Science.gov

Sample records for magnetic chitosan nanoparticles

  1. Chitosan magnetic nanoparticles for drug delivery systems.

    PubMed

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  2. Synthesis and application of magnetic chitosan nanoparticles in oilfield

    NASA Astrophysics Data System (ADS)

    Lian, Qi; Zheng, Xuefang

    2016-01-01

    The novel magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticles has the advantage of excellent biodegradation and a high level of controllability. The Co0.5Mn0.5Fe2O4-chitosan nanoparticles was prepared successfully. The size of the Co0.5Mn0.5Fe2O4-chitosan nanoparticles were all below 100 nm. The saturated magnetization of the Co0.5Mn0.5Fe2O4-chitosan nanoparticles could reach 80 emu/g and showed the characteristics of superparamagnetism at the same time. The image of TEM and SEM electron microscopy showed that the cubic-shape magnetic Co0.5Mn0.5Fe2O4 particles were encapsulated by the spherical chitosan nanoparticles. The evaluation on the interfacial properties of the product showed that the interfacial tension between crude oil and water could be reduce to ultra-low values as low as 10-3 mN/m when the magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticle was used in several blocks in Shengli Oilfield without other additives. Meanwhile, the magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticles possessed good salt-resisting capacity.

  3. Synthesis of magnetic cytosine-imprinted chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Mei-Hwa; Ahluwalia, Arti; Chen, Jian-Zhou; Shih, Neng-Lang; Lin, Hung-Yin

    2017-02-01

    Molecularly imprinted polymer nanoparticles incorporating magnetic nanoparticles (MNPs) have been investigated for their selective adsorption properties. Here we describe the synthesis and characterization of magnetic cytosine-imprinted chitosan nanoparticles (CIPs) for gene delivery. In particular, CIPs carrying the mammalian expression plasmid of enhanced green fluorescent protein were prepared by the co-precipitation of MNPs, chitosan and a template nucleobase (cytosine). The results show that the selective reabsorption of cytosine to magnetic CIPs was at least double that of non-imprinted polymers and other nucleobases (such as adenine and thymine). The gene carrier CIPs were used for the transfection of human embryonic kidney 293 cells showing dramatic increase their efficiency with that of conventional chitosan nanoparticles. Furthermore, the gene carrier magnetic CIPs also exhibit low toxicity compared to that of commercially available cationic lipids.

  4. Synthesis of magnetic cytosine-imprinted chitosan nanoparticles.

    PubMed

    Lee, Mei-Hwa; Ahluwalia, Arti; Chen, Jian-Zhou; Shih, Neng-Lang; Lin, Hung-Yin

    2017-02-24

    Molecularly imprinted polymer nanoparticles incorporating magnetic nanoparticles (MNPs) have been investigated for their selective adsorption properties. Here we describe the synthesis and characterization of magnetic cytosine-imprinted chitosan nanoparticles (CIPs) for gene delivery. In particular, CIPs carrying the mammalian expression plasmid of enhanced green fluorescent protein were prepared by the co-precipitation of MNPs, chitosan and a template nucleobase (cytosine). The results show that the selective reabsorption of cytosine to magnetic CIPs was at least double that of non-imprinted polymers and other nucleobases (such as adenine and thymine). The gene carrier CIPs were used for the transfection of human embryonic kidney 293 cells showing dramatic increase their efficiency with that of conventional chitosan nanoparticles. Furthermore, the gene carrier magnetic CIPs also exhibit low toxicity compared to that of commercially available cationic lipids.

  5. Magnetic core-shell chitosan nanoparticles: rheological characterization and hyperthermia application.

    PubMed

    Zamora-Mora, Vanessa; Fernández-Gutiérrez, Mar; San Román, Julio; Goya, Gerardo; Hernández, Rebeca; Mijangos, Carmen

    2014-02-15

    Stabilized magnetic nanoparticles are the subject of intense research for targeting applications and this work deals with the design, preparation and application of specific core-shell nanoparticles based on ionic crosslinked chitosan. The nanometric size of the materials was demonstrated by dynamic light scattering (DLS) and field emission scanning electron microscopy (FESEM) that also proved an increase of the size of chitosan nanoparticles (NPs) with the magnetite content. Steady oscillatory rheology measurements revealed a gel-like behavior of aqueous dispersions of chitosan NPs with concentrations ranging from 0.5% to 2.0% (w/v). The cytotoxicity of all the materials synthesized was analyzed in human fibroblasts cultures using the Alamar Blue and lactate dehydrogenase (LDH) assays. The measured specific power absorption under alternating magnetic fields (f = 580 kHz, H = 24 kA/m) indicated that magnetic core-shell chitosan NPs can be useful as remotely driven heaters for magnetic hyperthermia.

  6. Fluorescent chitosan functionalized magnetic polymeric nanoparticles: Cytotoxicity and in vitro evaluation of cellular uptake.

    PubMed

    Kaewsaneha, Chariya; Jangpatarapongsa, Kulachart; Tangchaikeeree, Tienrat; Polpanich, Duangporn; Tangboriboonrat, Pramuan

    2014-11-01

    Nanoparticles possessing magnetic and fluorescent properties were fabricated by the covalent attachment of fluorescein isothiocyanate onto magnetic polymeric nanoparticles functionalized by chitosan. The synthesized magnetic polymeric nanoparticles-chitosan/fluorescein isothiocyanate were successfully used for labeling the living organ and blood-related cancer cells, i.e., HeLa, Hep G2, and K562 cells. The cytotoxicity test of nanoparticles at various incubation times indicated the high cell viability (>90%) without morphological change. The confocal microscopy revealed that they could pass through cell membrane within 2 h for K562 cells and 3 h for HeLa and Hep G2 cells and then confine inside cytoplasm of all types of tested cells for at least 24 h. Therefore, the synthesized magnetic polymeric nanoparticles-chitosan/fluorescein isothiocyanate would potentially be used as cell tracking in theranostic applications.

  7. Removal of Mercury in Liquid Hydrocarbons using Zeolites Modified with Chitosan and Magnetic Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Susanto, B. H.; Nasution, D. A.; Jonathan, R.; Khairul, W. M.

    2017-07-01

    Clinoptilolite zeolites were chemically modified with chitosan (Chit) and magnetic iron oxide nanoparticles (Fe3O4NPs) were synthesized for removal of mercury from liquid condensate hydrocarbon. The mercury content was in liquid hydrocarbon which was measured by Lumex mercury analyzer. The performance of sorbents based on zeolites modified chitosan and magnetic nanoparticles were examined on the real liquid condensate hydrocarbon. Removal of mercury using a prestine clinoptilolite zeolites, and zeolites modified chitosan (zeolites-Chit) were ∼4.5, and ∼35%, respectively. The effects of magnetic nanoparticles in zeolites-Chit sorbents were significant to reduce the mercury content in liquid condensate hydrocarbon which were from ∼63 to ∼66%. Increasing the mass ratio of Fe3O4 that influenced to the BET surface area of natural zeolites. Zeolites-Chit-Fe3O4NPs as an efficient sorbents are potential ideal to remove mercury in hydrocarbon for practical applications.

  8. Chitosan-coated magnetic nanoparticles prepared in one step by reverse microemulsion precipitation.

    PubMed

    López, Raúl G; Pineda, María G; Hurtado, Gilberto; León, Ramón Díaz de; Fernández, Salvador; Saade, Hened; Bueno, Darío

    2013-09-27

    Chitosan-coated magnetic nanoparticles (CMNP) were obtained at 70 °C and 80 °C in a one-step method, which comprises precipitation in reverse microemulsion in the presence of low chitosan concentration in the aqueous phase. X-ray diffractometry showed that CMNP obtained at both temperatures contain a mixture of magnetite and maghemite nanoparticles with ≈4.5 nm in average diameter, determined by electron microscopy, which suggests that precipitation temperature does not affect the particle size. The chitosan coating on nanoparticles was inferred from Fourier transform infrared spectrometry measurements; furthermore, the carbon concentration in the nanoparticles allowed an estimation of chitosan content in CMNP of 6%-7%. CMNP exhibit a superparamagnetic behavior with relatively high final magnetization values (≈49-53 emu/g) at 20 kOe and room temperature, probably due to a higher magnetite content in the mixture of magnetic nanoparticles. In addition, a slight direct effect of precipitation temperature on magnetization was identified, which was ascribed to a possible higher degree of nanoparticles crystallinity as temperature at which they are obtained increases. Tested for Pb2+ removal from a Pb(NO3)2 aqueous solution, CMNP showed a recovery efficacy of 100%, which makes them attractive for using in heavy metals ion removal from waste water.

  9. Chitosan-Coated Magnetic Nanoparticles Prepared in One Step by Reverse Microemulsion Precipitation

    PubMed Central

    López, Raúl G.; Pineda, María G.; Hurtado, Gilberto; de León, Ramón Díaz; Fernández, Salvador; Saade, Hened; Bueno, Darío

    2013-01-01

    Chitosan-coated magnetic nanoparticles (CMNP) were obtained at 70 °C and 80 °C in a one-step method, which comprises precipitation in reverse microemulsion in the presence of low chitosan concentration in the aqueous phase. X-ray diffractometry showed that CMNP obtained at both temperatures contain a mixture of magnetite and maghemite nanoparticles with ≈4.5 nm in average diameter, determined by electron microscopy, which suggests that precipitation temperature does not affect the particle size. The chitosan coating on nanoparticles was inferred from Fourier transform infrared spectrometry measurements; furthermore, the carbon concentration in the nanoparticles allowed an estimation of chitosan content in CMNP of 6%–7%. CMNP exhibit a superparamagnetic behavior with relatively high final magnetization values (≈49–53 emu/g) at 20 kOe and room temperature, probably due to a higher magnetite content in the mixture of magnetic nanoparticles. In addition, a slight direct effect of precipitation temperature on magnetization was identified, which was ascribed to a possible higher degree of nanoparticles crystallinity as temperature at which they are obtained increases. Tested for Pb2+ removal from a Pb(NO3)2 aqueous solution, CMNP showed a recovery efficacy of 100%, which makes them attractive for using in heavy metals ion removal from waste water. PMID:24084716

  10. Thin chitosan films containing super-paramagnetic nanoparticles with contrasting capability in magnetic resonance imaging.

    PubMed

    Farjadian, Fatemeh; Moradi, Sahar; Hosseini, Majid

    2017-03-01

    Magnetic nanoparticles have found application as MRI contrasting agents. Herein, chitosan thin films containing super-paramagnetic iron oxide nanoparticles (SPIONs) are evaluated in magnetic resonance imaging (MRI). To determine their contrasting capability, super-paramagnetic nanoparticles coated with citrate (SPIONs-cit) were synthesized. Then, chitosan thin films with different concentrations of SPIONs-cit were prepared and their MRI data (i.e., r 2 and r 2*) was evaluated in an aqueous medium. The synthesized SPIONs-cit and chitosan/SPIONs-cit films were characterized by FTIR, EDX, XRD as well as VSM with the morphology evaluated by SEM and AFM. The nanoparticle sizes and distribution confirmed well-defined nanoparticles and thin films formation along with high contrasting capability in MRI. Images revealed well-dispersed uniform nanoparticles, averaging 10 nm in size. SPIONs-cit's hydrodynamic size averaged 23 nm in diameter. The crystallinity obeyed a chitosan and SPIONs pattern. The in vitro cellular assay of thin films with a novel route was performed within Hek293 cell lines showing that thin films can be biocompatible.

  11. New hybrid magnetic nanoparticles based on chitosan-maltose derivative for antitumor drug delivery.

    PubMed

    Alupei, Liana; Peptu, Catalina Anisoara; Lungan, Andreea-Maria; Desbrieres, Jacques; Chiscan, Ovidiu; Radji, Sadia; Popa, Marcel

    2016-11-01

    The aim of the present study is to obtain, for the first time, polymer magnetic nanoparticles based on the chitosan-maltose derivative and magnetite. By chemically modifying the chitosan, its solubility in aqueous media was improved, which in turn facilitates the nanoparticles' preparation. Resulting polymers exhibit enhanced hydrophilia, which is an important factor in increasing the retention time of nanoparticles in the blood flow. The preparation of nanoparticles relied on the double crosslinking technique (ionic and covalent) in reverse emulsion which ensures the mechanical stability of the polymer carrier. The characterization of both the chitosan derivative and nanoparticles was accomplished by Fourier Transform Infrared Spectroscopy, Nuclear Magnetic Resonance Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic Force Microscopy, Vibrating Sample Magnetometry, and Thermogravimetric Analysis. The evaluation of morphological, dimensional, structural, and magnetical properties, as well as thermal stability and swelling behavior of nanoparticles was made from the point of view of the polymer/magnetite ratio. The study of 5-Fluorouracil loading and release kinetics as well as evaluating the cytotoxicity and hemocompatibility of nanoparticles justify their adequate behavior in their potential use as devices for targeted transport of antitumor drugs.

  12. Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Sun, Yun; Chen, Zhi-long; Yang, Xiao-xia; Huang, Peng; Zhou, Xin-ping; Du, Xiao-xia

    2009-04-01

    Photodynamic therapy (PDT) has become an increasingly recognized alternative to cancer treatment in clinic. However, PDT therapy agents, namely photosensitizer (PS), are limited in application as a result of prolonged cutaneous photosensitivity, poor water solubility and inadequate selectivity, which are encountered by numerous chemical therapies. Magnetic chitosan nanoparticles provide excellent biocompatibility, biodegradability, non-toxicity and water solubility without compromising their magnetic targeting. Nevertheless, no previous attempt has been reported to develop an in vivo magnetic drug delivery system with chitosan nanoparticles for magnetic resonance imaging (MRI) monitored targeting photodynamic therapy. In this study, magnetic targeting chitosan nanoparticles (MTCNPs) were prepared and tailored as a drug delivery system and imaging agents for PS, designated as PHPP. Results showed that PHPP-MTCNPs could be used in MRI monitored targeting PDT with excellent targeting and imaging ability. Non-toxicity and high photodynamic efficacy on SW480 carcinoma cells both in vitro and in vivo were achieved with this method at the level of 0-100 µM. Notably, localization of nanoparticles in skin and hepatic tissue was significantly less than in tumor tissue, therefore photosensitivity and hepatotoxicity can be attenuated.

  13. Synthesis and Characterization of Multifunctional Chitosan-MnFe2O4 Nanoparticles for Magnetic Hyperthermia and Drug Delivery

    PubMed Central

    Kim, Dong-Hyun; Nikles, David E.; Brazel, Christopher S.

    2010-01-01

    Multifunctional nanoparticles composed of MnFe2O4 were encapsulated in chitosan for investigation of system to combine magnetically-triggered drug delivery and localized hyperthermia for cancer treatment with the previously published capacity of MnFe2O4 to be used as an efficient MRI contrast agent for cancer diagnosis. This paper focuses on the synthesis and characterization of magnetic MnFe2O4 nanoparticles, their dispersion in water and their incorporation in chitosan, which serves as a drug carrier. The surface of the MnFe2O4 nanoparticles was modified with meso-2,3-di-mercaptosuccinic acid (DMSA) to develop stable aqueous dispersions. The nanoparticles were coated with chitosan, and the magnetic properties, heat generation and hydrodynamic size of chitosan-coated MnFe2O4 were evaluated for various linker concentrations and in a range of pH conditions.

  14. Targeted delivery of doxorubicin to breast cancer cells by magnetic LHRH chitosan bioconjugated nanoparticles.

    PubMed

    Varshosaz, Jaleh; Hassanzadeh, Farshid; Aliabadi, Hojat Sadeghi; Khoraskani, Fatemeh Rabbani; Mirian, Mina; Behdadfar, Behshid

    2016-12-01

    The novel dual targeted nanoparticles loaded with doxorubicin (DOX) and magnetic nanoparticles (MNPs) were prepared for treatment of breast cancer. Nanoparticles were produced by a layer-by-layer technique and functionalized with a bioconjugate of chitosan-poly(methyl vinyl ether maleic acid)(PMVMA)-LHRH to target LHRH receptors. The successful production of chitosan-PMVMA copolymer and its conjugation to LHRH was confirmed by FTIR and (1)HNMR spectroscopy. Capillary electrophoresis analysis showed 72.51% LHRH conjugation efficiency. Transmission electron microscopy and thermogravimetric analysis showed the entrapment of the MNPs in the core of the nanoparticles and vibrating sample magnetometery confirmed their paramagnetic properties. The iron content of nanoparticles determined by inductively coupled plasma optical emission spectrometry showed to be between 3.5-84%. Particle size, zeta potential, drug entrapment and release efficiency of the nanoparticles were 88.1-182.6nm, 10-30mV, 62.3-87.6% and 79.8-83.4%, respectively. No significant protein binding was seen by nanoparticles. The MTT assay showed in LHRH positive cells of MCF-7 the IC50 of the drug reduced to about 2 fold compared to the free drug. By saturation of LHRH receptors the viable MCF7 cells increased significantly after exposure with the targeted nanoparticles. Therefore, the cellular uptake of the nanoparticles might be done by active endocytosis through the LHRH receptors.

  15. Artemisinin loaded chitosan magnetic nanoparticles for theefficient targeting to the breast cancer.

    PubMed

    Natesan, Subramanian; Ponnusamy, Chandrasekar; Sugumaran, Abimanyu; Chelladurai, Senthilkumar; Palaniappan, Sharavanan Shanmugam; Palanichamy, Rajaguru

    2017-03-27

    Artemisinin, a natural anti-malarial agent, also possesses anti-proliferative and anti-angiogenic activity in cancer cells with very low toxicity to normal healthy cells. Drug loaded magnetic nanoparticlesby using external magnetic field could selectively accumulate the drug at the target site and thereby reduce the doses required to achieve therapeutic concentration which may otherwise produce serious side effects on healthy cells. In the present study the artemisinin magnetic nanoparticles were successfully formulated using chitosan by ionic-gelation method. The developed magnetic nanoparticles of artemisinin were smooth and spherical in natureand their size was in the range of 349 to 445nm. The polydispersity index (PDI) and zeta potential of the formulated nanoparticles were in the range of 0.373 to 0.908 and -9.34 to -33.3 respectively. They showed 55% to 62.5% of drug encapsulation efficiency and 20% to 25% drug loading capacity. Around 62% to 78% of artemisinin was released from the artemisinin magnetic nanoparticles over the period of 48h. On application of physiologically acceptable external magnetic field, FITC conjugated artemisinin magnetic nanoparticles showed an enhanced accumulation of nanoparticles in the 4T1 breast tumour tissues of BALB/c mice model.

  16. Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials.

    PubMed

    Vo, Duc-Thang; Sabrina, Sabrina; Lee, Cheng-Kang

    2017-04-01

    Carboxymethyl chitosan (CMCS) was known to have a much better antimicrobial activity than chitosan due to the increased cationic -NH3(+) groups resulted from the intra- and intermolecular interactions between the carboxyl and amino groups. CMCS was grafted onto the surface of silica coated magnetic nanoparticles (MNPs) to obtain magnetically retrievable and deliverable antimicrobial nanoparticles (MNPs@CMCS). The presence of carboxylate groups in CMCS not only enhanced antimicrobial activity but also enabled Ag ions chelating ability to induce the in situ formation of Ag nanoparticles (AgNPs). The deposition of AgNPs on the surface of MNPs@CMCS could significantly increase its antimicrobial activity against planktonic cells due to the dual action of CMCS and AgNPs. Due to its high magnetism, the as-prepared MNPs@CMCS-Ag could be efficiently delivered into an existing biofilm under the guidance of an applied magnetic field. Without direct contact, the Ag ions and/or radical oxygen species (ROS) released from the deposited Ag nanoparticles could effectively kill the bacteria embedded in the extracellular polymeric substances (EPS) matrix of biofilm.

  17. Elucidation on enhanced application of synthesised kojic acid immobilised magnetic and chitosan tri-polyphosphate nanoparticles as antibacterial agents.

    PubMed

    Chaudhary, Jignesh; Lakhawat, Sudarshan; Pathak, Amrendra Nath

    2015-12-01

    Kojic acid (KA) is a secondary metabolite which is secreted by several aspergillus species. It is a multi-functional skeleton from which many derivatives can be synthesised and applied in various areas of biotechnology. KA grafting on synthesised magnetic nanoparticles (MNPs) and chitosan tri-polyphosphate (chitosan-TPP) nanoparticles was successfully done and characterised by Fourier transformation infrared spectroscopy. It was observed that amino propyl triethoxy silane-coated MNPs and chitosan-TPP nanoparticles enhanced the antibacterial activity of KA against both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa). The organic constitution and significant antibacterial activity of KA-chitosan-TPP nanoparticles can be applicable in the field of medical biotechnology.

  18. Sustained Release of Prindopril Erbumine from Its Chitosan-Coated Magnetic Nanoparticles for Biomedical Applications

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2013-01-01

    The preparation of magnetic nanoparticles coated with chitosan-prindopril erbumine was accomplished and confirmed by X-ray diffraction, TEM, magnetic measurements, thermal analysis and infrared spectroscopic studies. X-ray diffraction and TEM results demonstrated that the magnetic nanoparticles were pure iron oxide phase, having a spherical shape with a mean diameter of 6 nm, compared to 15 nm after coating with chitosan-prindopril erbumine (FCPE). Fourier transform infrared spectroscopy study shows that the coating of iron oxide nanoparticles takes place due to the presence of some bands that were emerging after the coating process, which belong to the prindopril erbumine (PE). The thermal stability of the PE in an FCPE nanocomposite was remarkably enhanced. The release study showed that around 89% of PE could be released within about 93 hours by a phosphate buffer solution at pH 7.4, which was found to be of sustained manner governed by first order kinetic. Compared to the control (untreated), cell viability study in 3T3 cells at 72 h post exposure to both the nanoparticles and the pure drug was found to be sustained above 80% using different doses. PMID:24300098

  19. Potentiometric urea biosensor utilizing nanobiocomposite of chitosan-iron oxide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, A.; AlSalhi, M. S.; Atif, M.; Ansari, Anees A.; Israr, M. Q.; Sadaf, J. R.; Ahmed, E.; Nur, O.; Willander, M.

    2013-02-01

    The iron oxide (Fe3O4) magnetic nanoparticles have been fabricated through a simple, cheap and reproducible approach. Scanning electron microscope, x-rays powder diffraction of the fabricated nanoparticles. Furthermore, the fabrication of potentiometric urea biosensor is carried out through drop casting the initially prepared isopropanol and chitosan solution, containing Fe3O4 nanoparticles, on the glass fiber filter with a diameter of 2 cm and a copper wire (of thickness -500 μm) has been utilized to extract the voltage signal from the functionalized nanoparticles. The functionalization of surface of the Fe3O4 nanoparticles is obtained by the electrostatically immobilization of urease onto the nanobiocomposite of the chitosan- Fe3O4 in order to enhance the sensitivity, specificity, stability and reusability of urea biosensor. Electrochemical detection procedure has been adopted to measure the potentiometric response over the wide logarithmic concentration range of the 0.1 mM to 80 mM. The Fe3O4 nanoparticles based urea biosensor depicts good sensitivity with ~42 mV per decade at room temperature. Durability of the biosensor could be considerably enhanced by applying a thin layer of the nafion. In addition, the reasonably stable output response of the biosensor has been found to be around 12 sec.

  20. Trichoderma sp. Spores and Kluyveromyces marxianus Cells Magnetic Separation: Immobilization on Chitosan-Coated Magnetic Nanoparticles.

    PubMed

    Palacios-Ponce, Sócrates; Ramos-González, Rodolfo; Ruiz, Héctor A; Aguilar, Miguel A; Martínez-Hernández, José L; Segura-Ceniceros, Elda P; Aguilar, Cristóbal N; Michelena, Georgina; Ilyina, Anna

    2016-12-29

    In the present study, the interactions between chitosan-coated magnetic nanoparticles (C-MNP) and Trichoderma sp. spores as well as Kluyveromyces marxianus cells were studied. By means of Plackett-Burman design, it was demonstrated that factors which directly influenced on yeast cells immobilization and magnetic separation were: inoculum and C-MNP quantity, stirring speed, interaction time, and volume of medium, while in the case of fungal spores, the temperature also was disclosed as an influencing factor. Langmuir and Freundlich models were applied for the mathematical analysis of adsorption isotherms at 30 °C. For Trichoderma sp. spores adsorption isotherm, the highest correlation coefficient was observed for lineal function of Langmuir model with a maximum adsorption capacity at 5.00E+09 spores (C-MNP g(-1)). Adsorption isotherm of K. marxianus cells was better adjusted to Freundlich model with a constant (Kf) estimated as 2.05E+08 cells (C-MNP g(-1)). Both systems may have a novel application in fermentation processes assisted with magnetic separation of biomass.

  1. Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis.

    PubMed

    Sánchez-Ramírez, Jaquelina; Martínez-Hernández, José L; Segura-Ceniceros, Patricia; López, Guillermo; Saade, Hened; Medina-Morales, Miguel A; Ramos-González, Rodolfo; Aguilar, Cristóbal N; Ilyina, Anna

    2017-01-01

    In the present study, Trichoderma reesei cellulase was covalently immobilized on chitosan-coated magnetic nanoparticles using glutaraldehyde as a coupling agent. The average diameter of magnetic nanoparticles before and after enzyme immobilization was about 8 and 10 nm, respectively. The immobilized enzyme retained about 37 % of its initial activity, and also showed better thermal and storage stability than free enzyme. Immobilized cellulase retained about 80 % of its activity after 15 cycles of carboxymethylcellulose hydrolysis and was easily separated with the application of an external magnetic field. However, in this reaction, K m was increased eight times. The immobilized enzyme was able to hydrolyze lignocellulosic material from Agave atrovirens leaves with yield close to the amount detected with free enzyme and it was re-used in vegetal material conversion up to four cycles with 50 % of activity decrease. This provides an opportunity to reduce the enzyme consumption during lignocellulosic material saccharification for bioethanol production.

  2. Biodegradable Chitosan Magnetic Nanoparticle Carriers for Sub-Cellular Targeting Delivery of Artesunate for Efficient Treatment of Breast Cancer

    NASA Astrophysics Data System (ADS)

    Subramanian, Natesan; Abimanyu, Sugumaran; Vinoth, Jeevanesan; Sekar, Ponnusamy Chandra

    2010-12-01

    Artesunate is a semi-synthetic derivative of artemisinin, the active principle extracted from Artemisia annua. It possesses good anti-proliferative activity and anti-angiogenic activity with very low toxicity to normal healthy cells. The drawback of most cancer drugs is their inability to accumulate selectively in the cancerous cells. So, large quantities of doses have to be administered to get the required therapeutic concentration in the target site and it resulted in many serious side effects due to the exposure of healthy cells to higher concentrations of cytotoxic drugs. The problem may be solved by selectively and quantitatively accumulating the drug at target site using magnetic nanoparticles guided by an externally applied magnetic field. A modest attempt has been made in this present study, the artesunate magnetic nanoparticle was successfully formulated using two forms of chitosan and evaluated for its in-vitro characteristics like surface morphology, particle size and distribution, zeta potential, magnetic susceptibility, encapsulation efficiency, loading capacity and in-vitro drug release. The synthesized magnetite size was 73 nm and the size of developed magnetic nanoparticles of artesunate was in the range of 90 to 575 nm. Acetic acid soluble chitosan at low concentration exhibit highest encapsulation efficiency and drug loading whereas increase in water soluble chitosan concentration increases the encapsulation efficiency and drug loading in formulations. The developed chitosan magnetic nanoparticles of artesunate shows better release characteristics and may be screened for its in-vivo breast cancer activity.

  3. Cobalt oxide magnetic nanoparticles-chitosan nanocomposite based electrochemical urea biosensor

    NASA Astrophysics Data System (ADS)

    Ali, A.; Israr-Qadir, M.; Wazir, Z.; Tufail, M.; Ibupoto, Z. H.; Jamil-Rana, S.; Atif, M.; Khan, S. A.; Willander, M.

    2015-04-01

    In this study, a potentiometric urea biosensor has been fabricated on glass filter paper through the immobilization of urease enzyme onto chitosan/cobalt oxide (CS/Co3O4) nanocomposite. A copper wire with diameter of 500 µm is attached with nanoparticles to extract the voltage output signal. The shape and dimensions of Co3O4 magnetic nanoparticles are investigated by scanning electron microscopy and the average diameter is approximately 80-100 nm. Structural quality of Co3O4 nanoparticles is confirmed from X-ray powder diffraction measurements, while the Raman spectroscopy has been used to understand the chemical bonding between different atoms. The magnetic measurement has confirmed that Co3O4 nanoparticles show ferromagnetic behavior, which could be attributed to the uncompensated surface spins and/or finite size effects. The ferromagnetic order of Co3O4 nanoparticles is raised with increasing the decomposition temperature. A physical adsorption method is adopted to immobilize the surface of CS/Co3O4 nanocomposite. Potentiometric sensitivity curve has been measured over the concentration range between 1 × 10-4 and 8 × 10-2 M of urea electrolyte solution revealing that the fabricated biosensor holds good sensing ability with a linear slope curve of 45 mV/decade. In addition, the presented biosensor shows good reusability, selectivity, reproducibility and resistance against interferers along with the stable output response of 12 s.

  4. Covalent Immobilization of Penicillin G Acylase onto Fe3O4@Chitosan Magnetic Nanoparticles.

    PubMed

    Ling, Xiao-Min; Wang, Xiang-Yu; Ma, Ping; Yang, Yi; Qin, Jie-Mei; Zhang, Xue-Jun; Zhang, Ye-Wang

    2016-05-28

    Penicillin G acylase (PGA) was immobilized on magnetic Fe3O4@chitosan nanoparticles through the Schiff base reaction. The immobilization conditions were optimized as follows: enzyme/support 8.8 mg/g, pH 6.0, time 40 min, and temperature 25°C. Under these conditions, a high immobilization efficiency of 75% and a protein loading of 6.2 mg/g-support were obtained. Broader working pH and higher thermostability were achieved by the immobilization. In addition, the immobilized PGA retained 75% initial activity after ten cycles. Kinetic parameters Vmax and Km of the free and immobilized PGAs were determined as 0.91 mmol/min and 0.53 mmol/min, and 0.68 mM and 1.19 mM, respectively. Synthesis of amoxicillin with the immobilized PGA was carried out in 40% ethylene glycol at 25°C and a conversion of 72% was obtained. These results showed that the immobilization of PGA onto magnetic chitosan nanoparticles is an efficient and simple way for preparation of stable PGA.

  5. Construction of Ang2-siRNA chitosan magnetic nanoparticles and the effect on Ang2 gene expression in human malignant melanoma cells.

    PubMed

    Liu, Zhao-Liang; You, Cai-Lian; Wang, Biao; Lin, Jian-Hong; Hu, Xue-Feng; Shan, Xiu-Ying; Wang, Mei-Shui; Zheng, Hou-Bing; Zhang, Yan-Ding

    2016-06-01

    The aim of the present study was to construct angiopoietin-2 (Ang2)-small interfering (si)RNA chitosan magnetic nanoparticles and to observe the interference effects of the nanoparticles on the expression of the Ang2 gene in human malignant melanoma cells. Ang2-siRNA chitosan magnetic nanoparticles were constructed and transfected into human malignant melanoma cells in vitro. Red fluorescent protein expression was observed, and the transfection efficiency was analyzed. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to assess the inhibition efficiency of Ang2 gene expression. Ang2-siRNA chitosan magnetic nanoparticles were successfully constructed, and at a mass ratio of plasmid to magnetic chitosan nanoparticles of 1:100, the transfection efficiency into human malignant melanoma cells was the highest of the ratios assessed, reaching 61.17%. RT-qPCR analysis showed that the magnetic chitosan nanoparticles effectively inhibited Ang2 gene expression in cells, and the inhibition efficiency reached 59.56% (P<0.05). Ang2-siRNA chitosan magnetic nanoparticles were successfully constructed. The in vitro studies showed that the nanoparticles inhibited Ang2 gene expression in human malignant melanoma tumor cells, which laid the foundation and provided experimental evidence for additional future in vivo studies of intervention targeting malignant melanoma tumor growth in nude mice.

  6. N-hexanoyl chitosan stabilized magnetic nanoparticles: Implication for cellular labeling and magnetic resonance imaging

    PubMed Central

    Bhattarai, Shanta R; Kc, Remant B; Kim, Sun Y; Sharma, Manju; Khil, Myung S; Hwang, Pyoung H; Chung, Gyung H; Kim, Hak Y

    2008-01-01

    This project involved the synthesis of N-hexanoyl chitosan or simply modified chitosan (MC) stabilized iron oxide nanoparticles (MC-IOPs) and the biological evaluation of MC-IOPs. IOPs containing MC were prepared using conventional methods, and the extent of cell uptake was evaluated using mouse macrophages cell line (RAW cells). MC-IOPs were found to rapidly associate with the RAW cells, and saturation was typically reached within the 24 h of incubation at 37°C. Nearly 8.53 ± 0.31 pg iron/cell were bound or internalized at saturation. From these results, we conclude that MC-IOPs effectively deliver into RAW cells in vitro and we also hope MC-IOPs can be used for MRI enhancing agents in biomedical fields. PMID:18173857

  7. Magnetic removal of Entamoeba cysts from water using chitosan oligosaccharide-coated iron oxide nanoparticles.

    PubMed

    Shukla, Sudeep; Arora, Vikas; Jadaun, Alka; Kumar, Jitender; Singh, Nishant; Jain, Vinod Kumar

    2015-01-01

    Amebiasis, a major health problem in developing countries, is the second most common cause of death due to parasitic infection. Amebiasis is usually transmitted by the ingestion of Entamoeba histolytica cysts through oral-fecal route. Herein, we report on the use of chitosan oligosaccharide-functionalized iron oxide nanoparticles for efficient capture and removal of pathogenic protozoan cysts under the influence of an external magnetic field. These nanoparticles were synthesized through a chemical synthesis process. The synthesized particles were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and zeta potential analysis. The particles were found to be well dispersed and uniform in size. The capture and removal of pathogenic cysts were demonstrated by fluorescent microscopy, transmission electron microscopy, and scanning electron microscopy (SEM). Three-dimensional modeling of various biochemical components of cyst walls, and thereafter, flexible docking studies demonstrate the probable interaction mechanism of nanoparticles with various components of E. histolytica cyst walls. Results of the present study suggest that E. histolytica cysts can be efficiently captured and removed from contaminated aqueous systems through the application of synthesized nanoparticles.

  8. Magnetophoretic harvesting of oleaginous Chlorella sp. by using biocompatible chitosan/magnetic nanoparticle composites.

    PubMed

    Lee, Kyubock; Lee, So Yeun; Na, Jeong-Geol; Jeon, Sang Goo; Praveenkumar, Ramasamy; Kim, Dong-Myung; Chang, Won-Seok; Oh, You-Kwan

    2013-12-01

    The consumption of energy and resources such as water in the cultivation and harvesting steps should be minimized to reduce the overall cost of biodiesel production from microalgae. Here we present a biocompatible and rapid magnetophoretic harvesting process of oleaginous microalgae by using chitosan-Fe3O4 nanoparticle composites. Over 99% of microalgae was harvested by using the composites and the external magnetic field without changing the pH of culture medium so that it may be reused for microalgal culture without adverse effect on the cell growth. Depending on the working volume (20-500 mL) and the strength of surface magnetic-field (3400-9200 G), the process of harvesting microalgae took only 2-5 min. The method presented here not only utilizes permanent magnets without additional energy for fast harvesting but also recycles the medium effectively for further cultivation of microalgae, looking ahead to a large scale economic microalgae-based biorefinement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Preparation and characterizations of naproxen-loaded magnetic nanoparticles coated with PLA- g-chitosan copolymer

    NASA Astrophysics Data System (ADS)

    Thammawong, C.; Sreearunothai, P.; Petchsuk, A.; Tangboriboonrat, P.; Pimpha, N.; Opaprakasit, P.

    2012-08-01

    Naproxen (NPX) drug-loaded magnetic nanoparticles (MNPs) have been prepared in a one-step process utilizing a biocompatible polylactide-grafted-chitosan copolymer. The copolymer serves both as a NPX drug carrier as well as a polymeric surfactant for the synthesis of MNPs without the use of any additional surfactant. Highly stable MNPs with high magnetization in the form of maghemite (γ-Fe2O3) are prepared in aqueous media. Effects of preparation conditions on structures and properties of the copolymer-coated and drug-loaded MNPs are investigated by employing particle size and zeta potential measurements, transmission electron microscopy, vibrating sample magnetometer, X-ray diffraction, Fourier-transform infrared, nuclear magnetic resonance, and confocal Raman spectroscopy. The results show that average particle size (150-300 nm), coating efficiency, and coating structures of the resulting MNPs materials are strongly dependent on MNP/copolymer and MNP/NPX ratios in feed. It is also observed that NPX acts as co-surfactant in the drug-loading process, resulting in different encapsulating structures with the variation in the MNP/copolymer and MNP/NPX ratios. Properties of the MNPs materials can be further optimized for use in specific biomedical applications.

  10. Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: From preparation to in vitro studies.

    PubMed

    Zamora-Mora, Vanessa; Fernández-Gutiérrez, Mar; González-Gómez, Álvaro; Sanz, Beatriz; Román, Julio San; Goya, Gerardo F; Hernández, Rebeca; Mijangos, Carmen

    2017-02-10

    Chitosan nanoparticles (CSNPs) ionically crosslinked with tripolyphosphate salts (TPP) were employed as nanocarriers in combined drug delivery and magnetic hyperthermia (MH) therapy. To that aim, three different ferrofluid concentrations and a constant 5-fluorouracil (5-FU) concentration were efficiently encapsulated to yield magnetic CSNPs with core-shell morphology. In vitro experiments using normal cells, fibroblasts (FHB) and cancer cells, human glioblastoma A-172, showed that CSNPs presented a dose-dependent cytotoxicity and that they were successfully uptaken into both cell lines. The application of a MH treatment in A-172 cells resulted in a cell viability of 67-75% whereas no significant reduction of cell viability was observed for FHB. However, the A-172 cells showed re-growth populations 4h after the application of the MH treatment when CSNPs were loaded only with ferrofluid. Finally, a combined effect of MH and 5-FU release was observed with the application of a second MH treatment for CSNPs exhibiting a lower amount of released 5-FU. This result demonstrates the potential of CSNPs for the improvement of MH therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Li, Gui-yin; Zhou, Zhi-de; Li, Yuan-jian; Huang, Ke-long; Zhong, Ming

    2010-12-01

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe 3O 4/KCTS) as support. The magnetic Fe 3O 4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe 3O 4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe 3O 4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  12. Surface adsorption of poisonous Pb(II) ions from water using chitosan functionalised magnetic nanoparticles.

    PubMed

    Christopher, Femina Carolin; Anbalagan, Saravanan; Kumar, Ponnusamy Senthil; Pannerselvam, Sundar Rajan; Vaidyanathan, Vinoth Kumar

    2017-06-01

    In this study, chitosan functionalised magnetic nano-particles (CMNP) was synthesised and utilised as an effective adsorbent for the removal of Pb(II) ions from aqueous solution. The experimental studies reveal that adsorbent material has finer adsorption capacity for the removal of heavy metal ions. Parameters affecting the adsorption of Pb(II) ions on CMNP, such as initial Pb(II) ion concentration, contact time, solution pH, adsorbent dosage and temperature were studied. The adsorption equilibrium study showed that present adsorption system followed a Freundlich isotherm model. The experimental kinetic studies on the adsorption of Pb(II) ions exhibited that present adsorption process best obeyed with pseudo-first order kinetics. The maximum monolayer adsorption capacity of CMNP for the removal of Pb(II) ions was found to be 498.6 mg g(-1). The characterisation of present adsorbent material was done by FTIR, energy disperse X-ray analysis and vibrating sample magnetometer studies. Thermodynamic parameters such as Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) have declared that the adsorption process was feasible, exothermic and spontaneous in nature. Sticking probability reported that adsorption of Pb(II) ions on CMNP was favourable at lower temperature and sticking capacity of Pb(II) ions was very high.

  13. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Meng, Yuying; Chen, Deyang; Sun, Yitao; Jiao, Dongling; Zeng, Dechang; Liu, Zhongwu

    2015-01-01

    Chitosan-modified Mn ferrite nanoparticles were synthesized by a one-step microwave-assisted hydrothermal method. These Mn ferrite magnetic composite nanoparticles were employed to absorb Cu2+ ions in water. XRD verified the spinel structure of the MnFe2O4 nanoparticles. Chitosan modification does not result in any phase change of MnFe2O4. FTIR and zeta potentials curves for all samples suggest that chitosan can be successfully coated on the Mn ferrites. TEM characterization showed that the modified MnFe2O4 nanoparticles have a cubic shape with a mean diameter of ∼100 nm. For adsorption behavior, the effects of experiment parameters such as solution pH value, contact time and initial Cu2+ ions concentration on the adsorption efficiency were systematically investigated. The results showed that increasing solution pH value and extending contact time are favorable for improving adsorption efficiency. Especially, adsorption efficiency can reach up to 100% and 96.7% after 500 min adsorption at pH 6.5 for the solutions with initial Cu2+ ions concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and 0.00189 g/mg/min for solutions with initial Cu2+ ions of 50 and 100 mg/L, respectively.

  14. Aptamer Recognition Induced Target-Bridged Strategy for Proteins Detection Based on Magnetic Chitosan and Silver/Chitosan Nanoparticles Using Surface-Enhanced Raman Spectroscopy.

    PubMed

    He, Jincan; Li, Gongke; Hu, Yuling

    2015-11-03

    Poor selectivity and biocompability remain problems in applying surface-enhanced Raman spectroscopy (SERS) for direct detection of proteins due to similar spectra of most proteins and overlapping Raman bands in complex mixtures. To solve these problems, an aptamer recognition induced target-bridged strategy based on magnetic chitosan (MCS) and silver/chitosan nanoparticles (Ag@CS NPs) using SERS was developed for detection of protein benefiting from specific affinity of aptamers and biocompatibility of chitosan (CS). In this process, one aptamer (or antibody) modified MCS worked as capture probes through the affinity binding site of protein. The other aptamer modified Raman report molecules encapsulated Ag@CS NPs were used as SERS sensing probes based on the other binding site of protein. The sandwich complexes of aptamer (antibody)/protein/aptamer were separated easily with a magnet from biological samples, and the concentration of protein was indirectly reflected by the intensity variation of SERS signal of Raman report molecules. To explore the universality of the strategy, three different kinds of proteins including thrombin, platelet derived growth factor BB (PDGF BB) and immunoglobulin E (lgE) were investigated. The major advantages of this aptamer recognition induced target-bridged strategy are convenient operation with a magnet, stable signal expressing resulting from preventing loss of report molecules with the help of CS shell, and the avoidance of slow diffusion-limited kinetics problems occurring on a solid substrate. To demonstrate the feasibility of the proposed strategy, the method was applied to detection of PDGF BB in clinical samples. The limit of detection (LOD) of PDGF BB was estimated to be 3.2 pg/mL. The results obtained from human serum of healthy persons and cancer patients using the proposed strategy showed good agreement with that of the ELISA method but with wider linear range, more convenient operation, and lower cost. The proposed

  15. Preparation of magnetic composite based on zinc oxide nanoparticles and chitosan as a photocatalyst for removal of reactive blue 198

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Cuong; Giang Nguyen, Ngoc Lam; Hue Pho, Quoc

    2015-09-01

    In this study a novel magnetic composite used as a photocatalyst with combination of zinc oxide nanoparticles and chitosan (ZnO/Fe3O4/CS) was synthesized by a simple co-precipitation method. The role of the prepared magnetic nanocomposite is to improve the removal efficiency of textile dye due to the photocatalytic activity of zinc oxide nanoparticles and reusable capacity of Fe3O4 magnetic nanoparticles. Constituents and structure properties of ZnO/Fe3O4/CS were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Magnetic property of the prepared composite was determined by vibrating sample magnetometer (VSM). The results demonstrated that ZnO/Fe3O4/CS nanocomposite dramatically improved the removal efficiency of reactive blue 198 dye (RB198) with high photocatalytic activity and easy separation by a permanent magnet. In addition, the photocatalytic activity of the prepared composite was also performed under different parameters such as contact time, initial pH, the amount of composite and initial concentration of RB198. Interestingly, ZnO/Fe3O4/CS nanocomposite still showed high removal efficiency after recycling three times and performed in a real textile dyeing wastewater.

  16. Applications of chitosan nanoparticles in drug delivery.

    PubMed

    Tajmir-Riahi, H A; Nafisi, Sh; Sanyakamdhorn, S; Agudelo, D; Chanphai, P

    2014-01-01

    We have reviewed the binding affinities of several antitumor drugs doxorubicin (Dox), N-(trifluoroacetyl) doxorubicin (FDox), tamoxifen (Tam), 4-hydroxytamoxifen (4-Hydroxytam), and endoxifen (Endox) with chitosan nanoparticles of different sizes (chitosan-15, chitosan-100, and chitosan-200 KD) in order to evaluate the efficacy of chitosan nanocarriers in drug delivery systems. Spectroscopic and molecular modeling studies showed the binding sites and the stability of drug-polymer complexes. Drug-chitosan complexation occurred via hydrophobic and hydrophilic contacts as well as H-bonding network. Chitosan-100 KD was the more effective drug carrier than the chitosan-15 and chitosan-200 KD.

  17. Separation and extraction of Co(II) using magnetic chitosan nanoparticles grafted with β-cyclodextrin and determination by FAAS

    NASA Astrophysics Data System (ADS)

    Moghimi, Ali

    2014-12-01

    A novel and selective method for the fast determination of trace amounts of Co(II) ions in water samples has been developed. The procedure is based on the selective sorption of Co(II) ions using magnetic chitosan nanoparticles grafted with β-cyclodextrin at different pH followed by elution with organic eluents and determination by atomic absorption spectrometry The preconcentration factor was 100 (1 mL elution volume) for a 100 mL sample volume. The limit of detection of the proposed method is 1.0 ng mL-1. The maximum sorption capacity of sorbent under optimum conditions has been found to be 5 mg of Co per gram of sorbent. The relative standard deviation under optimum conditions was 3.0% ( n = 10). Accuracy and applicability of the method was estimated using test samples of natural and model water with different amounts of Co(II).

  18. Synthesis and characterisation of chitosan crosslinked-β-cyclodextrin grafted silylated magnetic nanoparticles for controlled release of Indomethacin

    NASA Astrophysics Data System (ADS)

    Anirudhan, T. S.; Dilu, D.; Sandeep, S.

    2013-10-01

    In this work, a novel hydrogel, chitosan crosslinked β-cyclodextrin grafted silylated magnetic nanoparticle (CTSCD-g-SilylMNP) was synthesised as a drug delivery system onto which Indomethacin (IND) drug was loaded. Characterisation of the drug delivery system was carried out by Tunnelling electron microscopy, Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis, Dynamic light scattering and a Vibrating sample magnetometer. Swelling behaviour, in vitro drug release kinetics, and encapsulation efficiency of CTSCD-g-SilylMNP were studied. Swelling behaviour varied according to pH. In vitro release studies revealed that CTSCD-g-SilylMNP demonstrated a swelling and diffusion controlled release. Dependence of pH was also studied. Encapsulation efficiency (EE) at different percentages of drug loadings was studied. The results collectively suggest that the hydrogel has promising application in the field of controlled drug release. The biodegradability also adds to the advantage.

  19. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering

    PubMed Central

    Ghadi, Arezou; Mahjoub, Soleiman; Tabandeh, Fatemeh; Talebnia, Farid

    2014-01-01

    Background: Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. Methods: Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). Results: The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. Conclusion: The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields. PMID:25202443

  20. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering.

    PubMed

    Ghadi, Arezou; Mahjoub, Soleiman; Tabandeh, Fatemeh; Talebnia, Farid

    2014-01-01

    Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields.

  1. Chitosan-coated poly(lactic-co-glycolic acid) perfluorooctyl bromide nanoparticles for cell labeling in (19)F magnetic resonance imaging.

    PubMed

    Vu-Quang, Hieu; Vinding, Mads Sloth; Xia, Dan; Nielsen, Thomas; Ullisch, Marcus Görge; Dong, MingDong; Nielsen, Niels Chr; Kjems, Jørgen

    2016-01-20

    Noninvasive therapeutic cell tracking methods in living animals are important for understanding cell function and fate in connection with cell therapy. Here we report a new particle system based on chitosan-coated poly(lactic-co-glycolic acid) perfluorooctyl bromide (PLGA PFOB) nanoparticles designed for (19)F magnetic resonance imaging (MRI) cell tracking. Chitosan was adsorbed onto the PLGA PFOB nanoparticles through electric interactions, which led to an increase in the hydrodynamic size and a surface charge proportional to the coating weight ratio. Confocal laser scanning microscopy, flow cytometry analysis and (19)F-MRI showed that to achieve the highest labeling efficiency in vitro, the optimal weight ratio of chitosan to the PLGA PFOB nanoparticles was 1:10 for human mesenchymal stem cells (hMSCs) and 1:100 for Raw 264.7 macrophages. In vivo(19)F-MRI showed that (19)F labeled hMSCs remained at the injected site 24h after injection. Thus, this study validates that chitosan-coated PLGA PFOB nanoparticles have the potential to track cell migration in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system

    PubMed Central

    Barahuie, Farahnaz; Dorniani, Dena; Saifullah, Bullo; Gothai, Sivapragasam; Hussein, Mohd Zobir; Pandurangan, Ashok Kumar; Arulselvan, Palanisamy; Norhaizan, Mohd Esa

    2017-01-01

    Chitosan (CS) iron oxide magnetic nanoparticles (MNPs) were coated with phytic acid (PTA) to form phytic acid-chitosan-iron oxide nanocomposite (PTA-CS-MNP). The obtained nanocomposite and nanocarrier were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermogravimetric and differential thermogravimetric analyses. Fourier transform infrared spectra and thermal analysis of MNPs and PTA-CS-MNP nanocomposite confirmed the binding of CS on the surface of MNPs and the loading of PTA in the PTA-CS-MNP nanocomposite. The coating process enhanced the thermal stability of the anticancer nanocomposite obtained. X-ray diffraction results showed that the MNPs and PTA-CS-MNP nanocomposite are pure magnetite. Drug loading was estimated using ultraviolet-visible spectroscopy and showing a 12.9% in the designed nanocomposite. Magnetization curves demonstrated that the synthesized MNPs and nanocomposite were superparamagnetic with saturation magnetizations of 53.25 emu/g and 42.15 emu/g, respectively. The release study showed that around 86% and 93% of PTA from PTA-CS-MNP nanocomposite could be released within 127 and 56 hours by a phosphate buffer solution at pH 7.4 and 4.8, respectively, in a sustained manner and governed by pseudo-second order kinetic model. The cytotoxicity of the compounds on HT-29 colon cancer cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The HT-29 cell line was more sensitive against PTA-CS-MNP nanocomposite than PTA alone. No cytotoxic effect was observed on normal cells (3T3 fibroblast cells). This result indicates that PTA-CS-MNP nanocomposite can inhibit the proliferation of colon cancer cells without causing any harm to normal cell. PMID:28392693

  3. Encapsulation of testosterone by chitosan nanoparticles.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2017-05-01

    The loading of testosterone by chitosan nanoparticles was investigated, using multiple spectroscopic methods, thermodynamic analysis, TEM images and modeling. Thermodynamic parameters showed testosterone-chitosan bindings occur mainly via H-bonding and van der Waals contacts. As polymer size increased more stable steroid-chitosan conjugates formed and hydrophobic contact was also observed. The loading efficacy of testosterone-nanocarrier was 40-55% and increased as chitosan size increased. Testosterone encapsulation markedly alters chitosan morphology. Chitosan nanoparticles are capable of transporting testosterone in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synthesis of Magnetic Fe3O4-Chitosan Nanoparticles by Ionic Gelation and Their Dye Removal Ability.

    PubMed

    Akin, Deniz; Yakar, Arzu; Gündüz, Ufuk

    2015-05-01

    The aim of this study was to synthesize magnetic Fe3O4 chitosan nanoparticles (m-Fe3O4-CNs) by ionic gelation method and use them as adsorbent for the removal of Bromothymol Blue (BB) from aqueous solutions. Also, the effect of various parameters on the preparation of m-Fe3O4-CNs was investigated in this study. The nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy and vibrating sample magnetometry (VSM). Adsorption of BB on m-Fe3O4-CNs was studied in a batch reactor at different experimental conditions such as adsorbent dosage, pH, contact time, initial BB concentration and temperature. Kinetic behaviors, equilibrium isotherms and thermodynamics of the adsorption process were investigated in detail. The Langmuir adsorption isotherm model and pseudo-second-order kinetic model well fitted the adsorption experimental results. The thermodynamic parameters showed that the adsorption was a spontaneous, favorable and exothermic process in nature.

  5. Systemic delivery and activation of the TRAIL gene in lungs, with magnetic nanoparticles of chitosan controlled by an external magnetic field

    PubMed Central

    Alvizo-Baez, Cynthia A; Luna-Cruz, Itza E; Vilches-Cisneros, Natalia; Rodríguez-Padilla, Cristina; Alcocer-González, Juan M

    2016-01-01

    Recently, functional therapies targeting a specific organ without affecting normal tissues have been designed. The use of magnetic force to reach this goal is studied in this work. Previously, we demonstrated that nanocarriers based on magnetic nanoparticles could be directed and retained in the lungs, with their gene expression under the control of a promoter activated by a magnetic field. Magnetic nanoparticles containing the TRAIL gene and chitosan were constructed using the ionic gelation method as a nanosystem for magnetofection and were characterized by microscopy, ζ-potential, and retention analysis. Magnetofection in the mouse melanoma cell line B16F10 in vitro induced TRAIL-protein expression and was associated with morphological changes indicative of apoptosis. Systemic administration of the nanosystem in the tail vein of mice with melanoma B16F10 at the lungs produced a very significant increase in apoptosis in tumoral cells that correlated with the number of melanoma tumor foci observed in the lungs. The high levels of apoptosis detected in the lungs were partially related to mouse survival. The data presented demonstrate that the magnetofection nanosystem described here efficiently induces apoptosis and growth inhibition of melanoma B16F10 in the lungs. This new approach for systemic delivery and activation of a gene based in a nanocomplex offers a potential application in magnetic gene delivery for cancer. PMID:27980403

  6. Immobilization of Aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods.

    PubMed

    Osuna, Yolanda; Sandoval, José; Saade, Hened; López, Raúl G; Martinez, José L; Colunga, Edith M; de la Cruz, Gabriela; Segura, Elda P; Arévalo, Fernando J; Zon, María A; Fernández, Héctor; Ilyina, Anna

    2015-08-01

    Aspergillus niger lipase immobilization by covalent binding on chitosan-coated magnetic nanoparticles (CMNP), obtained by one-step co-precipitation, was studied. Hydroxyl and amino groups of support were activated using glycidol and glutaraldehyde, respectively. Fourier transform infrared spectrometry, high-resolution transmission electron microscopy and thermogravimetric analysis confirmed reaction of these coupling agents with the enzyme and achievement of a successful immobilization. The derivatives showed activities of 309.5 ± 2.0 and 266.2 ± 2.8 U (g support)(-1) for the CMNP treated with glutaraldehyde and with glycidol, respectively. Immobilization enhanced the enzyme stability against changes of pH and temperature, compared to free lipase. Furthermore, the kinetic parameters K m and V max were determined for the free and immobilized enzyme. K m value quantified for enzyme immobilized by means of glutaraldehyde was 1.7 times lowers than for free lipase. High storage stability during 50 days was observed in the immobilized derivatives. Finally, immobilized derivatives retained above 80% of their initial activity after 15 hydrolytic cycles. The immobilized enzyme can be applied in various biotechnological processes involving magnetic separation.

  7. Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Immobilized in a DNA/Chitosan-Fe₃O₄ Magnetic Nanoparticle Bio-Complex Film.

    PubMed

    Gu, Tingting; Wang, Jianli; Xia, Hongqi; Wang, Si; Yu, Xiaoting

    2014-02-11

    A DNA/chitosan-Fe₃O₄ magnetic nanoparticle bio-complex film was constructed for the immobilization of horseradish peroxidase (HRP) on a glassy carbon electrode. HRP was simply mixed with DNA, chitosan and Fe₃O₄ nanoparticles, and then applied to the electrode surface to form an enzyme-incorporated polyion complex film. Scanning electron microscopy (SEM) was used to study the surface features of DNA/chitosan/Fe₃O₄/HRP layer. The results of electrochemical impedance spectroscopy (EIS) show that Fe₃O₄ and enzyme were successfully immobilized on the electrode surface by the DNA/chitosan bio-polyion complex membrane. Direct electron transfer (DET) and bioelectrocatalysis of HRP in the DNA/chitosan/Fe₃O₄ film were investigated by cyclic voltammetry (CV) and constant potential amperometry. The HRP-immobilized electrode was found to undergo DET and exhibited a fast electron transfer rate constant of 3.7 s(-1). The CV results showed that the modified electrode gave rise to well-defined peaks in phosphate buffer, corresponding to the electrochemical redox reaction between HRP(Fe((III)())) and HRP(Fe((II))). The obtained electrode also displayed an electrocatalytic reduction behavior towards H₂O₂. The resulting DNA/chitosan/Fe₃O₄/HRP/glassy carbon electrode (GCE) shows a high sensitivity (20.8 A·cm(-2)·M(-1)) toward H₂O₂. A linear response to H₂O₂ measurement was obtained over the range from 2 µM to 100 µM (R² = 0.99) and an amperometric detection limit of 1 µM (S/N = 3). The apparent Michaelis-Menten constant of HRP immobilized on the electrode was 0.28 mM. Furthermore, the electrode exhibits both good operational stability and storage stability.

  8. Nanoparticle embedded chitosan film for agglomeration free TEM images.

    PubMed

    Dogan, Üzeyir; Çiftçi, Hakan; Cetin, Demet; Suludere, Zekiye; Tamer, Ugur

    2017-02-01

    Transmission electron microscopy (TEM) is a very useful and commonly used microscopy technique, used especially for the characterization of nanoparticles. However, the identification of the magnetic nanoparticle could be thought problematic in TEM analysis, due to the fact that the magnetic nanoparticles are usually form aggregates on the TEM grid to form bigger particles generating higher stability. This prevents to see exact shape and size of each nanoparticle. In order to overcome this problem, a simple process for the formation of well-dispersed nanoparticles was conducted, by covering chitosan film on the unmodified copper grid, it was said to result in aggregation-free TEM images. It is also important to fix the magnetic nanoparticles on the TEM grids, due to possible contamination of TEM filament which is operated under high vacuum conditions. The chitosan film matrix also helps to protect the TEM filament from contact with magnetic nanoparticles during the imaging process. The proposed procedure offers a quick method to fix the nanoparticles in a conventional copper TEM grid and chitosan matrix prevents agglomeration of nanoparticles, and thus getting TEM images showing well-dispersed individual nanoparticles. © 2016 Wiley Periodicals, Inc.

  9. An environmentally benign dual action antimicrobial: quaternized chitosan/sodium alga acid multilayer films and silver nanoparticles decorated on magnetic nanoparticles.

    PubMed

    Jin, Feng; Xiang, Qian; Chen, Xiaoqin; Peng, Xuefeng; Xing, Xiaodong

    2016-10-01

    There is an urgent need to develop a puissant and environmentally benign antibacterial composite that act via multiple mechanisms to make response to the potentially daunting complexity of the microbial population and microbial antibiotic resistance. In this work, a facile and green approach, layer-by-layer self-assembly technology was applied to assemble polycation quaternized chitosan (QAC) and polyanion sodium alga acid onto magnetic nanoparticles (MNPs). Then silver nanoparticles (AgNPs) with stable and narrow-sized distribution in the range of 25-35 nm were immobilized on the surface of MNPs with L-ascorbic acid as reducing agent and organic multilayers as stabilizer. Through above modification on MNPs, we expected to achieve a green dual antibacterial and recyclable composite via the combined antibacterial action of QAC and AgNPs. Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, zeta potentials, and dynamic light scattering were employed to confirm the success of the surface functionalization. Silver ion release process was detected by inductively coupled plasma mass spectrometry. Furthermore, the antibacterial properties of the biomaterials against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were studied. The modified MNPs exhibited rapid, efficient, and long-lasting biocidal abilities against E. coli and S. aureus. The magnetic antibacterial composite still showed excellent antibacterial efficiency during five exposure/collection/recycle procedures.

  10. Fabrication and characterization of core-shell magnetic chitosan nanoparticles as a novel carrier for immobilization of Burkholderia cepacia lipase.

    PubMed

    Ghadi, Arezoo; Tabandeh, Fatemeh; Mahjoub, Soleiman; Mohsenifar, Afshin; Roshan, Farid Talebnia; Alavije, Razieh Shafiee

    2015-01-01

    In this study, the chitosan magnetic core-shell nanoparticles (CMNPs) was synthesized and then used as a support for immobilization of lipase. The characteristics of CMNPs, including morphology, topography and spectra type before and after immobilization were determined. The scanning electron micrographs of the CMNPs showed that they were approximately uniform spheres and the distribution chart indicated that the particles have the mean diameter of 100 nm. Kinetic parameters of Km and Vm were calculated as 1.07 mM and 29.43 U/mg for free B. cepacia lipase and 1.29 mM and 25.82 U/mg for immobilized lipase on CMNPs, respectively. The activity of immobilized lipase was 32 U/mg under optimum temperature and pH. CMNP's were used in trasesterification reaction in order to evaluate the activity of the immobilized enzyme compared to the free enzyme. Immobilization of lipase on CMNPs improved stability and total relative activity of the enzyme. It could be concluded that CMNPs be considered as a suitable carrier for enzyme immobilization.

  11. Preparation of novel magnetic chitosan nanoparticle and its application for removal of humic acid from aqueous solution

    NASA Astrophysics Data System (ADS)

    Dong, Changlong; Chen, Wei; Liu, Cheng

    2014-02-01

    A novel magnetic chitosan nanoparticle (MCNP) with a BET surface area of 108.32 m2/g was prepared using a time and energy saving method at mild condition. MCNP exhibits an excellent ability to adsorb humic acid (HA) from aqueous solution in a wide range of initial HA concentration. The rate of HA adsorption is rapid with more than 50% of HA can be adsorbed in initial 10 min, and the equilibrium state can be reached in 60 min. The adsorption kinetics data fits well to the pseudo-second-order model, and the adsorption process is transport-limited at low initial HA concentration and attachment-limited at high initial HA concentration. The Langmuir isotherm model fits the equilibrium data better than the Freundlich isotherm model, indicating that the adsorption of HA onto MCNP is a monolayer adsorption. Based on the Langmuir isotherm model, the maximum adsorption capacity of HA is 32.6 mg/g at 25 °C. Thermodynamic parameters presents that the adsorption of HA onto MCNP is spontaneous and endothermic in nature. The mechanism for the adsorption of HA onto MCNP involves electrostatic interaction and hydrogen bonding. Regeneration studies indicate that MCNP can be recyclable for a long term. All the experimental results suggest that MCNP is a promising adsorbent for treating water that is contaminated with humic acid.

  12. Magnetic Resonance Imaging of Mouse Islet Grafts Labeled with Novel Chitosan-Coated Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Kuo, Chien-Hung; Chien, Yu-Wen; Kuo, Hsiao-Yunn; Chen, Fu-Rong; Chen, Ming H.; Yen, Tzu-Chen; Tsai, Zei-Tsan

    2013-01-01

    Object To better understand the fate of islet isografts and allografts, we utilized a magnetic resonance (MR) imaging technique to monitor mouse islets labeled with a novel MR contrast agent, chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles. Materials and Methods After being incubated with and without CSPIO (10 µg/ml), C57BL/6 mouse islets were examined under transmission electron microscope (TEM) and their insulin secretion was measured. Cytotoxicity was examined in α (αTC1) and β (NIT-1 and βTC) cell lines as well as islets. C57BL/6 mice were used as donors and inbred C57BL/6 and Balb/c mice were used as recipients of islet transplantation. Three hundred islets were transplanted under the left kidney capsule of each mouse and then MR was performed in the recipients periodically. At the end of study, the islet graft was removed for histology and TEM studies. Results After incubation of mouse islets with CSPIO (10 µg/mL), TEM showed CSPIO in endocytotic vesicles of α- and β-cells at 8 h. Incubation with CSPIO did not affect insulin secretion from islets and death rates of αTC1, NIT-1 and βTC cell lines as well as islets. After syngeneic and allogeneic transplantation, grafts of CSPIO-labeled islets were visualized on MR scans as persistent hypointense areas. At 8 weeks after syngeneic transplantation and 31 days after allogeneic transplantation, histology of CSPIO-labeled islet grafts showed colocalized insulin and iron staining in the same areas but the size of allografts decreased with time. TEM with elementary iron mapping demonstrated CSPIO distributed in the cytoplasm of islet cells, which maintained intact ultrastructure. Conclusion Our results indicate that after syngeneic and allogeneic transplantation, islets labeled with CSPIO nanoparticles can be effectively and safely imaged by MR. PMID:23658638

  13. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery.

