Science.gov

Sample records for magnetic body forces

  1. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Technical Reports Server (NTRS)

    Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

    2003-01-01

    At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

  2. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Astrophysics Data System (ADS)

    Valles, James; Guevorkian, Karine; Wurzel, Samuel; Mihalusova, Mariana

    2003-03-01

    We have commissioned a superconducting solenoid based apparatus designed to exert strong magnetic body forces on biological specimens and other organic materials in ambient environmental conditions for extended periods. In its room temperature bore, it can produce a maximum magnetic field-field gradient product of 16 T^2-cm-1 which is sufficient to levitate frog embryos Xenopus Laevis[1]. We will discuss how we are applying these magnetic body forces to probe the known influences of gravitational forces on frog embryos and the swimming behavior of Paramecium Caudatum. In the process, we will describe a novel method for measuring the diamagnetic susceptibilities of specimens such as paramecia.

  3. Interaction Forces Between Multiple Bodies in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Joffe, Benjamin

    1996-01-01

    Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.

  4. Lorentz Body Force Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2003-01-01

    The Lorentz force induced by a traveling magnetic field (TMF) in a cylindrical container has been calculated. The force can be used to control flow in dectrically conducting melts and the direction of the magnetic field and resulting flow can be reversed. A TMF can be used to partially cancel flow driven by buoyancy. The penetration of the field into the cylinder decreases as the frequency increases, and there exists an optimal value of frequency for which the resulting force is a maximum. Expressions for the Lorentz force in the limiting cases of low frequency and infinite cylinder are also given and compared to the numerical calculations.

  5. The swim force as a body force

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John

    2015-11-01

    Net (as opposed to random) motion of active matter results from an average swim (or propulsive) force. It is shown that the average swim force acts like a body force - an internal body force [Yan and Brady, Soft Matter, DOI:10.1039/C5SM01318F]. As a result, the particle-pressure exerted on a container wall is the sum of the swim pressure [Takatori et al., Phys. Rev. Lett., 2014, 113, 028103] and the `weight' of the active particles. A continuum mechanical description is possible when variations occur on scales larger than the run length of the active particles and gives a Boltzmann-like distribution from a balance of the swim force and the swim pressure. Active particles may also display `action at a distance' and accumulate adjacent to (or be depleted from) a boundary without any external forces. In the momentum balance for the suspension - the mixture of active particles plus fluid - only external body forces appear.

  6. Magnetic force microscopy

    PubMed Central

    Passeri, Daniele; Dong, Chunhua; Reggente, Melania; Angeloni, Livia; Barteri, Mario; Scaramuzzo, Francesca A; De Angelis, Francesca; Marinelli, Fiorenzo; Antonelli, Flavia; Rinaldi, Federica; Marianecci, Carlotta; Carafa, Maria; Sorbo, Angela; Sordi, Daniela; Arends, Isabel WCE; Rossi, Marco

    2014-01-01

    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples at the nanoscale. Being a well established tool for the characterization of magnetic recording media, superconductors and magnetic nanomaterials, MFM is finding constantly increasing application in the study of magnetic properties of materials and systems of biological and biomedical interest. After reviewing these latter applications, three case studies are presented in which MFM is used to characterize: (i) magnetoferritin synthesized using apoferritin as molecular reactor; (ii) magnetic nanoparticles loaded niosomes to be used as nanocarriers for drug delivery; (iii) leukemic cells labeled using folic acid-coated core-shell superparamagnetic nanoparticles in order to exploit the presence of folate receptors on the cell membrane surface. In these examples, MFM data are quantitatively analyzed evidencing the limits of the simple analytical models currently used. Provided that suitable models are used to simulate the MFM response, MFM can be used to evaluate the magnetic momentum of the core of magnetoferritin, the iron entrapment efficiency in single vesicles, or the uptake of magnetic nanoparticles into cells. PMID:25050758

  7. Tunneling magnetic force microscopy

    NASA Technical Reports Server (NTRS)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  8. Magnetic human body communication.

    PubMed

    Park, Jiwoong; Mercier, Patrick P

    2015-01-01

    This paper presents a new human body communication (HBC) technique that employs magnetic resonance for data transfer in wireless body-area networks (BANs). Unlike electric field HBC (eHBC) links, which do not necessarily travel well through many biological tissues, the proposed magnetic HBC (mHBC) link easily travels through tissue, offering significantly reduced path loss and, as a result, reduced transceiver power consumption. In this paper the proposed mHBC concept is validated via finite element method simulations and measurements. It is demonstrated that path loss across the body under various postures varies from 10-20 dB, which is significantly lower than alternative BAN techniques.

  9. Pseudo force acting between bodies

    NASA Astrophysics Data System (ADS)

    Baruah, Abhinav Ray; Deva, Anish; Sarma, Arun

    It has been shown that a non-contact force acts between two macroscopic physical objects held close together, which is not associated with the gravitational and electrostatic force. An experiment was conducted with objects of different mass, material and geometry to find the magnitude and properties of this apparent or pseudo force. The order of magnitude was found to be 10-5 and it remained constant for all types of objects while only the coefficient increased as the distance between the objects reduced. It only started acting at small distances and failed to make a body move if it experienced static friction from any contact surface. The nature of the force was found to be attractive as well as repulsive. Due to gravitation being a solely attractive force, it was eliminated as a possible reason for the pseudo force. The experiment was performed twice, once by grounding the apparatus and then again without grounding. The order of the force remained the same for both cases. As the test objects were held by hand, they were grounded through the human body. Also, none of the objects used were in contact with each other for the duration of this work, preventing any contact electrification. Due to these factors, the force was not considered electrostatic in nature.

  10. Photoinduced magnetic force between nanostructures

    NASA Astrophysics Data System (ADS)

    Guclu, Caner; Tamma, Venkata Ananth; Wickramasinghe, Hemantha Kumar; Capolino, Filippo

    2015-12-01

    Photoinduced magnetic force between nanostructures, at optical frequencies, is investigated theoretically. Till now optical magnetic effects were not used in scanning probe microscopy because of the vanishing natural magnetism with increasing frequency. On the other hand, artificial magnetism in engineered nanostructures led to the development of measurable optical magnetism. Here two examples of nanoprobes that are able to generate strong magnetic dipolar fields at optical frequency are investigated: first, an ideal magnetically polarizable nanosphere and then a circular cluster of silver nanospheres that has a looplike collective plasmonic resonance equivalent to a magnetic dipole. Magnetic forces are evaluated based on nanostructure polarizabilities, i.e., induced magnetic dipoles, and magnetic-near field evaluations. As an initial assessment on the possibility of a magnetic nanoprobe to detect magnetic forces, we consider two identical magnetically polarizable nanoprobes and observe magnetic forces on the order of piconewtons, thereby bringing it within detection limits of conventional atomic force microscopes at ambient pressure and temperature. The detection of magnetic force is a promising method in studying optical magnetic transitions that can be the basis of innovative spectroscopy applications.

  11. Magnetic human body communication.

    PubMed

    Park, Jiwoong; Mercier, Patrick P

    2015-01-01

    This paper presents a new human body communication (HBC) technique that employs magnetic resonance for data transfer in wireless body-area networks (BANs). Unlike electric field HBC (eHBC) links, which do not necessarily travel well through many biological tissues, the proposed magnetic HBC (mHBC) link easily travels through tissue, offering significantly reduced path loss and, as a result, reduced transceiver power consumption. In this paper the proposed mHBC concept is validated via finite element method simulations and measurements. It is demonstrated that path loss across the body under various postures varies from 10-20 dB, which is significantly lower than alternative BAN techniques. PMID:26736639

  12. Modeling the Sedimentation of Red Blood Cells in Flow under Strong External Magnetic Body Force using a Lattice Boltzmann Fictitious Domain Method

    SciTech Connect

    Shi, Xing; Lin, Guang

    2014-11-01

    To model the sedimentation of the red blood cell (RBC) in a square duct and a circular pipe, the recently developed technique derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method (LBM-DLM/FD) is extended to employ the mesoscopic network model for simulations of the sedimentation of the RBC in flow. The flow is simulated by the lattice Boltzmann method with a strong magnetic body force, while the network model is used for modeling RBC deformation. The fluid-RBC interactions are enforced by the Lagrange multiplier. The sedimentation of the RBC in a square duct and a circular pipe is simulated, revealing the capacity of the current method for modeling the sedimentation of RBC in various flows. Numerical results illustrate that that the terminal setting velocity increases with the increment of the exerted body force. The deformation of the RBC has significant effect on the terminal setting velocity due to the change of the frontal area. The larger the exerted force is, the smaller the frontal area and the larger deformation of the RBC are.

  13. Magnetic Resonance Force Microscope Development

    SciTech Connect

    Hammel, P.C.; Zhang, Z.; Suh, B.J.; Roukes, M.L.; Midzor, M.; Wigen, P.E.; Childress, J.R.

    1999-06-03

    Our objectives were to develop the Magnetic Resonance Force Microscope (MRFM) into an instrument capable of scientific studies of buried structures in technologically and scientifically important electronic materials such as magnetic multilayer materials. This work resulted in the successful demonstration of MRFM-detected ferromagnetic resonance (FMR) as a microscopic characterization tool for thin magnetic films. Strong FMR spectra obtained from microscopic Co thin films (500 and 1000 angstroms thick and 40 x 200 microns in lateral extent) allowed us to observe variations in sample inhomogeneity and magnetic anisotropy field. We demonstrated lateral imaging in microscopic FMR for the first time using a novel approach employing a spatially selective local field generated by a small magnetically polarized spherical crystallite of yttrium iron garnet. These successful applications of the MRFM in materials studies provided the basis for our successful proposal to DOE/BES to employ the MRF M in studies of buried interfaces in magnetic materials.

  14. Undulator with dynamic compensation of magnetic forces

    DOEpatents

    Gluskin, Efim; Trakhtenberg, Emil; Xu, Joseph Z.

    2016-05-31

    A method and apparatus for implementing dynamic compensation of magnetic forces for undulators are provided. An undulator includes a respective set of magnet arrays, each attached to a strongback, and placed on horizontal slides and positioned parallel relative to each other with a predetermined gap. Magnetic forces are compensated by a set of compensation springs placed along the strongback. The compensation springs are conical springs having exponential-force characteristics that substantially match undulator magnetic forces independently of the predetermined gap. The conical springs are positioned along the length of the magnets.

  15. Modeling forces on the human body

    NASA Astrophysics Data System (ADS)

    Pagonis, Vasilis; Drake, Russel; Morgan, Michael; Peters, Todd; Riddle, Chris; Rollins, Karen

    1999-11-01

    Several simulations involving the human body, using the simulation software Interactive Physics™, are used to analyze the forces during both static situations and dynamic collisions. The connection of the simulations with the biological sciences and with sports activities should make them appealing to both high school and college-level physics students.

  16. Force sensor using changes in magnetic flux

    NASA Technical Reports Server (NTRS)

    Pickens, Herman L. (Inventor); Richard, James A. (Inventor)

    2012-01-01

    A force sensor includes a magnetostrictive material and a magnetic field generator positioned in proximity thereto. A magnetic field is induced in and surrounding the magnetostrictive material such that lines of magnetic flux pass through the magnetostrictive material. A sensor positioned in the vicinity of the magnetostrictive material measures changes in one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux.

  17. Magnetic force and optical force sensing with ultrathin silicon resonator

    NASA Astrophysics Data System (ADS)

    Ono, Takahito; Esashi, Masayoshi

    2003-12-01

    In this article, we demonstrated magnetic and optical force measurements using an ultrathin silicon cantilever down to 20 nm or 50 nm in thickness. The cantilever was heated in an ultrahigh vacuum for enhancing the Q factor and a magnetic particle was mounted at the end of the cantilever using a manipulator. The vibration was measured by a laser Doppler vibrometer and its signal was fed to an opposed metal electrode for electrostatic self-oscillation. An application of a magnetic field with a coil exerted a force to the magnetic material, which results in the change of the resonant frequency. However, the change in the mechanical properties of the cantilever, due to mechanical instability and temperature variation, drifts the resonance peak. Force balancing between the magnetic force and an electrostatic force in the opposite phase can minimize the vibration amplitude. From the electrostatic force at the minimum point, the exerted force can be estimated. A magnetic moment of 4×10-20 J/T was measured by this method. The same technique was also applied to measure the optical force of ˜10-17 N, impinging on the cantilever by a laser diode.

  18. A force calibration standard for magnetic tweezers

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Dulin, David; Cnossen, Jelmer; Köber, Mariana; van Oene, Maarten M.; Ordu, Orkide; Berghuis, Bojk A.; Hensgens, Toivo; Lipfert, Jan; Dekker, Nynke H.

    2014-12-01

    To study the behavior of biological macromolecules and enzymatic reactions under force, advances in single-molecule force spectroscopy have proven instrumental. Magnetic tweezers form one of the most powerful of these techniques, due to their overall simplicity, non-invasive character, potential for high throughput measurements, and large force range. Drawbacks of magnetic tweezers, however, are that accurate determination of the applied forces can be challenging for short biomolecules at high forces and very time-consuming for long tethers at low forces below ˜1 piconewton. Here, we address these drawbacks by presenting a calibration standard for magnetic tweezers consisting of measured forces for four magnet configurations. Each such configuration is calibrated for two commonly employed commercially available magnetic microspheres. We calculate forces in both time and spectral domains by analyzing bead fluctuations. The resulting calibration curves, validated through the use of different algorithms that yield close agreement in their determination of the applied forces, span a range from 100 piconewtons down to tens of femtonewtons. These generalized force calibrations will serve as a convenient resource for magnetic tweezers users and diminish variations between different experimental configurations or laboratories.

  19. Verifying Magnetic Force on a Conductor

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2011-01-01

    The laboratory measurement of the magnetic force acting on a straight wire of length "l" carrying a current of intensity "i" in a magnetic field "B" is usually made using current balances, which are offered by various physics apparatus suppliers' catalogues. These balances require an adequate magnet and commonly allow only the measurement of the…

  20. Magnetic exchange force microscopy with atomic resolution.

    PubMed

    Kaiser, Uwe; Schwarz, Alexander; Wiesendanger, Roland

    2007-03-29

    The ordering of neighbouring atomic magnetic moments (spins) leads to important collective phenomena such as ferromagnetism and antiferromagnetism. A full understanding of magnetism on the nanometre scale therefore calls for information on the arrangement of spins in real space and with atomic resolution. Spin-polarized scanning tunnelling microscopy accomplishes this but can probe only conducting materials. Force microscopy can be used on any sample independent of its conductivity. In particular, magnetic force microscopy is well suited to exploring ferromagnetic domain structures. However, atomic resolution cannot be achieved because data acquisition involves the sensing of long-range magnetostatic forces between tip and sample. Magnetic exchange force microscopy has been proposed for overcoming this limitation: by using an atomic force microscope with a magnetic tip, it should be possible to detect the short-range magnetic exchange force between tip and sample spins. Here we show for a prototypical antiferromagnetic insulator, the (001) surface of nickel oxide, that magnetic exchange force microscopy can indeed reveal the arrangement of both surface atoms and their spins simultaneously. In contrast with previous attempts to implement this method, we use an external magnetic field to align the magnetic polarization at the tip apex so as to optimize the interaction between tip and sample spins. This allows us to observe the direct magnetic exchange coupling between the spins of the tip atom and sample atom that are closest to each other, and thereby demonstrate the potential of magnetic exchange force microscopy for investigations of inter-spin interactions at the atomic level.

  1. Magnetic force and work: an accessible example

    NASA Astrophysics Data System (ADS)

    Gates, Joshua

    2014-05-01

    Despite their physics instructors’ arguments to the contrary, introductory students can observe situations in which there seems to be compelling evidence for magnetic force doing work. The counterarguments are often highly technical and require physics knowledge beyond the experience of novice students, however. A simple example is presented which can illustrate that all may not be what it seems when energy transfer and the magnetic force are involved. Excel and Python simulations of the process are also provided.

  2. Current-modulating magnetic force microscope probe

    SciTech Connect

    Wang, Frank Z.; Helian, Na; Clegg, Warwick W; Windmill, James F. C.; Jenkins, David

    2001-06-01

    A new current-modulating probe for the magnetic force microscope (MFM) is proposed in this article. The magnetic field, which will be used to interact with a magnetic specimen{close_quote}s stray field, is induced on the sharp tip of the conical magnetic core surrounded by a microfabricated single turn conductive coil. The reciprocity principle is used to obtain the force acting on the probe due to the specimen{close_quote}s stray field when scanned over a magnetic specimen. The magnetic field intensity is adjustable by control of the applied current. Images of specimens have been modeled using this probe. The suitability to different specimens is seen to be the biggest advantage of this scheme over the conventional probe designs. {copyright} 2001 American Institute of Physics.

  3. Forced Magnetic Reconnection In A Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.

    2015-11-01

    The theory of forced magnetic field reconnection induced by an externally imposed resonant magnetic perturbation usually uses a sheared slab or cylindrical magnetic field model and often focuses on the potential time-asymptotic induced magnetic island state. However, tokamak plasmas have significant magnetic geometry and dynamical plasma toroidal rotation screening effects. Also, finite ion Larmor radius (FLR) and banana width (FBW) effects can damp and thus limit the width of a nascent magnetic island. A theory that is more applicable for tokamak plasmas is being developed. This new model of the dynamics of forced magnetic reconnection considers a single helicity magnetic perturbation in the tokamak magnetic field geometry, uses a kinetically-derived collisional parallel electron flow response, and employs a comprehensive dynamical equation for the plasma toroidal rotation frequency. It is being used to explore the dynamics of bifurcation into a magnetically reconnected state in the thin singular layer around the rational surface, evolution into a generalized Rutherford regime where the island width exceeds the singular layer width, and assess the island width limiting effects of FLR and FBW polarization currents. Support by DoE grants DE-FG02-86ER53218, DE-FG02-92ER54139.

  4. Manipulation and identification of objects by magnetic forces

    NASA Technical Reports Server (NTRS)

    Joffe, Benjamin

    1992-01-01

    An overview is presented of the results of research and engineering design activities over the past 20 years in the area of identification and manipulation of objects by magnetic forces. The relationship is discussed between the properties of objects and the parameters of magnetic fields, with the view toward being able to create forces for efficient manipulation and identification of different kinds of parts. Some of this information, particularly regarding nonferromagnetic materials, is relatively new and can be used to solve a variety of engineering problems by creating new types of automation systems. Topics covered include identification and orientation of bodies by magnetostatic and electrodynamic forces, electromagnetic recognition and orientation of nonsymmetric parts, and assembly and position control of parts by electromagnetic forces.

  5. Magnetic force control technique in industrial application

    NASA Astrophysics Data System (ADS)

    Nishijima, S.

    2010-11-01

    Techniques of the magnetic force control have been examined for industrial application. The problems and the technique are different in dispersion medium of gas and that of liquid. In addition, the method is different depending on the magnetic characteristic of the target objects. In case of the liquid, the dispersion medium having different viscosity was examined. The separation speed is decided with the magnitude of the magnetic force because a drag force increases with the viscosity. When the water is the dispersion medium, magnetic seeding is possible and hence the nonmagnetic materials can be separated and even the dissolved material could be separated. The separation technique has been used for purifying the waste water form paper mill or wash water of drum. On the other hand when the water is not dispersion medium, mainly the ferromagnetism particle becomes the target object because the magnetic seeding becomes difficult. The iron fragments have been separated from the slurry of slicing machine of solar battery. It has been clarified high gradient magnetic separation (HGMS) can be applied for the viscous fluid of which viscosity was as high as 10 Pa s. When the dispersion medium is gaseous material, the air is important. The drag force from air depends greatly on Reynolds number. When speed of the air is small, the Reynolds number is small, and the drag force is calculated by the Stokes’ law of resistance. The study with gaseous dispersion medium is not carried out much. The magnetic separation will discuss the possibility of the industrial application of this technique.

  6. Levitation forces in bearingless permanent magnet motors

    SciTech Connect

    Amrhein, W.; Silber, S.; Nenninger, K.

    1999-09-01

    Bearingless motors combine brushless AC-motors with active magnetic bearings by the integration of two separate winding systems (torque and radial levitation force windings with different pole pairs) in one housing. This paper gives an insight into the influences of the motor design on the levitation force and torque generation. It is shown that especially for machines with small air gaps it can be very important to choose the right design parameters. Increasing the permanent magnet height in order to increase the motor torque can result in a remarkable reduction of radial forces. The interrelationships are discussed on the basis of Maxwell and Lorentz forces acting upon the stator surface. The investigations are presented for a bearingless low cost motor, suited for pump, fan or blower applications. The presented motor needs only four coils for operation.

  7. Magnetic Forces in an Isopedic Disk

    NASA Astrophysics Data System (ADS)

    Shu, Frank H.; Li, Zhi-Yun

    1997-01-01

    We consider the magnetic forces in electrically conducting thin disks threaded by magnetic fields originating in the external (interstellar) medium. We focus on disks that have dimensionless ratios λ of the mass to flux that are spatially constant, a condition that we term isopedic. For arbitrary distributions of the surface density Σ (which can be nonaxisymmetric and time dependent), we show that the magnetic tension exerts a force in the plane of the disk equal to -1/λ2 times the self-gravitational force. In addition, if the disk maintains magnetostatic equilibrium in the vertical direction, the magnetic pressure, integrated over the z-height of the disk, may be approximated as (1 + η2)/(λ2 + η2) times the gas pressure integrated over z, where η ≡ f||/2πGΣ and f|| is the component of the local gravitational field parallel to the plane of the disk. We apply these results to the problem of the stability of magnetized isothermal disks to gravitational fragmentation into subcondensations of a size comparable to the vertical scale height of the disk. Contrary to common belief, such dynamical fragmentation probably does not occur. In particular, the case of the magnetized singular isothermal disk undergoes not dynamical fragmentation into many subcondensations, but inside-out collapse into a single compact object, a self similar problem that is studied in a companion paper (Li & Shu 1997).

  8. Magnetic Force and Work: An Accessible Example

    ERIC Educational Resources Information Center

    Gates, Joshua

    2014-01-01

    Despite their physics instructors' arguments to the contrary, introductory students can observe situations in which there seems to be compelling evidence for magnetic force doing work. The counterarguments are often highly technical and require physics knowledge beyond the experience of novice students, however. A simple example is presented…

  9. Measuring the Forces Between Magnetic Dipoles

    NASA Astrophysics Data System (ADS)

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-09-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  10. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  11. Magnetic Forces and DNA Mechanics in Multiplexed Magnetic Tweezers

    PubMed Central

    van Loenhout, Marijn T. J.; Burnham, Daniel R.; Dekker, Cees

    2012-01-01

    Magnetic tweezers (MT) are a powerful tool for the study of DNA-enzyme interactions. Both the magnet-based manipulation and the camera-based detection used in MT are well suited for multiplexed measurements. Here, we systematically address challenges related to scaling of multiplexed magnetic tweezers (MMT) towards high levels of parallelization where large numbers of molecules (say 103) are addressed in the same amount of time required by a single-molecule measurement. We apply offline analysis of recorded images and show that this approach provides a scalable solution for parallel tracking of the xyz-positions of many beads simultaneously. We employ a large field-of-view imaging system to address many DNA-bead tethers in parallel. We model the 3D magnetic field generated by the magnets and derive the magnetic force experienced by DNA-bead tethers across the large field of view from first principles. We furthermore experimentally demonstrate that a DNA-bead tether subject to a rotating magnetic field describes a bicircular, Limaçon rotation pattern and that an analysis of this pattern simultaneously yields information about the force angle and the position of attachment of the DNA on the bead. Finally, we apply MMT in the high-throughput investigation of the distribution of the induced magnetic moment, the position of attachment of DNA on the beads, and DNA flexibility. The methods described herein pave the way to kilo-molecule level magnetic tweezers experiments. PMID:22870220

  12. A compact high field magnetic force microscope.

    PubMed

    Zhou, Haibiao; Wang, Ze; Hou, Yubin; Lu, Qingyou

    2014-12-01

    We present the design and performance of a simple and compact magnetic force microscope (MFM), whose tip-sample coarse approach is implemented by the piezoelectric tube scanner (PTS) itself. In brief, a square rod shaft is axially spring-clamped on the inner wall of a metal tube which is glued inside the free end of the PTS. The shaft can thus be driven by the PTS to realize image scan and inertial stepping coarse approach. To enhance the inertial force, each of the four outer electrodes of the PTS is driven by an independent port of the controller. The MFM scan head is so compact that it can easily fit into the 52mm low temperature bore of a 20T superconducting magnet. The performance of the MFM is demonstrated by imaging a manganite thin film at low temperature and in magnetic fields up to 15T. PMID:25189114

  13. Placing the Forces on Free-Body Diagrams.

    ERIC Educational Resources Information Center

    Sperry, Willard

    1994-01-01

    Discusses the problem of drawing free-body diagrams to analyze the conditions of static equilibrium. Presents a method based on the correct placement of the normal force on the body. Includes diagrams. (MVL)

  14. Many-body forces and the cluster decomposition

    NASA Astrophysics Data System (ADS)

    Rohrlich, F.

    1981-03-01

    Direct-interaction dynamics is considered in the relativistic Hamiltonian constraint formalism. It is proven that the Todorov-Komar equations for an N-particle system (N>2) of mutually interacting particles have no solutions that permit interaction if only two-body forces are admitted. The inclusion of many-body forces leads to a system of equations that determines allowed classes of such forces recursively. Starting with given two-body forces that are allowed for the two-body problem, three-body, four-body, etc. forces can be obtained in successive steps from the solutions of equations which we specify. When the interactions are separable, i.e., when they vanish sufficiently fast with increasing distance, the cluster decomposition holds: for large enough separation the dynamics of each cluster becomes independent of the dynamics of all other clusters while maintaining the internal dynamics.

  15. Magnetic Resonance Force Microscopy Detected Long-Lived Spin Magnetization

    PubMed Central

    Chen, Lei; Longenecker, Jonilyn G.; Moore, Eric W.; Marohn, John A.

    2015-01-01

    Magnetic resonance force microscopy (MRFM), which combines magnetic resonance imaging with scanning probe microscopy together, is capable of performing ultra-sensitive detection of spin magnetization. In an attempt to observe dynamic nuclear polarization (DNP) in an MRFM experiment, which could possibly further improve its sensitivity towards a single proton spin, a film of perdeuterated polystyrene doped with a nitroxide electron-spin probe was prepared. A high-compliance cantilever with a 4 μm diameter magnetic tip was brought near the film at a temperature of 7.3 K and in a background magnetic field of ~0.6 T. The film was irradiated with 16.7 GHz microwaves while the resulting transient change in cantilever frequency was recorded in real time. In addition to observing the expected prompt change in cantilever frequency due to saturation of the nitroxide’s electron-spin magnetization, we observed a persistent cantilever frequency change. Based on its magnitude, lifetime, and field dependence, we tentatively attribute the persistent signal to polarized deuteron magnetization created via transfer of magnetization from electron spins. Further measurements of the persistent signal’s dependence on the cantilever amplitude and tip-sample separation are presented and explained by the cross-effect DNP mechanism in high magnetic field gradients. PMID:26097251

  16. Nonlinear regimes of forced magnetic reconnection

    SciTech Connect

    Vekstein, G.; Kusano, K.

    2015-09-15

    This letter presents a self-consistent description of nonlinear forced magnetic reconnection in Taylor's model of this process. If external boundary perturbation is strong enough, nonlinearity in the current sheet evolution becomes important before resistive effects come into play. This terminates the current sheet shrinking that takes place at the linear stage and brings about its nonlinear equilibrium with a finite thickness. Then, in theory, this equilibrium is destroyed by a finite plasma resistivity during the skin-time, and further reconnection proceeds in the Rutherford regime. However, realization of such a scenario is unlikely because of the plasmoid instability, which is fast enough to develop before the transition to the Rutherford phase occurs. The suggested analytical theory is entirely different from all previous studies and provides proper interpretation of the presently available numerical simulations of nonlinear forced magnetic reconnection.

  17. Magnet polepiece design for uniform magnetic force on superparamagnetic beads.

    PubMed

    Fallesen, Todd; Hill, David B; Steen, Matthew; Macosko, Jed C; Bonin, Keith; Holzwarth, George

    2010-07-01

    Here we report construction of a simple electromagnet with novel polepieces which apply a spatially uniform force to superparamagnetic beads in an optical microscope. The wedge-shaped gap was designed to keep partial differential B(x)/ partial differential y constant and B large enough to saturate the bead. We achieved fields of 300-600 mT and constant gradients of 67 T/m over a sample space of 0.5x4 mm(2) in the focal plane of the microscope and 0.05 mm along the microscope optic axis. Within this space the maximum force on a 2.8 microm diameter Dynabead was 12 pN with a spatial variation of approximately 10%. Use of the magnet in a biophysical experiment is illustrated by showing that gliding microtubules propelled by the molecular motor kinesin can be stopped by the force of an attached magnetic bead.

  18. Magnet polepiece design for uniform magnetic force on superparamagnetic beads

    NASA Astrophysics Data System (ADS)

    Fallesen, Todd; Hill, David B.; Steen, Matthew; Macosko, Jed C.; Bonin, Keith; Holzwarth, George

    2010-07-01

    Here we report construction of a simple electromagnet with novel polepieces which apply a spatially uniform force to superparamagnetic beads in an optical microscope. The wedge-shaped gap was designed to keep ∂Bx/∂y constant and B large enough to saturate the bead. We achieved fields of 300-600 mT and constant gradients of 67 T/m over a sample space of 0.5×4 mm2 in the focal plane of the microscope and 0.05 mm along the microscope optic axis. Within this space the maximum force on a 2.8 μm diameter Dynabead was 12 pN with a spatial variation of approximately 10%. Use of the magnet in a biophysical experiment is illustrated by showing that gliding microtubules propelled by the molecular motor kinesin can be stopped by the force of an attached magnetic bead.

  19. Measuring the Magnetic Force on a Current-Carrying Conductor.

    ERIC Educational Resources Information Center

    Herreman, W.; Huysentruyt, R.

    1995-01-01

    Describes a fast and simple method for measuring the magnetic force acting on a current-carrying conductor using a digital balance. Discusses the influence of current intensity and wire length on the magnetic force on the conductor. (JRH)

  20. Microrheology of cells with magnetic force modulation atomic force microscopy.

    PubMed

    Rebêlo, L M; de Sousa, J S; Mendes Filho, J; Schäpe, J; Doschke, H; Radmacher, M

    2014-04-01

    We propose a magnetic force modulation method to measure the stiffness and viscosity of living cells using a modified AFM apparatus. An oscillating magnetic field makes a magnetic cantilever oscillate in contact with the sample, producing a small AC indentation. By comparing the amplitude of the free cantilever motion (A0) with the motion of the cantilever in contact with the sample (A1), we determine the sample stiffness and viscosity. To test the method, the frequency-dependent stiffness of 3T3 fibroblasts was determined as a power law k(s)(f) = α + β(f/f¯)(γ) (α = 7.6 × 10(-4) N m(-1), β = 1.0 × 10(-4) N m(-1), f¯ = 1 Hz, γ = 0.6), where the coefficient γ = 0.6 is in good agreement with rheological data of actin solutions with concentrations similar to those in cells. The method also allows estimation of the internal friction of the cells. In particular we found an average damping coefficient of 75.1 μN s m(-1) for indentation depths ranging between 1.0 μm and 2.0 μm. PMID:24651941

  1. The Role of Magnetic Forces in Biology and Medicine

    PubMed Central

    Roth, Bradley J

    2011-01-01

    The Lorentz force (the force acting on currents in a magnetic field) plays an increasingly larger role in techniques to image current and conductivity. This review will summarize several applications involving the Lorentz force, including 1) magneto-acoustic imaging of current, 2) “Hall effect” imaging, 3) ultrasonically-induced Lorentz force imaging of conductivity, 4) magneto-acoustic tomography with magnetic induction, and 5) Lorentz force imaging of action currents using magnetic resonance imaging. PMID:21321309

  2. Modeling Forces on the Human Body.

    ERIC Educational Resources Information Center

    Pagonis, Vasilis; Drake, Russel; Morgan, Michael; Peters, Todd; Riddle, Chris; Rollins, Karen

    1999-01-01

    Presents five models of the human body as a mechanical system which can be used in introductory physics courses: human arms as levers, humans falling from small heights, a model of the human back, collisions during football, and the rotating gymnast. Gives ideas for discussions and activities, including Interactive Physics (TM) simulations. (WRM)

  3. Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination

    PubMed Central

    Jaafar, Miriam; Iglesias-Freire, Oscar; Serrano-Ramón, Luis; Ibarra, Manuel Ricardo; de Teresa, Jose Maria

    2011-01-01

    Summary The most outstanding feature of scanning force microscopy (SFM) is its capability to detect various different short and long range interactions. In particular, magnetic force microscopy (MFM) is used to characterize the domain configuration in ferromagnetic materials such as thin films grown by physical techniques or ferromagnetic nanostructures. It is a usual procedure to separate the topography and the magnetic signal by scanning at a lift distance of 25–50 nm such that the long range tip–sample interactions dominate. Nowadays, MFM is becoming a valuable technique to detect weak magnetic fields arising from low dimensional complex systems such as organic nanomagnets, superparamagnetic nanoparticles, carbon-based materials, etc. In all these cases, the magnetic nanocomponents and the substrate supporting them present quite different electronic behavior, i.e., they exhibit large surface potential differences causing heterogeneous electrostatic interaction between the tip and the sample that could be interpreted as a magnetic interaction. To distinguish clearly the origin of the tip–sample forces we propose to use a combination of Kelvin probe force microscopy (KPFM) and MFM. The KPFM technique allows us to compensate in real time the electrostatic forces between the tip and the sample by minimizing the electrostatic contribution to the frequency shift signal. This is a great challenge in samples with low magnetic moment. In this work we studied an array of Co nanostructures that exhibit high electrostatic interaction with the MFM tip. Thanks to the use of the KPFM/MFM system we were able to separate the electric and magnetic interactions between the tip and the sample. PMID:22003461

  4. Magnetic dynamos in accreting planetary bodies

    NASA Astrophysics Data System (ADS)

    Golabek, G.; Labrosse, S.; Gerya, T.; Morishima, R.; Tackley, P. J.

    2012-12-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies.

  5. Forces and moments on a slender, cavitating body

    SciTech Connect

    Hailey, C.E.; Clark, E.L.; Buffington, R.J.

    1988-01-01

    Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with this code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.

  6. Mitigated-force carriage for high magnetic field environments

    SciTech Connect

    Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.

    2015-05-19

    A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  7. May the Magnetic Force Be with You

    ERIC Educational Resources Information Center

    Wilcox, Jesse; Richey, Lindsey R.

    2012-01-01

    Although most elementary students have had experiences with magnets, they generally have misconceptions about magnetism (Driver et al. 1994; Burgoon, Heddle, and Duran 2010). For example, students may think magnets can attract all metals or that larger magnets are stronger than smaller magnets. Students often confuse magnets with magnetic…

  8. Magnetic dynamos in accreting planetary bodies

    NASA Astrophysics Data System (ADS)

    Golabek, Gregor; Labrosse, Stéphane; Gerya, Taras; Morishima, Ryuji; Tackley, Paul

    2013-04-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies. [1] Weiss, B.P. et al., Science, 322, 713-716, 2008. [2] Richardson, D. C. et al., Icarus, 143, 45-59, 2000. [3] Gerya, T.V and Yuen, D.J., Phys. Earth Planet. Int., 163, 83-105, 2007. [4] Monteux, J. et al., Geophys. Res. Lett., 34, L24201, 2007. [5] Aubert, J. et al

  9. Electric and Magnetic Forces between Parallel-Wire Conductors.

    ERIC Educational Resources Information Center

    Morton, N.

    1979-01-01

    Discusses electric and magnetic forces between parallel-wire conductors and derives, in a simple fashion, order of magnitude estimates of the ratio of the likely electrostatic and electromagnetic forces for a simple parallel-wire balance. (Author/HM)

  10. Science in a Box. Magnets III: Force Fields.

    ERIC Educational Resources Information Center

    Learning, 1992

    1992-01-01

    Presents ideas to help elementary school educators teach their students about magnetic force fields by observing how iron filings line up around magnets. The article lists materials needed and offers a student page with suggested student activities. (SM)

  11. Magnetic clouds and force-free fields with constant alpha

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1988-01-01

    Magnetic clouds observed at 1 AU are modeled as cylindrically symmetric, constant alpha force-free magnetic fields. The model satisfactorily explains the types of variations of the magnetic field direction that are observed as a magnetic cloud moves past a spacecraft in terms of the possible orientations of the axis of a magnetic cloud. The model also explains why the magnetic field strength is observed to be higher inside a magnetic cloud than near its boundaries. However, the model predicts that the magnetic field strength profile should be symmetric with respect to the axis of the magnetic cloud, whereas observations show that this is not generally the case.

  12. Magnetic resonance imaging of total body fat.

    PubMed

    Thomas, E L; Saeed, N; Hajnal, J V; Brynes, A; Goldstone, A P; Frost, G; Bell, J D

    1998-11-01

    In this study we assessed different magnetic resonance imaging (MRI) scanning regimes and examined some of the assumptions commonly made for measuring body fat content by MRI. Whole body MRI was used to quantify and study different body fat depots in 67 women. The whole body MRI results showed that there was a significant variation in the percentage of total internal, as well as visceral, adipose tissue across a range of adiposity, which could not be predicted from total body fat and/or subcutaneous fat. Furthermore, variation in the amount of total, subcutaneous, and visceral adipose tissue was not related to standard anthropometric measurements such as skinfold measurements, body mass index, and waist-to-hip ratio. Finally, we show for the first time subjects with a percent body fat close to the theoretical maximum (68%). This study demonstrates that the large variation in individual internal fat content cannot be predicted from either indirect methods or direct imaging techniques, such as MRI or computed tomography, on the basis of a single-slice sampling strategy. PMID:9804581

  13. Magnetic resonance imaging of total body fat.

    PubMed

    Thomas, E L; Saeed, N; Hajnal, J V; Brynes, A; Goldstone, A P; Frost, G; Bell, J D

    1998-11-01

    In this study we assessed different magnetic resonance imaging (MRI) scanning regimes and examined some of the assumptions commonly made for measuring body fat content by MRI. Whole body MRI was used to quantify and study different body fat depots in 67 women. The whole body MRI results showed that there was a significant variation in the percentage of total internal, as well as visceral, adipose tissue across a range of adiposity, which could not be predicted from total body fat and/or subcutaneous fat. Furthermore, variation in the amount of total, subcutaneous, and visceral adipose tissue was not related to standard anthropometric measurements such as skinfold measurements, body mass index, and waist-to-hip ratio. Finally, we show for the first time subjects with a percent body fat close to the theoretical maximum (68%). This study demonstrates that the large variation in individual internal fat content cannot be predicted from either indirect methods or direct imaging techniques, such as MRI or computed tomography, on the basis of a single-slice sampling strategy.

  14. Discreteness noise versus force errors in N-body simulations

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Hut, Piet; Makino, Jun

    1993-01-01

    A low accuracy in the force calculation per time step of a few percent for each particle pair is sufficient for collisionless N-body simulations. Higher accuracy is made meaningless by the dominant discreteness noise in the form of two-body relaxation, which can be reduced only by increasing the number of particles. Since an N-body simulation is a Monte Carlo procedure in which each particle-particle force is essentially random, i.e., carries an error of about 1000 percent, the only requirement is a systematic averaging-out of these intrinsic errors. We illustrate these assertions with two specific examples in which individual pairwise forces are deliberately allowed to carry significant errors: tree-codes on supercomputers and algorithms on special-purpose machines with low-precision hardware.

  15. Magnetic resonance imaging of the body

    SciTech Connect

    Higgins, C.B.; Hricak, H.

    1987-01-01

    This text provides reference to magnetic resonance imaging (MRI) of the body. Beginning with explanatory chapters on the physics, instrumentation, and interpretation of MRI, it proceeds to the normal anatomy of the neck, thorax, abdomen, and pelvis. Other chapters cover magnetic resonance imaging of blood flow, the larynx, the lymph nodes, and the spine, as well as MRI in obstetrics. The text features detailed coverage of magnetic resonance imaging of numerous disorders and disease states, including neck disease, thoracic disease; breast disease; congenital and acquired heart disease; vascular disease; diseases of the liver, pancreas, and spleen; diseases of the kidney, adrenals, and retroperitoneum; diseases of the male and female pelvis; and musculoskeletal diseases. Chapters on the biological and environmental hazards of MRI, the current clinical status of MRI in comparison to other imaging modalities, and economic considerations are also included.

  16. Evaluating the Evidence for Magnetic Dynamocs in Chondritic Parent Bodies

    NASA Astrophysics Data System (ADS)

    Fu, R. R.; Weiss, B. P.; Krot, A. N.; Kehayias, P.; Glenn, D. R.; Fintor, K.; Pál-Molnár, E.; Bryson, J. F. J.; Walsworth, R. L.

    2016-08-01

    We present paleomagnetic data suggesting that the LL chondrite parent body lacked a magnetic dynamos. We then further test the dynamo hypothesis for the CV parent body by mapping magnetization in Kaba.

  17. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  18. Spin-motive force due to a gyrating magnetic vortex.

    PubMed

    Tanabe, K; Chiba, D; Ohe, J; Kasai, S; Kohno, H; Barnes, S E; Maekawa, S; Kobayashi, K; Ono, T

    2012-05-22

    A change of magnetic flux through a circuit induces an electromotive force. By analogy, a recently predicted force that results from the motion of non-uniform spin structures has been termed the spin-motive force. Although recent experiments seem to confirm its presence, a direct signature of the spin-motive force has remained elusive. Here we report the observation of a real-time spin-motive force produced by the gyration of a magnetic vortex core. We find a good agreement between the experimental results, theory and micromagnetic simulations, which taken as a whole provide strong evidence in favour of a spin-motive force.

  19. How to Classify Three-Body Forces -- and Why

    NASA Astrophysics Data System (ADS)

    Griesshammer, Harald W.

    2006-10-01

    To add 3-body forces when theory and data disagree is untenable when predictions are required. For the ``pion-less'' Effective Field Theory at momenta below the pion-mass, I provide a recipe to systematically estimate the typical size of 3-body forces in all partial waves and orders, including external currents [1]. It is based on the superficial degree of divergence of the 3-body diagrams which contain only two-body forces and the renormalisation-group argument that low-energy observables must be insensitive to details of short-distance dynamics. Na"ive dimensional analysis must be amended as the asymptotic solution to the leading-order problem depends for large off-shell momenta crucially on the partial wave and spin-combination considered. The typical strength of most 3-body forces turns out weaker than expected, demoting many to high orders. As application, the cross section of nd->tγ at thermal neutron energies bears no new 3-body force [2], besides those fixed by the triton binding energy and nd scattering length in the triton channel. It is calculated as [0.485(LO)+0.011(NLO)+0.007(NNLO) ];mb=[0.503±0.003];mb, converges and compares well with experiment, [0.509±0.015];mb. In contradistinction, potential models list a spread of [0.490.66];mb, depending on the 2-nucleon potential and inclusion of the δ(1232). [1] H.W. Grießhammer: Nucl. Phys. A760 (2005) 110 [2] H. Sadeghi, S. Bayegan and H.W. Grießhammer, in preparation.

  20. How to Classify Three-Body Forces -- and Why

    NASA Astrophysics Data System (ADS)

    Griesshammer, Harald W.

    2007-10-01

    To add 3-body forces when theory and data disagree is untenable when predictions are required. For the ``pion-less'' Effective Field Theory at momenta below the pion-mass, I provide a recipe to systematically estimate the typical size of 3-body forces in all partial waves and orders, including external currents [1]. It is based on the superficial degree of divergence of the 3-body diagrams which contain only two-body forces and the renormalisation-group argument that low-energy observables must be insensitive to details of short-distance dynamics. Na"ive dimensional analysis must be amended as the asymptotic solution to the leading-order problem depends for large off-shell momenta crucially on the partial wave and spin-combination considered. The typical strength of most 3-body forces turns out weaker than expected, demoting many to high orders. As application, the thermal cross section of nd->tγ bears no new 3-body force [2], besides those fixed by the triton binding energy and nd scattering length in the triton channel: 0.485(LO)+0.011(NLO)+0.007(NNLO) ];mb=[0.503±0.003];mb, converges and compares well with data, [0.509±0.015];mb. Potential models list [0.490.66];mb, depending on the 2-nucleon potential and inclusion of the δ(1232). [1] H.W. Grießhammer: Nucl. Phys. A760 (2005) 110 [2] H. Sadeghi, S. Bayegan and H.W. Grießhammer: Phys. Lett.B643 (2006), 263.

  1. Turbofan flowfield simulation using Euler equations with body forces

    NASA Technical Reports Server (NTRS)

    Pankajakshan, Ramesh; Arabshahi, Abdollah; Whitfield, David L.

    1993-01-01

    A method for flow computations around ducted propfans is presented. The approach is to use the body force terms in the three-dimensional Euler equations to model the propeller. Numerical solutions are compared with experimental data for three ducted propfan configurations for different flow conditions.

  2. Computation of unbalanced radial force in permanent magnet motors

    SciTech Connect

    Salon, S.J.; Howe, M.; Slavik, C.J.; DeBortoli, M.J.; Nevins, R.J.

    1998-10-01

    Nonuniformity in magnet strength in permanent magnet motors results in a vibration-inducing unbalanced force acting on the rotor. This force is the difference of two large numbers and as such is difficult to determine precisely with numerical models. In this paper, a permanent magnet motor with unbalanced magnets is analyzed by the finite element method. Three different techniques for computing the net force on the rotor, including a recently developed field-correction approach, are compared. Sensitivities of the techniques to computational limitations and finite element mesh characteristics are discussed.

  3. Lateral restoring force on a magnet levitated above a superconductor

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    1990-03-01

    The lateral restoring force on a magnet levitated above a superconductor is calculated as a function of displacement from its original position at rest using Bean's critical-state model to describe flux pinning. The force is linear for small displacements and saturates at large displacements. In the absence of edge effects the force always attracts the magnet to its original position. Thus it is a restoring force that contributes to the stability of the levitated magnet. In the case of a thick superconductor slab, the origin of the force is a magnetic dipole layer consisting of positive and negative supercurrents induced on the trailing side of the magnet. The qualitative behavior is consistent with experiments reported to date. Effects due to the finite thickness of the superconductor slab and the granular nature of high-Tc materials are also considered.

  4. Lateral restoring force on a magnet levitated above a superconductor

    NASA Technical Reports Server (NTRS)

    Davis, L. C.

    1990-01-01

    The lateral restoring force on a magnet levitated above a superconductor is calculated as a function of displacement from its original position at rest using Bean's critical-state model to describe flux pinning. The force is linear for small displacements and saturates at large displacements. In the absence of edge effects the force always attracts the magnet to its original position. Thus it is a restoring force that contributes to the stability of the levitated magnet. In the case of a thick superconductor slab, the origin of the force is a magnetic dipole layer consisting of positive and negative supercurrents induced on the trailing side of the magnet. The qualitative behavior is consistent with experiments reported to date. Effects due to the finite thickness of the superconductor slab and the granular nature of high-Tc materials are also considered.

  5. A potential MRI hazard: forces on dental magnet keepers.

    PubMed

    Gegauff, A G; Laurell, K A; Thavendrarajah, A; Rosenstiel, S F

    1990-09-01

    The objective of this study was to determine the forces on dental prosthetic magnet keepers, with a view to assessing the potential for patient injury during magnetic resonance imaging (MRI). Four pre-formed keepers and one castable keeper alloy were tested. Magnetizations and high field susceptibilities were determined for each of the five specimens using data from a vibrating sample magnetometer. The magnetic field intensity with respect to distance from the main magnet coil was obtained from the manufacturer (1-5 tesla General Electric Signa Imaging System). A plot of force versus distance from the main coil and the maximum force at the magnet portal was determined for each specimen. The maximum forces ranged from 0.12-0.24 N for the pre-formed keepers and 3.67 MNm-3 for the castable alloy. It was concluded that the risk of patient injury by displacement is minimal, if the keepers are properly attached to supporting structures. PMID:2231158

  6. Varying the effective buoyancy of cells using magnetic force

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Valles, James M.

    2004-06-01

    We introduce a magnetic force buoyancy variation (MFBV) technique that employs intense inhomogeneous magnetic fields to vary the effective buoyancy of cells and other diamagnetic systems in solution. Nonswimming Paramecia have been suspended, forced to sediment and driven to rise in solution using MFBV. Details of their response to MFBV have been used to determine the magnetic susceptibility of a single Paramecium. The use of MFBV as a means by which to suspend cell cultures indefinitely is also described.

  7. Effect of permanent-magnet irregularities in levitation force measurements.

    SciTech Connect

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  8. Relativity and electromagnetism: The force on a magnetic monopole

    NASA Astrophysics Data System (ADS)

    Rindler, Wolfgang

    1989-11-01

    On the occasion of the 100th anniversary of the first publication, by Oliver Heaviside, of what is now known as the Lorentz force law in electromagnetic theory, the analogous force law for magnetic monopoles is examined. Its relevance and limitations in calculating the force and torque on small current loops are discussed, and both its heuristic and practical uses are demonstrated.

  9. Low temperature magnetic force microscopy on ferromagnetic and superconducting oxides

    NASA Astrophysics Data System (ADS)

    Sirohi, Anshu; Sheet, Goutam

    2016-05-01

    We report the observation of complex ferromagnetic domain structures on thin films of SrRuO3 and superconducting vortices in high temperature superconductors through low temperature magnetic force microscopy. Here we summarize the experimental details and results of magnetic imaging at low temperatures and high magnetic fields. We discuss these data in the light of existing theoretical concepts.

  10. Performance enhancement of a Lorentz force velocimeter using a buoyancy-compensated magnet system

    NASA Astrophysics Data System (ADS)

    Ebert, R.; Leineweber, J.; Resagk, C.

    2015-07-01

    Lorentz force velocimetry (LFV) is a highly feasible method for measuring flow rate in a pipe or a duct. This method has been established for liquid metal flows but also for electrolytes such as saltwater. A decrease in electrical conductivity of the medium causes a decrease of the Lorentz force which needs to be resolved, affecting the accuracy of the measurement. We use an electrical force compensation (EFC) balance for the determination of the tiny force signals in a test channel filled with electrolyte solution. It is used in a 90°-rotated orientation with a magnet system hanging vertically on its load bar. The thin coupling elements of its parallel guiding system limit the mass of the magnets to 1 kg. To overcome this restriction, which limits the magnetic flux density and hence the Lorentz forces, a weight force compensation mechanism is developed. Therefore, different methods such as air bearing are conceivable, but for the elimination of additional horizontal force components which would disturb the force signal, only compensation by lift force provided by buoyancy is reasonable. We present a swimming body setup that will allow larger magnet systems than before, because a large amount of the weight force will be compensated by this lift force. Thus the implementation of this concept has to be made with respect to hydrodynamical and mechanical stability. This is necessary to avoid overturning of the swimming body setup and to prevent inelastic deformation. Additionally, the issue will be presented and discussed whether thermal convection around the lifting body diminishes the signal-to-noise ratio (SNR) significantly or not.

