysis (FEA) under ANSYS Maxwell. The comparisons have been established for the cogging force of the PMLG under various translator velocities and three different ferromagnetic materials for the stator core, namely, Silicon Steel laminations, Mild Steel and Somaloy. It has been shown that the PMLG with a stator core made of Somaloy has a lower cogging force among them. Furthermore, the induced voltage of the PMLG at different accelerations has been studied. It is found that the PMLG with Mild Steel and Somaloy, respectively give larger induced voltage. Moreover, as the translator speed increase the induced voltage increased.

  9. 6Li in a three-body model with realistic Forces: Separable versus nonseparable approach

    NASA Astrophysics Data System (ADS)

    Hlophe, L.; Lei, Jin; Elster, Ch.; Nogga, A.; Nunes, F. M.

    2017-12-01

    Background: Deuteron induced reactions are widely used to probe nuclear structure and astrophysical information. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. However, it needs to be demonstrated that their solution based on separable interactions agrees exactly with solutions based on nonseparable forces. Methods: Momentum space Faddeev equations are solved with nonseparable and separable forces as coupled integral equations. Results: The ground state of 6Li is calculated via momentum space Faddeev equations using the CD-Bonn neutron-proton force and a Woods-Saxon type neutron(proton)-4He force. For the latter the Pauli-forbidden S -wave bound state is projected out. This result is compared to a calculation in which the interactions in the two-body subsystems are represented by separable interactions derived in the Ernst-Shakin-Thaler (EST) framework. Conclusions: We find that calculations based on the separable representation of the interactions and the original interactions give results that agree to four significant figures for the binding energy, provided that energy and momentum support points of the EST expansion are chosen independently. The momentum distributions computed in both approaches also fully agree with each other.

  10. Calculation of cogging force in a novel slotted linear tubular brushless permanent magnet motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z.Q.; Hor, P.J.; Howe, D.

    1997-09-01

    There is an increasing requirement for controlled linear motion over short and long strokes, in the factory automation and packaging industries, for example. Linear brushless PM motors could offer significant advantages over conventional actuation technologies, such as motor driven cams and linkages and pneumatic rams--in terms of efficiency, operating bandwidth, speed and thrust control, stroke and positional accuracy, and indeed over other linear motor technologies, such as induction motors. Here, a finite element/analytical based technique for the prediction of cogging force in a novel topology of slotted linear brushless permanent magnet motor has been developed and validated. The various forcemore » components, which influence cogging are pre-calculated by the finite element analysis of some basic magnetic structures, facilitate the analytical synthesis of the resultant cogging force. The technique can be used to aid design for the minimization of cogging.« less

  11. Force-Velocity Relationship of Upper Body Muscles: Traditional Versus Ballistic Bench Press.

    PubMed

    García-Ramos, Amador; Jaric, Slobodan; Padial, Paulino; Feriche, Belén

    2016-04-01

    This study aimed to (1) evaluate the linearity of the force-velocity relationship, as well as the reliability of maximum force (F0), maximum velocity (V0), slope (a), and maximum power (P0); (2) compare these parameters between the traditional and ballistic bench press (BP); and (3) determine the correlation of F0 with the directly measured BP 1-repetition maximum (1RM). Thirty-two men randomly performed 2 sessions of traditional BP and 2 sessions of ballistic BP during 2 consecutive weeks. Both the maximum and mean values of force and velocity were recorded when loaded by 20-70% of 1RM. All force-velocity relationships were strongly linear (r > .99). While F0 and P0 were highly reliable (ICC: 0.91-0.96, CV: 3.8-5.1%), lower reliability was observed for V0 and a (ICC: 0.49-0.81, CV: 6.6-11.8%). Trivial differences between exercises were found for F0 (ES: < 0.2), however the a was higher for the traditional BP (ES: 0.68-0.94), and V0 (ES: 1.04-1.48) and P0 (ES: 0.65-0.72) for the ballistic BP. The F0 strongly correlated with BP 1RM (r: 0.915-0.938). The force-velocity relationship is useful to assess the upper body maximal capabilities to generate force, velocity, and power.

  12. Concurrent use of magnetic bearings for rotor support and force sensing for the nondestructive evaluation of manufacturing processes

    NASA Astrophysics Data System (ADS)

    Kasarda, Mary; Imlach, Joseph; Balaji, P. A.; Marshall, Jeremy T.

    2000-06-01

    Active magnetic bearings are a proven technology in turbomachinery applications and they offer considerable promise for improving the performance of manufacturing processes. The Active Magnetic Bearing (AMB) is a feedback mechanism that supports a spinning shaft by levitating it in a magnetic field. AMBs have significantly higher surface speed capability than rolling element bearings and they eliminate the potential for product contamination by eliminating the requirement for bearing lubrication. In addition, one of the most promising capabilities for manufacturing applications is the ability of the AMB to act concurrently as both a support bearing and non-invasive force sensor. The feedback nature of the AMB allows for its use as a load cell to continuously measure shaft forces necessary for levitation based on information about the magnetic flux density in the air gaps. This measurement capability may be exploited to improve the process control of such products as textile fibers and photographic films where changes in shaft loads may indicate changes in product quality. This paper discusses the operation of AMBs and their potential benefits in manufacturing equipment along with results from research addressing accurate AMB force sensing performance in field applications. Specifically, results from the development of enhanced AMB measurement algorithms to better account for magnetic fringing and leakage effects to improve the accuracy of this technique are presented. Results from the development of a new on-line calibration procedure for robust in-situ calibration of AMBs in a field application such as a manufacturing plant scenario are also presented including results of Magnetic Finite Element Analysis (MFEA) verification of the procedure.

  13. Effect of defects, magnetocrystalline anisotropy, and shape anisotropy on magnetic structure of iron thin films by magnetic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ke; Schreiber, Daniel K.; Li, Yulan

    Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM) thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB) to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, amore » 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.« less

  14. Effect of defects, magnetocrystalline anisotropy, and shape anisotropy on magnetic structure of iron thin films by magnetic force microscopy

    DOE PAGES

    Xu, Ke; Schreiber, Daniel K.; Li, Yulan; ...

    2017-02-10

    Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM) thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB) to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, amore » 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.« less

  15. Iron-platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging.

    PubMed

    Chen, I-Chen; Chen, Li-Han; Gapin, Andrew; Jin, Sungho; Yuan, Lu; Liou, Sy-Hwang

    2008-02-20

    High coercivity iron-platinum-coated carbon nanocones (CNCs) have been fabricated for magnetic force microscopy (MFM) by direct-current plasma-enhanced chemical vapor deposition growth of nanocones on tipless cantilevers followed by sputtering and annealing of the FePt film. The FePt-coated CNC probe has many localized magnetic stray fields due to the high-aspect-ratio geometry and small radius of the tip. The MFM imaging on magnetic recording media was performed using CNC probes and compared with the imaging by FePt-coated silicon probes. An image with 20 nm lateral resolution has been demonstrated.

  16. Few-body physics with CLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.P. Gilfoyle

    2011-05-01

    The study of few-body, nuclear systems with electromagnetic probes is an essential piece of the scientific program at Jefferson Lab. Reactions using real photons and electrons (up to energies of 6 GeV) are measured using the CEBAF large acceptance spectrometer (CLAS) detector in Hall B, a nearly 4π magnetic spectrometer. We focus here on three areas. (1) Short-range correlations (SRCs) probe the high-momentum components of the nuclear wave function. Recent CLAS experiments map out their isospin character and reveal the importance of the tensor part of the nuclear force. (2) Three-body forces are an essential feature of nuclei. We willmore » show results using real photons and 3He and 4He targets that remain largely unexplained. (3) Evidence for the transition to a quark-gluon description of nuclei has been observed with photon beams in CLAS on deuterium and 3-He targets. Alternative explanations reveal the geography of the transition is complex.« less

  17. Few body physics with CLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.P. Gilfoyle for the CLAS Collaboration

    2011-02-01

    The study of few-body, nuclear systems with electromagnetic probes is an essential piece of the scientific program at Jefferson Lab. Reactions using real photons and electrons (up to energies of 6 GeV) are measured using the CEBAF large acceptance spectrometer (CLAS) detector in Hall B, a nearly 4π magnetic spectrometer. We focus here on three areas. (1) Short-range correlations (SRCs) probe the high-momentum components of the nuclear wave function. Recent CLAS experiments map out their isospin character and reveal the importance of the tensor part of the nuclear force. (2) Three-body forces are an essential feature of nuclei. We willmore » show results using real photons and 3He and 4He targets that remain largely unexplained. (3) Evidence for the transition to a quark-gluon description of nuclei has been observed with photon beams in CLAS on deuterium and 3-He targets. Alternative explanations reveal the geography of the transition is complex.« less

  18. Prevalence, clinical features and management of pediatric magnetic foreign body ingestions.

    PubMed

    Tavarez, Melissa M; Saladino, Richard A; Gaines, Barbara A; Manole, Mioara D

    2013-01-01

    Foreign body (FB) ingestions are frequent in children. Whereas the majority of FBs pass spontaneously through the gastrointestinal tract, ingestion of magnetic FBs pose a particular risk for obstruction due to proximate attraction through the intestinal wall. We aimed to identify the prevalence, clinical presentation, and management of magnetic FB ingestions at our tertiary care institution. We performed a retrospective chart review of medical records of patients presenting to the pediatric Emergency Department (ED) or admitted to the hospital with FB ingestions from June 2003-July 2009. From those cases, patients with magnetic FB ingestions were identified. During the study period, 337,839 patients presented to the ED; 38 cases of magnetic FB ingestion were identified (prevalence 0.01%). Abdominal radiography was obtained in all cases. Ingestion of a single magnet occurred in 30 of 38 cases (79%). Of those, 4 patients underwent endoscopic removal due to signs of FB impaction in the esophagus or pylorus; no complications were noted. Ingestion of multiple magnets (range 2-6) occurred in 8 of 38 cases. Four of the 8 patients with multiple magnetic FBs (50%) presented with signs of peritonitis and required operative repair of multiple intestinal perforations. No deaths were identified. Although ingestion of a single magnetic FB may, in most cases, be managed as a simple FB ingestion, the ingestion of multiple magnetic FB is associated with a high risk of complication and requires aggressive management. We propose an algorithm for management of children with magnetic FB ingestions. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Intraoral conversion of occlusal force to electricity and magnetism by biting of piezoelectric elements.

    PubMed

    Kameda, Takashi; Ohkuma, Kazuo; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto

    2012-01-01

    Very weak electrical, magnetic and ultrasound signal stimulations are known to promote the formation, metabolism, restoration and stability of bone and surrounding tissues after treatment and operations. We have therefore investigated the possibility of intraoral generation of electricity and magnetism by occlusal force in an in vitro study. Biting bimorph piezoelectric elements with lead zirconate titanate (PZT) using dental models generated appropriate magnetism for bone formation, i. e. 0.5-0.6 gauss, and lower electric currents and higher voltages, i. e. 2.0-6.0 μA at 10-22 V (appropriate levels are 30 μA and 1.25 V), as observed by a universal testing machine. The electric currents and voltages could be changed using amplifier circuits. These results show that intraoral generation of electricity and magnetism is possible and could provide post-operative stabilization and activation of treated areas of bone and the surrounding tissues directly and/or indirectly by electrical, magnetic and ultrasound stimulation, which could accelerate healing.

  20. The effect of low force chiropractic adjustments on body surface electromagnetic field.

    PubMed

    Zhang, John; Snyder, Brian J; Vernor, Lori

    2004-03-01

    The purpose of this study was to investigate the body surface electromagnetic field (EMF) changes using a sensitive magnetometer before and after a specific Toftness chiropractic adjustment in asymptomatic human subjects. Forty-four subjects were randomly assigned into control (20 subjects) and experimental groups (24 subjects) in a pre and post-test design. The Triaxial Fluxgate Magnetometer FGM-5DTAA (Walker Scientific, Worcester, Massachusetts) with five digit display and resolution of 1 nanotesla (nT) was used for EMF detection. The EMF in the research room and on the adjustment table was monitored and recorded. The subjects' body surface (cervical, thoracic, lumbar and sacral areas) EMF was determined in the prone position before and after the chiropractic adjustment. A low force Toftness chiropractic adjustment was applied to the cervical, thoracic, lumbar and sacral areas as determined by the practitioner. The EMF in the research room was recorded as 41611 nT at the Z axis (earth field), 13761 nT at the X axis and 7438 nT at the Y axis. The EMF on the adjusting table changed minimally during the 15 minute observation period. The EMF on the subjects' body surface decreased at 4 spinal locations after chiropractic adjustment. The EMF (mean +/- SD in nT) decreased significantly at the cervical region from 42449 +/- 907 to 41643 +/- 1165 (p < 0.01) and at the sacral regions from 43206 +/- 760 to 42713 +/- 552 (p < 0.01). The EMF at the lumbar and thoracic regions decreased but did not reach a statistically significant level. No significant changes of the body surface EMF were found in the control group. A low force Toftness chiropractic adjustment in the cervical and sacral areas resulted in a significant reduction of the cervical and sacral surface EMF. No significant body surface EMF changes were observed in the lumbar and thoracic regions. The mechanisms of the EMF reduction after chiropractic adjustment are not known.