    PubMed

    Ding, Yongling; Shen, Shirley Z; Sun, Huadong; Sun, Kangning; Liu, Futian; Qi, Yushi; Yan, Jun

    2015-03-01

    In this study, a novel hydrogel, chitosan (CS) crosslinked carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe3O4 magnetic nanoparticles was synthesized for delivering hydrophobic anticancer drug 5-fluorouracil (CS-CDpoly-MNPs). Carboxymethyl-β-cyclodextrin being grafted on the Fe3O4 nanoparticles (CDpoly-MNPs) contributed to an enhancement of adsorption capacities because of the inclusion abilities of its hydrophobic cavity with insoluble anticancer drugs through host-guest interactions. Experimental results indicated that the amounts of crosslinking agent and bonding times played a crucial role in determining morphology features of the hybrid nanocarriers. The nanocarriers exhibited a high loading efficiency (44.7±1.8%) with a high saturation magnetization of 43.8emu/g. UV-Vis spectroscopy results showed that anticancer drug 5-fluorouracil (5-Fu) could be successfully included into the cavities of the covalently linked CDpoly-MNPs. Moreover, the free carboxymethyl groups could enhance the bonding interactions between the covalently linked CDpoly-MNPs and anticancer drugs. In vitro release studies revealed that the release behaviors of CS-CDpoly-MNPs carriers were pH dependent and demonstrated a swelling and diffusion controlled release. A lower pH value led to swelling effect and electrostatic repulsion contributing to the protonation amine impact of NH3(+), and thus resulted in a higher release rate of 5-Fu. The mechanism of 5-Fu encapsulated into the magnetic chitosan nanoparticles was tentatively proposed.

  14. Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen–Chitosan/Poly(Lactic-co-Glycolic) Acid Biphasic Scaffold

    PubMed Central

    Su, Juin-Yih; Chen, Shi-Hui; Chen, Yu-Pin; Chen, Wei-Chuan

    2017-01-01

    Chondral or osteochondral defects are still controversial problems in orthopedics. Here, chondrocytes labeled with magnetic nanoparticles were cultivated on a biphasic, type II collagen–chitosan/poly(lactic-co-glycolic acid) scaffold in an attempt to develop cultures with trackable cells exhibiting growth, differentiation, and regeneration. Rabbit chondrocytes were labeled with magnetic nanoparticles and characterized by scanning electron microscopy (SEM), transmission electron (TEM) microscopy, and gene and protein expression analyses. The experimental results showed that the magnetic nanoparticles did not affect the phenotype of chondrocytes after cell labeling, nor were protein and gene expression affected. The biphasic type II collagen–chitosan/poly(lactic-co-glycolic) acid scaffold was characterized by SEM, and labeled chondrocytes showed a homogeneous distribution throughout the scaffold after cultivation onto the polymer. Cellular phenotype remained unaltered but with increased gene expression of type II collagen and aggrecan, as indicated by cell staining, indicating chondrogenesis. Decreased SRY-related high mobility group-box gene (Sox-9) levels of cultured chondrocytes indicated that differentiation was associated with osteogenesis. These results are encouraging for the development of techniques for trackable cartilage regeneration and osteochondral defect repair which may be applied in vivo and, eventually, in clinical trials. PMID:28054960

  15. Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen-Chitosan/Poly(Lactic-co-Glycolic) Acid Biphasic Scaffold.

    PubMed

    Su, Juin-Yih; Chen, Shi-Hui; Chen, Yu-Pin; Chen, Wei-Chuan

    2017-01-04

    Chondral or osteochondral defects are still controversial problems in orthopedics. Here, chondrocytes labeled with magnetic nanoparticles were cultivated on a biphasic, type II collagen-chitosan/poly(lactic-co-glycolic acid) scaffold in an attempt to develop cultures with trackable cells exhibiting growth, differentiation, and regeneration. Rabbit chondrocytes were labeled with magnetic nanoparticles and characterized by scanning electron microscopy (SEM), transmission electron (TEM) microscopy, and gene and protein expression analyses. The experimental results showed that the magnetic nanoparticles did not affect the phenotype of chondrocytes after cell labeling, nor were protein and gene expression affected. The biphasic type II collagen-chitosan/poly(lactic-co-glycolic) acid scaffold was characterized by SEM, and labeled chondrocytes showed a homogeneous distribution throughout the scaffold after cultivation onto the polymer. Cellular phenotype remained unaltered but with increased gene expression of type II collagen and aggrecan, as indicated by cell staining, indicating chondrogenesis. Decreased SRY-related high mobility group-box gene (Sox-9) levels of cultured chondrocytes indicated that differentiation was associated with osteogenesis. These results are encouraging for the development of techniques for trackable cartilage regeneration and osteochondral defect repair which may be applied in vivo and, eventually, in clinical trials.

  16. Nanoindentation of Chitosan Doped with Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Palumbo, Matthew; Teklu, Alem; Kuthirummal, Narayanan; Levi-Polyachenko, Nicole; Department of Physics; Astronomy, College of Charleston Collaboration; Department of Plastic; Reconstructive Surgery, Wake Forest University Health Sciences Collaboration

    Imaging and spectroscopic analysis via nanoindentation was performed with the Nanosurf EasyScan2 AFM on the pure and silver doped chitosan samples allowing for a more localized determination of their stiffness, hardness, and reduced Young's modulus. The pure chitosan sample was tested to have a stiffness of 0.367 N/m, a hardness of 1.12 GPa, and a reduced Young's modulus of 30.5 MPa. The film with 5mg Ag nanoparticle per gram of chitosan was tested on the boundaries between the chitosan and Ag nanoparticles to show an increase in stiffness of about 4.6% at 0.384 N/m, an increase in hardness of about 5.4% at 1.18 GPa, and an increase in the reduced Young's modulus of about 5.0% at 3.2 MPa in comparison to the pure chitosan sample. On the other hand, upon increasing the doping to 10mg Ag nanoparticle per gram of chitosan showed a decrease in stiffness of about 6.3% at 0.344 N/m, a decrease in hardness of about 27.0% at 0.820 GPa, and a decrease in the reduced Young's modulus of about 6.0% at 28.7 MPa in comparison to the pure chitosan sample. Obviously, films doped with 5mg Ag nanoparicle per gram of chitosan provided the composites with improved mechanical strength compared to chitosan alone.

  17. Stability and activity of immobilized trypsin on carboxymethyl chitosan-functionalized magnetic nanoparticles cross-linked with carbodiimide and glutaraldehyde.

    PubMed

    Sun, Jun; Yang, Lin; Jiang, Mengmeng; Shi, Yu; Xu, Bin; Ma, Hai-le

    2017-06-01

    Enzyme cross-linkers, such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and glutaraldehyde (GA), have been used to improve the stability of immobilized enzymes. We have developed a relatively stable and high-activity immobilized trypsin through EDC and GA cross-linking. Carboxymethyl chitosan (CM-CTS)-functionalized magnetic nanoparticles (Fe3O4@CM-CTS) were prepared, and characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis, X-ray diffraction, and transmission electron microscopy. The CM-CTS loading of Fe3O4 @CM-CTS was 8.701%, and the CM-CTS coating did not cause any significant changes in the crystal structure of Fe3O4. The Fe3O4@CM-CTS nanoparticles exhibited superparamagnetic properties. Trypsin was successfully immobilized on Fe3O4@CM-CTS via EDC and GA cross-linking (Fe3O4@CM-CTS-EDC-TRY and Fe3O4@CM-CTS-GA-TRY, respectively). Trypsin immobilization was verified by FTIR and enzyme assays. Changes in the secondary structures of the immobilized trypsin were present in both Fe3O4@CM-CTS-EDC-TRY and Fe3O4@CM-CTS-GA-TRY. However, kinetic studies demonstrated that the immobilized trypsin retained efficient biocatalytic activity. Fe3O4@CM-CTS-EDC-TRY and Fe3O4@CM-CTS-GA-TRY both showed maximum catalytic activity at pH 8.4 and 45°C, and retained 71% and 88.5%, respectively, of their initial activities after 6 usage cycles, and 80% and 88% of their initial activities after being stored for 14 d at 4°C. The Fe3O4@CM-CTS-GA-TRY showed higher activity and conformational stability than Fe3O4@CM-CTS-EDC-TRY, which indicates that GA is effective for the immobilization of trypsin on Fe3O4@CM-CTS. Copyright © 2017. Published by Elsevier B.V.

  18. Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent

    PubMed Central

    Chen, Su-Ching; Duan, Kow-Jen

    2015-01-01

    β-Galactosidase was immobilized on chitosan-coated magnetic Fe3O4 nanoparticles and was used to produce galactooligosaccharides (GOS) from lactose. Immobilized enzyme was prepared with or without the coupling agent, tris(hydroxymethyl)phosphine (THP). The two immobilized systems and the free enzyme achieved their maximum activity at pH 6.0 with an optimal temperature of 50 °C. The immobilized enzymes showed higher activities at a wider range of temperatures and pH. Furthermore, the immobilized enzyme coupled with THP showed higher thermal stability than that without THP. However, activity retention of batchwise reactions was similar for both immobilized systems. All the three enzyme systems produced GOS compound with similar concentration profiles, with a maximum GOS yield of 50.5% from 36% (w·v−1) lactose on a dry weight basis. The chitosan-coated magnetic Fe3O4 nanoparticles can be regenerated using a desorption/re-adsorption process described in this study. PMID:26047337

  19. Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent.

    PubMed

    Chen, Su-Ching; Duan, Kow-Jen

    2015-06-03

    β-Galactosidase was immobilized on chitosan-coated magnetic Fe3O4 nanoparticles and was used to produce galactooligosaccharides (GOS) from lactose. Immobilized enzyme was prepared with or without the coupling agent, tris(hydroxymethyl)phosphine (THP). The two immobilized systems and the free enzyme achieved their maximum activity at pH 6.0 with an optimal temperature of 50 °C. The immobilized enzymes showed higher activities at a wider range of temperatures and pH. Furthermore, the immobilized enzyme coupled with THP showed higher thermal stability than that without THP. However, activity retention of batchwise reactions was similar for both immobilized systems. All the three enzyme systems produced GOS compound with similar concentration profiles, with a maximum GOS yield of 50.5% from 36% (w · v(-1)) lactose on a dry weight basis. The chitosan-coated magnetic Fe3O4 nanoparticles can be regenerated using a desorption/re-adsorption process described in this study.

  20. Development of poly(vinyl acetate-methylacrylic acid)/chitosan/Fe3O4 nanoparticles for the diagnosis of non-alcoholic steatohepatitis with magnetic resonance imaging.

    PubMed

    Luo, Xiadan; Song, Xiaoli; Zhu, Aiping; Si, Yunfeng; Ji, Lijun; Ma, Zhanrong; Jiao, Zhiyun; Wu, Jingtao

    2012-12-01

    Non-alcoholic steatohepatitis is a burgeoning health problem. To diagnose NASH with magnetic resonance imaging (MRI), an effective contrast agent, a stable suspension of superparamagnetic Fe(3)O(4) nanoparticles, were newly developed. The negatively charged Fe(3)O(4) nanoparticles were coated with positive chitosan (CS) firstly, and then assembled with poly(vinyl acetate-methylacrylic acid) (P(VAc-MAA)). Transmission electron microscope and dynamic light scattering confirmed that the obtained P(VAc-MAA)/CS/Fe(3)O(4) nanoparticles had a spherical or ellipsoidal morphology with an average diameter in the range of 14-20 nm. The superparamagnetic property and spinel structure of the Fe(3)O(4) nanoparticles were well preserved due to the protection of the P(VAc-MAA)/CS layers on the surface of the Fe(3)O(4) nanoparticles. The in vivo rat experiments confirmed that the P(VAc-MAA)/CS/Fe(3)O(4) nanoparticles were an effective contrast agent for MRI to diagnose NASH.

  1. Engineering Tenofovir Loaded Chitosan Nanoparticles

    PubMed Central

    Meng, Jianing; Sturgis, Timothy F.; Youan, Bi-Botti C.

    2011-01-01

    The objective of this study was to engineer a model anti-HIV microbicide (Tenofovir) loaded chitosan based nanoparticles (NPs). Box-Behnken design allowed to assess the influence of formulation variables on the size of NPs and drug encapsulation efficiency (EE%) that were analyzed by dynamic light scattering and UV spectroscopy, respectively. The effect of the NPs on vaginal epithelial cells and Lactobacillus crispatus viability and their mucoadhesion to porcine vaginal tissue were assessed by cytotoxicity assays and fluorimetry, respectively. In the optimal aqueous conditions, the EE% and NPs size was 5.83% and 207.97nm, respectively. With 50% (v/v) ethanol/water as alternative solvent, these two responses increased to 20% and 602 nm, respectively. Drug release from medium (281 nm) and large size (602 nm)-sized NPs fitted the Higuchi (r2=0.991) and first-order release (r2=0.999) models, respectively. These NPs were not cytotoxic to both the vaginal epithelial cell line and Lactobacillus for 48 hours. When the diameter of the NPs decreased from 900 nm to 188 nm, the mucoadhesion increased from 6% to 12%. However, the combinatorial effect of EE% × mucoadhesion for larger size NPs was the highest. Overall, large-size, microbicide loaded chitosan NPs appeared to be promising nanomedicines for the prevention of HIV transmission. PMID:21704704

  2. Chitosan doped with nanoparticles of copper, nickel and cobalt.

    PubMed

    Cárdenas-Triviño, Galo; Elgueta, Carolina; Vergara, Luis; Ojeda, Javier; Valenzuela, Ariel; Cruzat, Christian

    2017-11-01

    Metal colloids in 2 propanol using nanoparticles (NPs) of copper, nickel and cobalt were prepared by Chemical Liquid Deposition (CLD) method. The resulting colloidal dispersions were characterized by Transmission Electron Microscopy (TEM). The colloids were supported in chitosan. Then, microbiological assays were performed using E. coli and S. aureus in order to determine the bactericide/bacteriostatic activity of nanoparticles (NPs) trapped or chelated with chitosan. Finally, the toxicity of the metal colloids Cu, Ni and Co was tested. Bio-assays were conducted in three different animal species. First of all on earth warms (Eisenia foetida) to evaluate the toxicity and the biocompatibility of chitosan in lactic acid (1% and 0.5%). Secondly bio-assay done in fishes (rainbow trout), the liver toxicity of NPs in vivo was evaluated. Finally, a bio-assay was conducted in Sprange-Dawley rats of 100g weight, which were injected intraperitoneally with different solutions of chitosan metal colloids. Then, the minimum and maximum concentration were determined for copper, nickel and cobalt. The purpose of the use of chitosan was acting as a carrier for some magnetic NPs, which toxicity would allow to obtain new polymeric materials with potential applications as magnet future drugs carrier. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Synthesis and characterization of magnetic β-cyclodextrin-chitosan nanoparticles as nano-adsorbents for removal of methyl blue.

    PubMed

    Fan, Lulu; Zhang, Ying; Luo, Chuannan; Lu, Fuguang; Qiu, Huamin; Sun, Min

    2012-03-01

    A novel nano-adsorbent, β-cyclodextrin-chitosan (CDC) modified Fe(3)O(4) nanoparticles (CDCM) is fabricated for removal of methyl blue (MB) from aqueous solution by grafting CDC onto the magnetite surface. The characteristics results of FTIR, SEM and XRD show that CDC is grafted onto Fe(3)O(4) nanoparticles. The grafted CDC on the Fe(3)O(4) nanoparticles contributes to an enhancement of the adsorption capacity because of the strong abilities of CDCM, which includes the multiple hydroxyl, carboxyl groups, amino groups and the formation of an inclusion complex due to the β-CD molecules through host-guest interactions, to adsorb MB. The adsorption of MB onto CDCM is found to be dependent on pH and temperature. Adsorption equilibrium is achieved in 50 min and the adsorption kinetics of MB is found to follow a pseudo-second-order kinetic model. Equilibrium data for MB adsorption are fitted well by Langmuir isotherm model. The maximum adsorption capacity for MB is estimated to be 2.78 g/g at 30°C. The CDCM was stable and easily recovered. Moreover the adsorption capacity was about 90% of the initial saturation adsorption capacity after being used four times. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Construction of a sensitive and selective sensor for morphine using chitosan coated Fe3O4 magnetic nanoparticle as a modifier.

    PubMed

    Dehdashtian, Sara; Gholivand, Mohammad Bagher; Shamsipur, Mojtaba; Kariminia, Samira

    2016-01-01

    A simple and sensitive sensor based on carbon paste electrode (CPE) modified by chitosan-coated magnetic nanoparticle (CMNP) was developed for the electrochemical determination of morphine (MO). The proposed sensor was characterized with scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrooxidation of MO was studied on modified carbon paste electrode using cyclic voltammetry, chronoamperometry and differential pulse voltammetry as diagnostic techniques. The oxidation peak potential of morphine on the CMNP/CPE appeared at 380 mV which was accompanied with smaller overpotential and increase in oxidation peak current compared to that obtained on the bare carbon paste electrode (CPE). Under optimum conditions the sensor provides two linear DPV responses in the range of 10-2000 nM and 2-720 μM for MO with a detection limit of 3 nM. The proposed sensor was successfully applied for monitoring of MO in serum and urine samples and satisfactory results were obtained.

  5. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles.

    PubMed

    Bravo-Osuna, Irene; Vauthier, Christine; Farabollini, Alessandra; Palmieri, Giovanni Filippo; Ponchel, Gilles

    2007-04-01

    The study is focused on the evaluation of the potential bioadhesive behaviour of chitosan and thiolated chitosan (chitosan-TBA)-coated poly(isobutyl cyanoacrylates) (PIBCA) nanoparticles. Nanoparticles were obtained by radical emulsion polymerisation with chitosan of different molecular weight and with different proportions of chitosan/chitosan-TBA. Mucoadhesion was ex vivo evaluated under static conditions by applying nanoparticle suspensions on rat intestinal mucosal surfaces and evaluating the amount of nanoparticles remaining attached to the mucosa after incubation. The analysis of the results obtained demonstrated that the presence of either chitosan or thiolated chitosan on the PIBCA nanoparticle surface clearly enhanced the mucoadhesion behaviour thanks to non-covalent interactions (ionic interaction and hydrogen bonds) with mucus chains. Both, the molecular weight of chitosan and the proportion of chitosan-TBA in the formulation influenced the nanoparticle hydrodynamic diameter and hence their transport through the mucus layer. Improved interpenetration ability with the mucus chain during the attachment process was suggested for the chitosan of high molecular weight, enhancing the bioadhesiveness of the system. The presence of thiol groups on the nanoparticle surface at high concentration (200 x 10(-6) micromol SH/cm2) increased the mucoadhesion capacity of nanoparticles by forming covalent bonds with the cysteine residues of the mucus glycoproteins.

  6. Separation of lysozyme using superparamagnetic carboxymethyl chitosan nanoparticles.

    PubMed

    Sun, Jun; Su, Yujie; Rao, Shengqi; Yang, Yanjun

    2011-08-01

    Functionalized Fe(3)O(4) nanoparticles conjugated with polyethylene glycol (PEG) and carboxymethyl chitosan (CM-CTS) were developed and used as a novel magnetic absorbing carrier for the separation and purification of lysozyme from the aqueous solution and chicken egg white, respectively. The morphology of magnetic CM-CTS nanoparticles was observed by transmission electron microscope (TEM). It was found that the diameter of superparamagnetic carboxymethyl chitosan nanoparticles (Fe(3)O(4) (PEG+CM-CTS)) was about 15 nm, and could easily aggregate by a magnet when suspending in the aqueous solution. The adsorption capacity of lysozyme onto the superparamagnetic Fe(3)O(4) (PEG+CM-CTS) nanoparticles was determined by changing the medium pH, temperature, ionic strength and the concentration of lysozyme. The maximum adsorption loading reached 256.4 mg/g. Due to the small diameter, the adsorption equilibrium of lysozyme onto the nanoparticles reached very quickly within 20 min. The adsorption equilibrium of lysozyme onto the superparamagnetic nanoparticles fitted well with the Langmuir model. The nanoparticles were stable when subjected to six repeated adsorption-elution cycles. Separation and purification were monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The lysozyme was purified from chicken egg white in a single step had higher purity, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Considering that the superparamagnetic nanoparticles possess the advantages of high efficiency, cost-effectiveness and excellent binding of a larger amount of lysozyme and easier separation from the reaction system, thus this type of superparamagnetic nanoparticles would bring advantages to the conventional separation techniques of lysozyme from chicken egg white.

  7. A novel method for synthesizing PEGylated chitosan nanoparticles: strategy, preparation, and in vitro analysis

    PubMed Central

    Malhotra, Meenakshi; Lane, Ciaran; Tomaro-Duchesneau, Catherine; Saha, Shyamali; Prakash, Satya

    2011-01-01

    Preparation of poly (ethylene glycol) (PEG)-grafted chitosan is essential for improving the biocompatibility and water solubility of chitosan. Presently available methods for this have limitations. This article describes a new method for preparing PEGylated chitosan nanoparticles. For this chitosan was chemoselectively modified using a novel scheme at the C6 position of its repeating units by PEG. The amine groups at the C2 position of the chitosan were protected using phthalic anhydride. Sodium hydride was used to catalyze the etherification reaction between chlorinated chitosan and methyl-PEG, and PEG-grafted chitosan was successfully synthesized. Each step was characterized using 13C nuclear magnetic resonance and Fourier transform infrared. After PEGylation the phthaloylated chitosan was successfully deprotected using hydrazine monohydrate. The synthetic scheme proposed demonstrates a new method for grafting PEG onto chitosan with a moderate degree of substitution. The potential of this polymer in nanoparticle preparation using an ionic gelation method and its gene delivery potentials were investigated by complexing a fluorescently labeled control siRNA. The result showed that suitable nanoparticles can be synthesized using this polymer and that they have capacity to carry genes and provide adequate transfection efficacy with no toxicity when tested in neuronal cells. PMID:21562608

  8. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review.

    PubMed

    Elgadir, M Abd; Uddin, Md Salim; Ferdosh, Sahena; Adam, Aishah; Chowdhury, Ahmed Jalal Khan; Sarker, Md Zaidul Islam

    2015-12-01

    Chitosan is a promising biopolymer for drug delivery systems. Because of its beneficial properties, chitosan is widely used in biomedical and pharmaceutical fields. In this review, we summarize the physicochemical and drug delivery properties of chitosan, selected studies on utilization of chitosan and chitosan-based nanoparticle composites in various drug delivery systems, and selected studies on the application of chitosan films in both drug delivery and wound healing. Chitosan is considered the most important polysaccharide for various drug delivery purposes because of its cationic character and primary amino groups, which are responsible for its many properties such as mucoadhesion, controlled drug release, transfection, in situ gelation, and efflux pump inhibitory properties and permeation enhancement. This review can enhance our understanding of drug delivery systems particularly in cases where chitosan drug-loaded nanoparticles are applied. Copyright © 2014. Published by Elsevier B.V.

  9. The Use of chitosan in The Formation of Silver Nanoparticles, Chitosanic Nanoparticles and Fibrous Structures

    NASA Astrophysics Data System (ADS)

    Abdelgawad, Abdelrahman Mohamed

    Nanoscale materials have attracted much attention in the last two decades due to their unique properties. The size effect attains new chemical and physical properties to these materials. Nanoparticles and nanofiber are major component of nanomaterials and they have heavily investigated in the literature for different applications. Nanoparticles could be produced from both metals as well as polymers. Chitosan, which is a natural polymer, can be used as capping agent in the preparation of metallic nanoparticles and itself, can produce nanoparticles. The utilization of nanoparticles and nanofibers for wound dressing materials is a very popular approach. Acquiring antibacterial properties to the wound dressing materials could be obtained either by formulation of nanomaterials composites or direct chemical modification of the substance. To improve the antibacterial properties of chitosan two approaches were applied. First, is through the formulation of chitosan with silver nanoparticles and the formation of nanofiber mats. In this study, the concepts of green chemistry were applied and silver nanoparticles were prepared in high concentration using chitosan as a capping polymer and glucose as a reducing agent. Nanofiber mats of polyvinyl alcohol/chitosan/silvernanoparticles were produced via electrospinning. The antibacterial activity of these fibers shows bactericidal effect against E. coli at low concentrations of Ag-NPs. In the second approach, direct chemical modification of chitosan was performed by grafting of Iodoacetic acid to the amino group at carbon-2. The chemical structure of chitosan Iodoacetamide derivative (CIA) was confirmed by FTIR and H1-NMR. The derivative was amorphous and water soluble at neutral pH. The minimum inhibitory concentration of CIA, against E. coli, was 400ig/mL and the derivative was bacteriostatic after 4h of treatment. Nanofiber mats of polyvinyl alcohol/chitosan/chitosan Iodoacetamide were produced via electrospinning. The

  10. A recyclable and regenerable magnetic chitosan absorbent for dye uptake.

    PubMed

    Zhao, Weifeng; Huang, Xuelian; Wang, Yilin; Sun, Shudong; Zhao, Changsheng

    2016-10-05

    A recyclable and regenerable magnetic polysaccharide absorbent for methylene blue (MB) removal was prepared by coating magnetic polyethyleneimine nanoparticles (PEI@MNPs) with sulfonated chitosan (SCS) and further cross-linked with glutaraldehyde. The driving force for coating is the electrostactic interaction between positively charged PEI and negatively charged SCS. Infrared spectra, zeta potential, thermal gravimetric analysis and X-ray diffraction demonstrated the successful synthesis of magnetic polysaccharide absorbent. The self-assembly of polysaccharide with magnetic nanopartices did not alter the saturation magnetization value of the absorbent confirmed by vibrating sample magnetometer. The nanoparticles showed fast removal (about 30min reached equilibrium) of MB. In particular, the removal ability of MB after desorption did not reduce, demonstrating an excellent regeneration ability. Our study provides new insights into utilizing polysaccharides for environmental remediation and creating advanced magnetic materials for various promising applications.

  11. Sol-gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4-chitosan) nanoparticles improves thermal and operational stability.

    PubMed

    Long, Jie; Li, Xingfei; Zhan, Xiaobei; Xu, Xueming; Tian, Yaoqi; Xie, Zhengjun; Jin, Zhengyu

    2017-06-01

    Pullulanase was sol-gel encapsulated in the presence of magnetic chitosan/Fe3O4 nanoparticles. The resulting immobilized pullulanase was characterized by scanning electron microscopy, vibrating sample magnetometry, Fourier transform infrared spectroscopy and thermogravimetric analysis. The results showed that the addition of pullulanase created a more regular surface on the sol-gel matrix and an enhanced magnetic response to an applied magnetic field. The maximal activity retention (83.9%) and specific activity (291.7 U/mg) of the immobilized pullulanase were observed under optimized conditions including an octyltriethoxysilane:tetraethoxysilane (OTES:TEOS) ratio of 1:2 and enzyme concentration of 0.484 mg/mL sol. The immobilized enzyme exhibited good thermal stability. When the temperature was above 60 °C, the immobilized pullulanase showed significantly higher activity than the free enzyme (p < 0.01); enzyme immobilized by simple sol-gel encapsulation and co-immobilized by crosslinking-encapsulation retained 52 and 69% of their initial activity after 5 h at 62 °C, respectively, compared to 11% for the free enzyme. Moreover, the stability of the pullulanase was improved by crosslinking-encapsulation, as the enzyme retained more than 85 and 81% of its original activity after 5 and 6 consecutive reuses, respectively, compared to 80 and 72% of its original activity for simple sol-gel encapsulated enzymes. This indicated the leakage of enzyme molecules through the pores of the gel was substantially abated by cross-linking. Such immobilized pullulanase provides high stability and ease of enzyme recovery, characteristics that are advantageous for applications in the food industry that involve continuous starch processing.

  12. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery

    PubMed Central

    Ahmed, Tarek A; Aljaeid, Bader M

    2016-01-01

    Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally occurring polysaccharide next to cellulose, is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of micro-as well as nanoparticles. The prepared particles have been exploited as a potential carrier for different therapeutic agents such as peptides, proteins, vaccines, DNA, and drugs for parenteral and nonparenteral administration. Therapeutic agent-loaded chitosan micro- or nanoparticles were found to be more stable, permeable, and bioactive. In this review, we are highlighting the different methods of preparation and characterization of chitosan micro- and nanoparticles, while reviewing the pharmaceutical applications of these particles in drug delivery. Moreover, the roles of chitosan derivatives and chitosan metal nanoparticles in drug delivery have been illustrated. PMID:26869768

  13. Preparation and Characterization of Chitosan Nanoparticles for Zidovudine Nasal Delivery.

    PubMed

    Barbi, Mariana Da Silva; Carvalho, Flávia Chiva; Kiill, Charlene Priscila; Barud, Hernane Da Silva; Santagneli, Sílvia Helena; Ribeiro, Sidney José Lima; Gremião, Maria Palmira Daflon

    2015-01-01

    Zidovudine (AZT) is the antiretroviral drug most frequently used for the treatment of Acquired Immunodeficiency Syndrome. Its low oral bioavailability demands the development of innovative strategies to overcome the first pass metabolism. The nasal route is an option for enhanced therapeutic efficacy and to reduce the extent of the first-pass effect. In this article, AZT loaded chitosan nanoparticles were prepared by a modified ionotropic gelation method with sodium tripolyphosphate. The increase proportion of CS (NP1 10:01 (w/w)) promoted the formation of smaller nanoparticles (260 nm), while raising the proportion of TPP (NP2 5:1 w/w) increased the nanoparticles size (330 nm). The incorporation of AZT increased the nanoparticles size for both AZT-loaded nanoparticles AZT-loaded NP1 (406 nm) and AZT-loaded NP2 (425 nm). The incorporation of AZT into NP1 did not change the electrophoretic mobility, however, in AZT-loaded NP2 there was a significant increase. The positive surface of the nanoparticles is very important for the mucoadhesive properties due interaction with the sialic groups of the mucin. Nuclear resonance magnetic data showed that the higher concentration of chitosan in the nanoparticles favored the interaction of few phosphate units (pyrophosphate) by ionic interaction Scanning electron microscopy, revealed that the nanoparticles are nearly spherical shape with porous surface. The entrapment efficiency of AZT, was 17.58% ± 1.48 and 11.02% ± 2.05 for NP1 and NP2, respectively. The measurement of the mucoadhesion force using mucin discs and nasal tissue obtained values of NP1 = 2.12 and NP2 = 4.62. In vitro permeation study showed that the nanoparticles promoted an increase in the flux of the drug through the nasal mucosa. In view of these results, chitosan nanoparticles were found to be a promising approach for the incorporation of hydrophilic drugs and these results suggest that the CS-containing nanoparticles have great potential for nasal AZT

  14. Spinning disc processing technology: potential for large-scale manufacture of chitosan nanoparticles.

    PubMed

    Loh, Jing Wen; Schneider, Jessica; Carter, Michelle; Saunders, Martin; Lim, Lee-Yong

    2010-10-01

    Mass production of nanoparticles using a reliable cost-effective approach is a challenge in the pharmaceutical industry. In this study, the spinning disc processing (SDP) technology was used to fabricate chitosan nanoparticles, with a view to commercially produce chitosan nanoparticle-based drug delivery platforms. Chitosan solution (0.25%, w/v, in dilute acid, 27.5 mL, 1.5 mL/s) was intensely mixed with sodium tripolyphosphate solution (0.10%, w/v, in water, 20 mL, 1.1 mL/s) on the spinning disc (1000 rpm). Transmission electron microscopy and dynamic light scattering data confirmed that the nanoparticles (20 +/- 3 nm) were comparable in size and shape to those synthesised using a beaker and magnetic stirrer (31 +/- 13 nm). Larger nanoparticles (131 +/- 5 nm) were produced by increasing the chitosan and TPP feed concentrations to 0.5% and 0.125%, respectively. Drug loading further increased the size of the nanoparticles, with N-acetyl cysteine (NAC) having a greater effect (403 +/- 4 nm) than paracetamol (165 +/- 4 nm). Co-loading of both drugs increased the size of the particles to the micron range. In conclusion, the SDP is a robust technology capable of expanding the production of blank and drug-loaded chitosan nanoparticles for the biomedical and pharmaceutical industries.

  15. Chitosan nanoparticles conjugate with trypsin and trypsin inhibitor.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2016-06-25

    Chitosan-protein conjugates are widely used in therapeutic drug delivery. We report the bindings of chitosan nanoparticles with trypsin (try) and trypsin inhibitor (tryi), using thermodynamic analysis and multiple spectroscopic methods. Thermodynamic parameters ΔS, ΔH and ΔG showed chitosan-protein bindings occur mainly via H-bonding and van der Waals contacts with trypsin inhibitor forming more stable conjugate than trypsin. As chitosan size increased more stable polymer-protein conjugate was formed. Chitosan complexation induces more perturbations of trypsin inhibitor structure than trypsin with reduction of protein alpha-helix and major increase of random structure. The negative value of ΔG indicates spontaneous protein-chitosan complexation at room temperature. Chitosan nanoparticles can be used to transport trypsin and trypsin inhibitor.

  16. Synthesis, characterization, controlled release, and antibacterial studies of a novel streptomycin chitosan magnetic nanoantibiotic

    PubMed Central

    Hussein-Al-Ali, Samer Hasan; Zowalaty, Mohamed Ezzat El; Hussein, Mohd Zobir; Ismail, Maznah; Webster, Thomas J

    2014-01-01

    This study describes the preparation, characterization, and controlled release of a streptomycin-chitosan-magnetic nanoparticle-based antibiotic in an effort to improve the treatment of bacterial infections. Specifically, chitosan-magnetic nanoparticles were synthesized by an incorporation method and were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometry. Streptomycin was incorporated into the nanoparticles to form a streptomycin-coated chitosan-magnetic nanoparticle (Strep-CS-MNP) nanocomposite. The release profiles showed an initially fast release, which became slower as time progressed. The percentage of drug released after 350 minutes was around 100%, and the best fit mathematical model for drug release was the pseudo-second order model. The Strep-CS-MNP nanocomposite showed enhanced antibacterial activity against methicillin-resistant Staphylococcus aureus. This study forms a significant basis for further investigation of the Strep-CS-MNP nanocomposite in the treatment of various bacterial infections. PMID:24549109

  17. Biocompatibility of folate-modified chitosan nanoparticles

    PubMed Central

    Chakraborty, Subhankari Prasad; Sahu, Sumanta Kumar; Pramanik, Panchanan; Roy, Somenath

    2012-01-01

    Objective To evaluate the acute toxicity of carboxymethyl chitosan-2, 2′ ethylenedioxy bis-ethylamine-folate (CMC-EDBE-FA) and as well as possible effect on microbial growth and in vitro cell cyto-toxicity. Methods CMC-EDBE-FA was prepared on basis of carboxymethyl chitosan tagged with folic acid by covalently linkage through 2, 2′ ethylenedioxy bis-ethylamine. In vivo acute toxicity, in vitro cyto-toxicity and antimicrobial activity of CMC-EDBE-FA nanoparticle were determined. Results Vancomycin exhibited the antibacterial activity against vancomycin sensitive Staphylococcus aureus, but CMC-EDBE-FA nanoparticle did not give any antibacterial activity as evidenced by minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), disc agar diffusion (DAD) and killing kinetic assay. Further, the CMC-EDBE-FA nanoparticle showed no signs of in vivo acute toxicity up to a dose level of 1 000 mg/kg p.o., and as well as in vitro cyto-toxicity up to 250 µg/mL. Conclusions These findings suggest that CMC-EDBE-FA nanoparticle is expected to be safe for biomedical applications. PMID:23569900

  18. Multi-functional chitosan nanoparticles encapsulating quantum dots and Gd-DTPA as imaging probes for bio-applications.

    PubMed

    Tan, Wee Beng; Zhang, Yong

    2007-07-01

    Chitosan was used to encapsulate both CdSe/ZnS quantum dots (QDs) and the magnetic resonance imaging (MRI) contrast agent gadolinium-diethylenetriaminepentaacetate (Gd-DTPA), forming multi-functional nanoparticles that can be used in a wide range of in vitro or in vivo studies as fluorescent biological labels as well as MRI contrast agents, respectively. Multi-color QDs at pre-determined molar ratios were encapsulated into chitosan nanoparticles to produce bar-coding fluorescent labels. The encapsulated QDs and Gd-DTPA still maintained their desirable optical properties and relatively high relaxivity, respectively. The chitosan nanoparticles also showed good aqueous stability and enhanced biocompatibility on myoblast cells.

  19. Direct electrochemistry and electrocatalysis of heme proteins immobilised in carbon-coated nickel magnetic nanoparticle-chitosan-dimethylformamide composite films in room-temperature ionic liquids.

    PubMed

    Wang, Ting; Wang, Lu; Tu, Jiaojiao; Xiong, Huayu; Wang, Shengfu

    2013-12-01

    The direct electrochemistry and electrocatalysis of heme proteins entrapped in carbon-coated nickel magnetic nanoparticle-chitosan-dimethylformamide (CNN-CS-DMF) composite films were investigated in the hydrophilic ionic liquid [bmim][BF4]. The surface morphologies of a representative set of films were characterised via scanning electron microscopy. The proteins immobilised in the composite films were shown to retain their native secondary structure using UV-vis spectroscopy. The electrochemical performance of the heme proteins-CNN-CS-DMF films was evaluated via cyclic voltammetry and chronoamperometry. A pair of stable and well-defined redox peaks was observed for the heme protein films at formal potentials of -0.151 V (HRP), -0.167 V (Hb), -0.155 V (Mb) and -0.193 V (Cyt c) in [bmim][BF4]. Moreover, several electrochemical parameters of the heme proteins were calculated by nonlinear regression analysis of the square-wave voltammetry. The addition of CNN significantly enhanced not only the electron transfer of the heme proteins but also their electrocatalytic activity toward the reduction of H2O2. Low apparent Michaelis-Menten constants were obtained for the heme protein-CNN-CS-DMF films, demonstrating that the biosensors have a high affinity for H2O2. In addition, the resulting electrodes displayed a low detection limit and improved sensitivity for detecting H2O2, which indicates that the biocomposite film can serve as a platform for constructing new non-aqueous biosensors for real detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci: an in vitro study

    PubMed Central

    Aliasghari, Azam; Rabbani Khorasgani, Mohammad; Vaezifar, Sedigheh; Rahimi, Fateh; Younesi, Habibollah; Khoroushi, Maryam

    2016-01-01

    Background and Objectives: The most prevalent and worldwide oral disease is dental caries that affects a significant proportion of the world population. There are some classical approaches for control, prevention and treatment of this pathologic condition; however, the results are still not completely successful. Therefore new methods are needed for better management of this important challenge. Chitosan is a natural and non-toxic polysaccharide with many biological applications, particularly as an antimicrobial agent. Chitosan nanoparticle is a bioactive and environment friendly material with unique physicochemical properties. The aim of the present study was to investigate the antimicrobial effect of chitosan and nano-chitosan on the most important cariogenic streptococci. Materials and Methods: For evaluation of antimicrobial effect of chitosan and nano-chitosan against oral streptococci broth micro-dilution method was carried out for four bacterial species; Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguis and Streptococcus salivarius. Also the effect of these materials on adhesion of above bacteria was evaluated. One-way ANOVA and post hoc Tukey test were used for statistical analysis. Results: The MICs of chitosan for S. mutans, S. sanguis, S. salivarius and S. sobrinus were 1.25, 1.25, 0.625 and 0.625 mg/mL, respectively. The MIC of chitosan nanoparticle for S. mutans, S. salivarius and S. sobrinus was 0.625 mg/mL and for S. sanguis was 0.312 mg/mL. Chitosan and chitosan nanoparticles at a concentration of 5 mg/mL also reduced biofilm formation of S. mutans up to 92.5% and 93.4%, respectively. Conclusion: The results of this study supported the use of chitosan and chitosan nanoparticles as antimicrobial agents against cariogenic Streptococci. PMID:27307974

  1. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.

    PubMed

    Başak, Esra; Aydemir, Tülin; Dinçer, Ayşe; Becerik, Seda Çınar

    2013-12-01

    Catalase was immobilized on chitosan and modified chitosan. Studies were carried out on free-immobilized catalase concerning the determination of optimum temperature, pH, thermal, storage stability, reusability, and kinetic parameters. Optimum temperature and pH for free catalase and catalase immobilized were found as 35°C and 7.0, respectively. After 100 times of repeated tests, the immobilized catalases on chitosan-clay and magnetic chitosan maintain over 50% and 60% of the original activity, respectively. The ease of catalase immobilization on low-cost matrices and good stability upon immobilization in the present study make it a suitable product for further use in the food industry.

  2. About the Sterilization of Chitosan Hydrogel Nanoparticles.

    PubMed

    Galante, Raquel; Rediguieri, Carolina F; Kikuchi, Irene Satiko; Vasquez, Pablo A S; Colaço, Rogério; Serro, Ana Paula; Pinto, Terezinha J A

    2016-01-01

    In the last years, nanostructured biomaterials have raised a great interest as platforms for delivery of drugs, genes, imaging agents and for tissue engineering applications. In particular, hydrogel nanoparticles (HNP) associate the distinctive features of hydrogels (high water uptake capacity, biocompatibility) with the advantages of being possible to tailor its physicochemical properties at nano-scale to increase solubility, immunocompatibility and cellular uptake. In order to be safe, HNP for biomedical applications, such as injectable or ophthalmic formulations, must be sterile. Literature is very scarce with respect to sterilization effects on nanostructured systems, and even more in what concerns HNP. This work aims to evaluate the effect and effectiveness of different sterilization methods on chitosan (CS) hydrogel nanoparticles. In addition to conventional methods (steam autoclave and gamma irradiation), a recent ozone-based method of sterilization was also tested. A model chitosan-tripolyphosphate (TPP) hydrogel nanoparticles (CS-HNP), with a broad spectrum of possible applications was produced and sterilized in the absence and in the presence of protective sugars (glucose and mannitol). Properties like size, zeta potential, absorbance, morphology, chemical structure and cytotoxicity were evaluated. It was found that the CS-HNP degrade by autoclaving and that sugars have no protective effect. Concerning gamma irradiation, the formation of agglomerates was observed, compromising the suspension stability. However, the nanoparticles resistance increases considerably in the presence of the sugars. Ozone sterilization did not lead to significant physical adverse effects, however, slight toxicity signs were observed, contrarily to gamma irradiation where no detectable changes on cells were found. Ozonation in the presence of sugars avoided cytotoxicity. Nevertheless, some chemical alterations were observed in the nanoparticles.

  3. About the Sterilization of Chitosan Hydrogel Nanoparticles

    PubMed Central

    Galante, Raquel; Rediguieri, Carolina F.; Kikuchi, Irene Satiko; Vasquez, Pablo A. S.; Colaço, Rogério; Pinto, Terezinha J. A.

    2016-01-01

    In the last years, nanostructured biomaterials have raised a great interest as platforms for delivery of drugs, genes, imaging agents and for tissue engineering applications. In particular, hydrogel nanoparticles (HNP) associate the distinctive features of hydrogels (high water uptake capacity, biocompatibility) with the advantages of being possible to tailor its physicochemical properties at nano-scale to increase solubility, immunocompatibility and cellular uptake. In order to be safe, HNP for biomedical applications, such as injectable or ophthalmic formulations, must be sterile. Literature is very scarce with respect to sterilization effects on nanostructured systems, and even more in what concerns HNP. This work aims to evaluate the effect and effectiveness of different sterilization methods on chitosan (CS) hydrogel nanoparticles. In addition to conventional methods (steam autoclave and gamma irradiation), a recent ozone-based method of sterilization was also tested. A model chitosan-tripolyphosphate (TPP) hydrogel nanoparticles (CS-HNP), with a broad spectrum of possible applications was produced and sterilized in the absence and in the presence of protective sugars (glucose and mannitol). Properties like size, zeta potential, absorbance, morphology, chemical structure and cytotoxicity were evaluated. It was found that the CS-HNP degrade by autoclaving and that sugars have no protective effect. Concerning gamma irradiation, the formation of agglomerates was observed, compromising the suspension stability. However, the nanoparticles resistance increases considerably in the presence of the sugars. Ozone sterilization did not lead to significant physical adverse effects, however, slight toxicity signs were observed, contrarily to gamma irradiation where no detectable changes on cells were found. Ozonation in the presence of sugars avoided cytotoxicity. Nevertheless, some chemical alterations were observed in the nanoparticles. PMID:28002493

  4. Polyaniline-coated chitosan-functionalized magnetic nanoparticles: Preparation for the extraction and analysis of endocrine-disrupting phenols in environmental water and juice samples.

    PubMed

    Jiang, Xilan; Cheng, Jing; Zhou, Hongbin; Li, Feng; Wu, Wenlin; Ding, Kerong

    2015-08-15

    In the present study, chitosan (CHI) functionalized Fe3O4 magnetic microspheres coated with polyaniline (PANI) were synthesized for the first time. The chitosan-functionalized magnetic microspheres (Fe3O4@CHI) were synthesized by a co-precipitation method, and then aniline was polymerized on the magnetic core. The obtained Fe3O4@CHI@PANI microspheres were spherical core-shell structure with uniform size at about 100nm with 20-30nm diameter core. The microspheres had a high saturation magnetization of 32emu g(-)(1), which was sufficient for magnetic separation. The obtained Fe3O4@CHI@PANI magnetic microspheres were applied as magnetic adsorbents for the extraction of aromatic compounds via π-π interaction between polyaniline shell and aromatic compounds. Three endocrine-disrupting phenols, including bisphenol A (BPA), 2, 4-dichlorophenol (2, 4-DCP), and triclosan (TCS) were selected as the model analytes to verify the extraction ability of Fe3O4@CHI@PANI. The hydrophilic chitosan-functionalized Fe3O4 core (Fe3O4@CHI) improved the dispersibility of Fe3O4@CHI@PANI microspheres, and then improve its extraction efficiency. The dominant parameters affecting enrichment efficiency were investigated and optimized. Under optimal condition, the proposed method was evaluated, and applied to the analysis of phenols in real water and juice samples. The results demonstrated the method based on Fe3O4@CHI@PANI magnetic microspheres had good linearity (R(2)>0.996), and limits of detection (0.10-0.13ng mL(-1)), high repeatability (RSD<6.6%) and good recovery (85.0-106.7%). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Evaluation of Hemagglutination Activity of Chitosan Nanoparticles Using Human Erythrocytes

    PubMed Central

    de Lima, Jefferson Muniz; Sarmento, Ronaldo Rodrigues; de Souza, Joelma Rodrigues; Brayner, Fábio André; Feitosa, Ana Paula Sampaio; Padilha, Rafael; Alves, Luiz Carlos; Porto, Isaque Jerônimo; Batista, Roberta Ferreti Bonan Dantas; de Oliveira, Juliano Elvis; de Medeiros, Eliton Souto; Bonan, Paulo Rogério Ferreti; Castellano, Lúcio Roberto

    2015-01-01

    Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4) D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L−1. The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS) collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH. PMID:25759815

  6. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes.

    PubMed

    de Lima, Jefferson Muniz; Sarmento, Ronaldo Rodrigues; de Souza, Joelma Rodrigues; Brayner, Fábio André; Feitosa, Ana Paula Sampaio; Padilha, Rafael; Alves, Luiz Carlos; Porto, Isaque Jerônimo; Batista, Roberta Ferreti Bonan Dantas; de Oliveira, Juliano Elvis; de Medeiros, Eliton Souto; Bonan, Paulo Rogério Ferreti; Castellano, Lúcio Roberto

    2015-01-01

    Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4) D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L(-1). The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS) collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH.

  7. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Burboa, María G.; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2015-09-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air-water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction.

  8. Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells.

    PubMed

    Thorat, N D; Otari, S V; Patil, R M; Bohara, R A; Yadav, H M; Koli, V B; Chaurasia, A K; Ningthoujam, R S

    2014-12-14

    Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an in vitro cancer hyperthermia study is done on the MCF7 cell line. During in vitro hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy.

  9. Properties of Novel Hydroxypropyl Methylcellulose Films Containing Chitosan Nanoparticles

    USDA-ARS?s Scientific Manuscript database

    In this work, chitosan nanoparticles were prepared and incorporated in hydroxypropyl methylcellulose (HPMC) films under different conditions. Mechanical properties, water vapor and oxygen permeability, water solubility and scanning and transmission electron microscopy (SEM and TEM) results were ana...

  10. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    NASA Astrophysics Data System (ADS)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg

    2017-04-01

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9-18 nm), rice-seed-like (75-290 nm) and lumpy (75-150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9-15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan.

  11. Recent advances of chitosan nanoparticles as drug carriers

    PubMed Central

    Wang, Jun Jie; Zeng, Zhao Wu; Xiao, Ren Zhong; Xie, Tian; Zhou, Guang Lin; Zhan, Xiao Ri; Wang, Shu Ling

    2011-01-01

    Chitosan nanoparticles are good drug carriers because of their good biocompatibility and biodegradability, and can be readily modified. As a new drug delivery system, they have attracted increasing attention for their wide applications in, for example, loading protein drugs, gene drugs, and anticancer chemical drugs, and via various routes of administration including oral, nasal, intravenous, and ocular. This paper reviews published research on chitosan nanoparticles, including its preparation methods, characteristics, modification, in vivo metabolic processes, and applications. PMID:21589644

  12. Synthesis and studies of water-soluble Prussian Blue-type nanoparticles into chitosan beads.

    PubMed

    Folch, Benjamin; Larionova, Joulia; Guari, Yannick; Molvinger, Karine; Luna, Carlos; Sangregorio, Claudio; Innocenti, Claudia; Caneschi, Andrea; Guérin, Christian

    2010-10-21

    A new approach to the synthesis of highly stable aqueous colloids of coordination polymer nanoparticles was developed by using water-soluble chitosan beads as template and as stabilizing agent. The method consists in the synthesis of nanocomposite beads containing cyano-bridged coordination polymer nanoparticles via step-by-step coordination of the metal ions and the hexacyanometallate precursors into the chitosan pores and then water solubilization of these as-obtained nanocomposite beads. We obtain a large range of M(2+)/[M'(CN)(6)](3-)/chitosan (where M(2+) = Ni(2+), Cu(2+), Fe(2+), Co(2+), Mn(2+) and M' = Fe(3+) and Cr(3+)) nanocomposite beads and their respective aqueous colloids containing coordination polymer core/chitosan shell nanoparticles. The nanocomposite beads and the corresponding aqueous colloids were studied by Infrared (IR) and UV-Vis spectroscopy, nitrogen sorption (BET), Transmission Electron Microscopy (TEM), High Resolution Transmission Electron Microscopy (HRTEM) and magnetic analyses, which reveal the presence of homogeneously dispersed uniformly-sized cyano-bridged coordination polymer nanoparticles. The detailed studies of the static and dynamic magnetic properties of these nanoparticles show the occurrence of a spin-glass like behavior presumably produced by intra-particle spin disorder due to the low spin exchange energy characterizing these materials.

  13. Chitosan nanoparticles for oral drug and gene delivery

    PubMed Central

    Bowman, Katherine; Leong, Kam W

    2006-01-01

    Chitosan is a widely available, mucoadhesive polymer that is able to increase cellular permeability and improve the bioavailability of orally administered protein drugs. It can also be readily formed into nanoparticles able to entrap drugs or condense plasmid DNA. Studies on the formulation and oral delivery of such chitosan nanoparticles have demonstrated their efficacy in enhancing drug uptake and promoting gene expression. This review summarizes some of these findings and highlights the potential of chitosan as a component of oral delivery systems. PMID:17722528

  14. Alginate and Chitosan Gel Nanoparticles for Efficient Protein Entrapment

    NASA Astrophysics Data System (ADS)

    Masalova, O.; Kulikouskaya, V.; Shutava, T.; Agabekov, V.

    Alginate and chitosan nanoparticles were synthesized by ionic gelation of the polymers in the presence of stabilizers (PEG 1500, PEG 6000, TWEEN 80). The stability of 210-240 nm Ca-alginate colloids is affected by nanoparticles ageing and by the presence of a stabilizer. The diameter of chitosan nanoparticles is in the range of 180 to 260 nm and depends on polymer concentration in the reaction mixture, its molecular weight, and stabilizer type. The nanoparticles efficiently entrap a model protein, bovine serum albumin, in the amount up to 0.24 mg per 1 mg of polysaccharide.

  15. Chitosan nanoparticles as a modified diclofenac drug release system

    NASA Astrophysics Data System (ADS)

    Duarte Junior, Anivaldo Pereira; Tavares, Eraldo José Madureira; Alves, Taís Vanessa Gabbay; de Moura, Márcia Regina; da Costa, Carlos Emmerson Ferreira; Silva Júnior, José Otávio Carréra; Ribeiro Costa, Roseane Maria

    2017-08-01

    This study evaluated a modified nanostructured release system employing diclofenac as a drug model. Biodegradable chitosan nanoparticles were prepared with chitosan concentrations between 0.5 and 0.8% ( w/ v) by template polymerization method using methacrylic acid in aqueous solution. Chitosan-poly(methacrylic acid) (CS-PMAA) nanoparticles showed uniform size around 50-100 nm, homogeneous morphology, and spherical shape. Raw material and chitosan nanoparticles were characterized by thermal analysis, Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM), confirming the interaction between chitosan and methacrylic acid during nanoparticles preparation. Diclofenac sorption on the chitosan nanoparticles surface was achieved by incubation in water/ethanol (1:1) drug solution in concentrations of 0.5 and 0.8 mg/mL. The diclofenac amount sorbed per gram of CS-PMAA nanoparticles, when in a 0.5 mg/mL sodium diclofenac solution, was as follows: 12.93, 15, 20.87, and 29.63 mg/g for CS-PMAA nanoparticles 0.5, 0.6, 0.7, and 0.8% ( w/ v), respectively. When a 0.8 mg/mL sodium diclofenac solution was used, higher sorption efficiencies were obtained: For CS-PMAA nanoparticles with chitosan concentrations of 0.5, 0.6, 0.7, and 0.8% ( w/ v), the sorption efficiencies were 33.39, 49.58, 55.23, and 67.2 mg/g, respectively. Diclofenac sorption kinetics followed a second-order kinetics. Drug release from nanoparticles occurred in a period of up to 48 h and obeyed Korsmeyer-Peppas model, which was characterized mainly by Fickian diffusion transport. [Figure not available: see fulltext.

  16. Characterization of physicochemical and colloidal properties of hydrogel chitosan-coated iron-oxide nanoparticles for cancer therapy

    NASA Astrophysics Data System (ADS)

    Catalano, E.; Di Benedetto, A.

    2017-05-01

    Superparamagnetic iron oxide nanoparticles have recently been investigated for their potential to kill cancer cells with promising results, owing to their ability to be targeted and heated by magnetic fields. In this study, novel hydrogel, chitosan Fe3O4 magnetic nanoparticles were synthesized to induce magnetic hyperthermia, and targeted delivering of chemotherapeutics in the cancer microenvironment. The characteristic properties of synthesized bare and CS-MNPs were analyzed by various analytical methods: X-ray diffraction, Fourier transformed infrared spectroscopy, Scanning electron microscopy and Thermo-gravimetric analysis/differential thermal analysis. Magnetic nanoparticles were successfully synthesized using the co-precipitation method. This synthesis technique resulted in nanoparticles with an average particle size of 16 nm. The pure obtained nanoparticles were then successfully encapsulated with 4-nm-thick chitosan coating. The formation of chitosan on the surface of nanoparticles was confirmed by physicochemical analyses. Heating experiments at safe magnetic field (f = 100 kHz, H =10-20 kA m-1) revealed that the maximum achieved temperature of water stable chitosan-coated nanoparticles (50 mg ml-1) is fully in agreement with cancer therapy and biomedical applications.

  17. Different preparation methods and characterization of magnetic maghemite coated with chitosan

    NASA Astrophysics Data System (ADS)

    Hojnik Podrepšek, Gordana; Knez, Željko; Leitgeb, Maja

    2013-06-01

    The preparation of maghemite (γ-Fe2O3) micro- and nanoparticles coated with chitosan, used as carriers for immobilized enzymes, was investigated. γ-Fe2O3 nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ ions in the presence of ammonium. They were coated with chitosan by the microemulsion process, suspension cross-linking technique, and covalent binding of chitosan on the γ-Fe2O3 surface. The methods distinguished the concentration of chitosan, concentration of acetic acid solution, concentration of a cross-linking agent, temperature of synthesis, pH of the medium, and time of synthesis. γ-Fe2O3 micro- and nanoparticles coated with chitosan prepared after three preparation methods were evaluated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy analysis, energy dispersive spectrometry, thermogravimetric analysis, differential scanning calorimetry analysis, vibrating sample magnetometry, dynamic light scattering, laser diffraction granulometry, and X-ray diffractometry. These positive attributes demonstrated that these magnetic micro- and nanoparticles coated with chitosan may be used as a promising carrier for further diverse biomedical applications.

  18. Size selected synthesis of CoFe2O4 nanoparticles prepared in a chitosan matrix

    NASA Astrophysics Data System (ADS)

    Gurgel, A. L.; Soares, J. M.; Chaves, D. S.; Chaves, D. S.; Xavier, M. M.; Morales, M. A.; Baggio-Saitovitch, E. M.

    2010-05-01

    In this paper we report the synthesis and magnetic properties of CoFe2O4 nanoparticles. The nanoparticles with sizes ranging from 6 to 20 nm were prepared in a chitosan matrix. Size selection was achieved by introducing a nonionic surfactant Tween-X, where X={20, 60, 80, and 85}. Aqueous dispersions of Tween-X show micelles with increasing hydrodynamic sizes as X increases. Mössbauer spectroscopy measurements at 300 K show superparamagnetic behavior for the small particles, changing gradually to a blocked magnetic regime as the particle size increases. Magnetization measurements at 300 K show increasing values for the ratio Mr/MHmax and coercive fields (Hc).

  19. Chitosan-coupled solid lipid nanoparticles: Tuning nanostructure and mucoadhesion.

    PubMed

    Sandri, Giuseppina; Motta, Simona; Bonferoni, Maria Cristina; Brocca, Paola; Rossi, Silvia; Ferrari, Franca; Rondelli, Valeria; Cantù, Laura; Caramella, Carla; Del Favero, Elena

    2017-01-01

    Solid Lipid Nanoparticles (SLNs) composed of biodegradable physiological lipids have been widely proposed as efficient drug delivery systems, also for ophthalmic administration. Recently, chitosan-associated-SLNs have been developed to further improve the residence time of these colloidal systems in the precorneal area by means of mucoadhesive interaction. In the present study, a one-step preparation protocol was used aiming both at scale-up ease and at stronger coupling between chitosan and SLNs. The resulting particles were chitosan associated-SLNs (CS-SLNs). These nanoparticles were characterized, as compared to both the chitosan-free and the usual chitosan-coated ones, by applying a multi-technique approach: light, neutron and X-ray scattering, Zeta-potential, AFM, calorimetry. It was assessed that, while keeping the features of nano-size and surface-charge required for an efficient vector, these new nanoparticles display a strong and intimate interaction between chitosan and SLNs, far more settled than the usual simple coverage. Moreover, this one-step preparation method allows to obtain a strong and intimate interaction between chitosan and SLNs, firmer than the usual simple coating. This confers to the CS-SLNs an improved mucoadhesion, opening the way for a high-performing ophthalmic formulation.

  20. Metallic magnetic nanoparticles.

    PubMed

    Hernando, A; Crespo, P; García, M A

    2005-12-22

    In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm), covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  1. Synthesis of Monodisperse Chitosan Nanoparticles and in Situ Drug Loading Using Active Microreactor.

    PubMed

    Kamat, Vivek; Marathe, Ila; Ghormade, Vandana; Bodas, Dhananjay; Paknikar, Kishore

    2015-10-21

    Chitosan nanoparticles are promising drug delivery vehicles. However, the conventional method of unregulated mixing during ionic gelation limits their application because of heterogeneity in size and physicochemical properties. Therefore, a detailed theoretical analysis of conventional and active microreactor models was simulated. This led to design and fabrication of a polydimethylsiloxane microreactor with magnetic micro needles for the synthesis of monodisperse chitosan nanoparticles. Chitosan nanoparticles synthesized conventionally, using 0.5 mg/mL chitosan, were 250 ± 27 nm with +29.8 ± 8 mV charge. Using similar parameters, the microreactor yielded small size particles (154 ± 20 nm) at optimized flow rate of 400 μL/min. Further optimization at 0.4 mg/mL chitosan concentration yielded particles (130 ± 9 nm) with higher charge (+39.8 ± 5 mV). The well-controlled microreactor-based mixing generated highly monodisperse particles with tunable properties including antifungal drug entrapment (80%), release rate, and effective activity (MIC, 1 μg/mL) against Candida.

  2. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe2O4

    NASA Astrophysics Data System (ADS)

    Oh, Yunok; Lee, Nohyun; Kang, Hyun Wook; Oh, Junghwan

    2016-03-01

    Magnetic nanoparticles (MNPs) have been widely investigated as a hyperthermic agent for cancer treatment. In this study, thermally responsive Chitosan-coated MnFe2O4 (Chitosan-MnFe2O4) nanoparticles were developed to conduct localized magnetic hyperthermia for cancer treatment. Hydrophobic MnFe2O4 nanoparticles were synthesized via thermal decomposition and modified with 2,3-dimercaptosuccinic acid (DMSA) for further conjugation of chitosan. Chitosan-MnFe2O4 nanoparticles exhibited high magnetization and excellent biocompatibility along with low cell cytotoxicity. During magnetic hyperthermia treatment (MHT) with Chitosan-MnFe2O4 on MDA-MB 231 cancer cells, the targeted therapeutic temperature was achieved by directly controlling the strength of the external AC magnetic fields. In vitro Chitosan-MnFe2O4-assisted MHT at 42 °C led to drastic and irreversible changes in cell morphology and eventual cellular death in association with the induction of apoptosis through heat dissipation from the excited magnetic nanoparticles. Therefore, the Chitosan-MnFe2O4 nanoparticles with high biocompatibility and thermal capability can be an effective nano-mediated agent for MHT on cancer.

  3. Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles.

    PubMed

    Baltzley, Sarah; Mohammad, Atiquzzaman; Malkawi, Ahmad H; Al-Ghananeem, Abeer M

    2014-12-01

    The aim of this study was to investigate olanzapine (OZ) systemic absolute bioavailability after intranasal (i.n.) administration in vivo to conscious rabbits. Furthermore, the study investigated the potential use of chitosan nanoparticles as a delivery system to enhance the systemic bioavailability of olanzapine following intranasal administration. Olanzapine-loaded chitosan nanoparticles were prepared through ionotropic gelation of chitosan with tripolyphosphate anions and studied in terms of their size, drug loading, and in vitro release. The OZ nanoparticles were administered i.n. to rabbits, and OZ plasma concentration at predetermined time points was compared to i.n. administration of OZ in solution. The concentrations of OZ in plasma were analyzed by ultra performance liquid chromatography mass spectroscopy (UPLC/MS). OZ-loaded chitosan nanoparticles significantly (p < 0.05) enhanced systemic absorption with 51 ± 11.2% absolute bioavailability as compared to 28 ± 6.7% after i.n. administration of OZ solution. The results of the present study suggest that intranasal administration of OZ-loaded chitosan nanoparticles formulation could be an attractive modality for delivery of OZ systemically.

  4. Uptake and cytotoxicity of chitosan nanoparticles in human liver cells

    SciTech Connect

    Loh, Jing Wen; Yeoh, George; Saunders, Martin; Lim, Lee-Yong

    2010-12-01

    Despite extensive research into the biomedical and pharmaceutical applications of nanoparticles, and the liver being the main detoxifying organ in the human body, there are limited studies which delineate the hepatotoxicity of nanoparticles. This paper reports on the biological interactions between liver cells and chitosan nanoparticles, which have been widely recognised as biocompatible. Using the MTT assay, human liver cells were shown to tolerate up to 4 h of exposure to 0.5% w/v of chitosan nanoparticles (18 {+-} 1 nm, 7.5 {+-} 1.0 mV in culture medium). At nanoparticle concentrations above 0.5% w/v, cell membrane integrity was compromised as evidenced by leakage of alanine transaminase into the extracellular milieu, and there was a dose-dependent increase in CYP3A4 enzyme activity. Uptake of chitosan nanoparticles into the cell nucleus was observed by confocal microscopic analysis after 4 h exposure with 1% w/v of chitosan nanoparticles. Electron micrographs further suggest necrotic or autophagic cell death, possibly caused by cell membrane damage and resultant enzyme leakage.