  11. Small acoustically forced symmetric bodies in viscous fluids.

    PubMed

    Nadal, François; Lauga, Eric

    2016-03-01

    The total force exerted on a small rigid body by an acoustic field in a viscous fluid is addressed analytically in the limit where the typical size of the particle is smaller than both the viscous diffusion length scale and the acoustic wavelength. In this low-frequency limit, such a force can be calculated provided the effect of the acoustic steady streaming is negligible. Using the Eulerian linear expansion of Lagrangian hydrodynamic quantities (velocity and pressure), the force on a small solid sphere free to move in an acoustic field is first calculated in the case of progressive and standing waves, and it is compared to past results. The proposed method is then extended to the case of more complex shapes with three planes of symmetry. For a symmetric body oriented with one of its axis along the wave direction, the acoustic force exerted by a progressive wave is affected by the particle shape at leading order. In contrast, for a standing wave (with the same orientation), the force experienced by the particle at leading order is the same as the one experienced by a sphere of same volume and density. PMID:27036245

  12. Investigation of many-body forces in krypton and xenon

    SciTech Connect

    Salacuse, J.J.; Egelstaff, P.A.

    1988-10-15

    The simplicity of the state dependence at relatively high temperatures ofthe many-body potential contribution to the pressure and energy has been pointed out previously (J. Ram and P. A. Egelstaff, J. Phys. Chem. Liq. 14, 29 (1984); A. Teitsima and P. A. Egelstaff, Phys. Rev. A 21, 367 (1980)). In this paper, we investigate how far these many-body potential terms may be represented by simple models in the case of krypton on the 423-, 273-, 190-, and 150-K isotherms, and xenon on the 170-, 210-, and 270-K isotherms. At the higher temperatures the best agreement is found for the mean-field type of theory, and some consequences are pointed out. On the lower isotherms a state point is found where the many-body energy vanishes, and large departures from mean-field behavior are observed. This is attributed to the influence of short-ranged many-body forces.

  13. Ultralow field magnetization reversal of two-body magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Fei; Lu, Jincheng; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.

    2016-08-01

    Field induced magnetization reversal was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value (on nanometer scale) in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The ultralow field switching phenomenon was missed in the parallel configuration where both the anisotropic axes are aligned along the separation line of the two particles. The micromagnetic results are consistent with the previous theoretical prediction [J. Appl. Phys. 109, 104303 (2011)] where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles might be implemented as a composite information bit.

  14. Power dissipation and magnetic forces and MAGLEV rebars

    SciTech Connect

    Zahn, M.

    1997-03-01

    Concrete guideways for proposed MAGLEV vehicles may be reinforced with electrically conducting and magnetizable steel rebars. Transient magnetic fields due to passing MAGLEV vehicles will then induce transient currents in the rebars leading to power dissipation and temperature rise as well as Lorentz and magnetization forces on the rebars. In order to evaluate if this heating and force on the rebars affects concrete life and performance, analysis is presented for an infinitely long conducting and magnetizable cylinder in imposed uniform axial or transverse magnetic fields. Exact and approximate solutions are presented for sinusoidal steady state and step transient magnetic fields inside and outside the cylinder, the induced current density, the vector potential for transverse magnetic fields, the time average dissipated power in the sinusoidal steady state, and the total energy dissipated for step transients. Forces are approximately calculated for imposed magnetic fields` with a weak spatial gradient. The analysis is applied to representative rebar materials.

  15. On the resistive diffusion of force-free magnetic fields

    NASA Technical Reports Server (NTRS)

    Low, B. C.

    1980-01-01

    Reid and Laing (1979) conjectured on the general behavior of resistive force-free magnetic fields in a slab model following a numerical study. However, the basic properties of resistive force-free magnetic fields had been established previously. Some results from the previous work are extended to show that the conjecture of Reid and Laing is incorrect. A general analytic treatment of the problem provides the correct physical properties that Reid and Laing were unable to deduce from their numerical solutions. A criticism is also given of the results presented in another numerical study treating cylindrical resistive force-free magnetic fields, by the same authors.

  16. MAGNETIC HELICITY OF SELF-SIMILAR AXISYMMETRIC FORCE-FREE FIELDS

    SciTech Connect

    Zhang Mei; Flyer, Natasha; Low, Boon Chye

    2012-08-10

    In this paper, we continue our theoretical studies addressing the possible consequences of magnetic helicity accumulation in the solar corona. Our previous studies suggest that coronal mass ejections (CMEs) are natural products of coronal evolution as a consequence of magnetic helicity accumulation and that the triggering of CMEs by surface processes such as flux emergence also have their origin in magnetic helicity accumulation. Here, we use the same mathematical approach to study the magnetic helicity of axisymmetric power-law force-free fields but focus on a family whose surface flux distributions are defined by self-similar force-free fields. The semi-analytical solutions of the axisymmetric self-similar force-free fields enable us to discuss the properties of force-free fields possessing a huge amount of accumulated magnetic helicity. Our study suggests that there may be an absolute upper bound on the total magnetic helicity of all bipolar axisymmetric force-free fields. With the increase of accumulated magnetic helicity, the force-free field approaches being fully opened up with Parker-spiral-like structures present around a current-sheet layer as evidence of magnetic helicity in the interplanetary space. It is also found that among the axisymmetric force-free fields having the same boundary flux distribution, the one that is self-similar is the one possessing the maximum amount of total magnetic helicity. This gives a possible physical reason why self-similar fields are often found in astrophysical bodies, where magnetic helicity accumulation is presumably also taking place.

  17. Effect of Body Force on Consolidation in Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Chao, N. C.; Lo, W. C.; Lee, J. W.

    2015-12-01

    Soil consolidation is a transient process by which soil volume is decreased due to the coupling between deformation of a porous medium and interstitial fluid flows. The influence of body force has been conventionally ignored in the consolidation theory of poroelasticity for either saturated or unsaturated soils. In the current study, gravity effect is well taken into account in the coupled diffusion equations derived by Lo et al. (2014) for describing one-dimensional consolidation in unsaturated soils, thus leading to additional first-order time-derivative terms. Finite-difference approach is used to solve those equations. Numerical calculations are then conducted with respect to various initial water saturations and soil heights for unsaturated clays as illustrative examples. The result is compared to that typically obtained with neglecting body forces to quantify the impact of gravity on consolidation in unsaturated soils.

  18. Fluidic Control of Aerodynamic Forces on an Axisymmetric Body

    NASA Astrophysics Data System (ADS)

    Abramson, Philip; Vukasinovic, Bojan; Glezer, Ari

    2007-11-01

    The aerodynamic forces and moments on a wind tunnel model of an axisymmetric bluff body are modified by induced local vectoring of the separated base flow. Control is effected by an array of four integrated aft-facing synthetic jets that emanate from narrow, azimuthally-segmented slots, equally distributed around the perimeter of the circular tail end within a small backward facing step that extends into a Coanda surface. The model is suspended in the wind tunnel by eight thin wires for minimal support interference with the wake. Fluidic actuation results in a localized, segmented vectoring of the separated base flow along the rear Coanda surface and induces asymmetric aerodynamic forces and moments to effect maneuvering during flight. The aerodynamic effects associated with quasi-steady and transitory differential, asymmetric activation of the Coanda effect are characterized using direct force and PIV measurements.

  19. Mitigated-force carriage for high magnetic field environments

    SciTech Connect

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

    2014-05-20

    A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  20. Lorentz force electrical impedance tomography using magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  1. Lorentz force electrical impedance tomography using magnetic field measurements.

    PubMed

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  2. Lorentz force electrical impedance tomography using magnetic field measurements.

    PubMed

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  3. ANALYSIS OF THE MAGNETIZED FRICTION FORCE.

    SciTech Connect

    FEDOTOV, A.V.; BRUHWILER, D.L.; SIDORIN, A.O.

    2006-05-29

    A comprehensive examination of theoretical models for the friction force, in use by the electron cooling community, was performed. Here, they present their insights about the models gained as a result of comparison between the friction force formulas and direct numerical simulations, as well as studies of the cooling process as a whole.

  4. On the force on a body moving in a fluid

    NASA Astrophysics Data System (ADS)

    Biesheuvel, Arie; Hagmeijer, Rob

    2006-10-01

    It is well-known that freely falling or rising objects and self-propelling bodies shed vorticity. It is then a natural question to ask how to define the forces (drag and lift) experienced by the body in terms of the vorticity distribution in the surrounding fluid and the normal velocity of the body surface, since these define the velocity distribution uniquely. In this paper we outline the answer given by Burgers in an almost forgotten paper from 1920, and point at the close relationship of Burgers's ideas in these matters with those of Sir James Lighthill. The connection with more recent work by Kambe and Howe is established and we briefly discuss related issues concerning "vortex methods" and "vortex sound".

  5. Three-wire magnetic trap for direct forced evaporative cooling

    NASA Astrophysics Data System (ADS)

    Du, Shengwang; Oh, Eun

    2009-01-01

    We propose a simple three-wire-based magnetic trap potential for direct forced evaporative cooling of neutral atoms without using induced spin-flip technologies. We have devised a method for controlling the trap depth without sacrificing its frequencies by only varying wire currents and external magnetic fields. By having multiples of these wires on different levels integrated into an atom chip, it is possible to attain Bose-Einstein condensation without the conventional forced evaporation technique.

  6. Amazing Magnetism - Demos of Invisible Forces

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Bird, K.; Nevils-Noe, G.

    2015-12-01

    Magnetic fields are puzzling and a perplexing phenomenon to grasp. Pushes and pulls applied without objects touching are difficult to understand and to relate to everyday life. For this poster we will show some of our most interesting magnetic field demonstrations, including field line visualizations using an array of compasses, electromagnetic induction, and an inductive "cannon" that shoots a ring. We will relate the issues and lessons of electromagnetism to the Earth's and Sun's magnetic fields and to everyday technology that uses electromagnetism. This presentation is sponsored by NASA's Magnetospheric Multiscale Mission (MMS).

  7. Self-forces on static bodies in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Harte, Abraham I.; Flanagan, Éanna É.; Taylor, Peter

    2016-06-01

    We derive exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Nonperturbatively, our results are identical in all dimensions. Meaningful point particle limits are quite different in different dimensions, however. These limits are defined and evaluated, resulting in simple "regularization algorithms" which can be used in concrete calculations. In these limits, self-interaction is shown to be progressively less important in higher numbers of dimensions; it generically competes in magnitude with increasingly high-order extended-body effects. Conversely, we show that self-interaction effects can be relatively large in 1 +1 and 2 +1 dimensions. Our motivations for this work are twofold: First, no previous derivation of the self-force has been provided in arbitrary dimensions, and heuristic arguments presented by different authors have resulted in conflicting conclusions. Second, the static self-force problem in arbitrary dimensions provides a valuable test bed with which to continue the development of general, nonperturbative methods in the theory of motion. Several new insights are obtained in this direction, including a significantly improved understanding of the renormalization process. We also show that there is considerable freedom to use different "effective fields" in the laws of motion—a freedom which can be exploited to optimally simplify specific problems. Different choices give rise to different inertias, gravitational forces, and electromagnetic or scalar self-forces, but there is a sense in which none of these quantities are individually accessible to experiment. Certain combinations are observable, however, and these remain invariant under all possible field redefinitions.

  8. Fundamental study of phosphor separation by controlling magnetic force

    NASA Astrophysics Data System (ADS)

    Wada, Kohei; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2013-11-01

    The phosphor wastes consist of phosphors with different emission colors, green (LAP), red (YOX), blue (BAM) and white (HP). It is required to recover and reuse the rare earth phosphors with high market value. In this study, we tried to separate the phosphor using the magnetic separation by HTS bulk magnet utilizing the differences of magnetic susceptibility by the type of phosphors. We succeeded in the successive separation of HP with low market value from YOX and BAM including the rare earth using the magnetic Archimedes method. In this method, vertical and radial components of the magnetic force were used.

  9. EXPERIMENTAL BENCHMARKING OF THE MAGNETIZED FRICTION FORCE.

    SciTech Connect

    FEDOTOV, A.V.; GALNANDER, B.; LITVINENKO, V.N.; LOFNES, T.; SIDORIN, A.O.; SMIRNOV, A.V.; ZIEMANN, V.

    2005-09-18

    High-energy electron cooling, presently considered as essential tool for several applications in high-energy and nuclear physics, requires accurate description of the friction force. A series of measurements were performed at CELSIUS with the goal to provide accurate data needed for the benchmarking of theories and simulations. Some results of accurate comparison of experimental data with the friction force formulas are presented.

  10. Solvable Many-Body Models of Goldfish Type with One-, Two- and Three-Body Forces

    NASA Astrophysics Data System (ADS)

    Bihun, Oksana; Calogero, Francesco

    2013-10-01

    The class of solvable many-body problems ''of goldfish type'' is extended by including (the additional presence of) three-body forces. The solvable N-body problems thereby identified are characterized by Newtonian equations of motion featuring 19 arbitrary ''coupling constants''. Restrictions on these constants are identified which cause these systems - or appropriate variants of them - to be isochronous or asymptotically isochronous, i.e. all their solutions to be periodic with a fixed period (independent of the initial data) or to have this property up to contributions vanishing exponentially as t→ ∞.

  11. Forced vibration of flexible body systems. A dynamic stiffness method

    NASA Astrophysics Data System (ADS)

    Liu, T. S.; Lin, J. C.

    1993-10-01

    Due to the development of high speed machinery, robots, and aerospace structures, the research of flexible body systems undergoing both gross motion and elastic deformation has seen increasing importance. The finite element method and modal analysis are often used in formulating equations of motion for dynamic analysis of the systems which entail time domain, forced vibration analysis. This study develops a new method based on dynamic stiffness to investigate forced vibration of flexible body systems. In contrast to the conventional finite element method, shape functions and stiffness matrices used in this study are derived from equations of motion for continuum beams. Hence, the resulting shape functions are named as dynamic shape functions. By applying the dynamic shape functions, the mass and stiffness matrices of a beam element are derived. The virtual work principle is employed to formulate equations of motion. Not only the coupling of gross motion and elastic deformation, but also the stiffening effect of axial forces is taken into account. Simulation results of a cantilever beam, a rotating beam, and a slider crank mechanism are compared with the literature to verify the proposed method.

  12. Sensitive magnetic force detection with a carbon nanotube resonator

    SciTech Connect

    Willick, Kyle; Haapamaki, Chris; Baugh, Jonathan

    2014-03-21

    We propose a technique for sensitive magnetic point force detection using a suspended carbon nanotube (CNT) mechanical resonator combined with a magnetic field gradient generated by a ferromagnetic gate electrode. Numerical calculations of the mechanical resonance frequency show that single Bohr magneton changes in the magnetic state of an individual magnetic molecule grafted to the CNT can translate to detectable frequency shifts, on the order of a few kHz. The dependences of the resonator response to device parameters such as length, tension, CNT diameter, and gate voltage are explored and optimal operating conditions are identified. A signal-to-noise analysis shows that, in principle, magnetic switching at the level of a single Bohr magneton can be read out in a single shot on timescales as short as 10 μs. This force sensor should enable new studies of spin dynamics in isolated single molecule magnets, free from the crystalline or ensemble settings typically studied.

  13. Forces on a magnet moving past figure-eight coils

    SciTech Connect

    Mulcahy, T.H.; He, Jianliang; Rote, D.M. ); Rossing, T.D. . Dept. of Physics)

    1993-01-01

    For the first time, the lift, drag, and guidance forces acting on a permanent magnet are measured as the magnet passes over different arrays of figure-eight (null-flux) coils. The experimental results are in good agreement with the predictions of dynamic circuit theory, which is used to explain more optimal coil arrays.

  14. Forces on a magnet moving past figure-eight coils

    SciTech Connect

    Mulcahy, T.H.; He, Jianliang; Rote, D.M.; Rossing, T.D.

    1993-03-01

    For the first time, the lift, drag, and guidance forces acting on a permanent magnet are measured as the magnet passes over different arrays of figure-eight (null-flux) coils. The experimental results are in good agreement with the predictions of dynamic circuit theory, which is used to explain more optimal coil arrays.

  15. Extending the Range for Force Calibration in Magnetic Tweezers

    PubMed Central

    Daldrop, Peter; Brutzer, Hergen; Huhle, Alexander; Kauert, Dominik J.; Seidel, Ralf

    2015-01-01

    Magnetic tweezers are a wide-spread tool used to study the mechanics and the function of a large variety of biomolecules and biomolecular machines. This tool uses a magnetic particle and a strong magnetic field gradient to apply defined forces to the molecule of interest. Forces are typically quantified by analyzing the lateral fluctuations of the biomolecule-tethered particle in the direction perpendicular to the applied force. Since the magnetic field pins the anisotropy axis of the particle, the lateral fluctuations follow the geometry of a pendulum with a short pendulum length along and a long pendulum length perpendicular to the field lines. Typically, the short pendulum geometry is used for force calibration by power-spectral-density (PSD) analysis, because the movement of the bead in this direction can be approximated by a simple translational motion. Here, we provide a detailed analysis of the fluctuations according to the long pendulum geometry and show that for this direction, both the translational and the rotational motions of the particle have to be considered. We provide analytical formulas for the PSD of this coupled system that agree well with PSDs obtained in experiments and simulations and that finally allow a faithful quantification of the magnetic force for the long pendulum geometry. We furthermore demonstrate that this methodology allows the calibration of much larger forces than the short pendulum geometry in a tether-length-dependent manner. In addition, the accuracy of determination of the absolute force is improved. Our force calibration based on the long pendulum geometry will facilitate high-resolution magnetic-tweezers experiments that rely on short molecules and large forces, as well as highly parallelized measurements that use low frame rates. PMID:25992733

  16. Extending the range for force calibration in magnetic tweezers.

    PubMed

    Daldrop, Peter; Brutzer, Hergen; Huhle, Alexander; Kauert, Dominik J; Seidel, Ralf

    2015-05-19

    Magnetic tweezers are a wide-spread tool used to study the mechanics and the function of a large variety of biomolecules and biomolecular machines. This tool uses a magnetic particle and a strong magnetic field gradient to apply defined forces to the molecule of interest. Forces are typically quantified by analyzing the lateral fluctuations of the biomolecule-tethered particle in the direction perpendicular to the applied force. Since the magnetic field pins the anisotropy axis of the particle, the lateral fluctuations follow the geometry of a pendulum with a short pendulum length along and a long pendulum length perpendicular to the field lines. Typically, the short pendulum geometry is used for force calibration by power-spectral-density (PSD) analysis, because the movement of the bead in this direction can be approximated by a simple translational motion. Here, we provide a detailed analysis of the fluctuations according to the long pendulum geometry and show that for this direction, both the translational and the rotational motions of the particle have to be considered. We provide analytical formulas for the PSD of this coupled system that agree well with PSDs obtained in experiments and simulations and that finally allow a faithful quantification of the magnetic force for the long pendulum geometry. We furthermore demonstrate that this methodology allows the calibration of much larger forces than the short pendulum geometry in a tether-length-dependent manner. In addition, the accuracy of determination of the absolute force is improved. Our force calibration based on the long pendulum geometry will facilitate high-resolution magnetic-tweezers experiments that rely on short molecules and large forces, as well as highly parallelized measurements that use low frame rates.

  17. Experimental studies of protozoan response to intense magnetic fields and forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine

    Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general

  18. Drag measurements on a body of revolution in Langley's 13-inch Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1988-01-01

    NASA Langley's 13-inch Magnetic Suspension and Balance System (MSBS) has been used to conduct low-speed wind tunnel drag force measurements on a laminar-flow body-of-revolution free of support system interference, in order to verify the drag force measurement capabilities of the MSBS. The drag force calibrations and wind-on repeatability data obtained have verified the design capabilities for this system. A drag-prediction code has been used to assess the MSBS's usefulness in body drag estimation.

  19. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  20. Three-Body Forces and the Limit of Oxygen Isotopes

    SciTech Connect

    Otsuka, Takaharu; Suzuki, Toshio; Holt, Jason D.; Schwenk, Achim; Akaishi, Yoshinori

    2010-07-16

    The limit of neutron-rich nuclei, the neutron drip line, evolves regularly from light to medium-mass nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body systems. This leads to repulsive contributions to the interactions among excess neutrons that change the location of the neutron drip line from {sup 28}O to the experimentally observed {sup 24}O. Since the mechanism is robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.

  1. Ball lightning as a force-free magnetic knot

    PubMed

    Ranada; Soler; Trueba

    2000-11-01

    The stability of fireballs in a recent model of ball lightning is studied. It is shown that the balls shine while relaxing in an almost quiescent expansion, and that three effects contribute to their stability: (i) the formation in each one during a process of Taylor relaxation of a force-free magnetic field, a concept introduced in 1954 in order to explain the existence of large magnetic fields and currents in stable configurations of astrophysical plasmas; (ii) the so called Alfven conditions in magnetohydrodynamics; and (iii) the approximate conservation of the helicity integral. The force-free fields that appear are termed "knots" because their magnetic lines are closed and linked.

  2. Magnetic forces in high-Tc superconducting bearings

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1991-01-01

    In September 1987, researchers at Cornell levitated a small rotor on superconducting bearings at 10,000 rpm. In April 1989, a speed of 120,000 rpm was achieved in a passive bearing with no active control. The bearing material used was YBa2Cu307. There is no evidence that the rotation speed has any significant effect on the lift force. Magnetic force measurements between a permanent rare-earth magnet and high T(sub c) superconducting material versus vertical and lateral displacements were made. A large hysteresis loop results for large displacements, while minor loops result for small displacements. These minor loops seem to give a slope proportional to the magnetic stiffness, and are probably indicative of flux pinning forces. Experiments of rotary speed versus time show a linear decay in a vacuum. Measurements of magnetic dipole over a high-T(sub c) superconducting disc of YBCO show that the lateral vibrations of levitated rotors were measured which indicates that transverse flux motion in the superconductor will create dissipation. As a result of these force measurements, an optimum shape for the superconductor bearing pads which gives good lateral and axial stability was designed. Recent force measurements on melt-quench processed superconductors indicate a substantial increase in levitation force and magnetic stiffness over free sintered materials. As a result, application of high-T(sub c) superconducting bearings are beginning to show great promise at this time.

  3. A magnetic gradient induced force in NMR restricted diffusion experiments.

    PubMed

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.

  4. A magnetic gradient induced force in NMR restricted diffusion experiments

    SciTech Connect

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S.

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.

  5. Spin motive force driven by skyrmion dynamics in magnetic nanodisks

    NASA Astrophysics Data System (ADS)

    Shimada, Yuhki; Ohe, Jun-ichiro

    2015-05-01

    The spin motive force driven by the dynamics of the skyrmion structure formed in a nanomagnetic disk is numerically investigated. Due to the existence of the magnetic structure along the disk edge, the collective mode of the magnetization is modified from that of the bulk skyrmion lattice obtained by using the periodic boundary condition. For a single-skyrmion disk, the dynamics of the skyrmion core and the edge magnetization induce the spin motive force, and a measurable AC voltage is obtained by two probes on the disk. For a multi-skyrmions disk, the phase-locked collective mode of skyrmions is found in the lowest resonant frequency where the amplitude of the AC voltage is enhanced by the cascade effect of the spin motive force. We also investigate the effect of the Rashba spin-orbit coupling on the spin motive force.

  6. Three dimensional magnetic resonance imaging by magnetic resonance force microscopy with a sharp magnetic needle.

    PubMed

    Tsuji, S; Yoshinari, Y; Park, H S; Shindo, D

    2006-02-01

    An electropolished magnetic needle made of Nd(2)Fe(14)B permanent magnet was used for obtaining better spatial resolution than that achieved in our previous work. We observed the magnetic field gradient |G(Z)|=80.0G/microm and the field strength B=1250G at Z approximately 8.8 microm from the top of the needle. The use of this needle for three dimensional magnetic resonance force microscopy at room temperature allowed us to achieve the voxel resolution to be 0.6 microm x 0.6 microm x 0.7 microm in the reconstructed image of DPPH phantom. The acquisition time spent for the whole data collection over 64 x 64 x 16 points, including an iterative signal average by six times per point, was about 10 days.

  7. Magnetic forces in high-T(sub c) superconducting bearings

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1990-01-01

    In September 1987 research at Cornell levitated a small rotor on superconducting bearing at 10,000 rpm. In April 1989 a speed of 120,000 rpm was achieved in a passive bearing with no active control. The bearing material used was YBa2Cu3O7. There is no evidence that the rotation speed has any significant effect on the lift force. Magnetic force measurements between a permanent rare-earth magnet and high T(sub c) superconducting material versus vertical and lateral displacements were made. A large hysteresis loop results for large displacements, while minor loops result for small displacements. These minor loops seem to give a slope proportional to the magnetic stiffness, and are probably indicative of flux pinning forces. Experiments of rotary speed versus time show a linear decay in a vacuum. Measurements of magnetic drag forces of a magnetic dipole over a high-T(sub c) superconducting disc of YBCO show that the drag force reaches a constant value, independent of the speed. Dampling of lateral vibrations of levitated rotors were measured which indicates that transverse flux motion in the superconductor will create dissipation. As a result of these force measurements, an optimum shape for the superconductor bearing pads which gives good lateral and axial stability was designed. Recent force measurements on melt-quench processed superconductors indicate a substantial increase in levitation force and magnetic stiffness over free sintered materials. As a result, application of high-T(sub c) superconducting bearings are beginning to show great promise at this time.

  8. Detecting the gravitational sensitivity of Paramecium caudatum using magnetic forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Valles, James M., Jr.

    2006-03-01

    Under normal conditions, Paramecium cells regulate their swimming speed in response to the pN level mechanical force of gravity. This regulation, known as gravikinesis, is more pronounced when the external force is increased by methods such as centrifugation. Here we present a novel technique that simulates gravity fields using the interactions between strong inhomogeneous magnetic fields and cells. We are able to achieve variable gravities spanning from 10xg to -8xg; where g is earth's gravity. Our experiments show that the swimming speed regulation of Paramecium caudatum to magnetically simulated gravity is a true physiological response. In addition, they reveal a maximum propulsion force for paramecia. This advance establishes a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.

  9. A cosmological interpretation of the magnetic field of the celestial bodies

    NASA Astrophysics Data System (ADS)

    de Sabbata, V.; Gasperini, M.

    1980-02-01

    A cosmological interpretation of the empirical relation between the magnetic moment and intrinsic angular momentum of the celestial bodies is examined. From a consideration of the spin-torsion interaction Lagrangian in a Riemann-Cartan space, it is shown that torsion, inducing the alignment of the spins inside matter, can produce a magnetic field, just as a magnetic field induces torsion by forcing spin alignment. The empirical magnetic moment-intrinsic angular momentum relation, which includes the gravitational constant, is then deduced as a consequence of the initial conditions of the universe, assuming the introduction of torsion into the gravitational equations according to the Einstein-Cartan theory, and the validity of Dirac's large-number hypothesis. The cosmological interpretation of the magnetic moments of celestial bodies predicts the increase with time of the earth's magnetic moment, which has been verified qualitatively by experiment, and can apply to the galaxies and the universe as well as the stars and planets.

  10. In vivo implant forces acting on a vertebral body replacement during upper body flexion.

    PubMed

    Dreischarf, Marcel; Albiol, Laia; Zander, Thomas; Arshad, Rizwan; Graichen, Friedmar; Bergmann, Georg; Schmidt, Hendrik; Rohlmann, Antonius

    2015-02-26

    Knowledge about in vivo spinal loads is required for the identification of risk factors for low back pain and for realistic preclinical testing of spinal implants. Therefore, the aim of the present study was to measure the in vivo forces on a vertebral body replacement (VBR) during trunk flexion and to analyze in detail the typical relationship between trunk inclination and spinal load. Telemeterized VBRs were implanted in five patients. In vivo loads were measured 135 times during flexion while standing or sitting. The trunk inclination was simultaneously recorded. To reveal elementary differences between flexion while standing and sitting, the force increases at the maximal inclination, as compared to the upright position, were also determined. Approximately 90% of all standing trials showed a characteristic inclination-load relationship, with an initial increase of the resultant force followed by a plateau or even a decrease of the force at an inclination of approximately 33°. Further flexion to the average maximal inclination angle of 53° only marginally affected the implant loads (~450N). Maximal forces were measured during the return to the initial standing position (~565N). Flexion during standing led to a greater force increase (~330N) than during sitting (~200N) when compared to the respective upright positions. The force plateau at greater inclination angles might be explained by abdominal load support, complex stabilization of active and passive spinal structures or intricate load sharing within the implant complex. The data presented here aid in understanding the loads acting on an instrumented lumbar spine.

  11. Fabrication of nanoscale magnet-tipped cantilevers for magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Hickman, Steven A.; Garner, Sean R.; Harrell, Lee E.; Kuehn, Seppe; Marohn, John A.

    2006-03-01

    Magnetic resonance force microscopy(MRFM) is a promising new technique for acquiring magnetic resonance images of a single molecule; to date we have demonstrated a sensitivity of approximately 10,000 proton spins. In MRFM the force exerted on the cantilever, per spin, is proportional to the field gradient from the cantilever's magnetic tip. To increase the force requires shrinking the magnet size. Achieving the attonewton force sensitivity necessary to image single spins requires mitigating surface induced dissipation. We choose to meet both of these conditions by creating nanoscale magnets extending from the tips of silicon cantilevers. We will present a 50-nm wide overhanging cobalt magnet fabricated by a process involving electron beam lithography and anisotropic KOH etching. This process can be integrated into a fabrication protocol for ultrasensitive silicon cantilevers. With these cantilevers we expect a sensitivity of better than 1000 protons.

  12. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  13. Experimental issues in magnetic force microscopy of nanoparticles

    NASA Astrophysics Data System (ADS)

    Angeloni, L.; Passeri, D.; Reggente, M.; Rossi, M.; Mantovani, D.; Lazzaro, L.; Nepi, F.; De Angelis, F.; Barteri, M.

    2015-06-01

    The development of magnetic nanoparticles for biomedical applications requires a detailed characterization of their magnetic properties, with relation not only to their chemical structure, but also their morphology and size. Magnetic force microscopy (MFM), thanks to its nanometric lateral resolution and its capability to detect weak magnetic fields, appears as a powerful tool for the characterization of the magnetic properties of single nanoparticles, together with their morphological characteristics. Nevertheless, the application of MFM to the quantitative measurements of magnetic properties at the nanoscale is still an open issue because of a certain incongruence between experimental data and existing theoretical models of the tip-sample magnetic interactions. In this work, MFM data acquired on different magnetic nanoparticles in different experimental conditions (magnetized and not magnetized probes, out-of-field and in-field measurements) are analyzed, with the aim of individuating the possible phenomena affecting MFM measurements. These include topography-induced artifacts resulting from the tip-sample capacitive coupling, which we propose here for the first time. In case of measurements performed in presence of an external magnetic field, much more intense MFM signals were detected as it produces the saturation of the magnetization of the nanoparticles, which is not completely obtained by the sole stray field produced by the tip. Nevertheless, even in in-field measurements, the results evidenced the presence of significant electrostatic effects in MFM images, which, therefore, appear as an important factor to be taken into account for the quantitative interpretation of MFM data.

  14. Magnetic force microscopy investigation of the magnetization reversal of permalloy particles at high temperatures

    NASA Astrophysics Data System (ADS)

    Nurgazizov, N. I.; Khanipov, T. F.; Bizyaev, D. A.; Bukharaev, A. A.; Chuklanov, A. P.

    2014-09-01

    The magnetization reversal of an array of permalloy particles formed by scanning probe lithography on the silicon dioxide surface has been investigated in the temperature range from room temperature to 800 K. Using scanning magnetic force microscopy and numerical calculations of the magnetic anisotropy field of a particle at different temperatures, it has been shown that an increase in the temperature leads to a decrease in the external magnetic field required to reverse the magnetization direction of the particle. From the obtained results, it has been concluded that the magnetization reversal of the studied particles is accompanied by the formation of an intermediate state with an inhomogeneous magnetization structure.

  15. Whole-body magnetic resonance imaging: assessment of skeletal metastases.

    PubMed

    Moynagh, Michael R; Colleran, Gabrielle C; Tavernaraki, Katarina; Eustace, Stephen J; Kavanagh, Eoin C

    2010-03-01

    The concept of a rapid whole-body imaging technique with high resolution and the absence of ionizing radiation for the assessment of osseous metastatic disease is a desirable tool. This review article outlines the current perspective of whole-body magnetic resonance imaging in the assessment of skeletal metastatic disease, with comparisons made to alternative whole-body imaging modalities.

  16. Magnetic resonance force detection using a membrane resonator.

    PubMed

    Scozzaro, N; Ruchotzke, W; Belding, A; Cardellino, J; Blomberg, E C; McCullian, B A; Bhallamudi, V P; Pelekhov, D V; Hammel, P C

    2016-10-01

    The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiNx) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection sensitivity stems from their high mechanical quality factor Q∼10(6)[1,2] combined with the low mass of the resonator. We use this excellent mechanical force sensitivity to detect the electron spin magnetic resonance using a SiNx membrane as a force detector. The demonstrated force sensitivity at 300K is 4fN/Hz, indicating a potential low temperature (4K) sensitivity of 25aN/Hz. Given their sensitivity, robust construction, large surface area and low cost, SiNx membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument having spatial resolution superior to conventional approaches. PMID:27522542

  17. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, N.; Ruchotzke, W.; Belding, A.; Cardellino, J.; Blomberg, E. C.; McCullian, B. A.; Bhallamudi, V. P.; Pelekhov, D. V.; Hammel, P. C.

    2016-10-01

    The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiNx) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection sensitivity stems from their high mechanical quality factor Q ∼106 [1,2] combined with the low mass of the resonator. We use this excellent mechanical force sensitivity to detect the electron spin magnetic resonance using a SiNx membrane as a force detector. The demonstrated force sensitivity at 300 K is 4 fN/√{Hz } , indicating a potential low temperature (4 K) sensitivity of 25 aN/√{Hz } . Given their sensitivity, robust construction, large surface area and low cost, SiNx membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument having spatial resolution superior to conventional approaches.

  18. The use of electromagnetic body forces to enhance the quality of laser welds

    NASA Astrophysics Data System (ADS)

    Ambrosy, Guenter; Berger, P.; Huegel, H.; Lindenau, D.

    2003-11-01

    The use of electromagnetic body forces in laser beam welding of aluminum alloys is a new method to shape the geometry and to enhance the quality of the weld seams. In this new approach, electromagnetic volume forces are utilized by applying magnetic fields and electric currents of various origins. Acting in the liquid metal, they directly affect the flow field and can lead to favourable conditions for the melt dynamics and energy coupling. Numerous welds with full and partial penetration using both CO2 and Nd:YAG lasers demonstrate that this method directly influences the seam geometry and top-bead topography as well as the penetration depth and the evolution of pores and cracks. In the case of full penetration, it is also possible to lift or to lower the weld pool. The method, therefore, can be used to shape the geometry and to enhance the quality of the weld seam. Depending on the orientation of an external magnetic field, significant impacts are achieved in CO2 welding, even without an external current: the shape of the cross-sectional area can be increased of up to 50% and also the seam width is changed. Whereas for such conditions with Nd:YAG lasers no significant effect could be observed, it turned out that, when an external electric current is applied, similar effects are present with both wavelengths. In further investigations, the effect of electromagnetic body forces resulting from the interaction of an external current and its self-induced magnetic field was studied. Hereby, the current was fed into the workpiece via a tungsten electrode or a filler wire. The resulting phenomena are the same independent from wavelength and means of current feed.

  19. Local nonlinear rf forces in inhomogeneous magnetized plasmas

    SciTech Connect

    Chen, Jiale; Gao, Zhe

    2014-06-15

    The local nonlinear forces induced by radio frequency (rf) waves are derived in inhomogeneous magnetized plasmas, where the inhomogeneity exists in the rf fields, in the static magnetic field as well as in the equilibrium density and temperature. The local parallel force is completely resonant, but a novel component dependent on those inhomogeneities is obtained as the result of the inhomogeneous transport of parallel resonant-absorbed momentum by the nonlinear perpendicular drift flux. In the local poloidal force, the component induced by the inhomogeneity of rf power absorption is also confirmed and it can be recognized as the residual effect from the incomplete cancellation between the rate of the diamagnetic poloidal momentum gain and the Lorentz force due to the radial diffusion-like flux. The compact expression for radial force is also obtained for the first time, whose nonresonant component is expressed as the sum of the ponderomotive force on particles and the gradients of the nonresonant perpendicular pressure and of the nonresonant momentum flux due to the finite temperature effect. Numerical calculations in a 1-D slab model show that the resonant component dependent on the inhomogeneities may be significant when the ion absorption dominates the resonant wave-particle interaction. A quantitative estimation shows that the novel component in the parallel force is important to understand the experiments of the ion-cyclotron-frequency mode-conversion flow drive.

  20. Modeling complexly magnetized two-dimensional bodies of arbitrary shape

    SciTech Connect

    Mariano, J.; Hinze, W.J. . Dept. of Earth and Atmospheric Sciences)

    1993-05-01

    A method has been devised for the forward computation of magnetic anomalies due to two-dimensional (2-D) polygonal bodies with heterogeneously directed magnetization. The calculations are based on the equivalent line source approach wherein the source is subdivided into discrete elements that vary spatially in their magnetic properties. This equivalent dipole line method provides a fast and convenient means of representing and computing magnetic anomalies for bodies possessing complexly varying magnitude and direction of magnetization. The algorithm has been tested and applied to several generalized cases to verify the accuracy of the computation. The technique has also been used to model observed aeromagnetic anomalies associated with the structurally deformed, remanently magnetized Keweenawan volcanic rocks in eastern Lake Superior. This method is also easily adapted to the calculation of anomalies due to two and one-half-dimensional (2.5-D) and three-dimensional (3-D) heterogeneously magnetized sources.

  1. Magnetization relaxation and geometric forces in a Bose ferromagnet.

    PubMed

    Armaitis, J; Stoof, H T C; Duine, R A

    2013-06-28

    We construct the hydrodynamic theory for spin-1/2 Bose gases at arbitrary temperatures. This theory describes the coupling between the magnetization and the normal and superfluid components of the gas. In particular, our theory contains the geometric forces on the particles that arise from their spin's adiabatic following of the magnetization texture. The phenomenological parameters of the hydrodynamic theory are calculated in the Bogoliubov approximation and using the Boltzmann equation in the relaxation-time approximation. We consider the topological Hall effect due to the presence of a Skyrmion, and show that this effect manifests itself in the collective modes of the system. The dissipative coupling between the magnetization and the normal component is shown to give rise to magnetization relaxation that is fourth order in spatial gradients of the magnetization direction.

  2. THE MEAN ELECTROMOTIVE FORCE RESULTING FROM MAGNETIC BUOYANCY INSTABILITY

    SciTech Connect

    Davies, C. R.; Hughes, D. W. E-mail: d.w.hughes@leeds.ac.uk

    2011-02-01

    Motivated both by considerations of the generation of large-scale astrophysical magnetic fields and by potential problems with mean magnetic field generation by turbulent convection, we investigate the mean electromotive force (emf) resulting from the magnetic buoyancy instability of a rotating layer of stratified magnetic field, considering both unidirectional and sheared fields. We discuss why the traditional decomposition into {alpha} and {beta} effects is inappropriate in this case, and that it is only consideration of the entire mean emf that is meaningful. By considering a weighted average of the unstable linear eigenmodes, and averaging over the horizontal plane, we obtain depth-dependent emfs. For the simplified case of isothermal, ideal MHD, we are able to obtain an analytic expression for the emf; more generally, the emf has to be determined numerically. We calculate how the emf depends on the various parameters of the problem, particularly the rotation rate and the latitude of the magnetic layer.

  3. Three-axis force actuator for a magnetic bearing

    NASA Technical Reports Server (NTRS)

    Gondhalekar, Vijay (Inventor)

    1998-01-01

    This invention features a three-axis force actuator that axially, radially and rotatably supports a bearing member for frictionless rotation about an axis of rotation generally coincident with a Z-axis. Also featured is a magnetic bearing having such an actuator. The actuator includes an inner member, a magnetic member and a pole assembly having a ring member and four pole extending therefrom. The poles are equi-angular spaced from each other and radially spaced about the Z-axis. The inner member extends along the Z-axis and is a highly magnetic permeable material. The magnetic member is formed about the inner member outer surface, extends along the Z-axis and is configured so one magnetic pole polarity is located at its outer surface and the other polarity pole is located at its inner surface. Preferably, the magnetic member is a radially magnetized permanent magnet. The inner surface of the ring member is magnetically coupled to the magnetic member and a face of each pole is coupled to the bearing member. The magnetic member, the pole assembly, the inner member and the bearing member cooperate to generate a magnetic field that radially and rotatably supports a rotating member secured to the bearing member. The actuator further includes a plurality of electromagnetic coils. Preferably, a coil is formed about each pole and at least 2 coils are formed about the inner member. When energized, the electromagnetic coils generate a modulated magnetic field that stabilizes the rotating member in the desired operational position.

  4. Probing cellular traction forces with magnetic nanowires and microfabricated force sensor arrays.

    PubMed

    Lin, Yi-Chia; Kramer, Corinne M; Chen, Christopher S; Reich, Daniel H

    2012-02-24

    In this paper, the use of magnetic nanowires for the study of cellular response to force is demonstrated. High-aspect ratio Ni rods with diameter 300 nm and lengths up to 20 μm were bound to or internalized by pulmonary artery smooth muscle cells (SMCs) cultured on arrays of flexible micropost force sensors. Forces and torques were applied to the cells by driving the nanowires with AC magnetic fields in the frequency range 0.1-10 Hz, and the changes in cellular contractile forces were recorded with the microposts. These local stimulations yield global force reinforcement of the cells' traction forces, but this contractile reinforcement can be effectively suppressed upon addition of a calcium channel blocker, ruthenium red, suggesting the role of calcium channels in the mechanical response. The responsiveness of the SMCs to actuation depends on the frequency of the applied stimulation. These results show that the combination of magnetic nanoparticles and micropatterned, flexible substrates can provide new approaches to the study of cellular mechanotransduction.

  5. Probing cellular traction forces with magnetic nanowires and microfabricated force sensor arrays

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chia; Kramer, Corinne M.; Chen, Christopher S.; Reich, Daniel H.

    2012-02-01

    In this paper, the use of magnetic nanowires for the study of cellular response to force is demonstrated. High-aspect ratio Ni rods with diameter 300 nm and lengths up to 20 μm were bound to or internalized by pulmonary artery smooth muscle cells (SMCs) cultured on arrays of flexible micropost force sensors. Forces and torques were applied to the cells by driving the nanowires with AC magnetic fields in the frequency range 0.1-10 Hz, and the changes in cellular contractile forces were recorded with the microposts. These local stimulations yield global force reinforcement of the cells’ traction forces, but this contractile reinforcement can be effectively suppressed upon addition of a calcium channel blocker, ruthenium red, suggesting the role of calcium channels in the mechanical response. The responsiveness of the SMCs to actuation depends on the frequency of the applied stimulation. These results show that the combination of magnetic nanoparticles and micropatterned, flexible substrates can provide new approaches to the study of cellular mechanotransduction.

  6. Minimization of cogging force in a linear permanent magnet motor

    SciTech Connect

    Hor, P.J.; Zhu, Z.Q.; Howe, D.; Rees-Jones, J.

    1998-09-01

    A finite element/analytically based method is used to aid the minimization of cogging force, due to slotting and the finite length of the ferromagnetic core, in a tubular brushless permanent magnet motor. The method is validated against both finite element calculations and measurements on a prototype motor.

  7. Single Molecule Magnetic Force Detection with a Carbon Nanotube Resonator

    NASA Astrophysics Data System (ADS)

    Willick, Kyle; Walker, Sean; Baugh, Jonathan

    2015-03-01

    Single molecule magnets (SMMs) sit at the boundary between macroscopic magnetic behaviour and quantum phenomena. Detecting the magnetic moment of an individual SMM would allow exploration of this boundary, and could enable technological applications based on SMMs such as quantum information processing. Detection of these magnetic moments remains an experimental challenge, particularly at the time scales of relaxation and decoherence. We present a technique for sensitive magnetic force detection that should permit such measurements. A suspended carbon nanotube (CNT) mechanical resonator is combined with a magnetic field gradient generated by a ferromagnetic gate electrode, which couples the magnetic moment of a nanomagnet to the resonant motion of the CNT. Numerical calculations of the mechanical resonance show that resonant frequency shifts on the order of a few kHz arise due to single Bohr magneton changes in magnetic moment. A signal-to-noise analysis based on thermomechanical noise shows that magnetic switching at the level of a Bohr magneton can be measured in a single shot on timescales as short as 10 μs. This sensitivity should enable studies of the spin dynamics of an isolated SMM, within the spin relaxation timescales for many available SMMs. Supported by NSERC.

  8. Using Magnetic Forces to Probe the Gravi-response of Swimming Paramecium

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Valles, James M., Jr.

    2004-03-01

    Paramecium Caudatum, a single celled ciliate, alters its swimming behavior when subjected to different gravity environments (e.g. centrifugation and micro-gravity). To dissect the mechanisms behind this gravi-response and that of other biological systems, we are developing the use of magnetic body forces as a means of creating a rapidly tunable, simulated variable gravity environment. Since biological materials are weakly diamagnetic, we must subject them to intense inhomogeneous magnetic fields with characteristic field-field gradient products on the order of 16 T^2/cm. We will describe experiments on Paramecium Caudatum in which we adjust their net buoyancy with magnetic forces and measure the resulting changes in their swimming behavior.

  9. Fabrication Challenges in Producing Magnet-tipped Cantilevers for Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hickman, Steven A.; Garner, Sean R.; Harrell, Lee E.; Ong, Jeremy C.; Kuehn, Seppe; Marohn, John A.

    2008-03-01

    Magnetic resonance force microscopy (MRFM) is a technique that may allow MR imaging of single molecules -- an extremely exciting prospect. To date we have demonstrated MRFM sensitivity of ˜10^5 proton spins. By making improved magnetic tips and increasing force sensitivity, it may be possible to achieve single-proton sensitivity necessary for molecular imaging. In MRFM the force exerted on the cantilever, per spin, is proportional to the field gradient from the cantilever's magnetic tip. Achieving single proton sensitivity thus requires dramatically reducing magnet size. We have developed an e-beam lithography process for batch fabricating nanoscale magnets on silicon cantilevers. With these sized magnets we will still require attonewton force sensitivity. Research by our group has shown that surface induced dissipation is a major noise source. We believe this can be minimized by producing magnets overhanging the cantilever end. As proof of concept, we will show a 50-nm overhanging cobalt magnet made by a process involving KOH etching, as well as preliminary work on making overhanging magnets by dry fabrication methods. Our current challenge appears to be preventing the formation of metal silicides.

  10. Corroboration of magnetic forces in US Maglev design

    SciTech Connect

    Coffey, H.; He, J.; Wang, Z.

    1993-01-01

    Four System Concept Definition (SCD) contractors to the National Maglev Initiative (NMI) developed conceptual designs of maglev systems in 1991--1992. The objective of the work reported here was to perform independent calculations of the magnetic forces and fields of these four systems to assess the reasonableness'' of the results presented to the government. Commercial computer software was used for computing forces in the system employing nonlinear ferromagnetic materials and for some calculations of induced eddy current effects in finite-sized systems. Other cases required the use of models developed at ANL and verified by experiment, or in a few cases, new computer programs that have not been validated by experiment. The magnetic forces calculated by the contractors were found to be credible in every case evaluated. The stray fields were also found to be in reasonable agreement with those calculated by the contractors, but, for lack of spice, are not reported here.

  11. Corroboration of magnetic forces in US Maglev design

    SciTech Connect

    Coffey, H.; He, J.; Wang, Z.

    1993-06-01

    Four System Concept Definition (SCD) contractors to the National Maglev Initiative (NMI) developed conceptual designs of maglev systems in 1991--1992. The objective of the work reported here was to perform independent calculations of the magnetic forces and fields of these four systems to assess the ``reasonableness`` of the results presented to the government. Commercial computer software was used for computing forces in the system employing nonlinear ferromagnetic materials and for some calculations of induced eddy current effects in finite-sized systems. Other cases required the use of models developed at ANL and verified by experiment, or in a few cases, new computer programs that have not been validated by experiment. The magnetic forces calculated by the contractors were found to be credible in every case evaluated. The stray fields were also found to be in reasonable agreement with those calculated by the contractors, but, for lack of spice, are not reported here.

  12. Ball lightning as a force-free magnetic knot

    PubMed

    Ranada; Soler; Trueba

    2000-11-01

    The stability of fireballs in a recent model of ball lightning is studied. It is shown that the balls shine while relaxing in an almost quiescent expansion, and that three effects contribute to their stability: (i) the formation in each one during a process of Taylor relaxation of a force-free magnetic field, a concept introduced in 1954 in order to explain the existence of large magnetic fields and currents in stable configurations of astrophysical plasmas; (ii) the so called Alfven conditions in magnetohydrodynamics; and (iii) the approximate conservation of the helicity integral. The force-free fields that appear are termed "knots" because their magnetic lines are closed and linked. PMID:11102074

  13. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed. PMID:26964007

  14. The Negative Effective Magnetic Pressure in Stratified Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Kemel, Koen; Kleeorin, Nathan; Rogachevskii, Igor

    2012-04-01

    To understand the basic mechanism of the formation of magnetic flux concentrations, we determine by direct numerical simulations the turbulence contributions to the mean magnetic pressure in a strongly stratified isothermal layer with large plasma beta, where a weak uniform horizontal mean magnetic field is applied. The negative contribution of turbulence to the effective mean magnetic pressure is determined for strongly stratified forced turbulence over a range of values of magnetic Reynolds and Prandtl numbers. Small-scale dynamo action is shown to reduce the negative effect of turbulence on the effective mean magnetic pressure. However, the turbulence coefficients describing the negative effective magnetic pressure phenomenon are found to converge for magnetic Reynolds numbers between 60 and 600, which is the largest value considered here. In all these models, the turbulent intensity is arranged to be nearly independent of height, so the kinetic energy density decreases with height due to the decrease in density. In a second series of numerical experiments, the turbulent intensity increases with height such that the turbulent kinetic energy density is nearly independent of height. Turbulent magnetic diffusivity and turbulent pumping velocity are determined with the test-field method for both cases. The vertical profile of the turbulent magnetic diffusivity is found to agree with what is expected based on simple mixing length expressions. Turbulent pumping is shown to be down the gradient of turbulent magnetic diffusivity, but it is twice as large as expected. Corresponding numerical mean-field models are used to show that a large-scale instability can occur in both cases, provided the degree of scale separation is large enough and hence the turbulent magnetic diffusivity small enough.

  15. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  16. Force prediction in permanent magnet flat linear motors (abstract)

    NASA Astrophysics Data System (ADS)

    Eastham, J. F.; Akmese, R.

    1991-11-01

    The advent of neodymium iron boron rare-earth permanent magnet material has afforded the opportunity to construct linear machines of high force to weight ratio. The paper describes the design and construction of an axial flux machine and rotating drum test rig. The machine occupies an arc of 45° on a drum 1.22 m in diameter. The excitation is provided by blocks of NdFeB material which are skewed in order to minimize the force variations due to slotting. The stator carries a three-phase short-chorded double-layer winding of four poles. The machine is supplied by a PWM inverter the fundamental component of which is phase locked to the rotor position so that a ``dc brushless'' drive system is produced. Electromagnetic forces including ripple forces are measured at supply frequencies up to 100 Hz. They are compared with finite-element analysis which calculates the force variation over the time period. The paper then considers some of the causes of ripple torque. In particular, the force production due solely to the permanent magnet excitation is considered. This has two important components each acting along the line of motion of the machine, one is due to slotting and the other is due to the finite length of the primary. In the practical machine the excitation poles are skewed to minimize the slotting force and the effectiveness of this is confirmed by both results from the experiments and the finite-element analysis. The end effect force is shown to have a space period of twice that of the excitation. The amplitude of this force and its period are again confirmed by practical results.