  1. The effect of low force chiropractic adjustments on body surface electromagnetic field

    PubMed Central

    Zhang, John; Snyder, Brian J; Vernor, Lori

    2004-01-01

    Objective The purpose of this study was to investigate the body surface electromagnetic field (EMF) changes using a sensitive magnetometer before and after a specific Toftness chiropractic adjustment in asymptomatic human subjects. Method Forty-four subjects were randomly assigned into control (20 subjects) and experimental groups (24 subjects) in a pre and post-test design. The Triaxial Fluxgate Magnetometer FGM-5DTAA (Walker Scientific, Worcester, Massachusetts) with five digit display and resolution of 1 nanotesla (nT) was used for EMF detection. The EMF in the research room and on the adjustment table was monitored and recorded. The subjects’ body surface (cervical, thoracic, lumbar and sacral areas) EMF was determined in the prone position before and after the chiropractic adjustment. A low force Toftness chiropractic adjustment was applied to the cervical, thoracic, lumbar and sacral areas as determined by the practitioner. Results The EMF in the research room was recorded as 41611 nT at the Z axis (earth field), 13761 nT at the X axis and 7438 nT at the Y axis. The EMF on the adjusting table changed minimally during the 15 minute observation period. The EMF on the subjects’ body surface decreased at 4 spinal locations after chiropractic adjustment. The EMF (mean ± SD in nT) decreased significantly at the cervical region from 42449 ± 907 to 41643 ± 1165 (p < 0.01) and at the sacral regions from 43206 ± 760 to 42713 ± 552 (p < 0.01). The EMF at the lumbar and thoracic regions decreased but did not reach a statistically significant level. No significant changes of the body surface EMF were found in the control group. Conclusion A low force Toftness chiropractic adjustment in the cervical and sacral areas resulted in a significant reduction of the cervical and sacral surface EMF. No significant body surface EMF changes were observed in the lumbar and thoracic regions. The mechanisms of the EMF reduction after chiropractic adjustment are not known. PMID

  2. Validation of a new whole-body cryotherapy chamber based on forced convection.

    PubMed

    Bouzigon, Romain; Arfaoui, Ahlem; Grappe, Frédéric; Ravier, Gilles; Jarlot, Benoit; Dugue, Benoit

    2017-04-01

    Whole-body cryotherapy (WBC) and partial-body cryotherapy (PBC) are two methods of cold exposure (from -110 to -195°C according to the manufacturers). However, temperature measurement in the cold chamber during a PBC exposure revealed temperatures ranging from -25 to -50°C next to the skin of the subjects (using isolating layer placed between the sensor and the skin). This discrepancy is due to the human body heat transfer. Moreover, on the surface of the body, an air layer called the boundary layer is created during the exposure and limits heat transfer from the body to the cabin air. Incorporating forced convection in a chamber with a participant inside could reduce this boundary layer. The aim of this study was to explore the use of a new WBC technology based on forced convection (frontal unilateral wind) through the measurement of skin temperature. Fifteen individuals performed a 3-min WBC exposure at -40°C with an average wind speed of 2.3ms -1 . The subjects wore a headband, a surgical mask, underwear, gloves and slippers. The skin temperature of the participants was measured with a thermal camera just before exposure, just after exposure and at 1, 3, 5, 10, 15 and 20min after exposure. Mean skin temperature significantly dropped by 11°C just after exposure (p<0.001) and then significantly increased during the 20-min post exposure period (p<0.001). No critically low skin temperature was observed at the end of the cold exposure. This decrease was greater than the mean decreases in all the cryosauna devices with reported exposures between -140°C and -160°C and those in two other WBC devices with reported exposures between -60°C and -110°C. The use of this new technology provides the ability to reach decreases in skin temperature similar to other technologies. The new chamber is suitable and relevant for use as a WBC device. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Visual hallucinations in dementia with Lewy bodies: transcranial magnetic stimulation study

    PubMed Central

    Taylor, John-Paul; Firbank, Michael; Barnett, Nicola; Pearce, Sarah; Livingstone, Anthea; Mosimann, Urs; Eyre, Janet; McKeith, Ian G.; O’Brien, John T.

    2011-01-01

    Background The aetiology of visual hallucinations is poorly understood in dementia with Lewy bodies. Pathological alterations in visual cortical excitability may be one contributory mechanism. Aims To determine visual cortical excitability in people with dementia with Lewy bodies compared with aged-matched controls and also the relationship between visual cortical excitability and visual hallucinations in dementia with Lewy bodies. Method Visual cortical excitability was determined by using transcranial magnetic stimulation (TMS) applied to the occiput to elicit phosphenes (transient subjective visual responses) in 21 patients with dementia with Lewy bodies and 19 age-matched controls. Results Phosphene parameters were similar between both groups. However, in the patients with dementia with Lewy bodies, TMS measures of visual cortical excitability correlated strongly with the severity of visual hallucinations (P = 0.005). Six patients with dementia with Lewy bodies experienced visual hallucination-like phosphenes (for example, seeing people or figures on stimulation) compared with none of the controls (P = 0.02). Conclusions Increased visual cortical excitability in dementia with Lewy bodies does not appear to explain visual hallucinations but it may be a marker for their severity. PMID:22016436

  4. Determination of forces in a magnetic bearing actuator - Numerical computation with comparison to experiment

    NASA Technical Reports Server (NTRS)

    Knight, J. D.; Xia, Z.; Mccaul, E.; Hacker, H., Jr.

    1992-01-01

    Calculations of the forces exerted on a journal by a magnetic bearing actuator are presented, along with comparisons to experimentally measured forces. The calculations are based on two-dimensional solutions for the flux distribution in the metal parts and free space, using finite but constant permeability in the metals. Above a relative permeability of 10,000 the effects of changes in permeability are negligible, but below 10,000 decreases in permeability cause significant decreases in the force. The calculated forces are shown to depend on the metal permeability more strongly when the journal is displaced from its centered position. The predicted forces in the principal attractive direction are in good agreement with experiment when a relatively low value of permeability is chosen. The forces measured normal to the axis of symmetry when the journal is displaced from that axis, however, are significantly higher than predicted by theory, even with a value of relative permeability larger than 5000. These results indicate a need for further work including nonlinear permeability distributions.

  5. Numerical simulation of flows in a circular pipe transversely subjected to a localized impulsive body force with applications to blunt traumatic aortic rupture

    NASA Astrophysics Data System (ADS)

    Di Labbio, G.; Keshavarz-Motamed, Z.; Kadem, L.

    2017-06-01

    Much debate surrounds the mechanisms responsible for the occurrence of blunt traumatic aortic rupture in car accidents, particularly on the role of the inertial body force experienced by the blood due to the abrupt deceleration. The isolated influence of such body forces acting on even simple fluid flows is a fundamental problem in fluid dynamics that has not been thoroughly investigated. This study numerically investigates the fundamental physical problem, where the pulsatile flow in a straight circular pipe is subjected to a transverse body force on a localized volume of fluid. The body force is applied as a brief rectangular impulse in three distinct cases, namely during the accelerating, peak, and decelerating phases of the pulsatile flow. A dimensionless number, termed the degree of influence of the body force (Ψ), is devised to quantify the relative strength of the body force over the flow inertia. The impact induces counter-rotating cross-stream vortices at the boundaries of the forced section accompanied by complex secondary flow structures. This secondary flow is found to develop slowest for an impact occurring during an accelerating flow and fastest during a decelerating flow. The peak skewness of the velocity field, however, occurred at successively later times for the three respective cases. After the impact, these secondary flows act to restore the unforced state and such dominant spatial structures are revealed by proper orthogonal decomposition of the velocity field. This work presents a new class of problems that requires further theoretical and experimental investigation.

  6. Electric fields induced in the human body by time-varying magnetic field gradients in MRI: numerical calculations and correlation analysis.

    PubMed

    Bencsik, Martin; Bowtell, Richard; Bowley, Roger

    2007-05-07

    The spatial distributions of the electric fields induced in the human body by switched magnetic field gradients in MRI have been calculated numerically using the commercial software package, MAFIA, and the three-dimensional, HUGO body model that comprises 31 different tissue types. The variation of |J|, |E| and |B| resulting from exposure of the body model to magnetic fields generated by typical whole-body x-, y- and z-gradient coils has been analysed for three different body positions (head-, heart- and hips-centred). The magnetic field varied at 1 kHz, so as to produce a rate of change of gradient of 100 T m(-1) s(-1) at the centre of each coil. A highly heterogeneous pattern of induced electric field and current density was found to result from the smoothly varying magnetic field in all cases, with the largest induced electric fields resulting from application of the y-gradient, in agreement with previous studies. By applying simple statistical analysis to electromagnetic quantities within axial planes of the body model, it is shown that the induced electric field is strongly correlated to the local value of resistivity, and the induced current density exhibits even stronger correlation with the local conductivity. The local values of the switched magnetic field are however shown to bear little relation to the local values of the induced electric field or current density.

  7. Models And Experiments Of Laminar Diffusion Flames In Non-Uniform Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Baker, J.; Varagani, R.; Saito, K.

    2003-01-01

    Non-uniform magnetic fields affect laminar diffusion flames as a result of the paramagnetic and diamagnetic properties of the products and reactants. Paramagnetism is the weak attraction to a magnetic field a material exhibits as a result of permanent magnetic dipole moments in the atoms of the material. Diamagnetism is the weak repulsion to a magnetic field exhibited by a material due to the lack of permanent magnetic dipole moments in the atoms of a material. The forces associated with paramagnetic and diamagnetism are several orders of magnitude less than the forces associated with the more familiar ferromagnetism. A typical example of a paramagnetic gas is oxygen while hydrocarbon fuels and products of combustion are almost always diamagnetic. The fact that magnets can affect flame behavior has been recognized for more than one hundred years. Early speculation was that such behavior was due to the magnetic interaction with the ionized gases associated with a flame. Using a scaling analysis, it was later shown that for laminar diffusion flames the magnetic field/ionized gas interaction was insignificant to the paramagnetic and diamagnetic influences. In this effort, the focus has been on examining laminar diffusion slot flames in the presence of non-uniform upward decreasing magnetic fields produced using permanent magnets. The principal reason for choosing slot flames was mathematical models of such flames show an explicit dependence on gravitational body forces, in the buoyancy-controlled regime, and an applied magnetic field would also impose a body force. In addition, the behavior of such flames was more easily visualized while maintaining the symmetry of the two-dimensional problem whereas it would have been impossible to obtain a symmetric magnetic field around a circular flame and still visually record the flame height and shape along the burner axis. The motivation for choosing permanent magnets to produce the magnetic fields was the assumption that

  8. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    PubMed

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  9. Electricity and Magnetism

    NASA Astrophysics Data System (ADS)

    Glazebrook, R. T.

    2016-10-01

    1. Electrostatics: fundamental facts; 2. Electricity as a measurable quantity; 3. Measurement of electric force and potential; 4. Condensers; 5. Electrical machines; 6. Measurement of potential and electric force; 7. Magnetic attraction and repulsion; 8. Laws of magnetic force; 9. Experiments with magnets; 10. Magnetic calculations; 11. Magnetic measurements; 12. Terrestrial magnetism; 13. The electric current; 14. Relation between electromagnetic force and current; 15. Measurement of current; 16. Measurement of resistance and electromotive force; 17. Measurement of quantity of electricity, condensers; 18. Thermal activity of a current; 19. The voltaic cell (theory); 20. Electromagnetism; 21. Magnetisation of iron; 22. Electromagnetic instruments; 23. Electromagnetic induction; 24. Applications of electromagnetic induction; 25. Telegraphy and telephony; 26. Electric waves; 27. Transference of electricity through gases: corpuscles and electrons; Answers to examples; Index.

  10. Design framework of a teleoperating system for a magnetically levitated robot with force feedback

    NASA Astrophysics Data System (ADS)

    Tsuda, Naoaki; Kato, Norihiko; Nomura, Yoshihiko; Matsui, Hirokazu

    2002-02-01

    Precise works and manipulating micro objects are tough jobs for operators both mentally and physically. To execute these jobs smoothly without feeling wrongness, use of master-slave system is preferable because position and force are able to be scaled up and down as well under the system. In this study we develop a master-slave system where the size of a slave robot is very small and the slave robot is levitated by magnetic forces. In distinction from ordinary master- slave systems, the levitated robot does not get any other contact forces from outside. Thus we introduce a method using an impedance model for constructing the master-slave system. We confirmed the effectiveness of the positioning control algorithm through experiments.