  5. Asymmetric Collagen/chitosan Membrane Containing Minocycline-loaded Chitosan Nanoparticles for Guided Bone Regeneration

    PubMed Central

    Ma, Shiqing; Adayi, Aidina; Liu, Zihao; Li, Meng; Wu, Mingyao; Xiao, Linghao; Sun, Yingchun; Cai, Qing; Yang, Xiaoping; Zhang, Xu; Gao, Ping

    2016-01-01

    Infections caused by pathogens colonization at wound sites in the process of bone healing are considered as one of the major reasons for the failure of guided bone regeneration (GBR). The objective of this study was to prepare a novel asymmetric collagen/chitosan GBR membrane containing minocycline-loaded chitosan nanoparticles. The morphologies of the membranes and nanoparticles were observed by SEM and TEM, respectively. The characterization and biocompatibility of the membranes was evaluated. The effect of the membrane on bone regeneration was assessed using the critical-size at cranial defect model. TEM images showed the spherical morphology of the nanoparticles. The results of SEM indicated that the asymmetric membrane contained a dense collagen layer and a loose chitosan layer. An in vitro experiment showed that the membrane can inhibit bacterial growth and promote osteoblasts and fibroblasts growth. The membrane showed the ability to promote angiogenesis and enhance bone regeneration in vivo. An asymmetric collagen/chitosan GBR membrane can be fabricated by loading minocycline encapsulated chitosan nanoparticles, and shows satisfactory biocompatibility and barrier function, which enhances bone regeneration. Therefore, this antibacterial GBR membrane is a promising therapeutic approach to prevent infection and guide bone regeneration. PMID:27546177

  6. Enhanced surface imprinting of lysozyme over a new kind of magnetic chitosan submicrospheres.

    PubMed

    Guo, Hao; Yuan, Dongying; Fu, Guoqi

    2015-02-15

    Surface protein imprinting over nano- or micron-sized substrates is an effective approach for improving the biomacromolecule mass transfer and rebinding capacity. For achieving high recognition performance, it is necessary to introduce certain functional groups onto the surface of the support materials which can interact with the template protein. Herein, we report a surface protein imprinting approach using a new kind of core-shell magnetic chitosan submicrospheres as the supports. The surface of these magnetic chitosan particles is tethered with uncross-linked chitosan chains, hence bearing plenty of amino and hydroxyl groups, where a large amount of functional ligands can be readily coupled for capturing of the protein template. With lysozyme as a model print protein, the magnetic supports were functionalized with maleic acid and then coated with imprinted polymer layers. The resulting imprinted microspheres show significantly selective rebinding for lysozyme. In particular, they exhibit a specific rebinding capacity about three times higher than achieved with our previous lysozyme-imprinted particles synthesized in similar way but with maleic acid modified silica nanoparticles as the supports. This can be attributed to the much higher template binding capacity to the modified magnetic chitosan submicrospheres. Also, the resultant imprinted particles can be easily collected by a magnet. Therefore, such kind of chitosan submicrospheres may be a versatile carrier for constructing high-capacity and magnetically recyclable surface protein-imprinted particles. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Magnetic Nanoparticle Sensors

    PubMed Central

    Koh, Isaac; Josephson, Lee

    2009-01-01

    Many types of biosensors employ magnetic nanoparticles (diameter = 5–300 nm) or magnetic particles (diameter = 300–5,000 nm) which have been surface functionalized to recognize specific molecular targets. Here we cover three types of biosensors that employ different biosensing principles, magnetic materials, and instrumentation. The first type consists of magnetic relaxation switch assay-sensors, which are based on the effects magnetic particles exert on water proton relaxation rates. The second type consists of magnetic particle relaxation sensors, which determine the relaxation of the magnetic moment within the magnetic particle. The third type is magnetoresistive sensors, which detect the presence of magnetic particles on the surface of electronic devices that are sensitive to changes in magnetic fields on their surface. Recent improvements in the design of magnetic nanoparticles (and magnetic particles), together with improvements in instrumentation, suggest that magnetic material-based biosensors may become widely used in the future. PMID:22408498

  8. Optimization of preparation of chitosan-coated iron oxide nanoparticles for biomedical applications by chemometrics approaches

    NASA Astrophysics Data System (ADS)

    Honary, Soheila; Ebrahimi, Pouneh; Rad, Hossein Asgari; Asgari, Mahsa

    2013-08-01

    Functionalized magnetic nanoparticles are used in several biomedical applications, such as drug delivery, magnetic cell separation, and magnetic resonance imaging. Size and surface properties of iron oxide nanoparticles are the two important factors which could dramatically affect the nanoparticle efficiency as well as their stability. In this study, the chemometrics approach was applied to optimize the coating process of iron oxide nanoparticles. To optimize the size of nanoparticles, the effect of two experimental parameters on size was investigated by means of multivariate analysis. The factors considered were chitosan molecular weight and chitosan-to-tripolyphosphate concentration ratio. The experiments were performed according to face-centered cube central composite response surface design. A second-order regression model was obtained which characterized by both descriptive and predictive abilities. The method was optimized with respect to the percent of Z average diameter's increasing after coating as response. It can be concluded that experimental design provides a suitable means of optimizing and testing the robustness of iron oxide nanoparticle coating method.

  9. Chitosan-based biocatalytic nanoparticles for pollutant removal from wastewater.

    PubMed

    Alarcón-Payán, Dulce A; Koyani, Rina D; Vazquez-Duhalt, Rafael

    2017-05-01

    Chitosan, a renewable biopolymer has the prospective applications in different fields due to its gelation capacity. Nanoconfiguration of chitosan through ionotropic gelation to encapsulate enzymatic activity offers numerous potential applications. In the present study, the preparation and characterization of chitosan nanoparticles loaded with versatile peroxidase are reported. Their performance in bioremediation process and the resistance enhancement against natural microbial biodegradation were studied. The average diameter of enzymatic nanoparticles was 120nm and showed a high enzyme loading capacity. The kinetic parameters of nanoparticles exhibited a slightly lower catalytic activity (kcat), similar affinity constant (Km) for hydrogen peroxide and higher Km value for the phenolic compound when compared with the free enzyme. The enzymatic nanoparticles showed higher thermostability and the same pH activity profile than those from free enzyme. Ten phenolic compounds, including pesticides, halogenated compounds, endocrine disruptors and antibacterials were transformed by the enzymatic nanoparticles. The transformation rate was lower than those obtained with free enzyme suggesting mass transfer limitations. But very importantly, the enzymatic nanoparticles showed a significant increase of the operational stability in real conditions of wastewater treatment process. Moreover, chemical modification of nanoparticles with different aldehydes still enhanced the operational stability of nanoparticulated enzymes. This enhancement of stability in real conditions and the potential use of biocatalytic nanoparticles in bioremediation processes are discussed.

  10. Preparation of Chitosan Nanoparticles: A Study of Influencing Factors

    NASA Astrophysics Data System (ADS)

    Thakur, Anupama; Taranjit

    2011-12-01

    Chitosan (CS), a cationic polysaccharide, offers great advantages for ionic interactions with negatively charged species such as sodium tripolyphosphate (STPP) leading to the formation of biocompatible crosslinked chitosan nanoparticles In the present work, an attempt has been made to systematically study the following factors influencing the ionotropic gelation of chitosan with STPP to produce CS nanoparticles: effect of pH of solution, CS concentration, STPP concentration and CS/STPP ratio. The results show that with the increase in CS concentration, the yield of the nanoparticle decreases whereas size increases. The mean size of the prepared nanoparticles varied between 120 to 720 nm and zeta potential between +14 mV to +53 mV . Nanoparticle size and yield was found to be strongly dependent on solution pH. Nanoparticle size decreased with increase in solution pH from 4 to 5 and yield was found to be maximum at pH = 5. With increase in STPP concentration, the size and yield of the nanoparticle increased. The potential of CS nanoparticles to trap amoxicillin trihydrate, taken as the model drug, was also studied. The maximum drug loading capacity was found to be 35% at a solution pH = 5 for 0.2% CS and 0.086% STPP.

  11. Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery

    NASA Astrophysics Data System (ADS)

    Nui Pham, Xuan; Phuoc Nguyen, Tan; Nhung Pham, Tuyet; Thuy Nga Tran, Thi; Van Thi Tran, Thi

    2016-12-01

    In this work anti-cancer drug curcumin-loaded superparamagnetic iron oxide (Fe3O4) nanoparticles was modified by chitosan (CS). The magnetic iron oxide nanoparticles were synthesized by using reverse micro-emulsion (water-in-oil) method. The magnetic nanoparticles without loaded drug and drug-loaded magnetic nanoparticles were characterized by XRD, FTIR, TG-DTA, SEM, TEM, and VSM techniques. These nanoparticles have almost spherical shape and their diameter varies from 8 nm to 17 nm. Measurement of VSM at room temperature showed that iron oxide nanoparticles have superparamagnetic properties. In vitro drug loading and release behavior of curcumin drug-loaded CS-Fe3O4 nanoparticles were studied by using UV-spectrophotometer. In addition, the cytotoxicity of the modified nanoparticles has shown anticancer activity against A549 cell with IC50 value of 73.03 μg/ml. Therefore, the modified magnetic nanoparticles can be used as drug delivery carriers on target in the treatment of cancer cells.

  12. Mercury(II) removal with modified magnetic chitosan adsorbents.

    PubMed

    Kyzas, George Z; Deliyanni, Eleni A

    2013-05-24

    Two modified chitosan derivatives were prepared in order to compare their adsorption properties for Hg(II) removal from aqueous solutions. The one chitosan adsorbent (CS) is only cross-linked with glutaraldehyde, while the other (CSm), which is magnetic, is cross-linked with glutaraldehyde and functionalized with magnetic nanoparticles (Fe₃O₄). Many possible interactions between materials and Hg(II) were observed after adsorption and explained via characterization with various techniques (SEM/EDAX, FTIR, XRD, DTG, DTA, VSM, swelling tests). The adsorption evaluation was done studying various parameters as the effect of pH (optimum value 5 for adsorption and 2 for desorption), contact time (fitting to pseudo-first, -second order and Elovich equations), temperature (isotherms at 25, 45, 65 °C), in line with a brief thermodynamic analysis (ΔG⁰ < 0, ΔH⁰ > 0, ΔS⁰ > 0). The maximum adsorption capacity (fitting with Langmuir and Freundlich model) of CS and CSm at 25 °C was 145 and 152 mg/g, respectively. The reuse ability of the adsorbents prepared was confirmed with sequential cycles of adsorption-desorption.

  13. Biodegradable chitosan nanoparticles in drug delivery for infectious disease.

    PubMed

    Landriscina, Angelo; Rosen, Jamie; Friedman, Adam J

    2015-05-01

    Increasing rates of antimicrobial resistance have left a significant gap in the standard antimicrobial armament. Nanotechnology holds promise as a new approach to combating resistant microbes. Chitosan, a form of deacetylated chitin, has been used extensively in medicine, agriculture and industry due to its ease of production, biocompatibility and antimicrobial activity. Chitosan has been studied extensively as a main structural component and additive for nanomaterials. Specifically, numerous studies have demonstrated its potent microbicidal activity and its efficacy as an adjuvant to vaccines, including mucosally administered vaccines. In this review, we present fundamental information about chitosan and chitosan nanoparticles as well as the most recent data about their antimicrobial mechanism and efficacy as a nanotechnology-based drug delivery system.

  14. In Vivo Magnetic Resonance Imaging and Microwave Thermotherapy of Cancer Using Novel Chitosan Microcapsules

    NASA Astrophysics Data System (ADS)

    Tang, Shunsong; Du, Qijun; Liu, Tianlong; Tan, Longfei; Niu, Meng; Gao, Long; Huang, Zhongbing; Fu, Changhui; Ma, Tengchuang; Meng, Xianwei; Shao, Haibo

    2016-07-01

    Herein, we develop a novel integrated strategy for the preparation of theranostic chitosan microcapsules by encapsulating ion liquids (ILs) and Fe3O4 nanoparticles. The as-prepared chitosan/Fe3O4@IL microcapsules exhibit not only significant heating efficacy in vitro under microwave (MW) irradiation but also obvious enhancement of T2-weighted magnetic resonance (MR) imaging, besides the excellent biocompatibility in physiological environments. The chitosan/Fe3O4@IL microcapsules show ideal temperature rise and therapeutic efficiency when applied to microwave thermal therapy in vivo. Complete tumor elimination is realizing after MW irradiation at an ultralow power density (1.8 W/cm2), while neither the MW group nor the chitosan microcapsule group has significant influence on the tumor development. The applicability of the chitosan/Fe3O4@IL microcapsules as an efficient contrast agent for MR imaging is proved in vivo. Moreover, the result of in vivo systematic toxicity shows that chitosan/Fe3O4@IL microcapsules have no acute fatal toxicity. Our study presents an interesting type of multifunctional platform developed by chitosan microcapsule promising for imaging-guided MW thermotherapy.

  15. Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives

    NASA Astrophysics Data System (ADS)

    Szpak, Agnieszka; Kania, Gabriela; Skórka, Tomasz; Tokarz, Waldemar; Zapotoczny, Szczepan; Nowakowska, Maria

    2013-01-01

    This article presents the synthesis and characterization of biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) coated with ultrathin layer of anionic derivative of chitosan. The water-based fabrication involved a two-step procedure. In the first step, the nanoparticles were obtained by co-precipitation of ferrous and ferric aqueous salt solutions with ammonia in the presence of cationic derivative of chitosan. In the second step, such prepared materials were subjected to adsorption of oppositely charged chitosan derivative which resulted in the preparation of negatively charged SPIONs. They were found to develop highly stable dispersion in water. The core size of the nanocoated SPIONs, determined using transmission electron microscopy, was measured to be slightly above 10 nm. The coated nanoparticles form aggregates with majority of them having hydrodynamic diameter below 100 nm, as measured by dynamic light scattering. Their composition and properties were studied using FTIR and thermogravimetric analyses. They exhibit magnetic properties typical for superparamagnetic material with a high saturation magnetization value of 123 ± 12 emu g-1 Fe. Very high value of the measured r 2 relaxivity, 369 ± 3 mM-1 s-1, is conducive for the potential application of the obtained SPIONs as promising contrast agents in magnetic resonance imaging.

  16. Characterization and toxicology evaluation of chitosan nanoparticles on the embryonic development of zebrafish, Danio rerio.

    PubMed

    Wang, Yanbo; Zhou, Jinru; Liu, Lin; Huang, Changjiang; Zhou, Deqing; Fu, Linglin

    2016-05-05

    In the present study, chitosan nanoparticles were prepared, characterized and used to evaluate the embryonic toxicology on zebrafish (Danio rerio). The average particle size of chitosan nanoparticles was 84.86nm. The increased mortality and decreased hatching rate was found in the zebrafish embryo exposure to normal chitosan particles and chitosan nanoparticles with the increased addition concentration. At 120h post-fertilization (hpf), the rate of mortality were 25.0 and 44.4% in the groups treated with chitosan nanoparticles and normal chitosan particles at 250mg/L, respectively. At 72hpf, the hatching rate in the groups treated with normal chitosan particles were lower (P<0.01) at 300 and 400mg/L than those of the corresponding control groups, respectively. However, there were no significant differences between the groups treated with chitosan nanoparticles and the control groups across all the addition concentrations. More abundant typical malformation of embryos was observed in the groups treated with normal chitosan particles compared with those treated with chitosan nanoparticles. The LC50 (medium lethal concentration) of chitosan nanoparticles was 280mg/L at 96hpf and 270mg/L at 120hpf. As for normal chitosan particles, the LC50 was 257mg/L at both 96hpf and 120hpf. The TC50 (medium teratogenic concentration) of the zebrafish treated with chitosan nanoparticles and normal chitosan particles were 257mg/L and 137mg/L, respectively. It indicated that the chitosan nanoparticles were relatively more secure compared with normal chitosan particles.

  17. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model

    PubMed Central

    Hu, Yu-Lan; Qi, Wang; Han, Feng; Shao, Jian-Zhong; Gao, Jian-Qing

    2011-01-01

    Background Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier. Methods Chitosan nanoparticles with two particle sizes were prepared by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles of different concentrations were incubated with zebrafish embryos, and ZnO nanoparticles were used as the positive control. Results Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent. Chitosan nanoparticles at a size of 200 nm caused malformations, including a bent spine, pericardial edema, and an opaque yolk in zebrafish embryos. Furthermore, embryos exposed to chitosan nanoparticles showed an increased rate of cell death, high expression of reactive oxygen species, as well as overexpression of heat shock protein 70, indicating that chitosan nanoparticles can cause physiological stress in zebrafish. The results also suggest that the toxicity of biodegradable nanocarriers such as chitosan nanoparticles must be addressed, especially considering the in vivo distribution of these nanoscaled particles. Conclusion Our results add new insights into the potential toxicity of nanoparticles produced by biodegradable materials, and may help us to understand better the nanotoxicity of drug delivery carriers. PMID:22267920

  18. Cytotoxicity of monodispersed chitosan nanoparticles against the Caco-2 cells

    SciTech Connect

    Loh, Jing Wen; Saunders, Martin; Lim, Lee-Yong

    2012-08-01

    Published toxicology data on chitosan nanoparticles (NP) often lack direct correlation to the in situ size and surface characteristics of the nanoparticles, and the repeated NP assaults as experienced in chronic use. The aim of this paper was to breach these gaps. Chitosan nanoparticles synthesized by spinning disc processing were characterised for size and zeta potential in HBSS and EMEM at pHs 6.0 and 7.4. Cytotoxicity against the Caco-2 cells was evaluated by measuring the changes in intracellular mitochondrial dehydrogenase activity, TEER and sodium fluorescein transport data and cell morphology. Cellular uptake of NP was observed under the confocal microscope. Contrary to established norms, the collective data suggest that the in vitro cytotoxicity of NP against the Caco-2 cells was less influenced by positive surface charges than by the particle size. Particle size was in turn determined by the pH of the medium in which the NP was dispersed, with the mean size ranging from 25 to 333 nm. At exposure concentration of 0.1%, NP of 25 ± 7 nm (zeta potential 5.3 ± 2.8 mV) was internalised by the Caco-2 cells, and the particles were observed to inflict extensive damage to the intracellular organelles. Concurrently, the transport of materials along the paracellular pathway was significantly facilitated. The Caco-2 cells were, however, capable of recovering from such assaults 5 days following NP removal, although a repeat NP exposure was observed to produce similar effects to the 1st exposure, with the cells exhibiting comparable resiliency to the 2nd assault. -- Highlights: ► Chitosan nanoparticles reduced mitochondrial dehydrogenase activity. ► Cellular uptake of chitosan nanoparticles was observed. ► Chitosan nanoparticles inflicted extensive damage to the cell morphology. ► The transport of materials along the paracellular pathway was facilitated.

  19. One-step synthesis of magnetic chitosan for controlled release of 5-hydroxytryptophan

    NASA Astrophysics Data System (ADS)

    Santos Menegucci, Jucély dos; Santos, Mac-Kedson Medeiros Salviano; Dias, Diego Juscelino Santos; Chaker, Juliano Alexandre; Sousa, Marcelo Henrique

    2015-04-01

    In this work, nanoparticles of chitosan embedded with 25% (w/w) of iron oxide magnetic nanoparticles (magnetite/maghemite) with narrow size-distribution and with a loading efficiency of about 80% for 5-hydroxytryptophan (5-HTP), which is a chemical precursor in the biosynthesis of important neurotransmitters as serotonin, were synthesized with an initial mass ratio of 5-HTP/magnetic chitosan=1.2, using homogeneous precipitation by urea decomposition, in an efficient one-step procedure. Characterization of morphology, structure and surface were performed by XRD, TEM, FTIR, TGA, magnetization and zeta potential measurements, while drug loading and drug releasing were investigated using UV-vis spectroscopy. Kinetic drug release experiments under different pH conditions revealed a pH-sensitivecontrolled-release system, ruled by polymer swelling and/or particle dissolution.

  20. Synthesis, characterization and magnetic properties of Fe3O4 doped chitosan polymer

    NASA Astrophysics Data System (ADS)

    Karaca, E.; Şatır, M.; Kazan, S.; Açıkgöz, M.; Öztürk, E.; Gürdağ, G.; Ulutaş, D.

    2015-01-01

    Fe3O4 nanoparticles doped into chitosan films were prepared by the solution casting technique. Various samples were synthesized in atmospheric medium and in vacuum. The morphological properties of the samples were characterized by high resolution transmission electron microscopy (HR-TEM) and Scanning Electron Microscopy (SEM). The structural, magnetic, and microwave absorption properties of magnetic chitosan films have been carried out using the Vibrating Sample Magnetometer (VSM) and Ferromagnetic Resonance (FMR). It is shown that the composite polymer behaves like a superparamagnetic material with high blocking temperature. The effective magnetization shows gradual increments with the concentration of dopant Fe3O4 nanoparticles. The microwave absorption characteristic of superparamagnetic composite polymer shows low reflection loss.

  1. Chitosan as template for the synthesis of ceria nanoparticles

    SciTech Connect

    Sifontes, A.B.; Gonzalez, G.; Ochoa, J.L.; Tovar, L.M.; Zoltan, T.; Canizales, E.

    2011-11-15

    Graphical abstract: Cerium oxide nanoparticles with cubic fluorite structure were prepared using chitosan as template, cerium nitrate as a starting material and sodium hydroxide as a precipitating agent. Calcinated powders at 350 {sup o}C contain agglomerated particles with average particle size of {approx}4 nm, very high porosity and foam-like morphology formed by open and close pores. Highlights: {yields} Pure CeO{sub 2} nanoparticles can take place using chitosan as template. {yields} A porous material was obtained. {yields} Blueshifts in the ultraviolet absorption spectra have been observed in cerium oxide nanocrystallites. -- Abstract: Cerium oxide (CeO{sub 2}), nanoparticles were prepared using chitosan as template, cerium nitrate as a starting material and sodium hydroxide as a precipitating agent. The resultant ceria-chitosan spheres were calcined at 350 {sup o}C. The synthesized powders were characterized by, XRD, HRTEM, UV-vis, FTIR, and TG-DTA. The average size of the nanoparticles obtained was {approx}4 nm and BET specific surface area {approx}105 m{sup 2} g{sup -1}. Blueshifts in the ultraviolet absorption spectra have been observed in cerium oxide nanocrystallites. The band-gap was found to be 4.5 eV. The blueshifts are well explained for diameters down to less than a few nanometers by the change in the electronic band structure.

  2. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi.

    PubMed

    Saharan, Vinod; Mehrotra, Akanksha; Khatik, Rajesh; Rawal, Pokhar; Sharma, S S; Pal, Ajay

    2013-11-01

    The main aim of present study was to prepare chitosan, chitosan-saponin and Cu-chitosan nanoparticles to evaluate their in vitro antifungal activities. Various nanoparticles were prepared using ionic gelation method by interaction of chitosan, sodium tripolyphosphate, saponin and Cu ions. Their particle size, polydispersity index, zeta potential and structures were confirmed by DLS, FTIR, TEM and SEM. The antifungal properties of nanoparticles against phytopathogenic fungi namely Alternaria alternata, Macrophomina phaseolina and Rhizoctonia solani were investigated at various concentrations ranging from 0.001 to 0.1%. Among the various formulations of nanoparticles, Cu-chitosan nanoparticles were found most effective at 0.1% concentration and showed 89.5, 63.0 and 60.1% growth inhibition of A. alternata, M. phaseolina and R. solani, respectively in in vitro model. At the same concentration, Cu-chitosan nanoparticles also showed maximum of 87.4% inhibition rate of spore germination of A. alternata. Chitosan nanoparticles showed the maximum growth inhibitory effects (87.6%) on in vitro mycelial growth of M. phaseolina at 0.1% concentration. From our study it is evident that chitosan based nanoparticles particularly chitosan and Cu-chitosan nanoparticles have tremendous potential for further field screening towards crop protection.

  3. Collagen/chitosan film containing biotinylated glycol chitosan nanoparticles for localized drug delivery.

    PubMed

    Chen, Ming-Mao; Huang, Yu-Qing; Cao, Huan; Liu, Yan; Guo, Hao; Chen, Lillian S; Wang, Jian-Hua; Zhang, Qi-Qing

    2015-04-01

    The objective of this study was to design a drug delivery system consisting of biotinylated cholesterol-modified glycol chitosan (Bio-CHGC) nanoparticles and fish collagen/chitosan (Col/Ch) film for localized chemotherapy. Bio-CHGC was synthesized, and then its self-assembled nanoparticles were prepared by probe sonication. Doxorubicin (DOX)-loaded Bio-CHGC (DBC) nanoparticles prepared by dialysis had spherical shape, and their sizes were in the range of 330-397 nm. Col/Ch/DBC nanoparticle films were fabricated by freeze-drying. SEM showed that the DBC nanoparticles were uniformly distributed into the films, and the films retained their structural integrity. A higher degradation and swelling rate of the drug films led to a higher diffusion rate of the nanoparticles from the films, resulting in an increase in the drug release from nanoparticles. The release of DOX from the films or Bio-CHGC nanoparticles was sensitive to the pH value of the release medium. In addition, the DOX release ratio of the drug films was lower than that of the nanoparticles alone, suggesting that the drug films had a double-sustained effect on the drug release. MTT assay implied that the DBC nanoparticle film showed a higher inhibitory ratio than the film containing nanoparticles without biotin, indicating that biotin moieties in the nanoparticles played an important role in exerting a cytotoxic effect. These data demonstrate that Col/Ch/DBC nanoparticle film has the potential to be used as a localized delivery system for hydrophobic antitumor drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Hydrophobically modified chitosan/gold nanoparticles for DNA delivery

    NASA Astrophysics Data System (ADS)

    Bhattarai, Shanta Raj; K. C., Remant Bahadur; Aryal, Santosh; Bhattarai, Narayan; Kim, Sun Young; Yi, Ho Keun; Hwang, Pyoung Han; Kim, Hak Yong

    2008-01-01

    Present study dealt an application of modified chitosan gold nanoparticles (Nac-6-Au) for the immobilization of necked plasmid DNA. Gold nanoparticles stabilized with N-acylated chitosan were prepared by graft-onto approach. The stabilized gold nanoparticles were characterized by different physico-chemical techniques such as UV-vis, TEM, ELS and DLS. MTT assay was used for in vitro cytotoxicity of the nanoparticles into three different cell lines (NIH 3T3, CT-26 and MCF-7). The formulation of plasmid DNA with the nanoparticles corresponds to the complex forming capacity and in-vitro/in-vivo transfection efficiency was studied via gel electrophoresis and transfection methods, respectively. Results showed the modified chitosan gold nanoparticles were well-dispersed and spherical in shape with average size around 10˜12 nm in triple distilled water at pH 7.4, and showed relatively no cytotoxicity at low concentration. Addition of plasmid DNA on the aqueous solution of the nanoparticles markedly reduced surface potential (50.0˜66.6%) as well as resulted in a 13.33% increase in hydrodynamic diameters of the formulated nanoparticles. Transfection efficiency of Nac-6-Au/DNA was dependent on cell type, and higher β-galactosidase activity was observed on MCF-7 breast cancer cell. Typically, this activity was 5 times higher in 4.5 mg/ml nanoparticles concentration than that achieved by the nanoparticles of other concentrations (and/or control). However, this activity was lower in in-vitro and dramatically higher in in-vivo than that of commercially available transfection kit (Lipofectin®) and DNA. From these results, it can be expected to develop alternative new vectors for gene delivery.

  5. Chitosan nanoparticle based delivery systems for sustainable agriculture.

    PubMed

    Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia

    2015-01-01

    Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome.

  6. The effect of temperature and chitosan concentration during storage on the growth of chitosan nanoparticle produced by ionic gelation method

    NASA Astrophysics Data System (ADS)

    Handani, Wenny Rinda; Sediawan, Wahyudi Budi; Tawfiequrrahman, Ahmad; Wiratni, Kusumastuti, Yuni

    2017-05-01

    The objective of this research was to get the mechanism of nano size chitosan particle growth during storage by observing the effect of temperature and initial concentration of chitosan. The products were analyzed using PSA to have the average of particle radius. Nanochitosan solution was prepared by ionic gelation method. This method is described as an electrostatic interaction between positively charged amine with negatively charged polyanion, such as tripolyphosphate (TPP). Chitosan was dissolved in 1% acetic acid and was stirred for 30 minutes. Tween 80 was added to avoid agglomeration. TPP was prepared by dissolving 0.336 g into distilled water. The nano size chitosan was obtained by mixing TPP and chitosan solution dropwise while stirring for 30 minutes. This step was done at 15°C and ambient temperature (about 30°C) and chitosan concentration 0.2%, 0.4% and 0.6%. The results show that temperature during ionic gelation process (15°C and 30°C) does not affect the initial size of the nanoparticles produced as well as the growth of the nanoparticles during storage. On the other hand, initial chitosan concentration strongly affects initial size of the nanoparticles produced and the growth of the nanoparticles during storage. The concentration of chitosan at 0.2%, 0.4%, 0.6% gave initial size of nanoparticle chitosan of 175.3 nm, 337.9 nm, 643.3 nm respectively. On the other hand, the growth mechanism of chitosan nanoparticle depended on its radius(R). At R<500 nm, the growth rate of nanoparticles is controlled by adsorption at the surface of the particles, while at R>500 nm, it is controlled by diffusion in the liquid film around the particles.

  7. Preparation, characterization and antibacterial properties against E. coli K88 of chitosan nanoparticle loaded copper ions

    NASA Astrophysics Data System (ADS)

    Du, Wen-Li; Xu, Ying-Lei; Xu, Zi-Rong; Fan, Cheng-Li

    2008-02-01

    The present study was conducted to prepare and characterize chitosan nanoparticle loaded copper ions, and evaluate their antibacterial activity. Chitosan nanoparticles were prepared based on ionotropic gelation, and then the copper ions were loaded. The particle size, zeta potential and morphology were determined. Antibacterial activity was evaluated against E. coli K88 by determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in vitro. Results showed that the antibacterial activity was significantly enhanced by the loading of copper ions compared to those of chitosan nanoparticles and copper ions. The MIC and MBC of chitosan nanoparticle loaded copper ions were 21 times and 42 times lower than those of copper ions, respectively. To confirm the antibacterial mechanism, morphological changes of E. coli K88 treated by chitosan nanoparticle loaded copper ions were dynamically observed with an atomic force microscope (AFM). It was found that chitosan nanoparticle loaded copper ions killed E. coli K88 through damage to the cell membrane.

  8. Size optimization and in vitro biocompatibility studies of chitosan nanoparticles.

    PubMed

    Thandapani, Gomathi; P, Supriya Prasad; P N, Sudha; Sukumaran, Anil

    2017-11-01

    Chitosan (CS), an amino polysaccharide has fascinating scientific applications due to its many flexible properties. The advantages of Chitosan tend to increase when it was modified. Thus, in the present research work, to improve the properties of chitosan, it was converted into chitosan nanoparticles (CS-NPs) through the ionic gelation method using sodium tripoyphosphate (TPP) and sodium hexametaphosphate (SHMP) as a crosslinker. The size optimization was done by varying the parameters such as crosslinker concentration, agitation method and rate, agitation time, temperature and drying method. The prepared samples were characterized using FTIR, TGA, XRD, SEM, TEM and DLS. Also the prepared CS-NPs with TPP and SHMP had been evaluated in vitro for determining its hemocompatibility, biodegradability, serum stability, cytotoxicity and cell viability. The results showed the significant participation of all the parameters in obtaining the nanoparticles in 20-30nm and 5-10nm for CS-NPs-TPP air dried and freeze dried samples and around 60-80nm and 20-30nm for CS-NPs-SHMP air dried and freeze dried samples. The in vitro biological studies revealed that the nanoparticles are non-toxic with a good degree of biodegradability, blood compatibility and stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Preparation and Characterization of Chitosan Poly(acrylic acid) Magnetic Microspheres

    PubMed Central

    Guo, Liang; Liu, Guang; Hong, Ruo-Yu; Li, Hong-Zhong

    2010-01-01

    Spherical microparticles, capable of responding to magnetic fields, were prepared by encapsulating dextran-coated Fe3O4 nanoparticles into chitosan poly(acrylic acid) (PAA) microspheres template. The obtained magnetic microspheres were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and thermogravimetry (TG). The results showed that the microspheres were formed and demonstrated magnetic behavior in an applied magnetic field. In addition, magnetite particles were well encapsulated and the composite particles have high magnetite content, which was more than 40%. PMID:20714433

  10. A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation.

    PubMed

    Kleine-Brueggeney, H; Zorzi, G K; Fecker, T; El Gueddari, N E; Moerschbacher, B M; Goycoolea, F M

    2015-11-01

    Chitosan is a linear aminopolysaccharide that has been widely used for the formation of chitosan-based nanoparticles by ionic gelation with sodium tripolyphosphate (TPP). Often, the experimental design used to obtain these systems does not take into consideration important variables, such as the degree of acetylation (DA) and the molecular weight (Mw) of chitosan. In this work, we studied the formation of chitosan-TPP nanoparticles with chitosan samples of varying DA and Mw (DA0 ∼ 0-47% and Mw ∼ 2.5-282 kDa). We addressed the influence the degree of space occupancy and the degree of crosslinking on the physical properties of chitosan-TPP nanoparticles. Nanoparticles that comprised chitosan of DA ∼ 0-21.7% behaved differently than those made of chitosan of DA ∼ 34.7-47%. We attributed these differences to the polymer conformation and chain flexibility of the distinct chitosans in solution. Moreover, chitosan of high Mw were found to have a stronger preference for incorporating into the formed nanoparticles than do low-Mw ones, as determined by SEC-HPLC. These results open new perspectives to understand the formation of chitosan nanoparticles by the ionic gelation technique.

  11. Preparation and in vitro and in vivo characterization of cyclosporin A-loaded, PEGylated chitosan-modified, lipid-based nanoparticles

    PubMed Central

    Zhang, Ling; Zhao, Zhi-Liang; Wei, Xiao-Hong; Liu, Jin-Hua

    2013-01-01

    Background and methods: A new cyclosporin A-loaded, PEGylated chitosan-modified lipid-based nanoparticle was developed to improve upon the formulation of cyclosporin A. PEGylated chitosan, synthesized in three steps using mild reaction conditions, was used to modify the nanoparticles. Cyclosporin A-loaded, PEGylated chitosan-modified nanoparticles were prepared using an emulsification/solvent evaporation method. The drug content and encapsulation efficiency of the cyclosporin A-loaded, PEGylated chitosan-modified nanoparticles were measured by high-performance liquid chromatography. The average size of the nanoparticles was determined by transmission electron microscopy and dynamic light scattering. The pharmacokinetic behavior of the nanoparticles was investigated in rabbits after intravenous injection. Cyclosporin A concentrations in a whole blood sample were analyzed by high-performance liquid chromatography using tamoxifen as the internal standard. The pharmacokinetic parameters were calculated using the 3p87 software program. Results: Fourier transform infrared spectroscopy and nuclear magnetic resonance confirmed the structure of PEGylated chitosan. The drug content and encapsulation efficiency of the cyclosporin A-loaded, PEGylated chitosan-modified nanoparticles were 37.04% and 69.22%, respectively. The average size of the nanoparticles was 89.4 nm. The nanoparticles released 30% cyclosporin A-loaded in 48 hours in vitro, with no initial burst release. The mode of release in vitro was prone to bulk erosion. The in vivo results showed the biological half-life of the elimination phase (t1/2β) of the nanoparticles was 21 times longer than that of the cyclosporin A solution, and the area under the curve for the nanoparticles was 25.8 times greater than that of the cyclosporin A solution. Conclusion: Modification of PEGylated chitosan prolonged the retention time of the nanoparticles in the circulatory system and improved the bioavailability of cyclosporin A

  12. Preparation and in vitro and in vivo characterization of cyclosporin A-loaded, PEGylated chitosan-modified, lipid-based nanoparticles.

    PubMed

    Zhang, Ling; Zhao, Zhi-Liang; Wei, Xiao-Hong; Liu, Jin-Hua

    2013-01-01

    A new cyclosporin A-loaded, PEGylated chitosan-modified lipid-based nanoparticle was developed to improve upon the formulation of cyclosporin A. PEGylated chitosan, synthesized in three steps using mild reaction conditions, was used to modify the nanoparticles. Cyclosporin A-loaded, PEGylated chitosan-modified nanoparticles were prepared using an emulsification/solvent evaporation method. The drug content and encapsulation efficiency of the cyclosporin A-loaded, PEGylated chitosan-modified nanoparticles were measured by high-performance liquid chromatography. The average size of the nanoparticles was determined by transmission electron microscopy and dynamic light scattering. The pharmacokinetic behavior of the nanoparticles was investigated in rabbits after intravenous injection. Cyclosporin A concentrations in a whole blood sample were analyzed by high-performance liquid chromatography using tamoxifen as the internal standard. The pharmacokinetic parameters were calculated using the 3p87 software program. Fourier transform infrared spectroscopy and nuclear magnetic resonance confirmed the structure of PEGylated chitosan. The drug content and encapsulation efficiency of the cyclosporin A-loaded, PEGylated chitosan-modified nanoparticles were 37.04% and 69.22%, respectively. The average size of the nanoparticles was 89.4 nm. The nanoparticles released 30% cyclosporin A-loaded in 48 hours in vitro, with no initial burst release. The mode of release in vitro was prone to bulk erosion. The in vivo results showed the biological half-life of the elimination phase (t(1/2β)) of the nanoparticles was 21 times longer than that of the cyclosporin A solution, and the area under the curve for the nanoparticles was 25.8 times greater than that of the cyclosporin A solution. Modification of PEGylated chitosan prolonged the retention time of the nanoparticles in the circulatory system and improved the bioavailability of cyclosporin A.

  13. Magnetic nanoparticle temperature estimation.

    PubMed

    Weaver, John B; Rauwerdink, Adam M; Hansen, Eric W

    2009-05-01

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 degree K between 20 and 50 degrees C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  14. Magnetic nanoparticle temperature estimation

    PubMed Central

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-01-01

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 °K between 20 and 50 °C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution. PMID:19544801

  15. Preparation of Chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea.

    PubMed

    Manikandan, Appu; Sathiyabama, Muthukrishnan

    2016-03-01

    The aim of the present study was to prepare chitosan nanoparticles to evaluate their effect on protection of rice plants from blast fungus. Nanoparticles were prepared using the ionic gelation method by the interaction of Chitosan and sodium tripolyphosphate. The particle size, polydispersity index, zetapotential and structure was confirmed by DLS, FTIR, TEM and XRD. The Chitosan nanoparticle was evaluated for suppression of rice blast fungus (Pyricularia grisea) under the detached leaf condition. It is evident from our results that chitosan nanoparticle have potential in suppressing blast disease of rice which can be used further under field condition to protect rice plants from the devastating fungus.

  16. Embedding magnetic nanoparticles into polysaccharide-based hydrogels for magnetically assisted bioseparation.

    PubMed

    Liang, Yuan-Yuan; Zhang, Li-Ming; Jiang, Wei; Li, Wei

    2007-11-12

    Based on the preparation of biocompatible polysaccharide-based hydrogels with stimuli-responsive properties by the copolymerization of maleilated carboxymethyl chitosan with N-isopropylacrylamide, novel magnetic hybrid hydrogels were fabricated by the in situ embedding of magnetic iron oxide nanoparticles into the porous hydrogel networks. Scanning electron microscopy (SEM) and thermogravimetric (TG) analyses showed that the size, morphology, and content of the iron oxide nanoparticles formed could be modulated by controlling the amount of maleilated carboxymethyl chitosan. As confirmed by X-ray diffractometry (XRD), equilibrium swelling ratio, and differential scanning calorimetry (DSC) measurements, the embedding process did not induce a phase change of the magnetic iron oxide nanoparticles, and the resultant hybrid hydrogels could retain the pH- and temperature-responsive characteristics of their hydrogel precursors. By investigating the partition coefficients of bovine serum albumin as a model protein, this magnetic hydrogel material was found to hold a potential application in magnetically assisted bioseparation.

  17. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture.

    PubMed

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Schnürch, Andreas Bernkop

    2008-01-30

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy.

  18. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture

    NASA Astrophysics Data System (ADS)

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Bernkop Schnürch, Andreas

    2008-01-01

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy.

  19. Chitosan nanoparticles synthesis caught in action using microdroplet reactions.

    PubMed

    Kamat, Vivek; Bodas, Dhananjay; Paknikar, Kishore

    2016-02-29

    The ionic gelation process for the synthesis of chitosan nanoparticles was carried out in microdroplet reactions. The synthesis could be stopped instantaneously at different time points by fast dilution of the reaction mixture with DI water. Using this simple technique, the effect of temperature and reactant concentrations on the size and distribution of the nanoparticles formed, as a function of time, could be investigated by DLS and SEM. Results obtained indicated very early (1-5 s) nucleation of the particles followed by growth. The concentration of reactants, reaction temperature as well as time, were found to (severally and collectively) determine the size of nanoparticles and their distribution. Nanoparticles obtained at 4 °C were smaller (60-80 nm) with narrower size distribution. Simulation experiments using Comsol software showed that at 4 °C 'droplet synthesis' of nanoparticles gets miniaturised to 'droplet-core synthesis', which is being reported for the first time.

  20. Aggregation behaviour of gold nanoparticles in presence of chitosan

    NASA Astrophysics Data System (ADS)

    Collado-González, Mar; Fernández Espín, Vanesa; Montalbán, Mercedes G.; Pamies, Ramón; Hernández Cifre, José Ginés; Díaz Baños, F. Guillermo; Víllora, Gloria; García de la Torre, José

    2015-06-01

    Chitosan (CS) is a biocompatible polysaccharide with positive charge that is widely used as a coating agent for negatively charged nanoparticles. However, the types of structures that emerge by combining CS and nanoparticles as well as their behaviour are still poorly understood. In this work, we characterize the nanocomposites formed by gold nanoparticles (AuNPs) and CS and study the influence of CS in the expected aggregation process that should experience those nanoparticles under the favourable conditions of low pH and high ionic strength. Thus, at the working CS concentration, we observe the existence of CS structures that quickly trap the AuNPs and avoid the formation of nanoparticle aggregates in environmental conditions that, otherwise, would lead to such an aggregation.

  1. Highly biocompatible chitosan with super paramagnetic calcium ferrite (CaFe2O4) nanoparticle for the release of ampicillin.

    PubMed

    Bilas, Ram; Sriram, K; Maheswari, P Uma; Sheriffa Begum, K M Meera

    2017-04-01

    The CaFe2O4 nanoparticles (CFNP) were synthesized using the solution combustion method. The CFNP-chitosan-ampicillin was prepared by the ionic gelation method using tripolyphosphate (TPP). The CFNP, chitosan-CFNP, chitosan-CFNP-ampicillin materials were characterized by XRD, FT-IR and TGA analysis in order to evaluate the particle nature and size, the presence of functional groups and their thermal stability. The FESEM and EDAX analysis were performed to understand the surface morphology of the materials and the presence of CFNP in the material, respectively. The vibrating sample magnetometer (VSM) analysis was performed to analyze the magnetic property of the chitosan-CFNP material. The squareness value of 0.1733 obtained by VSM measurements indicates the super paramagnetic nature of chitosan-CFNP. Taguchi orthogonal array method was applied to identify the significant impacting parameters for maximizing the drug encapsulation of chitosan-CFNP. The drug release studies showed that the drug was released rapidly in acidic medium as compared to the basic or neutral medium. The drug release kinetic data were fitted with different linear kinetic model equations and the best fit was obtained with Korsmeyer-Peppas model. The model drug ampicillin release from chitosan-CFNP was tested against staphylococcus epidermis bacteria through disc diffusion method for checking biocompatibility and antibacterial activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dietary chitosan nanoparticles protect crayfish Procambarus clarkii against white spot syndrome virus (WSSV) infection.

    PubMed

    Sun, Baozhen; Quan, Haizhi; Zhu, Fei

    2016-07-01

    Chitosan nanoparticles have exhibited potential antibacterial activity or anticancer activity as their unique character. In this study, we investigated the effect of chitosan nanoparticles protect crayfish Procambarus clarkii against WSSV. Chitosan (from crab shell) nanoparticles were prepared by ultrafine milling. The physicochemical properties of the nanoparticles were determined by particle size measure, zeta potential analysis and scanning electron microscope observation. The total hemocyte count (THC), phenoloxidase (PO) and superoxide dismutase (SOD) activity were measured at days 1, 4, 9 and 12, and the survival rate was also recorded after WSSV challenge. The results showed that chitosan nanoparticles could enhance the survival rate of WSSV-challenged crayfish. And crayfish fed diets supplemented with 10 mg/g chitosan nanoparticles (65% mortality) showed a significantly higher survival rate when compared to the control group (100% mortality). The analysis of immunological parameters revealed that 10 mg/g chitosan nanoparticles showed significantly higher level of prophenoloxidase (proPO), superoxide dismutase (SOD) and total hemocyte count (THC) when compared to the control group. It was found that chitosan nanoparticles could inhibit WSSV replication in crayfish. Our results demonstrated that dietary chitosan nanoparticles effectively improve innate immunity and survival of P. clarkii challenged with WSSV.

  3. Chitosan and carboxymethyl cellulose based magnetic nanocomposites for application of peroxidase purification.

    PubMed

    Zengin Kurt, Belma; Uckaya, Fatih; Durmus, Zehra

    2017-03-01

    Recently, protein purification methods have a very wide area of research. Many of these methods are both expensive and multi-stage methods, that are needed in specific equipment. In this study, biopolymer coated magnetic nanoparticles, carboxymethyl cellulose (CMC) and chitosan (CH) coated Fe3O4 (magnetite) nanocomposites, are used in a new purification process. The structure of the synthesized magnetic nanocomposites were characterized by Fourier transform infrared (FTIR) spectrometry, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric (TGA) analysis and zeta potential for surface charge of magnetic nanocomposites. Molecular weight and purification degree of peroxidase were estimated with SDS-PAGE. Peroxidase enzyme was purified a yield of 82.55% with carboxymethyl cellulose and 76.72% with chitosan using this method.

  4. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles

    USDA-ARS?s Scientific Manuscript database

    Chitosan/tripolyphosphate nanoparticles were prepared and incorporated in hydroxypropyl methylcellulose (HPMC) films. FT-IR and transmission electron microscopy (TEM) analyses of the nanoparticles, mechanical properties, water vapor permeability, thermal stability, scanning electron microscopy (SEM...

  5. Biotemplated magnetic nanoparticle arrays.

    PubMed

    Galloway, Johanna M; Bramble, Jonathan P; Rawlings, Andrea E; Burnell, Gavin; Evans, Stephen D; Staniland, Sarah S

    2012-01-23

    Immobilized biomineralizing protein Mms6 templates the formation of uniform magnetite nanoparticles in situ when selectively patterned onto a surface. Magnetic force microscopy shows that the stable magnetite particles maintain their magnetic orientation at room temperature, and may be exchange coupled. This precision-mixed biomimetic/soft-lithography methodology offers great potential for the future of nanodevice fabrication. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi.

    PubMed

    Xing, Ke; Shen, Xiaoqiang; Zhu, Xiao; Ju, Xiuyun; Miao, Xiangmin; Tian, Jun; Feng, Zhaozhong; Peng, Xue; Jiang, Jihong; Qin, Sheng

    2016-01-01

    An antifungal dispersion system was prepared by oleoyl-chitosan (O-chitosan) nanoparticles, and the antifungal activity against several plant pathogenic fungi was investigated. Under scanning electron microscopy, the nanoparticles formulation appeared to be uniform with almost spherical shape. The particle size of nanoparticles was around 296.962 nm. Transmission electron microscopy observation showed that nanoparticles could be well distributed in potato dextrose agar medium. Mycelium growth experiment demonstrated that Nigrospora sphaerica, Botryosphaeria dothidea, Nigrospora oryzae and Alternaria tenuissima were chitosan-sensitive, while Gibberella zeae and Fusarium culmorum were chitosan-resistant. The antifungal index was increased as the concentration of nanoparticles increased for chitosan-sensitive fungi. Fatty acid analyses revealed that plasma membranes of chitosan-sensitive fungi were shown to have lower levels of unsaturated fatty acid than chitosan-resistant fungi. Phylogenetic analysis based on ITS gene sequences indicated that two chitosan-resistant fungi had a near phylogenetic relationship. Results showed that O-chitosan nanoparticles could be a useful alternative for controlling pathogenic fungi in agriculture. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Echogenic Glycol Chitosan Nanoparticles for Ultrasound-Triggered Cancer Theranostics

    PubMed Central

    Min, Hyun Su; You, Dong Gil; Son, Sejin; Jeon, Sangmin; Park, Jae Hyung; Lee, Seulki; Kwon, Ick Chan; Kim, Kwangmeyung

    2015-01-01

    Theranostic nanoparticles hold great promise for simultaneous diagnosis of diseases, targeted drug delivery with minimal toxicity, and monitoring of therapeutic efficacy. However, one of the current challenges in developing theranostic nanoparticles is enhancing the tumor-specific targeting of both imaging probes and anticancer agents. Herein, we report the development of tumor-homing echogenic glycol chitosan-based nanoparticles (Echo-CNPs) that concurrently execute cancer-targeted ultrasound (US) imaging and US-triggered drug delivery. To construct this novel Echo-CNPs, an anticancer drug and bioinert perfluoropentane (PFP), a US gas precursor, were simultaneously encapsulated into glycol chitosan nanoparticles using the oil in water (O/W) emulsion method. The resulting Echo-CNPs had a nano-sized particle structure, composing of hydrophobic anticancer drug/PFP inner cores and a hydrophilic glycol chitosan polymer outer shell. The Echo-CNPs had a favorable hydrodynamic size of 432 nm, which is entirely different from the micro-sized core-empty conventional microbubbles (1-10 μm). Furthermore, Echo-CNPs showed the prolonged echogenicity via the sustained microbubble formation process of liquid-phase PFP at the body temperature and they also presented a US-triggered drug release profile through the external US irradiation. Interestingly, Echo-CNPs exhibited significantly increased tumor-homing ability with lower non-specific uptake by other tissues in tumor-bearing mice through the nanoparticle's enhanced permeation and retention (EPR) effect. Conclusively, theranostic Echo-CNPs are highly useful for simultaneous cancer-targeting US imaging and US-triggered delivery in cancer theranostics. PMID:26681985

  8. Echogenic Glycol Chitosan Nanoparticles for Ultrasound-Triggered Cancer Theranostics.

    PubMed

    Min, Hyun Su; You, Dong Gil; Son, Sejin; Jeon, Sangmin; Park, Jae Hyung; Lee, Seulki; Kwon, Ick Chan; Kim, Kwangmeyung

    2015-01-01

    Theranostic nanoparticles hold great promise for simultaneous diagnosis of diseases, targeted drug delivery with minimal toxicity, and monitoring of therapeutic efficacy. However, one of the current challenges in developing theranostic nanoparticles is enhancing the tumor-specific targeting of both imaging probes and anticancer agents. Herein, we report the development of tumor-homing echogenic glycol chitosan-based nanoparticles (Echo-CNPs) that concurrently execute cancer-targeted ultrasound (US) imaging and US-triggered drug delivery. To construct this novel Echo-CNPs, an anticancer drug and bioinert perfluoropentane (PFP), a US gas precursor, were simultaneously encapsulated into glycol chitosan nanoparticles using the oil in water (O/W) emulsion method. The resulting Echo-CNPs had a nano-sized particle structure, composing of hydrophobic anticancer drug/PFP inner cores and a hydrophilic glycol chitosan polymer outer shell. The Echo-CNPs had a favorable hydrodynamic size of 432 nm, which is entirely different from the micro-sized core-empty conventional microbubbles (1-10 μm). Furthermore, Echo-CNPs showed the prolonged echogenicity via the sustained microbubble formation process of liquid-phase PFP at the body temperature and they also presented a US-triggered drug release profile through the external US irradiation. Interestingly, Echo-CNPs exhibited significantly increased tumor-homing ability with lower non-specific uptake by other tissues in tumor-bearing mice through the nanoparticle's enhanced permeation and retention (EPR) effect. Conclusively, theranostic Echo-CNPs are highly useful for simultaneous cancer-targeting US imaging and US-triggered delivery in cancer theranostics.

  9. Mechanical properties of paper sheets coated with chitosan nanoparticle

    NASA Astrophysics Data System (ADS)

    Fithriyah, Nurul Hidayati; Erdawati

    2014-03-01

    Chitosan were selected as cellulose raw material to prepare coating solutions. The morphology, physical characteristics and chemical surface properties of the coatings are discussed in this paper. Different concentrations of chitosan (1-5% w/w) and deposited solution layer (0.5-1.00 μm) were used to obtain coated papers with thicknesses varying between 0.062-0.068 μm. The percentages of coating agent impregnated inside paper were also calculated from the apparent density of coated paper and the density of self-supported films prepared in the same conditions but deposited on an inert and smooth Plexiglass support. These percentages of impregnation ranged from 4.8 to 63.3% and increased as following: chitosan < chitosan nanoparticle. The resulting absorption rates indicated significant differences as a function of the nature of coating agent and confirmed results obtained for the percentage of impregnation. To explain differences in the behaviour of coating solutions, it was finally concluded that not only their viscosity must be taken into account but also their affinity toward paper.

  10. Systematic fabrication of chitosan nanoparticle by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Pasanphan, Wanvimol; Rimdusit, Pakjira; Choofong, Surakarn; Piroonpan, Thananchai; Nilsuwankosit, Sunchai

    2010-10-01

    The present investigation is mainly focused on the systematic preparation of chitosan nanoparticle in the potential range 1-100 nm using γ-ray irradiation. The effect of irradiation conditions in terms of physical form of chitosan, i.e. flake, colloidal and acidic solution, and γ-ray dose was studied. The molecular weights of chitosan were 10, 25, and >1000 times reduced when irradiated with the γ-ray dose as high as 100 kGy in Chi-flake, Chi-colloid, and Chi-acid, respectively. The particle size reduced to 70 nm after being irradiated to only 10 kGy γ-rays and it showed a tendency to decrease when the γ-ray doses were increased. The γ-rays effectively induced the reduction of chitosan particle size to <100 nm with narrow size distribution. The effective size reduction was particularly observed in Chi-colloid. Heterogeneous chemical conjugation of deoxycholic acid onto 10 kGy irradiated Chi-colloid resulted in narrow particle size as small as 50 nm.

  11. Magnetoacoustic Sensing of Magnetic Nanoparticles.

    PubMed

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-11

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  12. Magnetoacoustic Sensing of Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G.; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-01

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  13. Multicomponent, Tumor-Homing Chitosan Nanoparticles for Cancer Imaging and Therapy

    PubMed Central

    Key, Jaehong; Park, Kyeongsoon

    2017-01-01

    Current clinical methods for cancer diagnosis and therapy have limitations, although survival periods are increasing as medical technologies develop. In most cancer cases, patient survival is closely related to cancer stage. Late-stage cancer after metastasis is very challenging to cure because current surgical removal of cancer is not precise enough and significantly affects bystander normal tissues. Moreover, the subsequent chemotherapy and radiation therapy affect not only malignant tumors, but also healthy tissues. Nanotechnologies for cancer treatment have the clear objective of solving these issues. Nanoparticles have been developed to more accurately differentiate early-stage malignant tumors and to treat only the tumors while dramatically minimizing side effects. In this review, we focus on recent chitosan-based nanoparticles developed with the goal of accurate cancer imaging and effective treatment. Regarding imaging applications, we review optical and magnetic resonance cancer imaging in particular. Regarding cancer treatments, we review various therapeutic methods that use chitosan-based nanoparticles, including chemo-, gene, photothermal, photodynamic and magnetic therapies. PMID:28282891

  14. Multicomponent, Tumor-Homing Chitosan Nanoparticles for Cancer Imaging and Therapy.

    PubMed

    Key, Jaehong; Park, Kyeongsoon

    2017-03-08

    Current clinical methods for cancer diagnosis and therapy have limitations, although survival periods are increasing as medical technologies develop. In most cancer cases, patient survival is closely related to cancer stage. Late-stage cancer after metastasis is very challenging to cure because current surgical removal of cancer is not precise enough and significantly affects bystander normal tissues. Moreover, the subsequent chemotherapy and radiation therapy affect not only malignant tumors, but also healthy tissues. Nanotechnologies for cancer treatment have the clear objective of solving these issues. Nanoparticles have been developed to more accurately differentiate early-stage malignant tumors and to treat only the tumors while dramatically minimizing side effects. In this review, we focus on recent chitosan-based nanoparticles developed with the goal of accurate cancer imaging and effective treatment. Regarding imaging applications, we review optical and magnetic resonance cancer imaging in particular. Regarding cancer treatments, we review various therapeutic methods that use chitosan-based nanoparticles, including chemo-, gene, photothermal, photodynamic and magnetic therapies.

  15. Development of phosphorylated glucomannan-coated chitosan nanoparticles as nanocarriers for protein delivery.

    PubMed

    Cuña, M; Alonso-Sandel, M; Remuñán-López, C; Pivel, J P; Alonso-Lebrero, J L; Alonso, M J

    2006-01-01

    The aim of the present work was to develop a new nanoparticle carrier, adapted for the oral administration of proteins and their delivery to the immune system. Chitosan and phosphorylated glucomannan were chosen as major constituents of the nanoparticles. Chitosan nanoparticles were formed by ionic gelation and then coated with glucomannan. Two different protocols were adopted for the formation of the glucomannan coating: protocol I, in which chitosan nanoparticles were isolated before their coating; protocol II, in which chitosan nanoparticles were not isolated, but coated with glucomannan in the presence of free chitosan. The results showed that, under the selected formulation conditions, the sizes of the nanoparticles ranged between 170 and 300 nm and their zeta potential values were inverted from positive to negative by the glucomannan coating. The nanoparticles prepared by the two protocols could be freeze-dried, in the presence or absence of cryoprotective agents, preserving their original characteristics. The results of the stability study evidenced the positive role of the glucomannan coating in preventing the aggregation of the nanoparticles in buffered media. Finally, the association of the inmunomodulatory protein complex P1 to the chitosan-glucomannan nanoparticles was investigated. The results showed that the association was not dependent on the chitosan: sodium tripoliphosphate ratio, but it was significantly affected by the presence of sodium phosphate in the protein structure.

  16. DNA templated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kinsella, Joseph M.

    Recent discoveries in nanoscience are predicted to potentially revolutionize future technologies in an extensive number of fields. These developments are contingent upon discovering new and often unconventional methods to synthesize and control nanoscale components. Nature provides several examples of working nanotechnology such as the use of programmed self assembly to build and deconstruct complex molecular systems. We have adopted a method to control the one dimensional assembly of magnetic nanoparticles using DNA as a scaffold molecule. With this method we have demonstrated the ability to organize 5 nm particles into chains that stretch up to ˜20 mum in length. One advantage of using DNA compared is the ability of the molecule to interact with other biomolecules. After assembling particles onto DNA we have been able to cleave the molecule into smaller fragments using restriction enzymes. Using ligase enzymes we have re-connected these fragments, coated with either gold or iron oxide, to form long one-dimensional arrangements of the two different types of nanoparticles on a single molecular guide. We have also created a sensitive magnetic field sensor by incorporating magnetic nanoparticle coated DNA strands with microfabricated electrodes. The IV characteristics of the aligned nanoparticles are dependant on the magnitude of an externally applied magnetic field. This transport phenomenon known as tunneling magnetoresistance (TMR) shows room temperature resistance of our devices over 80% for cobalt ferrite coated DNA when a field of 20 kOe is applied. In comparison, studies using two dimensional nanoparticle films of irox oxides xii only exhibit a 35% MR effect. Confinement into one dimension using the DNA guide produces a TMR mechanism which produces significant increases in magnetoresistance. This property can be utilized for applications in magnetic field sensing, data storage, and logic elements.

  17. Development of drug-loaded chitosan-vanillin nanoparticles and its cytotoxicity against HT-29 cells.

    PubMed

    Li, Pu-Wang; Wang, Guang; Yang, Zi-Ming; Duan, Wei; Peng, Zheng; Kong, Ling-Xue; Wang, Qing-Huang

    2016-01-01

    Chitosan as a natural polysaccharide derived from chitin of arthropods like shrimp and crab, attracts much interest due to its inherent properties, especially for application in biomedical materials. Presently, biodegradable and biocompatible chitosan nanoparticles are attractive for drug delivery. However, some physicochemical characteristics of chitosan nanoparticles still need to be further improved in practice. In this work, chitosan nanoparticles were produced by crosslinking chitosan with 3-methoxy-4-hydroxybenzaldehyde (vanillin) through a Schiff reaction. Chitosan nanoparticles were 200-250 nm in diameter with smooth surface and were negatively charged with a zeta potential of - 17.4 mV in neutral solution. Efficient drug loading and drug encapsulation were achieved using 5-fluorouracil as a model of hydrophilic drug. Drug release from the nanoparticles was constant and controllable. The in vitro cytotoxicity against HT-29 cells and cellular uptake of the chitosan nanoparticles were evaluated by methyl thiazolyl tetrazolium method, confocal laser scanning microscope and flow cytometer, respectively. The results indicate that the chitosan nanoparticles crosslinked with vanillin are a promising vehicle for the delivery of anticancer drugs.

  18. One step effective removal of Congo Red in chitosan nanoparticles by encapsulation

    NASA Astrophysics Data System (ADS)

    Alver, Erol; Bulut, Mehmet; Metin, Ayşegül Ülkü; Çiftçi, Hakan

    2017-01-01

    Chitosan nanoparticles (CNPs) were prepared with ionotropic gelation between chitosan and tripolyphosphate for the removal of Congo Red. The production of chitosan nanoparticles and the dye removal process was carried out in one-step. The removal efficiency of Congo Red by encapsulation within chitosan from the aqueous solution and its storage stability are examined at different pH values. The influence of some parameters such as the initial dye concentration, pH value of the dye solution, electrolyte concentration, tripolyphosphate concentration, mixing time and speed on the encapsulation is examined. Congo Red removal efficiency and encapsulation capacity of chitosan nanoparticles were determined as above 98% and 5107 mg Congo Red/g chitosan, respectively.

  19. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights.

    PubMed

    Zhang, Chunyue; Zhai, Xiaona; Zhao, Guanghua; Ren, Fazheng; Leng, Xiaojing

    2015-12-10

    Chitosan-stabilized selenium nanoparticles (SeNPs) have been reported, but there is no information on the effect of the chitosan molecular weight on the structure, stability, and selenium release properties of the SeNPs. Herein, we compared the uniform Se(0) spherical nanoparticles prepared through the reduction of seleninic acid with ascorbic acid in the presence of chitosan with different molecular weights (Mws). We found that both low and high molecular weight chitosan-stabilized selenium nanoparticles exhibited core-shell microstructures with a size of about 103 nm after 30 days growing through the "bottom-up approach" and "top-down approach," respectively. Moreover, both chitosan SeNPs processed excellent stability towards pH and enzyme treatment. In contrast, selenium was easily released to different extents from these two chitosan SeNPs upon treatment with different free radicals. This makes these materials potentially useful as oral antioxidant supplements.

  20. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Hung; Juang, Ruey-Shin

    2011-10-01

    Nanotechnology offers tremendous potential for future medical diagnosis and therapy. Various types of nanoparticles have been extensively studied for numerous biochemical and biomedical applications. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated by an external magnetic field, and enhancement of contrast in magnetic resonance imaging. As a result, these nanoparticles could have many applications including bacterial detection, protein purification, enzyme immobilization, contamination decorporation, drug delivery, hyperthermia, etc. All these biochemical and biomedical applications require that these nanoparticles should satisfy some prerequisites including high magnetization, good stability, biocompatibility, and biodegradability. Because of the potential benefits of multimodal functionality in biomedical applications, in this account highlights some general strategies to generate magnetic nanoparticle-based multifunctional nanostructures. After these magnetic nanoparticles are conjugated with proper ligands (e.g., nitrilotriacetate), polymers (e.g., polyacrylic acid, chitosan, temperature- and pH-sensitive polymers), antibodies, enzymes, and inorganic metals (e.g., gold), such biofunctional magnetic nanoparticles exhibit many advantages in biomedical applications. In addition, the multifunctional magnetic nanoparticles have been widely applied in biochemical fields including enzyme immobilization and protein purification.

  1. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging.

    PubMed

    Key, Jaehong; Dhawan, Deepika; Cooper, Christy L; Knapp, Deborah W; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Park, Kinam; Decuzzi, Paolo; Leary, James F

    While current imaging modalities, such as magnetic resonance imaging (MRI), computed tomography, and positron emission tomography, play an important role in detecting tumors in the body, no single-modality imaging possesses all the functions needed for a complete diagnostic imaging, such as spatial resolution, signal sensitivity, and tissue penetration depth. For this reason, multimodal imaging strategies have become promising tools for advanced biomedical research and cancer diagnostics and therapeutics. In designing multimodal nanoparticles, the physicochemical properties of the nanoparticles should be engineered so that they successfully accumulate at the tumor site and minimize nonspecific uptake by other organs. Finely altering the nano-scale properties can dramatically change the biodistribution and tumor accumulation of nanoparticles in the body. In this study, we engineered multimodal nanoparticles for both MRI, by using ferrimagnetic nanocubes (NCs), and near infrared fluorescence imaging, by using cyanine 5.5 fluorescence molecules. We changed the physicochemical properties of glycol chitosan nanoparticles by conjugating bladder cancer-targeting peptides and loading many ferrimagnetic iron oxide NCs per glycol chitosan nanoparticle to improve MRI contrast. The 22 nm ferrimagnetic NCs were stabilized in physiological conditions by encapsulating them within modified chitosan nanoparticles. The multimodal nanoparticles were compared with in vivo MRI and near infrared fluorescent systems. We demonstrated significant and important changes in the biodistribution and tumor accumulation of nanoparticles with different physicochemical properties. Finally, we demonstrated that multimodal nanoparticles specifically visualize small tumors and show minimal accumulation in other organs. This work reveals the importance of finely modulating physicochemical properties in designing multimodal nanoparticles for bladder cancer imaging.