  17. Energy buildup in sheared force-free magnetic fields

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  18. Estimating dynamic external hand forces during manual materials handling based on ground reaction forces and body segment accelerations.

    PubMed

    Faber, Gert S; Chang, Chien-Chi; Kingma, Idsart; Dennerlein, Jack T

    2013-10-18

    Direct measurement of hand forces during assessment of manual materials handling is infeasible in most field studies and some laboratory studies (e.g., during patient handling). Therefore, this study proposed and evaluated the performance of a novel hand force estimation method based on ground reaction forces (GRFs) and body segment accelerations. Ten male subjects performed a manual lifting/carrying task while an optoelectronic motion tracking system measured 3D full body kinematics, a force plate measured 3D GRFs and an instrumented box measured 3D hand forces. The estimated 3D hand forces were calculated by taking the measured GRF vector and subtracting the force vectors due to weight and acceleration of all body segments. Root-mean-square difference (RMSD) between estimated and measured hand forces ranged from 11 to 27N. When ignoring the segment accelerations (just subtracting body weight from the GRFs), the hand force estimation errors were much higher, with RMSDs ranging from 21 to 101N. Future studies should verify the performance of the proposed hand force estimation method when using an ambulatory field measurement system.

  19. On unsteady-motion theory of magnetic force for maglev systems.

    SciTech Connect

    Chen, S. S.; Zhu, S.; Cai, Y.; Energy Technology

    1995-12-14

    Motion-dependent magnetic forces are the key elements in the study of magnetically levitated vehicle (maglev) system dynamics. This paper presents an experimental and analytical study that will enhance our understanding of the role of unsteady-motion-dependent magnetic forces and demonstrate an experimental technique that can be used to measure those unsteady magnetic forces directly. The experimental technique is a useful tool for measuring motion-dependent magnetic forces for the prediction and control of maglev systems.

  20. On the unsteady-motion theory of magnetic forces for maglev

    SciTech Connect

    Chen, S.S.; Zhu, S.; Cai, Y.

    1996-02-01

    Motion-dependent magnetic forces are the key elements in the study of magnetically levitated vehicle (maglev) system dynamics. This paper presents an experimental and analytical study that will enhance their understanding of the role of unsteady-motion-dependent magnetic forces and demonstrate an experimental technique that can be used to measure those unsteady magnetic forces directly. The experimental technique provides a useful tool to measure motion-dependent magnetic forces for the prediction and control of maglev systems.

  1. Effect of magnet/slot combination on triple-frequency magnetic force and vibration of permanent magnet motors

    NASA Astrophysics Data System (ADS)

    Huo, Mina; Wang, Shiyu; Xiu, Jie; Cao, Shuqian

    2013-10-01

    The relationship between magnet/slot combination and magnetic forces including unbalanced magnetic force (UMF) and cogging torque (CT) of permanent magnet (PM) motors is investigated by using superposition principle and mechanical and magnetic symmetries. The results show that magnetic force can be produced by all magnets passing a single slot, by all slots passing a single magnet, or by eccentricity, which respectively correspond to three frequency components. The results further show that net force/torque can be classified into three typical cases: UMF is suppressed and CT is excited, UMF excited and CT suppressed, and UMF and CT both suppressed, and consequently possible vibrations include three unique groups: rotational modes, translational modes, and balanced modes. The conclusion that combinations with the greatest common divisor (GCD) greater than unity can avoid UMF is mathematically verified, and at the same time lower CT harmonics are preliminarily addressed by the typical excitations. The above findings can create simple guidelines for the suppression of certain UMF and/or CT by using suitable combinations, which in turn can present approach to yield a more desirable response in high performance applications. The superposition effect and predicted relationship are verified by the transient magnetic Finite Element method. Since this work is motivated by symmetries, comparisons are made in order to give further insight into the inner force and vibration behaviors of general rotary power-transmission systems.

  2. Effect of transcranial magnetic stimulation on force of finger pinch

    NASA Astrophysics Data System (ADS)

    Odagaki, Masato; Fukuda, Hiroshi; Hiwaki, Osamu

    2009-04-01

    Transcranial magnetic stimulation (TMS) is used to explore many aspects of brain function, and to treat neurological disorders. Cortical motor neuronal activation by TMS over the primary motor cortex (M1) produces efferent signals that pass through the corticospinal tracts. Motor-evoked potentials (MEPs) are observed in muscles innervated by the stimulated motor cortex. TMS can cause a silent period (SP) following MEP in voluntary electromyography (EMG). The present study examined the effects of TMS eliciting MEP and SP on the force of pinching using two fingers. Subjects pinched a wooden block with the thumb and index finger. TMS was applied to M1 during the pinch task. EMG of first dorsal interosseous muscles and pinch forces were measured. Force output increased after the TMS, and then oscillated. The results indicated that the motor control system to keep isotonic forces of the muscles participated in the finger pinch was disrupted by the TMS.

  3. Dilation of force-free magnetic flux tubes. [solar magnetic field profiles

    NASA Technical Reports Server (NTRS)

    Frankenthal, S.

    1977-01-01

    A general study is presented of the mapping functions which relate the magnetic-field profiles across a force-free rope in segments subjected to various external pressures. The results reveal that if the external pressure falls below a certain critical level (dependent on the flux-current relation which defines the tube), the magnetic profile consists of an invariant core sheathed in a layer permeated by an azimuthal magnetic field.

  4. Magnetic tweezers force calibration for molecules that exhibit conformational switching

    NASA Astrophysics Data System (ADS)

    Jacobson, David R.; Saleh, Omar A.

    2016-09-01

    High spatial and temporal resolution magnetic tweezers experiments allow for the direct calibration of pulling forces applied to short biomolecules. In one class of experiments, a force is applied to a structured RNA or protein to induce an unfolding transition; when the force is maintained at particular values, the molecule can exhibit conformational switching between the folded and unfolded states or between intermediate states. Here, we analyze the degree to which common force calibration approaches, involving the fitting of model functions to the Allan variance or power spectral density of the bead trajectory, are biased by this conformational switching. We find significant effects in two limits: that of large molecular extension changes between the two states, in which alternative fitting functions must be used, and that of very fast switching kinetics, in which the force calibration cannot be recovered due to the slow diffusion time of the magnetic bead. We use simulations and high-resolution RNA hairpin data to show that most biophysical experiments do not occur in either of these limits.

  5. Magnetic force micropiston: an integrated force/microfluidic device for the application of compressive forces in a confined environment.

    PubMed

    Fisher, J K; Kleckner, N

    2014-02-01

    Cellular biology takes place inside confining spaces. For example, bacteria grow in crevices, red blood cells squeeze through capillaries, and chromosomes replicate inside the nucleus. Frequently, the extent of this confinement varies. Bacteria grow longer and divide, red blood cells move through smaller and smaller passages as they travel to capillary beds, and replication doubles the amount of DNA inside the nucleus. This increase in confinement, either due to a decrease in the available space or an increase in the amount of material contained in a constant volume, has the potential to squeeze and stress objects in ways that may lead to changes in morphology, dynamics, and ultimately biological function. Here, we describe a device developed to probe the interplay between confinement and the mechanical properties of cells and cellular structures, and forces that arise due to changes in a structure's state. In this system, the manipulation of a magnetic bead exerts a compressive force upon a target contained in the confining space of a microfluidic channel. This magnetic force microfluidic piston is constructed in such a way that we can measure (a) target compliance and changes in compliance as induced by changes in buffer, extract, or biochemical composition, (b) target expansion force generated by changes in the same parameters, and (c) the effects of compression stress on a target's structure and function. Beyond these issues, our system has general applicability to a variety of questions requiring the combination of mechanical forces, confinement, and optical imaging.

  6. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    PubMed

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles. PMID:24205624

  7. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    PubMed

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.

  8. Nuclear magnetic resonance force microscopy at high magnetic field and low temperature

    NASA Astrophysics Data System (ADS)

    Marohn, John A.; Harrell, Lee H.; Thurber, Kent; Fainchtein, Raul; Smith, Doran D.

    2000-03-01

    We will report detection of nuclear magnetic resonance at 6.5 Tesla from a micron-scale sample by magnetic resonance force microscopy (MRFM) at low-temperature. We will detail a ``bare bones" one-inch diameter probe (including a novel ``string and spring" fiber positioning element, a tuned and matched RF coil, and a heating element) suitable for simple variable-temperature magnetic-resonance force microscopy studies. The compact probe design succeeded in minimizing both deleterious thermal drifts in the positions of probe components and pickup of environmental vibrations. In studying Nd-doped calcium fluoride at a magnetic field higher than has previously been employed in an MRFM experiment, we found that even sample-on-cantilever experiments can be complicated by the cantilever's resonance frequency changing with magnetic field.

  9. Apparatus having reduced mechanical forces for supporting high magnetic fields

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of supporting extremely high magnetic fields suitable for plasma confinement, wherein forces experienced by the conducting elements are significantly reduced over those which are present as a result of the generation of such high fields by conventional techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  10. Bifurcations of a forced magnetic oscillator near points of resonance

    SciTech Connect

    Bryant, P.; Jeffries, C.

    1984-07-16

    We study a forced symmetric oscillator containing a saturable inductor with magnetic hysteresis, approximated by a noninvertible map of the plane. The system displays a Hopf bifurcation to quasiperiodicity, entrainment horns, and chaos. Behavior near points of resonance (weak and strong) is found to correspond well with Arnold's theory. Within an entrainment horn, we observe symmetry breaking, period doubling, and complementary band merging. The symmetry behavior is explained by use of the concept of half-cycle map.

  11. Probing of multiple magnetic responses in magnetic inductors using atomic force microscopy

    PubMed Central

    Park, Seongjae; Seo, Hosung; Seol, Daehee; Yoon, Young-Hwan; Kim, Mi Yang; Kim, Yunseok

    2016-01-01

    Even though nanoscale analysis of magnetic properties is of significant interest, probing methods are relatively less developed compared to the significance of the technique, which has multiple potential applications. Here, we demonstrate an approach for probing various magnetic properties associated with eddy current, coil current and magnetic domains in magnetic inductors using multidimensional magnetic force microscopy (MMFM). The MMFM images provide combined magnetic responses from the three different origins, however, each contribution to the MMFM response can be differentiated through analysis based on the bias dependence of the response. In particular, the bias dependent MMFM images show locally different eddy current behavior with values dependent on the type of materials that comprise the MI. This approach for probing magnetic responses can be further extended to the analysis of local physical features. PMID:26852801

  12. Force-free magnetic fields - The magneto-frictional method

    NASA Technical Reports Server (NTRS)

    Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.

    1986-01-01

    The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.

  13. On the unsteady-motion theory of magnetic forces for maglev

    SciTech Connect

    Chen, S.S.; Zhu, S.; Cai, Y.

    1993-11-01

    Motion-dependent magnetic forces are the key elements in the study of magnetically levitated vehicle (maglev) system dynamics. In the past, most maglev-system designs were based on a quasisteady-motion theory of magnetic forces. This report presents an experimental and analytical study that will enhance our understanding of the role of unsteady-motion-dependent magnetic forces and demonstrate an experimental technique that can be used to measure those unsteady magnetic forces directly. The experimental technique provides a useful tool to measure motion-dependent magnetic forces for the prediction and control of maglev systems.

  14. Force-free magnetic fields - Generating functions and footpoint displacements

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard; Verma, Ritu

    1991-01-01

    This paper presents analytic and numerical calculations that explore equilibrium sequences of bipolar force-free magnetic fields in relation to displacments of their magnetic footpoints. It is shown that the appearance of magnetic islands - sometimes interpreted as marking the loss of equilibrium in models of the solar atmosphere - is likely associated only with physically unrealistic footpoint displacements such as infinite separation or 'tearing' of the model photosphere. The work suggests that the loss of equilibrium in bipolar configurations, sometimes proposed as a mechanism for eruptive solar events, probably requires either fully three-dimensional field configurations or nonzero plasma pressure. The results apply only to fields that are strictly bipolar, and do not rule out equilibrium loss in more complex structures such as quadrupolar fields.

  15. The magnetofection method: using magnetic force to enhance gene delivery.

    PubMed

    Plank, Christian; Schillinger, Ulrike; Scherer, Franz; Bergemann, Christian; Rémy, Jean-Serge; Krötz, Florian; Anton, Martina; Lausier, Jim; Rosenecker, Joseph

    2003-05-01

    In order to enhance and target gene delivery we have previously established a novel method, termed magnetofection, which uses magnetic force acting on gene vectors that are associated with magnetic particles. Here we review the benefits, the mechanism and the potential of the method with regard to overcoming physical limitations to gene delivery. Magnetic particle chemistry and physics are discussed, followed by a detailed presentation of vector formulation and optimization work. While magnetofection does not necessarily improve the overall performance of any given standard gene transfer method in vitro, its major potential lies in the extraordinarily rapid and efficient transfection at low vector doses and the possibility of remotely controlled vector targeting in vivo.

  16. Magnetic tweezers: micromanipulation and force measurement at the molecular level.

    PubMed Central

    Gosse, Charlie; Croquette, Vincent

    2002-01-01

    Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness approximately 10(-7) N/m. Thus, they can be manipulated in three dimensions at a speed of approximately 10 microm/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators. PMID:12023254

  17. Magnetic Study of Paris Meteorite: a Partially Differentiated Parent Body?

    NASA Astrophysics Data System (ADS)

    Cournède, C.; Gattacceca, J.; Rochette, P.; Zanda, B.

    2011-12-01

    The Paris meteorite is a unique carbonaceous CM chondrite find with almost no traces of terrestrial weathering [1]. Contrary to others CM chondrites, that contain abundant magnetite formed during aqueous alteration on their parent body, Paris is characterized by the coexistence of magnetite and abundant metallic Fe-Ni. We conducted a magnetic study (magnetic properties and paleomagnetism) of several oriented samples of this meteorite, with masses ranging from several mg up to 17 g. Preliminary rock magnetism results confirm that Paris has a magnetic mineralogy that is notably different from that of other CM chondrites, with a dominant FeNi metal, and minor magnetite. This corroborate that Paris suffered less aqueous alteration than other CM chondrites. Anisotropy of magnetic susceptibility shows that Paris is also one of the most anisotropic CM chondrite, and that it has a homogeneous fabric at least at the centimeter-scale. The comparison of the remanent magnetization obtained for metal-rich and magnetite-rich samples may have provided constraints on the magnetic fields present before and after accretion respectively. Unfortunately, paleomagnetic data show that the meteorite has been exposed to strong artificial magnetic field (magnet), precluding the study of the possible soft natural magnetization carried by FeNi. However, a high-coercivity magnetization is still preserved in the meteorite. It is homogeneous in direction and intensity at the scale of the meteorite. We interpret it as a pre-terrestrial component acquired on the parent body in a field on 3 ± 1 μT (estimated with the method described in [2]). In view of its coercivity (up to 120 mT) we suppose that this magnetization is carried by fine-grained magnetite (although thermal and chemical demagnetization experiments are needed to confirm this hypothesis). In this case, because crystallization of magnetite likely occurred several Myr after the formation of the solar system [3], i.e. after the possible

  18. Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body

    PubMed Central

    Shapiro, Benjamin

    2010-01-01

    Magnetic drug delivery has the potential to target therapy to specific regions in the body, improving efficacy and reducing side effects for treatment of cancer, stroke, infection, and other diseases. Using stationary external magnets, which attract the magnetic drug carriers, this treatment is limited to shallow targets (<5 cm below skin depth using the strongest possible, still safe, practical magnetic fields). We consider dynamic magnetic actuation and present initial results that show it is possible to vary magnets one against the other to focus carriers between them on average. The many remaining tasks for deep targeting in-vivo are then briefly noted. PMID:20165553

  19. Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, M.

    2016-05-01

    In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.

  20. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy

    PubMed Central

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-01-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10−16 emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications. PMID:27174466

  1. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy.

    PubMed

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-01-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10(-16) emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications. PMID:27174466

  2. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-05-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10-16 emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications.

  3. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-05-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10‑16 emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications.

  4. Effect of self-induced magnetic force in a coronal loop transient

    NASA Technical Reports Server (NTRS)

    Yeh, T.; Dryer, M.

    1981-01-01

    The distribution of the self-induced magnetic force in a section of a model coronal loop is examined and it is found that an axial current produces a pointwise magnetic force in the direction toward the axis of the loop. The direction of the pointwise magnetic force indicates that the effect of this force, acting alone, is to cause a contraction of the cross section of the magnetic loop toward the axis, but not the translation motion of the loop as a whole. It is concluded that forces other than the self-induced magnetic force, such as thermal force of pressure gradient or extra-induced magnetic force of magnetic buoyancy, must be involved in the acceleration mechanisms for the heliocentrifugal motion of coronal transients.

  5. The rate of separation of magnetic lines of force in a random magnetic field.

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1973-01-01

    The mixing of magnetic lines of force, as represented by their rate of separation, as a function of distance along the magnetic field, is considered with emphasis on neighboring lines of force. This effect is particularly important in understanding the transport of charged particles perpendicular to the average magnetic field. The calculation is carried out in the approximation that the separation changes by an amount small compared with the correlation scale normal to the field, in a distance along the field of a few correlation scales. It is found that the rate of separation is very sensitive to the precise form of the power spectrum. Application to the interplanetary and interstellar magnetic fields is discussed, and it is shown that in some cases field lines, much closer together than the correlation scale, separate at a rate which is effectively as rapid as if they were many correlation lengths apart.

  6. Magnetic resonance force microscopy with a permanent magnet on the cantilever

    SciTech Connect

    Zhang, Z.; Hammel, P.C.

    1997-02-01

    The magnetic resonance force microscope (MRFM) is a microscopic 3-D imaging instrument based on a recent proposal to detect magnetic resonance signals mechanically using a micro-mechanical resonator. MRFM has been successfully demonstrated in various magnetic resonance experiments including electron spin resonance, ferromagnetic resonances and nuclear magnetic resonance. In order to apply this ultra-high, 3-D spatial resolution technique to samples of arbitrary size and shape, the magnetic particle which generates the field gradient {del}{bold B}, (and, therefore, the force {bold F = (m {center_dot} {del}B)} between itself and the spin magnetization {bold m} of the sample) will need to be mounted on the mechanical resonator. Up to the present, all experiments have been performed with the sample mounted on the resonator. This is done, in part, to avoid the spurious response of the mechanical resonator which is generated by the variation of the magnetization of the magnetic particle as the external field is varied.

  7. Local Magnetic Characterization of Continuous (Ga,Mn)As Film using Mechanical Force Detection

    NASA Astrophysics Data System (ADS)

    Lee, I. H.; Obukhov, Yu.; Kim, J.; Li, X.; Samarth, N.; Pelekhov, D. V.; Hammel, P. C.

    2009-03-01

    We report on low temperature (T = 4.2 K) studies of the local spin dynamics in ferromagnetic samples using Ferromagnetic Resonance Force Microscopy (FMRFM) and probe-induced Magnetic Force Microscopy (MFM). Both techniques are based on sensitive mechanical detection of the dipolar magnetic interaction between a micromagnetic probe mounted on a flexible micro-cantilever and magnetic moments in the sample. The probe magnet not only detects the magnetic force, but also perturbs sample spin magnetization by adding the strongly inhomogeneous magnetic field. We demonstrate that the combination of FMRFM and probe-induced MFM can be used to extract and map local magnetic properties of a continuous (Ga,Mn)As film such as saturation magnetization and anisotropy field. These new approaches to scanned magnetic force imaging open the door to powerful new tools for spatially resolved studies of nanoscale magnetism and spin-based devices.

  8. Implementation of Akiyama probe in low temperature magnetic force microscope

    NASA Astrophysics Data System (ADS)

    Sass, Paul; Wu, Weida

    Exotic phenomena often call for high sensitivity scanning probe microscopic techniques working at extremely low temperatures. Specifically, it is of great fundamental interest to detect the weak magnetic signals in a range of interesting systems such as, quantum anomalous Hall, skyrmion, heavy-fermion, and multiferroic systems. To this end, we are developing low temperature magnetic force microscope (MFM) using a self-sensing cantilever called Akiyama-probe (A-probe). The main advantage of this specific probe is its extremely low power-dissipation compared to other self-sensing (e.g. piezoresistive) cantilevers for low temperature application. We will present progress of the implementation of A-probe and preliminary results under various conditions. This work is supported by DOE BES under Award DE-SC0008147.

  9. Variable force, eddy-current or magnetic damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E. (Inventor)

    1985-01-01

    An object of the invention is to provide variable damping for resonant vibrations which may occur at different rotational speeds in the range of rpms in which a rotating machine is operated. A variable force damper in accordance with the invention includes a rotating mass carried on a shaft which is supported by a bearing in a resilient cage. The cage is attached to a support plate whose rim extends into an annular groove in a housing. Variable damping is effected by tabs of electrically conducting nonmagnetic material which extend radially from the cage. The tabs at an index position lie between the pole face of respective C shaped magnets. The magnets are attached by cantilever spring members to the housing.

  10. Non-force-free solar magnetic fields in magnetohydrostatic equilibrium

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Tandberg-Hanssen, E.; Wu, S. T.

    1979-01-01

    The objective of the paper is to examine a class of non-force-free fields analytically. Specifically, magnetic fields in magnetohydrostatic equilibrium with a plasma in a gravitational field are treated in an approximation of two independent variables but three vector components. Spherical coordinates are emphasized, although the formal results for cylindrical and Cartesian coordinates are presented in the appendices. Formal solutions for the magnetic-field components are obtained in terms of the plasma variables, and field line equations are derived. A final equation governing the plasma variables is then obtained. Procedures are developed for analyzing this equation and obtaining sets of self-consistent particular solutions to the governing equations; a number of such sets of solutions are presented. As an example, one solution set is examined, illustrating the application of the results to the analysis of solar observational data.

  11. Kinesin-microtubule interactions during gliding assays under magnetic force

    NASA Astrophysics Data System (ADS)

    Fallesen, Todd L.

    Conventional kinesin is a motor protein capable of converting the chemical energy of ATP into mechanical work. In the cell, this is used to actively transport vesicles through the intracellular matrix. The relationship between the velocity of a single kinesin, as it works against an increasing opposing load, has been well studied. The relationship between the velocity of a cargo being moved by multiple kinesin motors against an opposing load has not been established. A major difficulty in determining the force-velocity relationship for multiple motors is determining the number of motors that are moving a cargo against an opposing load. Here I report on a novel method for detaching microtubules bound to a superparamagnetic bead from kinesin anchor points in an upside down gliding assay using a uniform magnetic field perpendicular to the direction of microtubule travel. The anchor points are presumably kinesin motors bound to the surface which microtubules are gliding over. Determining the distance between anchor points, d, allows the calculation of the average number of kinesins, n, that are moving a microtubule. It is possible to calculate the fraction of motors able to move microtubules as well, which is determined to be ˜ 5%. Using a uniform magnetic field parallel to the direction of microtubule travel, it is possible to impart a uniform magnetic field on a microtubule bound to a superparamagnetic bead. We are able to decrease the average velocity of microtubules driven by multiple kinesin motors moving against an opposing force. Using the average number of kinesins on a microtubule, we estimate that there are an average 2-7 kinesins acting against the opposing force. By fitting Gaussians to the smoothed distributions of microtubule velocities acting against an opposing force, multiple velocities are seen, presumably for n, n-1, n-2, etc motors acting together. When these velocities are scaled for the average number of motors on a microtubule, the force

  12. Study on the Levitation and Restoring Force Characteristics of the Improved HTS-permanent Magnet Hybrid Magnetic Bearing

    NASA Astrophysics Data System (ADS)

    Sugiyama, R.; Oguni, K.; Ohashi, S.

    We have developed the hybrid magnetic bearing using permanent magnets and high temperature bulk super conductor (HTS). In this system, the permanent magnet has ring type structure so that the permanent magnet and the HTS can be set to the stator. The pinning force of the HTS is used for the levitation and the guidance. Repulsive force of the permanent magnets was used in the conventional hybrid system. However the restoring force in the guidance direction of the conventional hybrid system decreases by the side slip force of the permanent magnets. In this research, attractive force of permanent magnets is used for increasing the load weight in the guidance direction. In this paper, influence of the hybrid system on the static characteristics of the rotor is studied. Three-dimensional numerical analysis of the linkage flux (in the levitation and the guidance direction) in the HTS is undertaken. The stator side permanent magnet increases the linkage flux of the levitation direction. Therefore in the hybrid system the linkage flux of the levitation direction increases. The levitation and restoring force of the rotor is measured. The levitation force of the hybrid system becomes smaller than that of the non-hybrid one by attractive force. The rotor in the hybrid system is supported by the pinning force and attractive force. The restoring force of the hybrid system becomes larger than that of the non-hybrid one because of increasing the linkage flux of the levitation direction.

  13. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  14. Boundary force method for analyzing two-dimensional cracked bodies

    NASA Technical Reports Server (NTRS)

    Tan, P. W.; Raju, I. S.; Newman, J. C., Jr.

    1986-01-01

    The Boundary Force Method (BFM) was formulated for the two-dimensional stress analysis of complex crack configurations. In this method, only the boundaries of the region of interest are modeled. The boundaries are divided into a finite number of straight-line segments, and at the center of each segment, concentrated forces and a moment are applied. This set of unknown forces and moments is calculated to satisfy the prescribed boundary conditions of the problem. The elasticity solution for the stress distribution due to concentrated forces and a moment applied at an arbitrary point in a cracked infinite plate are used as the fundamental solution. Thus, the crack need not be modeled as part of the boundary. The formulation of the BFM is described and the accuracy of the method is established by analyzing several crack configurations for which accepted stress-intensity factor solutions are known. The crack configurations investigated include mode I and mixed mode (mode I and II) problems. The results obtained are, in general, within + or - 0.5 percent of accurate numerical solutions. The versatility of the method is demonstrated through the analysis of complex crack configurations for which limited or no solutions are known.

  15. Magnetic stimulation of extrastriate body area impairs visual processing of nonfacial body parts.

    PubMed

    Urgesi, Cosimo; Berlucchi, Giovanni; Aglioti, Salvatore M

    2004-12-14

    Functional magnetic resonance imaging indicates that observation of the human body induces a selective activation of a lateral occipitotemporal cortical area called extrastriate body area (EBA). This area is responsive to static and moving images of the human body and parts of it, but it is insensitive to faces and stimulus categories unrelated to the human body. With event-related repetitive transcranial magnetic stimulation, we tested the possible causal relation between neural activity in EBA and visual processing of body-related, nonfacial stimuli. Facial and noncorporeal stimuli were used as a control. Interference with neural activity in EBA induced a clear impairment, consisting of a significant increase in discriminative reaction time, in the visual processing of body parts. The effect was selective for stimulus type, because it affected responses to nonfacial body stimuli but not to noncorporeal and facial stimuli, and for locus of stimulation, because the effect from the interfering stimulation of EBA was absent during a corresponding stimulation of primary visual cortex. The results provide strong evidence that neural activity in EBA is not only correlated with but also causally involved in the visual processing of the human body and its parts, except the face.

  16. The Physical Connection and Magnetic Coupling of the MICE CoolingChannel Magnets and the Magnet Forces for Various MICE OperatingModes

    SciTech Connect

    Yang, Stephanie Q.; Baynham, D.E.; Fabricatore, Pasquale; Farinon, Stefania; Green, Michael A.; Ivanyushenkov, Yury; Lau, Wing W.; Maldavi, S.M.; Virostek, Steve P.; Witte, Holger

    2006-08-20

    A key issue in the construction of the MICE cooling channel is the magnetic forces between various elements in the cooling channel and the detector magnets. This report describes how the MICE cooling channel magnets are hooked to together so that the longitudinal magnetic forces within the cooling channel can be effectively connected to the base of the experiment. This report presents a magnetic force and stress analysis for the MICE cooling channel magnets, even when longitudinal magnetic forces as large as 700 kN (70 tons) are applied to the vacuum vessel of various magnets within the MICE channel. This report also shows that the detector magnets can be effectively separated from the central MICE cooling channel magnets without damage to either type of magnet component.

  17. Planetary Magnetic Fields and Solar Forcing: Implications for Atmospheric Evolution

    NASA Astrophysics Data System (ADS)

    Lundin, Rickard; Lammer, Helmut; Ribas, Ignasi

    2007-03-01

    The solar wind and the solar XUV/EUV radiation constitute a permanent forcing of the upper atmosphere of the planets in our solar system, thereby affecting the habitability and chances for life to emerge on a planet. The forcing is essentially inversely proportional to the square of the distance to the Sun and, therefore, is most important for the innermost planets in our solar system—the Earth-like planets. The effect of these two forcing terms is to ionize, heat, chemically modify, and slowly erode the upper atmosphere throughout the lifetime of a planet. The closer to the Sun, the more efficient are these process. Atmospheric erosion is due to thermal and non-thermal escape. Gravity constitutes the major protection mechanism for thermal escape, while the non-thermal escape caused by the ionizing X-rays and EUV radiation and the solar wind require other means of protection. Ionospheric plasma energization and ion pickup represent two categories of non-thermal escape processes that may bring matter up to high velocities, well beyond escape velocity. These energization processes have now been studied by a number of plasma instruments orbiting Earth, Mars, and Venus for decades. Plasma measurement results therefore constitute the most useful empirical data basis for the subject under discussion. This does not imply that ionospheric plasma energization and ion pickup are the main processes for the atmospheric escape, but they remain processes that can be most easily tested against empirical data. Shielding the upper atmosphere of a planet against solar XUV, EUV, and solar wind forcing requires strong gravity and a strong intrinsic dipole magnetic field. For instance, the strong dipole magnetic field of the Earth provides a “magnetic umbrella”, fending of the solar wind at a distance of 10 Earth radii. Conversely, the lack of a strong intrinsic magnetic field at Mars and Venus means that the solar wind has more direct access to their topside atmosphere, the

  18. Height and body composition determine arm propulsive force in youth swimmers independent of a maturation stage.

    PubMed

    Moura, Tatiane; Costa, Manoel; Oliveira, Saulo; Júnior, Marcos Barbosa; Ritti-Dias, Raphael; Santos, Marcos

    2014-09-29

    The aim of this study was to examine the relationship between anthropometric variables, body composition and propulsive force in swimmers aged 9-17 years. Anthropometric characteristics (body height and mass, sitting height, arm span, arm muscle area and body composition) and the propulsive force of the arm (tethered swimming test) were evaluated in 56 competitive male swimmers. Tanner's stages of genital maturation (P1-5) were used. The data analysis included correlations and multiple linear regression. The propulsive force of the arm was correlated with body height (r = 0.34; p =0.013), arm span (r = 0.29; p =0.042), sitting height (r = 0.36; p =0.009), % body fat (r = 0.33; p =0.016), lean body mass (r = 0.34; p =0.015) and arm muscle area (r = 0.31; p =0.026). Using multiple linear regression models, the percent body fat and height were identified as significant predictors of the propulsive force of the arm after controlling for the maturation stage. This model explained 22% (R2 = 0.22) of associations. In conclusion, the propulsive force of swimmers was related to body height and percent body fat. PMID:25414760

  19. A simple model simulating a fan as a source of axial and circumferential body forces

    SciTech Connect

    Tzanos, C. P.; Chien, T. H.

    2002-07-01

    This software can be used in a computational fluids dynamics (CFD) code to represent a fan as a source of axial and circumferential body forces. The combined software can be used effectively in car design analyses that involve many underhood thermal management simulations. FANMOD uses as input the rotational speed of the fan, geometric fan data, and the lift and drag coefficients of the blades, and predicts the body forces generated by the fan in the axial and circumferential directions. These forces can be used as momentum forces in a CFD code to simulate the effect of the fan in an underhood thermal management simulation.

  20. A simple model simulating a fan as a source of axial and circumferential body forces

    2002-07-01

    This software can be used in a computational fluids dynamics (CFD) code to represent a fan as a source of axial and circumferential body forces. The combined software can be used effectively in car design analyses that involve many underhood thermal management simulations. FANMOD uses as input the rotational speed of the fan, geometric fan data, and the lift and drag coefficients of the blades, and predicts the body forces generated by the fan inmore » the axial and circumferential directions. These forces can be used as momentum forces in a CFD code to simulate the effect of the fan in an underhood thermal management simulation.« less

  1. Relation between the alignment dependence of coercive force decrease ratio and the angular dependence of coercive force of ferrite magnets

    NASA Astrophysics Data System (ADS)

    Matsuura, Yutaka; Kitai, Nobuyuki; Hosokawa, Seiichi; Hoshijima, Jun

    2016-08-01

    The relation of the coercive force decrease ratio (CFDR) and the angular dependence of the coercive force (ADCF) of ferrite magnets and their temperature properties were investigated. When we compared that against the angle of the magnetization reverse area obtained from these calculation results, which was obtained from the Gaussian distribution of the grain alignment and the postulation that every grain follows the Kondorskii law or the 1/cos θ law, and against the angle of the reverse magnetization area calculated from the experiment CFDR data of these magnets, it was found that this latter expanded at room temperature, to 36° from the calculated angle, for magnet with α=0.96. It was also found that, as temperature increased from room temperature to 413 K, the angle of the reverse magnetization area of ferrite magnets obtained from the experiment data expanded from 36° to 41°. When we apply these results to the temperature properties of ADCF, it seems that the calculated ADCF could qualitatively and reasonably explain these temperature properties, even though the difference between the calculated angular dependence and the experimental data still exists in the high angle range. These results strongly suggest that the coercive force of these magnets is determined by the magnetic domain wall motion. The magnetic domain walls are strongly pinned at tilted grains, and when the domain walls are de-pinned from their pinning sites, the coercive force is determined.

  2. Magnetic resonance force microscopy and a solid state quantum computer.

    SciTech Connect

    Pelekhov, D. V.; Martin, I.; Suter, A.; Reagor, D. W.; Hammel, P. C.

    2001-01-01

    A Quantum Computer (QC) is a device that utilizes the principles of Quantum Mechanics to perform computations. Such a machine would be capable of accomplishing tasks not achievable by means of any conventional digital computer, for instance factoring large numbers. Currently it appears that the QC architecture based on an array of spin quantum bits (qubits) embedded in a solid-state matrix is one of the most promising approaches to fabrication of a scalable QC. However, the fabrication and operation of a Solid State Quantum Computer (SSQC) presents very formidable challenges; primary amongst these are: (1) the characterization and control of the fabrication process of the device during its construction and (2) the readout of the computational result. Magnetic Resonance Force Microscopy (MRFM)--a novel scanning probe technique based on mechanical detection of magnetic resonance-provides an attractive means of addressing these requirements. The sensitivity of the MRFM significantly exceeds that of conventional magnetic resonance measurement methods, and it has the potential for single electron spin detection. Moreover, the MRFM is capable of true 3D subsurface imaging. These features will make MRFM an invaluable tool for the implementation of a spin-based QC. Here we present the general principles of MRFM operation, the current status of its development and indicate future directions for its improvement.

  3. Public Relations Body of Knowledge Task Force Report.

    ERIC Educational Resources Information Center

    PRSA Task Force

    1988-01-01

    Lists the initial readings to be codified in the public relations body of knowledge. Categories include foundations of public relations, organizational and managerial context, the communication and relationship context, public relations processes, elements and functions of professional practice, and contexts for professional practice. (MM)

  4. Three-Body Forces and Proton-Rich Nuclei

    SciTech Connect

    Holt, Jason D; Menendez, J.

    2013-01-01

    We present the first study of three-nucleon (3N) forces for proton-rich nuclei along the N 8 and N 20 isotones. Our results for the ground-state energies and proton separation energies are in very good agreement with experiment where available, and with the empirical isobaric multiplet mass equation. We predict the spectra for all N 8 and N 20 isotones to the proton dripline, which agree well with experiment for 18Ne, 19Na, 20Mg and 42Ti. In all other cases, we provide first predictions based on nuclear forces. Our results are also very promising for studying isospin symmetry breaking in medium-mass nuclei based on chiral effective field theory.

  5. Ultra-high field magnets for whole-body MRI

    NASA Astrophysics Data System (ADS)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200–870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000–20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  6. Ultra-high field magnets for whole-body MRI

    NASA Astrophysics Data System (ADS)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200-870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000-20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  7. Analytical equation of state with three-body forces: Application to noble gases

    SciTech Connect

    Río, Fernando del Díaz-Herrera, Enrique; Guzmán, Orlando; Moreno-Razo, José Antonio; Ramos, J. Eloy

    2013-11-14

    We developed an explicit equation of state (EOS) for small non polar molecules by means of an effective two-body potential. The average effect of three-body forces was incorporated as a perturbation, which results in rescaled values for the parameters of the two-body potential. These values replace the original ones in the EOS corresponding to the two-body interaction. We applied this procedure to the heavier noble gases and used a modified Kihara function with an effective Axilrod-Teller-Muto (ATM) term to represent the two- and three-body forces. We also performed molecular dynamics simulations with two- and three-body forces. There was good agreement between predicted, simulated, and experimental thermodynamic properties of neon, argon, krypton, and xenon, up to twice the critical density and up to five times the critical temperature. In order to achieve 1% accuracy of the pressure at liquid densities, the EOS must incorporate the effect of ATM forces. The ATM factor in the rescaled two-body energy is most important at temperatures around and lower than the critical one. Nonetheless, the rescaling of two-body diameter cannot be neglected at liquid-like densities even at high temperature. This methodology can be extended straightforwardly to deal with other two- and three-body potentials. It could also be used for other nonpolar substances where a spherical two-body potential is still a reasonable coarse-grain approximation.

  8. Analytical equation of state with three-body forces: application to noble gases.

    PubMed

    del Río, Fernando; Díaz-Herrera, Enrique; Guzmán, Orlando; Moreno-Razo, José Antonio; Ramos, J Eloy

    2013-11-14

    We developed an explicit equation of state (EOS) for small non polar molecules by means of an effective two-body potential. The average effect of three-body forces was incorporated as a perturbation, which results in rescaled values for the parameters of the two-body potential. These values replace the original ones in the EOS corresponding to the two-body interaction. We applied this procedure to the heavier noble gases and used a modified Kihara function with an effective Axilrod-Teller-Muto (ATM) term to represent the two- and three-body forces. We also performed molecular dynamics simulations with two- and three-body forces. There was good agreement between predicted, simulated, and experimental thermodynamic properties of neon, argon, krypton, and xenon, up to twice the critical density and up to five times the critical temperature. In order to achieve 1% accuracy of the pressure at liquid densities, the EOS must incorporate the effect of ATM forces. The ATM factor in the rescaled two-body energy is most important at temperatures around and lower than the critical one. Nonetheless, the rescaling of two-body diameter cannot be neglected at liquid-like densities even at high temperature. This methodology can be extended straightforwardly to deal with other two- and three-body potentials. It could also be used for other nonpolar substances where a spherical two-body potential is still a reasonable coarse-grain approximation.

  9. How Can Magnetic Forces Do Work? Investigating the Problem with Students

    ERIC Educational Resources Information Center

    Onorato, Pasquale; De Ambrosis, Anna

    2013-01-01

    We present a sequence of activities aimed at promoting both learning about magnetic forces and students' reflection about the conceptual bridge between magnetic forces on a moving charge and on a current-carrying wire in a magnetic field. The activity sequence, designed for students in high school or on introductory physics courses, has been…

  10. Construction of a ³He magnetic force microscope with a vector magnet.

    PubMed

    Yang, Jinho; Yang, Ilkyu; Kim, Yun Won; Shin, Dongwoo; Jeong, Juyoung; Wulferding, Dirk; Yeom, Han Woong; Kim, Jeehoon

    2016-02-01

    We constructed a (3)He magnetic force microscope operating at the base temperature of 300 mK under a vector magnetic field of 2-2-9 T in the x-y-z direction. Fiber optic interferometry as a detection scheme is employed in which two home-built fiber walkers are used for the alignment between the cantilever and the optical fiber. The noise level of the laser interferometer is close to its thermodynamic limit. The capabilities of the sub-Kelvin and vector field are demonstrated by imaging the coexistence of magnetism and superconductivity in a ferromagnetic superconductor (ErNi2B2C) at T = 500 mK and by probing a dipole shape of a single Abrikosov vortex with an in-plane tip magnetization. PMID:26931857

  11. Investigation of Switching Fields of Magnetic Nanoparticles With Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Collins, S.; Grutter, P.; Zhu, X.; Beauvais, J.; Beerens, J.

    2004-03-01

    Magnetic quantum cellular automata (MQCA) has been proposed as an alternate paradigm for computing. This requires a thorough understanding of switching behavior of magnetic nanoparticles. Both experimental [1] and theoretical [2] investigations into MQCA rely on particle shape anisotropies as an intrinsic part of their architectures for input or control structures, while requiring other elements to be strictly uniform so that their switching behavior is consistent. We have patterned elliptical particles with and without characteristic edge flaws using electron beam lithography. Magnetic force microscopy with an in-situ magnetic field was then performed to produce an ensemble hysteresis loop. Particles with atypical switching fields were identified and further examined in a scanning electron microscope to search for any edge defects or characteristic edge roughness which could account for their atypical switching behavior. [1] R. Cowburn et al, Science 287, 1466 (2000) [2] G. Csaba et al, Int. J. Circ. Theor. Appl. 31, 67 (2003)

  12. Prediction of forces and moments on finned bodies at high angle of attack in transonic flow

    SciTech Connect

    Oberkampf, W. L.

    1981-04-01

    This report describes a theoretical method for the prediction of fin forces and moments on bodies at high angle of attack in subsonic and transonic flow. The body is assumed to be a circular cylinder with cruciform fins (or wings) of arbitrary planform. The body can have an arbitrary roll (or bank) angle, and each fin can have individual control deflection. The method combines a body vortex flow model and lifting surface theory to predict the normal force distribution over each fin surface. Extensive comparisons are made between theory and experiment for various planform fins. A description of the use of the computer program that implements the method is given.

  13. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body

    PubMed Central

    Carporzen, Laurent; Weiss, Benjamin P.; Elkins-Tanton, Linda T.; Shuster, David L.; Ebel, Denton; Gattacceca, Jérôme

    2011-01-01

    The textures of chondritic meteorites demonstrate that they are not the products of planetary melting processes. This has long been interpreted as evidence that chondrite parent bodies never experienced large-scale melting. As a result, the paleomagnetism of the CV carbonaceous chondrite Allende, most of which was acquired after accretion of the parent body, has been a long-standing mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted because chondrite parent bodies are assumed to be undifferentiated. Resolution of this conundrum requires a determination of the age and timescale over which Allende acquired its magnetization. Here, we report that Allende’s magnetization was acquired over several million years (Ma) during metasomatism on the parent planetesimal in a >  ∼ 20 μT field up to approximately 9—10 Ma after solar system formation. This field was present too recently and directionally stable for too long to have been generated by the protoplanetary disk or young Sun. The field intensity is in the range expected for planetesimal core dynamos, suggesting that CV chondrites are derived from the outer, unmelted layer of a partially differentiated body with a convecting metallic core.

  14. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  15. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, M.L.; Mueller, F.M.; Smith, J.L.

    1991-04-09

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency. 15 figures.

  16. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    PubMed Central

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  17. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    NASA Astrophysics Data System (ADS)

    Ohashi, S.; Kobayashi, S.

    2009-10-01

    Magnetic levitation using the pinning force of the YBaCuO high- Tc bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  18. Viscosity effects on hydrodynamic drainage force measurements involving deformable bodies.

    PubMed

    Dagastine, Raymond R; Webber, Grant B; Manica, Rogerio; Stevens, Geoffrey W; Grieser, Franz; Chan, Derek Y C

    2010-07-20

    Dynamic force measurements have been made between an oil drop and a silica particle in surfactant and sucrose solutions with viscosities that range up to 50 times that of water. These conditions provide variations in the shear rate and the relative time scales of droplet deformation and hydrodynamic drainage in a soft matter system. The results obtained indicate that soft deformable boundaries have a natural response that limits the maximum shear rate that can be sustained in thin films compared to shear rates that can be attained in films bounded by rigid boundaries. In addition, to extend boundary slip studies on rigid surfaces, we use a smooth deformable droplet surface to probe the dependence of the boundary slip on fluid viscosity without the added complications of surface roughness or heterogeneity. Imposing a Navier slip model to characterize possible slip at the deformable oil-sucrose solution interface gives results that are consistent with a slip length of no larger than 10 nm over the range of solution viscosity studied, although an immobile (zero slip length) condition at the oil-sucrose solution interface is perfectly adequate. In high viscosity solutions, cantilever motion at high scan rates induces a significant cantilever deflection. A method has been developed to account for this effect in order to extract the correct dynamic force between the deformable drop and the particle. PMID:20578751

  19. Three-body radiative heat transfer and Casimir-Lifshitz force out of thermal equilibrium for arbitrary bodies

    NASA Astrophysics Data System (ADS)

    Messina, Riccardo; Antezza, Mauro

    2014-05-01

    We study the Casimir-Lifshitz force and the radiative heat transfer in a system consisting of three bodies held at three independent temperatures and immersed in a thermal environment, the whole system being in a stationary configuration out of thermal equilibrium. The theory we develop is valid for arbitrary bodies, i.e., for any set of temperatures, dielectric, and geometrical properties, and describes each body by means of its scattering operators. For the three-body system we provide a closed-form unified expression of the radiative heat transfer and of the Casimir-Lifshitz force (both in and out of thermal equilibrium). This expression is thus first applied to the case of three planar parallel slabs. In this context we discuss the nonadditivity of the force at thermal equilibrium, as well as the equilibrium temperature of the intermediate slab as a function of its position between two external slabs having different temperatures. Finally, we consider the force acting on an atom inside a planar cavity. We show that, differently from the equilibrium configuration, the absence of thermal equilibrium admits one or more positions of minima for the atomic potential. While the corresponding atomic potential depths are very small for typical ground-state atoms, they may become particularly relevant for Rydberg atoms, becoming a promising tool to produce an atomic trap.

  20. Induction of electromotive force by an autonomously moving magnetic bot.

    PubMed

    Sailapu, Sunil Kumar; Chattopadhyay, Arun

    2014-02-01

    We report the observation of the induction of electromotive force (emf) into a Faraday coil by an autonomously moving composite magnetic particle in aqueous medium. The particle consisted of a micron-sized polymer sphere, which was decorated with catalytic Pd nanoparticles (NPs) and attached to a micron-scale (N-42 grade) rare-earth magnet. The Pd NPs catalytically decomposed H2 O2 to generate O2 , resulting in buoyancy-driven vertical motion of the particle, while the micromagnet induced emf during the flight. Because a small volume of ethanol was layered on top of the liquid, the bubble burst when the particle ascended to the top and thus nearly continuous vertical motion was achieved. Spikes of alternating electrical signal could be observed up to 20 times per minute. The signal was sufficiently strong to illuminate light-emitting diodes following appropriate amplification. This distinctive approach is expected to pave the way to developing synthetic bots which are autonomously propelled, generating their own signal for running complex circuitry. PMID:24492970

  1. Control of a three-dimensional magnetic force generated from a magnetic navigation system to precisely manipulate the locomotion of a magnetic microrobot

    NASA Astrophysics Data System (ADS)

    Nam, J. K.; Jeon, S. M.; Lee, W. S.; Jang, G. H.

    2015-05-01

    We propose a method to generate a three-dimensional (3D) magnetic force to manipulate a magnetic microrobot in various environments by using a magnetic navigation system. The proposed method is based on the control of the magnetic force with respect to the change in the magnetization direction of the microrobot and an external magnetic flux gradient. We derived the nonlinear constraint equations which can determine the required direction of the uniform magnetic fields and magnetic gradients to generate the 3D magnetic force of a microrobot. The solutions of the equations were calculated using a geometrical analysis of the equations without any singular point. The proposed methodology was verified on 3D planar environments considering gravitational force, and we also conducted an experiment in a 3D water-filled tubular environment to verify the possibility of the clinical application in human blood vessels.

  2. Formation of magnetic discontinuities through superposition of force-free magnetic fields: Periodic boundaries

    SciTech Connect

    Kumar, Dinesh; Bhattacharyya, R.; Smolarkiewicz, P. K.

    2013-11-15

    In ideal magnetohydrodynamics characterized by an infinite electrical conductivity, the magnetic flux across an arbitrary fluid surface is conserved in time. The magnetofluid then can be partitioned into contiguous subvolumes of fluid, each of which entraps its own subsystem of magnetic flux. During dynamical evolution of the magnetofluid, these subvolumes press into each other; and in the process, two such subvolumes may come into direct contact while ejecting a third interstitial subvolume. Depending on the orientations of magnetic fields of the two interacting subvolumes, the magnetic field at the common surface of interaction may become discontinuous and a current sheet is formed there. This process of current sheet formation and their subsequent decay is believed to be a plausible mechanism for coronal heating and may also be responsible for various eruptive phenomena at the solar corona. In this work, we explore this theoretical concept through numerical simulations of a viscous, incompressible magnetofluid characterized by infinite electrical conductivity. In particular, we show that if the initial magnetic field is prescribed by superposition of two linear force-free fields with different torsion coefficients, then formation of current sheets are numerically realizable in the neighborhood of magnetic nulls.

  3. Fabricating overhanging magnets for use in magnetic resonance force microscopy using a XeF2 isotropic etch.

    NASA Astrophysics Data System (ADS)

    Wright, Sarah; Hickman, Steven; Marohn, John

    2008-03-01

    Pushing magnetic resonance force microscopy towards single proton sensitivity demands meeting the nanofabrication challenge of producing an attonewton-sensitivity cantilever with a magnetic tip whose diameter is 50 nm or less. At the same time, the cantilever should also experience low force noise (and force gradient noise) near the surface of technologically interesting samples. Ideally then, the magnetic tip would overhang the leading edge of the cantilever -- to increase the signal created by the magnet while simultaneously minimizing the noise created by the rest of the cantilever interacting with the surface. We will show that the isotropic etchant XeF2 can be used to underetch a single crystal silicon cantilever to create an overhanging magnet. This etch is a controllable etch process with high selectivity to metals that can be used not only to produce magnetic resonance force microscopy cantilevers, but other overhanging metallic structures as well.

  4. The magnetic resonance force microscope: A new microscopic probe of magnetic materials

    SciTech Connect

    Hammel, P.C.; Zhang, Z.; Midzor, M.; Roukes, M.L.; Wigen, P.E.; Childress, J.R.

    1997-08-06

    The magnetic resonance force microscope (MRFM) marries the techniques of magnetic resonance imaging (MRI) and atomic force microscopy (AFM), to produce a three-dimensional imaging instrument with high, potentially atomic-scale, resolution. The principle of the MRFM has been successfully demonstrated in numerous experiments. By virtue of its unique capabilities the MRFM shows promise to make important contributions in fields ranging from three-dimensional materials characterization to bio-molecular structure determination. Here the authors focus on its application to the characterization and study of layered magnetic materials; the ability to illuminate the properties of buried interfaces in such materials is a particularly important goal. While sensitivity and spatial resolution are currently still far from their theoretical limits, they are nonetheless comparable to or superior to that achievable in conventional MRI. Further improvement of the MRFM will involve operation at lower temperature, application of larger field gradients, introduction of advanced mechanical resonators and improved reduction of the spurious coupling when the magnet is on the resonator.