  11. Poroelastic theory of consolidation in unsaturated soils incorporating gravitational body forces

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Chao, Nan-Chieh; Chen, Chu-Hui; Lee, Jhe-Wei

    2017-08-01

    The generalization of the poroelasticity theory of consolidation in unsaturated soils to well represent gravitational body forces is presented in the current study. Three partial differential equations featuring the displacement vector of the solid phase, along with the excess pore water and air pressures as dependent variables are derived, with coupling that occurs in the first-order temporal- and spatial- derivative terms. The former arises from viscous drag between solid and fluid, whereas the latter is attributed to the presence of gravity. Given the physically-consistent initial and boundary conditions, these coupled equations are numerically solved under uniaxial strain as a representative example. Our results reveal that variations in the excess pore water pressure due to the existence of gravitational forces increase with soil depth, but these variations are not significant if the soil layer is not sufficiently long. A dimensionless parameter is defined theoretically to quantify the impact of those forces on the final total settlement. This impact is shown to become greater as the soil layer is less stiff and has more length, and bears an inversely-proportional trend with initial water saturation.

  12. Formation of Maximum Eddy Current Force by Non Ferrous Materials

    NASA Astrophysics Data System (ADS)

    Kader, M. M. A.; Razali, Z. B.; Yasin, N. S. M.; Daud, M. H.

    2018-03-01

    This project is concerned with the study of eddy current effects on various materials such as aluminum, copper and magnesium. Two types of magnets used in this study; magnetic ferrite (ZnFe+2O4) and magnetic neodymium (NdFeBN42). Eddy current force will be exerted to these materials due to current flows along the magnet. This force depends on the type of magnet, type of material and the gap between the magnet and the material or between the two magnets. The results show that at constant magnet to material gap, the eddy current force decreases as the magnet to magnet gap increases. Similarly, at constant magnet to magnet gap, the eddy current force decreases as the magnet to material gap increases. The minimum force was achieved when the gap of magnet to material is maximum, similarly to the gap of magnet to magnet. The weakest force was between Copper and Neodymium at a magnet to material gap of 20 mm and magnet to magnet gap of 40 mm; the eddy current force was 0.00048 N. The strongest force (maximum) was between Magnesium and Ferrite and 0.42273 N at a magnet to material gap of 3 mm and magnet to magnet gap of 5 mm.

  13. Development of atomic force microscope with wide-band magnetic excitation for study of soft matter dynamics

    NASA Astrophysics Data System (ADS)

    Kageshima, Masami; Chikamoto, Takuma; Ogawa, Tatsuya; Hirata, Yoshiki; Inoue, Takahito; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2009-02-01

    In order to probe dynamical properties of mesoscopic soft matter systems such as polymers, structured liquid, etc., a new atomic force microscopy apparatus with a wide-band magnetic cantilever excitation system was developed. Constant-current driving of an electromagnet up to 1 MHz was implemented with a closed-loop driver circuit. Transfer function of a commercial cantilever attached with a magnetic particle was measured in a frequency range of 1-1000 kHz in distilled water. Effects of the laser spot position, distribution of the force exerted on the cantilever, and difference in the detection scheme on the obtained transfer function are discussed in comparison with theoretical predictions by other research groups. A preliminary result of viscoelasticity spectrum measurement of a single dextran chain is shown and is compared with a recent theoretical calculation.

  14. Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim.

    PubMed

    Kim, Hyun-Kyung; Zhang, Yanxin

    2017-04-01

    Large spinal compressive force combined with axial torsional shear force during asymmetric lifting tasks is highly associated with lower back injury (LBI). The aim of this study was to estimate lumbar spinal loading and muscle forces during symmetric lifting (SL) and asymmetric lifting (AL) tasks using a whole-body musculoskeletal modelling approach. Thirteen healthy males lifted loads of 7 and 12 kg under two lifting conditions (SL and AL). Kinematic data and ground reaction force data were collected and then processed by a whole-body musculoskeletal model. The results show AL produced a significantly higher peak lateral shear force as well as greater peak force of psoas major, quadratus lumborum, multifidus, iliocostalis lumborum pars lumborum, longissimus thoracis pars lumborum and external oblique than SL. The greater lateral shear forces combined with higher muscle force and asymmetrical muscle contractions may have the biomechanical mechanism responsible for the increased risk of LBI during AL. Practitioner Summary: Estimating lumbar spinal loading and muscle forces during free-dynamic asymmetric lifting tasks with a whole-body musculoskeletal modelling in OpenSim is the core value of this research. The results show that certain muscle groups are fundamentally responsible for asymmetric movement, thereby producing high lumbar spinal loading and muscle forces, which may increase risks of LBI during asymmetric lifting tasks.

  15. Characterization and validation of a split belt treadmill for measuring hindlimb ground-reaction forces in able-bodied and spinalized felines

    PubMed Central

    Dimiskovski, Marko; Scheinfield, Richard; Higgin, Dwight; Krupka, Alexander; Lemay, Michel A.

    2017-01-01

    BACKGROUND The measurement of ground reaction forces (GRFs) in animals trained to locomote on a treadmill after spinal cord injury (SCI) could prove valuable for evaluating training outcomes; however, quantitative measures of the GRFs in spinal felines are limited. NEW METHOD A split belt treadmill was designed and constructed to measure the GRFs of feline hindlimbs during stepping. The treadmill consists of two independent treadmill assemblies, each mounted on a force plate. The design allows measurements of the vertical (Fz), fore-aft (Fy) and mediolateral (Fx) ground-reaction forces for both hindlimbs while the forelimbs are resting on a platform. RESULTS Static and dynamic noise tests revealed little to no noise at frequencies below 6 Hz. Validation of the force plate measurements with a hand-held force sensor force showed good agreement between the two force readings. Peak normalized (to body mass) vertical GRFs for intact cats were 4.89±0.85N/Kg for the left hindlimb and 4.79±0.97N/Kg for the right. In comparison, trained spinalized cats peak normalized vertical GRFs were 2.20±0.94N/Kg for the left hindlimb and 2.85±0.99N/Kg for the right. COMPARISON WITH OTHER EXISTING METHODS Previous methods of measuring GRFs used stationary single force plates or treadmill mounted to single force plate. Using independent treadmills for each hindlimb allows measurement of the individual hindlimb’s GRFs in spinalized cats following body-weight supported treadmill training. CONCLUSIONS The split belt force treadmill enables the simultaneous recording of ground-reaction forces for both hindlimbs in cats prior to spinalization, and following spinalization and body-weight-supported treadmill training (BWST). PMID:28069392

  16. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  17. Novel System for Bite-Force Sensing and Monitoring Based on Magnetic Near Field Communication

    PubMed Central

    Lantada, Andres Diaz; Bris, Carlos González; Morgado, Pilar Lafont; Maudes, Jesús Sanz

    2012-01-01

    Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID) technology (NFC). The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient's dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system's operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials. PMID:23112669

  18. Assessment of airway hyperreactivity: comparison of forced spirometry and body plethysmography for methacholine challenge tests

    PubMed Central

    2009-01-01

    Introduction Bronchial challenge tests by inhalation of aerosolized methacholine (MCH) are commonly used in the clinical diagnosis of airway hyperresponsiveness (AHR). While the detection of airway narrowing relies on the patient's cooperation performing forced spirometry, body plethysmographic measurements of airway resistance are less depending on the patient's cooperation and do not alter the respiratory tract by maximal maneuvers. Hence we compared both methods concerning their clinical value and correlation during MCH challenges in patients with asthma. Materials and Methods Cumulative MCH challenges test, consisting of up to 5 steps, evaluated with body plethysmography on each step were performed in 155 patients with bronchial asthma. Airway responses were recorded at each step of MCH application (Master-Screen Body, Cardinal Health, Höchberg). At the baseline test and after crossing the provocation dose (PD) threshold in body plethysmography (PD+100 sReff), forced expirations were performed and FEV1, FVC, and FEV1 %FVC were measured. Using regression analysis of the airway parameters and taking the MCH dose as the covariate, we could extrapolate to missing spirometric values and interpolate the estimated MCH dose when crossing the PD threshold (PD-20 FEV1) between two consecutive measurements. The administered PD+100 MCH doses for specific airway resistance, sRtot, and sReff were compared with resistance parameters Rtot and Reff, and to PD-20 of FEV1 and FEV1 %FVC. Results Regarding sReff we found a mild, moderate, or severe AHR in 114 patients (75%), but only 50 (32%) according to FEV1. A statistical analysis showed strongly linear correlated parameters of airway resistance, but no significant correlation between the results of body plethysmography and forced spirometry Conclusions Using MCH challenges, we found specific airway resistance to be the most sensitive parameter to detect AHR. Raw is largely independent of height and gender facilitating the

  19. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †

    PubMed Central

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  20. Reduction of vibration forces transmitted from a radiator cooling fan to a vehicle body

    NASA Astrophysics Data System (ADS)

    Lim, Jonghyuk; Sim, Woojeong; Yun, Seen; Lee, Dongkon; Chung, Jintai

    2018-04-01

    This article presents methods for reducing transmitted vibration forces caused by mass unbalance of the radiator cooling fan during vehicle idling. To identify the effects of mass unbalance upon the vibration characteristics, vibration signals of the fan blades were experimentally measured both with and without an added mass. For analyzing the vibration forces transmitted to the vehicle body, a dynamic simulation model was established that reflected the vibration characteristics of the actual system. This process included a method described herein for calculating the equivalent stiffness and the equivalent damping of the shroud stators and rubber mountings. The dynamic simulation model was verified by comparing its results with experimental results of the radiator cooling fan. The dynamic simulation model was used to analyze the transmitted vibration forces at the rubber mountings. Also, a measure was established to evaluate the effects of varying the design parameters upon the transmitted vibration forces. We present design guidelines based on these analyses to reduce the transmitted vibration forces of the radiator cooling fan.

  1. Modeling and analysis of Galfenol cantilever vibration energy harvester with nonlinear magnetic force

    NASA Astrophysics Data System (ADS)

    Cao, Shuying; Sun, Shuaishuai; Zheng, Jiaju; Wang, Bowen; Wan, Lili; Pan, Ruzheng; Zhao, Ran; Zhang, Changgeng

    2018-05-01

    Galfenol traditional cantilever energy harvesters (TCEHs) have bigger electrical output only at resonance and exhibit nonlinear mechanical-magnetic-electric coupled (NMMEC) behaviors. To increase low-frequency broadband performances of a TCEH, an improved CEH (ICEH) with magnetic repulsive force is studied. Based on the magnetic dipole model, the nonlinear model of material, the Faraday law and the dynamic principle, a lumped parameter NMMEC model of the devices is established. Comparisons between the calculated and measured results show that the proposed model can provide reasonable data trends of TCEH under acceleration, bias field and different loads. Simulated results show that ICEH exhibits low-frequency resonant, hard spring and bistable behaviors, thus can harvest more low-frequency broadband vibration energy than TCEH, and can elicit snap-through and generate higher voltage even under weak noise. The proposed structure and model are useful for improving performances of the devices.

  2. Identification of human-generated forces on wheelchairs during total-body extensor thrusts.

    PubMed

    Hong, Seong-Wook; Patrangenaru, Vlad; Singhose, William; Sprigle, Stephen

    2006-10-01

    Involuntary extensor thrust experienced by wheelchair users with neurological disorders may cause injuries via impact with the wheelchair, lead to the occupant sliding out of the seat, and also damage the wheelchair. The concept of a dynamic seat, which allows movement of a seat with respect to the wheelchair frame, has been suggested as a potential solution to provide greater freedom and safety. Knowledge of the human-generated motion and forces during unconstrained extensor thrust events is of great importance in developing more comfortable and effective dynamic seats. The objective of this study was to develop a method to identify human-generated motions and forces during extensor thrust events. This information can be used to design the triggering system for a dynamic seat. An experimental system was developed to automatically track the motions of the wheelchair user using a video camera and also measure the forces at the footrest. An inverse dynamic approach was employed along with a three-link human body model and the experimental data to predict the human-generated forces. Two kinds of experiments were performed: the first experiment validated the proposed model and the second experiment showed the effects of the extensor thrust speed, the footrest angle, and the seatback angle. The proposed method was tested using a sensitivity analysis, from which a performance index was deduced to help indicate the robust region of the force identification. A system to determine human-generated motions and forces during unconstrained extensor thrusts was developed. Through experiments and simulations, the effectiveness and reliability of the developed system was established.

  3. Paleo-Magnetic Field Recorded in the Parent Body of the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Páchová, H.