  2. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging

    PubMed Central

    Key, Jaehong; Dhawan, Deepika; Cooper, Christy L; Knapp, Deborah W; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Park, Kinam; Decuzzi, Paolo; Leary, James F

    2016-01-01

    While current imaging modalities, such as magnetic resonance imaging (MRI), computed tomography, and positron emission tomography, play an important role in detecting tumors in the body, no single-modality imaging possesses all the functions needed for a complete diagnostic imaging, such as spatial resolution, signal sensitivity, and tissue penetration depth. For this reason, multimodal imaging strategies have become promising tools for advanced biomedical research and cancer diagnostics and therapeutics. In designing multimodal nanoparticles, the physicochemical properties of the nanoparticles should be engineered so that they successfully accumulate at the tumor site and minimize nonspecific uptake by other organs. Finely altering the nano-scale properties can dramatically change the biodistribution and tumor accumulation of nanoparticles in the body. In this study, we engineered multimodal nanoparticles for both MRI, by using ferrimagnetic nanocubes (NCs), and near infrared fluorescence imaging, by using cyanine 5.5 fluorescence molecules. We changed the physicochemical properties of glycol chitosan nanoparticles by conjugating bladder cancer-targeting peptides and loading many ferrimagnetic iron oxide NCs per glycol chitosan nanoparticle to improve MRI contrast. The 22 nm ferrimagnetic NCs were stabilized in physiological conditions by encapsulating them within modified chitosan nanoparticles. The multimodal nanoparticles were compared with in vivo MRI and near infrared fluorescent systems. We demonstrated significant and important changes in the biodistribution and tumor accumulation of nanoparticles with different physicochemical properties. Finally, we demonstrated that multimodal nanoparticles specifically visualize small tumors and show minimal accumulation in other organs. This work reveals the importance of finely modulating physicochemical properties in designing multimodal nanoparticles for bladder cancer imaging. PMID:27621615

  3. An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres.

    PubMed

    Luo, Xiaogang; Zeng, Jian; Liu, Shilin; Zhang, Lina

    2015-10-01

    Development of highly cost-effective, highly operation-convenient and highly efficient natural polymer-based adsorbents for their biodegradability and biocompatibility, and supply of safe drinking water are the most threatening problems in water treatment field. To tackle the challenges, a new kind of efficient recyclable magnetic chitosan/cellulose hybrid microspheres was prepared by sol-gel method. By embedding magnetic γ-Fe2O3 nanoparticles in chitosan/cellulose matrix drops in NaOH/urea aqueous solution, it combined renewability and biocompatibility of chitosan and cellulose as well as magnetic properties of γ-Fe2O3 to create a hybrid system in heavy metal ions removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Liqin; Li, Xuemin; Liu, Lingrong; Zhang, Qiqing

    2013-02-01

    Oral chemotherapy is a key step towards `chemotherapy at home', a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer.

  5. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer.

    PubMed

    Jiang, Liqin; Li, Xuemin; Liu, Lingrong; Zhang, Qiqing

    2013-02-09

    Oral chemotherapy is a key step towards 'chemotherapy at home', a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer.

  6. Multifunctional glucose biosensors from Fe₃O₄ nanoparticles modified chitosan/graphene nanocomposites.

    PubMed

    Zhang, Wenjing; Li, Xiaojian; Zou, Ruitao; Wu, Huizi; Shi, Haiyan; Yu, Shanshan; Liu, Yong

    2015-06-08

    Novel water-dispersible and biocompatible chitosan-functionalized graphene (CG) has been prepared by a one-step ball milling of carboxylic chitosan and graphite. Presence of nitrogen (from chitosan) at the surface of graphene enables the CG to be an outstanding catalyst for the electrochemical biosensors. The resulting CG shows lower ID/IG ratio in the Raman spectrum than other nitrogen-containing graphene prepared using different techniques. Magnetic Fe3O4 nanoparticles (MNP) are further introduced into the as-synthesized CG for multifunctional applications beyond biosensors such as magnetic resonance imaging (MRI). Carboxyl groups from CG is used to directly immobilize glucose oxidase (GOx) via covalent linkage while incorporation of MNP further facilitated enzyme loading and other unique properties. The resulting biosensor exhibits a good glucose detection response with a detection limit of 16 μM, a sensitivity of 5.658 mA/cm(2)/M, and a linear detection range up to 26 mM glucose. Formation of the multifunctional MNP/CG nanocomposites provides additional advantages for applications in more clinical areas such as in vivo biosensors and MRI agents.

  7. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites

    PubMed Central

    Zhang, Wenjing; Li, Xiaojian; Zou, Ruitao; Wu, Huizi; Shi, Haiyan; Yu, Shanshan; Liu, Yong

    2015-01-01

    Novel water-dispersible and biocompatible chitosan-functionalized graphene (CG) has been prepared by a one-step ball milling of carboxylic chitosan and graphite. Presence of nitrogen (from chitosan) at the surface of graphene enables the CG to be an outstanding catalyst for the electrochemical biosensors. The resulting CG shows lower ID/IG ratio in the Raman spectrum than other nitrogen-containing graphene prepared using different techniques. Magnetic Fe3O4 nanoparticles (MNP) are further introduced into the as-synthesized CG for multifunctional applications beyond biosensors such as magnetic resonance imaging (MRI). Carboxyl groups from CG is used to directly immobilize glucose oxidase (GOx) via covalent linkage while incorporation of MNP further facilitated enzyme loading and other unique properties. The resulting biosensor exhibits a good glucose detection response with a detection limit of 16 μM, a sensitivity of 5.658 mA/cm2/M, and a linear detection range up to 26 mM glucose. Formation of the multifunctional MNP/CG nanocomposites provides additional advantages for applications in more clinical areas such as in vivo biosensors and MRI agents. PMID:26052919

  8. Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization.

    PubMed

    De Giglio, Elvira; Trapani, Adriana; Cafagna, Damiana; Sabbatini, Luigia; Cometa, Stefania

    2011-06-01

    The formulation and characterization of dopamine (DA)-loaded chitosan nanoparticles (CSNPs) are described as preliminary steps for the development of potential DA carrier systems intended for Parkinson's disease treatment. For this purpose, CSNPs were firstly produced and, afterwards, they were incubated in a DA aqueous solution to promote neurotransmitter loading. The characterization of the resulting nanoparticles started with Fourier transform infrared spectroscopy analysis to ascertain the presence of DA in the nanocarrier, whereas X-ray photoelectron spectroscopy analysis provided evidence of the localization of DA on the nanoparticle surface. A quartz crystal microbalance with dissipation monitoring (QCM-D) was then exploited to investigate both swelling of CSNPs and interaction of DA with CSNPs. In particular, the QCM-D revealed that this interaction is fast and so this allows a stable nanostructured system to be obtained.

  9. Fluorescent Nanocomposite of Embedded Ceria Nanoparticles in Electrospun Chitosan Nanofibers.

    PubMed

    Shehata, Nader; Samir, Effat; Gaballah, Soha; Hamed, Aya; Saad, Marwa; Salah, Mohammed

    2017-03-01

    This paper introduces a detailed optical characterization for a novel fluorescent biodegradable nanocomposite of electro-spun chitosan nanofibers with in-situ embedded cerium oxide (ceria) nanoparticles as the nanocomposite optical fluorescent material. Under near ultra-violet excitation, this synthesized nanocomposite emits a visible green wavelength at nearly 520nmwith different intensities according to the concentration of the embedded fluorescent material; i.e. ceria nanoparticles. This emission is due to the synthesized ceria nanoparticles optical tri-valiant cerium ions ce(3+), associated with formed oxygen vacancies with a direct allowed bandgap around 3.5 eV. Optical characteristics such as fluorescence emission intensity, absorbance dispersion, and direct bandgap are presented besides structural characteristics such as FTIR spectroscopy, and SEM analysis. The synthesized optical nanocomposite could be helpful in many further applications such as bio-imaging, biomedical engineering, and environmental optical sensors.

  10. Facile Synthesis of Silver Nanoparticles Under {gamma}-Irradiation: Effect of Chitosan Concentration

    SciTech Connect

    Huang, N. M.; Radiman, S.; Ahmad, A.; Idris, H.; Lim, H. N.; Khiew, P. S.; Chiu, W. S.; Tan, T. K.

    2009-06-01

    In the present study, a biopolymer, low molecular weight chitosan had been utilized as a 'green' stabilizing agent for the synthesis of silver nanoparticles under {gamma}-irradiation. The as-synthesized silver nanoparticles have particle diameters in the range of 5 nm-30 nm depending on the percentage of chitosan used (0.1 wt%, 0.5 wt%, 1.0 wt% and 2.0 wt%). It was found that the yield of the silver nanoparticles was in accordance with the concentration of chitosan presence in the solution due to the reduction by the chitosan radical during irradiation. The highly stable chitosan encapsulated silver nanoparticles were characterized using transmission electron microscopy (TEM), UV-Visible spectrophotometer (UV-VIS) and X-ray diffraction spectroscopy (XRD)

  11. Intracellular sorting of differently charged chitosan derivatives and chitosan-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Zubareva, A. A.; Shcherbinina, T. S.; Varlamov, V. P.; Svirshchevskaya, E. V.

    2015-04-01

    Chitosan (Chi) is a biodegradable nontoxic polycation with multiple reactive groups that is easily used to obtain derivatives with a desired charge and hydrophobic properties. The aim of this work was to study the intracellular traffic of positively charged hexanoyl-chitosan (HC) or HC-based nanoparticles (HCNPs) and negatively charged succinoyl-chitosan (SC) and SCNPs in epithelial and macrophage cell lines. By using flow cytometry we demonstrated that positively charged HC adhered to cell membranes quicker and more efficiently than negatively charged SC or NPs. However confocal studies showed that SC and SCNPs penetrated cells much more efficiently than HC while HCNPs did not enter the epithelial cells. Macrophages also phagocyted better negatively charged material but were able to engulf both HC and HCNPs. Upon entering the cells, SC and SCNPs were co-localized with endosomes and lysosomes while HC was found in mitochondria and, to a lesser extent, in lysosomes of epithelial cells. Macrophages, RAW264.7, more efficiently transported all Chi samples to the lysosomal compartment while some positively charged material was still found in mitochondria. Incubation of Chi derivatives and ChiNPs at pH specific to mitochondria (8.0) and lysosomes (4.5) demonstrated the neutralization of Chi charge. We concluded that epithelial cells and, to a lesser extent, macrophages sort charged material to the organelles neutralizing Chi charge.

  12. Bioadhesive nanoparticles of fungal chitosan for oral DNA delivery.

    PubMed

    Plapied, Laurence; Vandermeulen, Gaëlle; Vroman, Benoît; Préat, Véronique; des Rieux, Anne

    2010-10-15

    Chitosan is an ideal candidate for oral DNA delivery due to its mucoadhesive properties. Chitosan (CS) produced under GMP conditions from fungal source was used to encapsulate a plasmid DNA coding for a reporter gene. Nanoparticles made by complex coacervation of CS and DNA had a size around 200 nm, a positive zeta potential, a high association of DNA and protected the plasmid against nuclease degradation. Their transfection ability was assessed in differentiated intestinal Caco-2 cells. An N/P ratio of 4 and a DNA concentration of 8 microg/ml were the optimal conditions leading to a transfection efficiency similar to the one reached with polyethyleneimine (PEI)-DNA complexes without cytotoxicity. M cells in monolayers influenced DNA uptake up to 8 microg of DNA/ml when complexed with CS. Fungal trimethylchitosan was also tested but the complexes interactions were too strong to induce transfection in vitro. Confocal microscopy studies showed that CS/DNA and PEI/DNA nanoparticles were found at the apical surface of cell monolayers and DNA was co-localized within the nucleus. Quantification seemed to show that more DNA was associated with the cells when incubated with CS nanoparticles and that the presence of M cells slightly influenced DNA uptake when complexed with CS. In conclusion, we developed a new nanocarrier made of fungal CS promising for oral gene delivery and oral DNA vaccination.

  13. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy.

    PubMed

    Bisht, Savita; Maitra, Amarnath

    2009-01-01

    Chemotherapy is a major therapeutic approach for the treatment of localized and metastasized cancers. Whereas potent chemotherapeutic agents seem promising in the test tube, clinical trials often fail due to unfavorable pharmacokinetics, poor delivery, low local concentrations, and limited accumulation in the target cell. The pathophysiology of the tumor vasculature and stromal compartment presents a major obstacle to effective delivery of agents to solid tumors. Poor perfusion of the tumor, arterio-venous shunting, necrotic and hypoxic areas, as well as a high interstitial fluid pressure work against favorable drug uptake. Thus, targeted drug delivery using long-circulating particulate drug carriers such as hydrogels of controlled size (<100 nm diameter) holds immense potential to improve the treatment of cancer by selectively providing therapeutically effective drug concentrations at the tumor site [through enhanced permeability and retention (EPR) effect] while reducing undesirable side effects. This review focuses on the progress of targeted delivery of nanoparticulated anticancer drug such as doxorubicin chemically conjugated with dextran and encapsulated in chitosan nanoparticles to solid tumor with reduced side effect of drug. Regulated particle size and long circulation of these hydrogel nanoparticles in blood help them accumulate in tumor tissue through EPR effect as evident from the significant regression of the tumor volume. The cardiotoxicity of doxorubicin can be minimized by coupling the drug with dextran and encapsulating it in chitosan nanoparticles. (c) 2009 John Wiley & Sons, Inc.

  14. A chitosan-polypyrrole magnetic nanocomposite as μ-sorbent for isolation of naproxen.

    PubMed

    Bagheri, Habib; Roostaie, Ali; Baktash, Mohammad Yahya

    2014-03-13

    An extracting medium based on chitosan-polypyrrole (CS-PPy) magnetic nanocomposite was synthesized by chemical polymerization of pyrrole at the presence of chitosan magnetic nanoparticles (CS-MNPs) for micro-solid phase extraction. In this work, magnetic nanoparticles, the modified CS-MNPs and different types of CS-PPy magnetic nanocomposites were synthesized. Extraction efficiency of the CS-PPy magnetic nanocomposite was compared with the CS-MNPs and Fe3O4 nanoparticles for the determination of naproxen in aqueous samples, via quantification by spectrofluorimetry. The scanning electron microscopy images obtained from all the prepared nanocomposites revealed that the CS-PPy magnetic nanocomposite possess more porous structure. Among different synthesized magnetic nanocomposites, CS-PPy magnetic nanocomposite showed a prominent efficiency. Influencing parameters on the morphology of CS-PPy magnetic nanocomposite such as weight ratio of components was also assayed. In addition, effects of different parameters influencing the extraction efficiency of naproxen including desorption solvent, desorption time, amount of sorbent, ionic strength, sample pH and extraction time were investigated and optimized. Under the optimum condition, a linear calibration curve in the range of 0.04-10 μg mL(-1) (R(2)=0.9996) was obtained. The limits of detection (3Sb) and limits of quantification (10Sb) of the method were 0.015 and 0.04 μg mL(-1) (n=3), respectively. The relative standard deviation for water sample spiked with 0.1 μg mL(-1) of naproxen was 3% (n=5) and the absolute recovery was 92%. The applicability of method was extended to the determination of naproxen in tap water, human urine and plasma samples. The relative recovery percentages for these samples were in the range of 56-99%. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Preparation and comparison of chitosan nanoparticles with different degrees of glutathione thiolation

    PubMed Central

    Yousefpour, P.; Atyabi, F.; Dinarvand, R.; Vasheghani-Farahani, E.

    2011-01-01

    Background Chitosan has gained considerable attentions as a biocompatible carrier to improve delivery of active agents. Application of this vehicle in the form of nanoparticle could profit advantages of nanotechnology to increase efficacy of active agents. The purpose of this study was to provide detailed information about chitosan–glutathione (Cht-GSH)nanoparticles which are gaining popularity because of their high mucoadhesive and extended drug release properties. Methods Depolymerization of chitosan was carried out using sodium nitrite method.Glutathione was covalently attached to chitosan and the solubility of the resulting conjugates was evaluated. Nanoparticles were prepared by ionic gelation method and then the effect of glutathione immobilization on properties of nanoparticles was investigated. Results Thiolation efficiency was higher in lower molecular weight chitosan polymers compared to unmodified chitosan nanoparticles. Cht-GSH conjugates of the same molecular weight but with different degrees of thiolation had the same hydrodynamic diameter (995± nm) and surface charge (102± mV) as unmodified chitosan, but comprised of a denser network structure and lower concentration. Cht-GSH nanoparticles also exhibited greater mucoadhesive strength which was less affected by ionic strength and pH of the environment. Conclusion Thiolation improves the solubility of chitosan without any significant changes in size and charge of nanoparticles, but affects the nanogel structure. PMID:22615683

  16. Photochemical and antimicrobial properties of silver nanoparticle-encapsulated chitosan functionalized with photoactive groups.

    PubMed

    Mathew, Thomas V; Kuriakose, Sunny

    2013-10-01

    Chitosan was functionalized with 4-((E)-2-(3-hydroxynaphthalen-2-yl)diazen-1-yl)benzoic acid by the coupling of the hydroxyl functional groups of chitosan with carboxylic acid group of the dye by DCC coupling method. The silver nanoparticles were prepared by sol-gel method of nanoparticle synthesis. Silver nanoparticle-encapsulated functionalized chitosan was prepared by the phase transfer method. The products were characterized by FTIR, UV-Vis, fluorescence and NMR spectroscopic methods and by SEM and TEM analysis. The photochemical properties of silver nanoparticle-encapsulated chitosan functionalized with 4-((E)-2-(3-hydroxynaphthalen-2-yl)diazen-1-yl)benzoic acid was studied in detail. The light-fastening properties of the chromophoric system was enhanced when attached to chitosan, and it can be further improved by the encapsulation of silver nanoparticles. The antibacterial analysis of silver nanoparticle-encapsulated functionalized chitosan was carried out against Staphylococcus aureus and Escherichia coli and against fungal species such as Aspergillus flavus and Aspergillus terreus. This study showed that silver nanoparticles-encapsulated functionalized chitosan can be used for antibacterial and antifungal applications.

  17. Chitosan-DNA nanoparticles delivered by intrabiliary infusion enhance liver-targeted gene delivery

    PubMed Central

    Dai, Hui; Jiang, Xuan; Tan, Geoffrey CY; Chen, Yong; Torbenson, Michael; Leong, Kam W; Mao, Hai-Quan

    2006-01-01

    The goal of this study was to examine the efficacy of liver-targeted gene delivery by chitosan-DNA nanoparticles through retrograde intrabiliary infusion (RII). The transfection efficiency of chitosan-DNA nanoparticles, as compared with PEI-DNA nanoparticles or naked DNA, was evaluated in Wistar rats by infusion into the common bile duct, portal vein, or tail vein. Chitosan-DNA nanoparticles administrated through the portal vein or tail vein did not produce detectable luciferase expression. In contrast, rats that received chitosan-DNA nanoparticles showed more than 500 times higher luciferase expression in the liver 3 days after RII; and transgene expression levels decreased gradually over 14 days. Luciferase expression in the kidney, lung, spleen, and heart was negligible compared with that in the liver. RII of chitosan-DNA nanoparticles did not yield significant toxicity and damage to the liver and biliary tree as evidenced by liver function analysis and histopathological examination. Luciferase expression by RII of PEI-DNA nanoparticles was 17-fold lower than that of chitosan-DNA nanoparticles on day 3, but it increased slightly over time. These results suggest that RII is a promising routine to achieve liver-targeted gene delivery by non-viral nanoparticles; and both gene carrier characteristics and mode of administration significantly influence gene delivery efficiency. PMID:17369870

  18. O-2'-hydroxypropyltrimethyl ammonium chloride chitosan nanoparticles for the delivery of live Newcastle disease vaccine.

    PubMed

    Dai, Chunxiao; Kang, Hong; Yang, Wanqiu; Sun, Jinyan; Liu, Chunlong; Cheng, Guogang; Rong, Guangyu; Wang, Xiaohua; Wang, Xin; Jin, Zheng; Zhao, Kai

    2015-10-05

    A novel complex chitosan derivative, O-2'-hydroxypropyltrimethyl ammonium chloride chitosan (O-2'-HACC), was synthesized and used to make nanoparticles as a delivery vehicle for live attenuated Newcastle disease vaccine. We found that O-2'-HACC had high antimicrobial activity, low toxicity, and a high safety level. Newcastle disease virus (NDV) was then encapsulated in the O-2'-HACC nanoparticles (NDV/La Sota-O-2'-HACC-NPs) by the ionic crosslinking method, and the properties of the resulting nanoparticles were determined by transmission electron microscopy, Zeta potential analysis, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and X-ray diffraction. NDV/La Sota-O-2'-HACC-NPs had regular spherical morphologies and high stability, with an encapsulation efficiency of 95.68 ± 2.2% and a loading capacity of 58.75 ± 4.03%. An in vitro release assay indicated that release of NDV from NDV/La Sota-O-2'-HACC-NPs occurred slowly. Specific pathogen-free chickens immunized with NDV/La Sota-O-2'-HACC-NPs intranasally had much stronger cellular, humoral and mucosal immune responses than did those immunized intramuscularly or with live attenuated Newcastle disease vaccine. NDV/La Sota-O-2'-HACC-NPs are a novel drug delivery carrier with immense potential in medical applications.

  19. Chitosan/bioactive glass nanoparticles composites for biomedical applications.

    PubMed

    Luz, Gisela M; Mano, João F

    2012-10-01

    Nanocomposite films based on a chitosan blend with bioactive glass nanoparticles (BG-NPs) with different formulations, namely SiO(2):CaO:P(2)O(5)(mol.%) = 55:40:5 and SiO(2):CaO:P(2)O(5):MgO(mol.%) = 64:26:5:5 were produced in order to develop systems with applicability in guided tissue regeneration. The zeta (ζ)-potential of the BG-NPs containing magnesium was found to be lower than the other formulation and the corresponding composite with chitosan was the most hydrophilic. The bioactive character of the biomaterials was also assessed in vitro by immersion of the materials in simulated body fluid, followed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy evaluations. SaOs-2 osteoblastic-like cells were seeded on the different nanocomposites and their behavior was followed by SEM observations, cytotoxicity assessments, DNA quantification and alkaline phosphatase analysis. The introduction of the inorganic component in the chitosan matrix had a positive effect on the biological response of the membranes. The developed nanocomposite films are potential candidates for regenerating damaged bone tissue and could be useful in orthopedic and maxillo-facial applications.

  20. Magnetic responsive of paclitaxel delivery system based on SPION and palmitoyl chitosan

    NASA Astrophysics Data System (ADS)

    Mansouri, Mona; Nazarpak, Masoumeh Haghbin; Solouk, Atefeh; Akbari, Somaye; Hasani-Sadrabadi, Mohammad Mahdi

    2017-01-01

    Concerns over cancer treatment have largely focused on chemotherapy and its consequent side effects. Utilizing nanocarriers is thought to be a panacea for mitigating the limitations of chemotherapy, and increasing its safety and efficacy. Magnetically driven Paclitaxel delivery systems are among the commonly investigated types of nanocarriers over the last two decades. In this context, we tried to highlight the application of an AC magnetic field and validate its consequential effects on drug delivery pattern and cell death in such nanodevices. So the aim of this study is to develop an appropriate matrix (Palmitoyl chitosan) co-encapsulated with superparamagnetic iron oxide nanoparticles (SPIONs) and anticancer drug, Paclitaxel (PTX) via the nanoprecipitation process. Synthesized nanoparticles were characterized by Dynamic Light Scattering (DLS) and their magnetic properties were investigated by Vibrating Sample Magnetometer (VSM). At initial loading of 10 wt% Paclitaxel, the maximum loading efficiency of nanoparticles with and without SPIONs was in the range of 69% and 72.3%, respectively. In addition, in vitro release data revealed that by the application of a magnetic field, release kinetic changed to the magnetic responsive pattern. Encapsulating anticancer drug in a synthesized nanosystem not only increased the amount of drug in cancer cells but also enhanced cell death (MCF-7) due to hyperthermic effects of SPIONs in the presence of an external magnetic field. In summary, these findings indicate that the resultant nanoparticles may serve as a biocompatible and biodegradable carrier for the precise delivery of powerful cytotoxic anticancer agents such as PTX.

  1. Synthesis and antioxidant properties of chitosan and carboxymethyl chitosan-stabilized selenium nanoparticles.

    PubMed

    Chen, Wanwen; Li, Yanfang; Yang, Shuo; Yue, Lin; Jiang, Qixing; Xia, Wenshui

    2015-11-05

    Monodispersible selenium nanoparticles (SeNPs) were synthesized by using chitosan (CS) and carboxymethyl chitosan (CCS) as the stabilizer and capping agent using a facile synthetic approach. The structure, size, morphology and antioxidant activity of the nanocomposites were characterized by transmission electron microscopy (TEM), Ultraviolet-visible spectroscopy (UV-vis), Dynamic Light Scattering (DLS), Fourier transform infrared (FTIR), Thermogravimetric analysis (TGA). The results revealed that the monodispersible SeNPs (mean particle size of about 50 nm) were ligated with CS and CCS to form nanocomposites in aqueous solution for at least 30 days, and for 120 days the nanoparticles increased to 180 nm or so in size. The DPPH scavenging ability of CS-SeNPs was higher than that of CCS-SeNPs, and could reach 93.5% at a concentration of 0.6 mmol/L. Moreover, SeNPs, CS-SeNPs and CCS-SeNPs exhibited a higher ABTS scavenging ability in comparison to Na2SeO3.

  2. Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles.

    PubMed

    Zhao, Kai; Shi, Xingming; Zhao, Yan; Wei, Haixia; Sun, Qingshen; Huang, Tingting; Zhang, Xiaoyan; Wang, Yunfeng

    2011-11-03

    Preparation conditions of a DNA vaccine against swine influenza encapsulated in chitosan nanoparticles were determined. The nanoparticles were prepared according to a complex coacervation method using chitosan as a biodegradable matrix forming polymer. Under the preparation conditions, chitosan nanoparticles containing the DNA vaccine were produced with good morphology, high encapsulation rate and high stability. Transfection test indicated that the vaccine could be expressed as an antigen in cells, and maintained good bioactivity. In addition, better immune responses of mice immunized with the chitosan nanoparticles containing the DNA vaccine were induced and prolonged release of the plasmid DNA was achieved compared to the DNA vaccine alone. These results laid a foundation for further development of DNA vaccines in nanoparticles before ultimate industrial application.

  3. Ascorbyl palmitate-loaded chitosan nanoparticles: characteristic and polyphenol oxidase inhibitory activity.

    PubMed

    Kim, Mi Kyung; Lee, Ji-Soo; Kim, Kwang Yup; Lee, Hyeon Gyu

    2013-03-01

    The aim of this study was to produce ascorbyl palmitate (AP)-loaded nanoparticles in order to inhibit polyphenol oxidase (PPO) in bananas. AP-loaded chitosan nanoparticles were prepared using acetic acid and citric acid (denoted as CS/AA and CS/CA nanoparticles, respectively). As the initial AP concentration increases, the particle size significantly decreases, and the zeta potential, entrapment and loading efficiency significantly increases. The PPO inhibitory activity of AP was effectively improved when AP was nano-encapsulated by chitosan compared to no encapsulation. These results suggest that chitosan nano-encapsulation can be used to enhance the PPO inhibitory activity of AP.

  4. The green adsorption of chitosan tripolyphosphate nanoparticles on cotton fiber surfaces.

    PubMed

    Wang, Mingxi; She, Yuanbin; Xiao, Zuobing; Hu, Jing; Zhou, Rujun; Zhang, Jia

    2014-01-30

    Chitosan nanoparticles (chitosan NP) were effectively incorporated onto cotton fiber surfaces during a green adsorption without any cross-linking agents in this work. The interactions between cotton fibers and chitosan NP during the green adsorption were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric-derivative thermogravimetry (TG-DTG) and scanning electron microscopy (SEM) in detail. The results indicated that the intermolecular hydrogen bond interactions exited between the hydroxyl groups of cotton fibers and the amino groups of chitosan NP, and progressively enhanced with the increase in chitosan NP mass concentrations. After chitosan NP adsorption, the acidity of fibers augmented and the crystallinity index of fibers declined owing to the increasing interactions. In addition, the hydrophobic interactions occurred between chitosan NP and crystalline cotton fibers, thereby resulting in the preferential adsorption onto the hydrophobic (200) crystallographic plane.

  5. Magnetic nanoparticles for theragnostics

    PubMed Central

    Shubayev, Veronica I.; Pisanic, Thomas R.; Jin, Sungho

    2009-01-01

    Engineered magnetic nanoparticles (MNPs) represent a cutting-edge tool in medicine because they can be simultaneously functionalized and guided by a magnetic field. Use of MNPs has advanced magnetic resonance imaging (MRI), guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cell tracking and bioseparation. Integrative therapeutic and diagnostic (i.e., theragnostic) applications have emerged with MNP use, such as MRI-guided cell replacement therapy or MRI-based imaging of cancer-specific gene delivery. However, mounting evidence suggests that certain properties of nanoparticles (e.g., enhanced reactive area, ability to cross cell and tissue barriers, resistance to biodegradation) amplify their cytotoxic potential relative to molecular or bulk counterparts. Oxidative stress, a 3-tier paradigm of nanotoxicity, manifests in activation of reactive oxygen species (ROS) (tier I), followed by a pro-inflammatory response (tier II) and DNA damage leading to cellular apoptosis and mutagenesis (tier III). In vivo administered MNPs are quickly challenged by macrophages of the reticuloendothelial system (RES), resulting in not only neutralization of potential MNP toxicity but also reduced circulation time necessary for MNP efficacy. We discuss the role of MNP size, composition and surface chemistry in their intracellular uptake, biodistribution, macrophage recognition and cytotoxicity, and review current studies on MNP toxicity, caveats of nanotoxicity assessments and engineering strategies to optimize MNPs for biomedical use. PMID:19389434

  6. Folatereceptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultradispersed nanoconjugates for bimodal imaging

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipsikha; Das, Manasmita; Mishra, Debashis; Banerjee, Indranil; Sahu, Sumanta K.; Maiti, Tapas K.; Pramanik, Panchanan

    2011-04-01

    This article delineates the design and synthesis of a novel, bio-functionalized, magneto-fluorescent multifunctional nanoparticles suitable for cancer-specific targeting, detection and imaging. Biocompatible, hydrophilic, magneto-fluorescent nanoparticles with surface-pendant amine, carboxyl and aldehyde groups were designed using o-carboxymethyl chitosan (OCMC). The free aminegroups of OCMC stabilized magnetite nanoparticles on the surface allow for the covalent attachment of a fluorescent dye such as rhodamine isothiocyanate (RITC) with the aim to develop a magneto-fluorescent nanoprobe for optical imaging. In order to impart specific cancer cell targeting properties, folic acid and its aminated derivative was conjugated onto these magneto-fluorescent nanoparticles using different pendant groups (-NH2, -COOH, -CHO). These newly synthesized iron-oxide folate nanoconjugates (FA-RITC-OCMC-SPIONs) showed excellent dispersibility, biocompatibility and good hydrodynamic sizes under physiological conditions which were extensively studied by a variety of complementary techniques. The cellular internalization efficacy of these folate-targeted and its non-targeted counterparts were studied using a folate-overexpressed (HeLa) and a normal (L929fibroblast) cells by fluorescence microscopy and magnetically activated cell sorting (MACS). Cell-uptake behaviors of nanoparticles clearly demonstrate that cancer cells over-expressing the human folatereceptor internalized a higher level of these nanoparticle-folate conjugates than normal cells. These folate targeted nanoparticles possess specific magnetic properties in the presence of an external magnetic field and the potential of these nanoconjugates as T2-weighted negative contrast MR imaging agent were evaluated in folate-overexpressed HeLa and normal L929fibroblastcells.

  7. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato.

    PubMed

    Saharan, Vinod; Sharma, Garima; Yadav, Meena; Choudhary, Manju Kumari; Sharma, S S; Pal, Ajay; Raliya, Ramesh; Biswas, Pratim

    2015-04-01

    Cu-chitosan nanoparticles were synthesized and evaluated for their growth promotory and antifungal efficacy in tomato (Solanum lycopersicum Mill). Physico-chemical characterization of the developed Cu-chitosan nanoparticles was carried out by DLS, FTIR, TEM, SEM-EDS and AAS. The study highlighted the stability and porous nature of Cu-chitosan nanoparticles. Laboratory synthesized nanoparticles showed substantial growth promotory effect on tomato seed germination, seedling length, fresh and dry weight at 0.08, 0.10 and 0.12% level. At 0.12% concentration these nanoparticles caused 70.5 and 73.5% inhibition of mycelia growth and 61.5 and 83.0% inhibition of spore germination in Alternaria solani and Fusarium oxysporum, respectively, in an in vitro model. In pot experiments, 0.12% concentration of Cu-chitosan nanoparticles was found most effective in percentage efficacy of disease control (PEDC) in tomato plants with the values of 87.7% in early blight and 61.1% in Fusarium wilt. The overall results confirm the significant growth promotory as well as antifungal capabilities of Cu-chitosan nanoparticles. Our model demonstrated the synthesis of Cu-chitosan nanoparticles and open up the possibility to use against fungal disease at field level. Further, developed porous nanomaterials could be exploited for delivery of agrochemicals.

  8. Chitosan nanoparticles synthesis caught in action using microdroplet reactions

    NASA Astrophysics Data System (ADS)

    Kamat, Vivek; Bodas, Dhananjay; Paknikar, Kishore

    2016-02-01

    The ionic gelation process for the synthesis of chitosan nanoparticles was carried out in microdroplet reactions. The synthesis could be stopped instantaneously at different time points by fast dilution of the reaction mixture with DI water. Using this simple technique, the effect of temperature and reactant concentrations on the size and distribution of the nanoparticles formed, as a function of time, could be investigated by DLS and SEM. Results obtained indicated very early (1–5 s) nucleation of the particles followed by growth. The concentration of reactants, reaction temperature as well as time, were found to (severally and collectively) determine the size of nanoparticles and their distribution. Nanoparticles obtained at 4 °C were smaller (60–80 nm) with narrower size distribution. Simulation experiments using Comsol software showed that at 4 °C ‘droplet synthesis’ of nanoparticles gets miniaturised to ‘droplet-core synthesis’, which is being reported for the first time.

  9. Chitosan nanoparticles synthesis caught in action using microdroplet reactions

    PubMed Central

    Kamat, Vivek; Bodas, Dhananjay; Paknikar, Kishore

    2016-01-01

    The ionic gelation process for the synthesis of chitosan nanoparticles was carried out in microdroplet reactions. The synthesis could be stopped instantaneously at different time points by fast dilution of the reaction mixture with DI water. Using this simple technique, the effect of temperature and reactant concentrations on the size and distribution of the nanoparticles formed, as a function of time, could be investigated by DLS and SEM. Results obtained indicated very early (1–5 s) nucleation of the particles followed by growth. The concentration of reactants, reaction temperature as well as time, were found to (severally and collectively) determine the size of nanoparticles and their distribution. Nanoparticles obtained at 4 °C were smaller (60–80 nm) with narrower size distribution. Simulation experiments using Comsol software showed that at 4 °C ‘droplet synthesis’ of nanoparticles gets miniaturised to ‘droplet-core synthesis’, which is being reported for the first time. PMID:26924801

  10. Statistical optimization of chitosan nanoparticles as protein vehicles, using response surface methodology.

    PubMed

    Kiaie, Nasim; Aghdam, Rouhollah M; Tafti, Seyed H A; Emami, Shahriar H

    2016-11-02

    There has been increased attention given to polymeric nanoparticles as protein carriers. In this regard, chitosan/tripolyphosphate (TPP) nanoparticles are considered to be a simple and efficient carrier. However, to have an ideal protein release profile, we need to optimize the properties of the carrier. This study examined the influence of 4 critical process parameters on the physicochemical characteristics of final nanoparticles. Chitosan-based nanoparticles were produced by ionic gelation, and then the size, polydispersity and zeta potential of those resulting nanoparticles were evaluated. Subsequently, the encapsulation efficiency of bovine serum albumin as model protein was investigated. The morphologies of nanoparticles were characterized using field emission scanning electron microscopy (FE-SEM). Linear mathematical models were presented for each response through 3 levels using Central Composite Design with the help of design of experiments software, and formulation optimization was performed. Such research will serve as a basic study in protein loading into TPP cross-linked chitosan nanoparticles.

  11. Hybrid chitosan-Pluronic F-127 films with BaTiO3:Co nanoparticles: Synthesis and properties

    NASA Astrophysics Data System (ADS)

    Fuentes, S.; Dubo, J.; Barraza, N.; González, R.; Veloso, E.

    2015-03-01

    In this study, magnetic BaTiO3:Co (BT:Co) nanoparticles prepared using a combined sol-gel-hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles.

  12. Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin.

    PubMed

    Costa, J R; Silva, N C; Sarmento, B; Pintado, M

    2015-06-01

    Daptomycin may offer an antibacterial alternative for the treatment of endophthalmitis caused by methicillin-resistant Staphylococcus aureus (MRSA) and other potential agents. In the present project, mucoadhesive chitosan-coated alginate (CS-ALG) nanoparticles are proposed as an effective delivery system for daptomycin permeation across ocular epithelia, with potential for the treatment of bacterial endophthalmitis. CS-ALG nanoparticles were prepared by ionotropic pre-gelation of an alginate core followed by chitosan polyelectrolyte complexation, and characterized regarding particle size, polydispersity, and zeta potential. The encapsulation efficiency was determined and antimicrobial activity was also tested after encapsulation of the antibiotic. Also, in vitro ocular permeability of free daptomycin and encapsulation into chitosan and CS-ALG nanoparticles was evaluated using ocular epithelial cell culture models. Formulated daptomycin-loaded CS-ALG nanoparticles were negatively charged, with a size range of 380-420 nm, suitable for ocular application. The encapsulation efficiency was between 79 and 92 %, with decreasing alginate:daptomycin mass ratios. The antibacterial activity of daptomycin against major microorganisms responsible for bacterial endophthalmitis was not affected by encapsulation into nanoparticles. Daptomycin permeability was up to 16 % (chitosan nanoparticles) and 9 % (CS-ALG nanoparticles) through corneal cell monolayer, and 18 % (chitosan nanoparticles) and 12 % (CS-ALG nanoparticles) for retinal cell monolayer after 4 h, demonstrating epithelial retention of the drug compared to free drug. The developed daptomycin-loaded CS-ALG nanoparticles seem to be an interesting and potential system for ocular daptomycin delivery and treatment of bacterial endophthalmitis.

  13. Carboxymethyl chitosan-poly(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery.

    PubMed

    Zhang, Xiaoyang; Zhao, Jun; Wen, Yan; Zhu, Chuanshun; Yang, Jun; Yao, Fanglian

    2013-11-06

    Intracellular delivery of native, active proteins is challenging due to the fragility of most proteins. Herein, a novel polymer/protein polyion complex (PIC) nanoparticle with core-shell structure was prepared. Carboxymethyl chitosan-grafted-terminal carboxyl group-poly(amidoamine) (CM-chitosan-PAMAM) dendrimers were synthesized by amidation and saponification reactions. (1)H NMR was used to characterize CM-chitosan-PAMAM dendrimers. The TEM images and results of lysozyme loading efficiency indicated that CM-chitosan-PAMAM dendrimers could self-assemble into core-shell nanoparticles, and lysozyme was efficiently encapsulated inside the core of CM-chitosan-PAMAM dendrimer nanoparticles. Activity of lysozyme was completely inhibited by CM-chitosan-PAMAM Dendrimers at physiological pH, whereas it was released into the medium and exhibited a significant enzymatic activity in an acidic intracellular environment. Moreover, the CM-chitosan-PAMAM dendrimer nanoparticles did not exhibit significant cytotoxicity in the range of concentrations below 3.16 mg/ml. The results indicated that these CM-chitosan-PAMAM dendrimers have excellent properties as highly potent and non-toxic intracellular protein carriers, which would create opportunities for novel applications in protein delivery.

  14. Spongy bilayer dressing composed of chitosan-Ag nanoparticles and chitosan-Bletilla striata polysaccharide for wound healing applications.

    PubMed

    Ding, Lang; Shan, Xindi; Zhao, Xiaoliang; Zha, Hualian; Chen, Xiaoyu; Wang, Jianjun; Cai, Chao; Wang, Xiaojiang; Li, Guoyun; Hao, Jiejie; Yu, Guangli

    2017-02-10

    The purpose of this study was to develop a promising wound dressing. Though chitosan cross-linked with genipin has been widely used as biomaterials, with the addition of partially oxidized Bletilla striata polysaccharide, the newly developed material in this study (coded as CSGB) showed less gelling time, more uniform aperture distribution, higher water retention, demanded mechanical strength and more L929 cell proliferation compared to the chitosan cross-linked only with genipin. Owning to partial blocking of free amino groups of chitosan, CSGB revealed almost no antibacterial activities, thus the bilayer composite of chitosan-silver nanoparticles (CS-AgG) on CSGB was designed to inhibit microbial invasion. The in vivo studies indicated that both CSGB and bilayer wound dressing significantly accelerated the healing rate of cutaneous wounds in mice, and the bilayer exhibited better mature epidermization with less inflammatory cells on Day 7. Therefore, this novel bilayer composite has great potential in wound dressing applications.

  15. A Proteomic View to Characterize the Effect of Chitosan Nanoparticle to Hepatic Cells: Is Chitosan Nanoparticle an Enhancer of PI3K/AKT1/mTOR Pathway?

    PubMed Central

    Yuan, Shyng-Shiou; Huang, Ying-Fong; Lin, Po-Chiao; Lu, Chi-Yu

    2014-01-01

    Chitosan nanoparticle, a biocompatible material, was used as a potential drug delivery system widely. Our current investigation studies were the bioeffects of the chitosan nanoparticle uptake by liver cells. In this experiment, the characterizations of chitosan nanoparticles were measured by transmission electron microscopy and particle size analyzer. The average size of the chitosan nanoparticle was 224.6 ± 11.2 nm, and the average zeta potential was +14.08 ± 0.7 mV. Moreover, using proteomic approaches to analyze the differential protein expression patterns resulted from the chitosan nanoparticle uptaken by HepG2 and CCL-13 cells identified several proteins involved in the PI3K/AKT1/mTOR pathway. Our experimental results have demonstrated that the chitosan nanoparticle may involve in the liver cancer cell metastasis and proliferation. PMID:24757677

  16. A proteomic view to characterize the effect of chitosan nanoparticle to hepatic cells: is chitosan nanoparticle an enhancer of PI3K/AKT1/mTOR pathway?

    PubMed

    Yang, Ming-Hui; Yuan, Shyng-Shiou; Huang, Ying-Fong; Lin, Po-Chiao; Lu, Chi-Yu; Chung, Tze-Wen; Tyan, Yu-Chang

    2014-01-01

    Chitosan nanoparticle, a biocompatible material, was used as a potential drug delivery system widely. Our current investigation studies were the bioeffects of the chitosan nanoparticle uptake by liver cells. In this experiment, the characterizations of chitosan nanoparticles were measured by transmission electron microscopy and particle size analyzer. The average size of the chitosan nanoparticle was 224.6 ± 11.2 nm, and the average zeta potential was +14.08 ± 0.7 mV. Moreover, using proteomic approaches to analyze the differential protein expression patterns resulted from the chitosan nanoparticle uptaken by HepG2 and CCL-13 cells identified several proteins involved in the PI3K/AKT1/mTOR pathway. Our experimental results have demonstrated that the chitosan nanoparticle may involve in the liver cancer cell metastasis and proliferation.

  17. Thermo-therapeutic applications of chitosan- and PEG-coated NiFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Manjura Hoque, S.; Tariq, Mehrin; Liba, S. I.; Salehin, F.; Mahmood, Z. H.; Khan, M. N. I.; Chattopadhayay, K.; Islam, Rafiqul; Akhter, S.

    2016-07-01

    The paper reports the thermo-therapeutic applications of chitosan- and PEG-coated nickel ferrite (NiFe2O4) nanoparticles. In this study NiFe2O4 nanoparticles were synthesized by the co-precipitation method, tuning the particle size through heat treatment in the temperature range from 200-800 °C for 3 h. XRD and TEM analysis revealed that the the ultrafine nanoparticles were of size 2-58 nm. Crystallinity of the NiFe2O4 nanoparticles in the as-dried condition with the particle size ˜2-3 nm was confirmed from the presence of a lattice fringe in the HRTEM image. VSM measurements showed that a superparamagnetic/ferromagnetic transition occurs with increasing particle size, which was further confirmed by Mössbauer spectroscopy. The nickel ferrite nanoparticles with optimum particle size of 10 nm were then coated with materials commonly used for biomedical applications, i.e. chitosan and PEG, to form homogeneous suspensions. The hydrodynamic diameter and the polydispersity index (PDI) were analyzed by dynamic light scattering at the physiological temperature of 37 °C and found to be 187 nm and 0.21 for chitosan-coated nanoparticles and 285 nm and 0.32 for PEG-coated ones. The specific loss power of rf induction heating by the set-up for hyperthermia and r 2 relaxivity by the nuclear magnetic resonance were determined. The results of induction heating measurements showed that the temperature attained by the nanoparticles of size 10 nm and concentration of about 20 mg ml-1 was >70 °C (for chitosan) and >64 °C (for PEG). It has been demonstrated that the required temperature for hyperthermia heating could be tuned by tuning the particle size, shape and magnetization and the concentration of solution. For other potential biomedical applications of the NiFe2O4 nanoparticle solution, e.g. magnetic resonance imaging, the NMR studies yielded the T 1 and T 2 relaxivities as 0.348 and 89 mM-1 s-1 respectively. The fact that the T 2 relaxivity is orders of magnitude higher

  18. Evaluation of the cytotoxic and genotoxic potential of lecithin/chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Taner, Gökçe; Yeşilöz, Recep; Özkan Vardar, Deniz; Şenyiğit, Taner; Özer, Özgen; Degen, Gisela H.; Başaran, Nurşen

    2014-02-01

    Nanoparticles-based drug targeting delivery systems have been introduced in the treatment for various diseases because of their effective properties, although there have been conflicting results on the toxicity of nanoparticles. In the present study, the aim was to evaluate the cytotoxicity and the genotoxicity of different concentrations of lecithin/chitosan nanoparticles with and without clobetasol-17-propionate (CP) by neutral red uptake (NRU) cytotoxicity assay and single cell gel electrophoresis (Comet) and cytokinesis-blocked micronucleus assays. The IC50 values of lecithin/chitosan nanoparticles with/without CP were found as 1.9 and 1.8 %, respectively, in the NRU cytotoxicity test. High concentrations of lecithin/chitosan nanoparticles induced DNA damage in human lymphocytes as evaluated by comet assay. The micronucleus frequency was increased by the lecithin/chitosan treatment in a dose-dependent manner. Also at the two highest concentrations, a significant increase in micronucleus formation was observed. Lecithin/chitosan nanoparticles with CP did not increase the frequency of micronucleus and also did not induce additional DNA damage when compared with lecithin/chitosan nanoparticles without CP; therefore, CP itself has not found to be genotoxic at the studied concentration.

  19. The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities.

    PubMed

    El Zowalaty, Mohamed Ezzat; Hussein Al Ali, Samer Hassan; Husseiny, Mohamed I; Geilich, Benjamin M; Webster, Thomas J; Hussein, Mohd Zobir

    2015-01-01

    Magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of Fe(2+) and Fe(3+) iron salts in alkali media. MNPs were coated by chitosan (CS) to produce CS-MNPs. Streptomycin (Strep) was loaded onto the surface of CS-MNPs to form a Strep-CS-MNP nanocomposite. MNPs, CS-MNPs, and the nanocomposites were subsequently characterized using X-ray diffraction and were evaluated for their antibacterial activity. The antimicrobial activity of the as-synthesized nanoparticles was evaluated using different Gram-positive and Gram-negative bacteria, as well as Mycobacterium tuberculosis. For the first time, it was found that the nanoparticles showed antimicrobial activities against the tested microorganisms (albeit with a more pronounced effect against Gram-negative than Gram-positive bacteria), and thus, should be further studied as a novel nano-antibiotic for numerous antimicrobial and antituberculosis applications. Moreover, since these nanoparticle bacteria fighters are magnetic, one can easily envision magnetic field direction of these nanoparticles to fight unwanted microorganism presence on demand. Due to the ability of magnetic nanoparticles to increase the sensitivity of imaging modalities (such as magnetic resonance imaging), these novel nanoparticles can also be used to diagnose the presence of such microorganisms. In summary, although requiring further investigation, this study introduces for the first time a new type of magnetic nanoparticle with microorganism theranostic properties as a potential tool to both diagnose and treat diverse microbial and tuberculosis infections.

  20. The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities

    PubMed Central

    El Zowalaty, Mohamed Ezzat; Hussein Al Ali, Samer Hassan; Husseiny, Mohamed I; Geilich, Benjamin M; Webster, Thomas J; Hussein, Mohd Zobir

    2015-01-01

    Magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of Fe2+ and Fe3+ iron salts in alkali media. MNPs were coated by chitosan (CS) to produce CS-MNPs. Streptomycin (Strep) was loaded onto the surface of CS-MNPs to form a Strep-CS-MNP nanocomposite. MNPs, CS-MNPs, and the nanocomposites were subsequently characterized using X-ray diffraction and were evaluated for their antibacterial activity. The antimicrobial activity of the as-synthesized nanoparticles was evaluated using different Gram-positive and Gram-negative bacteria, as well as Mycobacterium tuberculosis. For the first time, it was found that the nanoparticles showed antimicrobial activities against the tested microorganisms (albeit with a more pronounced effect against Gram-negative than Gram-positive bacteria), and thus, should be further studied as a novel nano-antibiotic for numerous antimicrobial and antituberculosis applications. Moreover, since these nanoparticle bacteria fighters are magnetic, one can easily envision magnetic field direction of these nanoparticles to fight unwanted microorganism presence on demand. Due to the ability of magnetic nanoparticles to increase the sensitivity of imaging modalities (such as magnetic resonance imaging), these novel nanoparticles can also be used to diagnose the presence of such microorganisms. In summary, although requiring further investigation, this study introduces for the first time a new type of magnetic nanoparticle with microorganism theranostic properties as a potential tool to both diagnose and treat diverse microbial and tuberculosis infections. PMID:25995633

  1. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan.

    PubMed

    Yang, Yunhua; Cui, Jianghu; Zheng, Mingtao; Hu, Chaofan; Tan, Shaozao; Xiao, Yong; Yang, Qu; Liu, Yingliang

    2012-01-11

    Highly amino-functionalized fluorescent carbon nanoparticles (CNPs) were fabricated by hydrothermal carbonization of chitosan at a mild temperature. They were applied to bioimaging of human lung adenocarcinoma A549 cells, showing low cytotoxicity and excellent biocompatibility.

  2. Chitosan wound dressing with hexagonal silver nanoparticles for hyperthermia and enhanced delivery of small molecules.

    PubMed

    Levi-Polyachenko, Nicole; Jacob, Reuben; Day, Cynthia; Kuthirummal, Narayanan

    2016-06-01

    Chitosan films were synthesized with hexagonal silver nanoparticles (Ag NP). The unique shape and size of the Ag NP shift the optical absorption into the infrared. Stimulation of the nanoparticles with infrared light was used to generate heat and facilitate intracellular delivery of fluorescently-labeled dextran molecules. Chitosan films prepared with hexagonal or spherical Ag NP were characterized by optical and thermal analyses, and X-ray diffraction. There were found to be slight differences between how the chitosan molecular chains interface with the Ag NP depending upon shape of the nanoparticle. Viability of cells associated with dermal wound healing was evaluated on chitosan films prepared with hexagonal or spherical Ag NP, with both keratinocytes and fibroblasts having normal or moderately enhanced growth on films containing hexagonally-shaped nanoparticles.

  3. Effect of chitosan and thiolated chitosan coating on the inhibition behaviour of PIBCA nanoparticles against intestinal metallopeptidases

    NASA Astrophysics Data System (ADS)

    Bravo-Osuna, Irene; Vauthier, Christine; Farabollini, Alessandra; Millotti, Gioconda; Ponchel, Gilles

    2008-12-01

    Surface modified nanoparticles composed of poly(isobutylcyanoacrylate) (PIBCA) cores surrounded by a chitosan and thiolated chitosan gel layer were prepared and characterized in previous works. The presence of such biopolymers on the nanoparticle surface conferred those nanosystems interesting characteristics that might partially overcome the gastrointestinal enzymatic barrier, improving the oral administration of pharmacologically active peptides. In the present work, the antiprotease behaviour of this family of core-shell nanoparticles was in vitro tested against two model metallopeptidases present in the gastrointestinal tract (GIT): Carboxypeptidase A -CP A- (luminal protease) and Leucine Aminopeptidase M -LAP M- (membrane protease). As previous step, the zinc-binding capacity of these nanoparticles was evaluated. Interestingly, an improvement of both the zinc-binding capacity and the antiprotease effect of chitosan was observed when the biopolymers (chitosan and thiolated chitosan) were used as coating component of the core-shell nanoparticles, in comparison with their behaviour in solution, thanks to the different biopolymer chains rearrangement. The presence of amino, hydroxyl and thiol groups on the nanoparticle surface promoted zinc binding and hence the inhibition of the metallopeptidases analysed. On the contrary, the occurrence of a cross-linked structure in the gel layer surrounding the PIBCA cores of thiolated formulations, due to the formation of interchain and intrachain disulphide bonds, partially limited the inhibition of the proteases. The low accessibility of cations to the active groups of the cross-linked polymeric shell was postulated as a possible explanation of this behaviour. Results obtained in this work make this family of surface-modified nanocarriers promising candidates for the successfull administration of pharmacologically active peptides and proteins by the oral route.

  4. The synthesis and characterization of monodispersed chitosan-coated Fe3O4 nanoparticles via a facile one-step solvothermal process for adsorption of bovine serum albumin.

    PubMed

    Shen, Mao; Yu, Yujing; Fan, Guodong; Chen, Guang; Jin, Ying Min; Tang, Wenyuan; Jia, Wenping

    2014-01-01

    Preparation of magnetic nanoparticles coated with chitosan (CS-coated Fe3O4 NPs) in one step by the solvothermal method in the presence of different amounts of added chitosan is reported here. The magnetic property of the obtained magnetic composite nanoparticles was confirmed by X-ray diffraction (XRD) and magnetic measurements (VSM). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) allowed the identification of spherical nanoparticles with about 150 nm in average diameter. Characterization of the products by Fourier transform infrared spectroscopy (FTIR) demonstrated that CS-coated Fe3O4 NPs were obtained. Chitosan content in the obtained nanocomposites was estimated by thermogravimetric analysis (TGA). The adsorption properties of the CS-coated Fe3O4 NPs for bovine serum albumin (BSA) were investigated under different concentrations of BSA. Compared with naked Fe3O4 nanoparticles, the CS-coated Fe3O4 NPs showed a higher BSA adsorption capacity (96.5 mg/g) and a fast adsorption rate (45 min) in aqueous solutions. This work demonstrates that the prepared magnetic nanoparticles have promising applications in enzyme and protein immobilization.

  5. In situ synthesis of polysaccharide nanoparticles via polyion complex of carboxymethyl cellulose and chitosan.

    PubMed

    Kaihara, Sachiko; Suzuki, Yoichi; Fujimoto, Keiji

    2011-07-01

    Biocompatible polymer-magnetite hybrid nanoparticles were prepared by means of in situ synthesis of magnetite within polysaccharide hydrogel nanoparticles. Hydrogel nanoparticles were first fabricated by blending high-molecular-weight carboxymethyl cellulose as an anionic polymer, and low-molecular-weight chitosan as a cationic polymer to form polyion complexes (CC particles). These polyion complexes were then chemically crosslinked using genipin, a bio-based cross-linker, to form stable nanoparticles having a semi-IPN structure (CCG particles). Magnetite was lastly synthesized within CCG particles by the coprecipitation method to obtain polymer-magnetite hybrid nanoparticles (CCGM particles). The formations of CC, CCG and CCGM particles were mainly observed by transmittance, absorbance of genipin and TEM, respectively, and their hydrodynamic diameters and zeta-potentials were analyzed. It was confirmed that the hydrodynamic diameters and the zeta-potentials of these particles were significantly influenced by pH of the suspension, which was attributed to the charges of polymers. The diameters of CCGM particles were smaller than 200 nm at any pH conditions, suggesting the possibility to apply them as drug delivery carriers. CCGM particles exhibited the responsiveness to a magnetic field in addition to their high dispersion stability, indicating their potential to be utilized as a biomaterial for hyperthermia. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Controllable preparation of nanoparticle-coated chitosan microspheres in a co-axial microfluidic device.

    PubMed

    Lan, Wenjie; Li, Shaowei; Xu, Jianhong; Luo, Guangsheng

    2011-02-21

    In this work, we describe a novel and simple microfluidic method for fabricating nanoparticle-coated chitosan microspheres. Uniform droplets of aqueous chitosan solution were dispersed into an oil phase containing partially hydrophilic nanoparticles via a co-axial microfluidic device. Recirculating flow in the continuous phase in the area between drops enhanced mixing and allowed the nanoparticles to coat the surface of the droplets as they passed through the channel. The chitosan droplets were then crosslinked with glutaraldehyde and nanoparticle-coated microspheres were obtained. SEM characterization shows that the microspheres are monodispersed with uniform nanoparticle distribution on the surface. The dispersity, size and composition of the microspheres could all easily be controlled by changing the microfluidic flow parameters and three different types of nanoparticles were successfully used to synthesize hybrid microspheres to demonstrate the method's versatility.

  7. Stabilisation of silver and copper nanoparticles in a chemically modified chitosan matrix.

    PubMed

    Tiwari, Anand D; Mishra, Ajay K; Mishra, Shivani B; Kuvarega, Alex T; Mamba, Bhekie B

    2013-02-15

    This work describes the stabilisation of silver and copper nanoparticles in chemically modified chitosan colloidal solution. Chitosan-N-2-methylidene-hydroxy-pyridine-6-methylidene hydroxy thiocarbohydrazide (CSPTH) was used as a stabilising and reducing agent for silver and copper nanoparticles. The modified chitosan derivatives and the synthesised nanoparticles were characterised by Fourier transform infrared (FT-IR) spectroscopy, Ultraviolet-visible (UV-Vis) spectroscopy and X-ray diffraction (XRD). Particle size, morphology and segregation of the nanoparticles were determined by transmission electron microscopy (TEM). The size of the nanoparticles was found to be less than 20 nm and 50 nm for silver and copper nanoparticles, respectively. These nanoparticles were stabilised in a chemically modified chitosan solution and their properties were studied using fluorescence spectroscopy, photoluminescence spectroscopy and surface-enhanced Raman scattering (SERS). The optical properties of silver nanoparticles in surface plasmon band (SPB) were enhanced at 407 nm compared to those of copper nanoparticles. Fluorescence (400 nm and 756 nm), photoluminescence (450 and 504 nm) and Raman scattering (1382 and 1581 cm(-1)) properties for the copper nanoparticles were superior to those of the silver nanoparticles.

  8. Poly(lactic acid)/chitosan hybrid nanoparticles for controlled release of anticancer drug.

    PubMed

    Wang, Wenlong; Chen, Shu; Zhang, Liang; Wu, Xi; Wang, Jiexin; Chen, Jian-Feng; Le, Yuan

    2015-01-01

    Poly(lactic acid) (PLA) is a kind of non-toxic biological materials with excellent absorbability, biocompatibility and biodegradability, which can be used for drug release, tissue engineering and surgical treatment applications. In this study, we prepared chitosan modified PLA nanoparticles as carriers for encapsulation of docetaxel by anti-solvent precipitation method. The morphology, particle size, zeta potential and composition of the PLA/chitosan were characterized by SEM, DLS, FTIR and XPS. As-prepared PLA/chitosan particles exhibited average size of 250 nm and showed very narrow distribution with polydispersity index of 0.098. Their large surface charge-ability was confirmed by zeta potential value of 53.9 mV. Docetaxel was released from PLA/chitosan nanoparticles with 40% initial burst release in 5 h and 70% cumulative release within 24 h, while from PLA nanoparticles 65% of docetaxel was released in 5h. In vitro drug release study demonstrated that PLA/chitosan nanoparticles prolonged drug release and decreased the burst release over the unmodified PLA nanoparticles. These results illustrated high potential of chitosan modified PLA nanoparticles for usage as anticancer drug carriers.

  9. Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung

    NASA Astrophysics Data System (ADS)

    Worthington, Kristan L. S.; Adamcakova-Dodd, Andrea; Wongrakpanich, Amaraporn; Mudunkotuwa, Imali A.; Mapuskar, Kranti A.; Joshi, Vijaya B.; Guymon, C. Allan; Spitz, Douglas R.; Grassian, Vicki H.; Thorne, Peter S.; Salem, Aliasger K.

    2013-10-01

    Despite their potential for a variety of applications, copper nanoparticles induce very strong inflammatory responses and cellular toxicity following aerosolized delivery. Coating metallic nanoparticles with polysaccharides, such as biocompatible and antimicrobial chitosan, has the potential to reduce this toxicity. In this study, copper nanoparticles were coated with chitosan using a newly developed and facile method. The presence of coating was confirmed using x-ray photoelectron spectroscopy, rhodamine tagging of chitosan followed by confocal fluorescence imaging of coated particles and observed increases in particle size and zeta potential. Further physical and chemical characteristics were evaluated using dissolution and x-ray diffraction studies. The chitosan coating was shown to significantly reduce the toxicity of copper nanoparticles after 24 and 52 h and the generation of reactive oxygen species as assayed by DHE oxidation after 24 h in vitro. Conversely, inflammatory response, measured using the number of white blood cells, total protein, and cytokines/chemokines in the bronchoalveolar fluid of mice exposed to chitosan coated versus uncoated copper nanoparticles, was shown to increase, as was the concentration of copper ions. These results suggest that coating metal nanoparticles with mucoadhesive polysaccharides (e.g. chitosan) could increase their potential for use in controlled release of copper ions to cells, but will result in a higher inflammatory response if administered via the lung.

  10. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging.

    PubMed

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The aim of the present research was to study the possibility of using eugenol-loaded chitosan nanoparticles as antioxidants for active bio-based packaging material. Eugenol-loaded chitosan nanoparticles were incorporated into thermoplastic flour (TPF) - a model bio-based plastic - through an extrusion process at temperatures above 150°C. The influences of eugenol-loaded chitosan nanoparticles on crystallinity, morphology, thermal properties, radical scavenging activity, reducing power, tensile properties and barrier properties of TPF were investigated. Although the incorporation of 3% (w/w) of eugenol-loaded chitosan nanoparticles significantly reduced the extensibility and the oxygen barrier property of TPF, it provided antioxidant activity and improved the water vapor barrier property. In addition, TPF containing eugenol-loaded chitosan nanoparticles exhibited superior radical scavenging activity and stronger reducing power compared with TPF containing naked eugenol. The results suggest the applicability of TPF containing eugenol-loaded chitosan nanoparticles as an antioxidant active packaging material. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Plasma-Synthesized Silver Nanoparticles on Electrospun Chitosan Nanofiber Surfaces for Antibacterial Applications.

    PubMed

    Annur, Dhyah; Wang, Zhi-Kai; Liao, Jiunn-Der; Kuo, Changshu

    2015-10-12

    Chitosan nanofibers have been electrospun with poly(ethylene oxide) and silver nitrate, as a coelectrospinning polymer and silver nanoparticle precursor, respectively. The average diameter of the as-spun chitosan nanofibers with up to 2 wt % silver nitrate loading was approximately 130 nm, and there was no evidence of bead formation or polymer agglomeration. Argon plasma was then applied for surface etching and synthesis of silver nanoparticles via precursor decomposition. Plasma surface bombardment induced nanoparticle formation primarily on the chitosan nanofiber surfaces, and the moderate surface plasma etching further encouraged maximum exposure of silver nanoparticles. UV-vis spectra showed the surface plasmon resonance signature of silver nanoparticles. The surface-immobilized nanoparticles were visualized by TEM and were found to have average particle diameters as small as 1.5 nm. Surface analysis by infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the interactions between the silver nanoparticles and chitosan molecules, as well as the effect of plasma treatment on the nanofiber surfaces. Finally, a bacteria inhibition study revealed that the antibacterial activity of the electrospun chitosan nanofibers correspondingly increased with the plasma-synthesized silver nanoparticles.

  12. Еvaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin.

    PubMed

    Aluani, Denitsa; Tzankova, Virginia; Kondeva-Burdina, Magdalena; Yordanov, Yordan; Nikolova, Elena; Odzhakov, Feodor; Apostolov, Alexandar; Markova, Tzvetanka; Yoncheva, Krassimira

    2017-10-01

    The present study deals with development and evaluation of the safety profile of chitosan/alginate nanoparticles as a platform for delivery of a natural antioxidant quercetin. The nanoparticles were prepared by varying the ratios between both biopolymers giving different size and charge of the formulations. The biocompatibility was explored in vitro in cells from different origin: cultivated HepG2 cells, isolated primary rat hepatocytes, isolated murine spleen lymphocytes and macrophages. In vivo toxicological evaluation was performed after repeated 14-day oral administration to rats. The study revealed that chitosan/alginate nanoparticles did not change body weight, the relative weight of rat livers, liver histology, hematology and biochemical parameters. The protective effects of quercetin-loaded nanoparticles were investigated in the models of iron/ascorbic acid (Fe(2+)/AA) induced lipid peroxidation in microsomes and tert-butyl hydroperoxide oxidative stress in isolated rat hepatocytes. Interesting finding was that the empty chitosan/alginate nanoparticles possessed protective activity themselves. The antioxidant effects of quercetin loaded into the nanoparticles formulated with higher concentration of chitosan were superior compared to quercetin encapsulated in nanoparticles with higher amount of sodium alginate. In conclusion, chitosan/alginate nanoparticles can be considered appropriate carrier for quercetin, combining safety profile and improved protective activity of the encapsulated antioxidant. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Chitosan Nanoparticles Prepared by Ionotropic Gelation: An Overview of Recent Advances.

    PubMed

    Desai, Kashappa Goud

    2016-01-01

    The objective of this review is to summarize recent advances in chitosan nanoparticles prepared by ionotropic gelation. Significant progress has occurred in this area since the method was first reported. The gelation technique has been improved through a number of creative methodological modifications. Ionotropic gelation via electrospraying and spinning disc processing produces nanoparticles with a more uniform size distribution. Large-scale manufacturing of the nanoparticles can be achieved with the latter approach. Hydrophobic and hydrophilic drugs can be simultaneously encapsulated with high efficiency by emulsification followed by ionic gelation. The turbulent mixing approach facilitates nanoparticle formation at a relatively high polymer concentration (5 mg/mL). The technique can be easily tuned to achieve the desired polymer/surface modifications (e.g., blending, coating, and surface conjugation). Using factorial-design-based approaches, optimal conditions for nanoparticle formation can be determined with a minimum number of experiments. New insights have been gained into the mechanism of chitosan-tripolyphosphate nanoparticle formation. Chitosan nanoparticles prepared by ionotropic gelation tend to aggregate/agglomerate in unfavorable environments. Factors influencing this phenomenon and strategies that can be adopted to minimize the instability are discussed. Ionically cross-linked nanoparticles based on native chitosan and modified chitosan have shown excellent efficacy for controlled and targeted drug-delivery applications.