  5. Levitation force on a permanent magnet over a superconducting plane: Modified critical-state model

    SciTech Connect

    Yang, Z.J.

    1997-08-01

    The authors consider a model system of a permanent magnet above a semi-infinite superconductor. They introduce a modified critical-state model, and carry out derivations of the levitation force acting on the magnet. A key feature of the modification allows the current density to be less than the critical value. The theoretical results show an exponential relationship between the force and the distance. Analytical expressions are developed for permanent magnets in the form of a point dipole, a tip of a magnetic force microscope, and a cylindrical magnet. In the latter case, the exponential relationship has been observed in numerous experiments but without previous interpretation.

  6. The Aerodynamic Forces on Slender Plane- and Cruciform-Wing and Body Combinations

    NASA Technical Reports Server (NTRS)

    Spreiter, John R

    1950-01-01

    The load distribution, forces, and moments are calculated theoretically for inclined slender wing-body combinations consisting of a slender body of revolution and either a plane or cruciform arrangement of low-aspect-ratio pointed wings. The results are applicable at subsonic and transonic speeds, and at supersonic speeds, provided the entire wing-body combination lies near the center of the Mach cone.

  7. Distributed forcing of the flow past a blunt-based axisymmetric bluff body

    NASA Astrophysics Data System (ADS)

    Jardin, Thierry; Bury, Yannick; DAEP Team

    2012-11-01

    The topology of bluff body wakes may be highly sensitive to forcing at frequencies close to intrinsic flow instabilities. In a similar way, a steady but spatially varying forcing at wavelengths close to specific flow instabilities can lead to analogous outcomes. Such forcing is commonly referred to as distributed forcing. However, although distributed forcing has proven to be a relevant control strategy for three-dimensional flows past nominally two-dimensional geometries (e.g. extruded circular cylinder at Re > 180), its impact on the flow past nominally three-dimensional geometries is still unknown. Here we assess the receptivity of the flow past a blunt-based axisymmetric bluff body to an azimuthally distributed forcing applied at the periphery of the bluff-body base. We show that the impact of RSPa, RSPb and RSPc instabilities on the drag fluctuations experienced by the bluff body can be suppressed, depending on the forcing wavelengths. The authors acknowledge the French Ministry of Defence and DGA for funding this work.

  8. Distributed forcing of the flow past a blunt-based axisymmetric bluff body

    NASA Astrophysics Data System (ADS)

    Jardin, Thierry; Bury, Yannick

    2014-06-01

    In this paper, we address the influence of a blowing-/suction-type distributed forcing on the flow past a blunt-based axisymmetric bluff body by means of direct numerical simulations. The forcing is applied via consecutive blowing and suction slots azimuthally distributed along the trailing edge of the bluff body. We examine the impact of the forcing wavelength, amplitude and waveform on the drag experienced by the bluff body and on the occurrence of the reflectional symmetry preserving and reflectional symmetry breaking wake modes, for Reynolds numbers 800 and 1,000. We show that forcing the flow at wavelengths inherent to the unforced flow drastically damps drag oscillations associated with the vortex shedding and vorticity bursts, up to their complete suppression. The overall parameter analysis suggests that this damping results from the surplus of streamwise vorticity provided by the forcing that tends to stabilize the ternary vorticity lobes observed at the aft part of the bluff body. In addition, conversely to a blowing-type or suction-type forcing, the blowing-/suction-type forcing involves strong nonlinear interactions between locally decelerated and accelerated regions, severely affecting both the mean drag and the frequencies representative of the vortex shedding and vorticity bursts.

  9. Improvement of levitation force characteristics in magnetic levitation type seismic isolation device composed of HTS bulk and permanent magnet

    NASA Astrophysics Data System (ADS)

    Tsuda, M.; Kawasaki, T.; Yagai, T.; Hamajima, T.

    2008-02-01

    Magnetic levitation type seismic isolation device composed of HTS bulks and permanent magnets can theoretically remove horizontal vibration completely. It is, however, not easy to generate the large levitation force by using only the levitation system composed of HTS bulk and permanent magnet (HTS-PM system). We focused on a hybrid levitation system composed of the HTS-PM system and the PM-PM system composed of only permanent magnets and investigated the suitable arranging method of the hybrid system for improving levitation force and obtaining stable levitation. In order to clarify the most suitable permanent magnet arrangement in the PM-PM system for the levitation force improvement, repulsive force between permanent magnets was measured in various kinds of the PM-PM system. The maximum repulsive force per unit area in the PM-PM system was at least three times larger than the levitation force per unit area in the HTS-PM system, so that the levitation force in the hybrid system was larger than that of the HTS-PM system. Stable levitation was also achieved in the hybrid system. This is because repulsive force in the PM-PM system against horizontal displacement was much smaller than restoring force in the HTS-PM system.

  10. Flagellar hydrodynamics. A comparison between resistive-force theory and slender-body theory.

    PubMed

    Johnson, R E; Brokaw, C J

    1979-01-01

    This paper investigates the accuracy of the resistive-force theory (Gray and Hancock method) which is commonly used for hydrodynamic analysis of swimming flagella. We made a comparison between the forces, bending moments, and shear moments calculated by resistive-force theory and by the more accurate slender-body theory for large-amplitude, planar wave forms computed for a flagellar model. By making an upward empirical adjustment, by about 35%, of the classical drag coefficient values used in the resistive-force theory calculations, we obtained good agreement between the distributions of the forces and moments along the length of the flagellum predicted by the two methods when the flagellum has no cell body attached. After this adjustment, we found the rate of energy expenditure calculated by the two methods for the few typical test cases to be almost identical. The resistive-force theory is thus completely satisfactory for use in analysis of mechanisms for the control of flagellar bending, at the current level of sophistication of this analysis. We also examined the effects of the presence of a cell body attached to one end of the flagellum, which modifies the flow field experienced by the flagellum. This interaction, which is not considered in resistive-force theory, is probably insignificant for small cell bodies, such as the heads of simple spermatozoa, but for larger cell bodies, or cell bodies that have large-amplitude motions transverse to the swimming direction, use of slender-body theory is required for accurate analysis. PMID:262381

  11. Aerodynamic forces induced by controlled transitory flow on a body of revolution

    NASA Astrophysics Data System (ADS)

    Rinehart, Christopher S.

    The aerodynamic forces and moments on an axisymmetric body of revolution are controlled in a low-speed wind tunnel by induced local flow attachment. Control is effected by an array of aft-facing synthetic jets emanating from narrow, azimuthally segmented slots embedded within an axisymmetric backward facing step. The actuation results in a localized, segmented vectoring of the separated base flow along a rear Coanda surface and induced asymmetric aerodynamic forces and moments. The observed effects are investigated in both quasi-steady and transient states, with emphasis on parametric dependence. It is shown that the magnitude of the effected forces can be substantially increased by slight variations of the Coanda surface geometry. Force and velocity measurements are used to elucidate the mechanisms by which the synthetic jets produce asymmetric aerodynamic forces and moments, demonstrating a novel method to steer axisymmetric bodies during flight.

  12. The two-dimensional three-body problem in the large magnetic field limit is integrable

    NASA Astrophysics Data System (ADS)

    Botero, A.; Leyvraz, F.

    2016-06-01

    The problem of N particles interacting through pairwise central forces is notoriously intractable for N ≥ 3. Some remarkable specific cases have been solved in one dimension. Here we show that the guiding center approximation-valid for charges moving in two dimensions in the limit of large constant magnetic fields-simplifies the three-body problem for an arbitrary interparticle interaction invariant under rotations and translations, making it solvable by quadratures. A spinorial representation for the system is introduced, which allows a visualization of its phase space as the corresponding Bloch sphere. Finally, a discussion of the quantization of the problem is presented.

  13. Plasma, magnetic, and electromagnetic measurements at nonmagnetic bodies

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Luhmann, J. G.

    1993-01-01

    The need to explore the magnetospheres of the Earth and the giant planets is widely recognized and is an integral part of our planetary exploration program. The equal need to explore the plasma, magnetic, and electromagnetic environments of the nonmagnetic bodies is not so widely appreciated. The previous, albeit incomplete, magnetic and electric field measurements at Venus, Mars, and comets have proven critical to our understanding of their atmospheres and ionospheres in areas ranging from planetary lightning to solar wind scavenging and accretion. In the cases of Venus and Mars, the ionospheres can provide communication paths over the horizon for low-altitude probes and landers, but we know little about their lower boundaries. The expected varying magnetic fields below these planetary ionospheres penetrates the planetary crusts and can be used to sound the electrical conductivity and the thermal profiles of the interiors. However, we have no knowledge of the levels of such fields, let alone their morphology. Finally, we note that the absence of an atmosphere and an ionosphere does not make an object any less interesting for the purposes of electromagnetic exploration. Even weak remanent magnetism such as that found on the Moon during the Apollo program provides insight into the present and past states of planetary interiors. We have very intriguing data from our space probes during times of both close and distant passages of asteroids that suggest they may have coherent magnetization. If true, this observation will put important constraints on how the asteroids formed and have evolved. Our planetary exploration program must exploit its full range of exploration tools if it is to characterize the bodies of the solar system thoroughly. We should especially take advantage of those techniques that are proven and require low mass, low power, and low telemetry rates to undertake.

  14. Plasma, magnetic, and electromagnetic measurements at nonmagnetic bodies

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Luhmann, J. G.

    The need to explore the magnetospheres of the Earth and the giant planets is widely recognized and is an integral part of our planetary exploration program. The equal need to explore the plasma, magnetic, and electromagnetic environments of the nonmagnetic bodies is not so widely appreciated. The previous, albeit incomplete, magnetic and electric field measurements at Venus, Mars, and comets have proven critical to our understanding of their atmospheres and ionospheres in areas ranging from planetary lightning to solar wind scavenging and accretion. In the cases of Venus and Mars, the ionospheres can provide communication paths over the horizon for low-altitude probes and landers, but we know little about their lower boundaries. The expected varying magnetic fields below these planetary ionospheres penetrates the planetary crusts and can be used to sound the electrical conductivity and the thermal profiles of the interiors. However, we have no knowledge of the levels of such fields, let alone their morphology. Finally, we note that the absence of an atmosphere and an ionosphere does not make an object any less interesting for the purposes of electromagnetic exploration. Even weak remanent magnetism such as that found on the Moon during the Apollo program provides insight into the present and past states of planetary interiors. We have very intriguing data from our space probes during times of both close and distant passages of asteroids that suggest they may have coherent magnetization. If true, this observation will put important constraints on how the asteroids formed and have evolved. Our planetary exploration program must exploit its full range of exploration tools if it is to characterize the bodies of the solar system thoroughly. We should especially take advantage of those techniques that are proven and require low mass, low power, and low telemetry rates to undertake.

  15. Levitation and lateral forces between a point magnetic dipole and a superconducting sphere

    NASA Astrophysics Data System (ADS)

    H, M. Al-Khateeb; M, K. Alqadi; F, Y. Alzoubi; B, Albiss; M, K. Hasan (Qaseer; N, Y. Ayoub

    2016-05-01

    The dipole–dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.

  16. A magnetic force sensor on a catheter tip for minimally invasive surgery.

    PubMed

    Chatzipirpiridis, G; Erne, P; Ergeneman, O; Pane, S; Nelson, B J

    2015-08-01

    This paper presents a magnetically guided catheter for minimally invasive surgery (MIS) with a magnetic force sensing tip. The force sensing element utilizes a magnetic Hall sensor and a miniature permanent magnet mounted on a flexible encapsulation acting as the sensing membrane. It is capable of high sensitivity and robust force measurements suitable for in-vivo applications. A second larger magnet placed on the catheter allows the catheter to be guided by applying magnetic fields. Precise orientation control can be achieved with an external magnetic manipulation system. The proposed device can be used in many applications of minimally invasive surgery (MIS) to detect forces applied on tissue during procedures or to characterize different types of tissue for diagnosis.

  17. Specialized probes with nanowhisker structures for high resolution magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Zhukov, M. V.; Belousov, K. I.; Mozharov, A. M.; Mukhin, I. S.; Golubok, A. O.

    2015-11-01

    Creation and study of specialized nanowhisker probes with magnetic coating are performed for high-precision imaging of various objects by means of atomic force and magnetic force microscopy. Thin layers of Ni and Co are deposited on the surface of nanowhisker structures to perform visualization of magnetic fields on the sample surface, in particular, structure of pits on a hard disk drive (HDD). It is revealed that probes with nanowhisker structures covered with magnetic coating due to their high aspect ratio demonstrate a higher spatial resolution and contrast of magnetic fields visualization in comparison with standard magnetic probes.

  18. Power generation from human body motion through magnet and coil arrays with magnetic spring

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Wang, Yufeng; Kim, Eun Sok

    2014-02-01

    This article presents a hand-held electromagnetic energy harvester which can be used to harvest tens of mW power level from human body motion. A magnet array, aligned to a coil array for maximum magnetic flux change, is suspended by a magnetic spring for a resonant frequency of several Hz and is stabilized horizontally by graphite sheets for reducing the friction. An analytical model of vibration-driven energy harvester with magnetic spring through magnet and coil arrays is developed to explore the power generation from vibrations at low frequency and large amplitude. When the energy harvester (occupying 120 cc and weighing 180 g) is placed in a backpack of a human walking at various speeds, the power output increases as the walking speed increases from 0.45 m/s (slow walking) to 3.58 m/s (slow running), and reaches 32 mW at 3.58 m/s.

  19. Magnetic fields produced by steady currents in the body.

    PubMed Central

    Cohen, D; Palti, Y; Cuffin, B N; Schmid, S J

    1980-01-01

    The magnetic fields produced by naturally occurring steady currents in the body were measured by using a new magnetic gradiometer in a magnetically shielded room. A field of 0.1 micro G/cm with reproducible pattern was seen over the head and over the limbs, whereas the field over the torso proper was weaker (except over the abdomen). Most of the field over the head is produced by electrical sources associated with the hair follicles of the scalp; this field is produced only as a response to touching or pressing the scalp, in regions where the hair is dense. Most of the field over the limbs is produced by electrical sources associated with the muscles. The field over the forearm, studied in detail, was often present spontaneously; when absent, it could be induced by mild twisting and rubbing. On the basis of auxiliary experiments involving electrolytes, a general mechanism for generation of steady current in the body is suggested. In this mechanism, the steady current is generated by a nonclosed or a nonuniform polarized layer across an elongated semipermeable membrane such as a muscle fiber; the nonuniform polarization is due to a gradient of extracellular K+ along the membrane. PMID:6929495

  20. A review of terms for regulated vs. forced, neurochemical-induced changes in body temperature.

    PubMed

    Gordon, C J

    1983-03-21

    Deviations of the body temperature of homeothermic animals may be regulated or forced. A regulated change in core temperature is caused by a natural or synthetic compound that displaces the set-point temperature. A forced shift occurs when an excessive environmental or endogenous heat load, or heat sink, exceeds the body's capacity to thermoregulate but does not affect set-point. A fever is the paradigm of a regulated increase in body temperature, but the term fever has acquired a strict pathological definition over the past two decades. Consequently, other forms of nonpathological, regulated elevations in body temperature have generally been classified as hyperthermia; and decreases in core temperature--either forced or regulated--have generally been classified as hypothermia. Since the terms hyperthermia and hypothermia fail to distinguish a regulated vs. a forced temperature change, a confusion of terms has been created in the literature. It would appear that "resisted or unregulated hyperthermia" and "hypothermia," respectively, are appropriate terms for describing a forced increase and decrease in core temperature. A nonpathological but regulated elevation in temperature may be defined as unresisted or regulated hyperthermia, whereas a regulated decrease in temperature may be termed unresisted or regulated hypothermia. This simple scheme appears to be the most practical means for distinguishing between forced and regulated changes in core temperature. PMID:6339853

  1. G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics

    NASA Astrophysics Data System (ADS)

    Collins, Liam; Belianinov, Alex; Proksch, Roger; Zuo, Tingting; Zhang, Yong; Liaw, Peter K.; Kalinin, Sergei V.; Jesse, Stephen

    2016-05-01

    In this work, we develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector, captured at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Here, G-Mode MFM is implemented and compared to the traditional heterodyne-based MFM on model systems, including domain structures in ferromagnetic Yttrium Iron Garnet and the electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstrate its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode-coupling phenomena. Finally, we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any atomic force microscopy platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties, as well as their mutual interactions.

  2. The substrate as a skeleton: ground reaction forces from a soft-bodied legged animal.

    PubMed

    Lin, Huai Ti; Trimmer, Barry A

    2010-04-01

    The measurement of forces generated during locomotion is essential for the development of accurate mechanical models of animal movements. However, animals that lack a stiff skeleton tend to dissipate locomotor forces in large tissue deformation and most have complex or poorly defined substrate contacts. Under these conditions, measuring propulsive and supportive forces is very difficult. One group that is an exception to this problem is lepidopteran larvae which, despite lacking a rigid skeleton, have well-developed limbs (the prolegs) that can be used for climbing in complex branched structures and on a variety of surfaces. Caterpillars therefore are excellent for examining the relationship between soft body deformation and substrate reaction forces during locomotion. In this study, we devised a method to measure the ground reaction forces (GRFs) at multiple contact points during crawling by the tobacco hornworm (Manduca sexta). Most abdominal prolegs bear similar body weight during their stance phase. Interestingly, forward reaction forces did not come from pushing off the substrate. Instead, most positive reaction forces came from anterior abdominal prolegs loaded in tension while posterior legs produced drag in most instances. The counteracting GRFs effectively stretch the animal axially during the second stage of a crawl cycle. These findings help in understanding how a terrestrial soft-bodied animal can interact with its substrate to control deformation without hydraulic actuation. The results also provide insights into the behavioral and mechanistic constraints leading to the evolution of diverse proleg arrangements in different species of caterpillar.

  3. Decreased body temperature dependent appearance of behavioral despair in the forced swimming test in mice.

    PubMed

    Arai, I; Tsuyuki, Y; Shiomoto, H; Satoh, M; Otomo, S

    2000-08-01

    Effects of body temperature on the immobile response and brain glucose metabolism were examined in the forced swimming test in mice. The first experiment was performed to study behavior, after initial periods of vigorous activity, a characteristic immobile posture occurred when the water was 25 and 35 degrees C. However, several minutes after forced swimming at 25 degrees C, significantly decreased spontaneous motility occurred in a time-dependent manner, but no changes was observed at 35 degrees C. Our interpretation was that mechanisms of acquisition and retention of the forced swim-induced immobile response differed. Body temperature was also significantly decreased at 25 degrees C but not at 35 degrees C in the forced swimming test. This lowering of body temperature almost paralleled the immobile response. The second experiment was a biochemical study in which the uptake of [(14)C] 2-deoxy-d-glucose into the brain significantly decreased after forced swimming at 25 degrees C but did not change in the forced swim loaded mice when the water was 35 degrees C. These results suggested two types of immobile mechanisms in the forced swimming test: (1) an early phase acquisition of the immobile response which might be related to adaptive response and (2) a late phase to retain the immobile response which might be related to the decrease in brain glucose metabolism.

  4. Lower body predictors of glenohumeral compressive force in high school baseball pitchers.

    PubMed

    Keeley, David W; Oliver, Gretchen D; Dougherty, Christopher P; Torry, Michael R

    2015-06-01

    The purpose of this study was to better understand how lower body kinematics relate to peak glenohumeral compressive force and develop a regression model accounting for variability in peak glenohumeral compressive force. Data were collected for 34 pitchers. Average peak glenohumeral compressive force was 1.72% ± 33% body weight (1334.9 N ± 257.5). Correlation coefficients revealed 5 kinematic variables correlated to peak glenohumeral compressive force (P < .01, α = .025). Regression models indicated 78.5% of the variance in peak glenohumeral compressive force (R2 = .785, P < .01) was explained by stride length, lateral pelvis flexion at maximum external rotation, and axial pelvis rotation velocity at release. These results indicate peak glenohumeral compressive force increases with a combination of decreased stride length, increased pelvic tilt at maximum external rotation toward the throwing arm side, and increased pelvis axial rotation velocity at release. Thus, it may be possible to decrease peak glenohumeral compressive force by optimizing the movements of the lower body while pitching. Focus should be on both training and conditioning the lower extremity in an effort to increase stride length, increase pelvis tilt toward the glove hand side at maximum external rotation, and decrease pelvis axial rotation at release. PMID:25734579

  5. Lower body predictors of glenohumeral compressive force in high school baseball pitchers.

    PubMed

    Keeley, David W; Oliver, Gretchen D; Dougherty, Christopher P; Torry, Michael R

    2015-06-01

    The purpose of this study was to better understand how lower body kinematics relate to peak glenohumeral compressive force and develop a regression model accounting for variability in peak glenohumeral compressive force. Data were collected for 34 pitchers. Average peak glenohumeral compressive force was 1.72% ± 33% body weight (1334.9 N ± 257.5). Correlation coefficients revealed 5 kinematic variables correlated to peak glenohumeral compressive force (P < .01, α = .025). Regression models indicated 78.5% of the variance in peak glenohumeral compressive force (R2 = .785, P < .01) was explained by stride length, lateral pelvis flexion at maximum external rotation, and axial pelvis rotation velocity at release. These results indicate peak glenohumeral compressive force increases with a combination of decreased stride length, increased pelvic tilt at maximum external rotation toward the throwing arm side, and increased pelvis axial rotation velocity at release. Thus, it may be possible to decrease peak glenohumeral compressive force by optimizing the movements of the lower body while pitching. Focus should be on both training and conditioning the lower extremity in an effort to increase stride length, increase pelvis tilt toward the glove hand side at maximum external rotation, and decrease pelvis axial rotation at release.

  6. Drag measurements on a laminar-flow body of revolution in the 13-inch magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1989-01-01

    Low speed wind tunnel drag force measurements were taken on a laminar flow body of revolution free of support interference. This body was tested at zero incidence in the NASA Langley 13 in. Magnetic Suspension and Balance System (MSBS). The primary objective of these tests was to substantiate the drag force measuring capabilities of the 13 in. MSBS. The drag force calibrations and wind-on repeatability data provide a means of assessing these capabilities. Additional investigations include: (1) the effects of fixing transition; (2) the effects of fins installed in the tail; and (3) surface flow visualization using both liquid crystals and oil flow. Also two simple drag prediction codes were used to assess their usefulness in estimating overall body drag.

  7. GravitoMagnetic force in modified Newtonian dynamics

    SciTech Connect

    Exirifard, Qasem

    2013-08-01

    We introduce the Gauge Vector-Tensor (GVT) theory by extending the AQUAL's approach to the GravitoElectroMagnetism (GEM) approximation of gravity. GVT is a generally covariant theory of gravity composed of a pseudo Riemannian metric and two U(1) gauge connections that reproduces MOND in the limit of very weak gravitational fields while remains consistent with the Einstein-Hilbert gravity in the limit of strong and Newtonian gravitational fields. GVT also provides a simple framework to study the GEM approximation to gravity. We illustrate that the gravitomagnetic force at the edge of a galaxy can be in accord with either GVT or ΛCDM but not both. We also study the physics of the GVT theory around the gravitational saddle point of the Sun and Jupiter system. We notice that the conclusive refusal of the GVT theory demands measuring either both of the gravitoelectric and gravitomagnetic fields inside the Sun-Jupiter MOND window, or the gravitoelectric field inside two different solar GVT MOND windows. The GVT theory, however, will be favored by observing an anomaly in the gravitoelectric field inside a single MOND window.

  8. Flow and Force Equations for a Body Revolving in a Fluid

    NASA Technical Reports Server (NTRS)

    Zahm, A. F.

    1979-01-01

    A general method for finding the steady flow velocity relative to a body in plane curvilinear motion, whence the pressure is found by Bernoulli's energy principle is described. Integration of the pressure supplies basic formulas for the zonal forces and moments on the revolving body. The application of the steady flow method for calculating the velocity and pressure at all points of the flow inside and outside an ellipsoid and some of its limiting forms is presented and graphs those quantities for the latter forms. In some useful cases experimental pressures are plotted for comparison with theoretical. The pressure, and thence the zonal force and moment, on hulls in plane curvilinear flight are calculated. General equations for the resultant fluid forces and moments on trisymmetrical bodies moving through a perfect fluid are derived. Formulas for potential coefficients and inertia coefficients for an ellipsoid and its limiting forms are presented.

  9. Visualization and quantification of magnetic nanoparticles into vesicular systems by combined atomic and magnetic force microscopy

    SciTech Connect

    Dong, C.; Corsetti, S.; Passeri, D.; Rossi, M.; Carafa, M.; Marianecci, C.; Pantanella, F.; Rinaldi, F.; Ingallina, C.; Sorbo, A.

    2015-06-23

    We report a phenomenological approach for the quantification of the diameter of magnetic nanoparticles (MNPs) incorporated in non-ionic surfactant vesicles (niosomes) using magnetic force microscopy (MFM). After a simple specimen preparation, i.e., by putting a drop of solution containing MNPs-loaded niosomes on flat substrates, topography and MFM phase images are collected. To attempt the quantification of the diameter of entrapped MNPs, the method is calibrated on the sole MNPs deposited on the same substrates by analyzing the MFM signal as a function of the MNP diameter (at fixed tip-sample distance) and of the tip-sample distance (for selected MNPs). After calibration, the effective diameter of the MNPs entrapped in some niosomes is quantitatively deduced from MFM images.

  10. The indirect measurement of biomechanical forces in the moving human body

    NASA Astrophysics Data System (ADS)

    Cluss, Melanie; Laws, Kenneth; Martin, Natalie; Nowicki, T. Scott; Mira, Allan

    2006-02-01

    Inexpensive experimental techniques now exist for indirectly measuring forces within the moving human body. These techniques involve nontrivial applications of basic physical principles, have practical uses, and are appropriate for undergraduate experimentation. A two-dimensional video motion analysis is used to find the accelerations of various parts of the body, and anatomical geometry is used to determine specific biomechanical forces and torques. The simple movement of a dancer landing from a vertical jump is analyzed through the use of a theoretical model of the leg to find the forces in the tendons attached to the knee. It is shown that these forces can be sufficiently large to lead to injury if jumps are performed repetitively.

  11. Impact force measurement of a spherical body dropping onto a water surface.

    PubMed

    Araki, R; Takita, A; Ishima, T; Kawashima, H; Pornsuwancharoen, N; Punthawanunt, S; Carcasona, E; Fujii, Y

    2014-07-01

    We propose a method for measuring the impact force of a spherical body dropping onto a water surface. The velocity of the center of gravity of a metal spherical body, in which a cube corner prism is embedded so that its optical center coincides with the center of gravity of the sphere, is accurately measured using an optical interferometer. The acceleration, displacement, and inertial force of the sphere are calculated from the velocity. The sphere is also observed using a high-speed camera. The uncertainty in measuring the instantaneous value of the impact force with a sampling interval of approximately 1 ms is estimated to be 8 mN, which corresponds to 0.8% of the maximum force of approximately 1.0 N.

  12. Influence of the Reynolds number on normal forces of slender bodies of revolution

    NASA Technical Reports Server (NTRS)

    Hartmann, K.

    1982-01-01

    Comprehensive force, moment, and pressure distribution measurements as well as flow visualization experiments were carried out to determine the influence of the Reynolds number on nonlinear normal forces of slender bodies of revolution. Experiments were performed in transonic wind tunnels at angles of attack up to 90 deg in the Mach number range 0.5 to 2.2 at variable Reynolds numbers. The results were analysed theoretically and an empirical theory was developed which describes the test results satisfactory.

  13. Three-body recombination for electrons in a strong magnetic field: Magnetic moment

    SciTech Connect

    Robicheaux, F.

    2006-03-15

    Using a classical Monte Carlo method, we have computed the three-body recombination (two free electrons and a proton scattering into one free electron and a hydrogen atom, e+e+p{yields}H+e) in strong magnetic fields. The proton is fixed in space but the electrons are allowed their full, three-dimensional motion. We investigate recombination for temperatures and fields similar to those used in recent experiments that generated antihydrogen. The present rate is compared to that when the electrons' motion is given by the guiding center approximation, validating previous results at low temperature and demonstrating the breakdown of this approximation at higher temperature. Unlike the B=0 case, strong B gives preferential recombination to atoms with positive magnetic moment. Also, the canonical angular momentum in the field direction is often negative even when the magnetic moment is negative. Both results affect the trapping of antihydrogen using spatially dependent magnetic fields.

  14. The effect of power-law body forces on a thermally driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1986-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  15. The effect of power law body forces on a thermally-driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  16. Film Condensation with and Without Body Force in Boundary-Layer Flow of Vapor Over a Flat Plate

    NASA Technical Reports Server (NTRS)

    Chung, Paul M.

    1961-01-01

    Laminar film condensation under the simultaneous influence of gas-liquid interface shear and body force (g force) is analyzed over a flat plate. Important parameters governing condensation and heat transfer of pure vapor are determined. Mixtures of condensable vapor and noncondensable gas are also analyzed. The conditions under which the body force has a significant influence on condensation are determined.

  17. Preliminary investigation of force-reduced superconducting magnet configurations for advanced technology applications

    SciTech Connect

    Bouillard, J.X.

    1992-12-01

    The feasibility of new high-field low specific weight superconducting magnet designs using force-free fields is being explored analytically and numerically. This report attempts to assess the technical viability of force-free field concepts to produce high-field, low specific weight and large bore volume magnets, which could promote the use of high temperature superconductors. Several force-free/force-reduced magnet configurations are first reviewed, then discussed and assessed. Force-free magnetic fields, fields for which the current flows parallel to the field, have well-known mathematical solutions extending upon infinite domains. These solutions, however, are no longer force-free everywhere for finite geometries. In this preliminary study, force-free solutions such as the Lundquist solutions truncated to a size where the internal field of the coil matches an externally cylindrical magnetic field (also called a Lundquist coil) are numerically modeled and explored. Significant force-reduction for such coils was calculated, which may have some importance for the design of lighter toroidal magnets used in thermonuclear fusion power generation, superconducting magnetic energy storage (SMES), and mobile MHD power generation and propulsion.

  18. Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy

    PubMed Central

    2011-01-01

    High-resolution magnetic imaging is of utmost importance to understand magnetism at the nanoscale. In the present work, we use a magnetic force microscope (MFM) operating under in-plane magnetic field in order to observe with high accuracy the domain configuration changes in Co nanowires as a function of the externally applied magnetic field. The main result is the quantitative evaluation of the coercive field of the individual nanostructures. Such characterization is performed by using an MFM-based technique in which a map of the magnetic signal is obtained as a function of both the lateral displacement and the magnetic field. PMID:21711935

  19. Concentric Magnetic Structures for Magnetophoretic Bead Collection, Cell Trapping and Analysis of Cell Morphological Changes Caused by Local Magnetic Forces

    PubMed Central

    Huang, Chen-Yu; Wei, Zung-Hang

    2015-01-01

    Concentric magnetic structures (ring and square) with domain wall (DW) pinning geometry are designed for biological manipulation. Magnetic beads collection was firstly demonstrated to analyse the local magnetic field generated by DWs and the effective regions to capture magnetic targets of size 1 μm. Primary mouse embryonic fibroblasts (MEFs) are magnetically labeled by internalizing poly (styrene sulfonic acid) stabilized magnetic nanoparticles (PSS-MNPs) and then are selectively trapped by head-to-tail DWs (HH DWs) or tail-to-tail DWs (TT DWs) to be arranged into linear shape or cross shape. The morphologies and the nuclear geometry of the cells growing on two kinds of concentric magnetic structures are shown to be distinctive. The intracellular magnetic forces generated by the local magnetic field of DWs are found to influence the behaviour of cells. PMID:26270332

  20. Direct measurements of controlled aerodynamic forces on a wire-suspended axisymmetric body

    NASA Astrophysics Data System (ADS)

    Abramson, Philip; Vukasinovic, Bojan; Glezer, Ari

    2011-06-01

    A novel in-line miniature force transducer is developed for direct measurements of the net aerodynamic forces and moments on a bluff body. The force transducers are integrated into each of the eight mounting wires that are utilized for suspension of an axisymmetric model in a wind tunnel having minimal wake interference. The aerodynamic forces and moments on the model are altered by induced active local attachment of the separated base flow. Fluidic control is effected by an array of four integrated aft-facing synthetic jet actuators that emanate from narrow, azimuthally segmented slots, equally distributed around the perimeter of the circular tail end. The jet orifices are embedded within a small backward-facing step that extends into a Coanda surface. The altered flow dynamics associated with both quasi-steady and transitory asymmetric activation of the flow control effect is characterized by direct force and PIV measurements.

  1. Drawing and using free body diagrams: Why it may be better not to decompose forces

    NASA Astrophysics Data System (ADS)

    Aviani, Ivica; Erceg, Nataša; Mešić, Vanes

    2015-12-01

    In this study we investigated how two different approaches to drawing free body diagrams influence the development of students' understanding of Newton's laws, including their ability to identify real forces. For this purpose we developed a 12-item two-tier multiple choice survey and conducted a quasiexperiment. This experiment included two groups of first-year physics students from Rijeka (RG) (ne=27 ) and Split (SG) (nc=25 ) Universities. Students from both groups solved mechanics problems for a period of two class hours. The only difference was that RG students used the superposition of forces approach to solving mechanics problems and in SG the decomposition of forces approach has been used. The ANCOVA (nc=17 , ne=17 ) showed a statistically significant difference in favor of RG, whereby the effect sizes were moderate to large, and the largest differences have been observed in the ability of identifying real forces. Students from the control group (SG) more often exhibited the misconception that forces and their components act on a body independently and simultaneously. Our results support the idea that the practice of resolving forces into the components may not be the most effective way to develop understanding of Newton's laws and the concept of force.

  2. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump.

    PubMed

    Pai, C N; Shinshi, T; Shimokohbe, A

    2010-01-01

    Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response.

  3. Wing and body motion and aerodynamic and leg forces during take-off in droneflies.

    PubMed

    Chen, Mao Wei; Zhang, Yan Lai; Sun, Mao

    2013-12-01

    Here, we present a detailed analysis of the take-off mechanics in droneflies performing voluntary take-offs. Wing and body kinematics of the insects during take-off were measured using high-speed video techniques. Based on the measured data, the inertia force acting on the insect was computed and the aerodynamic force of the wings was calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. In take-off, a dronefly increases its stroke amplitude gradually in the first 10-14 wingbeats and becomes airborne at about the 12th wingbeat. The aerodynamic force increases monotonously from zero to a value a little larger than its weight, and the leg force decreases monotonously from a value equal to its weight to zero, showing that the droneflies do not jump and only use aerodynamic force of flapping wings to lift themselves into the air. Compared with take-offs in insects in previous studies, in which a very large force (5-10 times of the weight) generated either by jumping legs (locusts, milkweed bugs and fruit flies) or by the 'fling' mechanism of the wing pair (butterflies) is used in a short time, the take-off in the droneflies is relatively slow but smoother. PMID:24132205

  4. Wing and body motion and aerodynamic and leg forces during take-off in droneflies.

    PubMed

    Chen, Mao Wei; Zhang, Yan Lai; Sun, Mao

    2013-12-01

    Here, we present a detailed analysis of the take-off mechanics in droneflies performing voluntary take-offs. Wing and body kinematics of the insects during take-off were measured using high-speed video techniques. Based on the measured data, the inertia force acting on the insect was computed and the aerodynamic force of the wings was calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. In take-off, a dronefly increases its stroke amplitude gradually in the first 10-14 wingbeats and becomes airborne at about the 12th wingbeat. The aerodynamic force increases monotonously from zero to a value a little larger than its weight, and the leg force decreases monotonously from a value equal to its weight to zero, showing that the droneflies do not jump and only use aerodynamic force of flapping wings to lift themselves into the air. Compared with take-offs in insects in previous studies, in which a very large force (5-10 times of the weight) generated either by jumping legs (locusts, milkweed bugs and fruit flies) or by the 'fling' mechanism of the wing pair (butterflies) is used in a short time, the take-off in the droneflies is relatively slow but smoother.

  5. Wing and body motion and aerodynamic and leg forces during take-off in droneflies

    PubMed Central

    Chen, Mao Wei; Zhang, Yan Lai; Sun, Mao

    2013-01-01

    Here, we present a detailed analysis of the take-off mechanics in droneflies performing voluntary take-offs. Wing and body kinematics of the insects during take-off were measured using high-speed video techniques. Based on the measured data, the inertia force acting on the insect was computed and the aerodynamic force of the wings was calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. In take-off, a dronefly increases its stroke amplitude gradually in the first 10–14 wingbeats and becomes airborne at about the 12th wingbeat. The aerodynamic force increases monotonously from zero to a value a little larger than its weight, and the leg force decreases monotonously from a value equal to its weight to zero, showing that the droneflies do not jump and only use aerodynamic force of flapping wings to lift themselves into the air. Compared with take-offs in insects in previous studies, in which a very large force (5–10 times of the weight) generated either by jumping legs (locusts, milkweed bugs and fruit flies) or by the ‘fling’ mechanism of the wing pair (butterflies) is used in a short time, the take-off in the droneflies is relatively slow but smoother. PMID:24132205

  6. G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics

    DOE PAGES

    Collins, Liam; Belianinov, Alex; Proksch, Roger; Zuo, Tingting; Zhang, Yong; Liaw, Peter K.; Kalinin, Sergei V.; Jesse, Stephen

    2016-05-09

    We develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Also, 3 G-Mode MFM is implemented and compared to traditional heterodyne based MFM on model systems including domain structures in ferromagnetic Yttrium Iron Garnet (YIG) and electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstratemore » its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode coupling phenomena. Finally we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any AFM platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties as well as their mutual interactions.« less

  7. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    NASA Astrophysics Data System (ADS)

    Abdoli, A.; Mirzaee, I.; Anvari, A.; Purmahmod, N.

    2008-09-01

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s-1 at a post-stall angle of attack of 23°. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, Ab and Dc, have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications.

  8. Drawing and Using Free Body Diagrams: Why It May Be Better Not to Decompose Forces

    ERIC Educational Resources Information Center

    Aviani, Ivica; Erceg, Nataša; Mešic, Vanes

    2015-01-01

    In this study we investigated how two different approaches to drawing free body diagrams influence the development of students' understanding of Newton's laws, including their ability to identify real forces. For this purpose we developed a 12-item two-tier multiple choice survey and conducted a quasiexperiment. This experiment included two groups…

  9. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  10. Transitory Aerodynamic Forces on a Body of Revolution using Synthetic Jet Actuation

    NASA Astrophysics Data System (ADS)

    Rinehart, Christopher; McMichael, James; Glezer, Ari

    2002-11-01

    The aerodynamic forces and moments on axisymmetric bodies at subsonic speeds are controlled by exploiting local flow attachment using fluidic (synthetic jet) actuation and thereby altering the apparent aerodynamic shape of the surface. Control is effected upstream of the base of the body by an azimuthal array of individually-controlled, aft-facing synthetic jets emanating along an azimuthal Coanda surface. Actuation produces asymmetric aerodynamic forces and moments, with ratios of lift to average jet momentum approaching values typical of conventional jet-based circulation control on two-dimensional airfoils. Momentary forces are achieved using transient (pulsed) actuation and are accompanied by the formation and shedding of vorticity concentrations as a precursor to the turning of the outer flow into the wake region.

  11. Torsional resonance mode magnetic force microscopy: enabling higher lateral resolution magnetic imaging without topography-related effects.

    PubMed

    Kaidatzis, A; García-Martín, J M

    2013-04-26

    We present experimental work that reveals the benefits of performing magnetic force microscopy measurements employing the torsional resonance mode of cantilever oscillation. This approach provides two clear advantages: the ability of performing magnetic imaging without topography-related interference and the significant lateral resolution improvement (approximately 15%). We believe that this work demonstrates a significant improvement to a versatile magnetic imaging technique widely used in academia and in industry. PMID:23535607

  12. Torsional resonance mode magnetic force microscopy: enabling higher lateral resolution magnetic imaging without topography-related effects.

    PubMed

    Kaidatzis, A; García-Martín, J M

    2013-04-26

    We present experimental work that reveals the benefits of performing magnetic force microscopy measurements employing the torsional resonance mode of cantilever oscillation. This approach provides two clear advantages: the ability of performing magnetic imaging without topography-related interference and the significant lateral resolution improvement (approximately 15%). We believe that this work demonstrates a significant improvement to a versatile magnetic imaging technique widely used in academia and in industry.

  13. Magnetic force microscopy studies of the domain structure of Co/Pd multilayers in a magnetic field

    SciTech Connect

    Rushforth, A. W.; Main, P. C.; Gallagher, B. L.; Marrows, C. H.; Hickey, B. J.; Dahlberg, E. D.; Eames, P.

    2001-06-01

    We have measured the magnetic domain patterns in Co/Pd multilayers of varying thickness using magnetic force microscopy in the presence of an external magnetic field applied perpendicular to the multilayers. We find that the domain patterns evolution is in qualitative agreement with existing theories for single layer thin films. Our results are in reasonable agreement with a theoretical model of domains appropriate to multilayer films. {copyright} 2001 American Institute of Physics.

  14. Local stress and heat flux in atomistic systems involving three-body forces.

    PubMed

    Chen, Youping

    2006-02-01

    Local densities of fundamental physical quantities, including stress and heat flux fields, are formulated for atomistic systems involving three-body forces. The obtained formulas are calculable within an atomistic simulation, in consistent with the conservation equations of thermodynamics of continuum, and can be applied to systems with general two- and three-body interaction forces. It is hoped that this work may correct some misuse of inappropriate formulas of stress and heat flux in the literature, may clarify the definition of site energy of many-body potentials, and may serve as an analytical link between an atomistic model and a continuum theory. Physical meanings of the obtained formulas, their relation with virial theorem and heat theorem, and the applicability are discussed.

  15. Local stress and heat flux in atomistic systems involving three-body forces.

    PubMed

    Chen, Youping

    2006-02-01

    Local densities of fundamental physical quantities, including stress and heat flux fields, are formulated for atomistic systems involving three-body forces. The obtained formulas are calculable within an atomistic simulation, in consistent with the conservation equations of thermodynamics of continuum, and can be applied to systems with general two- and three-body interaction forces. It is hoped that this work may correct some misuse of inappropriate formulas of stress and heat flux in the literature, may clarify the definition of site energy of many-body potentials, and may serve as an analytical link between an atomistic model and a continuum theory. Physical meanings of the obtained formulas, their relation with virial theorem and heat theorem, and the applicability are discussed. PMID:16468857

  16. Flow force and torque on submerged bodies in lattice-Boltzmann methods via momentum exchange.

    PubMed

    Giovacchini, Juan P; Ortiz, Omar E

    2015-12-01

    We review the momentum exchange method to compute the flow force and torque on a submerged body in lattice-Boltzmann methods by presenting an alternative derivation. Our derivation does not depend on a particular implementation of the boundary conditions at the body surface, and it relies on general principles. After the introduction of the momentum exchange method in lattice-Boltzmann methods, some formulations were introduced to compute the fluid force on static and moving bodies. These formulations were introduced in a rather intuitive, ad hoc way. In our derivation, we recover the proposals most frequently used, in some cases with minor corrections, gaining some insight into the two most used formulations. At the end, we present some numerical tests to compare different approaches on a well-known benchmark test that support the correctness of the formulas derived. PMID:26764848

  17. Flow force and torque on submerged bodies in lattice-Boltzmann methods via momentum exchange.

    PubMed

    Giovacchini, Juan P; Ortiz, Omar E

    2015-12-01

    We review the momentum exchange method to compute the flow force and torque on a submerged body in lattice-Boltzmann methods by presenting an alternative derivation. Our derivation does not depend on a particular implementation of the boundary conditions at the body surface, and it relies on general principles. After the introduction of the momentum exchange method in lattice-Boltzmann methods, some formulations were introduced to compute the fluid force on static and moving bodies. These formulations were introduced in a rather intuitive, ad hoc way. In our derivation, we recover the proposals most frequently used, in some cases with minor corrections, gaining some insight into the two most used formulations. At the end, we present some numerical tests to compare different approaches on a well-known benchmark test that support the correctness of the formulas derived.

  18. Many-body effects are essential in a physically motivated CO2 force field.

    PubMed

    Yu, Kuang; Schmidt, J R

    2012-01-21

    We develop a physically motivated many-body force field for CO(2), incorporating explicit three-body interactions parameterized on the basis of two- and three-body symmetry adapted perturbation theory (SAPT) calculations. The potential is parameterized consistently with, and builds upon, our successful SAPT-based two-body CO(2) model ("Schmidt, Yu, and McDaniel" (SYM) model) [K. Yu, J. G. McDaniel, and J. R. Schmidt, J. Phys Chem B 115, 10054 (2011)]. We demonstrate that three-body interactions are essential to achieve an accurate description of bulk properties, and that previous two-body models have therefore necessarily exploited large error cancellations to achieve satisfactory results. The resulting three-body model exhibits excellent second/third virial coefficients and bulk properties over the phase diagram, yielding a nearly empirical parameter-free model. We show that this explicit three-body model can be converted into a computationally efficient, density/temperature-dependent two-body model that reduces almost exactly to our prior SYM model in the high-density limit. PMID:22280763

  19. A study of nanostructure magnetosolid Nd-Ho-Fe-Co-B materials via atomic force microscopy and magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Andreeva, N. V.; Filimonov, A. V.; Rudskoi, A. I.; Burkhanov, G. S.; Tereshina, I. S.; Politova, G. A.; Pelevin, I. A.

    2016-09-01

    Nanostructure Nd-Ho-Fe-Co-B alloys have been probed via atomic force microscopy and magnetic force microscopy (AFM and MFM, respectively). The ribbon samples with a thickness of ~30 μm are prepared via the rapid solidification on a rotating copper barrel. A part of samples has been subjected to hydration, whereas another one has undergone severe plastic deformation. AFM was mainly used to study the contact and free surface of ribbon samples. This has enabled us to establish the topography, structure, defects of both sides, morphology of magnetic inclusions of the initial quenched samples and the materials subjected to the subsequent external effects. The AFM and MFM data allowed the magnetic hysteresis properties of the bulk samples with the identical composition to be interpreted.

  20. WearDY: Wearable dynamics. A prototype for human whole-body force and motion estimation

    NASA Astrophysics Data System (ADS)

    Latella, Claudia; Kuppuswamy, Naveen; Nori, Francesco

    2016-06-01

    Motion capture is a powerful tool used in a large range of applications towards human movement analysis. Although it is a well-established technique, its main limitation is the lack of dynamic information such as forces and torques during the motion capture. In this paper, we present a novel approach for human wearable dynamic (WearDY) motion capture for the simultaneous estimation of whole-body forces along with the motion. Our conceptual framework encompasses traditional passive markers based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational framework for estimating dynamic quantities originally proposed in the domain of humanoid robot control. We present preliminary experimental analysis of our framework on subjects performing a two Degrees-of-Freedom bowing task and we estimate the motion and dynamic quantities. We discuss the implication of our proposal towards the design of a novel wearable force and motion capture suit and its applications.

  1. Forced Field Extrapolation of the Magnetic Structure of the Hα fibrils in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Xiaoshuai, Zhu; Huaning, Wang; Zhanle, Du; Han, He

    2016-07-01

    We present a careful assessment of forced field extrapolation using the Solar Dynamics Observatory/Helioseismic and Magnetic Imager magnetogram. We use several metrics to check the convergence property. The extrapolated field lines below 3600 km appear to be aligned with most of the Hα fibrils observed by the New Vacuum Solar Telescope. In the region where magnetic energy is far larger than potential energy, the field lines computed by forced field extrapolation are still consistent with the patterns of Hα fibrils while the nonlinear force-free field results show a large misalignment. The horizontal average of the lorentz force ratio shows that the forced region where the force-free assumption fails can reach heights of 1400-1800 km. The non-force-free state of the chromosphere is also confirmed based on recent radiation magnetohydrodynamics simulations.

  2. Forced Field Extrapolation of the Magnetic Structure of the Hα fibrils in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Xiaoshuai, Zhu; Huaning, Wang; Zhanle, Du; Han, He

    2016-07-01

    We present a careful assessment of forced field extrapolation using the Solar Dynamics Observatory/Helioseismic and Magnetic Imager magnetogram. We use several metrics to check the convergence property. The extrapolated field lines below 3600 km appear to be aligned with most of the Hα fibrils observed by the New Vacuum Solar Telescope. In the region where magnetic energy is far larger than potential energy, the field lines computed by forced field extrapolation are still consistent with the patterns of Hα fibrils while the nonlinear force-free field results show a large misalignment. The horizontal average of the lorentz force ratio shows that the forced region where the force-free assumption fails can reach heights of 1400–1800 km. The non-force-free state of the chromosphere is also confirmed based on recent radiation magnetohydrodynamics simulations.

  3. Revealing bending and force in a soft body through a plant root inspired approach.

    PubMed

    Lucarotti, Chiara; Totaro, Massimo; Sadeghi, Ali; Mazzolai, Barbara; Beccai, Lucia

    2015-03-05

    An emerging challenge in soft robotics research is to reveal mechanical solicitations in a soft body. Nature provides amazing clues to develop unconventional components that are capable of compliant interactions with the environment and living beings, avoiding mechanical and algorithmic complexity of robotic design. We inspire from plant-root mechanoperception and develop a strategy able to reveal bending and applied force in a soft body with only two sensing elements of the same kind, and a null computational effort. The stretching processes that lead to opposite tissue deformations on the two sides of the root wall are emulated with two tactile sensing elements, made of soft and stretchable materials, which conform to reversible changes in the shape of the body they are built in and follow its deformations. Comparing the two sensory responses, we can discriminate the concave and the convex side of the bent body. Hence, we propose a new strategy to reveal in a soft body the maximum bending angle (or the maximum deflection) and the externally applied force according to the body's mechanical configuration.

  4. Revealing bending and force in a soft body through a plant root inspired approach

    PubMed Central

    Lucarotti, Chiara; Totaro, Massimo; Sadeghi, Ali; Mazzolai, Barbara; Beccai, Lucia

    2015-01-01

    An emerging challenge in soft robotics research is to reveal mechanical solicitations in a soft body. Nature provides amazing clues to develop unconventional components that are capable of compliant interactions with the environment and living beings, avoiding mechanical and algorithmic complexity of robotic design. We inspire from plant-root mechanoperception and develop a strategy able to reveal bending and applied force in a soft body with only two sensing elements of the same kind, and a null computational effort. The stretching processes that lead to opposite tissue deformations on the two sides of the root wall are emulated with two tactile sensing elements, made of soft and stretchable materials, which conform to reversible changes in the shape of the body they are built in and follow its deformations. Comparing the two sensory responses, we can discriminate the concave and the convex side of the bent body. Hence, we propose a new strategy to reveal in a soft body the maximum bending angle (or the maximum deflection) and the externally applied force according to the body's mechanical configuration. PMID:25739743

  5. Revealing bending and force in a soft body through a plant root inspired approach

    NASA Astrophysics Data System (ADS)

    Lucarotti, Chiara; Totaro, Massimo; Sadeghi, Ali; Mazzolai, Barbara; Beccai, Lucia

    2015-03-01

    An emerging challenge in soft robotics research is to reveal mechanical solicitations in a soft body. Nature provides amazing clues to develop unconventional components that are capable of compliant interactions with the environment and living beings, avoiding mechanical and algorithmic complexity of robotic design. We inspire from plant-root mechanoperception and develop a strategy able to reveal bending and applied force in a soft body with only two sensing elements of the same kind, and a null computational effort. The stretching processes that lead to opposite tissue deformations on the two sides of the root wall are emulated with two tactile sensing elements, made of soft and stretchable materials, which conform to reversible changes in the shape of the body they are built in and follow its deformations. Comparing the two sensory responses, we can discriminate the concave and the convex side of the bent body. Hence, we propose a new strategy to reveal in a soft body the maximum bending angle (or the maximum deflection) and the externally applied force according to the body's mechanical configuration.