    2014-12-01

    Murchison meteorite is a carbonaceous chondrite containing small amount of chondrules, various inclusions, and matrix with occasional porphyroblasts of olivine and/or pyroxene. We applied magnetic efficiency method (Kletetschka et al 2005, Kohout et al, 2008) in order to get the demagnetization spectra for several randomly oriented fragments of Murchison meteorite. Our method detected not only viscous magnetization removable in low fields, but also very persistent magnetizations in all meterorite fragments. Data suggest that magnetic carriers within the Murchison meteorite were grown in a paleofield of 450 - 850 nT. Meteorite record in other fragments contains an existence of antipodal fields that may be tied to an event of magnetic reversal within the nebular magnetic field or parent asteroid body. Other meteorites show stable record over its entire spectrum, giving magnetic paleofield of 1100 - 1900 nT. Magnetic record in Murchison meteorite comes from magnetite, pyrrhotite and Iron Nickel alloy. Pyrrhotite is suggested to be the main carrier of the paleofield in Murchison. Iron-Nickel alloy generate observable zigzag pattern when magnetically saturated. Kletetschka, G., Kohout, T., Wasilewski, P., and Fuller, M. D., 2005, Recognition of thermal remanent magnetization in rocks and meteorites, The IAGA Scientific Assembly, Volume GAI10: Toulouse, IAGA, p. IAGA2005-A-00945. Kohout, T., Kletetschka, G., Donadini, F., Fuller, M., and Herrero-Bervera, E., 2008, Analysis of the natural remanent magnetization of rocks by measuring the efficiency ratio through alternating field demagnetization spectra: Studia Geophysica Et Geodaetica, v. 52, no. 2, p. 225-235.

  4. Magnetism in Medicine

    NASA Astrophysics Data System (ADS)

    Schenck, John

    2000-03-01

    For centuries physicians, scientists and others have postulated an important role, either as a cause of disease or as a mode of therapy, for magnetism in medicine. Although there is a straightforward role in the removal of magnetic foreign bodies, the majority of the proposed magnetic applications have been controversial and have often been attributed by mainstream practitioners to fraud, quackery or self-deception. Calculations indicate that many of the proposed methods of action, e.g., the field-induced alignment of water molecules or alterations in blood flow, are of negligible magnitude. Nonetheless, even at the present time, the use of small surface magnets (magnetotherapy) to treat arthritis and similar diseases is a widespread form of folk medicine and is said to involve sales of approximately one billion dollars per year. Another medical application of magnetism associated with Mesmer and others (eventually known as animal magnetism) has been discredited, but has had a culturally significant role in the development of hypnotism and as one of the sources of modern psychotherapy. Over the last two decades, in marked contrast to previous applications of magnetism to medicine, magnetic resonance imaging or MRI, has become firmly established as a clinical diagnostic tool. MRI permits the non-invasive study of subtle biological processes in intact, living organisms and approximately 150,000,000 diagnostic studies have been performed since its clinical introduction in the early 1980s. The dramatically swift and widespread acceptance of MRI was made possible by scientific and engineering advances - including nuclear magnetic resonance, computer technology and whole-body-sized, high field superconducting magnets - in the decades following World War Two. Although presently used much less than MRI, additional applications, including nerve and muscle stimulation by pulsed magnetic fields, the use of magnetic forces to guide surgical instruments, and imaging utilizing

  5. A nonlinear eigenvalue problem for self-similar spherical force-free magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerche, I.; Low, B. C.

    2014-10-15

    An axisymmetric force-free magnetic field B(r, θ) in spherical coordinates is defined by a function r sin θB{sub φ}=Q(A) relating its azimuthal component to its poloidal flux-function A. The power law r sin θB{sub φ}=aA|A|{sup 1/n}, n a positive constant, admits separable fields with A=(A{sub n}(θ))/(r{sup n}) , posing a nonlinear boundary-value problem for the constant parameter a as an eigenvalue and A{sub n}(θ) as its eigenfunction [B. C. Low and Y. Q Lou, Astrophys. J. 352, 343 (1990)]. A complete analysis is presented of the eigenvalue spectrum for a given n, providing a unified understanding of the eigenfunctions and the physical relationship betweenmore » the field's degree of multi-polarity and rate of radial decay via the parameter n. These force-free fields, self-similar on spheres of constant r, have basic astrophysical applications. As explicit solutions they have, over the years, served as standard benchmarks for testing 3D numerical codes developed to compute general force-free fields in the solar corona. The study presented includes a set of illustrative multipolar field solutions to address the magnetohydrodynamics (MHD) issues underlying the observation that the solar corona has a statistical preference for negative and positive magnetic helicities in its northern and southern hemispheres, respectively; a hemispherical effect, unchanging as the Sun's global field reverses polarity in successive eleven-year cycles. Generalizing these force-free fields to the separable form B=(H(θ,φ))/(r{sup n+2}) promises field solutions of even richer topological varieties but allowing for φ-dependence greatly complicates the governing equations that have remained intractable. The axisymmetric results obtained are discussed in relation to this generalization and the Parker Magnetostatic Theorem. The axisymmetric solutions are mathematically related to a family of 3D time-dependent ideal MHD solutions for a polytropic fluid of index γ = 4

  6. Conversion of the magnetic field measured in three components on the magnetic sensor body's random coordinate system into three components on geographical coordinate system through quaternion rotation.

    NASA Astrophysics Data System (ADS)

    LIM, M.; PARK, Y.; Jung, H.; SHIN, Y.; Rim, H.; PARK, C.

    2017-12-01

    To measure all components of a physical property, for example the magnetic field, is more useful than to measure its magnitude only in interpretation and application thereafter. To convert the physical property measured in 3 components on a random coordinate system, for example on moving magnetic sensor body's coordinate system, into 3 components on a fixed coordinate system, for example on geographical coordinate system, by the rotations of coordinate system around Euler angles for example, we should have the attitude values of the sensor body in time series, which could be acquired by an INS-GNSS system of which the axes are installed coincident with those of the sensor body. But if we want to install some magnetic sensors in array at sea floor but without attitude acquisition facility of the magnetic sensors and to monitor the variation of magnetic fields in time, we should have also some way to estimate the relation between the geographical coordinate system and each sensor body's coordinate system by comparison of the vectors only measured on both coordinate systems on the assumption that the directions of the measured magnetic field on both coordinate systems are the same. For that estimation, we have at least 3 ways. The first one is to calculate 3 Euler angles phi, theta, psi from the equation Vgeograph = Rx(phi) Ry(theta) Rz(psi) Vrandom, where Vgeograph is the vector on geographical coordinate system etc. and Rx(phi) is the rotation matrix around the x axis by the angle phi etc. The second one is to calculate the difference of inclination and declination between the 2 vectors on spherical coordinate system. The third one, used by us for this study, is to calculate the angle of rotation along a great circle around the rotation axis, and the direction of the rotation axis. We installed no. 1 and no. 2 FVM-400 fluxgate magnetometers in array near Cheongyang Geomagnetic Observatory (IAGA code CYG) and acquired time series of magnetic fields for CYG and for

  7. Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system.

    PubMed

    Okochi, Mina; Tsuchiya, Hiroyoshi; Kumazawa, Fumitaka; Shikida, Mitsuhiro; Honda, Hiroyuki

    2010-02-01

    A droplet-based cell lysis and reverse transcription-polymerase chain reaction (PCR) were performed on-chip employing magnetic force-based-droplet-handling system. The actuation with a magnet offers a simple system for droplet manipulation; it does not need mechanical fluidic systems such as pumps and valves for handling solutions. It can be used as a powerful tool for various biochemical applications by moving and coalescing sample droplets using magnetic beads immersed in mineral oil. The droplet containing magnetic beads and the cells were manipulated with the magnet located underneath the channel, and coalesced with a droplet of lysis buffer. Using K562 cells as the leukemia model, the cell lysis, cDNA synthesis, and amplification of WT1 gene that is known as the prognostic factor for acute leukemia were successfully performed from a single cell. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Design and application of a mechanical load frame for in situ investigation of ferromagnetic shape memory alloys by magnetic force microscopy.

    PubMed

    Niklasch, D; Maier, H J; Karaman, I

    2008-11-01

    An in situ mechanical load frame has been developed for a commercially available atomic force microscope. This frame allows examining changes in topography and magnetic domain configuration under a given constant load or strain. First results obtained on Ni-Mn-Ga ferromagnetic shape memory alloy single crystals are presented. The magnetic force microscopy (MFM) measurements under different strain levels confirm the one-to-one correspondence, i.e., the magnetomicrostructural coupling between the martensite twins and the magnetic domains. Additionally, the growth of the twin variant with favorable orientation to the compression axis during martensite detwinning was observed. It will be shown that this load frame can be used for the investigation of the relationship between the microstructure and the magnetic domain structure in ferromagnetic shape memory alloys by MFM.

  9. Magnetothermal Convection of Water with the Presence or Absence of a Magnetic Force Acting on the Susceptibility Gradient

    PubMed Central

    Maki, Syou

    2016-01-01

    Heat transfer of magnetothermal convection with the presence or absence of the magnetic force acting on the susceptibility gradient (fsc) was examined by three-dimensional numerical computations. Thermal convection of water enclosed in a shallow cylindrical vessel (diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The momentum equations of convection were nondimensionalized, which involved the term of fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computations resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged velocity components U, V, and W, and the isothermal distributions and flow patterns were almost completely the same, regardless of the presence or absence of the term of fsc. As a result, we found that the effect of fsc was extremely small, although much previous research emphasized the effect with paramagnetic solutions under an unsteady state. The magnitude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility and magnetic flux density), but also on the thermal properties of the solution (thermal conductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on the magnetothermal convection. Active control over the density gradient with temperature will be required to advance heat transfer with the effect of fsc. PMID:27606823

  10. Magnetothermal Convection of Water with the Presence or Absence of a Magnetic Force Acting on the Susceptibility Gradient.

    PubMed

    Maki, Syou

    2016-01-01

    Heat transfer of magnetothermal convection with the presence or absence of the magnetic force acting on the susceptibility gradient (fsc) was examined by three-dimensional numerical computations. Thermal convection of water enclosed in a shallow cylindrical vessel (diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The momentum equations of convection were nondimensionalized, which involved the term of fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computations resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged velocity components U, V, and W, and the isothermal distributions and flow patterns were almost completely the same, regardless of the presence or absence of the term of fsc. As a result, we found that the effect of fsc was extremely small, although much previous research emphasized the effect with paramagnetic solutions under an unsteady state. The magnitude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility and magnetic flux density), but also on the thermal properties of the solution (thermal conductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on the magnetothermal convection. Active control over the density gradient with temperature will be required to advance heat transfer with the effect of fsc.

  11. Application of small-angle neutron scattering to the study of forces between magnetically chained monodisperse ferrofluid emulsion droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Dr Nirmesh; Liu, Dr C K; Hawkett, Dr B. S.

    2014-01-01

    The optical magnetic chaining technique (MCT) developed by Leal-Calderon, Bibette and co-workers in the 1990 s allows precise measurements of force profiles between droplets in monodisperse ferrofluid emulsions. However, the method lacks an in-situ determination of droplet size and therefore requires the combination of separately acquired measurements of droplet chain periodicity versus an applied magnetic field from optical Bragg scattering and droplet diameter inferred from dynamic light scattering (DLS) to recover surface force-distance profiles between the colloidal particles. Compound refractive lens (CRL) focussed small-angle scattering (SANS) MCT should result in more consistent measurements of droplet size (form factor measurements inmore » the absence of field) and droplet chaining period (from structure factor peaks when the magnetic field is applied); and, with access to shorter length scales, extend force measurements to closer approaches than possible by optical measurements. We report on CRL-SANS measurements of monodisperse ferrofluid emulsion droplets aligned in straight chains by an applied field perpendicular to the incident beam direction. Analysis of the scattering from the closely spaced droplets required algorithms that carefully treated resolution and its effect on mean scattering vector magnitudes in order to determine droplet size and chain periods to sufficient accuracy. At lower applied fields scattering patterns indicate structural correlations transverse to the magnetic field direction due to the formation of intermediate structures in early chain growth.« less

  12. Experimental and Computational Studies of the Control of Convection of Non-Conducting Liquids During solidification by Means of a Magnetic Field Gradient

    NASA Technical Reports Server (NTRS)

    Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2001-01-01

    The elimination of convection is essential in experimental investigations of diffusive transport (of heat and matter) during solidification. One classical approach to damping convection in a conducting liquid is the application of a magnetic field. The damping phenomenon is the induction, by the motion of a conductor in a magnetic field, of currents which interact with the field to produce Lorentz forces that oppose the flow. However, there are many liquids which are not sufficiently conducting to exploit this phenomenon; examples include the transparent liquids (such as succinonitrile-acetone) that are used as "model alloys" in fundamental solidification studies. There have been several investigations of the solidification of these liquids that have been carried out in orbiting laboratories to eliminate natural convection. The paper describes an investigation of an alternative approach whereby a magnetic field gradient is applied to the liquid. A magnetic body force then arises which is dependent on the susceptibility of the liquid and thereby on the temperature and or concentration. With the field gradient aligned vertically and of correct magnitude, the variation of gravitational body force due to temperature/concentration dependent density can be counterbalanced by a variation in magnetic body force. Experiments have been carried out in a super-conducting magnet at Marshall Space Flight Center to measure velocities in an aqueous manganese chloride solution. The solution was contained in a chamber with temperature controlled end walls and glass side walls. Velocities were measured by particle image velocimetry. Starting from zero current in the magnet (zero field gradient) flow driven by the temperature difference between the end walls was measured. At a critical current the flow was halted. At higher currents the normal convection was reversed. The experiments included ones where the solution was solidified and were accompanied by solution of the flow

  13. Force on a storage ring vacuum chamber after sudden turn-off of a magnet power supply

    NASA Astrophysics Data System (ADS)

    Sinha, Gautam; Prabhu, S. S.