  14. Vancomycin loaded superparamagnetic MnFe2O4 nanoparticles coated with PEGylated chitosan to enhance antibacterial activity.

    PubMed

    Esmaeili, Akbar; Ghobadianpour, Sepideh

    2016-03-30

    Increasing prevalence of antibiotic-resistant and failed-treatment make more investigations to deal with these problems. Hence new therapeutic approaches for effective treatment are necessary. Ferrite superparamagnetic nanoparticles have potentially antibacterial activity. In this study we prepared MnFe2O4 superparamagnetic nanoparticles as core by precipitation method and used chitosan crosslinked by glutaraldehyde as shell, then modified with PEG to increase stability of particles against RES. Chitosan coating not only improves the properties of ferrit nanoparticles but also has antibacterial activity. FT-IR confirmed this surface modification; XRD and SEM were developed to demonstrate particle size approximately 25 nm and characteristics of crystal structure of these nanoparticles. Magnetic properties of nanoparticles were evaluated by VSM. Actual drug loading and releasing were examined by UV-vis spectroscopy method. We employed liquid broth dilution method to assessment antibacterial activity of nanoparticles against microorganisms. Significant antibacterial effect against gram negative bacteria was developed. Copyright © 2016. Published by Elsevier B.V.

  15. Synthesis and Ultraviolet Visible Spectroscopy Studies of Chitosan Capped Gold Nanoparticles and Their Reactions with Analytes

    PubMed Central

    Mohd Sultan, Norfazila

    2014-01-01

    Gold nanoparticles (AuNPs) had been synthesized with various molarities and weights of reducing agent, monosodium glutamate (MSG), and stabilizer chitosan, respectively. The significance of chitosan as stabilizer was distinguished through transmission electron microscopy (TEM) images and UV-Vis absorption spectra in which the interparticles distance increases whilst retaining the surface plasmon resonance (SPR) characteristics peak. The most stable AuNPs occurred for composition with the lowest (1 g) weight of chitosan. AuNPs capped with chitosan size stayed small after 1 month aging compared to bare AuNPs. The ability of chitosan capped AuNPs to uptake analyte was studied by employing amorphous carbon nanotubes (α-CNT), copper oxide (Cu2O), and zinc sulphate (ZnSO4) as the target material. The absorption spectra showed dramatic intensity increased and red shifted once the analyte was added to the chitosan capped AuNPs. PMID:25215315

  16. Synthesis and ultraviolet visible spectroscopy studies of chitosan capped gold nanoparticles and their reactions with analytes.

    PubMed

    Mohd Sultan, Norfazila; Johan, Mohd Rafie

    2014-01-01

    Gold nanoparticles (AuNPs) had been synthesized with various molarities and weights of reducing agent, monosodium glutamate (MSG), and stabilizer chitosan, respectively. The significance of chitosan as stabilizer was distinguished through transmission electron microscopy (TEM) images and UV-Vis absorption spectra in which the interparticles distance increases whilst retaining the surface plasmon resonance (SPR) characteristics peak. The most stable AuNPs occurred for composition with the lowest (1 g) weight of chitosan. AuNPs capped with chitosan size stayed small after 1 month aging compared to bare AuNPs. The ability of chitosan capped AuNPs to uptake analyte was studied by employing amorphous carbon nanotubes (α-CNT), copper oxide (Cu2O), and zinc sulphate (ZnSO4) as the target material. The absorption spectra showed dramatic intensity increased and red shifted once the analyte was added to the chitosan capped AuNPs.

  17. Enhanced delivery of baicalein using cinnamaldehyde cross-linked chitosan nanoparticle inducing apoptosis.

    PubMed

    Nipun Babu, Varukattu; Kannan, Soundarapandian

    2012-12-01

    The chitosan (CS) nanoparticles, baicalein loaded chitosan nanoparticles were prepared by crosslinking method in a W/O emulsion system, using cinnamaldehyde as crosslinking agent. The FT-IR result showed the binding of anticancer compound baicalein to the nanoparticles. The TEM analysis revealed that the particles are spherical in nature. Zeta potential revealed negative charge of the particles. Ultraviolet spectrum analysis described that higher loading efficiency and encapsulation efficiency as 9.1% and 97.2%, respectively. In vitro baicalein release profile demonstrated the delivery of baicalein from the CS nanoparticles is a two stage process. RT-PCR and cell culture was carried out accordingly.

  18. Modified-chitosan nanoparticles: Novel drug delivery systems improve oral bioavailability of doxorubicin.

    PubMed

    Khdair, Ayman; Hamad, Islam; Alkhatib, Hatim; Bustanji, Yasser; Mohammad, Mohammad; Tayem, Rabab; Aiedeh, Khaled

    2016-10-10

    The efficacy of most anticancer drugs is highly limited in vivo due mainly to poor pharmacokinetics behavior including poor bioavailability after extravascular administration. We have developed novel chitosan-modified polymeric nanoparticles for oral as well as i.v. administration. Nanoparticles were developed utilizing the double emulsion solvent evaporation technique for sustained delivery of various anticancer drugs. Chitosan diacetate (CDA) and chitosan triacetate (CTA) polymers were previously modified in our laboratory and used as novel matrix. Nanoparticles, loaded with various anticancer drugs, were characterized for particle size using dynamic light scattering as well as transmission electron microscopy and net surface charge using dynamic light scattering. Particles size was below 100nm in diameter and zeta potential ranged - (25-30). Encapsulation efficiency of anticancer drugs varied considerably and was dependent on the physicochemical characteristics of the encapsulated drug. However, chitosan triacetate nanoparticles showed relatively higher encapsulation efficiency than chitosan diacetate nanoparticles. In vitro release of encapsulated drugs was sustained over a period of 14days. Nanoparticles enhanced cellular accumulation of encapsulated drugs, compared to the free drugs, in vitro in MCF-7 and Caco-II tumor cell lines. In conclusion, diacetate and triacetate chitosan are novel polymers that can be used to formulate nanoparticles which efficiently encapsulated anticancer drugs, and sustained the release and enhanced tumor cellular uptake of these drugs. Further, chitosan triacetate nanoparticles enhanced oral bioavailability of doxorubicin. CDA and CTA nanoparticles can be used to efficiently deliver anticancer drugs and improve their in vivo profile. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A method for top down preparation of chitosan nanoparticles and nanofibers.

    PubMed

    Wijesena, Ruchira N; Tissera, Nadeeka; Kannangara, Yasun Y; Lin, Yuan; Amaratunga, Gehan A J; de Silva, K M Nalin

    2015-03-06

    A method of top down preparation of chitosan nanoparticles and nanofibers is proposed. Chitin nanofibrils (chitin NFs) were prepared using ultrasonic assisted method from crab shells with an average diameter of 5 nm and the length less than 3 μm as analyzed by atomic force microscopy and transmission electron microscopy. These chitin nanofibers were used as the precursor material for the preparation of chitosan nanoparticles and nanofibers. The degree of deacetylation of these prepared chitosan nanostructures were found to be approximately 98%. In addition these chitosan nanostructures showed amorphous crystallinity. Transmission electron microscopic studies revealed that chitosan nanoparticles were roughly spherical in nature and had diameters less than 300 nm. These larger particles formed through self-assembly of much smaller 25 nm particles as evidenced by the TEM imaging. The diameter and the length of the chitosan nanofibers were found to be less than 100 nm and 3 μm respectively. It is envisaged that due to the cavitation effect, the deacetylated chitin nanofibers were broken down to small pieces to form seed particles. These seed particles can then be self-assembled to form larger chitosan nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Water dispersible cross-linked magnetic chitosan beads for increasing the antimicrobial efficiency of aminoglycoside antibiotics.

    PubMed

    Grumezescu, Alexandru Mihai; Andronescu, Ecaterina; Holban, Alina Maria; Ficai, Anton; Ficai, Denisa; Voicu, Georgeta; Grumezescu, Valentina; Balaure, Paul Cătălin; Chifiriuc, Carmen Mariana

    2013-09-15

    The aim of this study was to obtain a nano-active system to improve antibiotic activity of certain drugs by controlling their release. Magnetic composite nanomaterials based on magnetite core and cross-linked chitosan shell were synthesized via the co-precipitation method and characterized by Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The prepared magnetic composite nanomaterials exhibit a significant potentiating effect on the activity of two cationic (kanamycin and neomycin) drugs, reducing the amount of antibiotics necessary for the antimicrobial effect. The increase in the antimicrobial activity was explained by the fact that the obtained nanosystems provide higher surface area to volume ratio, resulting into higher surface charge density thus increasing affinity to microbial cell and also by controlling their release. In addition to the nano-effect, the positive zeta potential of the synthesized magnetite/cross-linked chitosan core/shell magnetic nanoparticles allows for a more favorable interaction with the usually negatively charged cell wall of bacteria. The novelty of the present contribution is just the revealing of this synergistic effect exhibited by the synthesized water dispersible magnetic nanocomposites on the activity of different antibiotics against Gram-positive and Gram-negative bacterial strains. The results obtained in this study recommend these magnetic water dispersible nanocomposite materials for applications in the prevention and treatment of infectious diseases.

  1. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion.

    PubMed

    Meng, Jianing; Sturgis, Timothy F; Youan, Bi-Botti C

    2011-09-18

    The objective of this study was to engineer a model anti-HIV microbicide (tenofovir) loaded chitosan based nanoparticles (NPs). Box-Behnken design allowed to assess the influence of formulation variables on the size of NPs and drug encapsulation efficiency (EE%) that were analyzed by dynamic light scattering and UV spectroscopy, respectively. The effect of the NPs on vaginal epithelial cells and Lactobacillus crispatus viability and their mucoadhesion to porcine vaginal tissue were assessed by cytotoxicity assays and fluorimetry, respectively. In the optimal aqueous conditions, the EE% and NPs size were 5.83% and 207.97nm, respectively. With 50% (v/v) ethanol/water as alternative solvent, these two responses increased to 20% and 602 nm, respectively. Unlike small size (182nm) exhibiting burst release, drug release from medium (281 nm) and large (602 nm)-sized NPs fitted the Higuchi (r(2)=0.991) and first-order release (r(2)=0.999) models, respectively. These NPs were not cytotoxic to both the vaginal epithelial cell line and L. crispatus for 48h. When the diameter of the NPs decreased from 900 to 188 nm, the mucoadhesion increased from 6% to 12%. However, the combinatorial effect of EE% and percent mucoadhesion for larger size NPs was the highest. Overall, large-size, microbicide loaded chitosan NPs appeared to be promising nanomedicines for the prevention of HIV transmission.

  2. Dual responsive PNIPAM-chitosan targeted magnetic nanopolymers for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yadavalli, Tejabhiram; Ramasamy, Shivaraman; Chandrasekaran, Gopalakrishnan; Michael, Isaac; Therese, Helen Annal; Chennakesavulu, Ramasamy

    2015-04-01

    A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation.

  3. Innovative composite films of chitosan, methylcellulose, and nanoparticles.

    PubMed

    Mura, Stefania; Corrias, Francesco; Stara, Giuseppe; Piccinini, Massimo; Secchi, Nicola; Marongiu, Daniela; Innocenzi, Plinio; Irudayaraj, Joseph; Greppi, Gian F

    2011-09-01

    Plastic is readily available and inexpensive, so it is becoming the main material for packaging. Unfortunately plastics do not biodegrade and, if reduced in small pieces, contaminate soil and waterways. In the present work, natural films composed of chitosan, methylcellulose, and silica (SiO(2)) nanoparticles (NPs) were developed as new packaging materials. The effect of the incorporation of NPs into the polymeric film matrix was evaluated. An excellent improvement of the mechanical properties was obtained for nanostructured films with a composition of CH:MC 50:50 and NPs 1% w/v that make these materials able to replace plastics and derivatives, reducing environmental pollution. © 2011 Institute of Food Technologists®

  4. Non-monotonic wetting behavior of chitosan films induced by silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Praxedes, A. P. P.; Webler, G. D.; Souza, S. T.; Ribeiro, A. S.; Fonseca, E. J. S.; de Oliveira, I. N.

    2016-05-01

    The present work is devoted to the study of structural and wetting properties of chitosan-based films containing silver nanoparticles. In particular, the effects of silver concentration on the morphology of chitosan films are characterized by different techniques, such as atomic force microscopy (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). By means of dynamic contact angle measurements, we study the modification on surface properties of chitosan-based films due to the addition of silver nanoparticles. The results are analyzed in the light of molecular-kinetic theory which describes the wetting phenomena in terms of statistical dynamics for the displacement of liquid molecules in a solid substrate. Our results show that the wetting properties of chitosan-based films are high sensitive to the fraction of silver nanoparticles, with the equilibrium contact angle exhibiting a non-monotonic behavior.

  5. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol.

    PubMed

    Ilk, Sedef; Sağlam, Necdet; Özgen, Mustafa; Korkusuz, Feza

    2017-01-01

    Quorum sensing (QS) is a cell density dependent expression of species in bacteria mediated by compounds called autoinducers (AI). Several processes responsible for successful establishment of bacterial infection are mediated by QS. Inhibition of QS is therefore being considered as a new target for antimicrobial chemotherapy. Flavonoid compounds are strong antioxidant and antimicrobial agents but their applications are limited due to their poor dissolution and bioavailability. Our objective was to investigate the effect of kaempferol loaded chitosan nanoparticles on modulating QS mediated by AI in model bioassay test systems. For this purpose, kaempferol loaded nanoparticles were synthesized and characterized in terms of hydrodynamic diameter, hydrogen bonding, amorphous transformation and antioxidant activity. QS inhibition in time dependent manner of nanoparticles was measured in violacein pigment producing using the biosensor strain Chromobacterium violaceum CV026 mediated by AI known as acylated homoserine lactone (AHL). Our results indicated that the average kaempferol loaded chitosan/TPP nanoparticle size and zeta potential were 192.27±13.6nm and +35mV, respectively. The loading and encapsulation efficiency of kaempferol into chitosan/TPP nanoparticles presented higher values between 78 and 93%. Kaempferol loaded chitosan/TPP nanoparticle during the 30 storage days significantly inhibited the production of violacein pigment in Chromobacterium violaceum CV026. The observation that kaempferol encapsulated chitosan nanoparticles can inhibit QS related processes opens up an exciting new strategy for antimicrobial chemotherapy as stable QS-based anti-biofilm agents.

  6. Characterization and carboplatin loaded chitosan nanoparticles for the chemotherapy against breast cancer in vitro studies.

    PubMed

    Khan, Md Asad; Zafaryab, Md; Mehdi, Syed Hassan; Quadri, Javed; Rizvi, M Moshahid A

    2017-04-01

    Aim of the studies to synthesized chitosan nanoparticles by an ionic interaction procedure. The nanoparticles were characterized by physicochemical methods like, DLS, TEM, Surface potential measurements, FT-IR and DSC. The average particle size of chitosan and carboplatin nanoparticles was found to be 277.25±11.37nm and 289.30±8.15nm and zeta potential was found to be 31±3.14mV and 33±2.15mV respectively with low polydispersity index. The maximum entrapment of carboplatin in nanoparticles was a spherical shape with a positive charge. The maximum encapsulation and loading efficiencies of carboplatin (5mg/ml) were obtained to be 58.43% and 13.27% respectively. The nanocarboplatin was better blood compatibility as compared to chitosan nanoparticles. Finally, the cytotoxic effects of the carboplatin loaded chitosan nanoparticles were tested in-vitro against breast cancer (MCF-7) cell lines. Our studies showed that the chitosan nanoparticles could be used as a promising candidate for drug delivery for the therapeutic treatment of breast cancer.

  7. Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles.

    PubMed

    Biao, Linhai; Tan, Shengnan; Wang, Yuanlin; Guo, Ximin; Fu, Yujie; Xu, Fengjie; Zu, Yuangang; Liu, Zhiguo

    2017-07-01

    This study provided a facile, one-step hydrothermal method to synthesize stable Ag colloid in aqueous solution by utilizing chitosan as both reductant and stabilizer. The formation of chitosan-functionalized Ag nanoparticles was verified by UV-Vis, FTIR, TEM, AFM and XRD measurements. FTIR results revealed that the primary amine groups and amide groups of chitosan have specific interactions with the surface of Ag nanoparticles. The average diameter of the Ag nanoparticles is 10.0±5.4nm as determined by TEM. Ag nanoparticles are highly crystalline as revealed by HR-TEM and XRD measurements. The size and shape of Ag nanoparticles are also found to depend on the pH condition in the synthesis. Ag nanoparticles were the main products at pH5.0 whereas large Ag nanotriangle and truncated triangular nanoplate were dominant at pH4.0 in the synthesis. Due to its monodispersity and good stability, the chitosan-functionalized Ag colloid synthesized at pH5.0 was further tested for its antibacterial activities against gram-positive bacteria, gram-negative bacteria and fungus. The results of zone of inhibition, inhibition ratio and SEM characterization revealed that chitosan-functionalized Ag nanoparticles have great bactericidal efficiency against both bacteria and fungus. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Chitosan-lignosulfonates sono-chemically prepared nanoparticles: characterisation and potential applications.

    PubMed

    Kim, Suyeon; Fernandes, Margarida M; Matamá, Teresa; Loureiro, Ana; Gomes, Andreia C; Cavaco-Paulo, Artur

    2013-03-01

    Due to their recognised properties of biocompatibility, biodegradability and sustainability, chitosan nanocarriers have been successfully used as new delivery systems. In this work, nanoparticles combining chitosan and lignosulfonates were developed for the first time for cosmetic and biomedical applications. The ability of lignosulfonates to act as a counter polyion for stabilisation of chitosan particles, generated using high intensity ultrasound, was investigated. Several conditions for particles preparation were tested and optimised and the resulting nanoparticles were comprehensively characterised by measuring particle size, zeta potential and polydispersity index. The pH of chitosan solution, sonication time and the presence of an adequate surfactant, poloxamer 407, were determinant factors on the development of smaller particles with low polydispersity index (an average particle size of 230 nm was obtained at pH 5 after 8 min of sonication). The beneficial effects of lignosulfonates complex on chitosan nanoparticles were further characterised. Greater stability to lysozyme degradation, biocompatibility with human cells and antimicrobial activity was found upon lignosulfonates incorporation into chitosan nanoparticles. Furthermore, these particles were able to incorporate a hydrophilic model protein - RNase A. A burst release was observed when nanoparticles were loaded with low amount of protein while with high protein content, a sustained release was found, suggesting that the protein cargo maybe loaded both at the surface as in the bulk of the particle, depending on the concentration of drug incorporated.

  9. Formation of enriched black tea extract loaded chitosan nanoparticles via electrospraying

    NASA Astrophysics Data System (ADS)

    Hammond, Samuel James

    Creating nanoparticles of beneficial nutraceuticals and pharmaceuticals has had a large surge of research due to the enhancement of absorption and bioavailability by decreasing their size. One of these ways is by electrohydrodynamic atomization, also known as electrospraying. In general, this novel process is done by forcing a liquid through a capillary nozzle and which is subjected to an electrical field. While there are different ways to create nanoparticles, the novel method of electrospraying can be beneficial over other types of nanoparticle formation. Reasons include high control over particle size and distribution by altering electrospray parameters (voltage, flow rate, distance, and time), higher encapsulation efficiency than other methods, and also it is a one step process without exposure to extreme conditions (Gomez-Estaca et. al. 2012, Jaworek and Sobcyzk 2008). The current study aimed to create a chitosan encapsulated theaflavin-2 enriched black tea extract (BTE) nanoparticles via electrospraying. The first step of this process was to create the smallest chitosan nanoparticles possible by altering the electrospray parameters and the chitosan-acetic acid solution parameters. The solution properties altered include chitosan molecular weight, acetic acid concentration, and chitosan concentration. Specifically, the electrospray parameters such as voltage, flow rate and distance from syringe to collector are the most important in determining particle size. After creating the smallest chitosan particles, the TF-2 enriched black tea extract was added to the chitosan-acetic acid solution to be electrosprayed. The particles were assessed with the following procedures: Atomic force microscopy (AFM) and scanning electron microscopy (SEM) for particle morphology and size, and loading efficiency with ultraviolet--visible spectrophotometer (UV-VIS). Chitosan-BTE nanoparticles were successfully created in a one step process. Diameter of the particles on average

  10. Magnetic chitosan/clay beads: A magsorbent for the removal of cationic dye from water

    NASA Astrophysics Data System (ADS)

    Bée, Agnès; Obeid, Layaly; Mbolantenaina, Rakotomalala; Welschbillig, Mathias; Talbot, Delphine

    2017-01-01

    A magnetic composite material composed of magnetic nanoparticles and clay encapsulated in cross-linked chitosan beads was prepared, characterized and used as a magsorbent for the removal of a cationic dye, methylene blue (MB), from aqueous solutions. The magnetic properties of these beads represent an advantage to recover them at the end of the depollution process. The optimal weight ratio R=clay:chitosan for the removal of MB in a large range of pH was determined. For beads without clay, the maximal adsorption capacity of MB occurs in the pH range [9-12], while for beads with clay, the pH range extends by increasing the amount of clay to reach [3-12] for R>0.5. Adsorption isotherms show that the adsorption capacity of magnetic beads is equal to 82 mg/g. Moreover, the kinetics of dye adsorption is relatively fast since 50% of the dye is removed in the first 13 min for an initial MB concentration equal to 100 mg/L. The estimation of the number of adsorption sites at a given pH shows that the main driving force for adsorption of MB in a large range of pH is the electrostatic interaction between the positively charged dye and the permanent negative charges of clay.

  11. Complexation of chitosan with surfactant like ionic liquids: molecular interactions and preparation of chitosan nanoparticles.

    PubMed

    Bharmoria, Pankaj; Singh, Tejwant; Kumar, Arvind

    2013-10-01

    Interactions and behavior of chitosan (Ch) with surface active ionic liquids (ILs)- 1-butyl-3-methylimidazolium octylsulfate, [C4mim][C8OSO3] or 3-methyl-1-octylimidazolium chloride, [C8mim][Cl]-have been probed at the air solution interface and in the bulk in aqueous media at pH 3.0 using a multi-technique approach, viz. tensiometry, conductometry, turbidimetry, dynamic light scattering (DLS), and atomic force microscopy (AFM). At the interface, a strong complexation is observed in Ch-[C4mim][C8OSO3] system. Bulk [C4mim][C8OSO3] interacts with Ch to form Ch-[C4mim][C8OSO3] complexes which precipitate out at higher IL concentrations, whereas comparatively weaker Ch-[C8mim][Cl] complexes remain solubilized in the solution. DLS measurements showed that the Ch chains contract before the cmc and expands after the cmc upon interaction with both the ILs. Interaction of ILs with Ch resulted in facile preparation of uniformly distributed Ch nanoparticles with good sphericity and control which have been verified using DLS, SEM, AFM, and fluorescence microscopy. The present study provides an understanding of forces governing the complexation behavior of Ch with surface active ILs and their efficacy to produce Ch nanoparticles. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. The spacer arm length in cell-penetrating peptides influences chitosan/siRNA nanoparticle delivery for pulmonary inflammation treatment

    NASA Astrophysics Data System (ADS)

    Jeong, Eun Ju; Choi, Moonhwan; Lee, Jangwook; Rhim, Taiyoun; Lee, Kuen Yong

    2015-11-01

    Although chitosan and its derivatives have been frequently utilized as delivery vehicles for small interfering RNA (siRNA), it is challenging to improve the gene silencing efficiency of chitosan-based nanoparticles. In this study, we hypothesized that controlling the spacer arm length between a cell-penetrating peptide (CPP) and a nanoparticle could be critical to enhancing the cellular uptake as well as the gene silencing efficiency of conventional chitosan/siRNA nanoparticles. A peptide consisting of nine arginine units (R9) was used as a CPP, and the spacer arm length was controlled by varying the number of glycine units between the peptide (R9Gn) and the nanoparticle (n = 0, 4, and 10). Various physicochemical characteristics of R9Gn-chitosan/siRNA nanoparticles were investigated in vitro. Increasing the spacing arm length did not significantly affect the complex formation between R9Gn-chitosan and siRNA. However, R9G10-chitosan was much more effective in delivering genes both in vitro and in vivo compared with non-modified chitosan (without the peptide) and R9-chitosan (without the spacer arm). Chitosan derivatives modified with oligoarginine containing a spacer arm can be considered as potential delivery vehicles for various genes.Although chitosan and its derivatives have been frequently utilized as delivery vehicles for small interfering RNA (siRNA), it is challenging to improve the gene silencing efficiency of chitosan-based nanoparticles. In this study, we hypothesized that controlling the spacer arm length between a cell-penetrating peptide (CPP) and a nanoparticle could be critical to enhancing the cellular uptake as well as the gene silencing efficiency of conventional chitosan/siRNA nanoparticles. A peptide consisting of nine arginine units (R9) was used as a CPP, and the spacer arm length was controlled by varying the number of glycine units between the peptide (R9Gn) and the nanoparticle (n = 0, 4, and 10). Various physicochemical characteristics of

  13. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    NASA Astrophysics Data System (ADS)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  14. The impact of arginine-modified chitosan-DNA nanoparticles on the function of macrophages

    NASA Astrophysics Data System (ADS)

    Liu, Lanxia; Bai, Yuanyuan; Song, Chunni; Zhu, Dunwan; Song, Liping; Zhang, Hailing; Dong, Xia; Leng, Xigang

    2010-06-01

    It has been demonstrated that incorporation of arginine moieties into chitosan significantly elevates the transgenic efficacy of the chitosan. However, little is known about the impact of arginine-modified chitosan on the function of macrophages, which play a vitally important role in the inflammatory response of the body to foreign substances, especially particulate substances. This study was designed to investigate the impact of arginine-modified chitosan/DNA nanoparticles on the function of the murine macrophage through observation of phagocytic activity and production of pro-inflammatory cytokines (IL-1β, IL-6, IL-10, IL-12, and TNF-α). Results showed that both chitosan/DNA nanoparticles and arginine-modified chitosan/DNA nanoparticles, containing 20 μg/mL DNA, were internalized by almost all the macrophages in contact. This led to no significant changes, compared to the non-exposure group, in production of cytokines and phagocytic activity of the macrophages 24 h post co-incubation, whereas exposure to LPS induced obviously elevated cytokine production and phagocytic activity, suggesting that incorporation of arginine moieties into chitosan does not have a negative impact on the function of the macrophages.

  15. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications

    PubMed Central

    Gao, Wenjuan; Lai, James C. K.; Leung, Solomon W.

    2012-01-01

    As a biomaterial, chitosan has been widely used in tissue engineering, wound healing, drug delivery, and other biomedical applications. It can be formulated in a variety of forms, such as powder, film, sphere, gel, and fiber. These features make chitosan an almost ideal biomaterial in cell culture applications, and cell cultures arguably constitute the most practical way to evaluate biocompatibility and biotoxicity. The advantages of cell cultures are that they can be performed under totally controlled environments, allow high throughput functional screening, and are less costly, as compared to other assessment methods. Chitosan can also be modified into multilayer composite by combining with other polymers and moieties to alter the properties of chitosan for particular biomedical applications. This review briefly depicts and discusses applications of chitosan and nanoparticles in cell culture, in particular, the effects of chitosan and nanoparticles on cell adhesion, cell survival, and the underlying molecular mechanisms: both stimulatory and inhibitory influences are discussed. Our aim is to update the current status of how nanoparticles can be utilized to modify the properties of chitosan to advance the art of tissue engineering by using cell cultures. PMID:22934070

  16. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications.

    PubMed

    Gao, Wenjuan; Lai, James C K; Leung, Solomon W

    2012-01-01

    As a biomaterial, chitosan has been widely used in tissue engineering, wound healing, drug delivery, and other biomedical applications. It can be formulated in a variety of forms, such as powder, film, sphere, gel, and fiber. These features make chitosan an almost ideal biomaterial in cell culture applications, and cell cultures arguably constitute the most practical way to evaluate biocompatibility and biotoxicity. The advantages of cell cultures are that they can be performed under totally controlled environments, allow high throughput functional screening, and are less costly, as compared to other assessment methods. Chitosan can also be modified into multilayer composite by combining with other polymers and moieties to alter the properties of chitosan for particular biomedical applications. This review briefly depicts and discusses applications of chitosan and nanoparticles in cell culture, in particular, the effects of chitosan and nanoparticles on cell adhesion, cell survival, and the underlying molecular mechanisms: both stimulatory and inhibitory influences are discussed. Our aim is to update the current status of how nanoparticles can be utilized to modify the properties of chitosan to advance the art of tissue engineering by using cell cultures.

  17. Size selected synthesis of CoFe{sub 2}O{sub 4} nanoparticles prepared in a chitosan matrix

    SciTech Connect

    Gurgel, A. L.; Soares, J. M.; Chaves, D. S.; Xavier, M. M. Jr.; Morales, M. A.; Baggio-Saitovitch, E. M.; Chaves, D. S.

    2010-05-15

    In this paper we report the synthesis and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles. The nanoparticles with sizes ranging from 6 to 20 nm were prepared in a chitosan matrix. Size selection was achieved by introducing a nonionic surfactant Tween-X, where X={l_brace}20, 60, 80, and 85{r_brace}. Aqueous dispersions of Tween-X show micelles with increasing hydrodynamic sizes as X increases. Moessbauer spectroscopy measurements at 300 K show superparamagnetic behavior for the small particles, changing gradually to a blocked magnetic regime as the particle size increases. Magnetization measurements at 300 K show increasing values for the ratio M{sub r}/M{sub Hmax} and coercive fields (H{sub c}).

  18. Preparation and adsorption properties of magnetic CoFe2O4-chitosan composite microspheres

    NASA Astrophysics Data System (ADS)

    Lian, Qi; Zheng, Xue-Fang; Hu, Tie-Feng

    2015-11-01

    Magnetic chitosan microspheres made from novel polymer materials show outstanding applied characteristics. Magnetic chitosan microspheres are rather cheap, non-toxic, tasteless, alkali resistant, corrosion resistant, easily degradable, easily recyclable, and so on. It can be widely used in many fields. In this paper, magnetic CoFe2O4/chitosan core-shell microspheres are prepared by means of emulsification cross-linking technique using CoFe2O4 as core and glutaric dialdehyde as crosslinking agent. The results demonstrated that the different calcining temperature of magnetic (CoFe2O4) particles, CoFe2O4/chitosan ratio and stirring time of the suspension medium are the most effective parameters that control the size, size distribution, morphology and magnetism of the described microspheres. Finally, the size, morphology and chemical structure of the prepared materials are studied by different methods. The results show that the optimal calcination temperature of magnetic particles is 700°C, the optimal ratio of CoFe2O4/chitosan is 1: 1, ultrasonic dispersion time is 30 min. The prepared chitosan magnetic microspheres have small size and are well dispersed when the stirring time is 3 h. The prepared magnetic chitosan microspheres are well shaped spheres with a diameter from 1 to 50 μm, in which CoFe2O4 particles are dispersed uniformly. The magnetic chitosan microspheres show excellent magnetic response and have good adsorption characteristics.

  19. Glycyrrhizin conjugated chitosan nanoparticles for hepatocyte-targeted delivery of lamivudine.

    PubMed

    Mishra, Deepak; Jain, Nivrati; Rajoriya, Vaibhav; Jain, Ashish K

    2014-08-01

    The present study was focused to prepare controlled release glycyrrhizin (GL) conjugated low molecular weight chitosan nanoparticles (CS-NPs) for liver targeting. The hydrophilic antiretroviral drug lamivudine was chosen as a model drug and encapsulated within glycyrrhizin conjugated low molecular weight chitosan nanoparticles (GL-CS-NPs) for liver specificity. First, the low molecular weight chitosan (CS) was synthesized through depolymerization method. The low molecular weight chitosan nanoparticles were prepared by inotropic gelation method. Then glycyrrhizin was conjugated with previously prepared low molecular weight chitosan nanoparticles (CS-NPs) and conjugation was confirmed by Fourier transform infrared (FT-IR) spectroscopy. The prepared GL-CS-NPs were characterized using dynamic light scattering, transmission electron microscopy and FT-IR. The encapsulation efficiency and in-vitro drug release behaviour of drug-loaded GL-CS-NPs were studied using ultra violet spectroscopy and high performance liquid chromatographic methods. Release of lamivudine from the nanoparticles exhibited a biphasic pattern, initial burst release and consequently sustained release. In-vivo biodistribution study suggested the target ability of GL-CS-NPs is better and haematological study shows decline of the tissue damage in comparison with plain drug solution. The experimental results show that the glycyrrhizin conjugated LMWC nanoparticles may be used as a potential drug delivery system with hepatocyte-targeting characteristics. © 2014 Royal Pharmaceutical Society.

  20. Magnetic Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Jing, Ying

    Nanotechnology is revolutionizing human's life. Synthesis and application of magnetic nanoparticles is a fast burgeoning field which has potential to bring significant advance in many fields, for example diagnosis and treatment in biomedical area. Novel nanoparticles to function efficiently and intelligently are in desire to improve the current technology. We used a magnetron-sputtering-based nanocluster deposition technique to synthesize magnetic nanoparticles in gas phase, and specifically engineered nanoparticles for different applications. Alternating magnetic field heating is emerging as a technique to assist cancer treatment or drug delivery. We proposed high-magnetic-moment Fe3Si particles with relatively large magnetic anisotropy energy should in principle provide superior performance. Such nanoparticles were experimentally synthesized and characterized. Their promising magnetic properties can contribute to heating performance under suitable alternating magnetic field conditions. When thermal energy is used for medical treatment, it is ideal to work in a designed temperature range. Biocompatible and "smart" magnetic nanoparticles with temperature self-regulation were designed from both materials science and biomedicine aspects. We chose Fe-Si material system to demonstrate the concept. Temperature dependent physical property was adjusted by tuning of exchange coupling between Fe atoms through incorporation of various amount of Si. The magnetic moment can still be kept in a promising range. The two elements are both biocompatible, which is favored by in-vivo medical applications. A combination of "smart" magnetic particles and thermo-sensitive polymer were demonstrated to potentially function as a platform for drug delivery. Highly sensitive diagnosis for point-of-care is in desire nowadays. We developed composition- and phase-controlled Fe-Co nanoparticles for bio-molecule detection. It has been demonstrated that Fe70Co30 nanoparticles and giant

  1. Chitosan nanoparticles as alternative anti-staphylococci agents: Bactericidal, antibiofilm and antiadhesive effects.

    PubMed

    Costa, E M; Silva, S; Vicente, S; Neto, C; Castro, P M; Veiga, M; Madureira, R; Tavaria, F; Pintado, M M

    2017-10-01

    Chitosan is a biocompatible, bioactive, non-toxic polymer that due to these characteristics has been widely used as a carrier for targeted delivery of bioactive molecules. In recent years, and considering that chitosan has a strong antimicrobial potential, the scientific community's focus has shifted onto the possible antimicrobial activity of chitosan nanoparticles. With this in mind, the aim of this work was to produce low molecular weight chitosan nanoparticles, through the ionic gelation method and characterize their potential biological activity against three staphylococci (MSSA, MRSA and MRSE) in planktonic and sessile environments. The chitosan nanoparticles produced had an average size of 244±12nm, an average charge of 17.3±1.4mV and had a MIC of 1.25mg/mL for all tested microorganisms. Bactericidal activity was only registered for MSSA and MRSA with the time-inhibition curves showing bactericidal activity within 1h. Assays regarding chitosan nanoparticles' impact upon sessile populations showed that they were effective in preventing MRSE adhesion and highly effective in reducing MRSA and MSSA biofilm formation. Copyright © 2017. Published by Elsevier B.V.

  2. Chitosan-based nanoparticles for rosmarinic acid ocular delivery--In vitro tests.

    PubMed

    da Silva, Sara Baptista; Ferreira, Domingos; Pintado, Manuela; Sarmento, Bruno

    2016-03-01

    In this study, chitosan nanoparticles were used to encapsulate antioxidant rosmarinic acid, Salvia officinalis (sage) and Satureja montana (savory) extracts as rosmarinic acid natural vehicles. The nanoparticles were prepared by ionic gelation using chitosan and sodium tripolyphosphate (TPP) in a mass ratio of 7:1, at pH 5.8. Particle size distribution analysis and transmission electron microscopy (TEM) confirmed the size ranging from 200 to 300 nm, while surface charge of nanoparticles ranged from 20 to 30 mV. Nanoparticles demonstrate to be safe without relevant cytotoxicity against retina pigment epithelium (ARPE-19) and human cornea cell line (HCE-T). The permeability study in HCE monolayer cell line showed an apparent permeability coefficient Papp of 3.41±0.99×10(-5) and 3.24±0.79×10(-5) cm/s for rosmarinic acid loaded chitosan nanoparticles and free in solution, respectively. In ARPE-19 monolayer cell line the Papp was 3.39±0.18×10(-5) and 3.60±0.05×10(-5) cm/s for rosmarinic acid loaded chitosan nanoparticles and free in solution, respectively. Considering the mucin interaction method, nanoparticles indicate mucoadhesive proprieties suggesting an increased retention time over the ocular mucosa after instillation. These nanoparticles may be promising drug delivery systems for ocular application in oxidative eye conditions.

  3. Facile fabrication of AgCl@polypyrrole-chitosan core-shell nanoparticles and polymeric hollow nanospheres.

    PubMed

    Cheng, Daming; Xia, Haibing; Chan, Hardy Sze On

    2004-11-09

    A one-step sequential method for preparing AgCl@polypyrrole-chitosan core-shell nanoparticles and subsequently the formation of polypyrrole-chitosan hollow nanospheres is reported. The formation of the core and the shell is performed in one reaction medium almost simultaneously. Transmission electron microscopy (TEM) images show the presence of core-shell nanoparticles and hollow nanospheres. Ultraviolet-visible (UV-vis) studies reveal that AgCl was formed first followed by polypyrrole. X-ray diffration (XRD) and UV-vis studies show that AgCl was present in the core-shell nanoparticles and could be removed completely from the core.

  4. Biomedical and environmental applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tran, Dai Lam; Le, Van Hong; Linh Pham, Hoai; Nhung Hoang, Thi My; Quy Nguyen, Thi; Luong, Thien Tai; Thu Ha, Phuong; Phuc Nguyen, Xuan

    2010-12-01

    This paper presents an overview of syntheses and applications of magnetic nanoparticles (MNPs) at the Institute of Materials Science, Vietnam Academy of Science and Technology. Three families of oxide MNPs, magnetite, manganite and spinel ferrite materials, were prepared in various ways: coprecipitation, sol-gel and high energy mechanical milling. Basic properties of MNPs were characterized by Vibrating Sample Magnetometer (VSM) and Physical Properties Measurement Systems (PPMS). As for biomedical application, the aim was to design a novel multifunctional, nanosized magnetofluorescent water-dispersible Fe3O4-curcumin conjugate, and its ability to label, target and treat tumor cells was described. The conjugate possesses a magnetic nano Fe3O4 core, chitosan (CS) or Oleic acid (OL) as an outer shell and entrapped curcumin (Cur), serving the dual function of naturally autofluorescent dye as well as antitumor model drug. Fe3O4-Cur conjugate exhibited a high loading cellular uptake with the help of a macrophage, which was clearly visualized dually by Fluorescence Microscope and Laser Scanning Confocal Microscope (LSCM), as well as by magnetization measurement (PPMS). A preliminary magnetic resonance imaging (MRI) study also showed a clear contrast enhancement by using the conjugate. As for the environmental aspect, the use of magnetite MNPs for the removal of heavy toxic metals, such as Arsenic (As) and Lead (Pb), from contaminated water was studied.

  5. Percolation Magnetism in Ferroelectric Nanoparticles.

    PubMed

    Golovina, Iryna S; Lemishko, Serhii V; Morozovska, Anna N

    2017-12-01

    Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe(3+) ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  6. Percolation Magnetism in Ferroelectric Nanoparticles

    NASA Astrophysics Data System (ADS)

    Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.

    2017-06-01

    Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  7. In Vivo Assessment of Clobetasol Propionate-Loaded Lecithin-Chitosan Nanoparticles for Skin Delivery

    PubMed Central

    Şenyiğit, Taner; Sonvico, Fabio; Rossi, Alessandra; Tekmen, Işıl; Santi, Patrizia; Colombo, Paolo; Nicoli, Sara; Özer, Özgen

    2016-01-01

    The aim of this work was to assess in vivo the anti-inflammatory efficacy and tolerability of clobetasol propionate (CP) loaded lecithin/chitosan nanoparticles incorporated into chitosan gel for topical application (CP 0.005%). As a comparison, a commercial cream (CP 0.05% w/w), and a sodium deoxycholate gel (CP 0.05% w/w) were also evaluated. Lecithin/chitosan nanoparticles were prepared by self-assembling of the components obtained by direct injection of soybean lecithin alcoholic solution containing CP into chitosan aqueous solution. Nanoparticles obtained had a particle size around 250 nm, narrow distribution (polydispersity index below 0.2) and positive surface charge, provided by a superficial layer of the cationic polymer. The nanoparticle suspension was then loaded into a chitosan gel, to obtain a final CP concentration of 0.005%. The anti-inflammatory activity was evaluated using carrageenan-induced hind paw edema test on Wistar rats, the effect of formulations on the barrier property of the stratum corneum were determined using transepidermal water loss measurements (TEWL) and histological analysis was performed to evaluate the possible presence of morphological changes. The results obtained indicate that nanoparticle-in-gel formulation produced significantly higher edema inhibition compared to other formulations tested, although it contained ten times less CP. TEWL measurements also revealed that all formulations have no significant disturbance on the barrier function of skin. Furthermore, histological analysis of rat abdominal skin did not show morphological tissue changes nor cell infiltration signs after application of the formulations. Taken together, the present data show that the use of lecithin/chitosan nanoparticles in chitosan gel as a drug carrier significantly improves the risk-benefit ratio as compared with sodium-deoxycholate gel and commercial cream formulations of CP. PMID:28035957

  8. Development of chitosan-nanoparticle film based materials for controlled quality of minced beef during refrigerated storage

    NASA Astrophysics Data System (ADS)

    Erdawati

    2010-10-01

    Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. The physicochemical properties of the chitosan nanoparticles were determined by FTIR analysis, XRD pattern and TEM. The effects of chitosan nanoparticles treatment on the shelf-life extension of minced beef stored at 20±1° C were studied, including chemical and microbiological,. Results indicated that chitosan nanoparticle treatment reduced the total microbial load of fresh minced beef about 10-fold (from 3.2×104 CFU/g to 5.4×102 CFU/g) before storage and the microbial flora was different with that of raw samples. The wide-spectrum antibacterial property of chitosan against bacteria isolated from minced beef was confirmed, and chitosan concentration of 400 ppm was eventually determined for application in minced beef. Based on microbiological analysis, biochemical indices determination and sensory evaluation, shelf-lives of 2-3 days for control, 4-5 days for nanoparticle chitosan treatment samples, were observed, indicating that chitosan nanoparticle have a great potential for minced beef preservation.

  9. Development of chitosan-pullulan composite nanoparticles for nasal delivery of vaccines: in vivo studies.

    PubMed

    Cevher, Erdal; Salomon, Stefan K; Somavarapu, Satyanarayana; Brocchini, Steve; Alpar, H Oya

    2015-01-01

    Here, we aimed at developing chitosan/pullulan composite nanoparticles and testing their potential as novel systems for the nasal delivery of diphtheria toxoid (DT). All the chitosan derivatives [N-trimethyl (TMC), chloride and glutamate] and carboxymethyl pullulan (CMP) were synthesised and antigen-loaded composites were prepared by polyion complexation of chitosan and pullulan derivatives (particle size: 239-405 nm; surface charge: +18 and +27 mV). Their immunological effects after intranasal administration to mice were compared to intramuscular route. Composite nanoparticles induced higher levels of IgG responses than particles formed with chitosan derivative and antigen. Nasally administered TMC-pullulan composites showed higher DT serum IgG titre when compared with the other composites. Co-encapsulation of CpG ODN within TMC-CMP-DT nanoparticles resulted in a balanced Th1/Th2 response. TMC/pullulan composite nanoparticles also induced highest cytokine levels compared to those of chitosan salts. These findings demonstrated that TMC-CMP-DT composite nanoparticles are promising delivery system for nasal vaccination.

  10. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury.

    PubMed

    Cho, Youngnam; Shi, Riyi; Ben Borgens, Richard

    2010-01-29

    The highly reactive aldehyde acrolein is a very potent endogenous toxin with a long half-life. Acrolein is produced within cells after insult, and is a central player in slow and progressive "secondary injury" cascades. Indeed, acrolein-biomolecule complexes formed by cross-linking with proteins and DNA are associated with a number of pathologies, especially central nervous system (CNS) trauma and neurodegenerative diseases. Hydralazine is capable of inhibiting or reducing acrolein-induced damage. However, since hydralazine's principle activity is to reduce blood pressure as a common anti-hypertension drug, the possible problems encountered when applied to hypotensive trauma victims have led us to explore alternative approaches. This study aims to evaluate such an alternative - a chitosan nanoparticle-based therapeutic system. Hydralazine-loaded chitosan nanoparticles were prepared using different types of polyanions and characterized for particle size, morphology, zeta potential value, and the efficiency of hydralazine entrapment and release. Hydralazine-loaded chitosan nanoparticles ranged in size from 300 nm to 350 nm in diameter, and with a tunable, or adjustable, surface charge. We evaluated the utility of chitosan nanoparticles with an in-vitro model of acrolein-mediated cell injury using PC -12 cells. The particles effectively, and statistically, reduced damage to membrane integrity, secondary oxidative stress, and lipid peroxidation. This study suggests that a chitosan nanoparticle-based therapy to interfere with "secondary" injury may be possible.

  11. Evaluation of brain-targeted chitosan nanoparticles through blood-brain barrier cerebral microvessel endothelial cells.

    PubMed

    Sahin, Adem; Yoyen-Ermis, Digdem; Caban-Toktas, Secil; Horzum, Utku; Aktas, Yesim; Couvreur, Patrick; Esendagli, Gunes; Capan, Yilmaz

    2017-09-13

    The blood-brain barrier (BBB) is the major problem for the treatment of central nervous system diseases. A previous study from our group showed that the brain-targeted chitosan nanoparticles-loaded with large peptide moieties can rapidly cross the barrier and provide neuroprotection. The present study aims to determine the efficacy of the brain-targeted chitosan nanoparticles' uptake by the human BBB cerebral microvessel endothelial cells (hCMECs) and to investigate the underlying mechanisms for enhanced cellular entry. Fluorescently labelled nanoparticles either conjugated with antibodies recognising human transferrin receptor (anti-TfR mAb) or not were prepared, characterised and their interaction with cerebral endothelial cells was evaluated. The antibody decoration of chitosan nanoparticles significantly increased their entry into hCMEC/D3 cell line. Inhibition of cellular uptake by chlorpromazine indicated that the anti-TfR mAb-conjugated nanoparticles were preferentially cell internalised through receptor-mediated endocytosis pathway. Alternatively, as primarily observed with control chitosan nanoparticles, aggregation of nanoparticles may also have induced macropinocytosis.

  12. Evaluation of Factors Affecting Size and Size Distribution of Chitosan-Electrosprayed Nanoparticles.

    PubMed

    Abyadeh, Morteza; Karimi Zarchi, Ali Akbar; Faramarzi, Mohammad Ali; Amani, Amir

    2017-01-01

    Size and size distribution of polymeric nanoparticles have important effect on their properties for pharmaceutical application. In this study, Chitosan nanoparticles were prepared by electrospray method (electrohydrodynamic atomization) and parameters that simultaneously affect size and/or size distribution of chitosan nanoparticles were optimized. Effect of formulation/processing three independent formulation/processing parameters, namely concentration, flow rate and applied voltage was investigated on particle size and size distribution of generated nanoparticles using a Box-Behnken experimental design. All the studied factors showed important effects on average size and size distribution of nanoparticles. A decrease in size and size distribution was obtainable with decreasing flow rate and concentration and increasing applied voltage. Eventually, a sample with minimum size and polydispersity was obtained with polymer concentration, flow rate and applied voltage values of 0.5 %w/v, 0.05 ml/hr and 15 kV, respectively. The experimentally prepared nanoparticles, expected having lowest size and size distribution values had a size of 105 nm, size distribution of 36 and Zeta potential of 59.3 mV. Results showed that optimum condition for production of chitosan nanoparticles with the minimum size and narrow size distribution was a minimum value for flow rate and highest value for applied voltage along with an optimum chitosan concentration.

  13. Nanoparticle formation by using shellac and chitosan for a protein delivery system.

    PubMed

    Kraisit, Pakorn; Limmatvapirat, Sontaya; Nunthanid, Jurairat; Sriamornsak, Pornsak; Luangtana-anan, Manee

    2013-01-01

    The potential of using two natural polymers (chitosan and shellac) for the formation of nanoparticles by the process of ionic cross-linking to encapsulate bovine serum albumin, a model protein was investigated. Depending on the concentrations of chitosan, shellac and bovine serum albumin, three physical states - nanoparticle, aggregation, and solution could be observed as a result of the electrostatic force. The formation of nanoparticles was due to the balance between the repulsion force and attractive force while the imbalance between both forces resulted in the formation of aggregation and solution. The Fourier transform infrared spectroscopy and differential scanning calorimetry were applied to prove the nanoparticle formation. The particle size was characterized by the light scattering technique and was found in the range between 100 and 300 nm. The morphology of the particles, detected by transmission electron microscopy was spherical shape. The result showed that the zeta potential of the nanoparticles possessed positive charges. The concentrations of chitosan, shellac and bovine serum albumin had an influence on the physicochemical properties of the nanoparticles such as the particle size, the zeta potential, the encapsulation, the loading efficiencies and the cumulative release. Therefore, chitosan and shellac could be used to form nanoparticles for protein delivery by the ionic cross-linking method.

  14. Chitosan hollow nanospheres fabricated from biodegradable poly-D,L-lactide-poly(ethylene glycol) nanoparticle templates.

    PubMed

    Wang, Weijia; Luo, Chao; Shao, Shijun; Zhou, Shaobing

    2010-11-01

    Biodegradable chitosan hollow nanospheres were fabricated by employing uniform poly-D,L-lactide-poly(ethylene glycol) (PELA) nanoparticles as templates. Chitosan was adsorbed onto the surface of PELA nanoparticle templates through the electrostatic interaction between the sulphuric acid groups from sodium dodecyl sulfate (SDS) on the templates and the amino groups of the chitosan. Subsequently, the core-coated structure of chitosan-PELA nanospheres was obtained with the adsorbed chitosan layer being further crosslinked with glutaraldehyde. After the removal of the templates, PELA cores, chitosan hollow nanospheres were achieved. The mean size and size distribution of these nanospheres were measured with dynamic light scattering. The hollow structure was identified by transmission electron microscopy, atomic force microscopy and laser confocal scanning microscope. The antitumor drug model, adriamycin hydrochloride, was adsorbed on/into the chitosan hollow nanospheres. The drug release behaviors were investigated in phosphate buffered solution (PBS) at pH 7.4 and acetate buffered solution (ABS) at pH 4.5, respectively, at 37°C, and in vitro tumor cell growth inhibition assay was also evaluated. The biodegradable hollow nanospheres possess great potential applications in nanomedicine. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Chitosan graft copolymer nanoparticles for oral protein drug delivery: preparation and characterization.

    PubMed

    Qian, Feng; Cui, Fuying; Ding, Jieying; Tang, Cui; Yin, Chunhua

    2006-10-01

    Several novel functionalized graft copolymer nanoparticles consisting of chitosan (CS) and the monomer methyl methacrylate (MMA), N-dimethylaminoethyl methacrylate hydrochloride (DMAEMC), and N-trimethylaminoethyl methacrylate chloride (TMAEMC), which show a higher solubility than chitosan in a broader pH range, have been prepared by free radical polymerization. The nanoparticles were characterized in terms of particle size, zeta potential, TEM, and FT-IR. These nanoparticles were 150-280 nm in size and carried obvious positive surface charges. Protein-loaded nanoparticles were prepared, and their maximal encapsulation efficiency was up to 100%. In vitro release showed that these nanoparticles provided an initial burst release followed by a slowly sustained release for more than 24 h. These graft copolymer nanoparticles enhanced the absorption and improved the bioavailability of insulin via the gastrointestinal (GI) tract of normal male Sprague-Dawley (SD) strain rats to a greater extent than that of the phosphate buffer solution (PBS) of insulin.

  16. Ex Vivo Evaluation of Insulin Nanoparticles Using Chitosan and Arabic Gum

    PubMed Central

    Avadi, M. R.; Sadeghi, A. M. M.; Mohamadpour Dounighi, Naser; Dinarvand, R.; Atyabi, F.; Rafiee-Tehrani, M.

    2011-01-01

    Polymeric delivery systems based on nanoparticles have emerged as a promising approach for peroral insulin delivery. The aim of the present study was to investigate the release of insulin nanoparticulate systems and ex vivo studies. The nanoparticles were prepared by the ion gelation method. Particle size distribution, zeta potential, and polydispersity index of the nanoparticles were determined. It was found that the nanoparticles carried positive charges and showed a size distribution in the range of 170–200 nm. The electrostatic interactions between the positively charged group of chitosan and negatively charged groups of Arabic gum play an important role in the association efficiency of insulin in nanoparticles. In vitro insulin release studies showed an initial burst followed by a slow release of insulin. The mucoadhesion of the nanosystem was evaluated using excised rat jejunum. Ex vivo studies have shown a significant increase in absorption of insulin in the presence of chitosan nanoparticles in comparison with free insulin. PMID:22389865

  17. Development of pH-responsive chitosan/heparin nanoparticles for stomach-specific anti-Helicobacter pylori therapy.

    PubMed

    Lin, Yu-Hsin; Chang, Chiung-Hung; Wu, Yu-Shiun; Hsu, Yuan-Man; Chiou, Shu-Fen; Chen, Yi-Jen

    2009-07-01

    The microorganism now known as Helicobacter pylori is considered to be an important factor in the etiology of peptic ulcers. It can secrete urease enzyme and buffer gastric acids to survive in the stomach. H. pylori can colonize the gastric mucosa and preferentially adheres near the cell-cell junctions of the gastric mucous cells. In this study, pH-responsive nanoparticles were produced instantaneously upon the addition of heparin solution to a chitosan solution with magnetic stirring at room temperature. The nanoparticles appeared to have a particle size of 130-300 nm, with a positive surface charge, and were stable at pH 1.2-2.5, allowing them to protect an incorporated drug from destructive gastric acids. We also demonstrated that the prepared nanoparticles can adhere to and infiltrate cell-cell junctions and interact locally with H. pylori infection sites in intercellular spaces.

  18. Preparation and in vitro evaluation of mucoadhesion and permeation enhancement of thiolated chitosan-pHEMA core-shell nanoparticles.

    PubMed

    Moghaddam, Firooze Aghaei; Atyabi, Fatemeh; Dinarvand, Rassoul

    2009-06-01

    The aim of the present work was to evaluate the in vitro mucoadhesion and permeation enhancement properties of thiolated chitosan (chitosan-glutathione) coated poly(hydroxyl ethyl methacrylate) nanoparticles. Core-shell nanoparticles were prepared by radical emulsion polymerization method initiated by cerium(IV) ammonium nitrate. Different molecular weights of chitosan were utilized for nanoparticles preparation. The physicochemical properties of nanoparticles were characterized by size, zeta potential, and thiol content. Incorporation of fluorescein isothiocyanate dextran (FD4, MW 4400 Da), which was used as the model macromolecule, was achieved by incubation method. The intestinal mucoadhesion and penetration enhancement properties of nanoparticles were investigated using excised rat jejunum. All nanoparticle systems showed mucoadhesion and improved apparent permeation coefficient (P(app)) of FD4. Nanoparticles prepared by thiolated chitosan with medium molecular weight revealed the most mucoadhesion and penetration enhancement properties.

  19. Enzymatic Synthesis of Magnetic Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C.; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S.; Litvinov, Dmitri; Lee, T. Randall; Willson, Richard C.

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425

  20. Enzymatic synthesis of magnetic nanoparticles.

    PubMed

    Kolhatkar, Arati G; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S; Litvinov, Dmitri; Lee, T Randall; Willson, Richard C

    2015-04-03

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing.

  1. Microwave Synthesis of Chitosan Capped Silver-Dysprosium Bimetallic Nanoparticles: A Potential Nanotheranosis Device.

    PubMed

    Mishra, Sandeep K; Kannan, S

    2016-12-27

    Accurate imaging of the structural and functional state of biological targets is a critical task. To amend paucities associated with individual imaging, there is high interest to develop a multifunctional theranostic devices for cancer diagnosis and therapy. Herein, chitosan coated silver/dysprosium bimetallic nanoparticles (BNPs) were synthesized through a green chemistry route and characterization results inferred that the BNPs are crystalline, spherical, and of size ∼10 nm. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS) confirm the reduced metallic states of Ag and Dy in nanoparticles. These BNPs demonstrate high emission in a second near-infrared (NIR-II, 1000-1400 nm) biological window on excitation at 808 nm. Moreover, magnetization and magnetic resonance imaging (MRI) studies perceive the inherent paramagnetic features of Dy component that displays dark T2 contrast and high relaxivity. Due to high X-ray attenuation effect, BNPs exhibit better Hounsfield unit (HU) value than the reported contrast agents. BNPs unveil good biocompatibility and also express sturdy therapeutic effect in HeLa cells when tethered with doxorubicin.

  2. Removal of Pb(II) ions by using magnetic chitosan-4-((pyridin-2-ylimino)methyl)benzaldehyde Schiff's base.

    PubMed

    Gutha, Yuvaraja; Munagapati, Venkata Subbaiah

    2016-12-01

    A novel crosslinked magnetic chitosan-4-((pyridin-2-ylimino)methyl)benzaldehyde Schiff's Base (m-CSPIB) was prepared by crosslinking of magnetic iron oxide nanoparticles with chitosan-4-((pyridin-2-ylimino)methyl)benzaldehyde schiff's base and used as an biosorbent for the removal of Pb(II) ions from aqueous environment. The biopolymer has been characterized by XRD, FT-IR, SEM, TEM, (1)H NMR and VSM analysis. Kinetic studies were performed, and the data were fitted well with the pseudo-second-order model. The equilibrium data followed Langmuir isotherm model and the maximum monolayer sorption capacity was found to be 104.16 for Pb(II) ions at 323K. Different thermodynamic parameters namely, change in Gibbs free energy, enthalpy change, and entropy changes were also evaluated from the temperature dependence, and the results suggested that the sorption of Pb(II) onto m-CSPIB was feasible, spontaneous and endothermic in nature.

  3. Polythiophene-Chitosan Magnetic Nanocomposite as a Highly Efficient Medium for Isolation of Fluoxetine from Aqueous and Biological Samples

    PubMed Central

    Sarrafi, Amir Hossein Mohsen

    2016-01-01

    Polythiophene/chitosan magnetic nanocomposite as an adsorbent of magnetic solid phase extraction was proposed for the isolation of fluoxetine in aqueous and biological samples prior to fluorescence detection at 246 nm. The synthesized nanoparticles, chitosan and polythiophene magnetic nanocomposite, were characterized by scanning electron microscopy, FT-IR, TGA, and EDAX. The separation of the target analyte from the aqueous solution containing the fluoxetine and polythiophene/chitosan magnetic nanocomposite was simply achieved by applying external magnetic field. The main factors affecting the extraction efficiency including desorption conditions, extraction time, ionic strength, and sample solution pH were optimized. The optimum extraction conditions were obtained as 10 min for extraction time, 25 mg for sorbent amount, 50 mL for initial sample volume, methanol as desorption solvent, 1.5 mL for desorption solvent volume, 3 min for desorption time, and being without salt addition. Under the optimum conditions, good linearity was obtained within the range of 15–1000 μg L−1 for fluoxetine, with correlation coefficients 0.9994. Furthermore, the method was successfully applied to the determination of fluoxetine in urine and human blood plasma samples. Compared with other methods, the current method is characterized with highly easy, fast separation and low detection limits. PMID:27672478

  4. Chitosan/Hyaluronic Acid Nanoparticles: Rational Design Revisited for RNA Delivery.

    PubMed

    Lallana, Enrique; Rios de la Rosa, Julio M; Tirella, Annalisa; Pelliccia, Maria; Gennari, Arianna; Stratford, Ian J; Puri, Sanyogitta; Ashford, Marianne; Tirelli, Nicola

    2017-07-03

    Chitosan/hyaluronic acid (HA) nanoparticles can be used to deliver an RNA/DNA cargo to cells overexpressing HA receptors such as CD44. For these systems, unequivocal links have not been established yet between chitosan macromolecular (molecular weight; degree of deacetylation, i.e., charge density) and nanoparticle variables (complexation strength, i.e., stability; nucleic acid protection; internalization rate) on one hand, and transfection efficiency on the other hand. Here, we have focused on the role of avidity on transfection efficiency in the CD44-expressing HCT-116 as a cellular model; we have employed two differently sized payloads (a large luciferase-encoding mRNA and a much smaller anti-Luc siRNA), and a small library of chitosans (variable molecular weight and degree of deactylation). The RNA avidity for chitosan showed-as expected-an inverse relationship: higher avidity-higher polyplex stability-lower transfection efficiency. The avidity of chitosan for RNA appears to lead to opposite effects: higher avidity-higher polyplex stability but also higher transfection efficiency. Surprisingly, the best transfecting particles were those with the lowest propensity for RNA release, although this might be a misleading relationship: for example, the same macromolecular parameters that increase avidity can also boost chitosan's endosomolytic activity, with a strong enhancement in transfection. The performance of these nonviral vectors appears therefore difficult to predict simply on the basis of carrier- or payload-related variables, and a more holistic consideration of the journey of the nanoparticle, from cell uptake to cytosolic bioavailability of payload, is needed. It is also noteworthy that the nanoparticles used in this study showed optimal performance under slightly acidic conditions (pH 6.4), which is promising for applications in a tumoral extracellular environment. It is also worth pointing out that under these conditions we have for the first time

  5. Magnetic nanoparticles in medical nanorobotics

    NASA Astrophysics Data System (ADS)

    Martel, Sylvain

    2015-02-01

    Medical nanorobotics is a field of robotics that exploits the physics at the nanoscale to implement new functionalities in untethered robotic agents aimed for ultimate operations in constrained physiological environments of the human body. The implementation of such new functionalities is achieved by embedding specific nano-components in such robotic agents. Because magnetism has been and still widely used in medical nanorobotics, magnetic nanoparticles (MNP) in particular have shown to be well suited for this purpose. To date, although such magnetic nanoparticles play a critical role in medical nanorobotics, no literature has addressed specifically the use of MNP in medical nanorobotic agents. As such, this paper presents a short introductory tutorial and review of the use of magnetic nanoparticles in the field of medical nanorobotics with some of the related main functionalities that can be embedded in nanorobotic agents.

  6. Composite particles formed by complexation of poly(methacrylic acid) - stabilized magnetic fluid with chitosan: Magnetic material for bioapplications.

    PubMed

    Safarik, Ivo; Stepanek, Miroslav; Uchman, Mariusz; Slouf, Miroslav; Baldikova, Eva; Nydlova, Leona; Pospiskova, Kristyna; Safarikova, Mirka

    2016-10-01

    A simple procedure for the synthesis of magnetic fluid (ferrofluid) stabilized by poly(methacrylic acid) has been developed. This ferrofluid was used to prepare a novel type of magnetically responsive chitosan-based composite material. Both ferrofluid and magnetic chitosan composite were characterized by a combination of microscopy (optical microscopy, TEM, SEM), scattering (static and dynamic light scattering, SANS) and spectroscopy (FTIR) techniques. Magnetic chitosan was found to be a perspective material for various bioapplications, especially as a magnetic carrier for immobilization of enzymes and cells. Lipase from Candida rugosa was covalently attached after cross-linking and activation of chitosan using glutaraldehyde. Baker's yeast cells (Saccharomyces cerevisiae) were incorporated into the chitosan composite during its preparation; both biocatalysts were active after reaction with appropriate substrates.

  7. Magnetic hyperthermia with hard-magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kashevsky, Bronislav E.; Kashevsky, Sergey B.; Korenkov, Victor S.; Istomin, Yuri P.; Terpinskaya, Tatyana I.; Ulashchik, Vladimir S.

    2015-04-01

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner-Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner-Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body.

  8. The spacer arm length in cell-penetrating peptides influences chitosan/siRNA nanoparticle delivery for pulmonary inflammation treatment.

    PubMed

    Jeong, Eun Ju; Choi, Moonhwan; Lee, Jangwook; Rhim, Taiyoun; Lee, Kuen Yong

    2015-12-21

    Although chitosan and its derivatives have been frequently utilized as delivery vehicles for small interfering RNA (siRNA), it is challenging to improve the gene silencing efficiency of chitosan-based nanoparticles. In this study, we hypothesized that controlling the spacer arm length between a cell-penetrating peptide (CPP) and a nanoparticle could be critical to enhancing the cellular uptake as well as the gene silencing efficiency of conventional chitosan/siRNA nanoparticles. A peptide consisting of nine arginine units (R9) was used as a CPP, and the spacer arm length was controlled by varying the number of glycine units between the peptide (R9Gn) and the nanoparticle (n = 0, 4, and 10). Various physicochemical characteristics of R9Gn-chitosan/siRNA nanoparticles were investigated in vitro. Increasing the spacing arm length did not significantly affect the complex formation between R9Gn-chitosan and siRNA. However, R9G10-chitosan was much more effective in delivering genes both in vitro and in vivo compared with non-modified chitosan (without the peptide) and R9-chitosan (without the spacer arm). Chitosan derivatives modified with oligoarginine containing a spacer arm can be considered as potential delivery vehicles for various genes.