  6. A study on the changes in attractive force of magnetic attachments for overdenture

    PubMed Central

    Lee, Jong-Hyuk; Choi, Yu-Sung

    2016-01-01

    PURPOSE Although magnetic attachment is used frequently for overdenture, it is reported that attractive force can be decreased by abrasion and corrosion. The purpose of this study was to establish the clinical basis about considerations and long term prognosis of overdenture using magnetic attachments by investigating the change in attractive force of magnetic attachment applied to the patients. MATERIALS AND METHODS Among the patients treated with overdenture using magnetic attachments in Dankook University Dental Hospital, attractive force records of 61 magnetic attachments of 20 subjects who re-visited from July 2013 to June 2014 were analyzed. Dental magnet tester (Aichi Micro Intelligent Co., Aichi, Japan) was used for measurement. The magnetic attachments used in this study were Magfit IP-B Flat, Magfit DX400, Magfit DX600 and Magfit DX800 (Aichi Steel Co., Aichi, Japan) filled with Neodymium (NdFeB), a rare-earth magnet. RESULTS Reduction ratio of attractive force had no significant correlation with conditional variables to which attachments were applied, and was higher when the maintenance period was longer (P<.05, r=.361). Reduction ratio of attractive force was significantly higher in the subject group in which attachments were used over 9 years than within 9 years (P<.05). Furthermore, 16.39% of total magnetic attachments showed detachment of keeper or assembly. CONCLUSION Attractive force of magnetic attachment is maintained regardless of conditional variables and reduction ratio increased as the maintenance period became longer. Further study on adhesive material, attachment method and design improvement to prevent detachment of magnetic attachment is needed. PMID:26949482

  7. Magnetic resonance imaging susceptibility artifacts due to metallic foreign bodies.

    PubMed

    Hecht, Silke; Adams, William H; Narak, Jill; Thomas, William B

    2011-01-01

    Susceptibility artifacts due to metallic foreign bodies may interfere with interpretation of magnetic resonance (MR) imaging studies. Additionally, migration of metallic objects may pose a risk to patients undergoing MR imaging. Our purpose was to investigate prevalence, underlying cause, and diagnostic implications of susceptibility artifacts in small animal MR imaging and report associated adverse effects. MR imaging studies performed in dogs and cats between April 2008 and March 2010 were evaluated retrospectively for the presence of susceptibility artifacts associated with metallic foreign bodies. Studies were performed using a 1.0 T scanner. Severity of artifacts was graded as 0 (no interference with area of interest), 1 (extension of artifact to area of interest without impairment of diagnostic quality), 2 (impairment of diagnostic quality but diagnosis still possible), or 3 (severe involvement of area of interest resulting in nondiagnostic study). Medical records were evaluated retrospectively to identify adverse effects. Susceptibility artifacts were present in 99/754 (13.1%) of MR imaging studies and were most common in examinations of the brachial plexus, thorax, and cervical spine. Artifacts were caused by identification microchips, ballistic fragments, skin staples/suture material, hemoclips, an ameroid constrictor, and surgical hardware. Three studies were nondiagnostic due to the susceptibility artifact. Adverse effects were not documented.

  8. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  9. Benchmarking numerical predictions with force and moment measurements on slender, supercavitating bodies

    NASA Astrophysics Data System (ADS)

    Hailey, C. E.; Clark, E. L.; Cole, J. K.

    High-speed water-entry is a very complex, dynamic process. As a first attempt at modeling the process, a numerical solution was developed at Sandia National Laboratories for predicting the forces and moments acting on a body with a steady supercavity, that is, a cavity which extends beyond the base of the body. The solution is limited to supercavities on slender, axisymmetric bodies at small angles of attack. Limited data were available with which to benchmark the axial force predictions at zero angle of attack. Even less data were available with which to benchmark the pitching moment and normal force predictions at nonzero angles of attack. A water tunnel test was conducted to obtain force and moment data on a slender shape. This test produced limited data because of waterproofing problems with the balance. A new balance was designed and a second water tunnel test was conducted at Tracor Hydronautics, Inc. This paper describes the numerical solution, the experimental equipment and test procedures, and the results of the second test.

  10. Computation of trunk muscle forces, spinal loads and stability in whole-body vibration

    NASA Astrophysics Data System (ADS)

    Bazrgari, B.; Shirazi-Adl, A.; Kasra, M.

    2008-12-01

    Whole-body vibration has been indicated as a risk factor in back disorders. Proper prevention and treatment management, however, requires a sound knowledge of associated muscle forces and loads on the spine. Previous trunk model studies have either neglected or over-simplified the trunk redundancy with time-varying unknown muscle forces. Trunk stability has neither been addressed. A novel iterative dynamic kinematics-driven approach was employed to evaluate muscle forces, spinal loads and system stability in a seated subject under a random vertical base excitation with ˜±1 g peak acceleration contents. This iterative approach satisfied equations of motion in all directions/levels while accounting for the nonlinear passive resistance of the ligamentous spine. The effect of posture, co-activity in abdominal muscles and changes in buttocks stiffness were also investigated. The computed vertical accelerations were in good agreement with measurements. The input base excitation, via inertial and muscle forces, substantially influenced spinal loads and system stability. The flexed posture in sitting increased the net moment, muscle forces and passive spinal loads while improving the trunk stability. Similarly, the introduction of low to moderate antagonistic coactivity in abdominal muscles increased the passive spinal loads and improved the spinal stability. A trade-off, hence, exists between lower muscle forces and spinal loads on one hand and more stable spine on the other. Base excitations with larger peak acceleration contents substantially increase muscle forces/spinal loads and, hence, the risk of injury.

  11. The effect of the Coriolis force on the stability of rotating magnetic stars

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    The effect of the Coriolis force on the stability of rotating magnetic stars in hydrostatic equilibrium is investigated by using the method of the energy principle. It is shown that this effect is to inhibit the onset of instability.

  12. The effect of the Coriolis force on the stability of rotating magnetic stars.

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    The effect of the Coriolis force on the stability of rotating magnetic stars in hydrostatic equilibrium is investigated by using the method of the energy principle. It is shown that this effect is to inhibit the onset of instability.

  13. Development of a Force Measurement Device for Lower-Body Muscular Strength Measuring of Skaters

    NASA Astrophysics Data System (ADS)

    Kim, Dong Ki; Lee, Jeong Tae

    This paper presents a force measurement system that can measure a lower-body muscular strength of skaters. The precise measurement and analysis of the left and right lower-body strength of skaters is necessary, because a left/right lower-body strength balance is helpful to improve the athletes' performance and to protect them from injury. The system is constructed with a skate sliding board, a couple of sensor-units with load cell, indicator and control box, guard, force pad, and support bracket. The developed force measurement system is calibrated by the calibration setup, and the uncertainty of the force sensing unit on the left is within 0.087% and the uncertainty of the force sensing unit on the right is within 0.109%. In order to check the feasibility of the developed measurement device, a kinematic analysis is conducted with skater. As a result, the subject shows the deviation of left and right of 12.1 N with respect to average strength and 39.1 N with respect to the maximum strength. This evaluation results are reliable enough to make it possible to measure a lower-body muscular strength of skaters. The use of this measurement system will be expected to correct the posture of skaters and record the sports dynamics data for each athlete. It is believed that through the development of this equipment, skaters in elementary, middle, high schools, colleges, and the professional level have the systematic training to compete with world-class skaters.

  14. Flow and Force Equations for a Body Revolving in a Fluid

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1930-01-01

    Part I gives a general method for finding the steady-flow velocity relative to a body in plane curvilinear motion, whence the pressure is found by Bernoulli's energy principle. Integration of the pressure supplies basic formulas for the zonal forces and moments on the revolving body. Part II, applying this steady-flow method, finds the velocity and pressure at all points of the flow inside and outside an ellipsoid and some of its limiting forms, and graphs those quantities for the latter forms. Part III finds the pressure, and thence the zonal force and moment, on hulls in plane curvilinear flight. Part IV derives general equations for the resultant fluid forces and moments on trisymmetrical bodies moving through a perfect fluid, and in some cases compares the moment values with those found for bodies moving in air. Part V furnishes ready formulas for potential coefficients and inertia coefficients for an ellipsoid and its limiting forms. Thence are derived tables giving numerical values of those coefficients for a comprehensive range of shapes.

  15. GNSS orbit determination by precise modeling of non-gravitational forces acting on satellite's body

    NASA Astrophysics Data System (ADS)

    Wielgosz, Agata; Kalarus, Maciej; Liwosz, Tomasz

    2016-04-01

    Satellites orbiting around Earth are affected by gravitational forces and non-gravitational perturbations (NGP). While the perturbations caused by gravitational forces, which are due to central body gravity (including high-precision geopotential field) and its changes (due to secular variations and tides), solar bodies attraction and relativistic effects are well-modeled, the perturbations caused by the non-gravitational forces are the most limiting factor in Precise Orbit Determination (POD). In this work we focused on very precise non-gravitational force modeling for medium Earth orbit satellites by applying the various models of solar radiation pressure including changes in solar irradiance and Earth/Moon shadow transition, Earth albedo and thermal radiation. For computing influence of aforementioned forces on spacecraft the analytical box-wing satellite model was applied. Smaller effects like antenna thrust or spacecraft thermal radiation were also included. In the process of orbit determination we compared the orbit with analytically computed NGP with the standard procedure in which CODE model is fitted for NGP recovery. We considered satellites from several systems and on different orbits and for different periods: when the satellite is all the time in full sunlight and when transits the umbra and penumbra regions.

  16. On the Evolution of Pulsatile Flow Subject to a Transverse Impulse Body Force

    NASA Astrophysics Data System (ADS)

    di Labbio, Giuseppe; Keshavarz-Motamed, Zahra; Kadem, Lyes

    2014-11-01

    In the event of an unexpected abrupt traffic stop or car accident, automotive passengers will experience an abrupt body deceleration. This may lead to tearing or dissection of the aortic wall known as Blunt Traumatic Aortic Rupture (BTAR). BTAR is the second leading cause of death in automotive accidents and, although quite frequent, the mechanisms leading to BTAR are still not clearly identified, particularly the contribution of the flow field. As such, this work is intended to provide a fundamental framework for the investigation of the flow contribution to BTAR. In this fundamental study, pulsatile flow in a three-dimensional, straight pipe of circular cross-section is subjected to a unidirectional, transverse, impulse body force applied on a strictly bounded volume of fluid. These models were simulated using the Computational Fluid Dynamics (CFD) software FLUENT. The evolution of fluid field characteristics was investigated during and after the application of the force. The application of the force significantly modified the flow field. The force induces a transverse pressure gradient causing the development of secondary flow structures that dissipate the energy added by the acceleration. Once the force ceases to act, these structures are carried downstream and gradually dissipate their excess energy.

  17. Tunneling stabilized magnetic force microscopy; Prospects for low temperature applications to superconductors

    SciTech Connect

    Moreland, J.; Rice, P. , Boulder, CO . Electromagnetic Technology Div.)

    1991-03-01

    The authors of this paper demonstrate an imaging technique referred to as tunneling stabilized magnetic force microscopy or TSMFM. TSMFM is performed using a scanning tunneling microscope (STM) with a flexible magnetic, tunneling tip in place of the usual rigid tunneling tip. TSMFM images are therefore combinations of topography and the magnetic forces between the tip and the sample. Room temperature TSMFM images of magnetic bit tracks on a hard disk have 100 nm resolution and are comparable to Bitter patterns made using a ferrofluid. We have built a low temperature STM with the hope of getting TSMFM images of the flux lattice in superconductors. Preliminary TSMFM images of a YBa{sub 2}Cu{sub c}O{sub x} (YBCO) film (T{sub c} {minus} 88 K) in a 5Q mT field show that relatively large magnetic forces are acting on the flexible tip while scanning at 48 K.

  18. Many-body forces and electron correlation in small metal clusters

    NASA Astrophysics Data System (ADS)

    Kaplan, Ilya G.; Hernández-Cobos, Jorge; Ortega-Blake, Iván; Novaro, Octavio

    1996-04-01

    The many-body decomposition of the interaction energy for BeN and LiN (N=2 to 4) clusters is calculated in two approximations: the self-consistent-field method and the Mo/ller-Plesset perturbation theory up to the fourth order. This allows us to estimate the electron-correlation contributions to the many-body forces. The explicit expressions for these contributions in the perturbation theory formalism are obtained. We present a comparative analysis of the role of electron correlations in the BeN and LiN cluster formations and in the many-body interactions in these clusters. As follows from our results, the contribution of electron correlation to many-body interactions is essential for both the BeN and LiN clusters, especially for the latter ones, where nonadditivities are surprisingly large.

  19. Special solutions for magnetic separation problems using force and energy conditions for ferro-particles capture

    NASA Astrophysics Data System (ADS)

    Sandulyak, Anna; Sandulyak, Alexander; Belgacem, Fethi B. M.; Kiselev, Dmitriy

    2016-03-01

    While trying to solve the equation for the ferro-particle movement in the zone of magnetic separation, it is necessary to provisionally perform a comparative evaluation of forces influencing the ferro-particle in order to define the dominating ones, and specify the task at hand. Here, we consider various solutions of the problem and definitions of magnetic separation parameters based on the traditionally used forces and/or energy conditions of ferro-particle capture.

  20. Investigation of the influence of magnetostriction and magnetic forces on transformer core noise and vibration

    NASA Astrophysics Data System (ADS)

    Phophongviwat, Teeraphon

    Transformer noise is of increasing environmental concern so continued efforts are being made by electrical steel and transformer producers to satisfy users by reducing the noise. Magnetostriction and magnetic forces are the main causes of transformer core noise and vibration. Understanding of the relationship from the core material to core structure and core vibration to core noise can help the design of low noise transformer cores. The most appropriate parameter for investigating the relationship between noise and vibration is sound pressure (in the unit of Pascals) in the frequency domain because it is not A-weighted. In this study, the side surfaces of transformer cores were found to emit higher noise than front and top surfaces at low magnetic induction. When the magnetic induction was increased, the effect of magnetic force increased and caused the front surfaces to emit higher noise. For three phase three limb transformer cores, the front surface of the middle limb generated higher noise than the outer limbs due to the effect of T-joint. However this does not translate higher noise level because of the phase difference of the vibration between the limbs. Due to this A-weighted sound power level of three phase, three limb transformer cores were shown to be lower than single phase transformer cores, although at the same cross sectional area and core window size the three phase cores has larger size.. A model, developed to separate the effects of magnetostriction and magnetic forces on transformer core vibration, showed that at low induction, magnetostriction is more significant than magnetic forces. The magnetic forces become more significant than magnetostriction when the induction is increased. Magnetostriction primarily depends on material and stress but magnetic forces principally depend on core building. Louder noise can be generated from a core built with low magnetostriction material than higher magnetostriction if the building tolerances are worse. The

  1. Test bodies and naked singularities: is the self-force the cosmic censor?

    PubMed

    Barausse, Enrico; Cardoso, Vitor; Khanna, Gaurav

    2010-12-31

    Jacobson and Sotiriou showed that rotating black holes could be spun up past the extremal limit by the capture of nonspinning test bodies, if one neglects radiative and self-force effects. This would represent a violation of the cosmic censorship conjecture in four-dimensional, asymptotically flat spacetimes. We show that for some of the trajectories giving rise to naked singularities, radiative effects can be neglected. However, for these orbits the conservative self-force is important, and seems to have the right sign to prevent the formation of naked singularities. PMID:21231640

  2. On the Inertial Force Experienced by a Solid Body Undergoing Rotation about Two Axes

    SciTech Connect

    Christov, I. C.; Christov, C. I.

    2009-10-29

    The theory of rigid body motion is used to derive the governing equations, in terms of the Eulerian angles, of a top rotating about two axes. Then, a formula for the 'lifting' component of the net inertial force (as function of the angle of inclination, the top's two angular velocities and its moments of inertia) is derived for a particular motion termed constrained nutation. In a distinguished limit, the critical value of the angle of inclination, i.e., the value for which the vertical component of the net inertial force acting on the top overcomes the weight of the rotating system, is calculated.

  3. Testing for three-body quark forces in L = 1 excited baryons

    SciTech Connect

    Pirjol, Dan; Schat, Carlos

    2010-11-12

    We discuss the matching of the quark model to the effective mass operator of the 1/N{sub c} expansion using the permutation group S{sub N}. As an illustration of the general procedure we perform the matching of the Isgur-Karl model for the spectrum of the negative parity L = 1 excited baryons. Assuming the most general two-body quark Hamiltonian, we derive two correlations among the masses and mixing angles of these states which should hold in any quark model. These correlations constrain the mixing angles and can be used to test for the presence of three-body quark forces.

  4. Effects of pairwise versus many-body forces on high-stress plastic deformation

    SciTech Connect

    Holian, B.L.; Voter, A.F.; Wagner, N.J.; Ravelo, R.J.; Chen, S.P. ); Hoover, W.G.; Hoover, C.G. ); Hammerberg, J.E. ); Dontje, T.D. )

    1991-03-15

    We propose a model embedded-atom (many-body) potential and test it against an effective, density-independent, pairwise-additive potential in a variety of nonequilibrium molecular-dynamics simulations of plastic deformation under high stress. Even though both kinds of interactions have nearly the same equilibrium equation of state, the defect energies (i.e., vacancy formation and surface energies) are quite different. As a result, we observe significant qualitative differences in flow behavior between systems characterized by purely pairwise interactions versus higher-order many-body forces.

  5. Nuclear pairing from bare interaction: Two and three-body chiral forces

    SciTech Connect

    Finelli, Paolo

    2012-10-20

    In a recent paper the {sup 1}S{sub 0} pairing gap in isospin-symmetric nuclear matter and finite nuclei has been investigated starting from the chiral nucleon-nucleon potential at the N{sup 3}LO order in the two-body sector and the N{sup 2}LO order in the three-body sector. To include realistic nuclear forces in RHB (Relativistic Hartree Bolgoliubov) calculations we relied on a separable representation of the pairing interaction. In this paper we would like to show recent results concerning isotonic chains with N= 28,50,82.

  6. Alternating magnetic field forces for satellite formation flying

    NASA Astrophysics Data System (ADS)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.

    2013-03-01

    Selected future space missions, such as large aperture telescopes and multi-component interferometers, will require the precise positioning of a number of isolated satellites, yet many of the suggested approaches for providing satellite positioning forces have serious limitations. In this paper we propose a new approach, capable of providing both position and orientation forces, that resolves or alleviates many of these problems. We show that by using alternating fields and currents that finely-controlled forces can be induced on the satellites, which can be individually selected through frequency allocation. We also show, through analysis and experiment, that near field operation is feasible and can provide sufficient force and the necessary degrees of freedom to accurately position and orient small satellites relative to one another. In particular, the case of a telescope with a large number of free mirrors is developed to provide an example of the concept. We also discuss the far field extension of this concept.

  7. Alternating Magnetic Field Forces for Satellite Formation Flying

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stnaley O.

    2012-01-01

    Selected future space missions, such as large aperture telescopes and multi-component interferometers, will require the precise positioning of a number of isolated satellites, yet many of the suggested approaches for providing satellites positioning forces have serious limitations. In this paper we propose a new approach, capable of providing both position and orientation forces, that resolves or alleviates many of these problems. We show that by using alternating fields and currents that finely-controlled forces can be induced on the satellites, which can be individually selected through frequency allocation. We also show, through analysis and experiment, that near field operation is feasible and can provide sufficient force and the necessary degrees of freedom to accurately position and orient small satellites relative to one another. In particular, the case of a telescope with a large number of free mirrors is developed to provide an example of the concept. We. also discuss the far field extension of this concept.

  8. Forced MHD turbulence in a uniform external magnetic field

    NASA Technical Reports Server (NTRS)

    Hossain, M.; Vahala, G.; Montgomery, D.

    1985-01-01

    Two-dimensional dissipative MHD turbulence is randomly driven at small spatial scales and is studied by numerical simulation in the presence of a strong uniform external magnetic field. A behavior is observed which is apparently distinct from the inverse cascade which prevails in the absence of an external magnetic field. The magnetic spectrum becomes dominated by the three longest wavelength Alfven waves in the system allowed by the boundary conditions: those which, in a box size of edge 2 pi, have wave numbers (kx' ky) = (1, 1), and (1, -1), where the external magnetic field is in the x direction. At any given instant, one of these three modes dominates the vector potential spectrum, but they do not constitute a resonantly coupled triad. Rather, they are apparently coupled by the smaller-scale turbulence.

  9. Finite element calculation of forces on a DC magnet moving over an iron rail

    SciTech Connect

    Rodger, D.; Allen, N.; Coles, P.C.; Street, S.; Leonard, P.J.; Eastham, J.F. )

    1994-11-01

    This paper describes results taken from a test rig consisting of a DC magnet over a 0.35m radius spinning iron wheel. The magnet is excited by two coils. The iron parts are unlaminated. Eddy currents are induced in the wheel by virtue of the relative motion of wheel and magnetic field. All iron parts have a nonlinear B-H characteristic. Forces on the magnet are compared with 3D finite element predictions. The results are of relevance to the design of MAGLEV vehicles which are supported by DC magnets.

  10. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOEpatents

    Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.

    1995-11-07

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.

  11. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOEpatents

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  12. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    NASA Astrophysics Data System (ADS)

    Valenzuela, S. O.; Jorge, G. A.; Rodríguez, E.

    1999-11-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give rise to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction, which represents a promising field with regard to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.

  13. Magnetic-field-induced ferroelectric polarization reversal in magnetoelectric composites revealed by piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Miao, Hongchen; Zhou, Xilong; Dong, Shuxiang; Luo, Haosu; Li, Faxin

    2014-07-01

    Controlling electric polarization (or magnetization) in multiferroic materials with external magnetic fields (or electric fields) is very important for fundamental physics and spintronic devices. Although there has been some progress on magnetic-field-induced polarization reversal in single-phase multiferroics, such behavior has so far never been realized in composites. Here we show that it is possible to reverse ferroelectric polarization using magnetic fields in a bilayer Terfenol-D/PMN-33%PT composite. We realized this by ferroelectric domain imaging using piezoresponse force microscopy (PFM) under applied magnetic field loading. The internal electric field caused by the magnetoelectric (ME) effect in the PMN-PT crystal is considered as the driving force for the 180° polarization switching, and its existence is verified by switching spectroscopy PFM testing under a series of external magnetic fields. A quantitative method is further suggested to estimate the local ME coefficient based on the switching spectroscopy PFM testing results.

  14. Magnetic-field-induced ferroelectric polarization reversal in magnetoelectric composites revealed by piezoresponse force microscopy.

    PubMed

    Miao, Hongchen; Zhou, Xilong; Dong, Shuxiang; Luo, Haosu; Li, Faxin

    2014-08-01

    Controlling electric polarization (or magnetization) in multiferroic materials with external magnetic fields (or electric fields) is very important for fundamental physics and spintronic devices. Although there has been some progress on magnetic-field-induced polarization reversal in single-phase multiferroics, such behavior has so far never been realized in composites. Here we show that it is possible to reverse ferroelectric polarization using magnetic fields in a bilayer Terfenol-D/PMN-33%PT composite. We realized this by ferroelectric domain imaging using piezoresponse force microscopy (PFM) under applied magnetic field loading. The internal electric field caused by the magnetoelectric (ME) effect in the PMN-PT crystal is considered as the driving force for the 180° polarization switching, and its existence is verified by switching spectroscopy PFM testing under a series of external magnetic fields. A quantitative method is further suggested to estimate the local ME coefficient based on the switching spectroscopy PFM testing results. PMID:24953042

  15. Use of magnetic forces to promote stem cell aggregation during differentiation, and cartilage tissue modeling.

    PubMed

    Fayol, D; Frasca, G; Le Visage, C; Gazeau, F; Luciani, N; Wilhelm, C

    2013-05-14

    Magnetic forces induce cell condensation necessary for stem cell differentiation into cartilage and elicit the formation of a tissue-like structure: Magnetically driven fusion of aggregates assembled by micromagnets results in the formation of a continuous tissue layer containing abundant cartilage matrix. PMID:23526452

  16. Detecting the magnetic response of iron oxide capped organosilane nanostructures using magnetic sample modulation and atomic force microscopy.

    PubMed

    Li, Jie-Ren; Lewandowski, Brian R; Xu, Song; Garno, Jayne C

    2009-06-15

    A new imaging strategy using atomic force microscopy (AFM) is demonstrated for mapping magnetic domains at size regimes below 100 nm. The AFM-based imaging mode is referred to as magnetic sample modulation (MSM), since the flux of an AC-generated electromagnetic field is used to induce physical movement of magnetic nanomaterials on surfaces during imaging. The AFM is operated in contact mode using a soft, nonmagnetic tip to detect the physical motion of the sample. By slowly scanning an AFM probe across a vibrating area of the sample, the frequency and amplitude of vibration induced by the magnetic field is tracked by changes in tip deflection. Thus, the AFM tip serves as a force and motion sensor for mapping the vibrational response of magnetic nanomaterials. Essentially, MSM is a hybrid of contact mode AFM combined with selective modulation of magnetic domains. The positional feedback loop for MSM imaging is the same as that used for force modulation and contact mode AFM; however, the vibration of the sample is analyzed using channels of a lock-in amplifier. The investigations are facilitated by nanofabrication methods combining particle lithography with organic vapor deposition and electroless deposition of iron oxide, to prepare designed test platforms of magnetic materials at nanometer length scales. Custom test platforms furnished suitable surfaces for MSM characterizations at the level of individual metal nanostructures.

  17. Linear force-free magnetic fields for solar extrapolation and interpretation

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen

    1989-01-01

    This paper discusses the interconnection of the various linear force-free magnetic field formulations, the specific phenomenological and topological parameters of these formulations, and their usefulness. Particularly, the limitations and usefulness of linear force-free fields are discussed. Specific field configurations are related to magnetographic interpretation. The relationship of the integral and Fourier procedures is shown explicitly. The physical interpretation of linear force-free fields is shown by analytic models and from the Marshall Space Flight Center solar vector magnetograms.

  18. A long-lived coronal X-ray arcade. [force-free magnetic field analysis

    NASA Technical Reports Server (NTRS)

    Mcguire, J. P.; Tandberg-Hanssen, E.; Krall, K. R.; Wu, S. T.; Smith, J. B., Jr.; Speich, D. M.

    1977-01-01

    A large, long-lived, soft X-ray emitting arch system observed during a Skylab mission is analyzed. The supposition is that these arches owe their stability to the stable coronal magnetic-field configuration. A global constant alpha force-free magnetic field analysis, is used to describe the arches which stayed in the same approximate position for several solar rotations. A marked resemblance is noted between the theoretical magnetic field configuration and the observed X-ray emmitting feature.

  19. Magnetic damping forces in figure-eight-shaped null-flux coil suspension systems

    SciTech Connect

    He, Jianliang; Coffey, H.

    1997-08-01

    This paper discusses magnetic damping forces in figure-eight-shaped null-flux coil suspension systems, focusing on the Holloman maglev rocket system. The paper also discusses simulating the damping plate, which is attached to the superconducting magnet by two short-circuited loop coils in the guideway. Closed-form formulas for the magnetic damping coefficient as functions of heave-and-sway displacements are derived by using a dynamic circuit model. These formulas are useful for dynamic stability studies.

  20. Resonances in the forced turbulent wake past a 3D blunt body

    NASA Astrophysics Data System (ADS)

    Barros, Diogo; Borée, Jacques; Noack, Bernd R.; Spohn, Andreas

    2016-06-01

    We study the resonances of a forced turbulent wake past a flat-based bluff body using symmetric and antisymmetric actuation modes. The natural, unforced wake flow exhibits broadband dynamics superimposed on oscillatory motions linked to the reminiscent laminar Bénard-von Kármán instability in the turbulent flow. Harmonic and subharmonic resonances can be controlled by the phase relationship of periodic forcing and are linked to the symmetry properties of vortex shedding. Symmetric forcing leads to a strong subharmonic amplification of vortex shedding in the wake, but no harmonic excitation. The robustness of the subharmonic resonance is confirmed at different Reynolds numbers. Antisymmetric actuation, however, promotes a harmonic resonance with very similar wake and drag features.

  1. Force sensing using 3D displacement measurements in linear elastic bodies

    NASA Astrophysics Data System (ADS)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  2. Transient body force effects on the dryout and rewet of a heated capillary structure

    NASA Astrophysics Data System (ADS)

    Reagan, Michael K.

    1994-04-01

    A transient, one-dimensional numerical code was developed to model the liquid flow in a non-uniformly heated, axial square groove. The groove was subjected to transient body forces up to approximately 0.51 m/s sq. Axial variation in meniscus levels, shear stress and heat transfer between the groove wall and the liquid, axial conduction through the liquid, evaporation and body forces were accounted for in the model. Dryout and rewet of the groove were allowed; the front location was determined using conservation of mass and linear extrapolation. A physical experiment was performed with a stainless steel plate into which eight square grooves were machined. Ethanol was used as the working liquid. One end of the plate was tilted relative to the other end and this tilt was varied with time, thereby providing the transient body force. The depth of the ethanol in the groove, and the dryout and rewet front locations, were experimentally measured. Within the uncertainty of the measurements, the numerical results from the code predicted the correct movement of liquid within the groove structure and also the correct position of the dryout and rewet fronts.

  3. Does Using a Visual-Representation Tool Foster Students' Ability to Identify Forces and Construct Free-Body Diagrams?

    ERIC Educational Resources Information Center

    Savinainen, Antti; Makynen, Asko; Nieminen, Pasi; Viiri, Jouni

    2013-01-01

    Earlier research has shown that after physics instruction, many students have difficulties with the force concept, and with constructing free-body diagrams (FBDs). It has been suggested that treating forces as interactions could help students to identify forces as well as to construct the correct FBDs. While there is evidence that identifying…

  4. On the force relaxation in the magnetic levitation system with a high-Tc superconductor

    NASA Astrophysics Data System (ADS)

    Smolyak, B. M.; Zakharov, M. S.

    2014-05-01

    The effect of magnetic flux creep on the lift force in a magnet/superconductor system was studied. It was shown experimentally that in the case of real levitation (when a levitating object bears only on a magnetic field) the suspension height and consequently the lift force did not change over a long period of time. When the levitating object is fixed for some time (i.e. a rigid constraint is imposed on it), the levitation height decreases after removal of the external constraint. It is assumed that free oscillations of the levitating object slow down the flux creep process, which is activated when these oscillations are suppressed.

  5. On some properties of force-free magnetic fields in infinite regions of space

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1984-01-01

    Techniques for solving boundary value problems (BVP) for a force free magnetic field (FFF) in infinite space are presented. A priori inequalities are defined which must be satisfied by the force-free equations. It is shown that upper bounds may be calculated for the magnetic energy of the region provided the value of the magnetic normal component at the boundary of the region can be shown to decay sufficiently fast at infinity. The results are employed to prove a nonexistence theorem for the BVP for the FFF in the spatial region. The implications of the theory for modeling the origins of solar flares are discussed.

  6. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  7. Nonlinear force-free magnetic fields: Calculation and applicatin to astrophysics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yang, Wei-Hong

    1987-01-01

    The problem concerned in this work is that of calculating magnetic field configurations in which the Lorentz force (vector)j x (vector)B is everywhere zero, subject to specified boundary conditions. The magnetic field is represented in terms of Clebsch variables in the form (vector)B = del alpha x del beta. These variables are constant on any field line. The most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. It is proposed that the field lines move in the direction of local Lorentz force and relax towards a force-free field configuration. This concept leads to an iteration procedure for modifying the variables alpha and beta that tends asymptotically towards the force-free state. This method is first applied to a simple problem in two rectangular dimensions; the calculation shows that the convergence of magnetic field energy to a minimum state (force-free) is close to exponential. This method is then applied to study some astrophysical force-free magnetic fields, such as the structures and evolution of magnetic fields of rotating sunspots and accretion disks. The implication of the results, as related to the mechanisms of solar flares, extragalactic radio sources and radio jets, are discussed.

  8. Electromagnetic Forces in a Hybrid Magnetic-Bearing Switched-Reluctance Motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.

    2008-01-01

    Analysis and experimental measurement of the electromagnetic force loads on the hybrid rotor in a novel hybrid magnetic-bearing switched-reluctance motor (MBSRM) have been performed. A MBSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The MBSRM discussed in this report has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of four stator poles, while a second set of four stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Static torque and radial force analysis were done for rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental and the theoretical radial force loads predictions was obtained with typical magnetic bearing derating factors applied to the predictions.

  9. Relations Between Lower Body Isometric Muscle Force Characteristics and Start Performance in Elite Male Sprint Swimmers

    PubMed Central

    Beretić, Igor; Đurović, Marko; Okičić, Tomislav; DOPSAJ, Milivoj

    2013-01-01

    The aim of the present study was twofold. The first aim was to examine the influence of absolute and relative lower body muscle force on kinematic component which determine the start performance. The second aim was to create multiregressional model which could use as a tool for swimming coaches with the purpose to start performance control and improvement. Twenty seven high-level trained male competitive swimmers all members of the Serbian National Youth and Senior Swimming Team (Age = 21.1 ± 4.3 yrs., Height = 1. 89 ± 0.10 m, Weight = 81.6 ± 8.4 kg, 50m freestyle - long course = 24.36 ± 0.86 s) performed two trials of standing leg extensors isometric muscle force testing and three swimming start trials corresponding to 10m distance. The average start time significantly correlated with variables of leg extensors maximum voluntary force (Fmax, r = -0.559, p = 0.002), leg extensors relative muscle voluntary force (Frel, r = -0.727, p < 0.001), leg extensors specific rate of force development (RFD50%, r = -0.338, p = 0.047) and leg extensors relative value of specific rate of force development (RFD50%rel, r = -0.402, p = 0.040). Regression equation for t10m prediction was defined by following variables: maximum voluntary isometric force of leg extensors muscles at absolute and relative level (Fmax and Frel), as well as a specific rate of force development of the same muscle groups (RFD50% and RFD50%rel) at absolute and relative level too with 74.4% of explained variance. Contractile abilities indicators of the leg extensors muscles included consideration: Fmax, RFD50%, Frel and RFD50%rel showed significant correlation with swimming start times on 10m. Additionally, the results suggest that swimmers, who possess greater isometric maximum force and specific rate of force development at absolute and relative levels, tend to be able to swim faster on initial 10m swim start perforamnce. Key Points In high-level male swimmers: Leg extensors maximum voluntary force, leg

  10. Rotating horizontal ground reaction forces to the body path of progression.

    PubMed

    Glaister, Brian C; Orendurff, Michael S; Schoen, Jason A; Klute, Glenn K

    2007-01-01

    When studying the biomechanics of a transient turn, the orientation of the body will change relative to the orientation of the force plates over the progression of the turn. To express ground reaction forces relative to the body, this study investigated possible origin locations and axis alignments of body reference frames. The gait patterns of 10 subjects were recorded as subjects negotiated a 90 degrees hallway corner. Body reference frames were chosen whose origins were the center of mass (COM) and the pelvis origin (PEL). A finite-difference method was used to align the axes of the reference frames according to the horizontal paths of the COM and PEL. The ground reaction impulses (GRIs) were calculated relative to the COM and PEL reference frames. GRI differences were small between the PEL and COM frames, suggesting that either is acceptable for turning studies. Based on an investigation of finite-difference parameters, the COM frame should be used when using a kinematic sampling rate of 60 Hz. Either frame is acceptable when sampling at higher rates. PMID:17597134

  11. Magnus force and the inertial properties of magnetic vortices in weak ferromagnets

    NASA Astrophysics Data System (ADS)

    Zvezdin, A. K.; Zvezdin, K. A.

    2010-08-01

    The Magnus force (gyroscopic force) acting on magnetic vortices (Bloch lines) within domain boundaries in weak ferromagnets is discussed. A general formula is derived for the Magnus force in weak ferromagnets. The Magnus force is found to be nonzero for most types of domain boundaries and is determined by the average sublattice magnetization and the constants for the Dzyaloshinsky interaction and the exchange interaction between sublattices. Generalized expressions are obtained for the effective Lagrange and Rayleigh functions in weak ferromagnets taking their vortex structure into account. The question of the vortex mass, which has been found to be on the order of m*˜10-14g/cm in YFeO3, is discussed. The dynamic flexure of domain boundaries when moving vortices are present is analyzed. A formula is derived for the magnetic field dependence of the velocity of a vortex in a motionless domain boundary.

  12. Magnetic energy dissipation in force-free jets

    NASA Technical Reports Server (NTRS)

    Choudhuri, Arnab Rai; Konigl, Arieh

    1986-01-01

    It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.

  13. Potential of mean force between like-charged nanoparticles: Many-body effect

    PubMed Central

    Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie

    2016-01-01

    Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles. PMID:26997415

  14. Potential of mean force between like-charged nanoparticles: Many-body effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie

    2016-03-01

    Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles.

  15. A portable Halbach magnet that can be opened and closed without force: The NMR-CUFF

    NASA Astrophysics Data System (ADS)

    Windt, Carel W.; Soltner, Helmut; Dusschoten, Dagmar van; Blümler, Peter

    2011-01-01

    Portable equipment for nuclear magnetic resonance (NMR) is becoming increasingly attractive for use in a variety of applications. One of the main scientific challenges in making NMR portable is the design of light-weight magnets that possess a strong and homogeneous field. Existing NMR magnets can provide such magnetic fields, but only for small samples or in small regions, or are rather heavy. Here we show a simple yet elegant concept for a Halbach-type permanent magnet ring, which can be opened and closed with minimal mechanical force. An analytical solution for an ideal Halbach magnet shows that the magnetic forces cancel if the structure is opened at an angle of 35.3° relative to its poles. A first prototype weighed only 3.1 kg, and provided a flux density of 0.57 T with a homogeneity better than 200 ppm over a spherical volume of 5 mm in diameter without shimming. The force needed to close it was found to be about 20 N. As a demonstration, intact plants were imaged and water (xylem) flow measured. Magnets of this type (NMR-CUFF = Cut-open, Uniform, Force Free) are ideal for portable use and are eminently suited to investigate small or slender objects that are part of a larger or immobile whole, such as branches on a tree, growing fruit on a plant, or non-metallic tubing in industrial installations. This new concept in permanent-magnet design enables the construction of openable, yet strong and homogeneous magnets, which aside from use in NMR or MRI could also be of interest for applications in accelerators, motors, or magnetic bearings.

  16. Transformation of body force localized near the surface of a half-space into equivalent surface stresses.

    PubMed

    Rouge, Clémence; Lhémery, Alain; Ségur, Damien

    2013-10-01

    An electromagnetic acoustic transducer (EMAT) or a laser used to generate elastic waves in a component is often described as a source of body force confined in a layer close to the surface. On the other hand, models for elastic wave radiation more efficiently handle sources described as distributions of surface stresses. Equivalent surface stresses can be obtained by integrating the body force with respect to depth. They are assumed to generate the same field as the one that would be generated by the body force. Such an integration scheme can be applied to Lorentz force for conventional EMAT configuration. When applied to magnetostrictive force generated by an EMAT in a ferromagnetic material, the same scheme fails, predicting a null stress. Transforming body force into equivalent surface stresses therefore, requires taking into account higher order terms of the force moments, the zeroth order being the simple force integration over the depth. In this paper, such a transformation is derived up to the second order, assuming that body forces are localized at depths shorter than the ultrasonic wavelength. Two formulations are obtained, each having some advantages depending on the application sought. They apply regardless of the nature of the force considered. PMID:24116402

  17. A magnetic-piezoelectric smart material-structure utilizing magnetic force interaction to optimize the sensitivity of current sensing

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chen; Chung, Tien-Kan; Lai, Chen-Hung; Wang, Chieh-Min

    2016-01-01

    This paper presents a magnetic-piezoelectric smart material-structure using a novel magnetic-force-interaction approach to optimize the sensitivity of conventional piezoelectric current sensing technologies. The smart material-structure comprises a CuBe-alloy cantilever beam, a piezoelectric PZT sheet clamped to the fixed end of the beam, and an NdFeB permanent magnet mounted on the free end of the beam. When the smart material-structure is placed close to an AC conductor, the magnet on the beam of the smart structure experiences an alternating magnetic attractive and repulsive force produced by the conductor. Thus, the beam vibrates and subsequently generates a strain in the PZT sheet. The strain produces a voltage output because of the piezoelectric effect. The magnetic force interaction is specifically enhanced through the optimization approach (i.e., achieved by using SQUID and machining method to reorient the magnetization to different directions to maximize the magnetic force interaction). After optimizing, the beam's vibration amplitude is significantly enlarged and, consequently, the voltage output is substantially increased. The experimental results indicated that the smart material-structure optimized by the proposed approach produced a voltage output of 4.01 Vrms with a sensitivity of 501 m Vrms/A when it was placed close to a conductor with a current of 8 A at 60 Hz. The optimized voltage output and sensitivity of the proposed smart structure were approximately 316 % higher than those (1.27 Vrms with 159 m Vrms/A) of representative piezoelectric-based current sensing technologies presented in other studies. These improvements can significantly enable the development of more self-powered wireless current sensing applications in the future.

  18. Investigation of Body Force Effects on Flow Boiling Critical Heat Flux

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Mudawar, Issam; Hasan, Mohammad M.

    2002-01-01

    The bubble coalescence and interfacial instabilities that are important to modeling critical heat flux (CHF) in reduced-gravity systems can be sensitive to even minute body forces. Understanding these complex phenomena is vital to the design and safe implementation of two-phase thermal management loops proposed for space and planetary-based thermal systems. While reduced gravity conditions cannot be accurately simulated in 1g ground-based experiments, such experiments can help isolate the effects of the various forces (body force, surface tension force and inertia) which influence flow boiling CHF. In this project, the effects of the component of body force perpendicular to a heated wall were examined by conducting 1g flow boiling experiments at different orientations. FC-72 liquid was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface at conditions approaching CHF. High-speed video imaging was employed to capture dominant CHF mechanisms. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed great sensitivity to orientation for flow velocities below 0.2 m/s, where very small CHF values where measured, especially with downflow and downward-facing heated wall orientations. High flow velocities dampened the effects of orientation considerably. Figure I shows representative images for the different CHF regimes. The Wavy Vapor Layer regime was dominant for all high velocities and most orientations, while all other regimes were encountered at low velocities, in the downflow and/or downward-facing heated wall orientations. The Interfacial Lift-off model was modified to predict the effects of orientation on CHF for the dominant Wavy Vapor Layer regime. The photographic study captured a fairly continuous wavy vapor layer travelling along the heated wall while permitting liquid

  19. Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid

    NASA Astrophysics Data System (ADS)

    Hoof, Sebastian; Nand Gosvami, Nitya; Hoogenboom, Bart W.

    2012-12-01

    Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here, we show that a high-quality resonance (Q >20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity—as expressed via the minimum detectable force gradient—is hardly affected, because of the enhanced quality factor. Through the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up that includes magnetic actuation of the cantilevers and that can be easily implemented in any AFM system that is compatible with an inverted optical microscope.

  20. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing.

    PubMed

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  1. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †

    PubMed Central

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  2. A many-body dissipative particle dynamics study of forced water-oil displacement in capillary.

    PubMed

    Chen, Chen; Zhuang, Lin; Li, Xuefeng; Dong, Jinfeng; Lu, Juntao

    2012-01-17

    The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications.

  3. Dual-body magnetic helical robot for drilling and cargo delivery in human blood vessels

    NASA Astrophysics Data System (ADS)

    Lee, Wonseo; Jeon, Seungmun; Nam, Jaekwang; Jang, Gunhee

    2015-05-01

    We propose a novel dual-body magnetic helical robot (DMHR) manipulated by a magnetic navigation system. The proposed DMHR can generate helical motions to navigate in human blood vessels and to drill blood clots by an external rotating magnetic field. It can also generate release motions which are relative rotational motions between dual-bodies to release the carrying cargos to a target region by controlling the magnitude of an external magnetic field. Constraint equations were derived to selectively manipulate helical and release motions by controlling external magnetic fields. The DMHR was prototyped and various experiments were conducted to demonstrate its motions and verify its manipulation methods.

  4. Principle and Basic Characteristics of a Hybrid Variable-Magnetic-Force Motor

    NASA Astrophysics Data System (ADS)

    Sakai, Kazuto; Kuramochi, Satoru

    Reduction in the power consumed by motors is important for energy saving in the case of electrical appliances and electric vehicles (EVs). The motors used for operating these devices operate at variable speeds. Further, the motors operate with a small load in the stationary mode and a large load in the starting mode. A permanent magnet motor can be operated at the rated power with a high efficiency. However, the efficiency is low at a small load or at a high speed because the large constant magnetic force results in substantial core loss. Furthermore, the flux-weakening current that decreases the voltage at a high speed leads to significant copper loss and core loss. Therefore, we have developed a new technique for controlling the magnetic force of a permanent magnet on the basis of the load or speed of the motor. In this paper, we propose a novel motor that can vary the magnetic flux of a permanent magnet and clarify the principle and basic characteristics of the motor. The new motor has a permanent magnet that is magnetized by the magnetizing coil of the stator. The analysis results show that the magnetic flux linkage of the motor can be changed from 37% to 100% that a high torque can be produced.

  5. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.

    2001-01-01

    The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.

  6. Magnetic Force Microscopy and Energy Loss Imaging of Superparamagnetic Iron Oxide Nanoparticles”

    PubMed Central

    Torre, Bruno; Bertoni, Giovanni; Fragouli, Despina; Falqui, Andrea; Salerno, Marco; Diaspro, Alberto; Cingolani, Roberto; Athanassiou, Athanassia

    2011-01-01

    We present quantitative, high spatially resolved magnetic force microscopy imaging of samples based on 11 nm diameter superparamagnetic iron oxide nanoparticles in air at room temperature. By a proper combination of the cantilever resonance frequency shift, oscillation amplitude and phase lag we obtain the tip-sample interaction maps in terms of force gradient and energy dissipation. These physical quantities are evaluated in the frame of a tip-particle magnetic interaction model also including the tip oscillation amplitude. Magnetic nanoparticles are characterized both in bare form, after deposition on a flat substrate, and as magnetically assembled fillers in a polymer matrix, in the form of nanowires. The latter approach makes it possible to reveal the magnetic texture in a composite sample independently of the surface topography. PMID:22355717

  7. Enhanced buckled-beam piezoelectric energy harvesting using midpoint magnetic force

    NASA Astrophysics Data System (ADS)

    Zhu, Yang; Zu, Jean W.

    2013-07-01

    Aiming to improve the functionality of a buckled-beam piezoelectric energy harvester, a midpoint magnetic force is utilized to enable snap-through motions under low-frequency (<30 Hz) small-amplitude (0.2 g-0.8 g) excitations. The noncontact midpoint magnetic force is introduced through a local magnetic levitation system created by neodymium magnets and is capable of triggering the second buckling mode that helps the beam easily snap through between equilibriums when subjected to excitations. Significant enhancements, along with distinct nonlinear phenomena, are observed at low frequencies in terms of large-amplitude voltage output and extended frequency bandwidth. Frequency tuning is also achievable by adjusting the separation distance between magnets.

  8. Many-body Interactions in Magnetic Films and Nanostructures

    SciTech Connect

    Stephen D. Kevan

    2012-12-12

    We describe results supported by DOE grant DE-FG02-04ER46158, which focused on magnetic interaction at surfaces, in thin films, and in metallic nanostructures. We report on three general topics: 1) The Rashba spin splitting at magnetic surfaces of rare earth metals, 2) magnetic nanowires self-assembled on stepped tungsten single crystals, and 3) magnetic interaction in graphene films doped with hydrogen atoms.

  9. VARIFORC: a powerful FORC analysis tool specially suited to environmental magnetic applications

    NASA Astrophysics Data System (ADS)

    Egli, Ramon

    2015-04-01

    VARIFORC is a new tool for the analysis of first-order reversal curves (FORC), especially developed for the highly demanding applications typically occurring in environmental magnetism (e.g. quantitative magnetic component unmixing in weak samples). The currently unique capabilities of VARIFORC are illustrated with examples where the magnetic signature of authigenic minerals (e.g. magnetofossils) is isolated from other magnetic contributions associated with detrital or aeolian inputs in pelagic carbonates. Life demonstrations at the poster stand are possible. VARIFORC is freely available at http://www.conrad-observatory.at/cmsjoomla/de/download.

  10. Stochastic Resonance Magnetic Force Microscopy imaging of Josephson Arrays

    NASA Astrophysics Data System (ADS)

    Naibert, Tyler; Polshyn, Hryhoriy; Wolin, Brian; Durkin, Malcolm; Garrido Menacho, Rita; Mondragon Shem, Ian; Chua, Victor; Hughes, Taylor; Mason, Nadya; Budakian, Raffi

    Vortex interactions are key to explaining the behavior of many two dimensional superconducting systems. We report on the development of a technique to locally probe vortex interactions in a 2D array of Josephson junctions. Scanning a magnetic tip attached to an ultra-soft cantilever over the array produces changes in the frequency of the cantilever along certain lines, forming geometric patterns in the scans. Different tip-surface separations and external magnetic fields produce a number of different patterns. These patterns correspond to tip locations in which two configurations of vortices in the lattice have degenerate energies. By imaging the locations of these degeneracies, information on the local vortex interactions may be obtained.

  11. Task III: Development of an Effective Computational Methodology for Body Force Representation of High-speed Rotor 37

    NASA Technical Reports Server (NTRS)

    Tan, Choon-Sooi; Suder, Kenneth (Technical Monitor)

    2003-01-01

    A framework for an effective computational methodology for characterizing the stability and the impact of distortion in high-speed multi-stage compressor is being developed. The methodology consists of using a few isolated-blade row Navier-Stokes solutions for each blade row to construct a body force database. The purpose of the body force database is to replace each blade row in a multi-stage compressor by a body force distribution to produce same pressure rise and flow turning. To do this, each body force database is generated in such a way that it can respond to the changes in local flow conditions. Once the database is generated, no hrther Navier-Stokes computations are necessary. The process is repeated for every blade row in the multi-stage compressor. The body forces are then embedded as source terms in an Euler solver. The method is developed to have the capability to compute the performance in a flow that has radial as well as circumferential non-uniformity with a length scale larger than a blade pitch; thus it can potentially be used to characterize the stability of a compressor under design. It is these two latter features as well as the accompanying procedure to obtain the body force representation that distinguish the present methodology from the streamline curvature method. The overall computational procedures have been developed. A dimensional analysis was carried out to determine the local flow conditions for parameterizing the magnitudes of the local body force representation of blade rows. An Euler solver was modified to embed the body forces as source terms. The results from the dimensional analysis show that the body forces can be parameterized in terms of the two relative flow angles, the relative Mach number, and the Reynolds number. For flow in a high-speed transonic blade row, they can be parameterized in terms of the local relative Mach number alone.