    2011-10-01

    We are commissioning a 2.5 GeV synchrotron radiation source (SRS) where electrons travel in high vacuum inside the vacuum chambers made of aluminum alloys. These chambers are kept between the pole gaps of magnets and are made to facilitate the radiation coming out of the storage ring to the experimental station. These chambers are connected by metallic bellows. During the commissioning phase of the SRS, the metallic bellows became ruptured due to the frequent tripping of the dipole magnet power supply. The machine was down for quite some time. In the case of a power supply trip, the current in the magnets decays exponentially. It was observed experimentally that the fast B field decay generates a large eddy current in the chambers and consequently the chambers are subjected to a huge Lorentz force. This motivated us to develop a theoretical model to study the force acting on a metallic plate when exposed to an exponentially decaying field and then to extend it for a rectangular vacuum chamber. The problem is formulated using Maxwell’s equations and converted to the inhomogeneous Helmholtz equation. After taking the Laplace transform, the equation is solved with appropriate boundary conditions. Final results are obtained after taking the appropriate inverse Laplace transform. The expressions for eddy current contour and magnetic field produced by the eddy current are also derived. Variations of the force on chambers of different wall thickness due to spatially varying and exponentially time decaying field are presented. The result is a general theory which can be applied to different geometries and calculation of power loss as well. Comparisons are made with results obtained by simulation using a finite element based code, for quick verification of the theoretical model.

  14. Evidence of protein-free homology recognition in magnetic bead force-extension experiments

    NASA Astrophysics Data System (ADS)

    O'Lee, D. J.; Danilowicz, C.; Rochester, C.; Kornyshev, A. A.; Prentiss, M.

    2016-07-01

    Earlier theoretical studies have proposed that the homology-dependent pairing of large tracts of dsDNA may be due to physical interactions between homologous regions. Such interactions could contribute to the sequence-dependent pairing of chromosome regions that may occur in the presence or the absence of double-strand breaks. Several experiments have indicated the recognition of homologous sequences in pure electrolytic solutions without proteins. Here, we report single-molecule force experiments with a designed 60 kb long dsDNA construct; one end attached to a solid surface and the other end to a magnetic bead. The 60 kb constructs contain two 10 kb long homologous tracts oriented head to head, so that their sequences match if the two tracts fold on each other. The distance between the bead and the surface is measured as a function of the force applied to the bead. At low forces, the construct molecules extend substantially less than normal, control dsDNA, indicating the existence of preferential interaction between the homologous regions. The force increase causes no abrupt but continuous unfolding of the paired homologous regions. Simple semi-phenomenological models of the unfolding mechanics are proposed, and their predictions are compared with the data.

  15. Magnetic and levitation characteristics of bulk high-temperature superconducting magnets above a permanent magnet guideway

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Zheng, Botian; He, Dabo; Sun, Ruixue; Deng, Zigang; Xu, Xun; Dou, Shixue

    2016-09-01

    Due to the large levitation force or the large guidance force of bulk high-temperature superconducting magnets (BHTSMs) above a permanent magnet guideway (PMG), it is reasonable to employ pre-magnetized BHTSMs to replace applied-magnetic-field-cooled superconductors in a maglev system. There are two combination modes between the BHTSM and the PMG, distinguished by the different directions of the magnetization. One is the S-S pole mode, and the other is the S-N pole mode combined with a unimodal PMG segment. A multi-point magnetic field measurement platform was employed to acquire the magnetic field signals of the BHTSM surface in real time during the pre-magnetization process and the re-magnetization process. Subsequently, three experimental aspects of levitation, including the vertical movement due to the levitation force, the lateral movement due to the guidance force, and the force relaxation with time, were explored above the PMG segment. Moreover, finite element modeling by COMSOL Multiphysics has been performed to simulate the different induced currents and the potentially different temperature rises with different modes inside the BHTSM. It was found that the S-S pole mode produced higher induced current density and a higher temperature rise inside the BHTSM, which might escalate its lateral instability above the PMG. The S-N pole mode exhibits the opposite characteristics. In general, this work is instructive for understanding and connecting the magnetic flux, the inner current density, the levitation behavior, and the temperature rise of BHTSMs employed in a maglev system.

  16. Orientation of Magnetized MnBi in a Strong Static Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zheng, Tianxiang; Zhong, Yunbo; Dong, Licheng; Zhou, Bangfei; Ren, Zhongming; Debray, Francois; Beaugnon, Eric

    2018-06-01

    Solidification of Bi-4.5 wt pct Mn alloy was investigated in the presence and absence of a strong static magnetic field (SSMF). A cooling rate ( R) of 60 K/min caused MnBi to orient with the SSMF, owing to the force moment and attractive force. The attractive force and magnetic gradient force induced formation of multilayered MnBi when R was 5 K/min. The magnetic gradient force was damped when R was 60 K/min. Low cooling rates favored the aggregation process.

  17. Magnetic force microscopy with frequency-modulated capacitive tip-sample distance control

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Schwenk, J.; Mandru, A. O.; Penedo, M.; Baćani, M.; Marioni, M. A.; Hug, H. J.

    2018-01-01

    In a step towards routinely achieving 10 nm spatial resolution with magnetic force microscopy, we have developed a robust method for active tip-sample distance control based on frequency modulation of the cantilever oscillation. It allows us to keep a well-defined tip-sample distance of the order of 10 nm within better than +/- 0.4 nm precision throughout the measurement even in the presence of energy dissipative processes, and is adequate for single-passage non-contact operation in vacuum. The cantilever is excited mechanically in a phase-locked loop to oscillate at constant amplitude on its first flexural resonance mode. This frequency is modulated by an electrostatic force gradient generated by tip-sample bias oscillating from a few hundred Hz up to a few kHz. The sum of the side bands’ amplitudes is a proxy for the tip-sample distance and can be used for tip-sample distance control. This method can also be extended to other scanning probe microscopy techniques.

  18. The transition from natural convection to thermomagnetic convection of a magnetic fluid in a non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Szabo, Peter S. B.; Früh, Wolf-Gerrit

    2018-02-01

    Magnetic fluid flow and heat transfer by natural and thermomagnetic convection was studied numerically in a square enclosure. The aim was to investigate the transition from natural convection to thermomagnetic convection by exploring situations where buoyancy and the Kelvin body force would be opposing each other such that the magnetic effects would in some cases be the dominant factor throughout the domain and in other cases only in a part of the fluid. The numerical model coupled the solution of the magnetostatic field equation with the heat and fluid flow equations to simulate the fluid flow under a realistic magnetic field generated by a permanent magnet. The results suggest that the domain of influence over the flow field is largely aligned with the domain of dominance of the respective driving force. The result is that the transition from a single buoyancy-driven convection cell to a single thermomagnetically driven cell is via a two-cell structure and that the local effect on the flow field leads to a global effect on the heat transfer with a minimum of the Nusselt number in the transition region.

  19. van der Waals three-body force shell model (VTSM) for the lattice dynamical studies of thallous bromide

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarvesh K.; Pandey, L. K.; Shukla, Lal Ji; Upadhyaya, K. S.

    2009-12-01

    The van der Waals three-body force shell model (VTSM) has been developed by modifying the three-body force shell model (TSM) for the lattice dynamics of ionic crystals with cesium chloride (CsCl) structure. This new model incorporates van der Waals interactions along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of a rigid shell model (RSM). In the present paper, VTSM has been used to study the lattice dynamics of thallous bromide (TlBr), from which adequacy of VTSM has been established. A comparative study of the dynamical behaviour of TlBr has also been done between the present model and TSM, the model over which modification has been made to obtain the present model VTSM. Good agreement has been observed between the theoretical and experimental results, which give confidence that it is an appropriate model for the complete description of ionic crystals with CsCl structure.

  20. Micrometric periodic assembly of magnetotactic bacteria and magnetic nanoparticles using audio tapes

    NASA Astrophysics Data System (ADS)

    Godoy, M.; Moreno, A. J.; Jorge, G. A.; Ferrari, H. J.; Antonel, P. S.; Mietta, J. L.; Ruiz, M.; Negri, R. M.; Pettinari, M. J.; Bekeris, V.

    2012-02-01

    We report micrometric periodic assembly of live and dead magnetotactic bacteria, Magnetospirillum magneticum AMB-1, which synthesize chains of magnetic nanoparticles inside their bodies, and of superparamagnetic Fe3O4 and ferromagnetic CoFe2O4 nanoparticles in aqueous suspensions using periodically magnetized audio tapes. The distribution of the stray magnetic field at the surface of the tapes was determined analytically and experimentally by magneto-optic imaging. Calculations showed that the magnetic field close to the tape surface was of the order of 100 mT, and the magnetic field gradient was larger than 1 T mm-1. Drops of aqueous solutions were deposited on the tapes, and bacteria and particles were trapped at locations where magnetic energy is minimized, as observed using conventional optical microscopy. Suspensions of M. magneticum AMB-1 treated with formaldehyde and kanamycin were studied, and patterns of trapped dead bacteria indicated that magnetic forces dominate over self-propelling forces in these experiments, in accordance with calculated values. The behavior of the different types of samples is discussed.

  1. May the Magnetic Force Be with You

    ERIC Educational Resources Information Center

    Wilcox, Jesse; Richey, Lindsey R.

    2012-01-01

    Although most elementary students have had experiences with magnets, they generally have misconceptions about magnetism (Driver et al. 1994; Burgoon, Heddle, and Duran 2010). For example, students may think magnets can attract all metals or that larger magnets are stronger than smaller magnets. Students often confuse magnets with magnetic…

  2. Magnetically Induced Rotating Rayleigh-Taylor Instability.

    PubMed

    Scase, Matthew M; Baldwin, Kyle A; Hill, Richard J A

    2017-03-03

    Classical techniques for investigating the Rayleigh-Taylor instability include using compressed gasses 1 , rocketry 2 or linear electric motors 3 to reverse the effective direction of gravity, and accelerate the lighter fluid toward the denser fluid. Other authors e.g. 4 , 5 , 6 have separated a gravitationally unstable stratification with a barrier that is removed to initiate the flow. However, the parabolic initial interface in the case of a rotating stratification imposes significant technical difficulties experimentally. We wish to be able to spin-up the stratification into solid-body rotation and only then initiate the flow in order to investigate the effects of rotation upon the Rayleigh-Taylor instability. The approach we have adopted here is to use the magnetic field of a superconducting magnet to manipulate the effective weight of the two liquids to initiate the flow. We create a gravitationally stable two-layer stratification using standard flotation techniques. The upper layer is less dense than the lower layer and so the system is Rayleigh-Taylor stable. This stratification is then spun-up until both layers are in solid-body rotation and a parabolic interface is observed. These experiments use fluids with low magnetic susceptibility, |χ| ~ 10 -6 - 10 -5 , compared to a ferrofluids. The dominant effect of the magnetic field applies a body-force to each layer changing the effective weight. The upper layer is weakly paramagnetic while the lower layer is weakly diamagnetic. When the magnetic field is applied, the lower layer is repelled from the magnet while the upper layer is attracted towards the magnet. A Rayleigh-Taylor instability is achieved with application of a high gradient magnetic field. We further observed that increasing the dynamic viscosity of the fluid in each layer, increases the length-scale of the instability.

  3. Effects of aging time and temperature of Fe-1wt.%Cu on magnetic Barkhausen noise and FORC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Muad; Cao, Yue; Edwards, Danny J.