  9. Fabrication of letrozole formulation using chitosan nanoparticles through ionic gelation method.

    PubMed

    Gomathi, Thandapani; Sudha, P N; Florence, J Annie Kamala; Venkatesan, Jayachandran; Anil, Sukumaran

    2017-11-01

    In this study, the anticancer drug letrozole (LTZ) was formulated using chitosan nanoparticles (CS-NPs) with the crosslinking agent sodium tripolyphosphate (TPP). The nano-formulation was optimized by varying the concentration of drug. The prepared particles were characterized using FTIR, TGA, XRD, SEM, TEM and DLS. From the FTIR results, the appearance of a new peak for CH, CC and CN confirms the formation of LTZ loaded chitosan nanoparticles. TEM images shows that the average particle size was in the range of 60-80nm and 20-40mm air dried and freeze dried samples respectively. Also the prepared formulation had been evaluated in vitro for determining its hemocompatability, biodegradability and serum stability. The preliminary studies supported that the chitosan nanoparticles formulation has biocompatibility and hemocompatible properties and it can act as an effective pharmaceutical excipient for letrozole. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Morphological, Mechanical and Thermal Study of ZnO Nanoparticle Reinforced Chitosan Based Transparent Biocomposite Films

    NASA Astrophysics Data System (ADS)

    Das, Kunal; Maiti, Sonakshi; Liu, Dagang

    2014-04-01

    Chitosan based biocomposite transparent films reinforced with zinc oxide (ZnO) nanoparticles at different loading i.e. 2, 4 and 6 wt% were successfully prepared by solution casting method. Shape, size and geometry of the zinc oxide nanoparticles were characterized by scanning electron microscopy (SEM). The biocomposite films were subjected to mechanical characterization, thermal analysis, morphology study and moisture uptake behaviour. The characterization tools used here include wide angle X-ray diffraction study, scanning electron microscopic analysis, differential scanning calorimetric analysis and also UV-visible transmittance behavior. SEM micrographs revealed uniformly dispersed ZnO nanoparticles in biocomposite films. Improvement of the tensile strength about 133 % was observed significantly in case of 4 wt% loaded chitosan/ZnO films with respect to the neat chitosan film. 43 % higher transparency was observed in case of 2 wt% ZnO loaded biocomposites films, thus indicating the best combination of properties of 2 wt% ZnO loaded biocomposite films.

  11. Preparation and characterization of ferrofluid stabilized with biocompatible chitosan and dextran sulfate hybrid biopolymer as a potential magnetic resonance imaging (MRI) T2 contrast agent.

    PubMed

    Tsai, Zei-Tsan; Tsai, Fu-Yuan; Yang, Wei-Cheng; Wang, Jen-Fei; Liu, Chao-Lin; Shen, Chia-Rui; Yen, Tzu-Chen

    2012-10-29

    Chitosan is the deacetylated form of chitin and used in numerous applications. Because it is a good dispersant for metal and/or oxide nanoparticle synthesis, chitosan and its derivatives have been utilized as coating agents for magnetic nanoparticles synthesis, including superparamagnetic iron oxide nanoparticles (SPIONs). Herein, we demonstrate the water-soluble SPIONs encapsulated with a hybrid polymer composed of polyelectrolyte complexes (PECs) from chitosan, the positively charged polymer, and dextran sulfate, the negatively charged polymer. The as-prepared hybrid ferrofluid, in which iron chloride salts (Fe³⁺ and Fe²⁺) were directly coprecipitated inside the hybrid polymeric matrices, was physic-chemically characterized. Its features include the z-average diameter of 114.3 nm, polydispersity index of 0.174, zeta potential of −41.5 mV and iron concentration of 8.44 mg Fe/mL. Moreover, based on the polymer chain persistence lengths, the anionic surface of the nanoparticles as well as the high R2/R1 ratio of 13.5, we depict the morphology of SPIONs as a cluster because chitosan chains are chemisorbed onto the anionic magnetite surfaces by tangling of the dextran sulfate. Finally, the cellular uptake and biocompatibility assays indicate that the hybrid polymer encapsulating the SPIONs exhibited great potential as a magnetic resonance imaging T2 contrast agent for cell tracking.

  12. Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles

    PubMed Central

    Shi, Si-feng; Jia, Jing-fu; Guo, Xiao-kui; Zhao, Ya-ping; Chen, De-sheng; Guo, Yong-yuan; Zhang, Xian-long

    2016-01-01

    Staphylococcus aureus can adhere to most foreign materials and form biofilm on the surface of medical devices. Biofilm infections are difficult to resolve. The goal of this in vitro study was to explore the use of chitosan-coated nanoparticles to prevent biofilm formation. For this purpose, S. aureus was seeded in 96-well plates to incubate with chitosan-coated iron oxide nanoparticles in order to study the efficiency of biofilm formation inhibition. The biofilm bacteria count was determined using the spread plate method; biomass formation was measured using the crystal violet staining method. Confocal laser scanning microscopy and scanning electron microscopy were used to study the biofilm formation. The results showed decreased viable bacteria numbers and biomass formation when incubated with chitosan-coated iron oxide nanoparticles at all test concentrations. Confocal laser scanning microscopy showed increased dead bacteria and thinner biofilm when incubated with nanoparticles at a concentration of 500 µg/mL. Scanning electron microscopy revealed that chitosan-coated iron oxide nanoparticles inhibited biofilm formation in polystyrene plates. Future studies should be performed to study these nanoparticles for anti-infective use. PMID:27994455

  13. Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin.

    PubMed

    Senyiğit, Taner; Sonvico, Fabio; Barbieri, Stefano; Ozer, Ozgen; Santi, Patrizia; Colombo, Paolo

    2010-03-19

    In this study, clobetasol-17-propionate (CP) loaded lecithin/chitosan nanoparticles were studied with special attention to the transport of the active agent across the skin in vitro. Nanoparticles were characterized by measuring particle size, zeta potential, polydispersity index and encapsulation efficiency. The morphology of nanoparticles was evaluated by transmission electron microscopy. Encapsulation experiments with CP showed high encapsulation efficiency (92.2%). To assess the advantages of this carrier-based formulation in topical administration, the accumulation in and permeation across pig ear skin were compared with chitosan gel and commercially available cream of CP. The results obtained indicate that the incorporation of drug into nanoparticles induced an accumulation of CP especially in the epidermis without any significant permeation across the skin. Dilution of CP loaded nanoparticles with chitosan gel (1:9) produced the same amount of CP in the skin compared with commercial cream, although the former contained ten times less CP. This is a remarkable point for the reduction of the side effects of CP. These results demonstrated the suitability of lecithin/chitosan nanoparticles to induce epidermal targeting and to improve the risk-benefit ratio for topically applied CP.

  14. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy.

    PubMed

    Agrawal, Poornima; Singh, Rahul Pratap; Sonali; Kumari, Laksmi; Sharma, Gunjan; Koch, Biplob; Rajesh, Chellapa V; Mehata, Abhishesh K; Singh, Sanjay; Pandey, Bajarangprasad L; Muthu, Madaswamy S

    2017-05-01

    Brain cancer, up-regulated with transferrin receptor led to concept of transferrin receptor targeted anticancer therapeutics. Docetaxel loaded d-α-tocopherol polyethylene glycol 1000 succinate conjugated chitosan (TPGS-chitosan) nanoparticles were prepared with or without transferrin decoration. In vitro experiments using C6 glioma cells showed that docetaxel loaded chitosan nanoparticles, non-targeted and transferrin receptor targeted TPGS-chitosan nanoparticles have enhanced the cellular uptake and cytotoxicity. The IC50 values of non-targeted and transferrin receptor targeted nanoparticles from cytotoxic assay were found to be 27 and 148 folds, respectively higher than Docel™. In vivo pharmacokinetic study showed 3.23 and 4.10 folds enhancement in relative bioavailability of docetaxel for non-targeted and transferrin receptor targeted nanoparticles, respectively than Docel™. The results have demonstrated that transferrin receptor targeted nanoparticles could enhance the cellular internalization and cytotoxicity of docetaxel via transferrin receptor with improved pharmacokinetics for clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles.

    PubMed

    Esmaeili, Akbar; Asgari, Azadeh

    2015-11-01

    In recent years, the unparalleled and functional properties of essential oils have been extensively reported, but the sensitivity of essential oils to environmental factors and their poor aqueous solubility have limited their applications in industries. Hence, we encapsulated CEO in chitosan nanoparticles by an emulsion-ionic gelation with pantasodium tripolyphosphate (TPP) and sodium hexametaphosphte (HMP), separately, as crosslinkers. The nanoparticles were analyzed by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and dynamic light scattering (DLS). The encapsulation efficiency (EE) and loading capacity (LC) of CEO in chitosan nanoparticles increased with the increase of initial CEO amount. The nanoparticles displayed an average size of 30-80nm with a spherical shape and regular distribution. In vitro release profiles exhibited an initial burst release and followed by a sustained CEO release at different pH conditions. The amount of CEO release from chitosan nanoparticles was higher in acidic pH to basic or neutral pH, respectively. The biological properties of CEO, before and after the encapsulation process were evaluated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and agar disk diffusion method, respectively. The results indicated the encapsulation of CEO in chitosan nanoparticles could be protected the quality.

  16. Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles.

    PubMed

    Shi, Si-Feng; Jia, Jing-Fu; Guo, Xiao-Kui; Zhao, Ya-Ping; Chen, De-Sheng; Guo, Yong-Yuan; Zhang, Xian-Long

    Staphylococcus aureus can adhere to most foreign materials and form biofilm on the surface of medical devices. Biofilm infections are difficult to resolve. The goal of this in vitro study was to explore the use of chitosan-coated nanoparticles to prevent biofilm formation. For this purpose, S. aureus was seeded in 96-well plates to incubate with chitosan-coated iron oxide nanoparticles in order to study the efficiency of biofilm formation inhibition. The biofilm bacteria count was determined using the spread plate method; biomass formation was measured using the crystal violet staining method. Confocal laser scanning microscopy and scanning electron microscopy were used to study the biofilm formation. The results showed decreased viable bacteria numbers and biomass formation when incubated with chitosan-coated iron oxide nanoparticles at all test concentrations. Confocal laser scanning microscopy showed increased dead bacteria and thinner biofilm when incubated with nanoparticles at a concentration of 500 µg/mL. Scanning electron microscopy revealed that chitosan-coated iron oxide nanoparticles inhibited biofilm formation in polystyrene plates. Future studies should be performed to study these nanoparticles for anti-infective use.

  17. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    NASA Astrophysics Data System (ADS)

    Rubina, M. S.; Kamitov, E. E.; Zubavichus, Ya. V.; Peters, G. S.; Naumkin, A. V.; Suzer, S.; Vasil'kov, A. Yu.

    2016-03-01

    Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  18. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles

    PubMed Central

    Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad

    2015-01-01

    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future

  19. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles.

    PubMed

    Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad

    2015-01-01

    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future

  20. Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes.

    PubMed

    Dumont, Vitor C; Mansur, Alexandra A P; Carvalho, Sandhra M; Medeiros Borsagli, Fernanda G L; Pereira, Marivalda M; Mansur, Herman S

    2016-02-01

    Synthetic biomaterials based on calcium phosphates (CaP) have been widely studied for bone tissue reconstruction therapies, but no definitive solution that fulfills all of the required properties has been identified. Thus, this study reports the synthesis of composite membranes based on nanohydroxyapatite particles (nHA) embedded in chitosan (CHI) and O-carboxymethyl chitosan (CMC) matrices produced using a one-step co-precipitation method in water media. Biopolymers were used as capping ligands for simultaneously controlling the nucleation and growth of the nHA particles during the precipitation process and also to form the polymeric network of the biocomposites. The bionanocomposites were extensively characterized using light microscopy (LM), scanning and transmission electron microscopy (SEM/TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray micro-CT analysis (μCT), andMTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide) cell proliferation assays for cell cytotoxicity. The results demonstrated that the ligands used during the synthesis highly affected the composites produced, primarily due the changes in the mechanisms and kinetics of nucleation and growth of the HA particles at the nanoscale level. The SEMimages revealed that the use of carboxyl-functionalized chitosan (CMC) ligands significantly reduced the average size of theHA nanoparticles and caused the formation of a narrower size distribution (90±20nm) compared to theHAnanoparticles producedwith chitosan ligands (220±50nm). The same trend was verified by the AFM analysis,where the nHA particles were formed evenly dispersed in the polymer matrix. However, the CMC-based composites were more homogeneously distributed, which was endorsed by the images collected via X-ray micro-CT. The FTIR spectra and the XRD analysis indicated that nanosized hydroxyapatite was the predominant calcium

  1. Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents.

    PubMed

    Said, D E; Elsamad, L M; Gohar, Y M

    2012-08-01

    This study was carried out to evaluate the anti parasitic potential of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents. Non-treated infected control rats were inoculated with Giardia lamblia cysts in a dose of 2 × 10(5) cysts/rat. Experimental group was infected then treated with curcumin, curcumin nanoparticles, chitosan, chitosan nanoparticles, and silver nanoparticles as single or combined therapy. The number of Giardia cysts in stools and trophozoites in intestinal sections were detected. Toxicity of nanoparticles was evaluated by comparing hematological and histopathological parameters of the normal control group and treated non-infected control group. The amount of silver was also measured in the liver, kidney, small intestine, lung, and brain of rats treated with silver nanoparticles. The number of the parasites in stool and small intestinal sections decreased in treated infected rats compared with infected non-treated ones. The effect in the single therapy was better with nanoparticles, and the best effect was detected in nano-silver. The combined therapy gave better results than single. Combination between nanoparticles was better than the combination of nano-forms and native chitosan and curcumin. The best effect was detected in combinations of nano-silver and nano-chitosan but with no full eradication. In conclusion, the highest effect and complete cure was gained by combining the three nano-forms. The parasite was successfully eradicated from stool and intestine. None of the treatments exhibited any toxicity. Accumulated silver in different organs was within the safe limits.

  2. Adsorbent for hydroquinone removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan.

    PubMed

    Li, Leilei; Fan, Lulu; Sun, Min; Qiu, Huamin; Li, Xiangjun; Duan, Huimin; Luo, Chuannan

    2013-07-01

    Magnetic cyclodextrin-chitosan/graphene oxide (CCGO) with high surface area was synthesized via a simple chemical bonding method. The characteristics results of FTIR, SEM, TEM and XRD showed that CCGO was prepared. The large saturation magnetization (22.35 emu/g) of the synthesized nanoparticles allows fast separation of the CCGO from liquid suspension. These composites could efficiently remove hydroquinone from simulated wastewater with a facile subsequent solid-liquid separation because of their large area, abundant hydroxyl and amino groups with handy operation, and hydrophobicity. The hydroquinone removal process was found to obey the Freundlich adsorption model and its kinetics followed pseudo-second-order rate equation. The hydroquinone removal mechanism of CCGO might be attributed to the electrostatic adsorption of hydroquinone in the form of negatively charged hydroquinone by positively charged chitosan, accompanying hydroquinone absorbed by cavities of the cyclodextrin, and forming hydrogen bonds between hydroquinone and the hydroxyl groups on the surface of CCGO. The used CCGO could be recovered with ethanol. This study provides a promising nanostructured adsorbent with easy separation property for heavy metal ions removal. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: Antimicrobial characteristics.

    PubMed

    Morsi, Rania E; Alsabagh, Ahmed M; Nasr, Shimaa A; Zaki, Manal M

    2017-04-01

    Multifunctional nanocomposites of chitosan with silver nanoparticles, copper nanoparticles and carbon nanotubes either as bi- or multifunctional nanocomposites were prepared. Change in the overall morphology of the prepared nanocomposites was observed; carbon nanotubes, Ag NPs and Cu NPs are distributed homogeneously inside the polymer matrix individually in the case of the bi-nanocomposites while a combination of different dimensional shapes; spherical NPs and nanotubes was observed in the multifunctional nanocomposite. Multifunctional nanocomposites has a higher antimicrobial activity, in relative short contact times, against both Gram negative and Gram positive bacteria; E. coli, Staphylococcus aureus; respectively in addition to the fungal strain; Aspergillus flavus isolated from local wastewater sample. The nanocomposites are highly differentiable at the low contact time and low concentration; 1% concentration of the multifunctional nanocomposite is very effective against the tested microbes at contact time of only 10min.

  4. Magnetic core-shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging.

    PubMed

    Shanavas, Asifkhan; Sasidharan, Sisini; Bahadur, Dhirendra; Srivastava, Rohit

    2017-01-15

    Hybrid nanoparticles with magnetic poly (lactide-co-glycolide) (PLGA) nanoparticle 'core', surface modified with folate-chitosan (fol-cht) conjugate 'shell' are evaluated as simultaneous anti-cancer therapeutic and MRI contrast agent. The fol-cht conjugate is prepared using carbodiimide crosslinking chemistry at an optimized folate to amine (chitosan) molar ratio for further coating on PLGA nanoparticles loaded with docetaxel and well packed super paramagnetic iron oxide nanoparticles (SPIONs). Apart from possessing a targeting moiety, the coating provides a physical barrier to avoid undesired burst release of drug and also imparts sensitivity to acidic pH, due to protonated amine group dependent decondensation of the coating and subsequent drug release. The biocompatible hybrid nanoparticles provide receptor targeted docetaxel and SPION delivery for anti-cancer therapy and magnetic resonance (MR) imaging respectively, as tested in both folate receptor positive and negative cancer cells. Enhancement in nanoparticle uptake by folate receptor positive oral cancer cells caused significant increase in docetaxel mediated cytotoxicity. While polymeric encapsulation and fol-cht coating negatively affects the magnetic property of iron oxide nanoparticles, their aggregation in the core, shortened the overall T2 relaxation time thereby enhancing the nanoparticle relaxivity to provide better in vitro MR imaging.

  5. Magnetic properties of carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Lähderanta, E.; Lashkul, A. V.; Lisunov, K. G.; Zherebtsov, D. A.; Galimov, D. M.; Titkov, A. N.

    2012-08-01

    Magnetization M (T, B) of powder and glassy samples containing carbon nanoparticles is investigated in the interval of temperatures T between ~ 3 - 300 K and magnetic fields B up to 5 T. Low-field magnetization, M (T), exhibits a strong magnetic irreversibility, which is suppressed above the field of ~ 1 T. The dependence of M (B) saturates at high temperatures above B ~ 2 T, magnetic hysteresis is observed already at 300 K. The values of the saturation magnetization, the coercivity field and the maximum blocking temperature are obtained. Analysis of the experimental data gives evidence for concentration of the magnetization close to the surface of the particles, which is consistent with the origin of magnetism in nanocarbon presumably due to intrinsic disorder and surface defects.

  6. Studies on antibacterial activities against S. aureus of chitosan metal chelates prepared in magnetic field.

    PubMed

    Wang, Chunbao; Duan, Lihong; Qin, Jian; Wu, Zhengzhi; Guo, Siyuan

    2016-07-04

    In order to study the antibacterial activity of chitosan metal chelates prepared in magnetic effect, the antibacterial activities of these chelates on Staphylococcus aureus were investigated by the agar diffusion paper method. The minimum inhibition concentrations of chitosan-metal chelates were measured. With different degrees of substitution, the inhibition efficiency of the chitosan-metal chelates is different. The inhibition of chitosan on S. aureus increased with the chitosan concentration. Among the chitosan-metal chelates, the inhibition efficiency of CS-Cr is the best. The inhibition efficiency of chitosan-metal chelates prepared in the magnetic field of 400 kA/m on S. aureus is higher than the inhibition efficiency of chitosan-metal chelates prepared without the magnetic field enhanced. The minimum inhibitory concentrations are, respectively, as CS-Cu: 12.5 mg/mL, CS-Pb: 6.25 mg/mL, CS-Cr: 3.125 mg/mL. It is well known from the results that chitosan-metal chelates maybe applied in antibacterial process.

  7. Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system.

    PubMed

    Cheong, Su-Jin; Lee, Chang-Moon; Kim, Se-Lim; Jeong, Hwan-Jeong; Kim, Eun-Mi; Park, Eun-Hye; Kim, Dong Wook; Lim, Seok Tae; Sohn, Myung-Hee

    2009-05-08

    The goal of this study was to develop a gene delivery imaging system that targets hepatocytes to help diagnose and treat various liver diseases. To this end, we prepared superparamagnetic iron oxide nanoparticles (SPIO)-loaded with water-soluble chitosan (WSC)-linoleic acid (LA) nanoparticles (SCLNs) that formed gene complexes capable of localizing specifically to hepatocytes. We confirmed that (99m)Tc-labeled SCLNs delivered into mice via intravenous injection accumulated mainly in the liver using nuclear and magnetic resonance imaging. SCLN/enhanced green fluorescence protein (pEGFP) complexes were also successfully formed and were characterized with a gel retardation assay. SCLN/pEGFP complexes were transfected into primary hepatocytes, where GFP expression was observed in the cytoplasm. In addition, the injection of the gene complexes into mice resulted in significantly increased expression of GFP in hepatocytes in vivo. Furthermore, gene silencing was effectively achieved by administration of gene complexes loaded with specific siRNAs. In conclusion, our results indicate that the SCLNs have the potential to be useful for hepatocyte-targeted imaging and effective gene delivery into hepatocytes.

  8. Magnetic nanoparticles for "smart liposomes".

    PubMed

    Nakayama, Yoshitaka; Mustapić, Mislav; Ebrahimian, Haleh; Wagner, Pawel; Kim, Jung Ho; Hossain, Md Shahriar Al; Horvat, Joseph; Martinac, Boris

    2015-12-01

    Liposomal drug delivery systems (LDDSs) are promising tools used for the treatment of diseases where highly toxic pharmacological agents are administered. Currently, destabilising LDDSs by a specific stimulus at a target site remains a major challenge. The bacterial mechanosensitive channel of large conductance (MscL) presents an excellent candidate biomolecule that could be employed as a remotely controlled pore-forming nanovalve for triggered drug release from LDDSs. In this study, we developed superparamagnetic nanoparticles for activation of the MscL nanovalves by magnetic field. Synthesised CoFe2O4 nanoparticles with the radius less than 10 nm were labelled by SH groups for attachment to MscL. Activation of MscL by magnetic field with the nanoparticles attached was examined by the patch clamp technique showing that the number of activated channels under ramp pressure increased upon application of the magnetic field. In addition, we have not observed any cytotoxicity of the nanoparticles in human cultured cells. Our study suggests the possibility of using magnetic nanoparticles as a specific trigger for activation of MscL nanovalves for drug release in LDDSs.

  9. Enhancement of Mechanical and Thermal Properties of Polycaprolactone/Chitosan Blend by Calcium Carbonate Nanoparticles

    PubMed Central

    Abdolmohammadi, Sanaz; Siyamak, Samira; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan; Rahman, Mohamad Zaki Ab; Azizi, Susan; Fatehi, Asma

    2012-01-01

    This study investigates the effects of calcium carbonate (CaCO3) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO3 were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO3 nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO3. Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO3. The thermal stability was best enhanced at 1 wt% of CaCO3 nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO3 nanocomposite. TEM micrograph displays good dispersion of CaCO3 at lower nanoparticle loading within the matrix. PMID:22605993

  10. Investigation of Size and Morphology of Chitosan Nanoparticles Used in Drug Delivery System Employing Chemometric Technique

    PubMed Central

    Khanmohammadi, Mohammadreza; Elmizadeh, Hamideh; Ghasemi, Keyvan

    2015-01-01

    The polymeric nanoparticles are prepared from biocompatible polymers in size between 10-1000 nm. Chitosan is a biocompatible polymer that - can be utilized as drug delivery systems. In this study, chitosan nanoparticles were synthesized using an optimized spontaneous emulsification method. Determining particle size and morphology are two critical parameters in nanotechnology. The aim of this study is to introduce methodology based on relation between particle size and diffuse reflectance infrared fourier transform (DRIFT) spectroscopy technique. Partial least squares (PLS) technique was used to estimate the average particle size based on DRIFT spectra. Forty two different chitosan nanoparticle samples with different particle sizes were analyzed using DRIFT spectrometry and the obtained data were processed by PLS. Results obtained from the real samples were compared to those obtained using field emission scanning electron microscope(FE-SEM) as a reference method. It was observed that PLS could correctly predict the average particle size of synthesized sample. Nanoparticles and their morphological state were determined by FE-SEM. Based on morphological characteristics analyzing with proposed method the samples were separated into two groups of "appropriate" and "inappropriate". Chemometrics methods such as principal component analysis, cluster analysis (CA) and linear discriminate analysis (LDA) were used to classify chitosan nanoparticles in terms of morphology. The percent of correctly classified samples using LDA were 100 %and 90% for training and test sets, respectively. PMID:26330855

  11. Investigation of Size and Morphology of Chitosan Nanoparticles Used in Drug Delivery System Employing Chemometric Technique.

    PubMed

    Khanmohammadi, Mohammadreza; Elmizadeh, Hamideh; Ghasemi, Keyvan

    2015-01-01

    The polymeric nanoparticles are prepared from biocompatible polymers in size between 10-1000 nm. Chitosan is a biocompatible polymer that - can be utilized as drug delivery systems. In this study, chitosan nanoparticles were synthesized using an optimized spontaneous emulsification method. Determining particle size and morphology are two critical parameters in nanotechnology. The aim of this study is to introduce methodology based on relation between particle size and diffuse reflectance infrared fourier transform (DRIFT) spectroscopy technique. Partial least squares (PLS) technique was used to estimate the average particle size based on DRIFT spectra. Forty two different chitosan nanoparticle samples with different particle sizes were analyzed using DRIFT spectrometry and the obtained data were processed by PLS. Results obtained from the real samples were compared to those obtained using field emission scanning electron microscope(FE-SEM) as a reference method. It was observed that PLS could correctly predict the average particle size of synthesized sample. Nanoparticles and their morphological state were determined by FE-SEM. Based on morphological characteristics analyzing with proposed method the samples were separated into two groups of "appropriate" and "inappropriate". Chemometrics methods such as principal component analysis, cluster analysis (CA) and linear discriminate analysis (LDA) were used to classify chitosan nanoparticles in terms of morphology. The percent of correctly classified samples using LDA were 100 %and 90% for training and test sets, respectively.

  12. Thiolated chitosan nanoparticles as an oral delivery system for Amikacin: in vitro and ex vivo evaluations.

    PubMed

    Atyabi, F; Talaie, F; Dinarvand, R

    2009-08-01

    The purpose of this study was the synthesis of two thiol conjugated Chitosan polymers, and evaluation of the potential of Thiomer nanoparticle formulation as a carrier for oral delivery system. Mediated by EDAC (Ethylene-3-(3-di-methylaminopropyl)-carbodiimide), either N-acetyl Cysteine (NAC) or N-acetyl D-penicillamine (NAP) were covalently attached to Chitosan. The success of the synthesis was demonstrated by comparing FTIR spectra. Iodometric titration demonstrated that depending on the pH value of the synthesis medium, the Thiomers display 250 +/- 30 microMol and 300 +/- 20 microMol thiol groups per gram of polymer respectively. The interaction between mucin and Thiomers, compared to mucin and Chitosan was studied for assessment of mucoadhesion properties of synthesized polymers. This interaction was determined by the measurement of the amount of mucin adsorbed on Chitosan and the conjugated polymers. Rotating cylinder method demonstrated an average of 20 times improvement in mucoadhesion of Thiomers compared to the unmodified polymer. Chitosan and Thiomer nanoparticles were formulated by two methods; TPP and Sodium Sulfate gelation. SEM micrographs and data achieved by a Malvern nano/zetasizer show nanoparticles formed by TPP gelation have a mean size of 150 +/- 15 nm compared to 300 +/- 25 nm sized nanoparticles obtained by Sodium sulfate gelation. TPP gelation yields smaller, more spherical shaped nanoparticles with a smaller range of size distribution. Amikacin loaded nanoparticles with an average size of 280 nm were prepared by TPP gelation in which disulfide bond formation was achieved by a time dependent oxidation process. In vitro studies were carried out; a recovery rate of 33% and a drug entrapment of 25% were achieved. The amount of release was determined during 18 hr in a carefully prepared media. The permeation time across a biological membrane was observed to be about 150 minutes. Microbiological tests were carried out on two microorganisms

  13. Gene therapy based on interleukin-12 loaded chitosan nanoparticles in a mouse model of fibrosarcoma

    PubMed Central

    Soofiyani, Saiedeh Razi; Hallaj-Nezhadi, Somayeh; Lotfipour, Farzaneh; Hosseini, Akbar Mohammad; Baradaran, Behzad

    2016-01-01

    Objective(s): Interleukin-12 (IL-12) as a cytokine has been proved to have a critical role in stimulating the immune system and has been used as immunotherapeutic agents in cancer gene therapy. Chitosan as a polymer, with high ability of binding to nucleic acids is a good candidate for gene delivery since it is biodegradable, biocompatible and non-allergenic polysaccharide. The objective of the present study was to investigate the effects of cells transfected with IL-12 loaded chitosan nanoparticles on the regression of fibrosarcoma tumor cells (WEHI-164) in vivo. Materials and Methods: WEHI-164 tumor cells were transfected with IL-12 loaded chitosan nanoparticles and then were injected subcutaneously to inoculate tumor in BALB/c mice. Tumor volumes were determined and subsequently extracted after mice sacrifice. The immunohistochemistry staining was performed for analysis of Ki-67 expression (a tumor proliferation marker) in tumor masses. The expression of IL-12 and IFN-γ were studied using real-time polymerase chain reaction and immunoblotting. Results: The group treated with IL-12 loaded chitosan nanoparticles indicated decreasing of tumor mass[r1] volume (P<0.001). The results of western blotting and real-time PCR showed that the IL-12 expression was increased in the group. Immunohistochemistry staining indicated that the Ki-67expression was reduced in the group treated with IL-12 loaded chitosan nanoparticles. Conclusion: IL-12 gene therapy using chitosan nanoparticles has therapeutic effects on the regression of tumor masses in fibrosarcoma mouse model. PMID:27917281

  14. Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohammadi, Somayeh; Khayatian, Gholamreza

    2017-10-01

    We have described a simple and reliable colorimetric method for the sensing of biothiols such as cysteine, homocysteine, and glutathione in biological samples. The selective binding of chitosan capped silver nanoparticles to biothiols induced aggregation of the chitosan-Ag NPs. But the other amino acids that do not have thiol group cannot aggregate the chitosan-Ag NPs. Aggregation of chitosan-Ag NPs has been confirmed with UV-vis absorption spectra, zeta potential and transmission electron microscopy images. Under optimum conditions, good linear relationships existed between the absorption ratios (at A500/A415) and the concentrations of cysteine, homocysteine, and glutathione in the range of 0.1-10.0 μM with detection limits of 15.0, 84.6 and 40.0 nM, respectively. This probe was successfully applied to detect these biothiols in biological samples (urine and plasma).

  15. Chitosan-lipid nanoparticles (CS-LNPs): Application to siRNA delivery.

    PubMed

    Tezgel, Özgül; Szarpak-Jankowska, Anna; Arnould, Amandine; Auzély-Velty, Rachel; Texier, Isabelle

    2017-09-11

    To benefit from the biocompatibility of lipid nanoparticles associated with the transfection ability of chitosan, small chitosan lipid nanoparticles (CS-LNPs) dedicated to SiRNA delivery were formulated by an easy-to-implement one-step process. Formulations of CS-LNPs (lipid core stabilized by a shell comprising phospholipids/cationic lipids and hydrophobically modified chitosan) were optimized for their physico-chemical properties (size, zeta potential, colloidal stability) according to their shell composition. In particular, amphiphilic chitosan with various molecular weight and C12 degrees of substitution, and different phospholipids and cationic lipids (lecithin, DOTAP, DOPE) were included at the particle surface at different ratios. The ability of the particles for SiRNA complexation, NIH3T3 cell transfection, and ERK1 downregulation, were studied. Lipid nanoparticles formulated with 15,000g/mol 2% C12 substituted chitosan, DOTAP and DOPE, mediated 40% ERK1 downregulation efficiency, comparable to lipofectamine™ RNAimax, while displaying no cytotoxicity up to 500μg/mL. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Synthesis, characterization and anticorrosion potentials of chitosan-g-PEG assembled on silver nanoparticles.

    PubMed

    Hefni, Hassan H H; Azzam, Eid M; Badr, Emad A; Hussein, M; Tawfik, Salah M

    2016-02-01

    Chitosan (Ch) grafted with poly(ethylene glycol) (Ch-g-mPEG) were synthesized using mPEG with molecular weights 2000 g/mol. The synthesized Ch-g-mPEG was characterized using gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and X-ray diffraction (XRD) techniques. Ch-g-mPEG silver nanoparticles has been synthesized and characterized by high-resolution transmission electron microscopy (HRTEM) and energy dispersive analysis of X-rays (EDAX). The synthesized Ch-g-mPEG and its nanostructure were examined as corrosion inhibitors for carbon steel in 1M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results revealed that the inhibition efficiency obtained by Ch-g-mPEG self-assembled on silver nanoparticles is greater than that obtained by Ch-g-mPEG only. Potentiodynamic polarization results reveal that the synthesized compound could be classified as mixed-type corrosion inhibitors with predominant control of the cathodic reaction. The results of EIS indicate that the both charge transfer resistance and inhibition efficiency tend to increase by increasing the inhibitor concentration.

  17. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    NASA Astrophysics Data System (ADS)

    Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

    2013-09-01

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  18. Nonextensivity in magnetic nanoparticle ensembles

    NASA Astrophysics Data System (ADS)

    Binek, Ch.; Polisetty, S.; He, Xi; Mukherjee, T.; Rajesh, R.; Redepenning, J.

    2006-08-01

    A superconducting quantum interference device and Faraday rotation technique are used to study dipolar interacting nanoparticles embedded in a polystyrene matrix. Magnetization isotherms are measured for three cylindrically shaped samples of constant diameter but various heights. Detailed analysis of the isotherms supports Tsallis’ conjecture of a magnetic equation of state that involves temperature and magnetic field variables scaled by the logarithm of the number of magnetic nanoparticles. This unusual scaling of thermodynamic variables, which are conventionally considered to be intensive, originates from the nonextensivity of the Gibbs free energy in three-dimensional dipolar interacting particle ensembles. Our experimental evidence for nonextensivity is based on the data collapse of various isotherms that require scaling of the field variable in accordance with Tsallis’ equation of state.

  19. Cytotoxicity of chitosan/streptokinase nanoparticles as a function of size: An artificial neural networks study.

    PubMed

    Baharifar, Hadi; Amani, Amir

    2016-01-01

    Predicting the size and toxicity of chitosan/streptokinase nanoparticles at various values of processing parameters was the aim of this study. For the first time, a comprehensive model could be developed to determine the cytotoxicity of the nanoparticles as a function of their size. Then, artificial neural networks were used for identifying main factors influencing self-assembly prepared nanoparticles size and cytotoxicity. Three variables included polymer concentration; pH and stirring time were used for a modeling study. A second modeling was performed to evaluate the influence of particles' size on toxicity. Experimentally data modeled using ANNs was validated against unseen data. The response surfaces generated from the software demonstrated that chitosan concentration is the dominant factor with a direct effect on size. Results also showed that the most important factor in determining the particles' toxicity is size--smaller particles showed more toxic effects, regardless of the effect of other input parameters. From the Clinical Editor: The understanding of toxicity of nanoparticles is of prime importance. In this article, the authors generated a model to visualize the relationship between nanoparticle size and its cellular toxicity, using chitosan/streptokinase nanoparticles. The data generated here would help the design of future nanoparticles of appropriate sizes for the application in the clinical setting.

  20. Magnetic Separation Dynamics of Colloidal Magnetic Nanoparticles

    SciTech Connect

    Kaur, M.; Huijin Zhang,; You Qiang,

    2013-01-01

    Surface functionalized magnetic nanoparticles (MNPs) are appealing candidates for analytical separation of heavy metal ions from waste water and separation of actinides from spent nuclear fuel. This work studies the separation dynamics and investigates the appropriate magnetic-field gradients. A dynamic study of colloidal MNPs was performed for steady-state flow. Measurements were conducted to record the separation time of particles as a function of magnetic field gradient. The drag and magnetic forces play a significant role on the separation time. A drop in saturation magnetization and variation of particle size occurs after surface functionalization of the MNPs; these are the primary factors that affect the separation time and velocity of the MNPs. The experimental results are correlated to a theoretical one-dimensional model.

  1. Modeling and simulation of magnetic nanoparticle sensor.

    PubMed

    Makiranta, Jarkko; Lekkala, Jukka

    2005-01-01

    Sensitivity and detection limit of a magnetic nanoparticle sensor is modeled and simulated. A micro coil generates an alternating magnetic field which excites magnetic nanoparticles in its vicinity. A concentric sensing coil applies Faraday's law of induction measuring the excited magnetization of the magnetic particles at high frequency. A differential measurement compensates disturbances and the influence of the driving microcoil leaving only the signal caused by the magnetic particles. The sensing system can be used for detection of magnetic nanoparticle labels in immunological point of care diagnostics. The paper shows simulation results for a microcoil system capable of detecting a single superparamagnetic nanoparticle.

  2. Nanoparticles for magnetic biosensing systems

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Novoselova, Iu. P.; Schupletsova, V. V.; Andrade, R.; Dunec, N. A.; Litvinova, L. S.; Safronov, A. P.; Yurova, K. A.; Kulesh, N. A.; Dzyuman, A. N.; Khlusov, I. A.

    2017-06-01

    The further development of magnetic biosensors requires a better understanding of the interaction between living systems and magnetic nanoparticles (MNPs). We describe our experience of fabrication of stable ferrofluids (FF) using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. Their morphofunctional responses in the Fe concentration range 2-1000 maximum tolerated dose revealed no cytotoxicity.

  3. Preparation of crosslinked chitosan magnetic membrane for cations sorption from aqueous solution.

    PubMed

    Khan, Adnan; Begum, Samina; Ali, Nauman; Khan, Sabir; Hussain, Sajjad; Sotomayor, Maria Del Pilar Taboada

    2017-05-01

    A chitosan magnetic membrane was prepared in order to confer magnetic properties to the membrane, which could be used for the removal of cations from aqueous solution. The crosslinked magnetic membrane was compared with pristine chitosan membrane in term of stability, morphology and cation adsorption capacity. The fabricated magnetic materials are thermally stable as shown by thermogravimetric curves. The membrane containing nickel magnetic particles (CHNiF-G) shows high thermal stability compared to the other membranes. The Fourier transform infrared spectroscopy showed successful preparation of chitosan magnetic membrane. Scanning electron microscopy micrographs showed the rough surface of the membrane with increased porosity. The prepared chitosan membranes were applied to cations of copper, nickel and lead in dilute aqueous solution. The chitosan membrane showed the following adsorption order for metallic cations: Cu(2+) > Ni(2+) > Pb(2+), while CHNiF-G showed higher capacity, 3.51 mmol g(-1) for copper, reflecting the improvement in adsorption capacity, since the amount of copper on pristine chitosan gave 1.40 mmol g(-1). The time required for adsorption to reach to the equilibrium was 6 h for the selected cations using different chitosan membranes. The kinetic study showed that adsorption followed pseudo-second order kinetics. The most commonly used isotherm models, Freundlich, Langmuir and Temkin, were applied to experimental data using linear regression technique. However, The Temkin model fits better to experimental data.

  4. One-step synthesis of magnetic chitosan polymer composite films

    NASA Astrophysics Data System (ADS)

    Cesano, Federico; Fenoglio, Gaia; Carlos, Luciano; Nisticò, Roberto

    2015-08-01

    In this study, a magnetic iron oxide-chitosan composite film is synthesized by one-step method and thoroughly investigated in order to better understand its inorganic/organic properties. A deep physico-chemical characterization of the magnetic films has been performed. In particular, the material composition was evaluated by means of XRD and ATR-FTIR spectroscopy, whereas the thermal stability and the subsequent inorganic phase transitions involving iron oxide species were followed by TGA analyses carried out at different experimental conditions (i.e. inert and oxidative atmosphere). The magnetic properties of the films were tested at the bulk and at the surface level, performing respectively magnetization hysteresis curve and magnetic force microscopy (MFM) surface mapping. Results indicate that the synthesized material can be prepared through a very simple synthetic procedure and suggests that it can be successfully applied for instance to environmental applications, such as the adsorption of contaminants from solid and liquid media thanks to its pronounced magnetic properties, which favour its recover.

  5. Magnetism in nanoparticles: tuning properties with coatings.

    PubMed

    Crespo, Patricia; de la Presa, Patricia; Marín, Pilar; Multigner, Marta; Alonso, José María; Rivero, Guillermo; Yndurain, Félix; González-Calbet, José María; Hernando, Antonio

    2013-12-04

    This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications.

  6. Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl phosphorylcholine) for live cell imaging.

    PubMed

    Wang, Ke; Fan, Xingliang; Zhang, Xiaoyong; Zhang, Xiqi; Chen, Yi; Wei, Yen

    2016-08-01

    Poly(2-methacryloyloxyethyl phosphorylcholine) conjugated red fluorescent chitosan nanoparticles (GCC-pMPC) were facilely fabricated by "grafting from" method via surface initiated atom transfer radical polymerization (ATRP). Firstly, glutaraldehyde crosslinked red fluorescent chitosan nanoparticles (GCC NPs) with many amino groups and hydroxyl groups on their surface were prepared, which were then reacted with 2-bromoisobutyryl bromide to form GCC-Br; subsequently, poly(MPC) (pMPC) brushes were grafted onto GCC NPs surface using GCC-Br as initiator via ATRP. Compared with PEGylated nanoparticles, zwitterionic polymers modified nanoparticles demonstrated better performance in their cellular uptake. Moreover, the obtained GCC-pMPC demonstrated excellent water-dispersibility, biocompatibility, and photostability, which made them highly potential for long-term tracing applications. Importantly, the successful live cell imaging of GCC-pMPC would remarkably advance the research of their further bioapplications.

  7. Characterization of self-assembled polyelectrolyte complex nanoparticles formed from chitosan and pectin.

    PubMed

    Birch, Nathan P; Schiffman, Jessica D

    2014-04-01

    Chronic wounds continue to be a global healthcare concern. Thus, the development of new nanoparticle-based therapies that treat multiple symptoms of these "non-healing" wounds without encouraging antibiotic resistance is imperative. One potential solution is to use chitosan, a naturally antimicrobial polycation, which can spontaneously form polyelectrolyte complexes when mixed with a polyanion in appropriate aqueous conditions. The requirement of at least two different polymers opens up the opportunity for us to form chitosan complexes with an additional functional polyanion. In this study, chitosan:pectin (CS:Pec) nanoparticles were synthesized using an aqueous spontaneous ionic gelation method. Systematically, a number of parameters, polymer concentration, addition order, mass ratio, and solution pH, were explored and their effect on nanoparticle formation was determined. The size and surface charge of the particles were characterized, as well as their morphology using transmission electron microscopy. The effect of polymer concentration and addition order on the nanoparticles was found to be similar to that of other chitosan:polyanion complexes. The mass ratio was tuned to create nanoparticles with a chitosan shell and a controllable positive zeta potential. The particles were stable in a pH range from 3.5 to 6.0 and lost stability after 14 days of storage in aqueous media. Due to the high positive surface charge of the particles, the innate properties of the polysaccharides used, and the harmless disassociation of the polyelectrolytes, we suggest that the development of these CS:Pec nanoparticles offers great promise as a chronic wound healing platform.

  8. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic.

    PubMed

    Hu, Qiaobin; Wang, Taoran; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-11-01

    Polyelectrolyte complex (PEC) nanoparticles between chitosan (CS) and biomacromolecules offer better physicochemical properties as delivery vehicles for nutrients than other CS-based nanoparticles. Our major objective was to fabricate PEC nanoparticles between water soluble gallic acid-chitosan conjugate (GA-CS) and gum arabic. The optimal fabrication method, physicochemical characteristics and stability were investigated. Furthermore, we also evaluated the effects of nano spray drying technology on the morphology and redispersibility of nanoparticle powders using Buchi B-90 Nano Spray Dryer. Results showed that the mass ratio between GA-CS and gum arabic and the preparation pH had significant contributions in determining the particle size and count rate of the nanoparticles, with the ratio of 3:1 and pH 5.0 being the optimal conditions that resulted in 112.2nm and 122.9kcps. The polyethylene glycol (PEG) played a vital role in forming the well-separated spray dried nanoparticles. The most homogeneous nanoparticles with the smoothest surface were obtained when the mass ratio of GA-CS and PEG was 1:0.5. In addition, the GA-CS/gum arabic spray dried nanoparticles exhibited excellent water-redispersibiliy compared to native CS/gum arabic nanoparticles. Our results demonstrated GA-CS/gum arabic nanoparticles were successfully fabricated with promising physicochemical properties and great potential for their applications in food and pharmaceutical industries.

  9. Chelating and antibacterial properties of chitosan nanoparticles on dentin.

    PubMed

    Del Carpio-Perochena, Aldo; Bramante, Clovis Monteiro; Duarte, Marco Antonio Hungaro; de Moura, Marcia Regina; Aouada, Fauze Ahmad; Kishen, Anil

    2015-08-01

    The use of chitosan nanoparticles (CNPs) in endodontics is of interest due to their antibiofilm properties. This study was to investigate the ability of bioactive CNPs to remove the smear layer and inhibit bacterial recolonization on dentin. One hundred bovine dentin sections were divided into five groups (n = 20 per group) according to the treatment. The irrigating solutions used were 2.5% sodium hypochlorite (NaOCl) for 20 min, 17% ethylenediaminetetraacetic acid (EDTA) for 3 min and 1.29 mg/mL CNPs for 3 min. The samples were irrigated with either distilled water (control), NaOCl, NaOCl-EDTA, NaOCl-EDTA-CNPs or NaOCl-CNPs. After the treatment, half of the samples (n = 50) were used to assess the chelating effect of the solutions using portable scanning electronic microscopy, while the other half (n = 50) were infected intra-orally to examine the post-treatment bacterial biofilm forming capacity. The biovolume and cellular viability of the biofilms were analysed under confocal laser scanning microscopy. The Kappa test was performed for examiner calibration, and the non-parametric Kruskal-Wallis and Dunn tests (p < 0.05) were used for comparisons among the groups. The smear layer was significantly reduced in all of the groups except the control and NaOCl groups (p < 0.05). The CNPs-treated samples were able to resist biofilm formation significantly better than other treatment groups (p < 0.05). CNPs could be used as a final irrigant during root canal treatment with the dual benefit of removing the smear layer and inhibiting bacterial recolonization on root dentin.

  10. Chelating and antibacterial properties of chitosan nanoparticles on dentin

    PubMed Central

    Bramante, Clovis Monteiro; Duarte, Marco Antonio Hungaro; de Moura, Marcia Regina; Aouada, Fauze Ahmad; Kishen, Anil

    2015-01-01

    Objectives The use of chitosan nanoparticles (CNPs) in endodontics is of interest due to their antibiofilm properties. This study was to investigate the ability of bioactive CNPs to remove the smear layer and inhibit bacterial recolonization on dentin. Materials and Methods One hundred bovine dentin sections were divided into five groups (n = 20 per group) according to the treatment. The irrigating solutions used were 2.5% sodium hypochlorite (NaOCl) for 20 min, 17% ethylenediaminetetraacetic acid (EDTA) for 3 min and 1.29 mg/mL CNPs for 3 min. The samples were irrigated with either distilled water (control), NaOCl, NaOCl-EDTA, NaOCl-EDTA-CNPs or NaOCl-CNPs. After the treatment, half of the samples (n = 50) were used to assess the chelating effect of the solutions using portable scanning electronic microscopy, while the other half (n = 50) were infected intra-orally to examine the post-treatment bacterial biofilm forming capacity. The biovolume and cellular viability of the biofilms were analysed under confocal laser scanning microscopy. The Kappa test was performed for examiner calibration, and the non-parametric Kruskal-Wallis and Dunn tests (p < 0.05) were used for comparisons among the groups. Results The smear layer was significantly reduced in all of the groups except the control and NaOCl groups (p < 0.05). The CNPs-treated samples were able to resist biofilm formation significantly better than other treatment groups (p < 0.05). Conclusions CNPs could be used as a final irrigant during root canal treatment with the dual benefit of removing the smear layer and inhibiting bacterial recolonization on root dentin. PMID:26295022

  11. On the mucoadhesive properties of chitosan-coated polycaprolactone nanoparticles loaded with curcumin using quartz crystal microbalance with dissipation monitoring.

    PubMed

    Mazzarino, Letícia; Coche-Guérente, Liliane; Labbé, Pierre; Lemos-Senna, Elenara; Borsali, Redouane

    2014-05-01

    Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) was used to investigate the mucoadhesive properties of nanoparticles decorated with low, medium and high molar mass chitosan (CS). Uncoated and chitosan-coated polycaprolactone (PCL) nanoparticles loaded with curcumin were prepared by nanoprecipitation method and characterized in terms of size, surface charge and drug content. The interactions between nanoparticles and mucin layer were monitored after the treatment of SAM-functionalized gold-coated quartz crystals with bovine submaxillary gland mucin (BSM). The results show that all investigated chitosan-coated nanoparticles adsorb onto the BSM layer, and the mass uptake was found to be independent of the chitosan molar mass. Uncoated nanoparticles showed, however, no affinity with BSM layer, confirming that the adsorption of colloidal systems occurs due to their decoration with chitosan. The adhesion is mainly attributed to electrostatic interactions between protonated amino groups of mucoadhesive chitosan and negatively charged groups of mucin. The results suggest that chitosan-coated nanoparticles are promising carriers for hydrophobic drugs delivery in the buccal mucosa.

  12. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage.

    PubMed

    He, Bo; Ge, Jiao; Yue, Pengxiang; Yue, XueYang; Fu, Ruiyan; Liang, Jin; Gao, Xueling

    2017-04-15

    The optimal preparation parameters to create anthocyanin-loaded chitosan nanoparticles was predicted using response surface methodology (RSM). A Box-Behnken design was used to determine the preparation parameters that would achieve the preferred particle size and high encapsulation efficiency. The result suggested that the optimized conditions were 2.86mg/mL carboxymethyl chitosan (CMC), 0.98mg/mL chitosan hydrochloride (CHC) and 5.97mg anthocyanins. Using the predicted amounts, the experimentally prepared particles averaged 219.53nm with 63.15% encapsulation efficiency. The result was less than 5% different than the predicted result of 214.83nm particle size and 61.80% encapsulation efficiency. Compared with the free anthocyanin solution, the anthocyanin-loaded chitosan nanoparticles showed a slowed degradation in simulated gastrointestinal fluid. Compared with the free anthocyanin solutions in a model beverage system, the stability of the anthocyanins was increased in the anthocyanin-loaded chitosan nanoparticles.

  13. Synthesis, characterization and antibacterial activity of superparamagnetic nanoparticles modified with glycol chitosan

    NASA Astrophysics Data System (ADS)

    Inbaraj, Baskaran Stephen; Tsai, Tsung-Yu; Chen, Bing-Huei

    2012-02-01

    Iron oxide nanoparticles (IONPs) were synthesized by coprecipitation of iron salts in alkali media followed by coating with glycol chitosan (GC-coated IONPs). Both bare and GC-coated IONPs were subsequently characterized and evaluated for their antibacterial activity. Comparison of Fourier transform infrared spectra and thermogravimetric data of bare and GC-coated IONPs confirmed the presence of GC coating on IONPs. Magnetization curves showed that both bare and GC-coated IONPs are superparamagnetic and have saturation magnetizations of 70.3 and 59.8 emu g-1, respectively. The IONP size was measured as ~8-9 nm by transmission electron microscopy, and their crystal structure was assigned to magnetite from x-ray diffraction patterns. Both bare and GC-coated IONPs inhibited the growths of Escherichia coli ATCC 8739 and Salmonella enteritidis SE 01 bacteria better than the antibiotics linezolid and cefaclor, as evaluated by the agar dilution assay. GC-coated IONPs showed higher potency against E. coli O157:H7 and Staphylococcus aureus ATCC 10832 than bare IONPs. Given their biocompatibility and antibacterial properties, GC-coated IONPs are a potential nanomaterial for in vivo applications.

  14. Biodegradable Chitosan Nanoparticle Coatings on Titanium for the Delivery of BMP-2

    PubMed Central

    Poth, Nils; Seiffart, Virginia; Gross, Gerhard; Menzel, Henning; Dempwolf, Wibke

    2015-01-01

    A simple method for the functionalization of a common implant material (Ti6Al4V) with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP) nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2), using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V. PMID:25581889

  15. Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2.

    PubMed

    Poth, Nils; Seiffart, Virginia; Gross, Gerhard; Menzel, Henning; Dempwolf, Wibke

    2015-01-08

    A simple method for the functionalization of a common implant material (Ti6Al4V) with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP) nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2), using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V.

  16. Self-assembled polymeric nanoparticle of PEGylated chitosan-ceramide conjugate for systemic delivery of paclitaxel.

    PubMed

    Battogtokh, Gantumur; Ko, Young Tag

    2014-11-01

    Chitosan has been widely explored as one of the most favorable biomaterials for various pharmaceutical applications due to its biodegradability and biocompatibility. Here, we report novel PEGylated-chitosan-ceramide (PEG-CS-CE) that forms stable polymeric nanoparticles capable of functioning as efficient carriers of hydrophobic drug molecules. The chitosan-ceramide conjugate (CS-CE) was linked with amine-polyethyleneglycol (NH2-PEG2000) by using dicyclohexylcarbodiimide/N-hydroxysuccinimide (DCC-NHS) to obtain PEG-CS-CE that could exhibit steric stabilization in biological environments. The structure of the conjugate was determined by proton ((1)H) NMR and FT-IR spectrometry. Under suitable conditions, the PEG-CS-CE self-assembled to form colloidally stable nanoparticles with a mean diameter of ∼ 200 nm. Further, hydrophobic anti-tumor agent paclitaxel (PTX) was incorporated into the polymeric nanoparticle with 90% loading efficiency and 11.3% loading capacity via an emulsion-solvent evaporation method. The PTX-loaded PEG-CS-CE nanoparticle showed sustained release and exhibited higher cellular uptake and a comparable cytotoxic efficacy to that of free PTX on B16F10 melanoma and MCF-7 human breast adenocarcinoma cell lines. The empty nanoparticle showed no toxicity, indicating that the co-polymer is safe to use in drug delivery. The polymeric nanoparticle PEG-CS-CE developed by us represent promising nanocarriers of hydrophobic drug molecules.

  17. Preparation and evaluation of oleoyl-carboxymethy-chitosan (OCMCS) nanoparticles as oral protein carriers.

    PubMed

    Liu, Ya; Cheng, Xiao Jie; Dang, Qi Feng; Ma, Fang Kui; Chen, Xi Guang; Park, Hyun Jin; Kim, Bum Keun

    2012-02-01

    Oleoyl-carboxymethy chitosan (OCMCS) nanoparticles based on chitosan with different molecular weights (50, 170 and 820 kDa) were prepared by self-assembled method. The nanoparticles had spherical shape, positive surface charges and the mean diameters were 157.4, 274.1 and 396.7 nm, respectively. FITC-labeled OCMCS nanoparticles were internalized via the intestinal mucosa and observed in liver, spleen, intestine and heart following oral deliverance to carps (Cyprinus carpio). Extracellular products (ECPs) of Aeromonas hydrophila as microbial antigen was efficiently loaded to form OCMCS-ECPs nanoparticles and shown to be sustained release in PBS. Significantly higher (P < 0.05) antigen-specific antibodies were detected in serum after orally immunized with OCMCS-ECPs nanoparticles than that immunized with ECPs alone and non-immunized in control group in carps. These results implied that amphiphilic modified chitosan nanoparticles had great potential to be applied as carriers for the oral administration of protein drugs.

  18. Magnetically separable Cu2O/chitosan-Fe3O4 nanocomposites: Preparation, characterization and visible-light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Cao, Chunhua; Xiao, Ling; Chen, Chunhua; Cao, Qihua

    2015-04-01

    A novel magnetically-separable visible-light-induced photocatalyst, Cu2O/chitosan-Fe3O4 nanocomposite (Cu2O/CS-Fe3O4 NC), was prepared via a facile one-step precipitation-reduction process by using magnetic chitosan chelating copper ions as precursor. The structure and properties of Cu2O/CS-Fe3O4 NCs were characterized by XRD, FT-IR, SEM, HRTEM, SAED, EDS, BET, VSM, XPS and UV-vis/DRS. The photocatalytic activity of Cu2O/CS-Fe3O4 NCs was evaluated by decolorization of reactive brilliant red X-3B (X-3B) under visible light irradiation. The characterization results indicated that Cu2O/CS-Fe3O4 NCs exhibited relatively large specific surface areas and special dimodal pore structure because Cu2O was wrapped in chitosan matrix embedded with Fe3O4 nanoparticles. The tight combination of magnetic Fe3O4 and semiconductor Cu2O through chitosan made the nanocomposites show good superparamagnetism and photocatalytic activity. It was found that X-3B could be decolorized more efficiently in acidic media than in neutral or alkaline media. The decolorization of X-3B was ascribed to the synergistic effect of photocatalysis and adsorption. Cu2O/CS-Fe3O4 NCs could be easily separated from the solution by an external magnet, and the decolorization rates of X-3B were still above 87% after five reaction cycles, indicating that Cu2O/CS-Fe3O4 NCs had excellent reusability and stability.

  19. Temperature dependent dissipation in magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Regmi, R.; Naik, A.; Thakur, J. S.; Vaishnava, P. P.; Lawes, G.

    2014-05-01

    We parameterized the temperature dependent magnetic dissipation of iron oxide nanoparticles fixed in a frozen aqueous solution in an ac magnetic field. The magnetic power dissipated can be modeled by considering only Neel relaxation. This dissipation increased monotonically with temperature, increasing by approximately 50% between -40 °C and -10 °C. These experimental results provide quantitative confirmation for the Neel model of magnetic dissipative heating for nanoparticles rigidly confined in a solid matrix. We also find substantial temperature dependence in the magnetic dissipation of nanoparticles suspended in a liquid, which has important consequences for potential applications of magnetic nanoparticles for hyperthermia.

  20. Quaternized Carboxymethyl Chitosan-Based Silver Nanoparticles Hybrid: Microwave-Assisted Synthesis, Characterization and Antibacterial Activity

    PubMed Central

    Huang, Siqi; Wang, Jing; Zhang, Yang; Yu, Zhiming; Qi, Chusheng

    2016-01-01

    A facile, efficient, and eco-friendly approach for the preparation of uniform silver nanoparticles (Ag NPs) was developed. The synthesis was conducted in an aqueous medium exposed to microwave irradiation for 8 min, using laboratory-prepared, water-soluble quaternized carboxymethyl chitosan (QCMC) as a chemical reducer and stabilizer and silver nitrate as the silver source. The structure of the prepared QCMC was characterized using Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (NMR). The formation, size distribution, and dispersion of the Ag NPs in the QCMC matrix were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-Vis), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM) analysis, and the thermal stability and antibacterial properties of the synthesized QCMC-based Ag NPs composite (QCMC-Ag) were also explored. The results revealed that (1) QCMC was successfully prepared by grafting quaternary ammonium groups onto carboxymethyl chitosan (CMC) chains under microwave irradiation in water for 90 min and this substitution appeared to have occurred at -NH2 sites on C2 position of the pyranoid ring; (2) uniform and stable spherical Ag NPs could be synthesized when QCMC was used as the reducing and stabilizing agent; (3) Ag NPs were well dispersed in the QCMC matrix with a narrow size distribiution in the range of 17–31 nm without aggregation; and (4) due to the presence of Ag NPs, the thermal stability and antibacterial activity of QCMC-Ag were dramatically improved relative to QCMC. PMID:28335246

  1. Hyaluronic acid-coated chitosan nanoparticles: molecular weight-dependent effects on morphology and hyaluronic acid presentation.

    PubMed

    Almalik, Abdulaziz; Donno, Roberto; Cadman, Christopher J; Cellesi, Francesco; Day, Philip J; Tirelli, Nicola

    2013-12-28

    Chitosan nanoparticles are popular carriers for the delivery of macromolecular payloads, e.g. nucleic acids. In this study, nanoparticles were prepared via complexation with triphosphate (TPP) anions and were successively coated with hyaluronic acid (HA). Key variables of the preparative process (e.g. chitosan and HA molecular weight) were optimised in view of the maximisation of loading with DNA, of the Zeta potential and of the dimensional stability, and the resulting particles showed excellent storage stability. We have focused on the influence of chitosan molecular weight on nanoparticle properties. Larger molecular weight increased their porosity (=decreased cross-link density), and this caused also larger dimensional changes in response to variations in osmotic pressure or upon drying. The dependency of nanoparticle porosity on chitosan molecular weight had a profound effect on the adsorption of HA on the nanoparticles; HA was apparently able to penetrate deeply into the more porous high molecular weight (684 kDa) chitosan nanoparticles, while it formed a corona around those composed of more densely cross-linked low molecular weight (25 kDa) chitosan. Atomic Force Microscopy (AFM) allowed not only to highlight the presence of this corona, but also to estimate its apparent thickness to about 20-30 nm (in a dry state). The different morphology has a significant effect on the way HA is presented to biomolecules, and this has specific relevance in relation to interactions with HA receptors (e.g. CD44) that influence kinetics and mechanism of nanoparticle uptake. Finally, it is worth to mention that chitosan molecular weight did not appear to greatly affect the efficiency of nanoparticle loading with DNA, but significantly influenced its chitosanase-triggered release, with high molecular chitosan nanoparticles seemingly more prone to degradation by this enzyme.

  2. Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery.

    PubMed

    Tong, Gui-Feng; Qin, Nan; Sun, Li-Wei

    2017-09-01

    Depression is a debilitating psychiatric condition that remains the second most common cause of disability worldwide. Currently, depression affects more than 4 per cent of the world's population. Most of the drugs intended for clinical management of depression augment the availability of neurotransmitters at the synapse by inhibiting their neuronal reuptake. However, the therapeutic efficacy of antidepressants is often compromised as they are unable to reach brain by the conventional routes of administration. The purpose of the present study was to reconnoiter the potential of mucoadhesive PLGA-chitosan nanoparticles for the delivery of encapsulated Desvenlafaxine to the brain by nose to brain delivery route for superior pharmacokinetic and pharmacodynamic profile of Desvenlafaxine. Desvenlafaxine loaded PLGA-chitosan nanoparticles were prepared by solvent emulsion evaporation technique and optimized for various physiochemical characteristics. The antidepressant efficacy of optimized Desvenlafaxine was evaluated in various rodent depression models together with the biochemical estimation of monoamines in their brain. Further, the levels of Desvenlafaxine in brain and blood plasma were determined at various time intervals for calculation of different pharmacokinetic parameters. The optimized Desvenlafaxine loaded PLGA-chitosan nanoparticles (∼172 nm/+35 mV) on intranasal administration significantly reduced the symptoms of depression and enhanced the level of monoamines in the brain in comparison with orally administered Desvenlafaxine. Nose to brain delivery of Desvenlafaxine PLGA-chitosan nanoparticles also enhanced the pharmacokinetic profile of Desvenlafaxine in brain together with their brain/blood ratio at different time points. Thus, intranasal mucoadhesive Desvenlafaxine PLGA-chitosan nanoparticles could be potentially used for the treatment of depression.

  3. Advances and Potential Applications of Chitosan Nanoparticles as a Delivery Carrier for the Mucosal Immunity of Vaccine.

    PubMed

    Li, Dan; Fu, Dongwei; Kang, Hong; Rong, Guangyu; Jin, Zheng; Wang, Xiaohua; Zhao, Kai

    2017-01-01

    Drug research and development has entered into the new epoch of innovation formulation, and the drug delivery system has been in the forefront of pharmaceutical innovation. Chitosan, a natural polysaccharide derived from chitin, due to its well-known biocompatibility and biodegradability, it has been widely used in drug delivery, immunostimulation, tissue regeneration, blood coagulation, wound healing, drug delivery and tissue engineering. Chitosan has become a valuable vaccine adjuvant and delivery carrier, which have attracted increasing attention for its applications. In this paper, we reviewed chitosan nanoparticles, which is a promising biomaterial as vaccine adjuvant and delivery carrier, including characteristics, preparation methods and applications, or even its limitations. We also investigated the mucosal immune delivery route for drug loaded chitosan nanoparticles, such as the routes of oral and nasal. Due to the low toxicity, better biodegradability and adhesivity of chitosan nanoparticles, it can be used as the delivery carrier of vaccine antigens and drugs. These promising studies laid a foundation for the applications of chitosan nanoparticles as a delivery carrier in the vaccine or drug. We undertook a structured research of biodegradable polymeric nanoparticles of chitosan used as a delivery carrier for the mucosal immunity of vaccine. We have searched the bibliographic databases for peer-reviewed research literature. The outstanding characteristics of the screened papers were described respectively, and a systematic content analysis methodology was used to analyse the findings. Sixty-three papers were included in the review, the majority defined leadership and governance approaches that had impacted upon the polymeric nanoparticles as the delivery carrier for the mucosal immunity of vaccine in therapeutic applications and developments. Thirty-five papers outlined the superiority characteristics of chitosan nanoparticles that applied in the field

  4. Chitosan/TPP Nanoparticles as a Gene Delivery Agent For Tumor Suppressant P53

    NASA Astrophysics Data System (ADS)

    Liu, Gaojun

    In the last decade, non-viral polymeric vectors have become more attractive than their viral counterparts due to their nontoxicity and good biocompatibility. However, one of the major drawbacks is the low transfection efficiency when compared to viruses. In this work, a naturally cationic polysaccharide, chitosan, was cross-linked with negatively charged tripolyphosphate (TPP) to synthesize chitosan/TPP nanoparticles (CNPs) for delivery of plasmid DNA (pDNA). Particle size and zeta potential were characterized for CNPs with chitosan-TPP mass ratios of 4:1 and 6:1 (w/w) using benchtop dynamic light scattering. And both potentiometric titration method and FTIR spectrometer were applied to measure the degree of deacetylation of chitosan. Release kinetics of a model protein (bovine serum albumin, BSA) showed a steady release that reached 7% after 6 days. Besides that, we also assessed the in vitro transfection efficiency of the CNP-pDNA system using fluorescence microscopy, as well as the effect of tumor suppressant p53. Later the release kinetics and encapsulation efficiency of plasmid DNA bound to the CNPs will be investigated. Additionally, we will try to improve the gene transfection efficiency in both MC3T3-E1 and osteosarcoma cells by applying Sonicator 740 therapeutic ultrasound. Key words: gene therapy, non-viral gene vector, chitosan/TPP nanoparticles, ionic gelation, p53.