  12. Particle tracks in a cloud chamber: historical photographs as a context for studying magnetic force

    NASA Astrophysics Data System (ADS)

    Onorato, Pasquale; De Ambrosis, Anna

    2012-11-01

    We present a sequence of experiments aimed at exploring magnetic force. The activity sequence was organized into three main phases, each starting from an experiment. The first phase aimed to help students understand the direction and magnitude of the magnetic force experienced by current-carrying wires located in a homogeneous magnetic field; the second referred to the study of magnetic force acting on electrons emitted by a cathode and moving through a homogeneous magnetic field; finally, students were asked to analyse the sub-nuclear particle tracks in cloud and streamer chambers in real experiments, based on the experience they acquired during previous work with digital photographs. The activity sequence was designed for students on introductory physics courses or in advanced high-school classes and was implemented in five high-school classes (approximately 100 students). Our results compared with those reported in the literature indicate that students' understanding of the direction and magnitude of magnetic force improved markedly and that some typical difficulties were overcome.

  13. A magnetic micro-manipulator for application of three dimensional forces

    SciTech Connect

    Punyabrahma, P.; Jayanth, G. R.

    2015-02-15

    Magnetic manipulation finds diverse applications in actuation, characterization, and manipulation of micro- and nano-scale samples. This paper presents the design and development of a novel magnetic micro-manipulator for application of three-dimensional forces on a magnetic micro-bead. A simple analytical model is proposed to obtain the forces of interaction between the magnetic micro-manipulator and a magnetic micro-bead. Subsequently, guidelines are proposed to perform systematic design and analysis of the micro-manipulator. The designed micro-manipulator is fabricated and evaluated. The manipulator is experimentally demonstrated to possess an electrical bandwidth of about 1 MHz. The ability of the micro-manipulator to apply both in-plane and out-of-plane forces is demonstrated by actuating permanent-magnet micro-beads attached to micro-cantilever beams. The deformations of the micro-cantilevers are also employed to calibrate the dependence of in-plane and out-of-plane forces on the position of the micro-bead relative to the micro-manipulator. The experimentally obtained dependences are found to agree well with theory.

  14. A magnetic micro-manipulator for application of three dimensional forces.

    PubMed

    Punyabrahma, P; Jayanth, G R

    2015-02-01

    Magnetic manipulation finds diverse applications in actuation, characterization, and manipulation of micro- and nano-scale samples. This paper presents the design and development of a novel magnetic micro-manipulator for application of three-dimensional forces on a magnetic micro-bead. A simple analytical model is proposed to obtain the forces of interaction between the magnetic micro-manipulator and a magnetic micro-bead. Subsequently, guidelines are proposed to perform systematic design and analysis of the micro-manipulator. The designed micro-manipulator is fabricated and evaluated. The manipulator is experimentally demonstrated to possess an electrical bandwidth of about 1 MHz. The ability of the micro-manipulator to apply both in-plane and out-of-plane forces is demonstrated by actuating permanent-magnet micro-beads attached to micro-cantilever beams. The deformations of the micro-cantilevers are also employed to calibrate the dependence of in-plane and out-of-plane forces on the position of the micro-bead relative to the micro-manipulator. The experimentally obtained dependences are found to agree well with theory.

  15. A magnetic micro-manipulator for application of three dimensional forces

    NASA Astrophysics Data System (ADS)

    Punyabrahma, P.; Jayanth, G. R.

    2015-02-01

    Magnetic manipulation finds diverse applications in actuation, characterization, and manipulation of micro- and nano-scale samples. This paper presents the design and development of a novel magnetic micro-manipulator for application of three-dimensional forces on a magnetic micro-bead. A simple analytical model is proposed to obtain the forces of interaction between the magnetic micro-manipulator and a magnetic micro-bead. Subsequently, guidelines are proposed to perform systematic design and analysis of the micro-manipulator. The designed micro-manipulator is fabricated and evaluated. The manipulator is experimentally demonstrated to possess an electrical bandwidth of about 1 MHz. The ability of the micro-manipulator to apply both in-plane and out-of-plane forces is demonstrated by actuating permanent-magnet micro-beads attached to micro-cantilever beams. The deformations of the micro-cantilevers are also employed to calibrate the dependence of in-plane and out-of-plane forces on the position of the micro-bead relative to the micro-manipulator. The experimentally obtained dependences are found to agree well with theory.

  16. Improvement of the propulsion force for HTSC-permanent magnet hybrid magnetically levitated carrying system by using the pinned flux of HTSC

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Sasaki, R.; Ueno, T.; Ohashi, S.

    Magnetically levitated carrying system has been developed. In this system, pinning force of high temperature bulk superconductor (HTSC) is used for the levitation and guidance. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. For the propulsion system, electromagnets are installed on the surface of the magnetic rail. Improvement of the propulsion force is studied. In the previous system, only flux of the permanent magnet of the carrier is used for propulsion. To increase propulsion force, that of the HTSC of the carrier is also used. Using this excitation method, the propulsion force is improved even though total number of the excited coil is the same.

  17. Quantitative magnetic resonance (QMR) measurement of changes in body composition of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The survival of low birth weight pigs in particular may depend on energy stores in the body. QMR (quantitative magnetic resonance) is a new approach to measuring total body fat, lean and water. These measurements are based on quantifying protons associated with lipid and water molecules in the body...

  18. Aerodynamic force generation, performance and control of body orientation during gliding in sugar gliders (Petaurus breviceps).

    PubMed

    Bishop, Kristin L

    2007-08-01

    Gliding has often been discussed in the literature as a possible precursor to powered flight in vertebrates, but few studies exist on the mechanics of gliding in living animals. In this study I analyzed the 3D kinematics of sugar gliders (Petaurus breviceps) during short glides in an enclosed space. Short segments of the glide were captured on video, and the positions of marked anatomical landmarks were used to compute linear distances and angles, as well as whole body velocities and accelerations. From the whole body accelerations I estimated the aerodynamic forces generated by the animals. I computed the correlations between movements of the limbs and body rotations to examine the control of orientation during flight. Finally, I compared these results to those of my earlier study on the similarly sized and distantly related southern flying squirrel (Glaucomys volans). The sugar gliders in this study accelerated downward slightly (1.0+/-0.5 m s(-2)), and also accelerated forward (2.1+/-0.6 m s(-2)) in all but one trial, indicating that the body weight was not fully supported by aerodynamic forces and that some of the lift produced forward acceleration rather than just balancing body weight. The gliders used high angles of attack (44.15+/-3.12 degrees ), far higher than the angles at which airplane wings would stall, yet generated higher lift coefficients (1.48+/-0.18) than would be expected for a stalled wing. Movements of the limbs were strongly correlated with body rotations, suggesting that sugar gliders make extensive use of limb movements to control their orientation during gliding flight. In addition, among individuals, different limb movements were associated with a given body rotation, suggesting that individual variation exists in the control of body rotations. Under similar conditions, flying squirrels generated higher lift coefficients and lower drag coefficients than sugar gliders, yet had only marginally shallower glides. Flying squirrels have a

  19. Aerodynamic force generation, performance and control of body orientation during gliding in sugar gliders (Petaurus breviceps).

    PubMed

    Bishop, Kristin L

    2007-08-01

    Gliding has often been discussed in the literature as a possible precursor to powered flight in vertebrates, but few studies exist on the mechanics of gliding in living animals. In this study I analyzed the 3D kinematics of sugar gliders (Petaurus breviceps) during short glides in an enclosed space. Short segments of the glide were captured on video, and the positions of marked anatomical landmarks were used to compute linear distances and angles, as well as whole body velocities and accelerations. From the whole body accelerations I estimated the aerodynamic forces generated by the animals. I computed the correlations between movements of the limbs and body rotations to examine the control of orientation during flight. Finally, I compared these results to those of my earlier study on the similarly sized and distantly related southern flying squirrel (Glaucomys volans). The sugar gliders in this study accelerated downward slightly (1.0+/-0.5 m s(-2)), and also accelerated forward (2.1+/-0.6 m s(-2)) in all but one trial, indicating that the body weight was not fully supported by aerodynamic forces and that some of the lift produced forward acceleration rather than just balancing body weight. The gliders used high angles of attack (44.15+/-3.12 degrees ), far higher than the angles at which airplane wings would stall, yet generated higher lift coefficients (1.48+/-0.18) than would be expected for a stalled wing. Movements of the limbs were strongly correlated with body rotations, suggesting that sugar gliders make extensive use of limb movements to control their orientation during gliding flight. In addition, among individuals, different limb movements were associated with a given body rotation, suggesting that individual variation exists in the control of body rotations. Under similar conditions, flying squirrels generated higher lift coefficients and lower drag coefficients than sugar gliders, yet had only marginally shallower glides. Flying squirrels have a

  20. Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: application to superparamagnetic nanoparticles

    PubMed Central

    Angeloni, Livia; Passeri, Daniele; Reggente, Melania; Mantovani, Diego; Rossi, Marco

    2016-01-01

    Magnetic force microscopy (MFM) has been demonstrated as valuable technique for the characterization of magnetic nanomaterials. To be analyzed by MFM techniques, nanomaterials are generally deposited on flat substrates, resulting in an additional contrast in MFM images due to unavoidable heterogeneous electrostatic tip-sample interactions, which cannot be easily distinguished from the magnetic one. In order to correctly interpret MFM data, a method to remove the electrostatic contributions from MFM images is needed. In this work, we propose a new MFM technique, called controlled magnetization MFM (CM-MFM), based on the in situ control of the probe magnetization state, which allows the evaluation and the elimination of electrostatic contribution in MFM images. The effectiveness of the technique is demonstrated through a challenging case study, i.e., the analysis of superparamagnetic nanoparticles in absence of applied external magnetic field. Our CM-MFM technique allowed us to acquire magnetic images depurated of the electrostatic contributions, which revealed that the magnetic field generated by the tip is sufficient to completely orient the superparamagnetic nanoparticles and that the magnetic tip-sample interaction is describable through simple models once the electrostatic artifacts are removed. PMID:27194591

  1. Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy

    PubMed Central

    Li, Xiang; Lu, Wei; Song, Yiming; Wang, Yuxin; Chen, Aiying; Yan, Biao; Yoshimura, Satoru; Saito, Hitoshi

    2016-01-01

    Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometer scale spatial resolution remains an outstanding challenge. Current approaches, for example, Hall micromagnetometer and nitrogen-vacancy magnetometer, are limited by highly complex experimental apparatus and a dedicated sample preparation process. Here we present a new AC field-modulated magnetic force microscopy (MFM) and report the local and quantitative measurements of the magnetic information of individual magnetic nanoparticles (MNPs), which is one of the most iconic objects of nanomagnetism. This technique provides simultaneously a direct visualization of the magnetization process of the individual MNPs, with spatial resolution and magnetic sensitivity of about 4.8 nm and 1.85 × 10−20 A m2, respectively, enabling us to separately estimate the distributions of the dipolar fields and the local switching fields of individual MNPs. Moreover, we demonstrate that quantitative magnetization moment of individual MNPs can be routinely obtained using MFM signals. Therefore, it underscores the power of the AC field-modulated MFM for biological and biomedical applications of MNPs and opens up the possibility for directly and quantitatively probing the weak magnetic stray fields from nanoscale magnetic systems with superior spatial resolution. PMID:26932357

  2. Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: application to superparamagnetic nanoparticles.

    PubMed

    Angeloni, Livia; Passeri, Daniele; Reggente, Melania; Mantovani, Diego; Rossi, Marco

    2016-01-01

    Magnetic force microscopy (MFM) has been demonstrated as valuable technique for the characterization of magnetic nanomaterials. To be analyzed by MFM techniques, nanomaterials are generally deposited on flat substrates, resulting in an additional contrast in MFM images due to unavoidable heterogeneous electrostatic tip-sample interactions, which cannot be easily distinguished from the magnetic one. In order to correctly interpret MFM data, a method to remove the electrostatic contributions from MFM images is needed. In this work, we propose a new MFM technique, called controlled magnetization MFM (CM-MFM), based on the in situ control of the probe magnetization state, which allows the evaluation and the elimination of electrostatic contribution in MFM images. The effectiveness of the technique is demonstrated through a challenging case study, i.e., the analysis of superparamagnetic nanoparticles in absence of applied external magnetic field. Our CM-MFM technique allowed us to acquire magnetic images depurated of the electrostatic contributions, which revealed that the magnetic field generated by the tip is sufficient to completely orient the superparamagnetic nanoparticles and that the magnetic tip-sample interaction is describable through simple models once the electrostatic artifacts are removed. PMID:27194591

  3. Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: application to superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Angeloni, Livia; Passeri, Daniele; Reggente, Melania; Mantovani, Diego; Rossi, Marco

    2016-05-01

    Magnetic force microscopy (MFM) has been demonstrated as valuable technique for the characterization of magnetic nanomaterials. To be analyzed by MFM techniques, nanomaterials are generally deposited on flat substrates, resulting in an additional contrast in MFM images due to unavoidable heterogeneous electrostatic tip-sample interactions, which cannot be easily distinguished from the magnetic one. In order to correctly interpret MFM data, a method to remove the electrostatic contributions from MFM images is needed. In this work, we propose a new MFM technique, called controlled magnetization MFM (CM-MFM), based on the in situ control of the probe magnetization state, which allows the evaluation and the elimination of electrostatic contribution in MFM images. The effectiveness of the technique is demonstrated through a challenging case study, i.e., the analysis of superparamagnetic nanoparticles in absence of applied external magnetic field. Our CM-MFM technique allowed us to acquire magnetic images depurated of the electrostatic contributions, which revealed that the magnetic field generated by the tip is sufficient to completely orient the superparamagnetic nanoparticles and that the magnetic tip-sample interaction is describable through simple models once the electrostatic artifacts are removed.

  4. Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: application to superparamagnetic nanoparticles.

    PubMed

    Angeloni, Livia; Passeri, Daniele; Reggente, Melania; Mantovani, Diego; Rossi, Marco

    2016-05-19

    Magnetic force microscopy (MFM) has been demonstrated as valuable technique for the characterization of magnetic nanomaterials. To be analyzed by MFM techniques, nanomaterials are generally deposited on flat substrates, resulting in an additional contrast in MFM images due to unavoidable heterogeneous electrostatic tip-sample interactions, which cannot be easily distinguished from the magnetic one. In order to correctly interpret MFM data, a method to remove the electrostatic contributions from MFM images is needed. In this work, we propose a new MFM technique, called controlled magnetization MFM (CM-MFM), based on the in situ control of the probe magnetization state, which allows the evaluation and the elimination of electrostatic contribution in MFM images. The effectiveness of the technique is demonstrated through a challenging case study, i.e., the analysis of superparamagnetic nanoparticles in absence of applied external magnetic field. Our CM-MFM technique allowed us to acquire magnetic images depurated of the electrostatic contributions, which revealed that the magnetic field generated by the tip is sufficient to completely orient the superparamagnetic nanoparticles and that the magnetic tip-sample interaction is describable through simple models once the electrostatic artifacts are removed.

  5. Linear stability of a circular Couette flow under a radial thermoelectric body force.

    PubMed

    Yoshikawa, H N; Meyer, A; Crumeyrolle, O; Mutabazi, I

    2015-03-01

    The stability of the circular Couette flow of a dielectric fluid is analyzed by a linear perturbation theory. The fluid is confined between two concentric cylindrical electrodes of infinite length with only the inner one rotating. A temperature difference and an alternating electric tension are applied to the electrodes to produce a radial dielectrophoretic body force that can induce convection in the fluid. We examine the effects of superposition of this thermoelectric force with the centrifugal force including its thermal variation. The Earth's gravity is neglected to focus on the situations of a vanishing Grashof number such as microgravity conditions. Depending on the electric field strength and of the temperature difference, critical modes are either axisymmetric or nonaxisymmetric, occurring in either stationary or oscillatory states. An energetic analysis is performed to determine the dominant destabilizing mechanism. When the inner cylinder is hotter than the outer one, the circular Couette flow is destabilized by the centrifugal force for weak and moderate electric fields. The critical mode is steady axisymmetric, except for weak fields within a certain range of the Prandtl number and of the radius ratio of the cylinders, where the mode is oscillatory and axisymmetric. The frequency of this oscillatory mode is correlated with a Brunt-Väisälä frequency due to the stratification of both the density and the electric permittivity of the fluid. Under strong electric fields, the destabilization by the dielectrophoretic force is dominant, leading to oscillatory nonaxisymmetric critical modes with a frequency scaled by the frequency of the inner-cylinder rotation. When the outer cylinder is hotter than the inner one, the instability is again driven by the centrifugal force. The critical mode is axisymmetric and either steady under weak electric fields or oscillatory under strong electric fields. The frequency of the oscillatory mode is also correlated with the

  6. Thin-foil magnetic force system for high-numerical-aperture microscopy

    PubMed Central

    Fisher, J. K.; Cribb, J.; Desai, K. V.; Vicci, L.; Wilde, B.; Keller, K.; Taylor, R. M.; Haase, J.; Bloom, K.; O'Brien, E. Timothy; Superfine, R.

    2006-01-01

    Forces play a key role in a wide range of biological phenomena from single-protein conformational dynamics to transcription and cell division, to name a few. The majority of existing microbiological force application methods can be divided into two categories: those that can apply relatively high forces through the use of a physical connection to a probe and those that apply smaller forces with a detached probe. Existing magnetic manipulators utilizing high fields and high field gradients have been able to reduce this gap in maximum applicable force, but the size of such devices has limited their use in applications where high force and high-numerical-aperture (NA) microscopy must be combined. We have developed a magnetic manipulation system that is capable of applying forces in excess of 700 pN on a 1 μm paramagnetic particle and 13 nN on a 4.5 μm paramagnetic particle, forces over the full 4π sr, and a bandwidth in excess of 3 kHz while remaining compatible with a commercially available high-NA microscope objective. Our system design separates the pole tips from the flux coils so that the magnetic-field geometry at the sample is determined by removable thin-foil pole plates, allowing easy change from experiment to experiment. In addition, we have combined the magnetic manipulator with a feedback-enhanced, high-resolution (2.4 nm), high-bandwidth (10 kHz), long-range (100 μm xyz range) laser tracking system. We demonstrate the usefulness of this system in a study of the role of forces in higher-order chromosome structure and function. PMID:16858495

  7. Experimental signature of the attractive Coulomb force between positive and negative magnetic monopoles in spin ice

    NASA Astrophysics Data System (ADS)

    Paulsen, C.; Giblin, S. R.; Lhotel, E.; Prabhakaran, D.; Balakrishnan, G.; Matsuhira, K.; Bramwell, S. T.

    2016-07-01

    A non-Ohmic current that grows exponentially with the square root of applied electric field is well known from thermionic field emission (the Schottky effect), electrolytes (the second Wien effect) and semiconductors (the Poole-Frenkel effect). It is a universal signature of the attractive Coulomb force between positive and negative electrical charges, which is revealed as the charges are driven in opposite directions by the force of an applied electric field. Here we apply thermal quenches to spin ice to prepare metastable populations of bound pairs of positive and negative emergent magnetic monopoles at millikelvin temperatures. We find that the application of a magnetic field results in a universal exponential-root field growth of magnetic current, thus confirming the microscopic Coulomb force between the magnetic monopole quasiparticles and establishing a magnetic analogue of the Poole-Frenkel effect. At temperatures above 300 mK, gradual restoration of kinetic monopole equilibria causes the non-Ohmic current to smoothly evolve into the high-field Wien effect for magnetic monopoles, as confirmed by comparison to a recent and rigorous theory of the Wien effect in spin ice. Our results extend the universality of the exponential-root field form into magnetism and illustrate the power of emergent particle kinetics to describe far-from-equilibrium response in complex systems.

  8. The Role of Three-Nucleon Forces and Many-Body Processes in Nuclear Pairing

    SciTech Connect

    Holt, Jason D.

    2013-01-01

    We present microscopic valence-shell calculations of pairing gaps in the calcium isotopes, focusing on the role of three-nucleon (3N) forces and manybody processes. In most cases, we find a reduction in pairing strength when the leading chiral 3N forces are included, compared to results with lowmomentum two-nucleon (NN) interactions only. This is in agreement with a recent energy density functional study. At the NN level, calculations that include particle particle and hole hole ladder contributions lead to smaller pairing gaps compared with experiment. When particle hole contributions as well as the normal-ordered one- and two-body parts of 3N forces are consistently included to third order, we find reasonable agreement with experimental three-point mass differences. This highlights the important role of 3N forces and manybody processes for pairing in nuclei. Finally, we relate pairing gaps to the evolution of nuclear structure in neutron-rich calcium isotopes and study the predictions for the 2+ excitation energies, in particular for 54Ca.

  9. Fine-tuning of magnetic and microfluidic viscous forces for specific magnetic bead-based immunocomplex formation

    NASA Astrophysics Data System (ADS)

    Cornaglia, M.; Tekin, H. C.; Lehnert, T.; Gijs, M. A. M.

    2013-08-01

    We investigate the working principle of a novel type of microfluidic sandwich immunoassay, as used for the detection of biomarkers. The heterogeneous assay is based on the specific interactions between an array of functionalized superparamagnetic beads and a flow of secondary superparamagnetic beads that carry the antigens and are simultaneously used as detection labels. We identify the main forces governing the immunoassay performance and develop a combined finite element method/analytical model to predict and control these forces. The clue for the improved assay specificity is in the fine-tuning of inter-bead magnetic dipolar and microfluidic viscous forces, which allows strongly reducing non-specific interactions, while enhancing the specific formation of immunocomplexes. We exploit our theoretical model to explain the enhanced sensitivity of magnetic bead-based immunoassay experiments performed in microfluidic chips.

  10. Forced Magnetic Reconnection and Field Penetration of an Externally Applied Rotating Helical Magnetic Field in the TEXTOR Tokamak

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; de Bock, M. F. M.; Finken, K. H.; Jakubowski, M.; Jaspers, R.; Koslowski, H. R.; Kraemer-Flecken, A.; Lehnen, M.; Liang, Y.; Matsunaga, G.; Reiser, D.; Wolf, R. C.; Zimmermann, O.

    2006-08-01

    The magnetic field penetration process into a magnetized plasma is of basic interest both for plasma physics and astrophysics. In this context special measurements on the field penetration and field amplification are performed by a Hall probe on the dynamic ergodic divertor (DED) on the TEXTOR tokamak and the data are interpreted by a two-fluid plasma model. It is observed that the growth of the forced magnetic reconnection by the rotating DED field is accompanied by a change of the plasma fluid rotation. The differential rotation frequency between the DED field and the plasma plays an important role in the process of the excitation of tearing modes. The momentum input from the rotating DED field to the plasma is interpreted by both a ponderomotive force at the rational surface and a radial electric field modified by an edge ergodization.

  11. Constraint Force Equation Methodology for Modeling Multi-Body Stage Separation Dynamics

    NASA Technical Reports Server (NTRS)

    Toniolo, Matthew D.; Tartabini, Paul V.; Pamadi, Bandu N.; Hotchko, Nathaniel

    2008-01-01

    This paper discusses a generalized approach to the multi-body separation problems in a launch vehicle staging environment based on constraint force methodology and its implementation into the Program to Optimize Simulated Trajectories II (POST2), a widely used trajectory design and optimization tool. This development facilitates the inclusion of stage separation analysis into POST2 for seamless end-to-end simulations of launch vehicle trajectories, thus simplifying the overall implementation and providing a range of modeling and optimization capabilities that are standard features in POST2. Analysis and results are presented for two test cases that validate the constraint force equation methodology in a stand-alone mode and its implementation in POST2.

  12. On some approximations of the resultant contact forces and their applications in rigid body dynamics

    NASA Astrophysics Data System (ADS)

    Kudra, Grzegorz; Szewc, Michał; Wojtunik, Igor; Awrejcewicz, Jan

    2016-10-01

    The work presents the possible applications and effectiveness of certain class of models of the resultant friction force and rolling resistance. The friction models are based on the integral model constructed under assumption of fully developed sliding on the plane contact area of general shape and any pressure distribution. Then the integral model of friction force and moment are approximated based on Padé approximants and their generalizations. These models are expected to be computationally effective in numerical simulations of rigid bodies with frictional contacts, such like billiard balls, Thompson top, the wobble stone and many others. In the present work two different examples of application of the developed contact models are presented and tested: a) a billiard ball rolling and sliding on the plane horizontal table; b) a full ellipsoid of revolution in contact with plane and horizontal base.

  13. Role of inertial forces on the chaotic dynamics of flexible rotating bodies

    NASA Astrophysics Data System (ADS)

    Calvo, F.

    2013-02-01

    The nonlinear dynamics of isolated flexible but rotating many-body atomic systems is theoretically investigated, following the dependence on initial conditions through Lyapunov exponents. The tangent-space equations of motion that rule the time evolution of such small perturbations are rewritten in the rotating reference frame, and the various contributions of the centrifugal, Coriolis, and Euler forces are determined. Evaluating the largest Lyapunov in the rotating frame under various approximations, we show on the example of Lennard-Jones clusters that the dynamics in phase space is qualitatively at variance with the effective dynamics on the centrifugal energy surface. Coupling terms between positions and momenta in phase space, especially arising from the Coriolis force, are essential to recover the measure of chaos in the fixed reference frame.

  14. Measured force on elongated bodies in a simulated low-Earth orbit environment

    SciTech Connect

    Maldonado, C. A.; Ketsdever, A. D.; Gimelshein, S. F.

    2014-12-09

    An overview of the development of a magnetically filtered atomic oxygen plasma source and the application of the source to study low-Earth orbit drag on elongated bodies is presented. Plasma diagnostics show that the magnetic filter plasma source produces atomic oxygen ions (O{sup +}) with streaming energies equivalent to the relative orbital environment of approximately 5eV and can supply the appropriate density for LEO simulation. Previous research has demonstrated that momentum transfer between ions and metal surfaces is equivalent to the momentum transfer expected for neutral molecules with similar energy, due to charge exchange occurring prior to momentum transfer. Total drag measurements of aluminum cuboid geometries of varying length to diameter ratios immersed in the extracted plasma plume are presented as a function of streaming ion energy.

  15. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    SciTech Connect

    Ramírez-Salgado, J.; Domínguez-Aguilar, M.A.; Castro-Domínguez, B.; Hernández-Hernández, P.; Newman, R.C.

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  16. Fluidic assisted thin-film device heterogeneous integration: Surface tension as driving force and magnetic as guiding force

    NASA Astrophysics Data System (ADS)

    Xiao, Jing; Ray Chaudhuri, Ritesh; Seo, Sang-Woo

    2015-10-01

    This paper demonstrates a fluidic assisted heterogeneous integration of optical thin-film device using surface tension as driving force and magnetic field as guiding force. Thin-film devices can be auto-aligned and integrated using surface tension onto their predesigned locations on a host substrate due to minimization of interfacial energy. By inserting a layer of nickel (Ni) into device metallization step, magnetic force was employed to increase mobility and contact probability of thin-film devices to their binding sites on the host substrate. A thin-film gallium arsenide (GaAs) inverted Metal-Semiconductor-Metal (MSM) photodetector (PD) has been successfully integrated onto a silicon host substrate with the proposed integration approach. The influence of the nickel layer to the PD performance was also investigated. Due to the self-assembly capability and thin-film format of the device, the proposed method has potential for wafer-scale implementation and is compatible with the matured silicon-based CMOS technology. This is a critical step towards a scalable manufacturing process to create advanced photonic/optoelectronic systems that are low-cost, compact, high performance, and complex in multi-material functionality.

  17. Suspension force control of bearingless permanent magnet slice motor based on flux linkage identification.

    PubMed

    Zhu, Suming; Zhu, Huangqiu

    2015-07-01

    The control accuracy and dynamic performance of suspension force are confined in the traditional bearingless permanent magnet slice motor (BPMSM) control strategies because the suspension force control is indirectly achieved by adopting a closed loop of displacement only. Besides, the phase information in suspension force control relies on accurate measurement of rotor position, making the control system more complex. In this paper, a new suspension force control strategy with displacement and radial suspension force double closed loops is proposed, the flux linkage of motor windings is identified based on voltage-current model and the flexibility of motor control can be improved greatly. Simulation and experimental results show that the proposed suspension force control strategy is effective to realize the stable operation of the BPMSM.

  18. Cluster variational method for nuclear matter with the three-body force

    SciTech Connect

    Takano, M.; Togashi, H.; Yamamuro, S.; Nakazato, K.; Suzuki, H.

    2012-11-12

    We report the current status of our project to construct a new nuclear equation of state (EOS), which may be used for supernova numerical simulations, based on the cluster variational method starting from the realistic nuclear Hamiltonian. We also take into account a higher-order correction to the energy of the nuclear three-body force (TBF). The nuclear EOSs with and without the higher-order TBF correction at zero temperature are very close to each other, when parameters are readjusted so as to reproduce the empirical saturation data.

  19. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  20. Verification of a Constraint Force Equation Methodology for Modeling Multi-Body Stage Separation

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Roithmayr, Carlos; Toniolo, Matthew D.; Karlgaard, Christopher; Pamadi, Bandu N.

    2008-01-01

    This paper discusses the verification of the Constraint Force Equation (CFE) methodology and its implementation in the Program to Optimize Simulated Trajectories II (POST2) for multibody separation problems using three specially designed test cases. The first test case involves two rigid bodies connected by a fixed joint; the second case involves two rigid bodies connected with a universal joint; and the third test case is that of Mach 7 separation of the Hyper-X vehicle. For the first two cases, the POST2/CFE solutions compared well with those obtained using industry standard benchmark codes, namely AUTOLEV and ADAMS. For the Hyper-X case, the POST2/CFE solutions were in reasonable agreement with the flight test data. The CFE implementation in POST2 facilitates the analysis and simulation of stage separation as an integral part of POST2 for seamless end-to-end simulations of launch vehicle trajectories.

  1. Sting-free Unsteady Flowfield, Base Pressure and Force Measurements on Axisymmetric Bluff-Body

    NASA Astrophysics Data System (ADS)

    Higuchi, Hiroshi; Sawada, Hideo; Kato, Hiroyuki; Kunimasu, Tetsuya

    2006-11-01

    To avoid interference of model support, flowfields as well as aerodynamic force and base pressure on blunt short cylinders in axial flow were measured at Re=100,000 with the JAXA 60cm magnetic suspension and balance system. The fineness ratio ranged from 1.27 to 1.79. A digital telemeter system was developed for the base pressure measurement, and the velocity field was obtained using a PIV system. Vortices along separating shear layer and shear layer flappings with or without reattachment on the wall were observed. Downstream the cylinder in the azimuthal plane, PIV snapshots showed large-scale motion of longitudinal vortices. These instantaneous flowfields presented excellent axisymmetry when they were ensemble-averaged. Mean base pressure agreed with the drag variation at different fineness ratios. The present magnetic suspension and balance system allowed evaluation of low frequency unsteady aerodynamic force vector from feedback current to the coils and the detected small model movement. Base pressure fluctuations were compared with the drag fluctuations and discussed in light of overall flowfield phenomena.

  2. Magnetic buoyancy force acting on bubbles in nonconducting and diamagnetic fluids under microgravity

    SciTech Connect

    Wakayama, N.I.

    1997-04-01

    The magnetic buoyancy force acting on a bubble in a one-dimensional magnetic field can be represented as F=({chi}{sub G}{minus}{chi}{sub L}){integral}H(dH/dx)dVol{sub B}, where {chi}{sub G} and {chi}{sub L} are the volume magnetic susceptibilities of the gas and liquid, respectively, and {ital H} is the magnetic field strength. Since {vert_bar}{chi}{sub L}{vert_bar}{gt}{vert_bar}{chi}{sub G}{vert_bar} and most liquids are diamagnetic, this expression indicates that the magnetic buoyancy forces act in the direction of increasing magnetic field strength. Because the magnetic buoyancy force in a diamagnetic fluid is small, the motion of bubbles under normal gravity is difficult to study, but microgravity offers the possibility of detailed observations. Using a compact permanent magnet under microgravity conditions, N{sub 2} bubbles in pure water (0.01 dyne s/cm{sup 2}) and in a 69:31 glycerol/water mixture (0.21 dyne s/cm{sup 2}) were found to move in the direction of increasing {ital H}, and to be held stationary at the point of maximum {ital H}. The motion of the bubbles was also simulated with a theoretical model and was found to agree with measurements made under microgravity conditions. These results indicate that magnetic buoyancy can be used to control bubble motion. Since most fluids are diamagnetic, magnetic buoyancy can be used to control bubbles in many fluidic devices used in space applications.{copyright} {ital 1997 American Institute of Physics.}

  3. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.

    PubMed

    Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H

    2011-12-06

    Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.

  4. Misorientations in [001] magnetite thin films studied by electron backscatter diffraction and magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Koblischka-Veneva, A.; Koblischka, M. R.; Wei, J. D.; Zhou, Y.; Murphy, S.; Mücklich, F.; Hartmann, U.; Shvets, I. V.

    2007-05-01

    Magnetite thin films grown on [001] oriented MgO substrates are analyzed by means of electron backscatter diffraction (EBSD) analysis and magnetic force microscopy in applied fields. The EBSD technique enables the crystallographic orientation of individual grains to be determined with a high spatial resolution up to 20nm on such ceramic samples. A high image quality of the recorded Kikuchi patterns was achieved enabling multiphase scans and high spatial resolution measurements. Upon annealing in air, the magnetic properties of the magnetite thin films were found to change considerably. Using the EBSD analysis, we find that misoriented grains remaining after the annealing step form small islands with a size of about 100nm. The size and distribution of these islands correspond well to the observations of antiferromagnetic pinning centers within the magnetic domain structures carried out by magnetic force microscopy on the same samples.

  5. Approximating edges of source bodies from magnetic or gravity anomalies.

    USGS Publications Warehouse

    Blakely, R.J.; Simpson, R.W.

    1986-01-01

    Cordell and Grauch (1982, 1985) discussed a technique to estimate the location of abrupt lateral changes in magnetization or mass density of upper crustal rocks. The final step of their procedure is to identify maxima on a contoured map of horizontal gradient magnitudes. Attempts to automate their final step. The method begins with gridded magnetic or gravity anomaly data and produces a plan view of inferred boundaries of magnetic or gravity sources. The method applies to both local surveys and to continent-wide compilations of magnetic and gravity data.-from Authors

  6. High sensitivity electron spin magnetic resonance force microscopy for labeled biological samples

    NASA Astrophysics Data System (ADS)

    Moore, Eric W.; Lee, Sanggap; Hickman, Steven A.; Wright, Sarah J.; Harrell, Lee E.; Longenecker, Jonilyn G.; Borbat, Peter P.; Freed, Jack H.; Marohn, John A.

    2010-03-01

    Magnetic resonance force microscopy is a promising route to 3-dimensional nanoscale imaging of organic materials due to its high sensitivity and isotopic specificity. Labeling of proteins, DNA and biomolecular assemblies with free radical labels for inductive detection are well established techniques, although many of these radical's relaxation times are too short to support previously demonstrated techniques for single electron detection by magnetic resonance force microscopy. We report on our efforts toward sub-single electron sensitivity on organic radicals using batch fabricated 100 nm nickel nanorod tipped ultrasensitive cantilevers.

  7. Global constant-alpha force-free magnetic fields and coronal structures

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.; Wu, S. T.; Tandberg-Hanssen, E.

    1978-01-01

    Nakagawa's (1973) general formulation of constant-alpha global force-free magnetic fields is used to examine the topological characteristics of axisymmetric constant-alpha fields with specific reference to solar EUV, XUV, and X-ray structures observed from Skylab. The theoretical formulation is briefly summarized, and topological characteristics of the field lines are analyzed. The results are compared with X-ray observations of a large coronal arch and white-light observations of a coronal transient. It is concluded that global-scale force-free magnetic fields are present in the solar atmosphere and that their topological characteristics differ significantly from those of potential fields.

  8. On the numerical computation of nonlinear force-free magnetic fields

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Chang, H. M.; Hagyard, M. J.

    1985-01-01

    An algorithm has been developed to extrapolate nonlinear force-free magnetic fields from a source surface, given the proper boundary conditions. The results of this work; describing the mathematical formalism that was developed, the numerical techniques employed, and the stability criteria developed for these numerical schemes are presented. An analytical solution is used for a test case; the results show that the computational accuracy for the case of a nonlinear force-free magnetic field was on the order of a few percent ( 5%).

  9. Magnetic tail and electrodynamic forces of comet Halley /Analysis of laboratory and observational data/

    NASA Astrophysics Data System (ADS)

    Dubinin, E. M.; Izrailevich, P. L.; Podgornyi, I. M.; Shkolnikova, S. I.

    1980-11-01

    Laboratory data on the interaction of an artificial solar wind with the plasma shell of a wax sphere are compared with observational data on mass transfer in the tail of comet Halley. Electrodynamic forces, calculated from magnetic field configurations obtained in the model experiment, make it possible to explain mass acceleration in the tail to velocities of the order of the solar wind as well as the dynamics of the ray structure. Magnetic field strength in the tail of the comet is calculated under the assumption of the dominant role of electrodynamic forces in the tail; a value of 30-50 gamma is obtained.

  10. Practical limits to the performance of magnetic bearings: Peak force, slew rate, and displacement sensitivity

    NASA Astrophysics Data System (ADS)

    Maslen, E.; Hermann, P.; Scott, M.; Humphris, R. R.

    Magnetic bearings are subject to performance limits which are quite different from those of conventional bearings. These are due in part to the inherent nonlinearity of the device and in part to its electrical nature. Three important nonideal behaviors are presented: peak force capacity, force slew rate limitation, and sensitivity to rotor motion at large displacements. The problem of identifying the dynamic requirements of a magnetic bearing when used to support a known structure subject to known loads is discussed in the context of these limitations. Several simple design tools result from this investigation.

  11. Electric contributions to magnetic force microscopy response from graphene and MoS{sub 2} nanosheets

    SciTech Connect

    Li, Lu Hua Chen, Ying

    2014-12-07

    Magnetic force microscopy (MFM) signals have recently been detected from whole pieces of mechanically exfoliated graphene and molybdenum disulfide (MoS{sub 2}) nanosheets, and magnetism of the two nanomaterials was claimed based on these observations. However, non-magnetic interactions or artefacts are commonly associated with MFM signals, which make the interpretation of MFM signals not straightforward. A systematic investigation has been done to examine possible sources of the MFM signals from graphene and MoS{sub 2} nanosheets and whether the MFM signals can be correlated with magnetism. It is found that the MFM signals have significant non-magnetic contributions due to capacitive and electrostatic interactions between the nanosheets and conductive cantilever tip, as demonstrated by electric force microscopy and scanning Kevin probe microscopy analyses. In addition, the MFM signals of graphene and MoS{sub 2} nanosheets are not responsive to reversed magnetic field of the magnetic cantilever tip. Therefore, the observed MFM response is mainly from electric artefacts and not compelling enough to correlate with magnetism of graphene and MoS{sub 2} nanosheets.

  12. Effect of reciprocating motions around working points on levitation force of superconductor-magnet system

    NASA Astrophysics Data System (ADS)

    Xu, Jimin; Zhang, Fei; Sun, Tao; Yuan, Xiaoyang; Zhang, Cuiping

    2016-09-01

    In order to simulate vibration around working points in practical operation of superconducting levitation system, magnet in a simple superconductor-magnet system are conducted reciprocating motions around static height in this study. Two YBCO cylindrical samples with different grain orientations are used to investigate the effect of reciprocating motions of magnet on superconducting magnetic force. The c-axis of sample S1 is perpendicular to the top surface while sample S2 is parallel to the top surface. The initial cooling processes for the superconductors include zero-field-cooled (ZFC) and filed-cooled (FC). Compared to the levitation force before reciprocating motions, the ZFC levitation force at static height becomes smaller after reciprocating while the FC force presents opposite phenomenon. It is found that levitation force at static height tends to be stable after several times of reciprocating under ZFC and FC conditions and its time-decay phenomenon is suppressed in some extent, which is meaningful for the practical application of superconducting levitation system. Based on vortex dynamic, some physical discussions are presented to the experimental results.

  13. An unusual sharp magnetic foreign body in the oesophagus and its removal: A case report.

    PubMed

    Agrawal, Swati; Arora, Sandeep; Sharma, Nishi

    2016-08-01

    Ingestion of foreign bodies is a common pediatric problem. The majority of ingested foreign bodies pass spontaneously. Oesophageal foreign bodies should be urgently removed because of their potential to cause complications. Ingested batteries that lodge in the oesophagus, sharp or pointed foreign bodies in the oesophageal or gastric tract, and ingestion of multiple magnets all require urgent endoscopic removal. A 4-year-old boy ingested a sharp magnetic foreign body, which was removed via rigid oesophagoscopy without complication. To the best of our knowledge, this is the only sharp magnetic foreign body ingested by a young child ever reported in the English-language literature. We describe the presentation and therapeutic procedure adopted in this case.

  14. An unusual sharp magnetic foreign body in the oesophagus and its removal: A case report.

    PubMed

    Agrawal, Swati; Arora, Sandeep; Sharma, Nishi

    2016-08-01

    Ingestion of foreign bodies is a common pediatric problem. The majority of ingested foreign bodies pass spontaneously. Oesophageal foreign bodies should be urgently removed because of their potential to cause complications. Ingested batteries that lodge in the oesophagus, sharp or pointed foreign bodies in the oesophageal or gastric tract, and ingestion of multiple magnets all require urgent endoscopic removal. A 4-year-old boy ingested a sharp magnetic foreign body, which was removed via rigid oesophagoscopy without complication. To the best of our knowledge, this is the only sharp magnetic foreign body ingested by a young child ever reported in the English-language literature. We describe the presentation and therapeutic procedure adopted in this case. PMID:27368455

  15. Magnified Spin-Motive Forces in MRAM Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Barnes, Stewart

    2014-03-01

    In the Slonczewski 2005 theory for spin-torque-transfer (STT) of a magnetic tunnel junction (MTJ) the tunnelling magneto resistance (TMR) and Gilbert damping parameter α are of key importance. However the observed critical voltage from the switching of STT-MRAM implies a α ten times that measured by ferromagnetic resonance (FMR). In addition the TMR is strongly voltage dependent while the STT effect is not. This along with the weak dependence of the critical current on switching direction are inconsistent with the tunnelling model and have never been properly explained. Here will be described a circuit model based upon SU(2) theory for a MTJ for which the basic SMF of about 10 μV is magnified to a 200mV shift between the parallel P and anti-parallel AP branches of the IV characteristic. It is implied that the TMR has for origin an SMF.

  16. Characteristics and computer model simulation of magnetic damping forces in maglev systems

    SciTech Connect

    He, J.L.; Rote, D.M.; Chen, S.S.

    1994-05-01

    This report discusses the magnetic damping force in electrodynamic suspension (EDS) maglev systems. The computer model simulations, which combine electrical system equations with mechanical motion equations on the basis of dynamic circuit theory, were conducted for a loop-shaped coil guideway. The intrinsic damping characteristics of the EDS-type guideway are investigated, and the negative damping phenomenon is confirmed by the computer simulations. The report also presents a simple circuit model to aid in understanding damping-force characteristics.

  17. Confinement of Plasma along Shaped Open Magnetic Fields from the Centrifugal Force of Supersonic Plasma Rotation

    SciTech Connect

    Teodorescu, C.; Young, W. C.; Swan, G. W. S.; Ellis, R. F.; Hassam, A. B.; Romero-Talamas, C. A.

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic ExB rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  18. A study on the inclusion of body forces in the lattice Boltzmann BGK equation to recover steady-state hydrodynamics

    NASA Astrophysics Data System (ADS)

    Silva, Goncalo; Semiao, Viriato

    2011-03-01

    When the lattice Boltzmann (LB) method is used to solve hydrodynamic problems containing a body force term varying in space and/or time, its modelling at the mesoscopic scale must be verified in terms of consistency in order to avoid the appearance of non-hydrodynamic error terms at the macroscopic scale. In the present work it is shown that the modelling of spatially varying steady body force terms in the LB equation must be different from the time-dependent case, when a steady-state flow solution is sought. For that, the Chapman-Enskog analysis is used to derive the LB body force model for the LB BGK equations in a steady-state flow problem. The theoretical findings are supported by numerical tests performed on two different 2D steady-state laminar flows driven by spatially varying body forces with known analytical solutions.

  19. Lower extremity peak force and gait kinematics in individuals with inclusion body myositis

    PubMed Central

    Davenport, Todd E.; Benson, Kimberly; Baker, Stephanie; Gracey, Christopher; Rakocevic, Goran; McElroy, Beverly; Dalakas, Marinos; Shrader, Joseph A.; Harris-Love, Michael O.

    2015-01-01

    Objective To determine the relationship between peak isometric muscle force and temporal characteristics of gait in individuals with sporadic inclusion body myositis (s-IBM). Patients and Methods An observational study of 42 individuals with s-IBM (12 female; age: 61.6 ±7.3 years [mean ±standard deviation]; disease duration 8.9 ±4.3 years) was conducted at a Federal hospital. Peak isometric force measurements for lower extremity (LE) muscle groups were obtained using quantitative muscle testing. Temporal characteristics of gait during habitual and fast walking conditions were measured using a portable gait analysis system. Results All observed muscle force values were significantly lower than predicted values (p <.001). During habitual walking, subjects’ gait speed and cadence were < 83% of normative literature values. During the fast walking, total gait cycle time was 133% of normal, while gait speed and cadence were 58% and 78%, respectively, of normative literature values. Scaled LE peak muscle forces showed significant moderate correlations with the temporal gait variables. Weaker subjects demonstrated greater limitations in gait speed and cadence compared to stronger subjects (p <.05). Peak isometric force of the knee flexors and ankle plantar flexors, but not knee extensors, were significantly correlated with most temporal features of habitual gait. Conclusions Muscle weakness associated with s-IBM disease activity may contribute to diminished gait kinematics. Temporal features of gait are not substantially influenced by knee extensor weakness alone, as the knee flexors and ankle plantar flexors play a compensatory role in maintaining the walking ability of individuals with s-IBM. PMID:25201017

  20. A dynamic magnetic tension force as the cause of failed solar eruptions

    NASA Astrophysics Data System (ADS)

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; Yoo, Jongsoo; Fox, William; Jara-Almonte, Jonathan; Savcheva, Antonia; Deluca, Edward E.

    2015-12-01

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun’s corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such ‘failed torus’ events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.

  1. Magnetic forces and stationary electron flow in a three-terminal semiconductor quantum ring.

    PubMed

    Poniedziałek, M R; Szafran, B

    2010-06-01

    We study stationary electron flow through a three-terminal quantum ring and describe effects due to deflection of electron trajectories by classical magnetic forces. We demonstrate that generally at high magnetic field (B) the current is guided by magnetic forces to follow a classical path, which for B > 0 leads via the left arm of the ring to the left output terminal. The transport to the left output terminal is blocked for narrow windows of magnetic field for which the interference within the ring leads to formation of wavefunctions that are only weakly coupled to the output channel wavefunctions. These interference conditions are accompanied by injection of the current to the right arm of the ring and by appearance of sharp peaks of the transfer probability to the right output terminal. We find that these peaks at high magnetic field are attenuated by thermal widening of the transport window. We also demonstrate that the interference conditions that lead to their appearance vanish when elastic scattering within the ring is present. The clear effect of magnetic forces on the transfer probabilities disappears along with Aharonov-Bohm oscillations in a chaotic transport regime that is found for rings whose width is larger than the width of the channels.

  2. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE PAGES

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; Yoo, Jongsoo; Fox, William; Jara-Almonte, Jonathan; Savcheva, Antonia; DeLuca, Edward E.

    2015-12-23

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has notmore » yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.« less

  3. A dynamic magnetic tension force as the cause of failed solar eruptions

    SciTech Connect

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; Yoo, Jongsoo; Fox, William; Jara-Almonte, Jonathan; Savcheva, Antonia; DeLuca, Edward E.

    2015-12-23

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.

  4. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  5. Constraints on magnetic energy and mantle conductivity from the forced nutations of the earth

    NASA Technical Reports Server (NTRS)

    Buffett, Bruce A.

    1992-01-01

    The possibility of a presence of a conducting layer at the base of the mantle, as suggested by Knittle and Jeanloz (1986, 1989), was examined using observations of the earth's nutations. Evidence favoring the presence of a conducting layer is found in the effect of ohmic dissipation, which can cause the amplitude of the earth's nutation to be out-of-phase with tidal forcings. It is shown that the earth's magnetic field can produce observable signatures in the forced nutations of the earth when a thin conducting layer is located at the base of the mantle. The present theoretical calculations are compared with VLBI determinations of forced nutations.

  6. Effects of gradient magnetic force and diamagnetic torque on formation of osteoclast-like giant cell

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Ikehata, M.; Hirota, N.

    2009-03-01

    In bone tissue, two kinds of cells, osteoblast (OB) and osteoclast (OC), contribute to remodeling of bone. In the present study, a co-culture system of bone-forming cell (OB) and -dissolving cell (OC) was incubated in static magnetic fields of horizontal 14 T and vertical gradient 10 T. Effect of two kinds of magnetic fields was an inhibition of OC formation. Three kinds of mechanisms, magnetic orientation of OB, diamagnetic torque force acting on OC, and possible reduction of earth's gravity were discussed.

  7. A microfabricated magnetic force transducer-microaspiration system for studying membrane mechanics.

    PubMed

    Stark, D J; Killian, T C; Raphael, R M

    2011-10-01

    The application of forces to cell membranes is a powerful method for studying membrane mechanics. To apply controlled dynamic forces on the piconewton scale, we designed and characterized a microfabricated magnetic force transducer (MMFT) consisting of current-carrying gold wires patterned on a sapphire substrate. The experimentally measured forces applied to paramagnetic and ferromagnetic beads as a function of applied current agree well with theoretical models. We used this device to pull tethers from microaspirated giant unilamellar vesicles and measure the threshold force for tether formation. In addition, the interlayer drag coefficient of the membrane was determined from the tether-return velocity under magnetic force-free conditions. At high levels of current, vesicles expanded as a result of local temperature changes. A finite element thermal model of the MMFT provided absolute temperature calibration, allowing determination of the thermal expansivity coefficient of stearoyl-oleoyl-phosphatidycholine vesicles (1.7 ± 0.4 × 10(-3) K(-1)) and characterization of the Joule heating associated with current passing through the device. This effect can be used as a sensitive probe of temperature changes on the microscale. These studies establish the MMFT as an effective tool for applying precise forces to membranes at controlled rates and quantitatively studying membrane mechanical and thermo-mechanical properties. PMID:21896973

  8. Meta-Stable Magnetic Domain States That Prevent Reliable Absolute Palaeointensity Experiments Revealed By Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    de Groot, L. V.; Fabian, K.; Bakelaar, I. A.; Dekkers, M. J.