    Magnetic Barkhausen noise (MBN), hysteresis measurements, first order reversal curves (FORC), Vickers microhardness, and Transmission Electron Microscopy (TEM) analyses were performed on Fe-1wt.%Cu (Fe-Cu) samples isothermally aged at 700°C for 0.5 – 25 hours to obtain samples with different sized Cu precipitates and dislocation structures. Fe-Cu is used to simulate the thermal and irradiation-induced defects in copper-containing nuclear reactor materials such as cooling system pipes and pressure vessel materials. The sample series showed an initial increase followed by a decrease in hardness and coercivity with aging time, which is explained by Cu precipitates formation and growth as observed by TEMmore » measurements. Further, the MBN envelope showed a continuous decrease in its magnitude and the appearance of a second peak with aging. Also, FORC diagrams showed multiple peaks whose intensity and location changed for different aging time. The changes in FORC diagrams are attributed to combined changes of the magnetic behavior due to Cu precipitate characteristics and dislocation structure. A second series of samples aged at 850°C, which is above the solid solution temperature of Fe-Cu, was studied to isolate the effects of dislocations. These samples showed a continuous decrease in MBN amplitude with aging time although the coercivity and hardness did not change significantly. The decrease of MBN amplitude and the appearance of the second MBN envelope peak are attributed to the changes in dislocation density and structure. This study shows that the effect of dislocations on MBN and FORC of Fe-Cu materials can vary significantly and should be considered in interpreting magnetic signatures.« less

  4. Constraining screened fifth forces with the electron magnetic moment

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Davis, Anne-Christine; Elder, Benjamin; Wong, Leong Khim

    2018-04-01

    Chameleon and symmetron theories serve as archetypal models for how light scalar fields can couple to matter with gravitational strength or greater, yet evade the stringent constraints from classical tests of gravity on Earth and in the Solar System. They do so by employing screening mechanisms that dynamically alter the scalar's properties based on the local environment. Nevertheless, these do not hide the scalar completely, as screening leads to a distinct phenomenology that can be well constrained by looking for specific signatures. In this work, we investigate how a precision measurement of the electron magnetic moment places meaningful constraints on both chameleons and symmetrons. Two effects are identified: First, virtual chameleons and symmetrons run in loops to generate quantum corrections to the intrinsic value of the magnetic moment—a common process widely considered in the literature for many scenarios beyond the Standard Model. A second effect, however, is unique to scalar fields that exhibit screening. A scalar bubblelike profile forms inside the experimental vacuum chamber and exerts a fifth force on the electron, leading to a systematic shift in the experimental measurement. In quantifying this latter effect, we present a novel approach that combines analytic arguments and a small number of numerical simulations to solve for the bubblelike profile quickly for a large range of model parameters. Taken together, both effects yield interesting constraints in complementary regions of parameter space. While the constraints we obtain for the chameleon are largely uncompetitive with those in the existing literature, this still represents the tightest constraint achievable yet from an experiment not originally designed to search for fifth forces. We break more ground with the symmetron, for which our results exclude a large and previously unexplored region of parameter space. Central to this achievement are the quantum correction terms, which are able to

  5. The RiSE climbing robot: body and leg design

    NASA Astrophysics Data System (ADS)

    Saunders, A.; Goldman, D. I.; Full, R. J.; Buehler, M.

    2006-05-01

    The RiSE robot is a biologically inspired, six legged climbing robot, designed for general mobility in scansorial (vertical walls, horizontal ledges, ground level) environments. It exhibits ground reaction forces that are similar to animal climbers and does not rely on suction, magnets or other surface-dependent specializations to achieve adhesion and shear force. We describe RiSE's body and leg design as well as its electromechanical, communications and computational infrastructure. We review design iterations that enable RiSE to climb 90° carpeted, cork covered and (a growing range of) stucco surfaces in the quasi-static regime.

  6. Micromachined piconewton force sensor for biophysics investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Steven J.; Thayer, Gayle E.; Corwin, Alex D.

    2006-10-23

    We describe a micromachined force sensor that is able to measure forces as small as 1 pN in both air and water. First, we measured the force field produced by an electromagnet on individual 2.8 {mu}m magnetic beads glued to the sensor. By repeating with 11 different beads, we measured a 9% standard deviation in saturation magnetization. We next demonstrated that the sensor was fully functional when immersed in physiological buffer. These results show that the force sensors can be useful for magnetic force calibration and also for measurement of biophysical forces on chip.

  7. Dynamics of a rigid body in an inhomogenous force field

    NASA Astrophysics Data System (ADS)

    Resch, Andreas; Laemmerzahl, Claus; Lorek, Dennis; Schaffer, Isabell

    Extended rigid bodies do not move on geodesics but couple to the space-time curvature. We discuss this effect at the Newtonian level where the deviation from the ordinary Keplerian orbits occurs in two ways: we obtain an additional force in the equation of motion for the center-of-mass and a torque acting on the rotational degrees of freedom. We give a survey of the dynamics for various initial conditions. We discuss whether these modifications of the equations of motion can explain the so-called flyby anomaly. In particular, the behavior of satellites during a flyby is studied and a comparison with the flyby anomaly of Galileo, NEAR, Cassini and Rosetta is made.

  8. Solar wind interaction with small bodies. 2: What can Galileo's detection of magnetic rotations tell us about Gaspra and Ida

    NASA Technical Reports Server (NTRS)

    Kivelson, M. G.; Wang, Z.; Joy, S.; Khurana, K. K.; Polanskey, C.; Southwood, D. J.; Walker, R. J.

    1995-01-01

    As the Galileo spacecraft passed the asteroids Gaspra in 1990 and Ida in 1993, the magnetometer recorded changes in the solar wind magnetic field that we associate with the presence of the nearby body. This paper focuses on the types of interactions that can produce perturbations in the solar wind. We have suggested that the interaction at Gaspra is consistent with expectations of flow diversion by a magnetic dipole moment and an associated 'magnetosphere' whose scale size is much larger than the diameter of the solid body. The conditions for the Ida flyby leave more room for ambiguity. The observations could plausibly be related to either interaction with a magnetized body or with a conducting body. We will report on details of the observations that may enable us to distinguish between the different types of interaction and to provide quantitative estimates of the physical properties of the asteroids themselves.

  9. One-Piece Force-Transducer Body

    NASA Technical Reports Server (NTRS)

    Meyer, R. A.

    1986-01-01

    Rugged unit designed to operate in severe environment. Forcetransducer body designed for measurement of loads on specimens tested in hydrogen gas at temperatures up to 2,000 degree F (1,090 degree C). Body has symmetrical radial-shear-beam configuration and machined in one piece from bar stock.

  10. Substrate effect on the magnetic microstructure of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films studied by magnetic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desfeux, R.; Bailleul, S.; Da Costa, A.

    2001-06-04

    Colossal magnetoresistive La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films have been grown under tensile strains on (100)-SrTiO{sub 3} substrates and compressive strains on (100)-LaAlO{sub 3} and (110)-NdGaO{sub 3} substrates by pulsed laser deposition. Using magnetic force microscopy (MFM), a {open_quotes}feather-like{close_quotes} magnetic pattern, characteristic of films with an in-plane magnetization, is observed for films deposited on both SrTiO{sub 3} and NdGaO{sub 3} while a {open_quotes}bubble{close_quotes} magnetic pattern, typical of films with an out-of-plane magnetization, is recorded for LaAlO{sub 3}. We show that the shape of the magnetic pattern imaged by MFM is fully correlated to the easy direction of the magnetization inmore » the film. {copyright} 2001 American Institute of Physics.« less

  11. Adaptable setups for magnetic drug targeting in human muscular arteries: Design and implementation

    NASA Astrophysics Data System (ADS)

    Hajiaghajani, Amirhossein; Hashemi, Soheil; Abdolali, Ali

    2017-09-01

    Magnetic drug targeting has been used to steer magnetic therapeutic agents and has received much attention for capillaries and human brain arteries. In this paper, we focus on noninvasive targeting of nanoparticles in muscular arteries, in where the vessel diameter and blood flow are much challengingly higher than brain capillaries. We aim to design a low intensity magnetic field which avoids potential side effects on blood cells while steers particles with high targeting rate. The setup design procedure is considerably flexible to be used in a wide variety of large vessels. Using particle tracing, a new method is proposed to connect the geometry of the vessel under the action of targeting to the required magnetic force. Specifications of the coil which is placed outside the body are derived based on this required force. Mutual effects of coil dimensions on the produced magnetic force are elaborated and summarized in a design flowchart to be used for arbitrary muscular vessel sizes. The performance of the optimized coil is validated by in vitro experiments and it is shown that particles are steered with the average efficiency of 80.2% for various conditions.

  12. Comparison of Body Composition Metrics for United States Air Force Airmen.

    PubMed

    Griffith, J R; White, Edward D; Fass, R David; Lucas, Brandon M

    2018-03-01

    The United States Air Force currently uses AFI 36-2905 for cardiovascular fitness standards and evaluation. Regarding its fitness test, the Air Force considers waist circumference (WC) twice as important as push-ups or sit-ups. Because of this weighting, one assumes that the Air Force considers WC relatively correlated with overall fitness or at least cardiovascular fitness. To our knowledge, the Air Force has not considered on a large scale how body mass index (BMI), height-to-weight ratio (H-W), or waist-to-height ratio (WHtR) compares with WC with respect to its fitness test. Using a 5.38 million record database from the Air Force Fitness Management System, we evaluated how WC, BMI, WHtR, and H-W correlate with fitness as assessed by the 1.5-mile run in addition to total fitness, which incorporates the 1.5-mile run time, number of push-ups and sit-ups. As this previously collected data were anonymous to us, this study fell under the definition of exempt status and approved by the institutional review board overseeing Joint Base San Antonio. For each waist metric, we performed a simple ordinary least squares regression to ascertain the correlation between that particular metric and either run time or total fitness; when incorporating more than one explanatory variable or covariate (to control for age and/or sex), we performed multiple ordinary least squares regressions. Due to the large database size and to mitigate against a type I error, we used an alpha of 0.001 for all statistical hypothesis tests. Approximately 18% of the 5.38 million records belonged to women. With respect to sex differences, males appeared noticeably faster and performed more push-ups on average than females. The number of sit-ups completed was more comparable, with males having a slight advantage. Males also appeared to have larger WC, BMI, H-W, and WHtR measurements. We compared the ordinary least squares results between WC, H-W, WHtR, and BMI and ranked them by R2. Models varied in R2

  13. Differential force balances during levitation

    NASA Astrophysics Data System (ADS)

    Todd, Paul

    The simplest arithmetic of inertial, buoyant, magnetic and electrokinetic levitation is explored in the context of a model living system with “acceleration-sensitive structures” in which motion, if allowed, produces a biological effect. The simple model is a finite-sized object enclosed within another finite-sized object suspended in an outer fluid (liquid or vapor) medium. The inner object has density and electrical and magnetic properties quantitatively different from those of the outer object and the medium. In inertial levitation (“weightlessness”) inertial accelerations are balanced, and the forces due to them are canceled in accordance with Newton’s third law. In the presence of inertial acceleration (gravity, centrifugal) motionlessness depends on a balance between the levitating force and the inertial force. If the inner and outer objects differ in density one or the other will be subjected to an unbalanced force when one object is levitated by any other force (buoyant, magnetic, electrokinetic). The requirements for motionlessness of the internal object in the presence of a levitating force are equality of density in the case of buoyant levitation, equality of magnetic susceptibility in the case of magnetic levitation, and equality of zeta potential and dielectric constant in the case of electrokinetic levitation. Examples of internal “acceleration-sensitive structures” are cellular organelles and the organs of advanced plants and animals. For these structures fundamental physical data are important in the interpretation of the effects of forces used for levitation.

  14. Magnetic field effects on the vestibular system: calculation of the pressure on the cupula due to ionic current-induced Lorentz force

    NASA Astrophysics Data System (ADS)

    Antunes, A.; Glover, P. M.; Li, Y.; Mian, O. S.; Day, B. L.

    2012-07-01

    Large static magnetic fields may be employed in magnetic resonance imaging (MRI). At high magnetic field strengths (usually from about 3 T and above) it is possible for humans to perceive a number of effects. One such effect is mild vertigo. Recently, Roberts et al (2011 Current Biology 21 1635-40) proposed a Lorentz-force mechanism resulting from the ionic currents occurring naturally in the endolymph of the vestibular system. In the present work a more detailed calculation of the forces and resulting pressures in the vestibular system is carried out using a numerical model. Firstly, realistic 3D finite element conductivity and fluid maps of the utricle and a single semi-circular canal containing the current sources (dark cells) and sinks (hair cells) of the utricle and ampulla were constructed. Secondly, the electrical current densities in the fluid are calculated. Thirdly, the developed Lorentz force is used directly in the Navier-Stokes equation and the trans-cupular pressure is computed. Since the driving force field is relatively large in comparison with the advective acceleration, we demonstrate that it is possible to perform an approximation in the Navier-Stokes equations that reduces the problem to solving a simpler Poisson equation. This simplification allows rapid and easy calculation for many different directions of applied magnetic field. At 7 T a maximum cupula pressure difference of 1.6 mPa was calculated for the combined ampullar (0.7 µA) and utricular (3.31 µA) distributed current sources, assuming a hair-cell resting current of 100 pA per unit. These pressure values are up to an order of magnitude lower than those proposed by Roberts et al using a simplistic model and calculation, and are in good agreement with the estimated pressure values for nystagmus velocities in caloric experiments. This modeling work supports the hypothesis that the Lorentz force mechanism is a significant contributor to the perception of magnetic field induced vertigo.