  5. Experimental and Mathematical Studies on the Drug Release Properties of Aspirin Loaded Chitosan Nanoparticles

    PubMed Central

    Wan, Ajun; Shi, Yifei; Zhang, Yueyue; Chen, Yupeng

    2014-01-01

    The study of drug release dynamic is aiming at understanding the process that drugs release in human body and its dynamic characteristics. It is of great significance since these characteristics are closely related to the dose, dosage form, and effect of the drugs. The Noyes-Whitney function is used to represent how the solid material is dissolved into solution, and it is well used in study of drug dynamic. In this research, aspirin (acetylsalicylic acid (ASA)) has been encapsulated with different grades of chitosan (CS) varying in molecular weight (Mw) for the purpose of controlled release. The encapsulation was accomplished by ionic gelation technology based on assembly of positively charged chitosan and negatively charged sodium tripolyphosphate (TPP). The encapsulation efficiency, loading capacity, and drug release behavior of aspirin loaded chitosan nanoparticles (CS-NPs) were studied. It was found that the concentration of TPP and Aspirin, molecular weights of chitosan have important effect on the drug release patterns from chitosan nanoparticles. The results for simulation studies show that the Noyes-Whitney equation can be successfully used to interpret the drug release characteristics reflected by our experimental data. PMID:24987696

  6. Nanomechanical characterization and molecular mechanism study of nanoparticle reinforced and cross-linked chitosan biopolymer.

    PubMed

    Rath, Amrita; Mathesan, Santhosh; Ghosh, Pijush

    2015-03-01

    Chitosan (CS) is a biomaterial that offers many sophisticated and innovative applications in the biomedical field owing to its excellent characteristics of biodegradability, biocompatibility and non-toxicity. However, very low mechanical properties of chitosan polymer impose restriction on its further development. Cross-linking and nanoparticle reinforcement are the two possible methods to improve the mechanical properties of chitosan films. In this research, these two methods are adopted individually by using tripolyphosphate as cross-linker and nano-hydroxyapatite as particle reinforcement. The nanomechanical characterizations under static loading conditions are performed on these modified chitosan films. It is observed that nanoparticle reinforcement provided necessary mechanical properties such as ductility and modulus. The mechanisms involved in improvement of mechanical properties due to particle reinforcement are studied by molecular dynamics (MD). Further, improvement in mechanical properties due to combination of particle reinforcement and cross-linking agent with chitosan is investigated. The stress relaxation behavior for all these types of films is characterized under dynamic loading conditions using dynamic mechanical analysis (nanoDMA) experiment. A viscoelastic solid like response is observed for all types of film with modulus relaxing by 3-6% of its initial value. A suitable generalized Maxwell model is fitted with the obtained viscoelastic response of these films. The response to nano-scratch behavior is also studied for particle reinforced composite films.

  7. In vitro cytotoxicity of Fe-Cr-Nb-B magnetic nanoparticles under high frequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Chiriac, Horia; Petreus, Tudor; Carasevici, Eugen; Labusca, Luminita; Herea, Dumitru-Daniel; Danceanu, Camelia; Lupu, Nicoleta

    2015-04-01

    The heating potential, cytotoxicity, and efficiency of Fe68.2Cr11.5Nb0.3B20 magnetic nanoparticles (MNPs), as such or coated with a chitosan layer, to decrease the cell viability in a cancer cell culture model by using high frequency alternating magnetic fields (AMF) have been studied. The specific absorption rate varied from 215 W/g for chitosan-free MNPs to about 190 W/g for chitosan-coated ones, and an equilibrium temperature of 46 °C was reached when chitosan-coated MNPs were subjected to AMF. The chitosan-free Fe68.2Cr11.5Nb0.3B20 MNPs proved a good biocompatibility and low cytotoxicity in all testing conditions, while the chitosan-coated ones induced strong tumoricidal effects when a cell-particle simultaneous co-incubation approach was used. In high frequency AMF, the particle-mediated heat treatment has proved to be a critical cause for decreasing in vitro the viability of a cancer cell line.

  8. Chitosan-mediated formation of biomimetic silica nanoparticles: an effective method for manganese peroxidase immobilization and stabilization.

    PubMed

    Luan, Pan-Pan; Jiang, Yan-Jun; Zhang, Song-Ping; Gao, Jing; Su, Zhi-Guo; Ma, Guang-Hui; Zhang, Yu-Fei

    2014-11-01

    Our work here, for the first time, reported the use of chitosan-mediated biomimetic silica nanoparticles in enzyme immobilization. In order to make clear the relationship among silicification process, silica nanoparticle structure and immobilized enzyme activity, a mechanism of chitosan-mediated silicification using sodium silicate as the silica source was primarily evaluated. Chitosan was demonstrated effectively to promote the silicification not only in accelerating the aggregation rate of sodium silicate, but also in templating the formation of silica nanoparticles. Although the whole biomimetic silicification process contained polycondensation-aggregation-precipitation three stages, the elemental unit in precipitated silica was confirmed to be nanoparticles with 100 nm diameter regardless of the chitosan and silicate concentration used. Furthermore, the effect of enzyme on silicification process was also investigated. The introducing of manganese peroxidase (MnP) to silica precursor solution had no obvious effect on the silicification rate and nanoparticle morphology. The residual activity and embedding rate of immobilized MnP were 64.2% and 36.4% respectively under the optimum conditions. In addition, compared to native MnP, the MnP embedded in chitosan/silica nanoparticles exhibited improved stability against organic solvent and ultrasonic wave. After ultrasonic treatment for 20 min, 77% of the initial activity was remained due to the protective effect of chitosan/silica nanoparticles, while native MnP lost almost all of its original activity.

  9. Preparation and characterization of novel chitosan-protamine nanoparticles for nucleus-targeted anticancer drug delivery.

    PubMed

    Yu, Xiwei; Hou, Jiahui; Shi, Yijie; Su, Chang; Zhao, Liang

    It is well known that most anticancer drugs commonly show high toxicity to the DNA of tumor cells and exert effects by combining with the DNA or associated enzymes in the nucleus. Most developed drugs are first delivered into the cytoplasm and then transferred to the nucleus through the membrane pores. Sometimes, the transportation of drugs from cytoplasm to nucleus is not efficient and often results in poor therapeutic effects. In this study, we developed special and novel nanoparticles (NPs) made of chitosan and protamine for targeted nuclear capture of drugs to enhance anticancer effects. The anticancer effects of nuclear targeted-delivery of drugs in NPs were also evaluated by investigating cytotoxicity, cellular uptake mechanism, and cell apoptosis on cells. Chitosan-protamine NPs were characterized by good drug entrapment, sustained release, small average particle size, low polydispersity index, and high encapsulation efficiency; and accomplished the efficient nuclear delivery of fluorouracil (5-Fu). Compared with free 5-Fu and 5-Fu-loaded chitosan NPs, treatment of A549 cells and HeLa cells with 5-Fu-loaded chitosan-protamine NPs showed the highest cytotoxicity and further induced the significant apoptosis of cells. In addition, 5-Fu-loaded chitosan-protamine NPs exhibited the best efficiency in inhibiting tumor growth than the other three formulations. 5-Fu-loaded chitosan-protamine NPs enhanced antitumor efficacy through the targeted nuclear capture of drugs and showed promising potential as a nanodelivery system for quickly locating drugs in the nucleus of cells.

  10. A high throughput method for quantification of cell surface bound and internalized chitosan nanoparticles.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Lamprecht, Alf

    2015-11-01

    Chitosan has become a popular polymer for drug delivery. It's hydro solubility and mild formulation conditions have made it an attractive polymer for macromolecular delivery. Accurate quantification of internalized chitosan nanoparticles (NPs) is imperative for fair assessment of the nano-formulation where it is important to determine the exact amount of drug actually being delivered into the cell, especially for macromolecular drugs where cellular entry is limited by molecule size and/or charge. The preferential affinity of wheat germ agglutinin tagged with fluorescein isothiocyanate (WGA-FITC) to chitosan is exploited in the development of a simple and rapid method for the differentiation between and quantification of cell surface bound and internalized chitosan NPs. The percentage of cell surface bound NPs could be easily determined and corrected NP uptake could be calculated accordingly. The developed method is applicable in several cell lines and has successfully been tested with NPs with different sizes (25 and 150nm) and with very low NP concentrations (20μg/mL). The method will allow for the correct evaluation of chitosan NP uptake and could be further used to evaluate chitosan based nanomedicine and provide guidelines on how to modify NPs for enhanced internalization, and improved drug delivery.

  11. Selective removal of erythromycin by magnetic imprinted polymers synthesized from chitosan-stabilized Pickering emulsion.

    PubMed

    Ou, Hongxiang; Chen, Qunhui; Pan, Jianming; Zhang, Yunlei; Huang, Yong; Qi, Xueyong

    2015-05-30

    Magnetic imprinted polymers (MIPs) were synthesized by Pickering emulsion polymerization and used to adsorb erythromycin (ERY) from aqueous solution. The oil-in-water Pickering emulsion was stabilized by chitosan nanoparticles with hydrophobic Fe3O4 nanoparticles as magnetic carrier. The imprinting system was fabricated by radical polymerization with functional and crosslinked monomer in the oil phase. Batches of static and dynamic adsorption experiments were conducted to analyze the adsorption performance on ERY. Isotherm data of MIPs well fitted the Freundlich model (from 15 °C to 35 °C), which indicated heterogeneous adsorption for ERY. The ERY adsorption capacity of MIPs was about 52.32 μmol/g at 15 °C. The adsorption kinetics was well described by the pseudo-first-order model, which suggested that physical interactions were primarily responsible for ERY adsorption. The Thomas model used in the fixed-bed adsorption design provided a better fit to the experimental data. Meanwhile, ERY exhibited higher affinity during adsorption on the MIPs compared with the adsorption capacity of azithromycin and chloramphenicol. The MIPs also exhibited excellent regeneration capacity with only about 5.04% adsorption efficiency loss in at least three repeated adsorption-desorption cycles.

  12. [Magnetic nanoparticles and intracellular delivery of biopolymers].

    PubMed

    Kornev, A A; Dubina, M V

    2014-03-01

    The basic methods of intracellular delivery of biopolymers are present in this review. The structure and synthesis of magnetic nanoparticles, their stabilizing surfactants are described. The examples of the interaction of nanoparticles with biopolymers such as nucleic acids and proteins are considered. The final part of the review is devoted to problems physiology and biocompatibility of magnetic nanoparticles.

  13. Doxorubicin-loaded mesoporous magnetic nanoparticles to induce apoptosis in breast cancer cells.

    PubMed

    Zou, Yan; Liu, Pin; Liu, Chuan-He; Zhi, Xu-Ting

    2015-02-01

    Selective targeting of chemotherapeutic drugs toward the cancer cells overcomes the limitations involved in chemotherapy. Ideally, targeted delivery system holds great potential in cancer therapy due to specific release of drug in the cancer tissues. In this regard, DOX-loaded chitosan coated mesoporous magnetic nanoparticles (DOX-CMMN) were prepared and evaluated for its physicochemical and biological characteristics. Nanosized magnetic nanoparticles were observed with a high loading capacity for DOX. The drug-loaded nanoparticles exhibited a controlled and sustained release of drug without any burst release phenomenon. The DOX-DMMN showed a concentration-dependent cell proliferation inhibitory action against breast cancer cells. The blank nanoparticles showed excellent biocompatibility with cell viability >85% at the maximum tested concentration. Our results showed that chitosan coated magnetic system has high potential for breast cancer targeting under an alternating current magnetic field (ACMF). The present study showed that magnetic nanoparticles can be targeted to tumor cells under the presence of oscillating magnetic field. The combined effect of chemotherapy and thermotherapy can have a promising clinical potential for the treatment of breast cancer. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: results of an in vitro and in vivo study.

    PubMed

    Zheng, Fang; Shi, Xiao-Wen; Yang, Gui-Fang; Gong, Ling-Ling; Yuan, Hong-Yin; Cui, Ye-Jian; Wang, Yan; Du, Yu-Min; Li, Yan

    2007-01-02

    This study was designed to investigate the in vitro and in vivo transfection efficiency of chitosan nanoparticles used as vectors for gene therapy. Three types of chitosan nanoparticles [quaternized chitosan -60% trimethylated chitosan oligomer (TMCO-60%), C(43-45 KDa, 87%), and C(230 KDa, 90%)] were used to encapsulate plasmid DNA (pDNA) encoding green fluorescent protein (GFP) using the complex coacervation technique. The morphology, optimal chitosan-pDNA binding ratio and conditions for maximal in vitro transfection were studied. The in vivo transfection was conducted by feeding the chitosan/pDNA nanoparticles to 12 BALB/C-nu/nu nude mice. Both conventional and TMCO-60% could form stable nanoparticles with pDNA. The in vitro study showed the transfection efficiency to be in the following descending order: TMCO-60%>C(43-45 KDa, 87%)>C(230 KDa, 90%). TMCO-60% proved to be the most efficient and the optimal chitosan/pDNA ratio being 3.2:1. In vivo study showed most prominent GPF expression in the gastric and upper intestinal mucosa. GFP expression in the mucosa of the stomach and duodenum, jejunum, ileum, and large intestine were found, respectively, in 100%, 88.9%, 77.8% and 66.7% of the nude mice examined. TMCO-60%/pDNA nanoparticles had better in vitro and in vivo transfection activity than the other two, and with minimal toxicity, which made it a desirable non-viral vector for gene therapy via oral administration.

  15. Encapsulation of selenium in chitosan nanoparticles improves selenium availability and protects cells from selenium-induced DNA damage response

    USDA-ARS?s Scientific Manuscript database

    Selenium, an essential mineral, plays important roles in optimizing human health. Chitosan is an effective, naturally oriented material for synthesizing nanoparticles with polyanions and exhibit preferable properties such as biocompatibility, biodegradation and resistance to certain enzymes. We have...

  16. Chitosan

    PubMed Central

    Smith, Alan; Perelman, Michael; Hinchcliffe, Michael

    2014-01-01

    The nasal route is attractive for the delivery of vaccines in that it not only offers an easy to use, non-invasive, needle-free alternative to more conventional parenteral injection, but it also creates an opportunity to elicit both systemic and (crucially) mucosal immune responses which may increase the capability of controlling pathogens at the site of entry. Immune responses to “naked” antigens are often modest and it is widely accepted that incorporation of an adjuvant is a prerequisite for the achievement of clinically effective nasal vaccines. Many existing adjuvants are sub-optimal or unsuitable because of local toxicity or poor enhancement of immunogenicity. Chitosan, particularly chitosan salts, have now been used in several preclinical and clinical studies with good tolerability, excellent immune stimulation and positive clinical results across a number of infections. Particularly significant evidence supporting chitosan as an adjuvant for nasal vaccination comes from clinical investigations on a norovirus vaccine; this demonstrated the ability of chitosan (ChiSys®), when combined with monophosphoryl lipid, to evoke robust immunological responses and confer protective immunity following (enteral) norovirus challenge. This article summarizes the totality of the meaningful information (including key unpublished data) supporting the development of chitosan-adjuvanted vaccines. PMID:24346613

  17. Microwave-synthesized magnetic chitosan microparticles for the immobilization of yeast cells.

    PubMed

    Safarik, Ivo; Pospiskova, Kristyna; Maderova, Zdenka; Baldikova, Eva; Horska, Katerina; Safarikova, Mirka

    2015-01-01

    An extremely simple procedure has been developed for the immobilization of Saccharomyces cerevisiae cells on magnetic chitosan microparticles. The magnetic carrier was prepared using an inexpensive, simple, rapid, one-pot process, based on the microwave irradiation of chitosan and ferrous sulphate at high pH. Immobilized yeast cells have been used for sucrose hydrolysis, hydrogen peroxide decomposition and the adsorption of selected dyes.

  18. Low-cost, easy-to-prepare magnetic chitosan microparticles for enzymes immobilization.

    PubMed

    Pospiskova, Kristyna; Safarik, Ivo

    2013-07-25

    Extremely simple procedures for the preparation of magnetic chitosan enzyme carriers have been developed and used for the immobilization of lipase and β-galactosidase as model enzymes. In the first case commercially available magnetite microparticles were entrapped in chitosan gel, while in the second case magnetic iron oxides microparticles were synthesized in chitosan matrix from ferrous sulfate using microwave irradiation. Immobilized enzymes showed long-term stability without leaching of enzyme from the support and enabled their repeated use without significant loss of activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles.

    PubMed

    Venkatesan, Jayachandran; Lee, Jin-Young; Kang, Dong Seop; Anil, Sukumaran; Kim, Se-Kwon; Shim, Min Suk; Kim, Dong Gyu

    2017-05-01

    The main aim of this study was to obtain porous antimicrobial composites consisting of chitosan, alginate, and biosynthesized silver nanoparticles (AgNPs). Chitosan and alginate were used owing to their pore-forming capacity, while AgNPs were used for their antimicrobial property. The developed porous composites of chitosan-alginate-AgNPs were characterized using Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The FT-IR results revealed the presence of a strong chemical interaction between chitosan and alginate due to polyelectrolyte complex; whereas, the XRD results confirmed the presence of AgNPs in the composites. The dispersion of AgNPs in the porous membrane was uniform with a pore size of 50-500μm. Antimicrobial activity of the composites was checked with Escherichia coli and Staphylococcus aureus. The developed composites resulted in the formation of a zone of inhibition of 11±1mm for the Escherichia coli, and 10±1mm for Staphylococcus aureus. The bacterial filtration efficiency of chitosan-alginate-AgNPs was 1.5-times higher than that of the chitosan-alginate composite. The breast cancer cell line MDA-MB-231 was used to test the anticancer activity of the composites. The IC50 value of chitosan-alginate-AgNPs on MDA-MB-231 was 4.6mg. The developed chitosan-alginate-AgNPs composite showed a huge potential for its applications in antimicrobial filtration and cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthesis, characterization and cytotoxicity of S-nitroso-mercaptosuccinic acid-containing alginate/chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Seabra, Amedea B.; Fabbri, Giulia K.; Pelegrino, Milena T.; Silva, Letícia C.; Rodrigues, Tiago

    2017-06-01

    Nitric oxide (NO) is an endogenous free radical, which plays key roles in several biological processes including vasodilation, neurotransmission, inhibition of platelet adhesion, cytotoxicity against pathogens, wound healing, and defense against cancer. Due to the relative instability of NO in vivo (half-life of ca. 0.5 seconds), there is an increasing interest in the development of low molecular weight NO donors, such as S-nitrosothiols (RSNOs), which are able to prolong and preserve the biological activities of NO in vivo. In order to enhance the sustained NO release in several biomedical applications, RSNOs have been successfully allied to nanomaterials. In this context, this work describes the synthesis and characterization of the NO donor S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), which belongs to the class of RSNOs, and its incorporation in polymeric biodegradable nanoparticles composed by alginate/chitosan. First, chitosan nanoparticles were obtained by gelation process with sodium tripolyphosphate (TPP), followed by the addition of the alginate layer, to enhance the nanoparticle protection. The obtained nanoparticles presented a hydrodynamic diameter of 343 ± 38 nm, polydispersity index (PDI) of 0.36 ± 0.1, and zeta potential of - 30.3 ± 0.4 mV, indicating their thermal stability in aqueous suspension. The negative zeta potential value was assigned to the presence of alginate chains on the surface of chitosan/TPP nanoparticles. The encapsulation efficiency of the NO donor into the polymeric nanoparticles was found to be 98 ± 0.2%. The high encapsulation efficiency value was attributed to the positive interactions between the NO donor and the polymeric content of the nanoparticles. Kinetics of NO release from the nanoparticles revealed a spontaneous and sustained release of therapeutic amounts of NO, for several hours under physiological temperature. The incubation of NO-releasing alginate/chitosan nanoparticles with human hepatocellular carcinoma

  1. Dual drug loaded chitosan nanoparticles-sugar--coated arsenal against pancreatic cancer.

    PubMed

    David, Karolyn Infanta; Jaidev, Leela Raghav; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-11-01

    Pancreatic cancer is an aggressive form of cancer with poor survival rates. The increased mortality due to pancreatic cancer arises due to many factors such as development of multidrug resistance, presence of cancer stem cells, development of a stromal barrier and a hypoxic environment due to hypo-perfusion. The present study aims to develop a nanocarrier for a combination of drugs that can address these multiple issues. Quercetin and 5-fluorouracil were loaded in chitosan nanoparticles, individually as well as in combination. The nanoparticles were characterized for morphology, size, zeta potential, percentage encapsulation of drugs as well as their release profiles in different media. The dual drug-loaded carrier exhibited good entrapment efficiency (quercetin 95% and 5-fluorouracil 75%) with chitosan: quercetin: 5-fluorouracil in the ratio 3:1:2. The release profiles suggest that 5-fluorouracil preferentially localized in the periphery while quercetin was located towards the core of chitosan nanoparticles. Both drugs exhibited considerable association with the chitosan matrix. The dual drug-loaded carrier system exhibited significant toxicity towards pancreatic cancer cells both in the 2D as well as in the 3D cultures. We believe that the results from these studies can open up interesting options in the treatment of pancreatic cancer.

  2. Antibacterial wound dressing from chitosan/polyethylene oxide nanofibers mats embedded with silver nanoparticles.

    PubMed

    Wang, Xiaoli; Cheng, Feng; Gao, Jing; Wang, Lu

    2015-03-01

    Novel antibacterial nanomaterials have been developed for biomedical applications. The present study involves the preparation and properties of antibacterial nanofibers from chitosan/polyethylene oxide electrospun nanofibers incorporated with silver nanoparticles. Silver nanoparticles were efficiently synthesized in situ after ultra violet (UV) with AgNO3 as precursor and chitosan/polyethylene oxide as reducing agent and protecting agent, respectively. Then the resultant solutions were electrospun into nanofibers. The formation of silver nanoparticles was confirmed with ultraviolet visible (UV-vis) and transmission electron microscopy (TEM), and the electrospun nanofibers were characterized by scanning electron microscopy and energy dispersive X-ray. The resultant fibers exhibited uniform morphology with silver nanoparticles distributed throughout the fiber. Also, the fibers showed certain tensile strength and excellent antibacterial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Sustained release of silver nanoparticles from fibers could last for over 72 h. The silver-containing chitosan/polyethylene oxide nanofibers showed excellent cytocompatibility.

  3. Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats.

    PubMed

    Yuan, Zhong-Yue; Hu, Yu-Lan; Gao, Jian-Qing

    2015-01-01

    The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate. Then, these TmCS-NPs were demonstrated to be entered into the brain and specially deposited in the frontal cortex and cerebellum after systemic injection. Moreover, the concentration of TmCS-NPs in these two regions was found to decrease over time. Although no obvious changes were observed for oxidative stress in the in vivo rat model, the body weight was found to remarkably decreased in a dose-dependent manner after exposure to TmCS-NPs for seven days. Besides, apoptosis and necrosis of neurons, slight inflammatory response in the frontal cortex, and decrease of GFAP expression in the cerebellum were also detected in mouse injected with TmCS-NPs. This study is the first report on the sub-brain biodistribution and neurotoxicity studies of TmCS-NPs. Our results provide new insights into the toxicity evaluation of nanoparticles and our findings would help contribute to a better understanding of the neurotoxicity of biodegradable nanomaterials used in pharmaceutics.

  4. Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats

    PubMed Central

    Yuan, Zhong-Yue; Hu, Yu-Lan; Gao, Jian-Qing

    2015-01-01

    The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate. Then, these TmCS-NPs were demonstrated to be entered into the brain and specially deposited in the frontal cortex and cerebellum after systemic injection. Moreover, the concentration of TmCS-NPs in these two regions was found to decrease over time. Although no obvious changes were observed for oxidative stress in the in vivo rat model, the body weight was found to remarkably decreased in a dose-dependent manner after exposure to TmCS-NPs for seven days. Besides, apoptosis and necrosis of neurons, slight inflammatory response in the frontal cortex, and decrease of GFAP expression in the cerebellum were also detected in mouse injected with TmCS-NPs. This study is the first report on the sub-brain biodistribution and neurotoxicity studies of TmCS-NPs. Our results provide new insights into the toxicity evaluation of nanoparticles and our findings would help contribute to a better understanding of the neurotoxicity of biodegradable nanomaterials used in pharmaceutics. PMID:26248340

  5. Vibrio cholerae lipopolysaccharide loaded chitosan nanoparticle could save life by induction of specific immunoglobulin isotype.

    PubMed

    Fasihi-Ramandi, Mahdi; Ghobadi-Ghadikolaee, Hamideh; Ahmadi-Renani, Sajjad; Taheri, Ramezan Ali; Ahmadi, Kazem

    2017-02-28

    The lipopolysaccharide (LPS) of Vibrio cholerae (V. cholerae) plays an important role in cholera disease and the induction of primary protection. In this study, we evaluate mice humoral immune response in intranasal and intraperitoneal administrated V. cholerae LPS. The results showed that the intranasal administration of LPS-chitosan nanoparticle induced the high level of antibodies compared to intraperitoneal injection of antigen without chitosan (P < .001). These results indicated that intranasal and intraperitoneal administration of LPS has been able to induce the high level of antibodies both in the sera and lavage fluid and confirmed our strategy for using intranasal administration of antigen.

  6. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Platinum Nanoparticles/Graphene/Chitosan Nanocomposite Film

    SciTech Connect

    Wu, Hong; Wang, Jun; Kang, Xinhuang; Wang, Chong M.; Wang, Donghai; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2009-09-01

    The bionanocomposite film consisting of glucose oxidase/Pt/functional graphene sheets/chitosan (GOD/Pt/FGS/chitosan) for glucose sensing was described. With the electrocatalytic synergy of FGS and Pt nanoparticles to hydrogen peroxide, a sensitive biosensor with detection limit of 0.6 µM glucose was achieved. The biosensor also had good reproducibility, long term stability and negligible interfering signals from ascorbic acid and uric acid comparing to the response to glucose. The large surface area and good conductivity of graphene suggests that graphene is a potential candidate for sensor material. The hybrid nanocomposite glucose sensor provides new opportunity for clinical diagnosis and point-of-care applications.

  7. Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles.

    PubMed

    López-Carballo, Gracia; Higueras, Laura; Gavara, Rafael; Hernández-Muñoz, Pilar

    2013-01-09

    This study aims to develop antimicrobial films consisting of chitosan and silver nanoparticles that are homogeneously distributed throughout the polymer matrix. Nanoparticles were generated in situ during the neutralization of the chitosan acetate film with sodium hydroxide. The temperature of neutralization and the concentration of silver in the film were crucial determinants of the shape and size of the nanoparticles. Neutralized films exhibited antimicrobial activity against Escherichia coli and Staphylococcus aureus in liquid growth media. However, the effectiveness of the films was considerably greater in diluted growth media. Furthermore, no significant differences were found either in the antimicrobial capacities of films incorporating different amounts of silver or in the amount of silver that migrated into the liquid media after 18 h of immersion of the film. Neutralized films maintained their activity after 1 month of immersion in deionized water, which can be attributed to the slow sustained release of silver ions and thus efficacy over time.

  8. Chitosan nanoparticle/PCL nanofiber composite for wound dressing and drug delivery.

    PubMed

    Jung, Sang-Myung; Yoon, Gwang Heum; Lee, Hoo Cheol; Shin, Hwa Sung

    2015-01-01

    Many investigations of wound dressings equipped with drug delivery systems have recently been conducted. Chitosan is widely used not only as a material for wound dressing by the efficacy of its own, but also as a nanoparticle for drug delivery. In this study, an electrospun polycaprolactone nanofiber composite with chitosan nanoparticles (ChiNP-PCLNF) was fabricated and then evaluated for its drug release and biocompatibility to skin fibroblasts. ChiNP-PCLNF complexes showed no cytotoxicity and nanoparticles adsorbed by van der Waals force were released into aquatic environments and then penetrated into rat primary fibroblasts. Our studies demonstrate the potential for application of ChiNP-PCLNF as a wound dressing system with drug delivery for skin wound healing without side effects.

  9. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications.

    PubMed

    Zain, N Mat; Stapley, A G F; Shama, G

    2014-11-04

    Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively.

  10. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior

    SciTech Connect

    Garza-Navarro, Marco; Gonzalez, Virgilio; Ortiz, Ubaldo; De la Rosa, Elder

    2010-01-15

    In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.

  11. Laccase encapsulation in chitosan nanoparticles enhances the protein stability against microbial degradation.

    PubMed

    Koyani, Rina D; Vazquez-Duhalt, Rafael

    2016-09-01

    A novel concept with the result of enzyme stabilization against microbial degradation in real bioremediation processes was developed through the encapsulation of laccase in chitosan nanoparticles. Besides of abundant information on laccase-chitosan conjugates, we report the laccase encapsulation into nanoparticles based in chitosan. The chitosan-tripolyphosphate technique was applied for the production of morphologically homogeneous enzymatic nanoparticles, with high enzyme encapsulation efficiency, small asymmetric sizes (from 40 to 90 nm), and rough surfaces. Contrary to macroscopic immobilized enzymes, temperature and pH activity profiles of nano-sized laccase were similar to those of free enzyme. The substrate affinity constant (K M) of nano-encapsulated laccase was similar to these from free enzyme, while its activity rate constant (k cat) represented 60 % of these obtained with free enzyme. Importantly, stability of nano-encapsulated laccase against microbial degradation in soil, compost, and wastewater was significantly increased. After 24 h exposure to wastewater from a treatment plant, the laccase activity of the nanoparticles was 82.8 % of initial activity, compared with only 7.8 % retained activity for free enzyme. After 36 h incubation in compost extract, the laccase nanoparticles showed 72.4 % of the initial activity, while the free enzyme was almost completely inactivated. Finally, after 84 h incubation in soil extract, the nanoparticles and free preparations showed 57.9 and 17.3 % of the initial activity, respectively. Thus, the nanoencapsulation of enzymes able to transform pollutants is an alternative to improve the operational lifetime of enzymes in real environmental applications.

  12. High-yield aqueous synthesis of multi-branched iron oxide core-gold shell nanoparticles: SERS substrate for immobilization and magnetic separation of bacteria

    NASA Astrophysics Data System (ADS)

    Tamer, Ugur; Onay, Aykut; Ciftci, Hakan; Bozkurt, Akif Göktuğ; Cetin, Demet; Suludere, Zekiye; Hakkı Boyacı, İsmail; Daniel, Philippe; Lagarde, Fabienne; Yaacoub, Nader; Greneche, Jean-Marc

    2014-10-01

    The high product yield of multi-branched core-shell Fe3- x O4@Au magnetic nanoparticles was synthesized used as magnetic separation platform and surface-enhanced Raman scattering (SERS) substrates. The multi-branched magnetic nanoparticles were prepared by a seed-mediated growth approach using magnetic gold nanospheres as the seeds and subsequent reduction of metal salt with ascorbic acid in the presence of a stabilizing agent chitosan biopolymer and silver ions. The anisotropic growth of nanoparticles was observed in the presence of chitosan polymer matrix resulting in multi-branched nanoparticles with a diameter over 100 nm, and silver ions also play a crucial role on the growth of multi-branched nanoparticles. We propose the mechanism of the formation of multi-branched nanoparticles while the properties of nanoparticles embedded in chitosan matrix are discussed. The surface morphology of nanoparticles was characterized with transmission electron microscopy, scanning electron microscopy, ultraviolet visible spectroscopy (UV-Vis), X-ray diffraction, and fourier transform infrared spectroscopy and 57Fe Mössbauer spectrometry. Additionally, the magnetic properties of the nanoparticles were also examined. We also demonstrated that the synthesized Fe3- x O4@Au multi-branched nanoparticle is capable of targeted separation of pathogens from matrix and sensing as SERS substrates.

  13. Scaling relations for magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Landeros, P.; Escrig, J.; Altbir, D.; Laroze, D.; D'Albuquerque E Castro, J.; Vargas, P.

    2005-03-01

    A detailed investigation of the scaling relations recently proposed [J. d’Albuquerque e Castro, D. Altbir, J. C. Retamal, and P. Vargas, Phys. Rev. Lett. 88, 237202 (2002)] to study the magnetic properties of nanoparticles is presented. Analytical expressions for the total energy of three characteristic internal configurations of the particles are obtained, in terms of which the behavior of the magnetic phase diagram for those particles upon scaling of the exchange interaction is discussed. The exponent η in scaling relations is shown to be dependent on the geometry of the vortex core, and results for specific cases are presented.

  14. Curcumin-Loaded Chitosan-Coated Nanoparticles as a New Approach for the Local Treatment of Oral Cavity Cancer.

    PubMed

    Mazzarino, Leticia; Loch-Neckel, Gecioni; Bubniak, Lorena Dos Santos; Mazzucco, Suelen; Santos-Silva, Maria Cláudia; Borsali, Redouane; Lemos-Senna, Elenara

    2015-01-01

    Mucoadhesive nanoparticles loaded with curcumin were developed as a new approach to deliver curcumin for the local treatment of oral cancer. PCL nanoparticles coated with chitosan displaying different molar masses were prepared by using the nanoprecipitation technique. The mucoadhesive properties of nanoparticle suspensions were demonstrated by their strong ability to interact with the glycoprotein mucin through electrostatic interactions. Similar permeation profiles of curcumin loaded in uncoated and chitosan-coated nanoparticles across porcine esophageal mucosa were verified. Curcumin concentrations retained in the mucosa suggest the possibility of a local effect of the drug. In vitro studies demonstrated that free curcumin.and curcumin loaded into nanoparticles coated with chitosan caused significant reduction of SCC-9 human oral cancer cell viability in a concentration and time-dependent manner. However, no significant cell death was observed after 24 h of treatment with unloaded nanoparticles coated with chitosan. In addition, curcumin-loaded nanoparticles showed reduced cytotoxicity, when compared with the free drug. Therefore, chitosan-coated PCL nanoparticles may be considered a promising strategy to deliver curcumin directly into the oral cavity for the treatment of oral cancer.

  15. Fabrication of chitosan-silver nanoparticle hybrid 3D porous structure as a SERS substrate for biomedical applications

    NASA Astrophysics Data System (ADS)

    Jung, Gyeong-Bok; Kim, Ji-Hye; Burm, Jin Sik; Park, Hun-Kuk

    2013-05-01

    We propose a simple, low-cost, large-area, and functional surface enhanced Raman scattering (SERS) substrate for biomedical applications. The SERS substrate with chitosan-silver nanoparticles (chitosan-Ag NPs) hybrid 3D porous structure was fabricated simply by a one-step method. The chitosan was used as a template for the Ag NPs deposition. SERS enhancement by the chitosan-Ag NPs substrate was experimentally verified using rhodamine B as an analyte. Thiolated single stranded DNA was also measured for atopic dermatitis genetic markers (chemokines CCL17) at a low concentration of 5 pM. We successfully designed a novel SERS substrate with silver nanoparticle hybridized 3D porous chitosan that has the potential to become a highly sensitive and selective tool for biomedical applications.

  16. Preparation, characterization and magnetic properties of the BaFe12O19 @ chitosan composites

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Zunju; Xie, Yu; Zhao, Jie

    2016-07-01

    The BaFe12O19 @ chitosan composites are synthesized by the crosslinking reaction through chitosan and glutaraldehyde onto the surface of BaFe12O19. The structures of the samples were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The shape and size were observed by scanning electron microscopy and transmission electron microscopy. These results showed that chitosan has been decorated onto the surface of BaFe12O19, and the chitosan-glutaraldehyde Schiff-base composites have also been formed within the chitosan layers. Then, the magnetic properties of the samples were tested with the vibrating sample magnetometer. The magnetic saturation (MS), residual magnetization (Mr) and coercive force (Hc) values of the BaFe12O19 @ chitosan Schiff-base composite have achieved 44.94 emu/g, 27.82 emu/g and 3580.7 Oe, respectively. Compared with single BaFe12O19, the MS, and Mr of the BaFe12O19 @ chitosan composites decreases 12.31 emu/g and 8.58 emu/g, respectively. Finally, based on the experimental results, the probable formation mechanism of this composite has been investigated.

  17. Non-rare earth magnetic nanoparticles

    DOEpatents

    Carpenter, Everett E.; Huba, Zachary J.; Carroll, Kyler J.; Farghaly, Ahmed; Khanna, Shiv N.; Qian, Meichun; Bertino, Massimo

    2017-09-26

    Continuous flow synthetic methods are used to make single phase magnetic metal alloy nanoparticles that do not contain rare earth metals. Soft and hard magnets made from the magnetic nanoparticles are used for a variety of purposes, e.g. in electric motors, communication devices, etc.

  18. Distance magnetic nanoparticle detection using a magnetoelectric sensor for clinical interventions.

    PubMed

    Huong Giang, D T; Dang, D X; Toan, N X; Tuan, N V; Phung, A T; Duc, N H

    2017-01-01

    Distance magnetic nanoparticle detections were investigated by using a magnetoelectric based magnetic sensor with a long type bilayer Metglas/PZT laminate composite. In homogeneous magnetic fields, the sensor exhibits a sensitivity of 307.4 mV/Oe, which is possible for a detection limit of 2.7 × 10(-7) emu. This sensor can detect an amount of 0.31 μg of the superparamagnetic Fe3O4-chitosan fluid at 2 mm height above the sensor surface. To detect a spot with magnetic nanoparticles at a distance of about 7.6 mm, it should contain at least 50 μg of iron oxide. This approach can develop the local detection of magnetic nanoparticles at a depth of centimeters in the body during clinical interventions.

  19. Distance magnetic nanoparticle detection using a magnetoelectric sensor for clinical interventions

    NASA Astrophysics Data System (ADS)

    Huong Giang, D. T.; Dang, D. X.; Toan, N. X.; Tuan, N. V.; Phung, A. T.; Duc, N. H.

    2017-01-01

    Distance magnetic nanoparticle detections were investigated by using a magnetoelectric based magnetic sensor with a long type bilayer Metglas/PZT laminate composite. In homogeneous magnetic fields, the sensor exhibits a sensitivity of 307.4 mV/Oe, which is possible for a detection limit of 2.7 × 10-7 emu. This sensor can detect an amount of 0.31 μg of the superparamagnetic Fe3O4-chitosan fluid at 2 mm height above the sensor surface. To detect a spot with magnetic nanoparticles at a distance of about 7.6 mm, it should contain at least 50 μg of iron oxide. This approach can develop the local detection of magnetic nanoparticles at a depth of centimeters in the body during clinical interventions.

  20. Preparation, characterization and in vitro antiviral activity evaluation of foscarnet-chitosan nanoparticles.

    PubMed

    Russo, E; Gaglianone, N; Baldassari, S; Parodi, B; Cafaggi, S; Zibana, C; Donalisio, M; Cagno, V; Lembo, D; Caviglioli, G

    2014-06-01

    A new nanoparticulate system for foscarnet delivery was prepared and evaluated. Nanoparticles were obtained by ionotropic gelation of chitosan induced by foscarnet itself, acting as an ionotropic agent in a manner similar to tripolyphosphate anion. A Doehlert design allowed finding the suitable experimental conditions. Nanoparticles were between 200 and 300nm in diameter (around 450nm after redispersion). Nanoparticle size increased after 5h, but no size increase was observed after 48h when nanoparticles were crosslinked with glutaraldehyde. Zeta potential values of noncrosslinked and crosslinked nanoparticles were between 20 and 25mV, while drug loading of noncrosslinked nanoparticles was about 40% w/w (55% w/w for crosslinked nanoparticles). Nanoparticle yield was around 25% w/w. Crosslinked nanoparticles showed a controlled drug release. Foscarnet released from nanoparticles maintained the antiviral activity of the free drug when tested in vitro against lung fibroblasts (HELF) cells infected with HCMV strain AD-169. Moreover, nanoparticles showed no toxicity on non-infected HELF cells. These nanoparticles may represent a delivery system that could improve the therapeutic effect of foscarnet. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Synthesis and characterization of Fe3O4-PEG-LAC-chitosan-PEI nanoparticle as a survivin siRNA delivery system.

    PubMed

    Arami, S; Rashidi, M R; Mahdavi, M; Fathi, M; Entezami, A A

    2017-03-01

    The limited effectiveness of the conventional methods for cancer treatment makes the researchers to find novel safe and effective therapeutic strategies. One of these strategies is to use small interfering RNAs (siRNAs). A major challenge here is the siRNA delivery into the cells. The purpose of this study was to design and prepare a biocompatible, biodegradable, and safe nanosized particle for siRNA delivery into human breast cancer MCF-7 and leukemia K562 cells. Chemically synthesized magnetic nanoparticles containing polyethyleneglycol-lactate polymer (PEG-LAC), chitosan, and polyethyleneimine (PEI) were successfully prepared and used as a gene delivery vehicle. The nanoparticles were characterized by Fourier transform infrared spectroscopy and zeta potential. The Fe3O4-PEG-LAC-chitosan-PEI nanoparticle showed efficient and stable survivin siRNA loading in gel retardation assay. The cytotoxicity of the prepared nanoparticle was studied using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and was compared with that of mitoxantrone (MTX) in combination with the prepared siRNA delivery system to evaluate the possible synergic effect of MTX and survivin siRNA. The nanoparticles with and without noncomplementary siRNA showed low toxicity against both cell lines; however, a twofold decrease was observed in cell survival percent after MTX addition to MCF-7 cells treated with either nanoparticle itself or complexed with noncomplementary siRNA. While survivin siRNA nanoplex caused threefold decrease in the cell survival percent, its combination with MTX did not result in a significant increase in the cytotoxic effect. Therefore, Fe3O4-PEG-LAC-chitosan-PEI nanoparticle should be considered as a potential carrier for enhanced survivin siRNA delivery into MCF-7 and K562 cells.

  2. Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles.

    PubMed

    Liu, Yanan; Liu, Yang; Liao, Nina; Cui, Fuhai; Park, Mira; Kim, Hak-Yong

    2015-08-01

    Non-precipitation chitosan/silver nanoparticles (AgNPs) in 1% acetic acid aqueous solution was prepared from chitosan colloidal gel with various contents of silver nitrate via electron beam irradiation (EBI). Electrospun chitosan-based nanofibers decorated with AgNPs were successfully performed by blending poly(vinyl alcohol). The morphology of as-prepared nanofibers and the size of AgNPs in the nanofibers were investigated by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The presence of AgNPs in as-obtained nanofibers was also confirmed by ultraviolet-visible spectroscopy (UV), Fourier transform infrared (FT-IR) spectroscopy, EDX spectrum and metal mapping. Silver ion release behavior indicated that these hybrid nanofibers continually release adequate silver to exhibit antibacterial activity over 16 days. These biocomposite nanofibers showed pronounced antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Chitosan coated tungsten trioxide nanoparticles as a contrast agent for X-ray computed tomography.

    PubMed

    Firouzi, Mehdi; Poursalehi, Reza; Delavari H, Hamid; Saba, Fakhredin; Oghabian, Mohammad A

    2017-05-01

    Recent advances have shown that inorganic nanoparticles (NPs) based on heavy elements are highly appropriate for X-ray computed tomography (CT). In this contribution, tungsten trioxide NPs are prepared by the electrical arc discharge (EAD) method in DI water. The effect of chitosan (CTS) and glutaraldehyde (GTA) as coating and cross-linking agent, respectively, on the hydrodynamic size and zeta potential of prepared tungsten trioxide NPs is investigated. It is found that zeta potential increases by increasing the amounts of CTS. Meanwhile, by increasing the volume of glutaraldehyde (GTA), the final particle size increases whereas the zeta potential deceases. Chitosan coated tungsten trioxide demonstrated no significant cytotoxicity at concentration up to 5mg/mL after 24h. Finally, the X-ray attenuation of prepared chitosan coated tungsten trioxide NPs are higher than Iohexol as the commercially available iodinated contrasting agent at the same concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Choi, Seon Young; Jang, Soo Hwa; Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su; Lee, Kangtaek; Yang, Sung Ik; Joo, Sang-Woo; Ryu, Pan Dong; Lee, So Yeong

    2012-12-01

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  5. Preparation and responsive behaviors of chitosan-functionalized nanoparticles via a boronic acid-related reaction.

    PubMed

    Wang, Yanxia; Chai, Zhihua; Wang, Na; Ren, Xuejun; Gao, Ming

    2015-01-01

    We presented here a facile strategy for constructing chitosan-functionalized nanoparticles through the coordinating interaction between phenylboronic acids in poly(3-methacrylamido phenylboronic acid) and amine groups in chitosan. The formation of nanoparticles was confirmed by Fourier transform infrared spectrometer, thermal analysis, dynamic light scattering, and transmission electron micrographs, and the nanoparticles were stable over three days in aqueous solution. The pH-sensitivity of the nanoparticles was revealed by the light scattering intensity ratio (I/I0) at different pH values. I/I0 kept constant at pH 7.0 and 8.0. When the pH value was further increased in the range of 8.0-10, I/I0 reduced. As the pH value increased above 10, I/I0 kept constant. The nanoparticles were also sensitive to glucose, and the glucose-responsive behavior was dependent on the pH values, nanoparticle concentrations, and nanoparticle compositions.

  6. Magnetic nanoparticles for gene and drug delivery

    PubMed Central

    McBain, Stuart C; Yiu, Humphrey HP; Dobson, Jon

    2008-01-01

    Investigations of magnetic micro- and nanoparticles for targeted drug delivery began over 30 years ago. Since that time, major progress has been made in particle design and synthesis techniques, however, very few clinical trials have taken place. Here we review advances in magnetic nanoparticle design, in vitro and animal experiments with magnetic nanoparticle-based drug and gene delivery, and clinical trials of drug targeting. PMID:18686777

  7. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf

    2015-12-07

    Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High

  8. Iron oxide magnetic nanoparticles: A short review

    NASA Astrophysics Data System (ADS)

    Hasany, S. F.; Rehman, A.; Jose, R.; Ahmed, I.

    2012-11-01

    Magnetic nanoparticles have been enjoying great importance and wide scale applications during the last two decades due to their specific characteristics and applications. Iron oxide magnetic nanoparticles with appropriate surface chemistry have been implied in numerous applications such as biomedicine and cancer therapy, catalysis and in magnetic separation techniques. This review summarizes recent commercial, industrial and bio-engineering applications and brief study of the methods for the preparation of iron oxide magnetic nanoparticles with a control over the size, morphology and the magnetic properties. Some future applications of microwave irradiation for magnetic particle synthesis are also addressed.

  9. Applications of Bacterial Magnetic Nanoparticles in Nanobiotechnology.

    PubMed

    Chen, Chuanfang; Wang, Pingping; Li, Linlin

    2016-03-01

    The bacterial magnetic nanoparticle (BMP) has been well researched in nanobiotechnology as a new magnetic crystal. The BMPs are extracted from magnetotactic bacteria and under precise biological control. Compared with engineered magnetic nanoparticles synthesized by chemical approaches, BMPs have the properties of large production, monodispersity, high crystallinity, and close-to-bulk magnetization, which enable BMPs to be the highly promising magnetic nanoparticles for nanobiotechnology. In this paper, we review the biomedical applications of BMPs in magnetic hyperthermia, drug treatment with tumour and bioseparation. In addition, the biodistribution and toxicity are also reviewed.

  10. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes.

    PubMed

    Dima, Jimena Bernadette; Sequeiros, Cynthia; Zaritzky, Noemi E

    2015-12-01

    Chitosan particles (CH) were obtained from seafood processing wastes (shrimp shells) and physicochemically characterized; deacetylation degree of CH was measured by Infrared Spectroscopy (FTIR) and potentiometric titration; polymer molecular weight was determined by intrinsic viscosity measurements. Reticulated micro/nanoparticles of chitosan (MCH) with an average diameter close to 100nm were synthesized by ionic gelation of chitosan using tripolyphosphate (TPP), and characterized by SEM, size distribution and Zeta-potential. Detoxification capacities of CH and MCH were tested analyzing the removal of hexavalent chromium Cr(VI) from contaminated water, at different initial chromium concentrations. The effect of pH on adsorption capacity of CH and MCH was experimentally determined and analyzed considering the Cr(VI) stable complexes (anions) formed, the presence of protonated groups in chitosan particles and the addition of the reticulating agent (TPP). Chitosan crosslinking was necessary to adsorb Cr(VI) at pH<2 due to the instability of CH particles in acid media. Langmuir isotherm described better than Freundlich and Temkin equations the equilibrium adsorption data. Pseudo-second order rate provided the best fitting to the kinetic data in comparison to pseudo-first order and Elovich equations. Chemical analysis to determine the oxidation state of the adsorbed Cr, showed that Cr(VI) was adsorbed on CH particles without further reduction; in contrast Cr(VI) removed from the solution was reduced and bound to the MCH as Cr(III). The reduction of toxic Cr(VI) to the less or nontoxic Cr(III) by the reticulated chitosan micro/nanoparticles can be considered a very efficient detoxification technique for the treatment of Cr(VI) contaminated water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Magnetic Nanoparticles in Non-magnetic CNTs and Graphene

    NASA Astrophysics Data System (ADS)

    Kayondo, Moses; Seifu, Dereje

    Magnetic nanoparticles were embedded in non-magnetic CNTs and graphene matrix to incorporate all the advantages and the unique properties of CNTs and graphene. Composites of CNTs and graphene with magnetic nanoparticles may offer new opportunities for a wide variety of potential applications such as magnetic data storage, magnetic force microscopy tip, electromagnetic interference shields, thermally conductive films, reinforced polymer composites, transparent electrodes for displays, solar cells, gas sensors, magnetic nanofluids, and magnetically guided drug delivery systems. Magnetic nanoparticles coated CNTs can also be used as an electrode in lithium ion battery to replace graphite because of the higher theoretical capacity. Graphene nanocomposites, coated with magnetic sensitive nanoparticles, have demonstrated enhanced magnetic property. We would like to acknowledge support by NSF-MRI-DMR-1337339.

  12. GABA and 5-HT chitosan nanoparticles decrease striatal neuronal degeneration and motor deficits during liver injury.

    PubMed

    Shilpa, J; Paulose, C S

    2014-07-01

    The metabolic alterations resulted from hepatic injury and cell loss lead to synaptic defects and neurodegeneration that undoubtedly contribute motor deficits. In the present study, GABA and 5-HT chitosan nanoparticles mediated liver cell proliferation influenced by growth factor and cytokines and neuronal survival in corpus striatum of partially hepatectomised rats was evaluated. Liver cell proliferation was initiated and progressed by the combined effect of increased expression of growth factor, insulin like growth factor-1 and decreased expressions of cytokines, tumor necrosis factor-α and Akt-1. This was confirmed by the extent of incorporation of thymidine analogue, BrdU, in the DNA of rapidly dividing cells. Inappropriate influx of compounds to corpus striatum resulting from incomplete metabolism elevated GABAB and 5-HT2A neurotransmissions compared to those treated with nanoparticles. This directly influenced cyclic AMP response element binding protein, glial cell derived neurotrophic factor and brain derived neurotrophic factor in the corpus striatum that facilitate neurogenesis, neuronal survival, development, differentiation and neuroprotection. Motor deficits due to liver injury followed striatal neuronal damage were scored by grid walk and rotarod studies, which confirmed the regain of motor activity by GABA and 5-HT chitosan nanoparticle treatment. The present study revealed the therapeutic significance of GABA and 5-HT chitosan nanoparticles in liver based diseases and related striatal neuronal damage that influenced by GABA and 5-HT.

  13. Synthesis and characterization of chitosan and grape polyphenols stabilized palladium nanoparticles and their antibacterial activity.

    PubMed

    Amarnath, Kanchana; Kumar, Jayanthi; Reddy, Tejesh; Mahesh, Vakka; Ayyappan, Senniyanallur Rathakrishnan; Nellore, Jayshree

    2012-04-01

    Based on enhanced effectiveness, the new age drugs are nanoparticles of polymers, metals or ceramics, which can combat conditions like cancer and fight human pathogens like bacteria. In this present study we aimed for a green approach to synthesize palladium nanoparticles by reducing palladium chloride salts with nontoxic and biodegradable polymeric chitosan and grape polyphenols and confirmed by FTIR, TEM, SEM and UV-spectroscopy. We also extended our study to show the efficacy of the grape and chitosan impregnated palladium nanoparticles as an antibacterial agent against Escherichia coli. Antibacterial assays were carried out with a representative gram-negative bacterium, E. coli and a gram-positive bacterium, Staphylococcus aureus. Commendable efforts have been made to explore this property using electron microscopy, which has revealed size dependent interaction of palladium nanoparticles conjugates with bacteria by disrupting cell membranes and the leakage of cytoplasm. Therefore, the observed results imply that grape and chitosan-based nano palladium conjugates prepared in our present system are promising candidates for a wide range of biomedical and general applications.

  14. Fighting cancer with magnetic nanoparticles and immunotherapy

    NASA Astrophysics Data System (ADS)

    Gutiérrez, L.; Mejías, R.; Barber, D. F.; Veintemillas-Verdaguer, S.; Serna, C. J.; Lázaro, F. J.; Morales, M. P.

    2012-03-01

    IFN-γ-adsorbed DMSA-coated magnetite nanoparticles can be used as an efficient in vivo drug delivery system for tumor immunotherapy. Magnetic nanoparticles, with adsorbed interferon-γ, were targeted to the tumor site by application of an external magnetic field. A relevant therapeutic dosage of interferon in the tumor was detected and led to a notable reduction in tumor size. In general, only 10% of the total injected nanoparticles after multiple exposures were found in tissues by AC susceptibility measurements of the corresponding resected tissues. Magnetic nanoparticle biodistribution is affected by the application of an external magnetic field.

  15. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity.

    PubMed

    Sawtarie, Nader; Cai, Yuhang; Lapitsky, Yakov

    2017-09-01

    Nanoparticles prepared through the ionotropic gelation of chitosan with tripolyphosphate (TPP) have been extensively studied as vehicles for drug and gene delivery. Though a number of these works have focused on preparing particles with narrow size distributions, the monodisperse particles produced by these methods have been limited to narrow size ranges (where the average particle size was not varied by more than twofold). Here we show how, by tuning the NaCl concentration in the parent chitosan and TPP solutions, low-polydispersity particles with z-average diameters ranging between roughly 100 and 900nm can be prepared. Further, we explore how the size of these particles depends on the method by which the TPP is mixed into the chitosan solution, specifically comparing: (1) single-shot mixing; (2) dropwise addition; and (3) a dilution technique, where chitosan and TPP are codissolved at a high (gelation-inhibiting) ionic strength and then diluted to lower ionic strengths to trigger gelation. Though the particle size increases sigmoidally with the NaCl concentration for all three mixing methods, the dilution method delivers the most uniform/gradual size increase - i.e., it provides the most precise control. Also investigated are the effects of mixture composition and mixing procedure on the particle yield. These reveal the particle yield to increase with the chitosan/TPP concentration, decrease with the NaCl concentration, and vary only weakly with the mixing protocol; thus, at elevated NaCl concentrations, it may be beneficial to increase chitosan and TPP concentrations to ensure high particle yields. Finally, possible pitfalls of the salt-assisted size control strategy (and their solutions) are discussed. Taken together, these findings provide a simple and reliable method for extensively tuning chitosan/TPP particle size while maintaining narrow size distributions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effects of chitosan nanoparticle-mediated BRAF siRNA interference on invasion and metastasis of gastric cancer cells.

    PubMed

    Huo, Jian

    2016-08-01

    To observe the changes in invasion capacity of gastric cancer BGC823 cells after being treated with chitosan-encapsulated BRAF siRNA nanoparticles, and to evaluate the effects of the nanoparticle-mediated BRAF siRNA interference on cell invasion and metastasis, BRAF siRNA was encapsulated with chitosan into nanoparticles sized 350 nm to treat gastric cancer cells. Silencing of BRAF was detected by Western blot and PCR, and cell invasion was observed by the Transwell assay. The nanoparticles significantly downregulated BRAF expression in BGC823 cells (P < 0.01) and inhibited their invasion (P < 0.001). Chitosan nanoparticle-mediated BRAF siRNA interference evidently reduced the invasion capacity of gastric cancers.

  17. Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations

    PubMed Central

    Özcan, İpek; Azizoğlu, Erkan; Şenyiğit, Taner; Özyazıcı, Mine; Özer, Özgen

    2013-01-01

    The objective of this study was to prepare a suitable formulation for dermal delivery of diflucortolone valerate (DFV) that would maintain the localization in skin layers without any penetration and to optimize efficiency of DFV. Drug-loaded lecithin/chitosan nanoparticles with high entrapment efficiency (86.8%), were successfully prepared by ionic interaction technique. Sustained release of DFV was achieved without any initial burst release. Nanoparticles were also incorporated into chitosan gel at different ratios for preparing a more suitable formulation for topical drug delivery with adequate viscosity. In ex-vivo permeation studies, nanoparticles increased the accumulation of DFV especially in the stratum corneum + epidermis of rat skin without any significant permeation. Retention of DFV from nanoparticle in chitosan gel formulation (0.01%) was twofold higher than commercial cream, although it contained ten times less DFV. Nanoparticles in gel formulations produced significantly higher edema inhibition in rats compared with commercial cream in in-vivo studies. Skin blanching assay using a chromameter showed vasoconstriction similar to that of the commercial product. There were no barrier function changes upon application of nanoparticles. In-vitro and in-vivo results demonstrated that lecithin/chitosan nanoparticles in chitosan gel may be a promising carrier for dermal delivery of DFV in various skin disorders. PMID:23390364

  18. Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens

    PubMed Central

    Friedman, Adam J; Phan, Jenny; Schairer, David; Champer, Jackson; Qin, Min; Pirouz, Aslan; Blecher, Karin; Oren, Ami; Liu, Phil; Modlin, Robert L; Kim, Jenny

    2012-01-01

    Advances in nanotechnology have demonstrated potential application of nanoparticles for effective and targeted drug delivery. Here, we investigated the antimicrobial and immunological properties and the feasibility of using nanoparticles to deliver antimicrobial agents to treat a cutaneous pathogen. Nanoparticles synthesized with chitosan and alginate demonstrated a direct antimicrobial activity in vitro against Propionibacterium acnes, the bacterium linked to the pathogenesis of acne. By electron microscopy imaging, chitosan-alginate nanoparticles were found to induce disruption of the P. acnes cell membrane, providing a mechanism for the bactericidal effect. The chitosan-alginate nanoparticles also exhibited anti-inflammatory properties as they inhibited P. acnes induced inflammatory cytokine production in human monocytes and keratinocytes. Furthermore, benzoyl peroxide, a commonly used anti-acne drug, was effectively encapsulated in the chitosan-alginate nanoparticles and demonstrated superior antimicrobial activity against P. acnes compared to benzoyl peroxide alone while demonstrating less toxicity to eukaryotic cells. Together, these data suggest the potential utility of topical delivery of chitosan-alginate nanoparticle encapsulated drug therapy for the treatment of dermatologic conditions with infectious and inflammatory components. PMID:23190896

  19. Chitosan-capped gold nanoparticles for selective and colorimetric sensing of heparin

    NASA Astrophysics Data System (ADS)

    Chen, Zhanguang; Wang, Zhen; Chen, Xi; Xu, Haixiong; Liu, Jinbin

    2013-09-01

    In this contribution, novel chitosan-stabilized gold nanoparticles (AuNPs) were prepared by mixing chitosan with citrate-reductive AuNPs under appropriate conditions. The as-prepared chitosan-stabilized AuNPs were positively charged and highly stably dispersed in aqueous solution. They exhibited weak resonance light scattering (RLS) intensity and a wine red color. In addition, the chitosan-stabilized AuNPs were successfully utilized as novel sensitive probes for the detection of heparin for the first time. It was found that the addition of heparin induced a strong increase of RLS intensity for AuNPs and the color change from red to blue. The increase in RLS intensity and the color change of chitosan-stabilized AuNPs caused by heparin allowed the sensitive detection of heparin in the range of 0.2-60 μM ( 6.7 U/mL). The detection limit for heparin is 0.8 μM at a signal-to-noise ratio of 3. The present sensor for heparin detection possessed a low detection limit and wide linear range. Additionally, the proposed method was also applied to the detection of heparin in biological media with satisfactory results.

  20. tRNA conjugation with chitosan nanoparticles: An AFM imaging study.

    PubMed

    Agudelo, D; Kreplak, L; Tajmir-Riahi, H A

    2016-04-01

    The conjugation of tRNA with chitosan nanoparticles of different sizes 15,100 and 200 kDa was investigated in aqueous solution using multiple spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed that chitosan binds tRNA via G-C and A-U base pairs as well as backbone PO2 group, through electrostatic, hydrophilic and H-bonding contacts with overall binding constants of KCh-15-tRNA=4.1 (±0.60)×10(3)M(-1), KCh-100-tRNA=5.7 (±0.8)×10(3)M(-1) and KCh-200-tRNA=1.2 (±0.3)×10(4)M(-1). As chitosan size increases more stable polymer-tRNA conjugate is formed. AFM images showed major tRNA aggregation and particle formation occurred as chitosan concentration increased. Even though chitosan induced major biopolymer structural changes, tRNA remains in A-family structure.

  1. Microfluidic assisted synthesis of silver nanoparticle-chitosan composite microparticles for antibacterial applications.

    PubMed

    Yang, Chih-Hui; Wang, Lung-Shuo; Chen, Szu-Yu; Huang, Mao-Chen; Li, Ya-Hua; Lin, Yun-Chul; Chen, Pei-Fan; Shaw, Jei-Fu; Huang, Keng-Shiang

    2016-08-30

    Silver nanoparticle (Ag NP)-loaded chitosan composites have numerous biomedical applications; however, fabricating uniform composite microparticles remains challenging. This paper presents a novel microfluidic approach for single-step and in situ synthesis of Ag NP-loaded chitosan microparticles. This proposed approach enables obtaining uniform and monodisperse Ag NP-loaded chitosan microparticles measuring several hundred micrometers. In addition, the diameter of the composites can be tuned by adjusting the flow on the microfluidic chip. The composite particles containing Ag NPs were characterized using UV-vis spectra and scanning electron microscopy-energy dispersive X-ray spectrometry data. The characteristic peaks of Ag NPs in the UV-vis spectra and the element mapping or pattern revealed the formation of nanosized silver particles. The results of antibacterial tests indicated that both chitosan and composite particles showed antibacterial ability, and Ag NPs could enhance the inhibition rate and exhibited dose-dependent antibacterial ability. Because of the properties of Ag NPs and chitosan, the synthesized composite microparticles can be used in several future potential applications, such as bactericidal agents for water disinfection, antipathogens, and surface plasma resonance enhancers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.).

    PubMed

    Choudhary, Ram Chandra; Kumaraswamy, R V; Kumari, Sarita; Sharma, S S; Pal, Ajay; Raliya, Ramesh; Biswas, Pratim; Saharan, Vinod

    2017-08-29

    In agriculture, search for biopolymer derived materials are in high demand to replace the synthetic agrochemicals. In the present investigation, the efficacy of Cu-chitosan nanoparticles (NPs) to boost defense responses against Curvularia leaf spot (CLS) disease of maize and plant growth promotry activity were evaluated. Cu-chitosan NPs treated plants showed significant defense response through higher activities of antioxidant (superoxide dismutase and peroxidase) and defense enzymes (polyphenol oxidase and phenylalanine ammonia-lyase). Significant control of CLS disease of maize was recorded at 0.04 to 0.16% of Cu-chitosan NPs treatments in pot and 0.12 to 0.16% of NPs treatments in field condition. Further, NPs treatments exhibited growth promotry effect in terms of plant height, stem diameter, root length, root number and chlorophyll content in pot experiments. In field experiment, plant height, ear length, ear weight/plot, grain yield/plot and 100 grain weight were enhanced in NPs treatments. Disease control and enhancement of plant growth was further enlightened through Cu release profile of Cu-chitosan NPs. This is an important development in agriculture nanomaterial research where biodegradable Cu-chitosan NPs are better compatible with biological control as NPs "mimic" the natural elicitation of the plant defense and antioxidant system for disease protection and sustainable growth.