    2014-12-01

    Obtaining reliable estimates of the absolute palaeointensity of the Earth's magnetic field is notoriously difficult. Many methods to obtain paleointensities from suitable records such as lavas and archeological artifacts involve heating the samples. These heating steps are believed to induce 'magnetic alteration' - a process that is still poorly understood but prevents obtaining correct paleointensity estimates. To observe this magnetic alteration directly we imaged the magnetic domain state of titanomagnetite particles - a common carrier of the magnetic remanence in samples used for paleointensity studies. We selected samples from the 1971-flow of Mt. Etna from a site that systematically yields underestimates of the known intensity of the paleofield - in spite of rigorous testing by various groups. Magnetic Force Microscope images were taken before and after a heating step typically used in absolute palaeointensity experiments. Before heating, the samples feature distinct, blocky domains that sometimes seem to resemble a classical magnetite domain structure. After imparting a partial thermo-remanent magnetization at a temperature often critical to paleointensity experiments (250 °C) the domain state of the same titanomagnetite grains changes into curvier, wavy domains. Furthermore, these structures appeared to be unstable over time: after one-year storage in a magnetic field-free environment the domain states evolved into a viscous remanent magnetization state. Our observations may qualitatively explain reported underestimates from technically successful paleointensity experiments for this site and other sites reported previously. Furthermore the occurrence of intriguing observations such as 'the drawer storage effect' by Shaar et al (EPSL, 2011), and viscous magnetizations observed by Muxworthy and Williams (JGR, 2006) may be (partially) explained by our observations. The major implications of our study for all palaeointensity methods involving heating may be

  9. Body mass penalties in the physical fitness tests of the Army, Air Force, and Navy.

    PubMed

    Vanderburgh, Paul M; Crowder, Todd A

    2006-08-01

    Recent research has empirically documented a consistent penalty against heavier service members for events identical or similar to those in the physical fitness tests of the Army, Air Force, and Navy. These penalties, which are not related to body fatness, are based on biological scaling models and have a physiological basis. Using hypothetical cases, we quantified the penalties for men, with body mass of 60 vs. 90 kg, and women, 45 vs. 75 kg, to be 15% to 20% for the fitness tests of these three services. Such penalties alone can adversely affect awards and promotions for heavier service members. To deal equitably with these penalties in a practical manner, we offer two recommendations, i.e., (1) implementation of revised fitness tests with balanced events, in which the penalties of one event for heavier service members are balanced by an equal and opposite bias against lighter service members, or (2) development of correction factors that can be multiplied by raw scores to yield adjusted scores free of body mass bias.

  10. Fluid force and static symmetry breaking modes of 3D bluff bodies.

    NASA Astrophysics Data System (ADS)

    Cadot, Olivier; Evrard, Antoine; DFA Team

    2015-11-01

    A cavity at the base of the squareback Ahmed model at Re =6.106 is able to reduce the base suction by 18% and the drag coefficient by 9%, while the flow at the separation remains unaffected. Instantaneous pressure measurements at the body base, fluid force measurements and wake velocity measurements are investigated varying the cavity depth from 0 to 35% of the base height. Due to the reflectional symmetry of the rectangular base, there are two Reflectional Symmetry Breaking (RSB) mirror modes present in the natural wake that switch from one to the other randomly in accordance with the recent findings of Grandemange et al. (2013). It is shown that these modes exhibit an energetic 3D static vortex system close to the base of the body. A sufficiently deep cavity is able to stabilize the wake toward a symmetry preserved wake, thus suppressing the RSB modes and leading to a weaker elliptical toric recirculation. The stabilization can be modeled with a Langevin equation. The plausible mechanism for drag reduction with the base cavity is based on the interaction of the static 3D vortex system of the RSB modes with the base and their suppression by stabilization. There are some strong evidences that this mechanism may be generalized to axisymmetric bodies with base cavity.

  11. Isotropic contact forces in arbitrary representation: Heterogeneous few-body problems and low dimensions

    SciTech Connect

    Pricoupenko, Ludovic

    2011-06-15

    The Bethe-Peierls asymptotic approach which models pairwise short-range forces by contact conditions is introduced in arbitrary representation for spatial dimensions less than or equal to 3. The formalism is applied in various situations and emphasis is put on the momentum representation. In the presence of a transverse harmonic confinement, dimensional reduction toward two-dimensional (2D) or one-dimensional (1D) physics is derived within this formalism. The energy theorem relating the mean energy of an interacting system to the asymptotic behavior of the one-particle density matrix illustrates the method in its second quantized form. Integral equations that encapsulate the Bethe-Peierls contact condition for few-body systems are derived. In three dimensions, for three-body systems supporting Efimov states, a nodal condition is introduced in order to obtain universal results from the Skorniakov-Ter-Martirosian equation and the Thomas collapse is avoided. Four-body bound state eigenequations are derived and the 2D {sup '}3+1{sup '} bosonic ground state is computed as a function of the mass ratio.

  12. [Experiences with Extraction of 232 intraocular and 30 intraorbital non-magnetic foreign bodies].

    PubMed

    Bankow, P

    1982-09-01

    The characteristics, localisation and extraction of 262 non-magnetic intraocular and intraorbital foreign bodies in 148 consecutive patients are described. The postoperative visual acuity results show no change in 45%, an improvement in 35% and a worsening in 20% of the eyes. The precise dynamic localisation before and during surgery, and particularly the intraoperative visualisation of the non-magnetic foreign bodies are to be considered as the most important points in surgical treatment of these cases.

  13. Study of electric fields parallel to the magnetic lines of force using artificially injected energetic electrons

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Whalen, B. A.

    1980-01-01

    Electron beam experiments using rocket-borne instrumentation will be discussed. The observations indicate that reflections of energetic electrons may occur at possible electric field configurations parallel to the direction of the magnetic lines of force in an altitude range of several thousand kilometers above the ionosphere.

  14. Extraction of user's navigation commands from upper body force interaction in walker assisted gait

    PubMed Central

    2010-01-01

    Background The advances in technology make possible the incorporation of sensors and actuators in rollators, building safer robots and extending the use of walkers to a more diverse population. This paper presents a new method for the extraction of navigation related components from upper-body force interaction data in walker assisted gait. A filtering architecture is designed to cancel: (i) the high-frequency noise caused by vibrations on the walker's structure due to irregularities on the terrain or walker's wheels and (ii) the cadence related force components caused by user's trunk oscillations during gait. As a result, a third component related to user's navigation commands is distinguished. Results For the cancelation of high-frequency noise, a Benedict-Bordner g-h filter was designed presenting very low values for Kinematic Tracking Error ((2.035 ± 0.358)·10-2 kgf) and delay ((1.897 ± 0.3697)·101ms). A Fourier Linear Combiner filtering architecture was implemented for the adaptive attenuation of about 80% of the cadence related components' energy from force data. This was done without compromising the information contained in the frequencies close to such notch filters. Conclusions The presented methodology offers an effective cancelation of the undesired components from force data, allowing the system to extract in real-time voluntary user's navigation commands. Based on this real-time identification of voluntary user's commands, a classical approach to the control architecture of the robotic walker is being developed, in order to obtain stable and safe user assisted locomotion. PMID:20687921

  15. Long-lived magnetism from solidification-driven convection on the pallasite parent body.

    PubMed

    Bryson, James F J; Nichols, Claire I O; Herrero-Albillos, Julia; Kronast, Florian; Kasama, Takeshi; Alimadadi, Hossein; van der Laan, Gerrit; Nimmo, Francis; Harrison, Richard J

    2015-01-22

    Palaeomagnetic measurements of meteorites suggest that, shortly after the birth of the Solar System, the molten metallic cores of many small planetary bodies convected vigorously and were capable of generating magnetic fields. Convection on these bodies is currently thought to have been thermally driven, implying that magnetic activity would have been short-lived. Here we report a time-series palaeomagnetic record derived from nanomagnetic imaging of the Imilac and Esquel pallasite meteorites, a group of meteorites consisting of centimetre-sized metallic and silicate phases. We find a history of long-lived magnetic activity on the pallasite parent body, capturing the decay and eventual shutdown of the magnetic field as core solidification completed. We demonstrate that magnetic activity driven by progressive solidification of an inner core is consistent with our measured magnetic field characteristics and cooling rates. Solidification-driven convection was probably common among small body cores, and, in contrast to thermally driven convection, will have led to a relatively late (hundreds of millions of years after accretion), long-lasting, intense and widespread epoch of magnetic activity among these bodies in the early Solar System. PMID:25612050

  16. Self-Assembled DNA Structures for Molecular Force Measurement: A Magnetically Actuated Approach

    NASA Astrophysics Data System (ADS)

    Armstrong, M.; Lauback, S.; Miller, C.; Peace, C.; Castro, C.; Sooryakumar, R.

    2015-03-01

    Understanding molecular forces is important to comprehend many of the underlying properties of molecular machines and biological processes. The relevant forces in these cases often lie in the picoNewton range, and thus experiments on individual biomolecules must integrate techniques capable of measuring such forces. A mechanical system to measure molecular forces associated with interacting DNA strands is being developed by using self-assembled DNA nanostructures and super-paramagnetic beads. The DNA nanostructure consists of single-stranded DNA molecules which can be folded into a precise compact geometry using hundreds of short oligonucleotides, i.e., staples, via programmed molecular self-assembly. These nanostructures can be polymerized into micron-scale filaments. By functionalizing the filament ends with bispecific conjugate staples, the structure can be attached to a surface as well as labeled with magnetic beads in order to apply a force on the system. External magnetic fields provide the means to maneuver and manipulate the magnetically labeled DNA structures. Preliminary findings associated with the DNA constructs and their manipulation lay the groundwork to establish real-time control of DNA nanodevices with micromanipulation.

  17. Issues in Magnetic Resonance Force Microscopy at MilliKelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Mamin, H. J.; Rugar, D.

    2001-03-01

    Magnetic resonance force microscopy (MRFM) makes use of an ultrasensitive cantilever as a force detector capable of detecting attoNewton scale forces. In principle, this approach could allow for detecting the force from a single electron or nuclear spin. The force resolution is ultimately limited by the thermal mechanical noise in the cantilever, which scales in power with temperature. This fact provides a strong incentive to operate at the lowest practical temperature. Some of the challenges of performing MRFM in the milliKelvin regime will be discussed, in particular devising a detection scheme that results in minimal heating of the cantilever. We have made several improvements to a fiber-optic interferometer that allow operation with incident powers below 10 nW , or 20 times lower than previously used. Other issues in combining MRFM with a dilution refrigerator have been investigated, including adding a damped spring system to deal with external vibrations, and generating the GHz frequency magnetic fields necessary for magnetic resonance.

  18. MEMS-based force-clamp analysis of the role of body stiffness in C. elegans touch sensation.

    PubMed

    Petzold, Bryan C; Park, Sung-Jin; Mazzochette, Eileen A; Goodman, Miriam B; Pruitt, Beth L

    2013-06-01

    Touch is enabled by mechanoreceptor neurons in the skin and plays an essential role in our everyday lives, but is among the least understood of our five basic senses. Force applied to the skin deforms these neurons and activates ion channels within them. Despite the importance of the mechanics of the skin in determining mechanoreceptor neuron deformation and ultimately touch sensation, the role of mechanics in touch sensitivity is poorly understood. Here, we use the model organism Caenorhabditis elegans to directly test the hypothesis that body mechanics modulate touch sensitivity. We demonstrate a microelectromechanical system (MEMS)-based force clamp that can apply calibrated forces to freely crawling C. elegans worms and measure touch-evoked avoidance responses. This approach reveals that wild-type animals sense forces <1 μN and indentation depths <1 μm. We use both genetic manipulation of the skin and optogenetic modulation of body wall muscles to alter body mechanics. We find that small changes in body stiffness dramatically affect force sensitivity, while having only modest effects on indentation sensitivity. We investigate the theoretical body deformation predicted under applied force and conclude that local mechanical loads induce inward bending deformation of the skin to drive touch sensation in C. elegans.

  19. Calculation of cogging force in a novel slotted linear tubular brushless permanent magnet motor

    SciTech Connect

    Zhu, Z.Q.; Hor, P.J.; Howe, D.; Rees-Jones, J.

    1997-09-01

    There is an increasing requirement for controlled linear motion over short and long strokes, in the factory automation and packaging industries, for example. Linear brushless PM motors could offer significant advantages over conventional actuation technologies, such as motor driven cams and linkages and pneumatic rams--in terms of efficiency, operating bandwidth, speed and thrust control, stroke and positional accuracy, and indeed over other linear motor technologies, such as induction motors. Here, a finite element/analytical based technique for the prediction of cogging force in a novel topology of slotted linear brushless permanent magnet motor has been developed and validated. The various force components, which influence cogging are pre-calculated by the finite element analysis of some basic magnetic structures, facilitate the analytical synthesis of the resultant cogging force. The technique can be used to aid design for the minimization of cogging.

  20. On the numerical computation of nonlinear force-free magnetic fields. [from solar photosphere

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Sun, M. T.; Chang, H. M.; Hagyard, M. J.; Gary, G. A.

    1990-01-01

    An algorithm has been developed to extrapolate nonlinear force-free magnetic fields from the photosphere, given the proper boundary conditions. This paper presents the results of this work, describing the mathematical formalism that was developed, the numerical techniques employed, and comments on the stability criteria and accuracy developed for these numerical schemes. An analytical solution is used for a benchmark test; the results show that the computational accuracy for the case of a nonlinear force-free magnetic field was on the order of a few percent (less than 5 percent). This newly developed scheme was applied to analyze a solar vector magnetogram, and the results were compared with the results deduced from the classical potential field method. The comparison shows that additional physical features of the vector magnetogram were revealed in the nonlinear force-free case.

  1. Active H ∞ control of the vibration of an axially moving cantilever beam by magnetic force

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Chen, Huai-hai; He, Xu-dong

    2011-11-01

    An H ∞ method for the vibration control of an iron cantilever beam with axial velocity using the noncontact force by permanent magnets is proposed in the paper. The transverse vibration equation of the axially moving cantilever beam with a tip mass is derived by D'Alembert's principle and then updated by experiments. An experimental platform and a magnetic control system are introduced. The properties of the force between the magnet and the beam have been determined by theoretic analysis and tests. The H ∞ control strategy for the suppression of the beam transverse vibration by initial deformation excitations is put forward. The control method can be used for the beam with constant length or varying length. Numerical simulation and actual experiments are implemented. The results show that the control method is effective and the simulations fit well with the experiments.

  2. Radiation pressure excitation of Low Temperature Atomic Force & Magnetic Force Microscope (LT-AFM/MFM) for Imaging

    NASA Astrophysics Data System (ADS)

    Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team

    2015-03-01

    We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.

  3. Dynamic fe Model of Sitting Man Adjustable to Body Height, Body Mass and Posture Used for Calculating Internal Forces in the Lumbar Vertebral Disks

    NASA Astrophysics Data System (ADS)

    Pankoke, S.; Buck, B.; Woelfel, H. P.

    1998-08-01

    Long-term whole-body vibrations can cause degeneration of the lumbar spine. Therefore existing degeneration has to be assessed as well as industrial working places to prevent further damage. Hence, the mechanical stress in the lumbar spine—especially in the three lower vertebrae—has to be known. This stress can be expressed as internal forces. These internal forces cannot be evaluated experimentally, because force transducers cannot be implementated in the force lines because of ethical reasons. Thus it is necessary to calculate the internal forces with a dynamic mathematical model of sitting man.A two dimensional dynamic Finite Element model of sitting man is presented which allows calculation of these unknown internal forces. The model is based on an anatomic representation of the lower lumbar spine (L3-L5). This lumber spine model is incorporated into a dynamic model of the upper torso with neck, head and arms as well as a model of the body caudal to the lumbar spine with pelvis and legs. Additionally a simple dynamic representation of the viscera is used. All these parts are modelled as rigid bodies connected by linear stiffnesses. Energy dissipation is modelled by assigning modal damping ratio to the calculated undamped eigenvalues. Geometry and inertial properties of the model are determined according to human anatomy. Stiffnesses of the spine model are derived from static in-vitro experiments in references [1] and [2]. Remaining stiffness parameters and parameters for energy dissipation are determined by using parameter identification to fit measurements in reference [3]. The model, which is available in 3 different postures, allows one to adjust its parameters for body height and body mass to the values of the person for which internal forces have to be calculated.

  4. First-principles many-body force fields from the gas phase to liquid: a "universal" approach.

    PubMed

    McDaniel, Jesse G; Schmidt, J R

    2014-07-17

    We extend our previously developed approach for generating "physically-motivated" force fields from symmetry-adapted perturbation theory by introducing explicit terms to account for nonadditive three-body exchange and dispersion interactions, yielding transferability from the gas- to condensed-phase. These Axilrod-Teller-Muto-type three-body terms require no additional parametrization and can be implemented with high computational efficiency. We demonstrate the accuracy of our force fields for a diverse set of six organic liquids/fluids, examining a wide variety of structural, thermodynamic, and dynamic properties. We find that three-body dispersion and exchange interactions make significant contributions to the internal pressure of condensed phase systems and cannot be neglected in truly ab initio force field development. These resulting force field parameters are extremely transferable over wide ranges in temperature and pressures and across chemical systems, and should be widely applicable in condensed phase simulation.

  5. ON THE FORCE-FREE NATURE OF PHOTOSPHERIC SUNSPOT MAGNETIC FIELDS AS OBSERVED FROM HINODE (SOT/SP)

    SciTech Connect

    Tiwari, Sanjiv Kumar

    2012-01-01

    A magnetic field is force-free if there is no interaction between it and the plasma in the surrounding atmosphere, i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. The computation of various magnetic parameters, such as magnetic energy (using the virial theorem), gradient of twist of sunspot magnetic fields (computed from the force-free parameter {alpha}), and any kind of extrapolation, heavily hinges on the force-free approximation of the photospheric sunspot magnetic fields. Thus, it is of vital importance to inspect the force-free behavior of sunspot magnetic fields. The force-free nature of sunspot magnetic fields has been examined earlier by some researchers, ending with incoherent results. Accurate photospheric vector field measurements with high spatial resolution are required to inspect the force-free nature of sunspots. For this purpose, we use several vector magnetograms of high spatial resolution obtained from the Solar Optical Telescope/Spectro-Polarimeter on board Hinode. Both the necessary and sufficient conditions for force-free nature are examined by checking the global and local nature of equilibrium magnetic forces over sunspots. We find that sunspot magnetic fields are not very far from the force-free configuration, although they are not completely force-free on the photosphere. The umbral and inner penumbral fields are more force-free than the middle and outer penumbral fields. During their evolution, sunspot magnetic fields are found to maintain their proximity to force-free field behavior. Although a dependence of net Lorentz force components is seen on the evolutionary stages of the sunspots, we do not find a systematic relationship between the nature of sunspot magnetic fields and the associated flare activity. Further, we examine whether the fields at the photosphere follow linear or nonlinear force-free conditions. After examining this in various complex and simple sunspots, we conclude that

  6. Theoretical development of a magnetic force and an induced motion in elastic media for a magneto-motive technique

    NASA Astrophysics Data System (ADS)

    Lim, In Gweon; Park, Suhyun; Oh, Junghwan

    2016-08-01

    The theoretical development of a magnetic force and an induced motion while applying a magnetic field to magnetic nanoparticles in elastic media is described. An analytical expression for tissue-surface displacement derived from Mindlin's theory of elasticity in semi-infinite media was used to analyze the magneto-motive technique. The initial motion of the magnetic nanoparticles is driven by a constant magnetic force that displays a dampened transient motion before steady-state movement at twice the modulation frequency of the applied sinusoidal magnetic field. The motion of the nanoparticles at double the modulation frequency originated from the magnetic force being proportional to the product of the magnetic flux density and its gradient. Finally, we demonstrate the detection of iron-oxide nanoparticles taken up by liver parenchymal Kupffer cells and macrophages in atherosclerotic plaques by using a differential-phase optical coherence tomography (DP-OCT) system to compare simulation results with experimental data.

  7. Expanded Equations for Torque and Force on a Cylindrical Permanent Magnet Core in a Large-Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1997-01-01

    The expanded equations for torque and force on a cylindrical permanent magnet core in a large-gap magnetic suspension system are presented. The core is assumed to be uniformly magnetized, and equations are developed for two orientations of the magnetization vector. One orientation is parallel to the axis of symmetry, and the other is perpendicular to this axis. Fields and gradients produced by suspension system electromagnets are assumed to be calculated at a point in inertial space which coincides with the origin of the core axis system in its initial alignment. Fields at a given point in the core are defined by expanding the fields produced at the origin as a Taylor series. The assumption is made that the fields can be adequately defined by expansion up to second-order terms. Examination of the expanded equations for the case where the magnetization vector is perpendicular to the axis of symmetry reveals that some of the second-order gradient terms provide a method of generating torque about the axis of magnetization and therefore provide the ability to produce six-degree-of-freedom control.

  8. Quantitatively Resolving Ligand–Receptor Bonds on Cell Surfaces Using Force-Induced Remnant Magnetization Spectroscopy

    PubMed Central

    2016-01-01

    Molecule-specific noncovalent bonding on cell surfaces is the foundation for cellular recognition and functioning. A major challenge in probing these bonds is to resolve the specific bonds quantitatively and efficiently from the nonspecific interactions in a complex environment. Using force-induced remnant magnetization spectroscopy (FIRMS), we were able to resolve quantitatively three different interactions for magnetic beads bearing anti-CD4 antibodies with CD4+ T cell surfaces based upon their binding forces. The binding force of the CD4 antibody–antigen bonds was determined to be 75 ± 3 pN. For comparison, the same bonds were also studied on a functionalized substrate surface, and the binding force was determined to be 90 ± 6 pN. The 15 pN difference revealed by high-resolution FIRMS illustrates the significant impact of the bonding environment. Because the force difference was unaffected by the cell number or the receptor density on the substrate, we attributed it to the possible conformational or local environmental differences of the CD4 antigens between the cell surface and substrate surface. Our results show that the high force resolution and detection efficiency afforded by FIRMS are valuable for studying protein–protein interactions on cell surfaces. PMID:27163031

  9. NONLINEAR FORCE-FREE MAGNETIC FIELD FITTING TO CORONAL LOOPS WITH AND WITHOUT STEREOSCOPY

    SciTech Connect

    Aschwanden, Markus J.

    2013-02-15

    We developed a new nonlinear force-free magnetic field (NLFFF) forward-fitting algorithm based on an analytical approximation of force-free and divergence-free NLFFF solutions, which requires as input a line-of-sight magnetogram and traced two-dimensional (2D) loop coordinates of coronal loops only, in contrast to stereoscopically triangulated three-dimensional loop coordinates used in previous studies. Test results of simulated magnetic configurations and from four active regions observed with STEREO demonstrate that NLFFF solutions can be fitted with equal accuracy with or without stereoscopy, which relinquishes the necessity of STEREO data for magnetic modeling of active regions (on the solar disk). The 2D loop tracing method achieves a 2D misalignment of {mu}{sub 2} = 2. Degree-Sign 7 {+-} 1. Degree-Sign 3 between the model field lines and observed loops, and an accuracy of Almost-Equal-To 1.0% for the magnetic energy or free magnetic energy ratio. The three times higher spatial resolution of TRACE or SDO/AIA (compared with STEREO) also yields a proportionally smaller misalignment angle between model fit and observations. Visual/manual loop tracings are found to produce more accurate magnetic model fits than automated tracing algorithms. The computation time of the new forward-fitting code amounts to a few minutes per active region.

  10. Embedding Circular Force-Free Flux Ropes in Potential Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Torok, T.; Mikic, Z.; Linker, J.

    2013-12-01

    We propose a method for constructing approximate force-free equilibria in active regions that locally have a potential bipolar-type magnetic field with a thin force-free flux rope embedded inside it. The flux rope has a circular-arc axis and circular cross-section in which the interior magnetic field is predominantly toroidal (axial). Its magnetic pressure is balanced outside by that of the poloidal (azimuthal) field created at the boundary by the electric current sheathing the flux rope. To facilitate the implementation of the method in our numerical magnetohydrodynamic (MHD) code, the entire solution is described in terms of the vector potential of the magnetic field. The parameters of the flux rope can be chosen so that a subsequent MHD relaxation of the constructed configuration under line-tied conditions at the boundary provides a numerically exact equilibrium. Such equilibria are an approximation for the magnetic configuration preceding solar eruptions, which can be triggered in our model by imposing suitable photospheric flows beneath the flux rope. The proposed method is a useful tool for constructing pre-eruption magnetic fields in data-driven simulations of solar active events. Research supported by NASA's Heliophysics Theory and LWS Programs, and NSF/SHINE and NSF/FESD.

  11. Attosecond Electro-Magnetic Forces Acting on Metal Nanospheres Induced By Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Lagos, M. J.; Batson, P. E.; Reyes-Coronado, A.; Echenique, P. M.; Aizpurua, J.

    2014-03-01

    Swift electron scattering near nanoscale materials provides information about light-matter behavior, including induced forces. We calculate time-dependent electromagnetic forces acting on 1-1.5 nm metal nanospheres induced by passing swift electrons, finding both impulse-like and oscillatory response forces. Initially, impulse-like forces are generated by a competition between attractive electric forces and repulsive magnetic forces, lasting a few attoseconds (5-10 as). Oscillatory, plasmonic response forces take place later in time, last a few femtoseconds (1- 5 fs), and apparently rely on photon emission by decay of the electron-induced surface plasmons. A comparison of the strength of these two forces suggests that the impulse-like behavior dominates the process, and can transfer significant linear momentum to the sphere. Our results advance understanding of the physics behind the observation of both attractive and repulsive behavior of gold nano-particles induced by electron beams in aberration-corrected electron microscopy. Work supported under DOE, Award # DE-SC0005132, Basque Gov. project ETORTEK inano, Spanish Ministerio de Ciencia e Innovacion, No. FIS2010-19609-C02-01.

  12. On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force.

    PubMed

    Zhang, Kai; Liang, Qionglin; Ma, Sai; Mu, Xuan; Hu, Ping; Wang, Yiming; Luo, Guoan

    2009-10-21

    A microfluidic device for generating monodisperse superparamagnetic droplets and rapidly manipulating desired droplets into designated sub-microchannels by an external magnetic force is described. Superparamagnetic magnetite (Fe3O4) nanoparticles are synthesized by a chemical co-precipitation method. They are well dispersed in the water-phase to form a superparamagnetic fluid that is sheared into picoliter-volume monodisperse superparamagnetic droplets by the oil-phase in a T-junction PDMS microchannel. Superparamagnetic droplets always flow into sub-microchannel 1 due only to laminar flow without a magnetic field. But they are deflected from the direction of laminar flow by a perpendicular magnetic field. The results show that the deflection is proportional to the magnetic field gradient and magnetic nanoparticle concentration, and it is closely related to the magnet position. The observed experimental results make a good match with theoretical analysis. Single or bulk superparamagnetic droplets are successfully manipulated into the designated sub-microchannels 2 and 3 respectively, only by changing the positions of the magnet. Relatively high efficiency is obtained with more than 10 superparamagnetic droplets precisely manipulated per second. This simple and robust apparatus has wide applications in high throughput drug delivery/screening, immunoassay, cell research and synthesis of magnetic microparticles due to good biological compatibility and monodispersity of superparamagnetic droplets. PMID:19789755

  13. Magnetic susceptibility variations in Loess sequences and their relationship to astronomical forcing

    NASA Technical Reports Server (NTRS)

    Verosub, Kenneth L.; Singer, Michael J.

    1992-01-01

    The long, well-exposed and often continuous sequences of loess found throughout the world are generally thought to provide an excellent opportunity for studying long-term, large-scale environmental change during the last few million years. In recent years, the most fruitful loess studies have been those involving the deposits of the loess in China. One of the most intriguing results of that work has been the discovery of an apparent correlation between variations in the magnetic susceptibility of the loess sequence and the oxygen isotope record of the deep sea. This correlation implies that magnetic susceptibility variations are being driven by astronomical parameters. However, the basic data have been interpreted in various ways by different authors, most of whom assumed that the magnetic minerals in the loess have not been affected by post-depositional processes. Using a chemical extraction procedure that allows us to separate the contribution of secondary pedogenic magnetic minerals from primary inherited magnetic minerals, we have found that the magnetic susceptibility of the Chinese paleosols is largely due to a pedogenic component which is present to a lesser degree in the loess. We have also found that the smaller inherited component of the magnetic susceptibility is about the same in the paleosols and the loess. These results demonstrate the need for additional study of the processes that create magnetic susceptibility variations in order to interpret properly the role of astronomical forcing in producing these variations.

  14. Magnetic field generation in the cores of terrestrial bodies

    NASA Technical Reports Server (NTRS)

    Runcorn, S. K.

    1985-01-01

    Efforts to find some scaling law for the dipole moments of planets seem illusory for, although dynamo theory is still in a rudimentary state, once the critical magnetic Reynolds Number is exceeded it appears that the field strength is determined by the energy source, it it is permissible to treat the core as a heat engine. For this reason the lunar magnetic field is of special significance as the paleomagnetic evidence strongly suggests that the surface field was about 1 G 3.9 by diminishing exponentially to about .02 G 3.2 by ago and completely disappearing some time later.

  15. Computational analysis of magnetic field induced deposition of magnetic particles in lung alveolus in comparison to deposition produced with viscous drag and gravitational force

    NASA Astrophysics Data System (ADS)

    Krafcik, Andrej; Babinec, Peter; Frollo, Ivan

    2015-04-01

    Magnetic targeting of drugs attached to magnetic nanoparticles with diameter ≈ 100 nm after their intravenous administration is an interesting method of drug delivery widely investigated both theoretically as well as experimentally. Our aim in this study is theoretical analysis of a magnetic aerosol targeting to the lung. Due to lung anatomy magnetic particles up to 5 μm can be safely used, therefore the magnetic force would be stronger, moreover drag force exerted on the particle is according to Stokes law linearly dependent on the viscosity, would be weaker, because the viscosity of the air in the lung is approximately 200 fold smaller than viscosity of the blood. Lung therefore represents unique opportunity for magnetic drug targeting, as we have shown in this study by the analysis of magnetic particle dynamics in a rhythmically expanding and contracting distal and proximal alveolus subjected to high-gradient magnetic field generated by quadrupolar permanent Halbach magnet array.

  16. Morphology and Dynamics of Lithospheric Body Force Instabilities: Sheets, Drips and In-Between

    NASA Astrophysics Data System (ADS)

    Beall, A.; Moresi, L. N.

    2014-12-01

    Foundering of the Earth's lithosphere, and consequent energy and mass flux across the upper boundary layer and mantle interface, is driven locally by gravitational body forces. The related instabilities are usually classified as having sheet-like or drip-like morphologies. The former is associated with whole lithosphere (subduction) or delamination type foundering such as suggested for beneath the southern Sierra-Nevada and the Colorado Plateau, the latter to classic Rayleigh-Taylor instability below an upper layer, suggested to have occurred beneath the Tibetan Plateau and North Island, New Zealand. This dichotomy is non-trivial; classification of phenomena into one or the other is often debated and is difficult to infer from observables. The two morphologies are most likely end-members. Here I refine the dynamics driving morphology selection as a function of rheological lamination and boundary layer Rayleigh number in 2D and 3D, using the finite-element particle-in-cell code Underworld. I explore the influence of morphology on mass flux, topography and crustal deformation as well as deviation from classic 2D scalings. Additionally, tectonic displacement interference with instability development is discussed using basic 3D shear-box style models. By quantifying and describing the theoretical instability dynamics which could result in a plausible range of morphological expressions, I aim to build a general framework which can be paired to the discussion involving firstly, the recognition of varied styles of body force instabilities in the modern Earth and rock record and secondly, to what degree pattern selection impacts boundary layer mass and energy flux.

  17. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  18. Dynamic analysis of radial force density in brushless DC motor using 3-D equivalent magnetic circuit network method

    SciTech Connect

    Hur, J.; Chun, Y.D.; Lee, J.; Hyun, D.S.

    1998-09-01

    The distribution of radial force density in brushless permanent magnet DC motor is not uniform in axial direction. The analysis of radial force density has to consider the 3-D shape of teeth and overhand, because the radial force density causes vibration and acts on the surface of teeth inconstantly. For the analysis, a new 3-D equivalent magnetic circuit network method is used to account the rotor movement without remesh. The radial force density is calculated and analyzed by Maxwell stress tensor and discrete Fourier transform (DFT) respectively. The results of 3-D equivalent magnetic circuit method have been compared with the results of 3-D FEM.

  19. A body-force based method to generate supersonic equilibrium turbulent boundary layer profiles

    NASA Astrophysics Data System (ADS)

    Waindim, M.; Gaitonde, D. V.

    2016-01-01

    We further develop a simple counterflow body force-based approach to generate an equilibrium spatially developing turbulent boundary layer suitable for Direct Numerical Simulations (DNS) or Large Eddy Simulations (LES) of viscous-inviscid interactions. The force essentially induces a small separated region in an incoming specified laminar boundary layer. The resulting unstable shear layer then transitions and breaks down to yield the desired unsteady profile. The effects of wall thermal conditions are explored to demonstrate the capability of the method for both fixed wall and adiabatic wall conditions. We then describe an efficient method to select parameters that ensure transition by examining precursor signatures using generalized stability variables. These precursors are shown to be evident in a computational domain spanning only a small region around the trip and can also be detected using 2D simulations. Finally, the method is tested for different Mach numbers ranging from 1.7 to 2.9, with emphasis on flow field surveys, Reynolds stresses, and energy spectra. These results provide guidance on boundary conditions for desired boundary layer thickness at each Mach number. The consequences of using a much lower Reynolds number in computation relative to experiment are evident at the higher Mach number, where a self sustaining turbulent boundary layer is more difficult to obtain.

  20. An individual and dynamic Body Segment Inertial Parameter validation method using ground reaction forces.

    PubMed

    Hansen, Clint; Venture, Gentiane; Rezzoug, Nasser; Gorce, Philippe; Isableu, Brice

    2014-05-01

    Over the last decades a variety of research has been conducted with the goal to improve the Body Segment Inertial Parameters (BSIP) estimations but to our knowledge a real validation has never been completely successful, because no ground truth is available. The aim of this paper is to propose a validation method for a BSIP identification method (IM) and to confirm the results by comparing them with recalculated contact forces using inverse dynamics to those obtained by a force plate. Furthermore, the results are compared with the recently proposed estimation method by Dumas et al. (2007). Additionally, the results are cross validated with a high velocity overarm throwing movement. Throughout conditions higher correlations, smaller metrics and smaller RMSE can be found for the proposed BSIP estimation (IM) which shows its advantage compared to recently proposed methods as of Dumas et al. (2007). The purpose of the paper is to validate an already proposed method and to show that this method can be of significant advantage compared to conventional methods.

  1. Quantum Monte Carlo calculations of neutron matter with chiral three-body forces

    DOE PAGES

    Tews, I.; Gandolfi, Stefano; Gezerlis, A.; Schwenk, A.

    2016-02-02

    Chiral effective field theory (EFT) enables a systematic description of low-energy hadronic interactions with controlled theoretical uncertainties. For strongly interacting systems, quantum Monte Carlo (QMC) methods provide some of the most accurate solutions, but they require as input local potentials. We have recently constructed local chiral nucleon-nucleon (NN) interactions up to next-to-next-to-leading order (N2LO). Chiral EFT naturally predicts consistent many-body forces. In this paper, we consider the leading chiral three-nucleon (3N) interactions in local form. These are included in auxiliary field diffusion Monte Carlo (AFDMC) simulations. We present results for the equation of state of neutron matter and for themore » energies and radii of neutron drops. Specifically, we study the regulator dependence at the Hartree-Fock level and in AFDMC and find that present local regulators lead to less repulsion from 3N forces compared to the usual nonlocal regulators.« less

  2. Numerical computation of the effective-one-body potential q using self-force results

    NASA Astrophysics Data System (ADS)

    Akcay, Sarp; van de Meent, Maarten

    2016-03-01

    The effective-one-body theory (EOB) describes the conservative dynamics of compact binary systems in terms of an effective Hamiltonian approach. The Hamiltonian for moderately eccentric motion of two nonspinning compact objects in the extreme mass-ratio limit is given in terms of three potentials: a (v ) , d ¯ (v ) , q (v ) . By generalizing the first law of mechanics for (nonspinning) black hole binaries to eccentric orbits, [A. Le Tiec, Phys. Rev. D 92, 084021 (2015).] recently obtained new expressions for d ¯(v ) and q (v ) in terms of quantities that can be readily computed using the gravitational self-force approach. Using these expressions we present a new computation of the EOB potential q (v ) by combining results from two independent numerical self-force codes. We determine q (v ) for inverse binary separations in the range 1 /1200 ≤v ≲1 /6 . Our computation thus provides the first-ever strong-field results for q (v ) . We also obtain d ¯ (v ) in our entire domain to a fractional accuracy of ≳10-8 . We find that our results are compatible with the known post-Newtonian expansions for d ¯(v ) and q (v ) in the weak field, and agree with previous (less accurate) numerical results for d ¯(v ) in the strong field.

  3. Exploiting Size-Dependent Drag and Magnetic Forces for Size-Specific Separation of Magnetic Nanoparticles

    PubMed Central

    Rogers, Hunter B.; Anani, Tareq; Choi, Young Suk; Beyers, Ronald J.; David, Allan E.

    2015-01-01

    Realizing the full potential of magnetic nanoparticles (MNPs) in nanomedicine requires the optimization of their physical and chemical properties. Elucidation of the effects of these properties on clinical diagnostic or therapeutic properties, however, requires the synthesis or purification of homogenous samples, which has proved to be difficult. While initial simulations indicated that size-selective separation could be achieved by flowing magnetic nanoparticles through a magnetic field, subsequent in vitro experiments were unable to reproduce the predicted results. Magnetic field-flow fractionation, however, was found to be an effective method for the separation of polydisperse suspensions of iron oxide nanoparticles with diameters greater than 20 nm. While similar methods have been used to separate magnetic nanoparticles before, no previous work has been done with magnetic nanoparticles between 20 and 200 nm. Both transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis were used to confirm the size of the MNPs. Further development of this work could lead to MNPs with the narrow size distributions necessary for their in vitro and in vivo optimization. PMID:26307980

  4. The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait.

    PubMed

    Wesseling, Mariska; de Groote, Friedl; Jonkers, Ilse

    2014-01-22

    This study examined the effect of body segment parameter (BSP) perturbations on joint moments calculated using an inverse dynamics procedure and muscle forces calculated using computed muscle control (CMC) during gait. BSP (i.e. segment mass, center of mass location (com) and inertia tensor) of the left thigh, shank and foot of a scaled musculoskeletal model were perturbed. These perturbations started from their nominal value and were adjusted to ±40% in steps of 10%, for both individual as well as combined perturbations in BSP. For all perturbations, an inverse dynamics procedure calculated the ankle, knee and hip moments based on an identical inverse kinematics solution. Furthermore, the effect of applying a residual reduction algorithm (RRA) was investigated. Muscle excitations and resulting muscle forces were calculated using CMC. The results show only a limited effect of an individual parameter perturbation on the calculated moments, where the largest effect is found when perturbing the shank com (MS(com,shank), the ratio of absolute difference in torque and relative parameter perturbation, is maximally -7.81 N m for hip flexion moment). The additional influence of perturbing two parameters simultaneously is small (MS(mass+com,thigh) is maximally 15.2 N m for hip flexion moment). RRA made small changes to the model to increase the dynamic consistency of the simulation (after RRA MS(com,shank) is maximally 5.01 N m). CMC results show large differences in muscle forces when BSP are perturbed. These result from the underlying forward integration of the dynamic equations. PMID:24332615

  5. The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait.

    PubMed

    Wesseling, Mariska; de Groote, Friedl; Jonkers, Ilse

    2014-01-22

    This study examined the effect of body segment parameter (BSP) perturbations on joint moments calculated using an inverse dynamics procedure and muscle forces calculated using computed muscle control (CMC) during gait. BSP (i.e. segment mass, center of mass location (com) and inertia tensor) of the left thigh, shank and foot of a scaled musculoskeletal model were perturbed. These perturbations started from their nominal value and were adjusted to ±40% in steps of 10%, for both individual as well as combined perturbations in BSP. For all perturbations, an inverse dynamics procedure calculated the ankle, knee and hip moments based on an identical inverse kinematics solution. Furthermore, the effect of applying a residual reduction algorithm (RRA) was investigated. Muscle excitations and resulting muscle forces were calculated using CMC. The results show only a limited effect of an individual parameter perturbation on the calculated moments, where the largest effect is found when perturbing the shank com (MS(com,shank), the ratio of absolute difference in torque and relative parameter perturbation, is maximally -7.81 N m for hip flexion moment). The additional influence of perturbing two parameters simultaneously is small (MS(mass+com,thigh) is maximally 15.2 N m for hip flexion moment). RRA made small changes to the model to increase the dynamic consistency of the simulation (after RRA MS(com,shank) is maximally 5.01 N m). CMC results show large differences in muscle forces when BSP are perturbed. These result from the underlying forward integration of the dynamic equations.

  6. Non-Markovian Brownian motion in a magnetic field and time-dependent force fields

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gonzalez, J. C.; Jiménez-Aquino, J. I.; Romero-Bastida, M.

    2016-11-01

    This work focuses on the derivation of the velocity and phase-space generalized Fokker-Planck equations for a Brownian charged particle embedded in a memory thermal bath and under the action of force fields: a constant magnetic field and arbitrary time-dependent force fields. To achieve the aforementioned goal we use a Gaussian but non-Markovian generalized Langevin equation with an arbitrary friction memory kernel. In a similar way, the generalized diffusion equation in the zero inertia limit is also derived. Additionally we show, in the absence of the time-dependent external forces, that, if the fluctuation-dissipation relation of the second kind is valid, then the generalized Langevin dynamics associated with the charged particle reaches a stationary state in the large-time limit. The consistency of our theoretical results is also verified when they are compared with those derived in the absence of the force fields and in the Markovian case.

  7. Diffusion-weighted imaging in pediatric body magnetic resonance imaging.

    PubMed

    Chavhan, Govind B; Caro-Dominguez, Pablo

    2016-05-01

    Diffusion-weighted MRI is being increasingly used in pediatric body imaging. Its role is still emerging. It is used for detection of tumors and abscesses, differentiation of benign and malignant tumors, and detection of inflamed bowel segments in inflammatory bowel disease in children. It holds great promise in the assessment of therapy response in body tumors, with apparent diffusion coefficient (ADC) value as a potential biomarker. Significant overlap of ADC values of benign and malignant processes and less reproducibility of ADC measurements are hampering its widespread use in clinical practice. With standardization of the technique, diffusion-weighted imaging (DWI) is likely to be used more frequently in clinical practice. We discuss the principles and technique of DWI, selection of b value, qualitative and quantitative assessment, and current status of DWI in evaluation of disease processes in the pediatric body. PMID:27229502

  8. Optimal magnet configurations for Lorentz force velocimetry in low conductivity fluids

    NASA Astrophysics Data System (ADS)

    Alferenok, A.; Pothérat, A.; Luedtke, U.

    2013-06-01

    We show that the performances of flowmeters based on the measurement of Lorentz force in duct flows can be sufficiently optimized to be applied to fluids of low electrical conductivity. The main technological challenge is to design a system with permanent magnets generating a strong enough field for the Lorentz force generated when a fluid of low conductivity passes through it to be reliably measured. To achieve this, we optimize the design of a magnet system based on Halbach arrays placed on either side of the duct. In the process, we show that the fluid flow can be approximated as a moving solid bar with practically no impact on the optimization result and devise a rather general iterative optimization procedure, which incurs drastically less computational cost than a direct procedure of equivalent precision. We show that both the Lorentz force and the efficiency of the system (defined as the ratio of the Lorentz force to the weight of the system) can be increased several fold by using Halbach arrays made of three, five, seven or nine magnets on either side of the duct but that this improvement comes at a cost in terms of the precision required to position the system.

  9. A discrete-forcing immersed boundary method for the fluid-structure interaction of an elastic slender body

    NASA Astrophysics Data System (ADS)

    Lee, Injae; Choi, Haecheon

    2015-01-01

    We present an immersed boundary (IB) method for the simulation of flow around an elastic slender body. The present method is based on the discrete-forcing IB method for a stationary, rigid body proposed by Kim, Kim and Choi (2001) [25]. The discrete-forcing approach is used to relieve the limitation on the computational time step size. The incompressible Navier-Stokes equations are implicitly coupled with the dynamic equation for an elastic slender body motion. The first is solved in the Eulerian coordinate and the latter is described in the Lagrangian coordinate. The elastic slender body is modeled as a thin and flexible solid and is segmented by finite number of thin blocks. Each block is moved by external and internal forces such as the hydrodynamic, elastic and buoyancy forces, where the hydrodynamic force is obtained directly from the discrete forcing used in the IB method. All the spatial derivative terms are discretized with the second-order central difference scheme. The present method is applied to three different fluid-structure interaction problems: flows around a flexible filament, a flapping flag in a free stream, and a flexible flapping wing in normal hovering, respectively. Computations are performed at maximum CFL numbers of 0.75-1. The results obtained agree very well with those from previous studies.

  10. Effects of chronic forced circadian desynchronization on body weight and metabolism in male mice.

    PubMed

    Casiraghi, Leandro P; Alzamendi, Ana; Giovambattista, Andrés; Chiesa, Juan J; Golombek, Diego A

    2016-04-01

    Metabolic functions are synchronized by the circadian clock setting daily patterns of food intake, nutrient delivery, and behavioral activity. Here, we study the impact of chronic jet-lag (CJL) on metabolism, and test manipulations aimed to overcome potential alterations. We recorded weight gain in C57Bl/6 mice under chronic 6 h advances or delays of the light-dark cycle every 2 days (ChrA and ChrD, respectively). We have previously reported ChrA, but not ChrD, to induce forced desynchronization of locomotor activity rhythms in mice (Casiraghi et al. 2012). Body weight was rapidly increased under ChrA, with animals tripling the mean weight gain observed in controls by day 10, and doubling it by day 30 (6% vs. 2%, and 15% vs. 7%, respectively). Significant increases in retroperitoneal and epidydimal adipose tissue masses (172% and 61%, respectively), adipocytes size (28%), and circulating triglycerides (39%) were also detected. Daily patterns of food and water intake were abolished under ChrA In contrast, ChrD had no effect on body weight. Wheel-running, housing of animals in groups, and restriction of food availability to hours of darkness prevented abnormal increase in body weight under ChrA Our findings suggest that the observed alterations under ChrA may arise either from a direct effect of circadian disruption on metabolism, from desynchronization between feeding and metabolic rhythms, or both. Direction of shifts, timing of feeding episodes, and other reinforcing signals deeply affect the outcome of metabolic function under CJL Such features should be taken into account in further studies of shift working schedules in humans. PMID:27125665

  11. Drag measurements on a laminar flow body of revolution in Langley's 13 inch magnetic suspension and balance system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1988-01-01

    Low-speed wind tunnel drag force measurements were taken on a laminar flow body of revolution free of support interference. This body was tested at zero incidence in the NASA Langley 13 inch Magnetic Suspension and Balance System (MSBS). The primary objective of these tests was to substantiate the drag force measuring capabilities of the 13 inch MSBS. A secondary objective was to obtain support interference free drag measurements on an axisymmetric body of interest. Both objectives were met. The drag force calibrations and wind-on repeatability data provide a means of assessing the drag force measuring capabilities of the 13 inch MSBS. The measured drag coefficients for this body are of interest to researchers actively involved in designing minimum drag fuselage shapes. Additional investigations included: the effects of fixing transition; the effects of fins installed in the tail; surface flow visualizations using both liquid crystals and oil flow; and base pressure measurements using a one-channel telemetry system. Two drag prediction codes were used to assess their usefulness in estimating overall body drag. These theoretical results did not compare well with the measured values because of the following: incorrect or non-existent modeling of a laminar separation bubble on the body and incorrect of non-existent estimates of base pressure drag.

  12. Whole-body magnetic resonance imaging: emerging applications.

    PubMed

    Colleran, Gabrielle C; Moynagh, Michael R; Tavernaraki, Katarina; Shelly, Martin J; Eustace, Stephen J; Kavanagh, Eoin C

    2010-03-01

    Beyond established roles in the assessment of skeletal metastatic disease, in muscle diseases and in myeloma, WBMRI has the potential to offer many further valuable clinical applications. This article presents an overview of emerging clinical applications of WBMRI emphasizing its role in the assessment of musculoskeletal ailments, ranging from the assessment of arthropathy through to body composition research.

  13. The Use of Magnets for Introducing Primary School Students to Some Properties of Forces through Small-Group Pedagogy

    ERIC Educational Resources Information Center

    Carruthers, Rebecca; de Berg, Kevin

    2010-01-01

    Seventeen Grade Six students were divided into small groups to study the concept of forces in the context of magnets and their properties. The researcher, a pre-service primary school teacher, encouraged the students into conversation about magnets and it was found that, without hesitation, they talked about their prior experience of magnets. The…

  14. Magnetic forces and localized resonances in electron transfer through quantum rings

    NASA Astrophysics Data System (ADS)

    Poniedziałek, M. R.; Szafran, B.

    2010-11-01

    We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous—non-classical—current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.

  15. On transition from Alfvén resonance to forced magnetic reconnection

    SciTech Connect

    Luan, Q.; Wang, X.

    2014-07-15

    We revisit the transition from Alfvén resonance to forced magnetic reconnection with a focus on the property of their singularities. As the driven frequency tends to zero, the logarithmic singularity of Alfvén resonance shifts to the power-law singularity of forced reconnection, due to merging of the two resonance layers. The transition criterion depends on either kinetic effects or dissipations that resolve the singularity. As an example, a small but finite resistivity η is introduced to investigate the transition process. The transition threshold is then obtained as the driven frequency reaches a level of ∼O((η/k){sup 1/3})

  16. Asymptotic analysis of force-free magnetic fields of cylindrical symmetry

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Antiochos, S. K.; Roumeliotis, G.

    1995-01-01

    It is known from computer calculations that if a force-free magnetic-field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution, and, in the process, the energy of the field increases progressively. Analysis of a simple model of force-free fields of cylindrical symmetry leads to simple asymptotic expressions for the extent and energy of such a configuration. The analysis is carried through for both spherical and planar source surfaces. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.

  17. MEMS-Based Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Butler, Mark C.; Elgammal, Ramez A.; George, Thomas; Hunt, Brian; Weitekamp, Daniel P.

    2006-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy allows assignment of molecular structure by acquiring the energy spectrum of nuclear spins in a molecule, and by interpreting the symmetry and positions of resonance lines in the spectrum. As such, NMR has become one of the most versatile and ubiquitous spectroscopic methods. Despite these tremendous successes, NMR experiments suffer from inherent low sensitivity due to the relatively low energy of photons in the radio frequency (rt) region of the electromagnetic spectrum. Here, we describe a high-resolution spectroscopy in samples with diameters in the micron range and below. We have reported design and fabrication of force-detected nuclear magnetic resonance (FDNMR).

  18. Study of the leakage field of magnetic force microscopy thin-film tips using electron holography

    SciTech Connect

    Frost, B.G.; van Hulst, N.F.; Lunedei, E.; Matteucci, G.

    1996-03-01

    Electron holography is applied for the study of the leakage field of thin-film ferromagnetic tips used as probes in magnetic force microscopy. We used commercially available pyramidal tips covered on one face with a thin NiCo film, which were then placed in a high external magnetic field directed along the pyramid axis. Good agreement between simulated and experimental electron phase difference maps allows to measure the local flux from the ferromagnetic tips and therefore to evaluate the perturbation induced by the microprobe stray field on the sample area. {copyright} {ital 1996 American Institute of Physics.}

  19. Large-Scale Magnetic Field Generation by Randomly Forced Shearing Waves

    NASA Astrophysics Data System (ADS)

    Heinemann, T.; McWilliams, J. C.; Schekochihin, A. A.

    2011-12-01

    A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of low magnetic Reynolds number (Rm) and weak shear. The dynamo is kinematic and due to fluctuations in the net (volume-averaged) electromotive force. This is a minimal proof-of-concept quasilinear calculation aiming to put the shear dynamo, a new effect recently found in numerical experiments, on a firm theoretical footing. Numerically observed scalings of the wave number and growth rate of the fastest-growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo action may be a generic property of sheared magnetohydrodynamic turbulence.

  20. Paleo-Magnetic Field Recorded in the Parent Body of the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Páchová, H.