  15. Magnetic field effects on the vestibular system: calculation of the pressure on the cupula due to ionic current-induced Lorentz force.

    PubMed

    Antunes, A; Glover, P M; Li, Y; Mian, O S; Day, B L

    2012-07-21

    Large static magnetic fields may be employed in magnetic resonance imaging (MRI). At high magnetic field strengths (usually from about 3 T and above) it is possible for humans to perceive a number of effects. One such effect is mild vertigo. Recently, Roberts et al (2011 Current Biology 21 1635-40) proposed a Lorentz-force mechanism resulting from the ionic currents occurring naturally in the endolymph of the vestibular system. In the present work a more detailed calculation of the forces and resulting pressures in the vestibular system is carried out using a numerical model. Firstly, realistic 3D finite element conductivity and fluid maps of the utricle and a single semi-circular canal containing the current sources (dark cells) and sinks (hair cells) of the utricle and ampulla were constructed. Secondly, the electrical current densities in the fluid are calculated. Thirdly, the developed Lorentz force is used directly in the Navier-Stokes equation and the trans-cupular pressure is computed. Since the driving force field is relatively large in comparison with the advective acceleration, we demonstrate that it is possible to perform an approximation in the Navier-Stokes equations that reduces the problem to solving a simpler Poisson equation. This simplification allows rapid and easy calculation for many different directions of applied magnetic field. At 7 T a maximum cupula pressure difference of 1.6 mPa was calculated for the combined ampullar (0.7 µA) and utricular (3.31 µA) distributed current sources, assuming a hair-cell resting current of 100 pA per unit. These pressure values are up to an order of magnitude lower than those proposed by Roberts et al using a simplistic model and calculation, and are in good agreement with the estimated pressure values for nystagmus velocities in caloric experiments. This modeling work supports the hypothesis that the Lorentz force mechanism is a significant contributor to the perception of magnetic field induced vertigo.

  16. Dynamo Induced by Time-periodic Force

    NASA Astrophysics Data System (ADS)

    Wei, Xing

    2018-03-01

    To understand the dynamo driven by time-dependent flow, e.g., turbulence, we investigate numerically the dynamo induced by time-periodic force in rotating magnetohydrodynamic flow and focus on the effect of force frequency on the dynamo action. It is found that the dynamo action depends on the force frequency. When the force frequency is near resonance the force can drive dynamo, but when it is far away from resonance dynamo fails. In the frequency range near resonance to support dynamo, the force frequency at resonance induces a weak magnetic field and magnetic energy increases as the force frequency deviates from the resonant frequency. This is opposite to the intuition that a strong flow at resonance will induce a strong field. It is because magnetic field nonlinearly couples with fluid flow in the self-sustained dynamo and changes the resonance of driving force and inertial wave.

  17. TEMPORAL AND SPATIAL RELATIONSHIP OF FLARE SIGNATURES AND THE FORCE-FREE CORONAL MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thalmann, J. K.; Veronig, A.; Su, Y., E-mail: julia.thalmann@uni-graz.at

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photosphericmore » vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.« less

  18. Permanent magnet flux-biased magnetic actuator with flux feedback

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  19. Current evaluation of hydraulics to replace the cable force transmission system for body-powered upper-limb prostheses.

    PubMed

    LeBlanc, M

    1990-01-01

    Present body-powered upper-limb prostheses use a cable control system employing World War II aircraft technology to transmit force from the body to the prosthesis for operation. The cable and associated hardware are located outside the prosthesis. Because individuals with arm amputations want prostheses that are natural looking with a smooth, soft outer surface, a design and development project was undertaken to replace the cable system with hydraulics located inside the prosthesis. Three different hydraulic transmission systems were built for evaluation, and other possibilities were explored. Results indicate that a hydraulic force transmission system remains an unmet challenge as a practical replacement for the cable system. The author was unable to develop a hydraulic system that meets the necessary dynamic requirements and is acceptable in size and appearance.

  20. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    ERIC Educational Resources Information Center

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  1. Drawing and Using Free Body Diagrams: Why It May Be Better Not to Decompose Forces

    ERIC Educational Resources Information Center

    Aviani, Ivica; Erceg, Nataša; Mešic, Vanes

    2015-01-01

    In this study we investigated how two different approaches to drawing free body diagrams influence the development of students' understanding of Newton's laws, including their ability to identify real forces. For this purpose we developed a 12-item two-tier multiple choice survey and conducted a quasiexperiment. This experiment included two groups…

  2. Force Analysis and Energy Operation of Chaotic System of Permanent-Magnet Synchronous Motor

    NASA Astrophysics Data System (ADS)

    Qi, Guoyuan; Hu, Jianbing

    2017-12-01

    The disadvantage of a nondimensionalized model of a permanent-magnet synchronous Motor (PMSM) is identified. The original PMSM model is transformed into a Kolmogorov system to aid dynamic force analysis. The vector field of the PMSM is analogous to the force field including four types of torque — inertial, internal, dissipative, and generalized external. Using the feedback thought, the error torque between external torque and dissipative torque is identified. The pitchfork bifurcation of the PMSM is performed. Four forms of energy are identified for the system — kinetic, potential, dissipative, and supplied. The physical interpretations of the decomposition of force and energy exchange are given. Casimir energy is stored energy, and its rate of change is the error power between the dissipative energy and the energy supplied to the motor. Error torque and error power influence the different types of dynamic modes. The Hamiltonian energy and Casimir energy are compared to find the function of each in producing the dynamic modes. A supremum bound for the chaotic attractor is proposed using the error power and Lagrange multiplier.

  3. Avulsed Nasoenteric Bridle System Magnet as an Intranasal Foreign Body.

    PubMed

    Puricelli, Michael D; Newberry, Christopher Ian; Gov-Ari, Eliav

    2016-02-01

    Nasoenteric tubes provide short-term nutrition support to patients unable to take an adequate oral diet. Bridling systems may be used to secure tubes to guard against displacement. We present the first case of an avulsed magnet from a bridling system to raise awareness of this potential complication. The primary methods of securing a nasogastric tube are reviewed, and comparative assessment of the 3 main systems is presented. Diagnosis and management of nasal foreign bodies relevant to this case are reviewed and prevention/safety considerations discussed. © 2015 American Society for Parenteral and Enteral Nutrition.

  4. Quantum Monte Carlo calculations of neutron matter with chiral three-body forces

    DOE PAGES

    Tews, I.; Gandolfi, Stefano; Gezerlis, A.; ...

    2016-02-02

    Chiral effective field theory (EFT) enables a systematic description of low-energy hadronic interactions with controlled theoretical uncertainties. For strongly interacting systems, quantum Monte Carlo (QMC) methods provide some of the most accurate solutions, but they require as input local potentials. We have recently constructed local chiral nucleon-nucleon (NN) interactions up to next-to-next-to-leading order (N 2LO). Chiral EFT naturally predicts consistent many-body forces. In this paper, we consider the leading chiral three-nucleon (3N) interactions in local form. These are included in auxiliary field diffusion Monte Carlo (AFDMC) simulations. We present results for the equation of state of neutron matter and formore » the energies and radii of neutron drops. Specifically, we study the regulator dependence at the Hartree-Fock level and in AFDMC and find that present local regulators lead to less repulsion from 3N forces compared to the usual nonlocal regulators.« less

  5. Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2010-01-01

    The Spiral Magnetic Motor, which can accelerate a magnetized rotor through 90% of its cycle with only permanent magnets, was an energy milestone for the 20th century patents by Kure Tekkosho in the 1970's. However, the Japanese company used old ferrite magnets which are relatively weak and an electrically-powered coil to jump start every cycle, which defeated the primary benefit of the permanent magnet motor design. The principle of applying an inhomogeneous, anisotropic magnetic field gradient force Fz = μ cos φ dB/dz, with permanent magnets is well-known in physics, e.g., Stern-Gerlach experiment, which exploits the interaction of a magnetic moment with the aligned electron spins of magnetic domains. In this case, it is applied to dB/dθ in polar coordinates, where the force Fθ depends equally on the magnetic moment, the cosine of the angle between the magnetic moment and the field gradient. The radial magnetic field increases in strength (in the attractive mode) or decreases in strength (in the repulsive mode) as the rotor turns through one complete cycle. An electromagnetic pulsed switching has been historically used to help the rotor traverse the gap (detent) between the end of the magnetic stator arc and the beginning (Kure Tekko, 1980). However, alternative magnetic pulse and switching designs have been developed, as well as strategic eddy current creation. This work focuses on the switching mechanism, novel magnetic pulse methods and advantageous angular momentum improvements. For example, a collaborative effort has begun with Toshiyuki Ueno (University of Tokyo) who has invented an extremely low power, combination magnetostrictive-piezoelectric (MS-PZT) device for generating low frequency magnetic fields and consumes "zero power" for static magnetic field production (Ueno, 2004 and 2007a). Utilizing a pickup coil such as an ultra-miniature millihenry inductor with a piezoelectric actuator or simply Wiegand wire geometry, it is shown that the necessary

  6. Measuring localized viscoelasticity of the vitreous body using intraocular microprobes.

    PubMed

    Pokki, Juho; Ergeneman, Olgaç; Sevim, Semih; Enzmann, Volker; Torun, Hamdi; Nelson, Bradley J

    2015-10-01

    Vitrectomy is a standard ophthalmic procedure to remove the vitreous body from the eye. The biomechanics of the vitreous affects its duration (by changing the removal rate) and the mechanical forces transmitted via the vitreous on the surrounding tissues during the procedure. Biomechanical characterization of the vitreous is essential for optimizing the design and control of instruments that operate within the vitreous for improved precision, safety, and efficacy. The measurements are carried out using a magnetic microprobe inserted into the vitreous, a method known as magnetic microrheology. The location of the probe is tracked by a microscope/camera while magnetic forces are exerted wirelessly by applied magnetic fields. In this work, in vitro artificial vitreous, ex vivo human vitreous and ex vivo porcine vitreous were characterized. In addition, in vivo rabbit measurements were performed using a suturelessly injected probe. Measurements indicate that viscoelasticity parameters of the ex vivo human vitreous are an order of magnitude different from those of the ex vivo porcine vitreous. The in vivo intra-operative measurements show typical viscoelastic behavior of the vitreous with a lower compliance than the ex vivo measurements. The results of the magnetic microrheology measurements were validated with those obtained by a standard atomic force microscopy (AFM) method and in vitro artificial vitreous. This method allows minimally-invasive characterization of localized mechanical properties of the vitreous in vitro, ex vivo, and in vivo. A better understanding of the characteristics of the vitreous can lead to improvements in treatments concerning vitreal manipulation such as vitrectomy.

  7. Enhancement and sign change of magnetic correlations in a driven quantum many-body system

    NASA Astrophysics Data System (ADS)

    Görg, Frederik; Messer, Michael; Sandholzer, Kilian; Jotzu, Gregor; Desbuquois, Rémi; Esslinger, Tilman

    2018-01-01

    Periodic driving can be used to control the properties of a many-body state coherently and to realize phases that are not accessible in static systems. For example, exposing materials to intense laser pulses makes it possible to induce metal-insulator transitions, to control magnetic order and to generate transient superconducting behaviour well above the static transition temperature. However, pinning down the mechanisms underlying these phenomena is often difficult because the response of a material to irradiation is governed by complex, many-body dynamics. For static systems, extensive calculations have been performed to explain phenomena such as high-temperature superconductivity. Theoretical analyses of driven many-body Hamiltonians are more challenging, but approaches have now been developed, motivated by recent observations. Here we report an experimental quantum simulation in a periodically modulated hexagonal lattice and show that antiferromagnetic correlations in a fermionic many-body system can be reduced, enhanced or even switched to ferromagnetic correlations (sign reversal). We demonstrate that the description of the many-body system using an effective Floquet-Hamiltonian with a renormalized tunnelling energy remains valid in the high-frequency regime by comparing the results to measurements in an equivalent static lattice. For near-resonant driving, the enhancement and sign reversal of correlations is explained by a microscopic model of the system in which the particle tunnelling and magnetic exchange energies can be controlled independently. In combination with the observed sufficiently long lifetimes of the correlations in this system, periodic driving thus provides an alternative way of investigating unconventional pairing in strongly correlated systems experimentally.

  8. Enhancement and sign change of magnetic correlations in a driven quantum many-body system.

    PubMed

    Görg, Frederik; Messer, Michael; Sandholzer, Kilian; Jotzu, Gregor; Desbuquois, Rémi; Esslinger, Tilman

    2018-01-24

    Periodic driving can be used to control the properties of a many-body state coherently and to realize phases that are not accessible in static systems. For example, exposing materials to intense laser pulses makes it possible to induce metal-insulator transitions, to control magnetic order and to generate transient superconducting behaviour well above the static transition temperature. However, pinning down the mechanisms underlying these phenomena is often difficult because the response of a material to irradiation is governed by complex, many-body dynamics. For static systems, extensive calculations have been performed to explain phenomena such as high-temperature superconductivity. Theoretical analyses of driven many-body Hamiltonians are more challenging, but approaches have now been developed, motivated by recent observations. Here we report an experimental quantum simulation in a periodically modulated hexagonal lattice and show that antiferromagnetic correlations in a fermionic many-body system can be reduced, enhanced or even switched to ferromagnetic correlations (sign reversal). We demonstrate that the description of the many-body system using an effective Floquet-Hamiltonian with a renormalized tunnelling energy remains valid in the high-frequency regime by comparing the results to measurements in an equivalent static lattice. For near-resonant driving, the enhancement and sign reversal of correlations is explained by a microscopic model of the system in which the particle tunnelling and magnetic exchange energies can be controlled independently. In combination with the observed sufficiently long lifetimes of the correlations in this system, periodic driving thus provides an alternative way of investigating unconventional pairing in strongly correlated systems experimentally.

  9. Asymptotic forms for the energy of force-free magnetic field ion figurations of translational symmetry

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Antiochos, S. K.; Klinchuk, J. A.; Roumeliotis, G.

    1994-01-01

    It is known from computer calculations that if a force-free magnetic field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution and the energy of the field increases progressively. For configurations of translationalsymmetry, it has been found empirically that the energy tends asymptotically to a certain functional form. It is here shown that analysis of a simple model of the asymptotic form of force-free fields of translational symmetry leads to and therefore justifies this functional form. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.

  10. DC magnetic fields from the human body generally: a historical overview.

    PubMed

    Cohen, D

    2004-11-30

    A review is presented of the earliest dc magnetic field (dcMF) measurements, made between 1969 and 1983, due to natural currents in the body. The measurements were essentially a mapping over the whole body, except for the brain (dcMEG), which was omitted because of interfering non-neural sources in the head. This mapping can be useful today in interpreting new measurements over the body, especially dcMEG data, where the new authors assume only a neural source in the head; our mapping suggests that this assumption may be in error. Briefly, in our mapping, dcMFs were found over almost the entire body; they were larger over the limbs and head than over the torso proper except over the abdomen, where it was usually the largest in the body Some of the sources were: 1. A strong and complicated reflex in the abdomen due to drinking cold water, suggesting that other dcMF reflexes might be common in the body. 2. Long muscle fibers in the limbs, suggesting sources also in scalp muscles. 3. Hair follicles due to touching the scalp; these sources could also exist, unrecognized, in recent dcMEG whole-head measurements. 4. Injury currents from the ischemic human heart, suggesting dcMFs could arise from injured muscle in the body generally. One major mechanism for producing dcMFs appeared to be a change in the potassium ion concentration in the vicinity of long excitable fibers. Overall, we concluded that the dcMFs were complicated, and it may be difficult to identify each source, especially in the head.

  11. Nonlinear force-free field modeling of the solar magnetic carpet and comparison with SDO/HMI and Sunrise/IMAX observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitta, L. P.; Kariyappa, R.; Van Ballegooijen, A. A.

    2014-10-01

    In the quiet solar photosphere, the mixed polarity fields form a magnetic carpet that continuously evolves due to dynamical interaction between the convective motions and magnetic field. This interplay is a viable source to heat the solar atmosphere. In this work, we used the line-of-sight (LOS) magnetograms obtained from the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory, and the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory, as time-dependent lower boundary conditions, to study the evolution of the coronal magnetic field. We use a magneto-frictional relaxation method, including hyperdiffusion, to produce a time series of three-dimensional nonlinearmore » force-free fields from a sequence of photospheric LOS magnetograms. Vertical flows are added up to a height of 0.7 Mm in the modeling to simulate the non-force-freeness at the photosphere-chromosphere layers. Among the derived quantities, we study the spatial and temporal variations of the energy dissipation rate and energy flux. Our results show that the energy deposited in the solar atmosphere is concentrated within 2 Mm of the photosphere and there is not sufficient energy flux at the base of the corona to cover radiative and conductive losses. Possible reasons and implications are discussed. Better observational constraints of the magnetic field in the chromosphere are crucial to understand the role of the magnetic carpet in coronal heating.« less

  12. Does Bohm's Quantum Force Have a Classical Origin?

    NASA Astrophysics Data System (ADS)

    Lush, David C.

    2016-08-01

    In the de Broglie-Bohm formulation of quantum mechanics, the electron is stationary in the ground state of hydrogenic atoms, because the quantum force exactly cancels the Coulomb attraction of the electron to the nucleus. In this paper it is shown that classical electrodynamics similarly predicts the Coulomb force can be effectively canceled by part of the magnetic force that occurs between two similar particles each consisting of a point charge moving with circulatory motion at the speed of light. Supposition of such motion is the basis of the Zitterbewegung interpretation of quantum mechanics. The magnetic force between two luminally-circulating charges for separation large compared to their circulatory motions contains a radial inverse square law part with magnitude equal to the Coulomb force, sinusoidally modulated by the phase difference between the circulatory motions. When the particles have equal mass and their circulatory motions are aligned but out of phase, part of the magnetic force is equal but opposite the Coulomb force. This raises a possibility that the quantum force of Bohmian mechanics may be attributable to the magnetic force of classical electrodynamics. It is further shown that relative motion between the particles leads to modulation of the magnetic force with spatial period equal to the de Broglie wavelength.

  13. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere under enhanced convection: RCM simulations combined with force-balance magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R. A.

    2010-12-01

    Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere-ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM) to investigate how the earthward penetration of convection electric field, and therefore plasma sheet population, depends on plasma sheet boundary conditions. Outer boundary conditions at r ~20 RE are a function of MLT and interplanetary conditions based on 11 years of Geotail data. In the previous simulations, Tsyganenko 96 magnetic field model (T96) was used so force balance between plasma pressure and magnetic fields was not maintained. We have now integrated the RCM with a magnetic field solver (Liu et al., 2006) to obtain the required force balance in the equatorial plane. We have run the self-consistent simulations under enhanced convection with different boundary conditions in which we kept different parameters (flux tube particle content, plasma pressure, plasma beta, or magnetic fields) at the outer boundary to be MLT-dependent but time independent. Different boundary conditions result in qualitatively similar plasma sheet profiles. The results show that magnetic field has a dawn dusk asymmetry with field lines being more stretched in the pre-midnight sector, due to relatively higher plasma pressure there. The asymmetry in the magnetic fields in turn affects the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. In comparison with results using the T96, plasma transport under self-consistent magnetic field results in proton and electron plasma sheet inner edges that are located in higher latitudes, weaker pressure gradients, and more efficient shielding of the near

  14. Anisotropy of magnetic susceptibility versus lattice- and shape-preferred orientation in the Lac Tio hemo-ilmenite ore body (Grenville province, Quebec)

    NASA Astrophysics Data System (ADS)

    Bolle, Olivier; Charlier, Bernard; Bascou, Jérôme; Diot, Hervé; McEnroe, Suzanne A.

    2014-08-01

    The Lac Tio hemo-ilmenite ore body crops out in the outer portion of the 1.06 Ga Lac Allard anorthosite, a member of the Havre-Saint-Pierre anorthosite suite from the Grenville province of North America. It is made up of ilmenitite (commonly with more than 95% hemo-ilmenite) associated with noritic lithologies and anorthosite. The present study compares the magnetic fabric of the ore body, as deduced from anisotropy of magnetic susceptibility (AMS) measurements, with the crystallographic and shape fabrics, obtained from lattice-preferred orientation (LPO) and shape-preferred orientation (SPO) measurements made using electron backscattered diffraction (EBSD) and 3D image analysis, respectively. Room-temperature hysteresis measurements, thermomagnetic curves and values of the bulk magnetic susceptibility reveal a magnetic mineralogy dominated by a mixed contribution of hemo-ilmenite and magnetite. The hemo-ilmenite grains display a LPO characterized by a strong preferred orientation of the basal (0001) plane of ilmenite along which hematite was exsolved. This LPO and the magnetic fabric fit well (angle between the crystallographic c-axis and the axis of minimum susceptibility ≤ ca. 15° for most samples), and the latter is thus strongly influenced by the hemo-ilmenite magneto-crystalline anisotropy. A magnetite SPO, concordant with the hemo-ilmenite LPO, may also influence and even dominate the magnetic fabric. The rock shape fabric is coaxial with the magnetic fabric that can thus be used to perform detailed structural mapping. Interpretation of the magnetic fabric and field structural data suggests that the Lac Tio ore body would be a sag point at the margin of the Lac Allard anorthosite, deformed by ballooning during the final stage of diapiric emplacement of the anorthosite body.

  15. Traveling Magnetic Field Applications for Vertical Bridgman Growth: Modeling and Experiment

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2004-01-01

    Traveling magnetic fields offer a direct control of the metallic melt meridional flow in long cylinders. It induces the Lorentz body force that can counteract with the buoyancy force induced by radial temperature non-uniformity. It can significantly offset a natural convection in the system, or it can even set up the flow in opposite direction, thus affecting the interface shape, the growth rate and macrosegregation. Results of our numerical modeling of the Vertical Bridgman crystal growth of InSb will be discussed. The experimental part of this investigation will address the effect of the applied traveling magnetic fields on the interface shape of InSb crystals. Specifics of the growth apparatus design for this research will be provided in details.

  16. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  17. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  18. Identification of high school students' ability level of constructing free body diagrams to solve restricted and structured response items in force matter

    NASA Astrophysics Data System (ADS)

    Rahmaniar, Andinisa; Rusnayati, Heni; Sutiadi, Asep

    2017-05-01

    While solving physics problem particularly in force matter, it is needed to have the ability of constructing free body diagrams which can help students to analyse every force which acts on an object, the length of its vector and the naming of its force. Mix method was used to explain the result without any special treatment to participants. The participants were high school students in first grade totals 35 students. The purpose of this study is to identify students' ability level of constructing free body diagrams in solving restricted and structured response items. Considering of two types of test, every student would be classified into four levels ability of constructing free body diagrams which is every level has different characteristic and some students were interviewed while solving test in order to know how students solve the problem. The result showed students' ability of constructing free body diagrams on restricted response items about 34.86% included in no evidence of level, 24.11% inadequate level, 29.14% needs improvement level and 4.0% adequate level. On structured response items is about 16.59% included no evidence of level, 23.99% inadequate level, 36% needs improvement level, and 13.71% adequate level. Researcher found that students who constructed free body diagrams first and constructed free body diagrams correctly were more successful in solving restricted and structured response items.

  19. A many-body dissipative particle dynamics study of forced water-oil displacement in capillary.

    PubMed

    Chen, Chen; Zhuang, Lin; Li, Xuefeng; Dong, Jinfeng; Lu, Juntao

    2012-01-17

    The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications. © 2011 American Chemical Society

  20. The health and cost implications of high body mass index in Australian defence force personnel.

    PubMed

    Peake, Jonathan; Gargett, Susan; Waller, Michael; McLaughlin, Ruth; Cosgrove, Tegan; Wittert, Gary; Nasveld, Peter; Warfe, Peter

    2012-06-19

    Frequent illness and injury among workers with high body mass index (BMI) can raise the costs of employee healthcare and reduce workforce maintenance and productivity. These issues are particularly important in vocational settings such as the military, which require good physical health, regular attendance and teamwork to operate efficiently. The purpose of this study was to compare the incidence of injury and illness, absenteeism, productivity, healthcare usage and administrative outcomes among Australian Defence Force personnel with varying BMI. Personnel were grouped into cohorts according to the following ranges for (BMI): normal (18.5 - 24.9 kg/m2; n = 197), overweight (25-29.9 kg/m2; n = 154) and obese (≥30 kg/m2) with restricted body fat (≤28% for females, ≤24% for males) (n = 148) and with no restriction on body fat (n = 180). Medical records for each individual were audited retrospectively to record the incidence of injury and illness, absenteeism, productivity, healthcare usage (i.e., consultation with medical specialists, hospital stays, medical investigations, prescriptions) and administrative outcomes (e.g., discharge from service) over one year. These data were then grouped and compared between the cohorts. The prevalence of injury and illness, cost of medical specialist consultations and cost of medical scans were all higher (p < 0.05) in both obese cohorts compared with the normal cohort. The estimated productivity losses from restricted work days were also higher (p < 0.05) in the obese cohort with no restriction on body fat compared with the normal cohort. Within the obese cohort, the prevalence of injury and illness, healthcare usage and productivity were not significantly greater in the obese cohort with no restriction on body fat compared with the cohort with restricted body fat. The number of restricted work days, the rate of re-classification of Medical Employment Classification and the rate of discharge from service were similar