    2014-12-01

    Murchison meteorite is a carbonaceous chondrite containing small amount of chondrules, various inclusions, and matrix with occasional porphyroblasts of olivine and/or pyroxene. We applied magnetic efficiency method (Kletetschka et al 2005, Kohout et al, 2008) in order to get the demagnetization spectra for several randomly oriented fragments of Murchison meteorite. Our method detected not only viscous magnetization removable in low fields, but also very persistent magnetizations in all meterorite fragments. Data suggest that magnetic carriers within the Murchison meteorite were grown in a paleofield of 450 - 850 nT. Meteorite record in other fragments contains an existence of antipodal fields that may be tied to an event of magnetic reversal within the nebular magnetic field or parent asteroid body. Other meteorites show stable record over its entire spectrum, giving magnetic paleofield of 1100 - 1900 nT. Magnetic record in Murchison meteorite comes from magnetite, pyrrhotite and Iron Nickel alloy. Pyrrhotite is suggested to be the main carrier of the paleofield in Murchison. Iron-Nickel alloy generate observable zigzag pattern when magnetically saturated. Kletetschka, G., Kohout, T., Wasilewski, P., and Fuller, M. D., 2005, Recognition of thermal remanent magnetization in rocks and meteorites, The IAGA Scientific Assembly, Volume GAI10: Toulouse, IAGA, p. IAGA2005-A-00945. Kohout, T., Kletetschka, G., Donadini, F., Fuller, M., and Herrero-Bervera, E., 2008, Analysis of the natural remanent magnetization of rocks by measuring the efficiency ratio through alternating field demagnetization spectra: Studia Geophysica Et Geodaetica, v. 52, no. 2, p. 225-235.

  1. Magnetism of Minor Bodies in the Solar System: From 433 Eros, passing Braille, Steins, and Lutetia towards Churyumov-Gerasimenko and 1999 JU3.

    NASA Astrophysics Data System (ADS)

    Hercik, David; Auster, Hans-Ulrich; Heinisch, Philip; Richter, Ingo; Glassmeier, Karl-Heinz

    2015-04-01

    Minor bodies in the solar system, such as asteroids and comets, are important sources of information for our knowledge of the solar system formation. Besides other aspects, estimation of a magnetization state of such bodies might prove important in understanding the early aggregation phases of the protoplanetary disk, showing the level of importance of the magnetic forces in the processes involved. Meteorites' magnetization measurements suggest that primitive bodies consist of magnetized material. However, space observations from various flybys give to date diverse results for a global magnetization estimation. The flybys at Braille and Gaspra indicate possible higher magnetization (~ 10-3 Am2/kg), while flybys at Steins and Lutetia show no significant values in the global field change illustrating low global magnetization. Furthermore, the interpretation of remote (during flybys) measurements is very difficult. For correct estimates on the local magnetization one needs (in the best case) multi-point surface measurements. Single point observation has been done by NEAR-Shoemaker on 433 Eros asteroid, revealing no signature in magnetic field that could have origin in asteroid magnetization. Similar results, no magnetization observed, have been provided by evaluation of recent data from ROMAP (Philae lander) and RPC-MAG (Rosetta orbiter) instruments from comet 67P/Churyumov-Gerasimenko. The ROMAP instrument provided measurements from multiple points of the cometary surface as well as data along ballistic path between multiple touchdowns, which support the conclusion of no global magnetization. However, even in case of the in-situ on surface observations the magnetization estimate has a limiting spatial resolution that is dependent on the distance from the surface (~ 50 cm in case of ROMAP). To get information about possible smaller magnetized grains distribution and magnetization strength, the sensor shall be placed as close as possible to the surface. For such

  2. The exterior source surface for force-free fields. [solar atmosphere magnetic field model

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1978-01-01

    Consideration is given to the exterior source surface for force-free fields. The spherical harmonic expansion is presented for boundary values on two concentric spheres. An upper limit on a constant which measures the strength of coronal currents is found to be a function of the lowest multipole moment of the prescribed boundary values. The solar atmosphere is in the class of magnetic fields for which the study is applicable.

  3. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  4. Magnetic force microscopy/current contrast imaging: A new technique for internal current probing of ICs

    SciTech Connect

    Campbell, A.N.; Cole, E.I. Jr.; Dodd, B.A.; Anderson, R.E.

    1993-09-01

    This invited paper describes recently reported work on the application of magnetic force microscopy (MFM) to image currents in IC conductors [1]. A computer model for MFM imaging of IC currents and experimental results demonstrating the ability to determine current direction and magnitude with a resolution of {approximately} 1 mA dc and {approximately} 1 {mu}A ac are presented. The physics of MFM signal generation and applications to current imaging and measurement are described.

  5. Convergence of the Many-Body Expansion for Energy and Forces for Classical Polarizable Models in the Condensed Phase.

    PubMed

    Demerdash, Omar; Head-Gordon, Teresa

    2016-08-01

    We analyze convergence of energies and forces for the AMOEBA classical polarizable model when evaluated as a many-body expansion (MBE) against the corresponding N-body parent potential in the context of a condensed-phase water simulation. This is in contrast to most MBE formulations based on quantum mechanics, which focus only on convergence of energies for gas-phase clusters. Using a single water molecule as a definition of a body, we find that truncation of the MBE at third order, 3-AMOEBA, captures direct polarization exactly and yields apparent good convergence of the mutual polarization energy. However, it renders large errors in the magnitude of polarization forces and requires at least fourth-order terms in the MBE to converge toward the parent potential gradient values. We can improve the convergence of polarization forces for 3-AMOEBA by embedding the polarization response of dimers and trimers within a complete representation of the fixed electrostatics of the entire system. We show that the electrostatic embedding formalism helps identify the specific configurations involving linear hydrogen-bonding arrangements that are poorly convergent at the 3-body level. By extending the definition of a body to be a large water cluster, we can reduce errors in forces to yield an approximate polarization model that is up to 10 times faster than the parent potential. The 3-AMOEBA model offers new ways to investigate how the properties of bulk water depend on the degree of connectivity in the liquid. PMID:27405002

  6. Determination of forces in a magnetic bearing actuator - Numerical computation with comparison to experiment

    NASA Technical Reports Server (NTRS)

    Knight, J. D.; Xia, Z.; Mccaul, E.; Hacker, H., Jr.

    1992-01-01

    Calculations of the forces exerted on a journal by a magnetic bearing actuator are presented, along with comparisons to experimentally measured forces. The calculations are based on two-dimensional solutions for the flux distribution in the metal parts and free space, using finite but constant permeability in the metals. Above a relative permeability of 10,000 the effects of changes in permeability are negligible, but below 10,000 decreases in permeability cause significant decreases in the force. The calculated forces are shown to depend on the metal permeability more strongly when the journal is displaced from its centered position. The predicted forces in the principal attractive direction are in good agreement with experiment when a relatively low value of permeability is chosen. The forces measured normal to the axis of symmetry when the journal is displaced from that axis, however, are significantly higher than predicted by theory, even with a value of relative permeability larger than 5000. These results indicate a need for further work including nonlinear permeability distributions.

  7. Molecular dynamics simulation of Lorentz force microscopy in magnetic nano-disks

    NASA Astrophysics Data System (ADS)

    Dias, R. A.; Mello, E. P.; Coura, P. Z.; Leonel, S. A.; Maciel, I. O.; Toscano, D.; Rocha, J. C. S.; Costa, B. V.

    2013-04-01

    In this paper, we present a molecular dynamics simulation to model the Lorentz force microscopy experiment. Experimentally, this technique consists in the scattering of electrons by magnetic structures in surfaces and gases. Here, we will explore the behavior of electrons colliding with nano-magnetic disks. The computational molecular dynamics experiment allows us to follow the trajectory of individual electrons all along the experiment. In order to compare our results with the experimental one reported in literature, we model the experimental electron detectors in a simplified way: a photo-sensitive screen is simulated in such way that it counts the number of electrons that collide at a certain position. The information is organized to give in grey scale the image information about the magnetic properties of the structure in the target. Computationally, the sensor is modeled as a square matrix in which we count how many electrons collide at each specific point after being scattered by the magnetic structure. We have used several configurations of the magnetic nano-disks to understand the behavior of the scattered electrons, changing the orientation direction of the magnetic moments in the nano-disk in several ways. Our results match very well with the experiments, showing that this simulation can become a powerful technique to help to interpret experimental results.

  8. Characterization of magnetized ore bodies based on three-component borehole magnetic and directional borehole seismic measurements

    NASA Astrophysics Data System (ADS)

    Virgil, Christopher; Neuhaus, Martin; Hördt, Andreas; Giese, Rüdiger; Krüger, Kay; Jurczyk, Andreas; Juhlin, Christopher; Juhojuntti, Niklas

    2016-04-01

    In the last decades magnetic prospecting using total field data was used with great success for localization and characterization of ferromagnetic ore bodies. Especially borehole magnetic measurements reveal important constraints on the extent and depth of potential mining targets. However, due to the inherent ambiguity of the interpretation of magnetic data, the resulting models of the distribution of magnetized material, such as iron ore bodies, are not entirely reliable. Variations in derived parameters like volume and estimated ore content of the expected body have significant impact on the economic efficiency of a planned mine. An important improvement is the introduction of three-component borehole magnetic sondes. Modern tools comprise orientation modules which allow the continuous determination of the tool's heading regardless of the well inclination and independent of the magnetic field. Using the heading information the recorded three-component magnetic data can be transferred from the internal tool's frame to the geographic reference frame. The vector information yields a more detailed and reliable description of the ore bodies compared to total field or horizontal and vertical field data. Nevertheless complementary information to constrain the model is still advisable. The most important supplementary information for the interpretation of magnetic data is the knowledge of the structural environment of the target regions. By discriminating dissimilar rock units, a geometrical starting model can be derived, constraining the magnetic interpretation and leading to a more robust estimation of the rock magnetizations distribution. The most common approach to reveal the lithological setting rests upon seismic measurements. However, for deep drilling targets surface seismic and VSP lack the required spatial resolution of 10s of meters. A better resolution is achieved by using directed sources and receivers inside the borehole. Here we present the application of

  9. Novel concepts in near-field optics: from magnetic near-field to optical forces

    NASA Astrophysics Data System (ADS)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  10. Nonlinear force-free magnetic fields. [quasi-steady state evolution of astrophysical fields

    NASA Technical Reports Server (NTRS)

    Low, B. C.

    1982-01-01

    The nonlinear properties of force-free magnetic fields are reviewed with particular reference to the mechanisms for the sudden release of stored energy in flares during the quasi-steady evolution of solar fields. It is shown that in the solar atmosphere, force-free fields with a nonconstant scalar function in the field equations are more likely to occur than those with a constant scalar function, and the nonlinear properties of these fields may give rise to many interesting physical effects. Consideration is then given to two possible mechanisms of field evolution: a model in which a force-free field in a medium of infinite electrical conductivity evolves in response to slowly changing boundary conditions brought about by photospheric motions in the solar active region, and a model in which a field in a medium of small finite electrical conductivity evolves in response to the slow Ohmic dissipation of the electric current.

  11. The Effective CSR Forces on an Energy-Chirped Bunch under Magnetic Compression

    SciTech Connect

    Rui Li

    2007-06-25

    Following our earlier formulation of the coherent synchrotron radiation (CSR) effect on bunch dynamics in magnetic bends, here we investigate the behavior of the effective CSR forces for an energy-chirped Gaussian bunch in the bending plane around full compression, with special care being taken in the incorporation of the retardation relation. Our results show clearly a delayed response of the CSR forces to the compression or lengthening of the bunch length. In addition, around full compression, our results reveal sensitivity of the effective CSR forces on the particles' transverse position, as a consequence of the geometry of particle interaction and retardation in this regime. These results can serve as benchmarks to the numerical simulation of the CSR effects.

  12. ON THE STABILITY OF NON-FORCE-FREE MAGNETIC EQUILIBRIA IN STARS

    SciTech Connect

    Duez, V.; Braithwaite, J.; Mathis, S.

    2010-11-20

    The existence of stable magnetic configurations in white dwarfs, neutron stars, and various non-convective stellar regions is now well recognized. It has recently been shown numerically that various families of equilibria, including axisymmetric mixed poloidal-toroidal configurations, are stable. Here we test the stability of an analytically derived non-force-free magnetic equilibrium resulting from an initial relaxation (self-organization) process, using three-dimensional magnetohydrodynamic simulations: the obtained mixed configuration is compared with the dynamical evolution of its purely poloidal and purely toroidal components, both known to be unstable. The mixed equilibrium shows no sign of instability under white noise perturbations. This configuration therefore provides a good description of magnetic equilibrium topology inside non-convective stellar objects and will be useful to initialize magneto-rotational transport in stellar evolution codes and in multi-dimensional magnetohydrodynamic simulations.

  13. Competition of static magnetic and dynamic photon forces in electronic transport through a quantum dot.

    PubMed

    Rauf Abdullah, Nzar; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2016-09-21

    We investigate theoretically the balance of the static magnetic and the dynamical photon forces in the electron transport through a quantum dot in a photon cavity with a single photon mode. The quantum dot system is connected to external leads and the total system is exposed to a static perpendicular magnetic field. We explore the transport characteristics through the system by tuning the ratio, [Formula: see text], between the photon energy, [Formula: see text], and the cyclotron energy, [Formula: see text]. Enhancement in the electron transport with increasing electron-photon coupling is observed when [Formula: see text]. In this case the photon field dominates and stretches the electron charge distribution in the quantum dot, extending it towards the contact area for the leads. Suppression in the electron transport is found when [Formula: see text], as the external magnetic field causes circular confinement of the charge density around the dot.

  14. Competition of static magnetic and dynamic photon forces in electronic transport through a quantum dot.

    PubMed

    Rauf Abdullah, Nzar; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2016-09-21

    We investigate theoretically the balance of the static magnetic and the dynamical photon forces in the electron transport through a quantum dot in a photon cavity with a single photon mode. The quantum dot system is connected to external leads and the total system is exposed to a static perpendicular magnetic field. We explore the transport characteristics through the system by tuning the ratio, [Formula: see text], between the photon energy, [Formula: see text], and the cyclotron energy, [Formula: see text]. Enhancement in the electron transport with increasing electron-photon coupling is observed when [Formula: see text]. In this case the photon field dominates and stretches the electron charge distribution in the quantum dot, extending it towards the contact area for the leads. Suppression in the electron transport is found when [Formula: see text], as the external magnetic field causes circular confinement of the charge density around the dot. PMID:27420809

  15. Magnetic irreversibility and pinning force density in the Mo100-xRex alloy superconductors

    NASA Astrophysics Data System (ADS)

    Sundar, Shyam; Chattopadhyay, M. K.; Sharath Chandra, L. S.; Roy, S. B.

    2015-12-01

    We have measured the isothermal field dependence of magnetization of the Mo100-xRex (15 ⩽ x ⩽ 48) alloys, and have estimated the critical current and pinning force density from these measurements. We have performed structural characterization of the above alloys using standard techniques, and analyzed the field dependence of critical current and pinning force density using existing theories. Our results indicate that dislocation networks and point defects like voids and interstitial imperfections are the main flux line pinning centers in the Mo100-xRex alloys in the intermediate fields, i.e., in the "small bundle" flux line pinning regime. In this regime, the critical current density is also quite robust against increasing magnetic field. In still higher fields, the critical current density is affected by flux creep. In the low field regime, on the other hand, the pinning of the flux lines seems to be influenced by the presence of two superconducting energy gaps in the Mo100-xRex alloys. This modifies the field dependence of critical current density, and also seems to contribute to the asymmetry in the magnetic irreversibility exhibited by the isothermal field dependence of magnetization.

  16. A method for embedding circular force-free flux ropes in potential magnetic fields

    SciTech Connect

    Titov, V. S.; Török, T.; Mikic, Z.; Linker, J. A.

    2014-08-01

    We propose a method for constructing approximate force-free equilibria in pre-eruptive configurations in which a thin force-free flux rope is embedded into a locally bipolar-type potential magnetic field. The flux rope is assumed to have a circular-arc axis, a circular cross-section, and electric current that is either concentrated in a thin layer at the boundary of the rope or smoothly distributed across it with a maximum of the current density at the center. The entire solution is described in terms of the magnetic vector potential in order to facilitate the implementation of the method in numerical magnetohydrodynamic (MHD) codes that evolve the vector potential rather than the magnetic field itself. The parameters of the flux rope can be chosen so that its subsequent MHD relaxation under photospheric line-tied boundary conditions leads to nearly exact numerical equilibria. To show the capabilities of our method, we apply it to several cases with different ambient magnetic fields and internal flux-rope structures. These examples demonstrate that the proposed method is a useful tool for initializing data-driven simulations of solar eruptions.

  17. Robust tracking control of a magnetically suspended rigid body

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Cox, David E.

    1994-01-01

    This study is an application of H-infinity and micro-synthesis for designing robust tracking controllers for the Large Angle Magnetic Suspension Test Facility. The modeling, design, analysis, simulation, and testing of a control law that guarantees tracking performance under external disturbances and model uncertainties is investigated. The type of uncertainties considered and the tracking performance metric used is discussed. This study demonstrates the tradeoff between tracking performance at low frequencies and robustness at high frequencies. Two sets of controllers were designed and tested. The first set emphasized performance over robustness, while the second set traded off performance for robustness. Comparisons of simulation and test results are also included. Current simulation and experimental results indicate that reasonably good robust tracking performance can be attained for this system using multivariable robust control approach.

  18. Robust tracking control of a magnetically suspended rigid body

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Cox, David E.

    1993-01-01

    This study is an application of H-infinity and microsynthesis for designing robust tracking controllers for the Large Angle Magnetic Suspension Test Facility. The modeling, design, analysis, simulation, and testing of a control law that guarantees tracking performance under external disturbances and model uncertainties is investigated. The type of uncertainties considered and the tracking performance metric used is discussed. This study demonstrates the tradeoff between tracking performance at low frequencies and robustness at high frequencies. Two sets of controllers were designed and tested. The first set emphasized performance over robustness, while the second set traded off performance for robustness. Comparisons of simulation and test results are also included. Current simulation and experimental results indicate that reasonably good robust tracking performance can be attained for this system, using multivariable robust control approach.

  19. Large eddy simulation of forced ignition of an annular bluff-body burner

    SciTech Connect

    Subramanian, V.; Domingo, P.; Vervisch, L.

    2010-03-15

    The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent nonpremixed burner has been performed to study the impact of spark location on ignition success. This burner was experimentally investigated by Ahmed et al. [Combust. Flame 151 (2007) 366-385]. The present work focuses on the case without swirl, for which detailed measurements are available. First, cold-flow measurements of velocities and mixture fractions are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Time histories of velocities and mixture fractions are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES-resolved instantaneous flow conditions, the experimentally observed reasons for success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs. Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between, velocities and mixture fraction values at the sparking time and the success or failure of ignition, are then further discussed and analyzed. (author)

  20. Computational analysis of wake structure and body forces on marine animal research tag

    NASA Astrophysics Data System (ADS)

    Rosanio, Matthew; Morrida, Jacob; Green, Melissa

    2013-11-01

    The Acousounde 3B marine animal research tag is used to study the relationship between the sounds made by whales and their behaviors, and ultimately to improve whale conservation efforts. In practical implementation, some researchers have attached external GPS Fastloc devices to the top surface of the tag, in order to accurately record the position of the whales throughout the deployment. There is a need to characterize the flow over the tag in order to better understand the body forces being exerted on it and how wake turbulence could affect noise measurements. The addition of the GPS Fastloc exacerbates both of these concerns, as it complicates the hydrodynamics of the device. Using CFD techniques, we were able to simulate the flow over the tag with a GPS attachment at multiple yaw angles. We used Pointwise to construct the mesh and Fluent to simulate the flow. We have also used flow visualization to experimentally validate our computational results. It was found that the GPS has a minimal effect on the wake of the tag at a 0 degree offset from the freestream flow. However, at increasing offset angles, the presence of the GPS greatly increased the amount of wake turbulence observed. Performed work while undergrad at Syracuse.

  1. Do body weight and gender shape the work force? The case of Iceland.

    PubMed

    Asgeirsdottir, Tinna Laufey

    2011-03-01

    Most studies of the relationship between body weight - as well as its corollary, beauty - and labor-market outcomes have indicated that it is a function of a gender bias, the negative relationship between excess weight or obesity and labor-market outcomes being greater for women than for men. Iceland offers an exceptional opportunity to examine this hypothesis, given that it scores relatively well on an index of gender equality comprising economic, political, educational, labor-market, and health-based criteria. Equipped with an advanced level of educational attainment, on average, women are well represented in Iceland's labor force. When it comes to women's presence in the political sphere, Iceland is out of the ordinary as well; that Icelanders were the first in the world to elect a woman to be president may suggest a relatively gender-blind assessment in the labor market. In the current study, survey data collected by Gallup Iceland in 2002 are used to examine the relationship between weight and employment within this political and social setting. Point estimates indicate that, despite apparently lesser gender discrimination in Iceland than elsewhere, the bias against excess weight and obesity remains gender-based, showing a slightly negative relationship between weight and the employment rate of women, whereas a slightly positive relationship was found for men.

  2. Height, weight and body mass index (BMI) in psychiatrically ill US Armed Forces personnel

    PubMed Central

    WYATT, R. J.; HENTER, I. D.; MOJTABAI, R.; BARTKO, J. J.

    2015-01-01

    Background In both psychiatrically ill and psychiatrically healthy adults, the connection between health and individuals’ height and weight has long been examined. Specifically, research on the idea that individuals with certain body types were prone to particular psychiatric diseases has been explored sporadically for centuries. The hypothesis that psychiatrically ill individuals were shorter and weighed less than psychiatrically healthy counterparts would correspond with the neurodevelopmental model of psychiatric disease. Method To evaluate possible links between psychiatric illness and physique, the height, weight and BMI of 7514 patients and 85 940 controls were compared. All subjects were part of the National Collaborative Study of Early Psychosis and Suicide (NCSEPS). Patients were US military active duty personnel hospitalized for either bipolar disorder, major depressive disorder, or schizophrenia and controls were psychiatrically-healthy US military active duty personnel matched for date of entry into the service. Results No consistent differences in height, weight or BMI were found between patients and controls, or between patient groups. Some weak ANOVA differences were found between age at the time of entering active duty and weight, as well as BMI, but not height. Conclusions Unlike most previous studies that have looked at the links between height and psychiatric illness, this study of the NCSEPS cohort found that, at entry into the US Armed Forces, there were no consistent decreases in height for patients with bipolar disorder, major depressive disorder or schizophrenia compared with a large control group. Furthermore, there were no consistent differences for weight or BMI. PMID:12622316

  3. Navier-Stokes Computations of Longitudinal Forces and Moments for a Blended Wing Body

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Biedron, Robert T.; Park, Michael A.; Fremaux, C. Michael; Vicroy, Dan D.

    2005-01-01

    The object of this paper is to investigate the feasibility of applying CFD methods to aerodynamic analyses for aircraft stability and control. The integrated aerodynamic parameters used in stability and control, however, are not necessarily those extensively validated in the state of the art CFD technology. Hence, an exploratory study of such applications and the comparison of the solutions to available experimental data will help to assess the validity of the current computation methods. In addition, this study will also examine issues related to wind tunnel measurements such as measurement uncertainty and support interference effects. Several sets of experimental data from the NASA Langley 14x22-Foot Subsonic Tunnel and the National Transonic Facility are presented. Two Navier-Stokes flow solvers, one using structured meshes and the other unstructured meshes, were used to compute longitudinal static stability derivatives for an advanced Blended Wing Body configuration over a wide range of angles of attack. The computations were performed for two different Reynolds numbers and the resulting forces and moments are compared with the above mentioned wind tunnel data.

  4. Navier-Stokes Computations of Longitudinal Forces and Moments for a Blended Wing Body

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Biedron, Robert T.; Park, Michael A.; Fremaux, C. Michael; Vicroy, Dan D.

    2004-01-01

    The object of this paper is to investigate the feasibility of applying CFD methods to aerodynamic analyses for aircraft stability and control. The integrated aerodynamic parameters used in stability and control, however, are not necessarily those extensively validated in the state of the art CFD technology. Hence, an exploratory study of such applications and the comparison of the solutions to available experimental data will help to assess the validity of the current computation methods. In addition, this study will also examine issues related to wind tunnel measurements such as measurement uncertainty and support interference effects. Several sets of experimental data from the NASA Langley 14x22-Foot Subsonic Tunnel and the National Transonic Facility are presented. Two Navier-Stokes flow solvers, one using structured meshes and the other unstructured meshes, were used to compute longitudinal static stability derivatives for an advanced Blended Wing Body configuration over a wide range of angles of attack. The computations were performed for two different Reynolds numbers and the resulting forces and moments are compared with the above mentioned wind tunnel data.

  5. Temporal and Spatial Relationship of Flare Signatures and the Force-free Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Veronig, A.; Su, Y.

    2016-08-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.

  6. Integrated Simulation between Flexible Body of Catenary and Active Control Pantograph for Contact Force Variation Control

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Azman; Michitsuji, Yohei; Nagai, Masao; Miyajima, Naoki

    Railway transport has been developed for a variety of requirements with a diversity of studies and technologies in recent years. In particular, the intercity railway transport that can be operated at speed of more than 350 km/h is the goal for the railway industry. Due to vibration and drag forces at high speed, contact force variation occurs between pantograph and catenary. This variation also causes instability in the pantograph and catenary interaction. In this study, multibody dynamics analysis is used to model the catenary. The integration of the catenary model and the pantograph model in the simulation flow produces contact force variations. A sinusoidal feed forward force and a simple feedback control force are applied to control the wave-like contact force fluctuations by means of active dampers. Evaluation of the combination of active control forces will produce optimized forces that may be able to maintain, thus improve the contact force variations.

  7. Levitation force between a small magnet and a superconducting sample of finite size in the Meissner state

    NASA Astrophysics Data System (ADS)

    Lugo, Jorge; Sosa, Victor

    1999-10-01

    The repulsion force between a cylindrical superconductor in the Meissner state and a small permanent magnet was calculated under the assumption that the superconductor was formed by a continuous array of dipoles distributed in the finite volume of the sample. After summing up the dipole-dipole interactions with the magnet, we obtained analytical expressions for the levitation force as a function of the superconductor-magnet distance, radius and thickness of the sample. We analyzed two configurations, with the magnet in a horizontal or vertical orientation.

  8. Whole-body magnetic resonance imaging: techniques, clinical indications, and future applications.

    PubMed

    Walker, R E; Eustace, S J

    2001-01-01

    This article reviews developments in both pulse sequence design and gradient technology that facilitate rapid imaging of the whole body. It discusses its application in patients with bone marrow neoplasms, including metastases, lymphoma, and myeloma and emphasizes the value of whole-body magnetic resonance imaging in patients with known vertebral lesions to detect other bone lesions that are easier to biopsy. It outlines possible applications in well-defined clinical situations, including pregnancy and unknown primary tumor.

  9. An adaptive diffusion-weighted whole-body magnetic resonance imaging scheme using the multistation approach

    NASA Astrophysics Data System (ADS)

    Han, Yeji

    2016-02-01

    Whole-body diffusion-weighted imaging (DWI) is a useful tool in oncology, which enables fast screening of disseminated tumors, lymph nodes or abscesses in the body. Multistation magnetic resonance imaging (MRI) or continuously moving table (CMT) MRI can be performed to overcome the limited field of view (FOV) of the magnet bore in whole-body DWI. Although CMT-MRI is regarded as a more advanced form of whole-body MRI, it cannot be widely used because most of the available MR systems are not equipped with the required hardware/software to perform CMT. Thus, optimizing the multistation approach for whole-body DWI, which is more widely available and easier to perform with the existing MR systems, is worthwhile. To improve the quality of DW images acquired with the multistation approach, we used different combinations of the built-in body RF coil and the phased-array surface RF coils for reception of the signals in whole-body DWI in this work. If different coils are selectively used in the extended FOV and appropriate reconstruction algorithms are exploited, the screening ability of whole-body DWI can be improved while minimizing the patient's discomfort and the artifacts due to physiological motions.

  10. Measurement of the adhesion force between particles for high gradient magnetic separation of pneumatic conveyed powder products

    NASA Astrophysics Data System (ADS)

    Senkawa, K.; Nakai, Y.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    In the industrial plants such as foods, medicines or industrial materials, there are big amount of issues on contamination by metallic wear debris originated from pipes of manufacturing lines. In this study, we developed a high gradient magnetic separation system (HGMS) under the dry process by using superconducting magnet to remove the ferromagnetic particles. One of the major problems of dry HGMS systems is, however, the blockage of magnetic filter caused by particle coagulation or deposition. In order to actualize the magnetic separation without blockage, we introduced pneumatic conveyance system as a new method to feed the powder. It is important to increase the drag force acting on the sufficiently dispersed particles, which require strong magnetic fields. To generate the strong magnetic fields, HGMS technique was examined which consists of a magnetic filter and a superconducting solenoid magnet. As a result of the magnetic separation experiment, it was shown that the separation efficiency changes due to the difference of the cohesive property of the particles. On the basis of the result, the adhesion force which acts between the ferromagnetic particles and the medium particles used for the magnetic separation was measured by Atomic Force Microscope (AFM), and cohesion of particles was studied from the aspect of interparticle interaction. We assessed a suitable flow velocity for magnetic separation according to the cohesive property of each particle based on the result.

  11. Scaling the energy conversion rate from magnetic field reconnection to different bodies

    SciTech Connect

    Mozer, F. S.; Hull, A.

    2010-10-15

    Magnetic field reconnection is often invoked to explain electromagnetic energy conversion in planetary magnetospheres, stellar coronae, and other astrophysical objects. Because of the huge dynamic range of magnetic fields in these bodies, it is important to understand energy conversion as a function of magnetic field strength and related parameters. It is conjectured theoretically and shown experimentally that the energy conversion rate per unit area in reconnection scales as the cube of an appropriately weighted magnetic field strength divided by the square root of an appropriately weighted density. With this functional dependence, the energy release in flares on the Sun, the large and rapid variation of the magnetic flux in the tail of Mercury, and the apparent absence of reconnection on Jupiter and Saturn, may be understood. Electric fields at the perihelion of the Solar Probe Plus mission may be tens of V/m.

  12. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application.

    PubMed

    Chatterjee, Prasenjit; Chow, Hwang-Cherng; Feng, Wu-Shiung

    2016-08-30

    This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET) under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T(-1)), which is very effective as compared to other previously reported works for a single device.

  13. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application

    PubMed Central

    Chatterjee, Prasenjit; Chow, Hwang-Cherng; Feng, Wu-Shiung

    2016-01-01

    This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET) under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T−1), which is very effective as compared to other previously reported works for a single device. PMID:27589747

  14. Current sheet formation in a sheared force-free-magnetic field. [in sun

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard

    1989-01-01

    This paper presents the results of a study showing how continuous shearing motion of magnetic footpoints in a tenuous, infinitely conducting plasma can lead to the development of current sheets, despite the absence of such sheets or even of neutral points in the initial state. The calculations discussed here verify the earlier suggestion by Low and Wolfson (1988) that extended current sheets should form due to the shearing of a force-free quadrupolar magnetic field. More generally, this work augments earlier studies suggesting that the appearance of discontinuities - current sheets - may be a necessary consequence of the topological invariance imposed on the magnetic field geometry of an ideal MHD system by virtue of its infinite conductivity. In the context of solar physics, the work shows how the gradual and continuous motion of magnetic footpoints at the solar photosphere may lead to the buildup of magnetic energy that can then be released explosively when finite conductivity effects become important and lead to the rapid dissipation of current sheets. Such energy release may be important in solar flares, coronal mass ejections, and other eruptive events.

  15. Intraoral conversion of occlusal force to electricity and magnetism by biting of piezoelectric elements.

    PubMed

    Kameda, Takashi; Ohkuma, Kazuo; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto

    2012-01-01

    Very weak electrical, magnetic and ultrasound signal stimulations are known to promote the formation, metabolism, restoration and stability of bone and surrounding tissues after treatment and operations. We have therefore investigated the possibility of intraoral generation of electricity and magnetism by occlusal force in an in vitro study. Biting bimorph piezoelectric elements with lead zirconate titanate (PZT) using dental models generated appropriate magnetism for bone formation, i. e. 0.5-0.6 gauss, and lower electric currents and higher voltages, i. e. 2.0-6.0 μA at 10-22 V (appropriate levels are 30 μA and 1.25 V), as observed by a universal testing machine. The electric currents and voltages could be changed using amplifier circuits. These results show that intraoral generation of electricity and magnetism is possible and could provide post-operative stabilization and activation of treated areas of bone and the surrounding tissues directly and/or indirectly by electrical, magnetic and ultrasound stimulation, which could accelerate healing.

  16. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application.

    PubMed

    Chatterjee, Prasenjit; Chow, Hwang-Cherng; Feng, Wu-Shiung

    2016-01-01

    This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET) under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T(-1)), which is very effective as compared to other previously reported works for a single device. PMID:27589747

  17. Strategies to minimize sedation in pediatric body magnetic resonance imaging.

    PubMed

    Jaimes, Camilo; Gee, Michael S

    2016-05-01

    The high soft-tissue contrast of MRI and the absence of ionizing radiation make it a valuable tool for assessment of body pathology in children. Infants and young children are often unable to cooperate with awake MRI so sedation or general anesthesia might be required. However, given recent data on the costs and potential risks of anesthesia in young children, there is a need to try to decrease or avoid sedation in this population when possible. Child life specialists in radiology frequently use behavioral techniques and audiovisual support devices, and they practice with children and families using mock scanners to improve child compliance with MRI. Optimization of the MR scanner environment is also important to create a child-friendly space. If the child can remain inside the MRI scanner, a variety of emerging techniques can reduce the effect of involuntary motion. Using sequences with short acquisition times such as single-shot fast spin echo and volumetric gradient echo can decrease artifacts and improve image quality. Breath-holding, respiratory triggering and signal averaging all reduce respiratory motion. Emerging techniques such as radial and multislice k-space acquisition, navigator motion correction, as well as parallel imaging and compressed sensing reconstruction methods can further accelerate acquisition and decrease motion. Collaboration among radiologists, anesthesiologists, technologists, child life specialists and families is crucial for successful performance of MRI in young children. PMID:27229508

  18. A comparison of 60 Hz uniform magnetic and electric induction in the human body

    NASA Astrophysics Data System (ADS)

    Dawson, Trevor W.; Caputa, Kris; Stuchly, Maria A.

    1997-12-01

    High-resolution computations of induced fields are used to assess equivalent source levels for human exposure to uniform low-frequency electric and magnetic fields. These results pertain to 60 Hz foot-to-head electric excitation of the body in three positions with respect to a ground plane, and to magnetic excitation by three orthogonal source orientations. All computations are based on an anatomically derived human body model composed of 1736 873 cubic voxels with 3.6 mm edges. The data for magnetic excitation are computed using a scalar potential finite difference (SPFD) method, while those for electric excitation are computed using a hybrid method based on the SPFD method coupled with a quasistatic finite difference time domain code. The data are analysed in two ways, using an induced current density threshold of . Firstly, the various field strengths required to produce a whole-body average current density magnitude equal to the threshold are derived for each configuration, and the associated current density levels in various organs and tissues are presented. It is found that the average current density magnitude values in at least one tissue group can be up to 3 (5) times greater than the whole-body average under electric (magnetic) excitation, and that the associated maximum values can be up to 46 (28) times greater than the whole-body average under electric (magnetic) excitation, for at least one source/body configuration. Secondly, the data are analysed from the opposite point of view, in which the source levels required to induce average or maximum induced current density magnitudes at the threshold level in specific tissue groups are determined. Evaluations such as the present one should prove useful in the development of protection standards, and are also expected to aid in the understanding of results from various animal and tissue culture studies.

  19. Fully Suspended, Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig With Forced Excitation

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Montague, Gerald; Duffy, Kirsten; Mehmed, Oral; Johnson, Dexter; Jansen, Ralph

    2004-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig, a significant advancement in the Dynamic Spin Rig (DSR), is used to perform vibration tests of turbomachinery blades and components under rotating and nonrotating conditions in a vacuum. The rig has as its critical components three magnetic bearings: two heteropolar radial active magnetic bearings and a magnetic thrust bearing. The bearing configuration allows full vertical rotor magnetic suspension along with a feed-forward control feature, which will enable the excitation of various natural blade modes in bladed disk test articles. The theoretical, mechanical, electrical, and electronic aspects of the rig are discussed. Also presented are the forced-excitation results of a fully levitated, rotating and nonrotating, unbladed rotor and a fully levitated, rotating and nonrotating, bladed rotor in which a pair of blades was arranged 180 degrees apart from each other. These tests include the bounce mode excitation of the rotor in which the rotor was excited at the blade natural frequency of 144 Hz. The rotor natural mode frequency of 355 Hz was discerned from the plot of acceleration versus frequency. For nonrotating blades, a blade-tip excitation amplitude of approximately 100 g/A was achieved at the first-bending critical (approximately 144 Hz) and at the first-torsional and second-bending blade modes. A blade-tip displacement of 70 mils was achieved at the first-bending critical by exciting the blades at a forced-excitation phase angle of 908 relative to the vertical plane containing the blades while simultaneously rotating the shaft at 3000 rpm.

  20. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway

    NASA Astrophysics Data System (ADS)

    Zhang, Longcai; Wang, Suyu; Wang, Jiasu; Zheng, Jun

    2007-12-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.

  1. Cantilever noise in off-cantilever-resonance force-detected nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Harrell, Lee E.; Thurber, Kent R.; Smith, Doran D.

    2004-03-01

    Early work in force-detected nuclear magnetic resonance (FD-NMR) and magnetic resonance force microscopy was restricted to nuclei with a relatively large gyromagnetic ratio γ. Increasingly, as researchers look to apply FD-NMR to practical problems, observing isotopes with a small γ is becoming necessary. The small γ of these isotopes places severe restrictions on the radio frequency field strength necessary to flip the sample spins at practical cantilever frequencies by adiabatic rapid passage. These restrictions led us to investigate the feasibility of observing FD-NMR by flipping sample spins at a rate well below the cantilever frequency. In this article we show that there is no increase in thermomechanical force noise in off-cantilever-resonance FD-NMR relative to on-cantilever-resonance work. Further, we show that working off-cantilever resonance can reduce artifacts and decrease data acquisition time. The major disadvantage to working off-cantilever resonance—reduced cantilever response—increases the importance of low noise detection of cantilever oscillation.

  2. Nonlinear Force-Free Magnetic Field Modeling of AR 10953: A Critical Assessment

    NASA Astrophysics Data System (ADS)

    De Rosa, Marc L.; Schrijver, C. J.; Barnes, G.; Leka, K. D.; Lites, B. W.; Aschwanden, M. J.; Amari, T.; Canou, A.; McTiernan, J. M.; Régnier, S.; Thalmann, J. K.; Valori, G.; Wheatland, M. S.; Wiegelmann, T.; Cheung, M. C. M.; Conlon, P. A.; Fuhrmann, M.; Inhester, B.; Tadesse, T.

    2009-05-01

    Nonlinear force-free field (NLFFF) modeling seeks to provide accurate representations of the structure of the magnetic field above solar active regions, from which estimates of physical quantities of interest (e.g., free energy and helicity) can be made. However, the suite of NLFFF algorithms have failed to arrive at consistent solutions when applied to (thus far, two) cases using the highest-available-resolution vector magnetogram data from Hinode/SOT-SP (in the region of the modeling area of interest) and line-of-sight magnetograms from SOHO/MDI (where vector data were not available). One issue is that NLFFF models require consistent, force-free vector magnetic boundary data, and vector magnetogram data sampling the photosphere do not satisfy this requirement. Consequently, several problems have arisen that are believed to affect such modeling efforts. We use AR 10953 to illustrate these problems, namely: (1) some of the far-reaching, current-carrying connections are exterior to the observational field of view, (2) the solution algorithms do not (yet) incorporate the measurement uncertainties in the vector magnetogram data, and/or (3) a better way is needed to account for the Lorentz forces within the layer between the photosphere and coronal base. In light of these issues, we conclude that it remains difficult to derive useful and significant estimates of physical quantities from NLFFF models.

  3. Force-free magnetic fields - Is there a 'loss of equilibrium'?

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.; Sturrock, P. A.

    1989-01-01

    This paper examines concept in solar physics that is known as loss of equilibrium in which a sequence of force-free magnetic fields, said to represent a possible quasi-static evolution of solar magnetic fields, reaches a critical configuration beyond which no acceptable solution of the prescribed form exists. This concept is used to explain eruptive phenomena ranging from solar flares to coronal mass ejections. Certain sequences of force-free configurations are discussed that exhibit a loss of equilibrium, and it is argued that the concept is devoid of physical significance since each sequence is defined a way that does not represent an acceptable thought experiment. For example, the sequence may be defined in terms of a global constraint on the boundary conditions, or the evolution of the sequence may require the creation of mgnetic flux that is not connected to the photosphere and is not present in the original configuration. The global constraints typically occur in using the so-called generating function method. An acceptance thought experiment is proposed to specify the field configuration in terms of photospheric boundary conditions comprising the normal component of the field and the field-line connectivity. Consider a magnetic-field sequence that, when described in terms of a generating function, exhibits a loss of equilibrium and show that, when one instead defines the sequence in terms of the corresponding boundary conditions, the sequence is well behaved.

  4. A Sound Mind in a Sound Body: That's the Philosophy behind This Classical Greek Magnet School.

    ERIC Educational Resources Information Center

    Natale, Jo Anna

    1992-01-01

    Central City High School, Kansas City, Missouri, has found its identity in the past. As part of comprehensive desegregation program, this magnet school offers its students classical Greek program that, like ancient Greek civilization, calls for as much attention to body as to mind. The costly Olympic athletic program and classical Greek curriculum…

  5. Multiple degree-of-freedom force and moment measurement for static propulsion testing using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Stuart, Keith; Bartosh, Blake

    1993-01-01

    Innovative Information Systems (IIS), Inc. is in the process of designing and fabricating a high bandwidth force and moment measuring device (i.e. the Magnetic Thruster Test Stand). This device will use active magnetic suspension to allow direct measurements of the forces and torques generated by the rocket engines of the missile under test. The principle of operation of the Magnetic Thruster Test Stand (MTTS) is based on the ability to perform very precise, high bandwidth force and position measurements on an object suspended in a magnetic field. This ability exists due to the fact that the digital servo control mechanism that performs the magnetic suspension uses high bandwidth (10 kHz) position data (via an eddy-current proximity sensor) to determine the amount of force required to maintain stable suspension at a particular point. This force is converted into required electromagnet coil current, which is then output to a current amplifier driving the coils. A discussion of how the coil current and magnetic gap distance (the distance between the electromagnet and the object being suspended) is used to determine the forces being applied from the suspended assembly is presented.

  6. The hospital library as a "magnet force" for a research and evidence-based nursing culture: A case study of two magnet hospitals in one health system.

    PubMed

    Rourke, Diane Ream

    2007-01-01

    When Baptist Hospital of Miami, then South Miami Hospital, became Magnet award-winning hospitals, their libraries' challenges increased. Could their librarians ease the transition of research and evidence-based practice into the "real world" of nursing? Did library services have a role in the ongoing Magnet re-credentialing process? This case study defines hospital library magnet force strategies that worked in the quest for this prestigious award for nursing excellence at two hospitals at Baptist Health South Florida.

  7. Estimating Three-Dimensional Orientation of Human Body Parts by Inertial/Magnetic Sensing

    PubMed Central

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation. PMID:22319365

  8. Mapping magnetized geologic structures from space: The effect of orbital and body parameters

    NASA Technical Reports Server (NTRS)

    Schnetzler, C. C.; Taylor, P. T.; Langel, R. A.

    1984-01-01

    When comparing previous satellite magnetometer missions (such as MAGSAT) with proposed new programs (for example, Geopotential Research Mission, GRM) it is important to quantify the difference in scientific information obtained. The ability to resolve separate magnetic blocks (simulating geological units) is used as a parameter for evaluating the expected geologic information from each mission. The effect of satellite orbital altitude on the ability to resolve two magnetic blocks with varying separations is evaluated and quantified. A systematic, nonlinear, relationship exists between resolution and distance between magnetic blocks as a function of orbital altitude. The proposed GRM would provide an order-of-magnitude greater anomaly resolution than the earlier MAGSAT mission for widely separated bodies. The resolution achieved at any particular altitude varies depending on the location of the bodies and orientation.

  9. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing.

    PubMed

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation.

  10. Asymptotic forms for the energy of force-free magnetic field ion figurations of translational symmetry

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Antiochos, S. K.; Klinchuk, J. A.; Roumeliotis, G.

    1994-01-01

    It is known from computer calculations that if a force-free magnetic field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution and the energy of the field increases progressively. For configurations of translationalsymmetry, it has been found empirically that the energy tends asymptotically to a certain functional form. It is here shown that analysis of a simple model of the asymptotic form of force-free fields of translational symmetry leads to and therefore justifies this functional form. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.

  11. Measurement and calculation of levitation forces between magnets and granular superconductors

    NASA Technical Reports Server (NTRS)

    Johansen, T. H.; Bratsberg, H.; Baziljevich, M.; Hetland, P. O.; Riise, A. B.

    1995-01-01

    Recent developments indicate that exploitation of the phenomenon of magnetic levitation may become one of the most important near-term applications of high-T(sub c) superconductivity. Because of this, the interaction between a strong permanent magnet(PM) and bulk high-T(sub c) superconductor (HTSC) is currently a subject of much interest. We have studied central features of the mechanics of PM-HTSC systems of simple geometries. Here we report experimental results for the components of the levitation force, their associated stiffness and mechanical ac-loss. To analyze the observed behavior a theoretical framework based on critical-state considerations is developed. It will be shown that all the mechanical properties can be explained consistently at a quantitative level wing a minimum of model parameters.

  12. Ferromagnetic resonance imaging of Co films using magnetic resonance force microscopy

    SciTech Connect

    Suh, B.J.; Hammel, P.C.; Zhang, Z.; Midzor, M.M.; Roukes, M.L.; Childress, J.R.

    1998-07-01

    Magnetic resonance force microscope (MRFM) technique has been applied to the study of spatial imaging in thin Co ferromagnetic film. A novel approach is proposesd to improve spatial resolution in MRFM, which is limited by the broad width of Co ferromagnetic resonance (FMR) line. The authors introduce a selective local field with a small yittrium iron garnet (YIG) grain. They have performed MRFM detected FMR on a sample consisting of two sections of Co films laterally separated by {approximately}20 {micro}m. The experimental results demonstrate the scanning imaging capabilities of MRFM. The results can be understood qualitatively by means of the calculated magnetic field and field gradient profiles generated by the YIG shere.

  13. Evidence of protein-free homology recognition in magnetic bead force-extension experiments

    NASA Astrophysics Data System (ADS)

    O'Lee, D. J.; Danilowicz, C.; Rochester, C.; Kornyshev, A. A.; Prentiss, M.

    2016-07-01

    Earlier theoretical studies have proposed that the homology-dependent pairing of large tracts of dsDNA may be due to physical interactions between homologous regions. Such interactions could contribute to the sequence-dependent pairing of chromosome regions that may occur in the presence or the absence of double-strand breaks. Several experiments have indicated the recognition of homologous sequences in pure electrolytic solutions without proteins. Here, we report single-molecule force experiments with a designed 60 kb long dsDNA construct; one end attached to a solid surface and the other end to a magnetic bead. The 60 kb constructs contain two 10 kb long homologous tracts oriented head to head, so that their sequences match if the two tracts fold on each other. The distance between the bead and the surface is measured as a function of the force applied to the bead. At low forces, the construct molecules extend substantially less than normal, control dsDNA, indicating the existence of preferential interaction between the homologous regions. The force increase causes no abrupt but continuous unfolding of the paired homologous regions. Simple semi-phenomenological models of the unfolding mechanics are proposed, and their predictions are compared with the data.

  14. Parametric Amplification Protocol for Frequency-Modulated Magnetic Resonance Force Microscopy Signals

    NASA Astrophysics Data System (ADS)

    Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John

    2011-03-01

    We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.

  15. The simulation of a propulsive jet and force measurement using a magnetically suspended wind tunnel model

    NASA Technical Reports Server (NTRS)

    Garbutt, K. S.; Goodyer, M. J.

    1994-01-01

    Models featuring the simulation of exhaust jets were developed for magnetic levitation in a wind tunnel. The exhaust gas was stored internally producing a discharge of sufficient duration to allow nominal steady state to be reached. The gas was stored in the form of compressed gas or a solid rocket propellant. Testing was performed with the levitated models although deficiencies prevented the detection of jet-induced aerodynamic effects. Difficulties with data reduction led to the development of a new force calibration technique, used in conjunction with an exhaust simulator and also in separate high incidence aerodynamic tests.

  16. Solutions of the Helmholtz equation with boundary conditions for force-free magnetic fields

    NASA Technical Reports Server (NTRS)

    Rasband, S. N.; Turner, L.

    1981-01-01

    It is shown that the solution, with one ignorable coordinate, for the Taylor minimum energy state (resulting in a force-free magnetic field) in either a straight cylindrical or a toroidal geometry with arbitrary cross section can be reduced to the solution of either an inhomogeneous Helmholtz equation or a Grad-Shafranov equation with simple boundary conditions. Standard Green's function theory is, therefore, applicable. Detailed solutions are presented for the Taylor state in toroidal and cylindrical domains having a rectangular cross section. The focus is on solutions corresponding to the continuous eigenvalue spectra. Singular behavior at 90 deg corners is explored in detail.

  17. Concerning the extrapolation of solar nonlinear force-free magnetic fields

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen

    1990-01-01

    This paper contains a review and discussion of the mathematical basis of the extrapolation techniques involved in using photospheric vector magnetograms to obtain the coronal field above the surface. The two basic techniques employing the Cauchy initial value problem and the variational techniques are reviewed in terms of the mathematical and practical applications. A short review is presented of the current research on numerical modeling techniques in the area of extrapolating vector magnetograms; specifically, algorithms to extrapolate nonlinear force-free magnetic fields from the photosphere are considered.

  18. The calculation of force-free fields from discrete flux distributions. [for chromospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Harvey, J. W.

    1975-01-01

    This paper presents particularly simple mathematical formulas for the calculation of force-free fields of constant alpha from the distribution of discrete sources on a flat surface. The advantage of these formulas lies in their physical simplicity and the fact that they can be easily used in practice to calculate the fields. The disadvantage is that they are limited to fields of 'sufficiently small alpha'. These formulas may be useful in the study of chromospheric magnetic fields by the comparison of high-resolution H-alpha photographs and photospheric magnetograms.

  19. Lubricant Supply from Crystal Boundaries of Perpendicular Magnetic Disk Evaluated by Lateral Modulation Friction Force Microscopy

    NASA Astrophysics Data System (ADS)

    Miyake, Shojiro; Takahashi, Yuuzi; Wang, Mei; Saitoh, Tadashi; Matsunuma, Satoshi

    2004-11-01

    The tribological behavior of perfluoropolyether (PFPE) films attached to perpendicular recording magnetic disks coated with diamondlike carbon (DLC) was studied in lateral vibration wear tests using lateral modulus friction force microscopy (LM-FFM). The viscoelastic and frictional properties of these PFPE films without heat cure were improved due to the lubricant supply by tip sliding. However, the PFPE films were easily removed with increasing load and lateral vibration amplitude following heat treatment since the free lubricants on the films solidified resulting in the lost of fluidity.

  20. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    PubMed Central

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-01-01

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912