  3. Chitosan-based hydrogels for nasal drug delivery: from inserts to nanoparticles.

    PubMed

    Luppi, Barbara; Bigucci, Federica; Cerchiara, Teresa; Zecchi, Vittorio

    2010-07-01

    Chitosan represents a multifunctional polymer, featuring both mucoadhesive and permeation-enhancing properties and therefore is a widely studied excipient for mucosal drug delivery. As regards nasal administration, chitosans have been used for the preparation of gels, solid inserts, powders and nanoparticles in which a three-dimensional network can be recognized. This review provides a discussion of the different nasal dosage forms based on chitosan hydrogels. In the first section intranasal delivery is discuss as a useful tool for non-invasive administration of drugs intended for local or systemic treatments. Then chitosan-based hydrogels are described with a focus on their mucoadhesive and permeation-enhancing ability as well as their capacity of controlled drug release. Finally, a detailed discussion regarding several examples of the different nasal dosage forms is reported, including considerations on in vitro, ex vivo and in vivo studies. Summary and discussion of recent data on the different pharmaceutical forms based on chitosan hydrogels could be of interest to researchers dealing with nasal drug delivery. The aim of this review is to stimulate further investigations in order to achieve the collection of harmonized data and concrete clinical perspectives.

  4. Biofilm Formation within the Interface of Bovine Root Dentin Treated with Conjugated Chitosan and Sealer Containing Chitosan Nanoparticles

    PubMed Central

    DaSilva, Luis; Finer, Yoav; Friedman, Shimon; Basrani, Bettina; Kishen, Anil

    2013-01-01

    Objective To assess biofilm formation within sealer-dentin interfaces of root segments filled with gutta-percha and sealer incorporated with chitosan (CS) nanoparticles, without and with canal surface treatment with different formulations of CS. Methods Standardized canals of 4 mm bovine root segments (n=35) were filled with gutta-percha and Pulp Canal Sealer incorporated with CS nanoparticles without surface treatment (group CS), or after surface treatment with phosphorylated CS (group PHCS), CS-conjugated Rose Bengal and photodynamic irradiation (group CSRB) and a combination of both PHCS and CSRB (group RBPH). The control group was filled with gutta-percha and unmodified sealer. After 7 d of setting, specimens were aged in buffered solution at 37° C for 1 or 4 wks. Monospecies biofilms of Enterococcus faecalis were grown on specimens for 7 d in a chemostat-based biofilm fermentor. Biofilm formation within the sealer-dentin interface was assessed with confocal laser scanning microscopy. Results In the 4-wk aged specimens only, the mean biofilm areas were significantly smaller than in the control for CS (p=0.008), PHCS (p=0.012) and RBPH (p=0.034). Percentage of biofilm-covered interface also was significantly lower than in the control for CS (p=0.024) and PHCS (p=0.003). CS, PHCS and RBPH did not differ significantly. Conclusions Incorporating CS nanoparticles into the zinc-oxide eugenol sealer inhibited biofilm formation within the sealer-dentin interface. This effect was maintained when canals were treated with phosphorylated CS, and it was moderated by canal treatment with chitosan-conjugated Rose Bengal and irradiation. PMID:23321239

  5. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline

    PubMed Central

    Lee, Dong-Won; Shirley, Shawna A; Lockey, Richard F; Mohapatra, Shyam S

    2006-01-01

    Background Chitosan, a polymer derived from chitin, has been used for nasal drug delivery because of its biocompatibility, biodegradability and bioadhesiveness. Theophylline is a drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at an appropriate dosage without causing adverse side effects. It was hypothesized that adsorption of theophylline to chitosan nanoparticles modified by the addition of thiol groups would improve theophylline absorption by the bronchial epithelium and enhance its anti-inflammatory effects. Objectives We sought to develop an improved drug-delivery matrix for theophylline based on thiolated chitosan, and to investigate whether thiolated chitosan nanoparticles (TCNs) can enhance theophylline's capacity to alleviate allergic asthma. Methods A mouse model of allergic asthma was used to test the effects of theophylline in vivo. BALB/c mice were sensitized to ovalbumin (OVA) and OVA-challenged to produce an inflammatory allergic condition. They were then treated intranasally with theophylline alone, chitosan nanoparticles alone or theophylline adsorbed to TCNs. The effects of theophylline on cellular infiltration in bronchoalveolar lavage (BAL) fluid, histopathology of lung sections, and apoptosis of lung cells were investigated to determine the effectiveness of TCNs as a drug-delivery vehicle for theophylline. Results Theophylline alone exerts a moderate anti-inflammatory effect, as evidenced by the decrease in eosinophils in BAL fluid, the reduction of bronchial damage, inhibition of mucus hypersecretion and increased apoptosis of lung cells. The effects of theophylline were significantly enhanced when the drug was delivered by TCNs. Conclusion Intranasal delivery of theophylline complexed with TCNs augmented the anti-inflammatory effects of the drug compared to theophylline administered alone in a mouse model of allergic asthma. The beneficial effects of theophylline in treating asthma may be enhanced

  6. Chitosan nanoparticles-trypsin interactions: Bio-physicochemical and molecular dynamics simulation studies.

    PubMed

    Salar, Safoura; Mehrnejad, Faramarz; Sajedi, Reza H; Arough, Javad Mohammadnejad

    2017-10-01

    Herein, we investigated the effect of the chitosan nanoparticles (CsNP) on the structure, dynamics, and activity of trypsin. The enzyme activity in complex with the nanoparticles slightly increased, which represents the interactions between the nanoparticles and the enzyme. The kinetic parameters of the enzyme, Km and kcat, increased after adding the nanoparticles, resulting in a slight increase in the catalytic efficiency (kcat/Km). However, the effect of the nanoparticles on the kinetic stability of trypsin has not exhibited significant variations. Fluorescence spectroscopy did not show remarkable changes in the trypsin conformation in the presence of the nanoparticles. The circular dichroism (CD) spectroscopy results also revealed the secondary structure of trypsin attached to the nanoparticles slightly changed. Furthermore, we used molecular dynamics (MD) simulation to find more information about the interaction mechanisms between the nanoparticles and trypsin. The root mean square deviation (RMSD) of Cα atoms results have shown that in the presence of the nanoparticles, trypsin was stable. The simulation and the calculation of the binding free energy demonstrate that the nonpolar interactions are the most important forces for the formation of stable nanoparticle-trypsin complex. This study has explicitly elucidated that the nanoparticles have not considerable effect on the trypsin. Copyright © 2017. Published by Elsevier B.V.

  7. Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and ex vivo evaluation.

    PubMed

    Saremi, Shahrooz; Atyabi, Fatemeh; Akhlaghi, Seyedeh Parinaz; Ostad, Seyed Nasser; Dinarvand, Rassoul

    2011-01-12

    The aim of this study was to prepare and evaluate mucoadhesive core-shell nanoparticles based on copolymerization of thiolated chitosan coated on poly methyl methacrylate cores as a carrier for oral delivery of docetaxel. Docetaxel-loaded nanoparticles with various concentrations were prepared via a radical emulsion polymerization method using cerium ammonium nitrate as an initiator. The physicochemical properties of the obtained nanoparticles were characterized by: dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy and transmission electron microscopy for surface morphology; and differential scanning calorimetry analysis for confirmation of molecular dispersity of docetaxel in the nanoparticles. Nanoparticles were spherical with mean diameter below 200 nm, polydispersity of below 0.15, and positive zeta potential values. The entrapment efficiency of the nanoparticles was approximately 90%. In vitro release studies showed a sustained release characteristic for 10 days after a burst release at the beginning. Ex vivo studies showed a significant increase in the transportation of docetaxel from intestinal membrane of rat when formulated as nanoparticles. Cellular uptake of nanoparticles was investigated using fluoresceinamine-loaded nanoparticles. Docetaxel nanoparticles showed a high cytotoxicity effect in the Caco-2 and MCF-7 cell lines after 72 hours. It can be concluded that by combining the advantages of both thiolated polymers and colloidal particles, these nanoparticles can be proposed as a drug carrier system for mucosal delivery of hydrophobic drugs.

  8. PEGylated chitosan protected silver nanoparticles as water-borne coating for leather with antibacterial property.

    PubMed

    Liu, Gongyan; Li, Kaijun; Luo, Quanqing; Wang, Haibo; Zhang, Zongcai

    2017-03-15

    Development of eco-labeled and effectively antibacterial coatings for final leather products has been desiderated both by industry and by consumers. Herein, PEGylated chitosan modified silver nanoparticles (PEG-g-CS@AgNPs) were prepared and characterized by UV-vis spectroscopy, transmission electron microscopy and dynamic light scattering. The antimicrobial activity of such silver nanoparticles was investigated against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), exhibiting much lower minimum inhibitory concentration (MIC) than chitosan or PEG-g-CS. Water-borne coating was formed by immobilizing the PEG-g-CS@AgNPs onto the leather surface through the electrostatic interaction between amino groups of chitosan and carboxyl groups of leather collagen. Scanning electron microscopy and water contact angle were employed to study the coating's morphology and hydrophilicity, respectively. After coating, leather samples showed significantly high bactericidal efficiency with reusability after release of dead cells from the coating by simply water washing. The excellent antibacterial property of PEG-g-CS@AgNPs coating was ascribed to the combination of bacteria-resistance and bacteria-release by PEGylation, and dual bacteria-killing based on chitosan and Ag(+) release. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Equilibrium magnetization and magnetization relaxation of multicore magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ilg, Patrick

    2017-06-01

    Multicore magnetic nanoparticles show promising features for biomedical applications. Their magnetic properties, however, are not well understood to date, so that several ad hoc assumptions are often needed to interpret experimental results. Here, we present a comprehensive computer simulation study on the effect of dipolar interactions and magnetic anisotropy on the equilibrium magnetization and magnetization relaxation dynamics of monodisperse multicore magnetic nanoparticles in viscous solvents. We include thermal fluctuations of the internal Néel relaxation via the stochastic Landau-Lifshitz-Gilbert equation coupled to rotational Brownian motion of the cluster. We find that the effective magnetic moment of the cluster is reduced compared to the noninteracting case due to frustrated dipole-dipole interactions. Furthermore, the magnetization relaxation is found to proceed in a two-step fashion with a fast initial decay being followed by a long-time relaxation. For moderate dipolar interaction strengths, the latter can be approximated quite well by an exponential decay with rate given by the sum of the relaxation rates in the immobilized state and the Brownian rotation. These findings can be helpful for a better interpretation of experimental data obtained from magnetization relaxation measurements.

  10. Novel hyaluronic acid-chitosan nanoparticles as non-viral gene delivery vectors targeting osteoarthritis.

    PubMed

    Lu, Hua-Ding; Zhao, Hui-Qing; Wang, Kun; Lv, Lu-Lu

    2011-11-28

    Gene therapy is a promising new treatment strategy for common joint-disorders such as osteoarthritis. The development of safe, effective, targeted non-viral gene carriers is important for the clinical success of gene therapy. The present work describes the use of hybrid hyaluronic acid (HA)/chitosan (CS) nanoparticles as novel non-viral gene delivery vectors capable of transferring exogenous genes into primary chondrocytes for the treatment of joint diseases. HA/CS plasmid-DNA nanoparticles were synthesized through the complex coacervation of the cationic polymers with pEGFP. Particle size and zeta potential were related to the weight ratio of CS to HA, where increases in nanoparticle size and decreases in surface charge were observed as HA content increased. The particle size and the zeta potential varied according to pH. Transfection of primary chondrocytes was performed under different conditions to examine variations in the pH of the transfection medium, different N/P ratios, different plasmid concentrations, and different molecular weights of chitosan. Transfection efficiency was maximized for a medium pH of approximately 6.8, an N/P ratio of 5, plasmid concentration of 4 μg/ml, and a chitosan molecular weight of 50 kDa. The transfection efficiency of HA/CS-plasmid nanoparticles was significantly higher than that of CS-plasmid nanoparticles under the same conditions. The average viability of cells transfected with HA/CS-plasmid nanoparticles was over 90%. These results suggest that HA/CS-plasmid nanoparticles could be an effective non-viral vector suitable for gene delivery to chondrocytes.

  11. Preparation and characterization of hybrid nanoparticles based on chitosan and poly(methacryloylglycylglycine)

    NASA Astrophysics Data System (ADS)

    Ferri, Marcella; Dash, Mamoni; Cometa, Stefania; De Giglio, Elvira; Sabbatini, Luigia; Chiellini, Federica

    2014-05-01

    The present work investigated the possibility of preparing nanoparticles based on methacryloylglycylglycine (MAGG) and chitosan (CS) by in situ polymerization. The study revealed that nanoparticle formation was strictly dependent on ionic interactions between NH3 + groups from CS and COO- groups arising from the anionic monomer MAGG. The subsequent in situ polymerizations of MAGG in the presence of CS led to the formation of nanoparticles with homogeneous morphology, a uniform particle size distribution, and a good spherical shape as confirmed by laser diffraction granulometry and scanning electron microscopy analyses. Nanoparticle formulations with different amounts of CS and MAGG were prepared, and their chemical compositions were investigated by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The obtained results showed that the polymerization of MAGG in the presence of CS appears to be a very promising approach in the preparation of nanoparticles for drug delivery applications.

  12. Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid.

    PubMed

    Pereira, Anderson Espirito Santo; Silva, Paula Mayara; Oliveira, Jhones Luis; Oliveira, Halley Caixeta; Fraceto, Leonardo Fernandes

    2017-02-01

    This work concerns the development of nanocarriers composed of alginate/chitosan (ALG/CS) and chitosan/tripolyphosphate (CS/TPP) for the plant growth regulator gibberellic acid (GA3). ALG/CS nanoparticles with and without GA3 presented mean size of 450±10nm, polydispersity index (PDI) of 0.3, zeta potential of -29±0.5mV, concentrations of 1.52×10(11) and 1.92×10(11) nanoparticles mL(-1), respectively, and 100% encapsulation efficiency. CS/TPP nanoparticles with and without GA3 presented mean size of 195±1nm, PDI of 0.3, zeta potential of +27±3mV, concentrations of 1.92×10(12) and 3.54×10(12) nanoparticles mL(-1), respectively, and 90% encapsulation efficiency. The nanoparticles were stable during 60days and the two systems differed in terms of the release mechanism, with the release depending on factors such as pH and temperature. Bioactivity assays using Phaseolus vulgaris showed that the ALG/CS-GA3 nanoparticles were most effective in increasing leaf area and the levels of chlorophylls and carotenoids. The systems developed showed good potential, providing greater stability and efficiency of this plant hormone in agricultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Materials science: Magnetic nanoparticles line up

    NASA Astrophysics Data System (ADS)

    Faivre, Damien; Bennet, Mathieu

    2016-07-01

    Certain bacteria contain strings of magnetic nanoparticles and therefore align with magnetic fields. Inspired by these natural structures, researchers have now fabricated synthetic one-dimensional arrays of such particles.

  14. Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings.

    PubMed

    Zhou, Yingshan; Yang, Hongjun; Liu, Xin; Mao, Jun; Gu, Shaojin; Xu, Weilin

    2013-02-01

    Composite nanofibrous membranes of water-soluble N-carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles were successfully fabricated by electrospinning. The composite nanofibers were subjected to detailed analysis by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). SEM results investigated that the morphology and diameter of the nanofibers were affected by silk fibroin nanoparticles content. XRD and DSC demonstrated that there was intermolecular hydrogen bonding among the molecules of carboxyethyl chitosan, silk fibroin and PVA. The crystalline microstructure of the electrospun fibers was not well developed. The indirect cytotoxicity assessments of the nanofibers were studied. The result showed the nanofibers had good biocompatibility. This novel electrospun matrix would be used as potential wound dressing for skin regeneration. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Triphenyl Phosphine-Functionalized Chitosan Nanoparticles Enhanced Antitumor Efficiency Through Targeted Delivery of Doxorubicin to Mitochondria

    NASA Astrophysics Data System (ADS)

    Hou, Jiahui; Yu, Xiwei; Shen, Yaping; Shi, Yijie; Su, Chang; Zhao, Liang

    2017-02-01

    Mitochondria as an important organ in eukaryotic cells produced energy through oxidative phosphorylation and also played an important role in regulating the apoptotic signal transduction process. Importantly, mitochondria like nuclei also contained the functional DNA and were very sensitive to anticancer drugs which could effectively inhibit the synthesis of nucleic acid, especially the production of DNA. In this work, we designed novel triphenyl phosphine (TPP)-conjugated chitosan (CS) nanoparticles (NPs) for efficient drug delivery to cell mitochondria. The results showed that compared with free doxorubicin (Dox), Dox-loaded TPP-NPs were specifically distributed in mitochondria of tumor cells and interfered with the function of mitochondria, thus resulted in the higher cytotoxicity and induced the significant cell apoptosis effect. Taken together, triphenyl phosphine-conjugated chitosan nanoparticles may become a promising mitochondria-targeting nanocarrier candidate for enhancing antitumor effects.

  16. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes.

    PubMed

    Li, Li-Hua; Deng, Jian-Cheng; Deng, Hui-Ren; Liu, Zi-Ling; Xin, Ling

    2010-05-27

    Novel chitosan/ZnO nanoparticle (CS/nano-ZnO) composite membranes were prepared via the method of sol-cast transformation and studied by UV-vis absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray fluorescence spectrometry (EDX). The characterization revealed that ZnO nanoparticles dispersed homogeneously within the chitosan matrix. The mechanical and antibacterial properties of the product were investigated. The results showed that the ZnO content had an effect on the mechanical properties of CS/nano-ZnO composite membranes, and that the antibacterial activities of CS membranes for Bacillus subtilis, Escherichia coli, and Staphylococcus aureus were enhanced by the incorporation of ZnO. Further, CS/nano-ZnO composite membranes with 6-10 wt% ZnO exhibited high antibacterial activities.

  17. Triphenyl Phosphine-Functionalized Chitosan Nanoparticles Enhanced Antitumor Efficiency Through Targeted Delivery of Doxorubicin to Mitochondria.

    PubMed

    Hou, Jiahui; Yu, Xiwei; Shen, Yaping; Shi, Yijie; Su, Chang; Zhao, Liang

    2017-12-01

    Mitochondria as an important organ in eukaryotic cells produced energy through oxidative phosphorylation and also played an important role in regulating the apoptotic signal transduction process. Importantly, mitochondria like nuclei also contained the functional DNA and were very sensitive to anticancer drugs which could effectively inhibit the synthesis of nucleic acid, especially the production of DNA. In this work, we designed novel triphenyl phosphine (TPP)-conjugated chitosan (CS) nanoparticles (NPs) for efficient drug delivery to cell mitochondria. The results showed that compared with free doxorubicin (Dox), Dox-loaded TPP-NPs were specifically distributed in mitochondria of tumor cells and interfered with the function of mitochondria, thus resulted in the higher cytotoxicity and induced the significant cell apoptosis effect. Taken together, triphenyl phosphine-conjugated chitosan nanoparticles may become a promising mitochondria-targeting nanocarrier candidate for enhancing antitumor effects.

  18. Chitosan nanoparticles and their Tween 80 modified counterparts disrupt the developmental profile of zebrafish embryos.

    PubMed

    Yuan, Zhongyue; Li, Ying; Hu, Yulan; You, Jian; Higashisaka, Kazuma; Nagano, Kazuya; Tsutsumi, Yasuo; Gao, Jianqing

    2016-12-30

    Chitosan nanoparticles (CS-NPs) and their Tween 80 modified counterparts (TmCS-NPs) are among the most commonly used brain-targeted vehicles. However, their potential developmental toxicity is poorly understood. In this study, zebrafish embryos are introduced as an in vivo platform. Both NPs showed a dose-dependent increase in developmental toxicity (decreased hatching rate, increased mortality and incidences of malformation). Neurobehavioral changes included decreased spontaneous movement in TmCS-NP treated embryos and hyperactive effect in CS-NP treated larvae. Both NPs remarkably inhibited axonal development of primary and secondary motor neurons, and affected the muscle structure. Overall, this study demonstrated that CS-NPs and TmCS-NPs could affect embryonic development, disrupt neurobehavior of zebrafish larvae and affect muscle and neuron development, suggesting more attention on biodegradable chitosan nanoparticles.

  19. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    PubMed Central

    Xiao, Yunbin; Lin, Zuan Tao; Chen, Yanmei; Wang, He; Deng, Ya Li; Le, D Elizabeth; Bin, Jianguo; Li, Meiyu; Liao, Yulin; Liu, Yili; Jiang, Gangbiao; Bin, Jianping

    2015-01-01

    Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS) micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm) and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. PMID:25709439

  20. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging.

    PubMed

    Xiao, Yunbin; Lin, Zuan Tao; Chen, Yanmei; Wang, He; Deng, Ya Li; Le, D Elizabeth; Bin, Jianguo; Li, Meiyu; Liao, Yulin; Liu, Yili; Jiang, Gangbiao; Bin, Jianping

    2015-01-01

    Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS) micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm) and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors.

  1. Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends.

    PubMed

    Ghorbani, Fereshte Mohammad; Kaffashi, Babak; Shokrollahi, Parvin; Akhlaghi, Shahin; Hedenqvist, Mikael S

    2016-02-01

    The effect of hydroxyapatite nano-particles (nHA) on morphology, and rheological and thermal properties of PCL/chitosan blends was investigated. The tendency of nHA to reside in the submicron-dispersed chitosan phase is determined using SEM and AFM images. The presence of electrostatic interaction between amide sites of chitosan and ionic groups on the nHA surface was proved by FTIR. It is shown that the chitosan phase is thermodynamically more favorable for the nano-particles to reside than the PCL phase. Lack of implementation of Cox-Merz theory for this system shows that the polymer-nano-particle network is destructed by the flow. Results from dynamic rheological measurements and Zener fractional model show that the presence of nHA increases the shear moduli and relaxation time of the PCL/chitosan blends. DSC measurements showed that nHA nano-particles are responsible for the increase in melting and crystallization characteristics of the PCL/chitosan blends. Based on thermogravimetric analysis, the PCL/chitosan/nHA nano-composites exhibited a greater thermal stability compared to the nHA-free blends.

  2. Synthesis of chitosan supported palladium nanoparticles and its catalytic activity towards 2-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Dhanavel, S.; Nivethaa, E. A. K.; Esther, G.; Narayanan, V.; Stephen, A.

    2016-05-01

    Chitosan supported Palladium nanoparticles were synthesized by a simple cost effective chemical reduction method using NaBH4. The prepared nanocomposite was characterized by X-Ray diffraction analysis, FESEM and Energy dispersive spectroscopy analysis of X-rays (EDAX). The catalytic performance of the nanocomposite was evaluated on the reduction of 2-Nitrophenol to the 2-Amino phenol with rate constant 1.08 × 10-3 S-1 by NaBH4 using Spectrophotometer.

  3. Characterization and anti-proliferative activity of curcumin loaded chitosan nanoparticles in cervical cancer.

    PubMed

    Khan, Md Asad; Zafaryab, Md; Mehdi, Syed Hassan; Ahmad, Irfan; Rizvi, M Moshahid A

    2016-12-01

    In the present study the chitosan nanoparticles (CsNPs) and curcumin loaded chitosan nanoparticles (CLCsNPs) were synthesized by tripolyphosphate (TPP) cross-linking method. The nanoparticles were prepared within a zone of appropriate chitosan and TPP concentrations. The average size of CsNPs and CLCsNPs were approximately 189±11.8nm and 197±16.8nm, exhibited a zeta potential of +76±5.6mV and +71±6.4mV respectively and drug entrapment efficiency was ≈85%. The CLCsNPs and CsNPs were further characterized by different physicochemical methods like transmission electron microscopy (TEM), dynamic light scattering (DLS), HPLC, MALDI-TOF, FT-IR, XRD and UV-vis Spectroscopy. In vitro studies revealed a fast release of ≈35% at pH 5 and ≈25% at pH 7.4 of the drug during the first 3h, followed by controlled release of curcumin over a period of 120h and sustained anti-proliferative activity of the drug in a dose and time dependent manner of CLCsNPs and combination with methyl jasmonate. The higher cytotoxicity effect of CLCsNPs may be due to their higher cellular uptake as compared to curcumin. Chitosan nanoparticles were not only stable but also a nontoxic. Our data suggested that curcumin loaded nanoformulations, therefore, might be promising candidates in cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Folate-conjugated chitosan-polylactide nanoparticles for enhanced intracellular uptake of anticancer drug

    NASA Astrophysics Data System (ADS)

    Huang, Shengtang; Wan, Ying; Wang, Zheng; Wu, Jiliang

    2013-12-01

    Chitosan was conjugated with folic acid (FA) and the resulting chitosan derivatives with a FA-substitution degree of around 6 % was used to synthesize FA-conjugated chitosan-polylactide (FA-CH-PLA) copolymers to build a drug carrier with active targeting characteristics for the anticancer drug of paclitaxel (PTX). Selected FA-CH-PLAs with various polylactide percentages of about 40 wt% or lower were employed to fabricate nanoparticles using sodium tripolyphosphate as a crosslinker, and different types of nanoparticles were endued with similar average particle-sizes located in a range between 100 and 200 nm. Certain types of PTX-loaded FA-CH-PLA nanoparticles having encapsulation efficiency of around 90 % and initial load of about 12 % were able to release PTX in a controlled manner with significant regulation by polylactide content in FA-CH-PLAs. Targeting characteristic of achieved nanoparticles was confirmed using FA-receptor-expressed MCF-7 breast cancer cells. The uptake of PTX revealed that optimized FA-CH-PLA nanoparticles with an equivalent PTX-dose of around 1 μg/mL could have more than sixfold increasing abilities to facilitate intracellular paclitaxel accumulation in MCF-7 cells after 24 h treatment as compared to free PTX. At a relatively safe equivalent PTX-dose for normal MCF-10A mammary epithelial cells, the obtained results from Hoechst 33342 staining indicated that optimized PTX-loaded FA-CH-PLA nanoparticles had more than threefold increasing abilities to induce MCF-7 cell apoptosis in comparison to free PTX.

  5. Stabilization and cellular delivery of chitosan-polyphosphate nanoparticles by incorporation of iron.

    PubMed

    Giacalone, Giovanna; Hillaireau, Hervé; Capiau, Pauline; Chacun, Hélène; Reynaud, Franceline; Fattal, Elias

    2014-11-28

    Chitosan (CS) nanoparticles are typically obtained by complexation with tripolyphosphate (TPP) ions, or more recently using triphosphate group-containing drugs such as adenosine triphosphate (ATP). ATP is an active molecule we aim to deliver in order to restore its depletion in macrophages, when associated with their death leading to plaque rupture in atherosclerotic lesions. Despite high interest in CS nanoparticles for drug delivery, due to the biodegradability of CS and to the ease of the preparation process, these systems tend to readily disintegrate when diluted in physiological media. Some stabilization strategies have been proposed so far but they typically involve the addition of a coating agent or chemical cross-linkers. In this study, we propose the complexation of CS with iron ions prior to nanoparticle formation as a strategy to improve the carrier stability. This can be achieved thanks to the ability of iron to strongly bind both chitosan and phosphate groups. Nanoparticles were obtained from either TPP or ATP and chitosan-iron (CS-Fe) complexes containing 3 to 12% w/w iron. Isothermal titration calorimetry showed that the binding affinity of TPP and ATP to CS-Fe increased with the iron content of CS-Fe complexes. The stability of these nanoparticles in physiological conditions was evaluated by turbidity and by fluorescence fluctuation in real time upon dilution by electrolytes, and revealed an important stabilization effect of CS-Fe compared to CS, increasing with the iron content. Furthermore, in vitro studies on two macrophage cell lines (J774A.1 and THP-1) revealed that ATP uptake is improved consistently with the iron content of CS-Fe/ATP nanoparticles, and correlated to their lower dissociation in biological medium, allowing interesting perspectives for the intracellular delivery of ATP.

  6. Transformation of thiolated chitosan-templated gold nanoparticles to huge microcubes

    SciTech Connect

    Sun, Yudie; Liu, Honglin; Yang, Liangbao; Sun, Bai; Liu, Jinhuai

    2014-05-01

    Graphical abstract: - Highlights: • Mercapto groups were grafted to chitosan molecule by a reactive amine reduction. • Functional polymer with well-defined monomer units controls AuNPs assembly. • Assembled morphologies depend on the ratio of AuNPs to thiolate groups. • Microcubes with side length of ∼20 μm was synthesized through a dialysis step. • A edge-to-middle growth mechanism of gold microcubes was observed. - Abstract: The L-cysteine molecules were successfully grafted to the 2-amino group of chitosan by a reactive amine reduction, and the as-synthesized thiolated chitosan (TC) molecules were used as the templates to direct the self-assembly of gold nanoparticles and induce the transformation of these assemblies to gold microcubes through a deep-going dialysis. We found that the ratio of gold nanoparticles to TC molecules could greatly affect the shape of the assembled clusters. Different stages of these clusters and microstructures during the dialysis process were characterized by scanning electron microscope (SEM), and the microcubes with average side length of about 20 μm were successfully synthesized. According to the morphology evolution of the assembly, it could be concluded that the microcubes were formed from external to internal. The SERS area mapping images of microcubes and some clusters were also collected to study the formation mechanism of gold microcubes. Our work demonstrates a simple and highly effective way to assemble gold nanoparticles into microcubes with unique properties.

  7. Novel biocompatible composite (Chitosan-zinc oxide nanoparticle): preparation, characterization and dye adsorption properties.

    PubMed

    Salehi, Raziyeh; Arami, Mokhtar; Mahmoodi, Niyaz Mohammad; Bahrami, Hajir; Khorramfar, Shooka

    2010-10-01

    In this paper, the preparation, characterization and dye adsorption properties of novel biocompatible composite (Chitosan-zinc oxide nanoparticle) (CS/n-ZnO) were investigated. Zinc oxide nanoparticles were immobilized onto Chitosan. Physical characteristics of CS/n-ZnO were studied using Fourier transform infra-red (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and wavelength dispersive X-ray spectroscopy (WDX). Two textile dyes, Direct Blue 78 (DB78) and Acid Black 26 (AB26), were used as model compounds. The effect of CS/n-ZnO doses, initial dye concentration, salt and pH were elucidated at 20+/-1 degrees C. The isotherm and kinetics of dye adsorption were studied. The presence of functional groups such as hydroxyl, amino and carbonyl groups were detected. Results showed zinc oxide nanoparticles were immobilized onto Chitosan. The data were evaluated for compliance with the Langmuir, Freundlich and Tempkin isotherm models. It was found that AB26 and DB78 followed with Langmuir and Tempkin isotherms, respectively. In addition, adsorption kinetics of both dyes was found to conform to pseudo-second order kinetics. Based on the data of present investigation, one could conclude that the CS/n-ZnO being a biocompatible, eco-friendly and low-cost adsorbent might be a suitable alternative for elimination of dyes from colored aqueous solutions.

  8. Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation.

    PubMed

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The objective of the present work was to improve the thermal stability of eugenol by encapsulating into chitosan nanoparticles via an emulsion-ionic gelation crosslinking method. The influences of the initial eugenol content and tripolyphosphate (TPP) concentration on the loading capacity (LC), encapsulation efficiency (EE), morphology and surface charge of the eugenol-loaded chitosan nanoparticles were also investigated. LC and EE tended to increase with increasing initial eugenol content and decreasing TPP concentration. Particles with LC of 12% and EE of 20% exhibited a spherical shape with an average size of less than 100 nm. Thermal stability of the encapsulated eugenol was verified through its extrusion at 155°C with a model plastic, i.e. thermoplastic flour (TPF). TPF containing encapsulated eugenol showed 8-fold higher remaining eugenol content and 2.7-fold greater radical scavenging activity than that containing naked eugenol. The results suggest the possible use of eugenol-loaded chitosan nanoparticles as antioxidants in bioactive plastics for food packaging.

  9. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection

    NASA Astrophysics Data System (ADS)

    Potara, Monica; Baia, Monica; Farcau, Cosmin; Astilean, Simion

    2012-02-01

    Surface-enhanced Raman spectroscopy (SERS) is a technique that has become widely used for identifying and providing structural information about molecular species in low concentration. There is an ongoing interest in finding optimum particle size, shape and spatial distribution for optimizing the SERS substrates and pushing the sensitivity toward the single-molecule detection limit. This work reports the design of a novel, biocompatible SERS substrate based on small clusters of anisotropic silver nanoparticles embedded in a film of chitosan biopolymer. The SERS efficiency of the biocompatible film is assessed by employing Raman imaging and spectroscopy of adenine, a significant biological molecule. By combining atomic force microscopy with SERS imaging we find that the chitosan matrix enables the formation of small clusters of silver nanoparticles, with junctions and gaps that greatly enhance the Raman intensities of the adsorbed molecules. The study demonstrates that chitosan-coated anisotropic silver nanoparticle clusters are sensitive enough to be implemented as effective plasmonic substrates for SERS detection of nonresonant analytes at the single-molecule level.

  10. Dual immobilization and magnetic manipulation of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Jian, Z. F.; Horng, H. E.; Hong, Chin-Yih; Yang, H. C.; Wu, C. C.; Lee, Y. H.

    By suitably bio-functionalizing the surfaces, magnetic nanoparticles are able to bind specific biomolecules, and may serve as vectors for delivering bio-entities to target tissues. In this work, the synthesis of bio-functionalized magnetic nanoparticles with two kinds of bio-probes is developed. Here, the stem cell is selected as a to-be-delivered bio-entity and infarcted myocardium is the target issue. Thus, cluster designation-34 (CD-34) on stem cell and creatine kinase-MB (CK-MB) (or troponin I) on infarcted myocardium are the specific biomolecules to be bound with bio-functionalized magnetic nanoparticles. In addition to demonstrating the co-coating of two kinds of bio-probes on a magnetic nanoparticle, the feasibility of manipulation on bio-functionalized magnetic nanoparticles by external magnetic fields is investigated.

  11. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis.

    PubMed

    Lu, Huading; Dai, Yuhu; Lv, Lulu; Zhao, Huiqing

    2014-01-01

    The development of safe and efficient gene carriers is the key to the clinical success of gene therapy. The present study was designed to develop and evaluate the chitosan-graft-polyethylenimine (CP)/DNA nanoparticles as novel non-viral gene vectors for gene therapy of osteoarthritis. The CP/DNA nanoparticles were produced through a complex coacervation of the cationic polymers with pEGFP after grafting chitosan (CS) with a low molecular weight (Mw) PEI (Mw = 1.8 kDa). Particle size and zeta potential were related to the weight ratio of CP:DNA, where decreases in nanoparticle size and increases in surface charge were observed as CP content increased. The buffering capacity of CP was significantly greater than that of CS. The transfection efficiency of CP/DNA nanoparticles was similar with that of the Lipofectamine™ 2000, and significantly higher than that of CS/DNA and PEI (25 kDa)/DNA nanoparticles. The transfection efficiency of the CP/DNA nanoparticles was dependent on the weight ratio of CP:DNA (w/w). The average cell viability after the treatment with CP/DNA nanoparticles was over 90% in both chondrocytes and synoviocytes, which was much higher than that of PEI (25 kDa)/DNA nanoparticles. The CP copolymers efficiently carried the pDNA inside chondrocytes and synoviocytes, and the pDNA was detected entering into nucleus. These results suggest that CP/DNA nanoparticles with improved transfection efficiency and low cytotoxicity might be a safe and efficient non-viral vector for gene delivery to both chondrocytes and synoviocytes.

  12. Transport of chitosan-DNA nanoparticles in human intestinal M-cell model versus normal intestinal enterocytes.

    PubMed

    Kadiyala, Irina; Loo, Yihua; Roy, Krishnendu; Rice, Janet; Leong, Kam W

    2010-01-31

    Oral vaccination is one of the most promising applications of polymeric nanoparticles. Using two different in vitro cellular models to partially reproduce the characteristics of intestinal enterocytes and M-cells, this study demonstrates that nanoparticle transport through the M-cell co-culture model is 5-fold that of the intestinal epithelial monolayer, with at least 80% of the chitosan-DNA nanoparticles uptaken in the first 30 min. Among the properties of nanoparticles studied, ligand decoration has the most dramatic effect on the transcytosis rate: transferrin modification enhances transport through both models by 3- to 5-fold. The stability of the nanoparticles also affects transport kinetics. Factors which de-stabilize the nanoparticles, such as low charge (N/P) ratio and addition of serum, result in aggregation and in turn decreases transport efficiency. Of these stability factors, luminal pH is of great interest as an increase in pH from 5.5 to 6.4 and 7.4 leads to a 3- and 10-fold drop in nanoparticle transport, respectively. Since soluble chitosan can act as an enhancer to increase paracellular transport by up to 60%, this decrease is partially attributed to the soluble chitosan precipitating near neutral pH. The implication that chitosan-DNA nanoparticles are more stable in the upper regions of the small intestine suggests that higher uptake rates may occur in the duodenum compared to the ileum and the colon. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Magnetic relaxation in dipolar magnetic nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Hovorka, Ondrej; Barker, Joe; Chantrell, Roy; Friedman, Gary; York-Drexel Collaboration

    2013-03-01

    Understanding the role of dipolar interactions on thermal relaxation in magnetic nanoparticle (MNP) systems is of fundamental importance in magnetic recording, for optimizing the hysteresis heating contribution in the hyperthermia cancer treatment in biomedicine, or for biological and chemical sensing, for example. In this talk, we discuss our related efforts to quantify the influence of dipolar interactions on thermal relaxation in small clusters of MNPs. Setting up the master equation and solving the associated eigenvalue problem, we identify the observable relaxation time scale spectra for various types of MNP clusters, and demonstrate qualitatively different spectral characteristics depending on the point group of symmetries of the particle arrangement within the cluster - being solely a dipolar interaction effect. Our findings provide insight into open questions related to magnetic relaxation in bulk MNP systems, and may prove to be also of practical relevance, e.g., for improving robustness of methodologies in biological and chemical sensing. OH gratefully acknowledges support from a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme under grant agreement PIEF-GA-2010-273014

  14. Bioinspired synthesis of magnetic nanoparticles

    SciTech Connect

    David, Anand

    2009-01-01

    The synthesis of magnetic nanoparticles has long been an area of active research. Magnetic nanoparticles can be used in a wide variety of applications such as magnetic inks, magnetic memory devices, drug delivery, magnetic resonance imaging (MRI) contrast agents, and pathogen detection in foods. In applications such as MRI, particle uniformity is particularly crucial, as is the magnetic response of the particles. Uniform magnetic particles with good magnetic properties are therefore required. One particularly effective technique for synthesizing nanoparticles involves biomineralization, which is a naturally occurring process that can produce highly complex nanostructures. Also, the technique involves mild conditions (ambient temperature and close to neutral pH) that make this approach suitable for a wide variety of materials. The term 'bioinspired' is important because biomineralization research is inspired by the naturally occurring process, which occurs in certain microorganisms called 'magnetotactic bacteria'. Magnetotactic bacteria use biomineralization proteins to produce magnetite crystals having very good uniformity in size and morphology. The bacteria use these magnetic particles to navigate according to external magnetic fields. Because these bacteria synthesize high quality crystals, research has focused on imitating aspects of this biomineralization in vitro. In particular, a biomineralization iron-binding protein found in a certain species of magnetotactic bacteria, magnetospirillum magneticum, AMB-1, has been extracted and used for in vitro magnetite synthesis; Pluronic F127 gel was used to increase the viscosity of the reaction medium to better mimic the conditions in the bacteria. It was shown that the biomineralization protein mms6 was able to facilitate uniform magnetite synthesis. In addition, a similar biomineralization process using mms6 and a shorter version of this protein, C25, has been used to synthesize cobalt ferrite particles. The overall

  15. Preparation and cytotoxicity of N,N,N-trimethyl chitosan/alginate beads containing gold nanoparticles.

    PubMed

    Martins, Alessandro F; Facchi, Suelen P; Monteiro, Johny P; Nocchi, Samara R; Silva, Cleiser T P; Nakamura, Celso V; Girotto, Emerson M; Rubira, Adley F; Muniz, Edvani C

    2015-01-01

    Polyelectrolyte complex beads based on N,N,N-trimethyl chitosan (TMC) and sodium alginate (ALG) were obtained. This biomaterial was characterised by FTIR, TGA/DTG, DSC and SEM analysis. The good properties of polyelectrolyte complex hydrogel beads were associated, for the first time, with gold nanoparticles (AuNPs). Through a straightforward methodology, AuNPs were encapsulated into the beads. The in vitro cytotoxicity assays on the Caco-2 colon cancer cells and healthy VERO cells showed that the beads presented good biocompatibility on both cell lines, whereas the beads loaded with gold nanoparticles (beads/AuNPs) was slightly cytotoxic on the Caco-2 and VERO cells.

  16. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    PubMed

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment.

  17. Nanoparticles Based on Chitosan as Carriers for the Combined Herbicides Imazapic and Imazapyr.

    PubMed

    Maruyama, Cintia Rodrigues; Guilger, Mariana; Pascoli, Mônica; Bileshy-José, Natalia; Abhilash, P C; Fraceto, Leonardo Fernandes; de Lima, Renata

    2016-01-27

    The use of lower concentrations and fewer applications of herbicides is one of the prime objectives of the sustainable agriculture as it decreases the toxicity to non-targeted organisms and the risk of wider environmental contamination. In the present work, nanoparticles were developed for encapsulation of the herbicides imazapic and imazapyr. Alginate/chitosan and chitosan/tripolyphosphate nanoparticles were manufactured, and their physicochemical stability was evaluated. Determinations were made of the encapsulation efficiency and release kinetics, and the toxicity of the nanoparticles was evaluated using cytotoxicity and genotoxicity assays. The effects of herbicides and herbicide-loaded nanoparticles on soil microorganisms were studied in detail using real-time polymerase chain reactions. The nanoparticles showed an average size of 400 nm and remained stable during 30 days of storage at ambient temperature. Satisfactory encapsulation efficiencies of between 50 and 70% were achieved for both types of particles. Cytotoxicity assays showed that the encapsulated herbicides were less toxic, compared to the free compounds, and genotoxicity was decreased. Analyses of soil microbiota revealed changes in the bacteria of the soils exposed to the different treatments. Our study proves that encapsulation of the herbicides improved their mode of action and reduced their toxicity, indicating their suitability for use in future practical applications.

  18. Nanoparticles Based on Chitosan as Carriers for the Combined Herbicides Imazapic and Imazapyr

    NASA Astrophysics Data System (ADS)

    Maruyama, Cintia Rodrigues; Guilger, Mariana; Pascoli, Mônica; Bileshy-José, Natalia; Abhilash, P. C.; Fraceto, Leonardo Fernandes; de Lima, Renata

    2016-01-01

    The use of lower concentrations and fewer applications of herbicides is one of the prime objectives of the sustainable agriculture as it decreases the toxicity to non-targeted organisms and the risk of wider environmental contamination. In the present work, nanoparticles were developed for encapsulation of the herbicides imazapic and imazapyr. Alginate/chitosan and chitosan/tripolyphosphate nanoparticles were manufactured, and their physicochemical stability was evaluated. Determinations were made of the encapsulation efficiency and release kinetics, and the toxicity of the nanoparticles was evaluated using cytotoxicity and genotoxicity assays. The effects of herbicides and herbicide-loaded nanoparticles on soil microorganisms were studied in detail using real-time polymerase chain reactions. The nanoparticles showed an average size of 400 nm and remained stable during 30 days of storage at ambient temperature. Satisfactory encapsulation efficiencies of between 50 and 70% were achieved for both types of particles. Cytotoxicity assays showed that the encapsulated herbicides were less toxic, compared to the free compounds, and genotoxicity was decreased. Analyses of soil microbiota revealed changes in the bacteria of the soils exposed to the different treatments. Our study proves that encapsulation of the herbicides improved their mode of action and reduced their toxicity, indicating their suitability for use in future practical applications.

  19. Nanoparticles Based on Chitosan as Carriers for the Combined Herbicides Imazapic and Imazapyr

    PubMed Central

    Maruyama, Cintia Rodrigues; Guilger, Mariana; Pascoli, Mônica; Bileshy-José, Natalia; Abhilash, P.C.; Fraceto, Leonardo Fernandes; de Lima, Renata

    2016-01-01

    The use of lower concentrations and fewer applications of herbicides is one of the prime objectives of the sustainable agriculture as it decreases the toxicity to non-targeted organisms and the risk of wider environmental contamination. In the present work, nanoparticles were developed for encapsulation of the herbicides imazapic and imazapyr. Alginate/chitosan and chitosan/tripolyphosphate nanoparticles were manufactured, and their physicochemical stability was evaluated. Determinations were made of the encapsulation efficiency and release kinetics, and the toxicity of the nanoparticles was evaluated using cytotoxicity and genotoxicity assays. The effects of herbicides and herbicide-loaded nanoparticles on soil microorganisms were studied in detail using real-time polymerase chain reactions. The nanoparticles showed an average size of 400 nm and remained stable during 30 days of storage at ambient temperature. Satisfactory encapsulation efficiencies of between 50 and 70% were achieved for both types of particles. Cytotoxicity assays showed that the encapsulated herbicides were less toxic, compared to the free compounds, and genotoxicity was decreased. Analyses of soil microbiota revealed changes in the bacteria of the soils exposed to the different treatments. Our study proves that encapsulation of the herbicides improved their mode of action and reduced their toxicity, indicating their suitability for use in future practical applications. PMID:26813942

  20. Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane.

    PubMed

    Singh, K H; Shinde, U A

    2011-08-01

    Various efforts have been made to improve the bioavailability and to prolong the residence time of eye drops. Drug loaded polymeric nanoparticles offer several favorable biological properties. Thus, brimonidine tartrate (BT) loaded chitosan (CS) nanoparticles were prepared by inducing the ionic gelation upon addition of sodium tripolyphosphate (TPP). Nanoparticles were characterized by TEM, SEM, particle size, polydispersity index (PI), DSC, IR, entrapment efficiency which gave an insight of physicochemical interaction that influenced the CS nanoparticle formation and entrapment of BT. In vitro release of BT nanoparticle showed sustained release over the period of 4 h in saline phosphate buffer pH 7.4. Both placebo and BT loaded nanoparticles had a mean particle size range of about 270-370 nm with PI less than 0.5. DSC studies demonstrated structural interactions between BT, TPP and CS matrix. Entrapment efficiency of the CS nanoparticles ranged from 36-49% depending on the CS:TPP weight ratio. In vivo studies confirmed a significant sustained effect of BT nanoparticles compared to conventional eye drops. These results suggest that BT loaded CS nanoparticles could help to reduce dosage frequency by sustained drug release in the treatment of glaucoma.

  1. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2012-01-01

    Background and methods Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure. Results X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG) nanocarriers. Conclusion The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3) line, and anticancer activity was higher in HT29 than MCF7 cell lines. PMID:23166439

  2. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA.

    PubMed

    Malhotra, Meenakshi; Tomaro-Duchesneau, Catherine; Saha, Shyamali; Kahouli, Imen; Prakash, Satya

    2013-01-01

    Recently, cell-penetrating peptides have been proposed to translocate antibodies, proteins, and other molecules in targeted drug delivery. The proposed study presents the synthesis and characterization of a peptide-based chitosan nanoparticle for small interfering RNA (siRNA) delivery, in-vitro. Specifically, the synthesis included polyethylene glycol (PEG), a hydrophilic polymer, and trans-activated transcription (TAT) peptide, which were chemically conjugated on the chitosan polymer. The conjugation was achieved using N-Hydroxysuccinimide-PEG-maleimide (heterobifunctional PEG) as a cross-linker, with the bifunctional PEG facilitating the amidation reaction through its N-Hydroxysuccinimide group and reacting with the amines on chitosan. At the other end of PEG, the maleimide group was chemically conjugated with the cysteine-modified TAT peptide. The degree of substitution on chitosan with PEG and on PEG with TAT was confirmed using colorimetric assays. The resultant polymer was used to form nanoparticles complexing siRNA, which were then characterized for particle size, morphology, cellular uptake, and cytotoxicity. The nanoparticles were tested in-vitro on mouse neuroblastoma cells (Neuro2a). Particle size and surface charge were characterized and an optimal pH condition and PEG molecular weight were determined to form sterically stable nanoparticles. Results indicate 7.5% of the amines in chitosan polymer were conjugated to the PEG and complete conjugation of TAT peptide was observed on the synthesized PEGylated chitosan polymer. Compared with unmodified chitosan nanoparticles, the nanoparticles formed at pH 6 were monodispersed and of <100 nm in size, exhibiting maximum cell transfection ability and very low cytotoxicity. Thus, this research may be of significance in translocating biotherapeutic molecules for intracellular delivery applications.

  3. Development of a novel drug delivery system: chitosan nanoparticles entrapped in alginate microparticles.

    PubMed

    Garrait, Ghislain; Beyssac, Eric; Subirade, Muriel

    2014-01-01

    A novel carrier using chitosan nanoparticles entrapped into alginate microparticles is proposed for protecting molecules of interest from degradation in the digestive tract. The effects of polymer concentration, sonication, stirring, pH, and processing conditions on the physical characteristics of the carrier were studied. FITC and RBITC were used to localise the polymers within particles using CLSM. Diffusion of amaranth red (AR) from nanoparticles was quantified during dissolution under gastric and intestinal conditions. Under optimal preparation conditions, the size distribution of nanoparticles loaded with AR was uniform (690 nm) with an encapsulation efficacy of 21.9%. Alginate microparticles (285 µm) containing a homogenous distribution of nanoparticles and polymers were obtained. At gastric pH, the carrier released less than 5% of the loaded AR and, at intestinal pH, the release was rapid and complete. The drug carriers developed shows a promising use as a vehicle suitable to protect molecules of interest after oral administration.

  4. Magnetic Nanoparticles in Cancer Theranostics.

    PubMed

    Gobbo, Oliviero L; Sjaastad, Kristine; Radomski, Marek W; Volkov, Yuri; Prina-Mello, Adriele

    2015-01-01

    In a report from 2008, The International Agency for Research on Cancer predicted a tripled cancer incidence from 1975, projecting a possible 13-17 million cancer deaths worldwide by 2030. While new treatments are evolving and reaching approval for different cancer types, the main prevention of cancer mortality is through early diagnosis, detection and treatment of malignant cell growth. The last decades have seen a development of new imaging techniques now in widespread clinical use. The development of nano-imaging through fluorescent imaging and magnetic resonance imaging (MRI) has the potential to detect and diagnose cancer at an earlier stage than with current imaging methods. The characteristic properties of nanoparticles result in their theranostic potential allowing for simultaneous detection of and treatment of the disease. This review provides state of the art of the nanotechnological applications for cancer therapy. Furthermore, it advances a novel concept of personalized nanomedical theranostic therapy using iron oxide magnetic nanoparticles in conjunction with MRI imaging. Regulatory and industrial perspectives are also included to outline future perspectives in nanotechnological cancer research.

  5. Magnetic Nanoparticles in Cancer Theranostics

    PubMed Central

    Gobbo, Oliviero L.; Sjaastad, Kristine; Radomski, Marek W.; Volkov, Yuri; Prina-Mello, Adriele

    2015-01-01

    In a report from 2008, The International Agency for Research on Cancer predicted a tripled cancer incidence from 1975, projecting a possible 13-17 million cancer deaths worldwide by 2030. While new treatments are evolving and reaching approval for different cancer types, the main prevention of cancer mortality is through early diagnosis, detection and treatment of malignant cell growth. The last decades have seen a development of new imaging techniques now in widespread clinical use. The development of nano-imaging through fluorescent imaging and magnetic resonance imaging (MRI) has the potential to detect and diagnose cancer at an earlier stage than with current imaging methods. The characteristic properties of nanoparticles result in their theranostic potential allowing for simultaneous detection of and treatment of the disease. This review provides state of the art of the nanotechnological applications for cancer therapy. Furthermore, it advances a novel concept of personalized nanomedical theranostic therapy using iron oxide magnetic nanoparticles in conjunction with MRI imaging. Regulatory and industrial perspectives are also included to outline future perspectives in nanotechnological cancer research. PMID:26379790

  6. Magnetic Characterization of Ferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bryan, Matthew; Sokol, Paul; Gumina, Greg; Bronstein, Lyudmila; Dragnea, Bogdan

    2011-03-01

    Magnetic nanoparticles (NPs) of different compositions (FeO/ Fe 3 O4 , g- Fe 2 O3 , FePt, and CoFe 2 O4) have been synthesized using high temperature organometallic routes described elsewhere. NPs (16.6 nm in diameter) of a mixed FeO/ Fe 3 O4 (wuestite/magnetite) composition were prepared by thermal decomposition or iron oleate in the presence of oleic acid as a surfactant in dodocane at 370C in argon atmosphere. After the thermal treatment of the reaction solution at 200 C under air for 2 hours these NPs are transformed into maghemite (g- Fe 2 O3) , the magnetization of which is significantly enhanced. NPs of CoFe 2 O4 (8 nm) have been prepared by simultaneous decomposition of Co(II) and Fe(III) acetylacetonates in the presence of oleic acid and oleylamine. The X-ray diffraction profile of these NPs is characteristic of cobalt ferrite. Alternatively, alloyed 1.8 nm FePt NPs prepared by simultaneous decomposition of Fe and Pt acetylacetonates in the reductive environment demonstrate a completely disordered structure, which is reflected in their magnetic properties. SQUID magnetometry was used to measure the magnetization of NPs at high and low temperatures. Zero-field cooling and field-cooling measurements were taken to demonstrate superparamagnetic behavior and an associated blocking temperature.

  7. Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B

    PubMed Central

    Zhou, Wenjun; Wang, Yuanyuan; Jian, Jiuying; Song, Shengfang

    2013-01-01

    Background The purpose of this study was to develop a self-aggregated nanoparticulate vehicle using an amphiphilic poly(lactic acid)-grafted-chitosan (PLA-g-CS) copolymer and to evaluate its potential for ocular delivery of amphotericin B. Methods A PLA-g-CS copolymer was synthesized via a “protection-graft-deprotection” procedure and its structure was confirmed by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra. Amphotericin B-loaded nanoparticles based on PLA-g-CS (AmB/PLA-g-CS) were prepared by the dialysis method and characterized for particle size, zeta potential, and encapsulation efficiency. Studies of these AmB/PLA-g-CS nanoparticles, including their mucoadhesive strength, drug release properties, antifungal activity, ocular irritation, ocular pharmacokinetics, and corneal penetration were performed in vitro and in vivo. Results Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra showed that the PLA chains were successfully grafted onto chitosan molecules and that crystallization of chitosan was suppressed. The self-aggregated PLA-g-CS nanoparticles had a core-shell structure with an average particle size of approximately 200 nm and zeta potentials higher than 30 mV. Amphotericin B was incorporated into the hydrophobic core of the nanoparticles with high encapsulation efficiency. Sustained drug release from the nanoparticles was observed in vitro. The ocular irritation study showed no sign of irritation after instillation of the PLA-g-CS nanoparticles into rabbit eyes. The minimal inhibitory concentration of the AmB/PLA-g-CS nanoparticles showed antifungal activity similar to that of free amphotericin B against Candida albicans. The in vivo ocular pharmacokinetic study suggested that the PLA-g-CS nanoparticles have the advantage of prolonging residence time at the ocular surface. The corneal penetration study showed that the PLA-g-CS nanoparticles

  8. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms

    PubMed Central

    Ong, Teik Hwa; Chitra, Ebenezer; Ramamurthy, Srinivasan; Siddalingam, Rajinikanth Paruvathanahalli; Yuen, Kah Hay; Ambu, Stephen Periathamby

    2017-01-01

    Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections. PMID:28362873

  9. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms.

    PubMed

    Ong, Teik Hwa; Chitra, Ebenezer; Ramamurthy, Srinivasan; Siddalingam, Rajinikanth Paruvathanahalli; Yuen, Kah Hay; Ambu, Stephen Periathamby; Davamani, Fabian

    2017-01-01

    Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections.

  10. Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques.

    PubMed

    Rampino, A; Borgogna, M; Bellich, B; Blasi, P; Virgilio, F; Cesàro, A

    2016-03-10

    The preparation of chitosan nanoparticles in combination with pectins, as additional mucoadhesive biopolymers, was investigated. Pectins from apple and from citrus fruit were considered; polygalacturonic acid was taken as a reference. Tripolyphosphate was used as an anionic cross-linker. Two different techniques were compared, namely the coating and the blending. Coated nanoparticles (NPs) in the ratio pectin:NPs from 2:1 to 5:1 evidenced that the size of NPs increased as the amount of pectin (both from apple and citrus fruit) was increased. In particular, for NPs coated with pectin from citrus fruit the size ranges from 200 to 260nm; while for NPs coated with pectin from apple the size ranges from 330 to 450nm. A minimum value of Z-potential around -35mV was obtained for the ratio pectin:NPs 4:1, while further addition of pectin did not decrease the Z-potential. Also blended NPs showed a dependence of the size on the ratio of the components: for a given ratio pectin:tripolyphosphate the size increases as the fraction of chitosan increases; for a low ratio chitosan:pectin a high amount of tripolyphosphate was needed to obtain a compact structure. The effect of the additional presence of loaded proteins in chitosan-pectin nanoparticles was also investigated, since proteins contribute to alter the electrostatic interactions among charged species. FT-IR and DSC characterization are presented to confirm the interactions between biopolymers. Finally, the biocompatibility of the used materials was assessed by the chorioallantoic membrane assay, confirming the safety of the materials.

  11. Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles.

    PubMed

    Duceppe, Nicolas; Tabrizian, Maryam

    2009-05-01

    The present work describes nanoparticles made of ultra low molecular weight chitosan (ULMWCh)/hyaluronic acid (HA) as novel potential carriers for gene delivery. Small and monodispersed nanoparticles with high in vitro transfection capabilities have been obtained by the complexation of these two polyelectrolytes. ULMWCh (<10 kDa) presents more advantageous characteristics over the higher molecular weight chitosan for clinical applications, namely increased solubility at physiological pH and improved DNA release. The ULMWCh:HA ratio and the HA molecular weights were varied with the aim of obtaining particles in the 100 nm range. Using chitosan (Ch) with a molecular weight of 5 kDa, HA with a molecular weight of 64 kDa, and a weight ratio of 4:1, nanoparticles with a Z-average size of 146+/-1 nm and narrow size distribution (polydispersity index: 0.073+/-0.030) were obtained. Nanoparticle images taken in dry conditions by SEM and AFM showed spherical particles. The optimal pH for transfection ranged from 6.4 to 6.8 for 0.25 microg of EGFP plasmid per well, with an incubation time of 4 h. Using these optimized parameters, DNA/ULMWCh:HA nanoparticles successfully transfected 25+/-1% of the 293T cells with pEGFP, compared to 0.7% obtained for DNA/ULMWCh under the same conditions. This high transfection efficiency of our non-viral gene delivery system could be attributed to the synergic effect of ULMWCh and low charge density of the HA chain for easy release of DNA which makes the system suitable for targeted gene delivery.

  12. A sustained release formulation of chitosan modified PLCL:poloxamer blend nanoparticles loaded with optical agent for animal imaging

    NASA Astrophysics Data System (ADS)

    Ranjan, Amalendu P.; Zeglam, Karim; Mukerjee, Anindita; Thamake, Sanjay; Vishwanatha, Jamboor K.

    2011-07-01

    The objective of this study was to develop optical imaging agent loaded biodegradable nanoparticles with indocynanine green (ICG) using chitosan modified poly(L-lactide-co-epsilon-caprolactone) (PLCL):poloxamer (Pluronic F68) blended polymer. Nanoparticles were formulated with an emulsification solvent diffusion technique using PLCL and poloxamer as blend-polymers. Polyvinyl alcohol (PVA) and chitosan were used as stabilizers. The particle size, shape and zeta potential of the formulated nanoparticles and the release kinetics of ICG from these nanoparticles were determined. Further, biodistribution of these nanoparticles was studied in mice at various time points until 24 h following intravenous administration, using a non-invasive imaging system. The average particle size of the nanoparticles was found to be 146 ± 3.7 to 260 ± 4.5 nm. The zeta potential progressively increased from - 41.6 to + 25.3 mV with increasing amounts of chitosan. Particle size and shape of the nanoparticles were studied using transmission electron microscopy (TEM) which revealed the particles to be smooth and spherical in shape. These nanoparticles were efficiently delivered to the cytoplasm of the cells, as observed in prostate and breast cancer cells using confocal laser scanning microscopy. In vitro release studies indicated sustained release of ICG from the nanoparticles over a period of seven days. Nanoparticle distribution results in mice showing improved uptake and accumulation with chitosan modified nanoparticles in various organs and slower clearance at different time points over a 24 h period as compared to unmodified nanoparticles. The successful formulation of such cationically modified nanoparticles for encapsulating optical agents may lead to a potential deep tissue imaging technique for tumor detection, diagnosis and therapy.

  13. Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells.

    PubMed

    Khalili, Malihe; Abedi, Mohammad; Amoli, Hossein Salar; Mozaffari, Seyed Ahmad

    2017-11-01

    In commercialization of liquid dye-sensitized solar cells (DSSCs), whose leakage, evaporation and toxicity of organic solvents are limiting factors, replacement of organic solvents with water-based gel electrolyte is recommended. This work reports on utilizing and comparison of chitosan and chitosan nanoparticle as different gelling agents in preparation of water-based gel electrolyte in fabrication of dye sensitized solar cells. All photovoltaic parameters such as open circuit voltage (Voc), fill factor (FF), short circuit current density (Jsc) and conversion efficiency (η) were measured. For further characterization, electrochemical impedance spectroscopy (EIS) was used to study the charge transfer at Pt/electrolyte interface and charge recombination and electron transport at TiO2/dye/electrolyte interface. Significant improvements in conversion efficiency and short circuit current density of DSSCs fabricated by chitosan nanoparticle were observed that can be attributed to the higher mobility of I3(-)due to the lower viscosity and smaller size of chitosan nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Platinum dendritic nanoparticles with magnetic behavior

    SciTech Connect

    Li, Wenxian; Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue; Tian, Dongliang

    2014-07-21

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  15. A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers

    NASA Astrophysics Data System (ADS)

    Zhao, Yinghui; Zhou, Ying; Wu, Xiaomian; Wang, Lu; Xu, Ling; Wei, Shicheng

    2012-09-01

    A facile method to prepare silver nanoparticles (AgNPs) containing nanofibers via electrospinning has been demonstrated. AgNPs were in situ synthesized in poly (vinyl alcohol) (PVA)/carboxymethyl-chitosan (CM-chitosan) blend aqueous solution before electrospinning. UV-vis spectra, viscosity and conductivity of the electrospinning solution were measured to investigate their effects on the electrospinning procedure. The morphology of AgNPs/PVA/CM-chitosan nanofibers was observed by Field Emission Scanning Electron Microscopy. The formation and morphology of AgNPs were investigated by Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. The resulted nanofibers have smooth surface and uniform diameters ranging from 295 to 343 nm. The diameters of AgNPs mainly distributed in the range of 4-14 nm, and the electrostatic interaction between AgNPs and fibers was observed. Finally, in vitro Ag release from the nanofibers was measured and the antibacterial behavior of the nanofibers against Escherichia coli was studied by bacterial growth inhibition halos and bactericidal kinetic testing. The AgNPs/PVA/CM-chitosan nanofibers possessed certain antibacterial ability, which makes them capable for antibacterial biomaterials.

  16. Structural and optical properties of Cu-doped ZnS nanoparticles formed in chitosan/sodium alginate multilayer films.

    PubMed

    Wang, Liping; Sun, Yujie; Xie, Xiaodong

    2014-05-01

    Chitosan/alginate multilayers were fabricated using a spin-coating method, and ZnS:Cu nanoparticles were generated within the network of two natural polysaccharides, chitosan and sodium alginate. The synthesized nanoparticles were characterized using an X-ray diffractometer (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The results showed that cubic zinc blende-structured ZnS:Cu nanoparticles with an average crystal size of ~ 3 nm were uniformly distributed. UV-vis spectra indicate a large quantum size effect and the absorption edge for the ZnS:Cu nanoparticles slightly shifted to longer wavelengths with increasing Cu ion concentrations. The photoluminescence of the Cu-doped ZnS nanoparticles reached a maximum at a 1% doping level. The ZnS:Cu nanoparticles form and are distributed uniformly in the composite multilayer films with a surface average height of 25 nm.

  17. In vivo heating of magnetic nanoparticles in alternating magnetic field.

    PubMed

    Babincová, M; Altanerová, V; Altaner, C; Cicmanec, P; Babinec, P

    2004-08-01

    We have evaluated heating capabilities of new magnetic nanoparticles. In in vitro experiments they were exposed to an alternating magnetic field with frequency 3.5 MHz and induction 1.5 mT produced in three turn pancake coil. In in vivo experiments rats with injected magnetic nanoparticles were also exposed to an ac field. An optimal increase of temperature of the tumor to 44 degrees C was achieved after 10 minutes of exposure. Obtained results showed that magnetic nanoparticles may be easily heated in vitro as well as in vivo, and may be therefore useful for hyperthermic therapy of cancer.

  18. Structural characterization of copolymer embedded magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Nedelcu, G. G.; Nastro, A.; Filippelli, L.; Cazacu, M.; Iacob, M.; Rossi, C. Oliviero; Popa, A.; Toloman, D.; Dobromir, M.; Iacomi, F.

    2015-10-01

    Small magnetic nanoparticles (Fe3O4) were synthesized by co-precipitation and coated by emulsion polymerization with poly(methyl methacrylate-co-acrylic acid) (PMMA-co-AAc) to create surface functional groups that can attach drug molecules and other biomolecules. The coated and uncoated magnetite nanoparticles were stored for two years in normal closed ships and than characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and electron paramagnetic resonance spectroscopy. The solid phase transformation of magnetite to maghemite, as well as an increase in particle size were evidenced for the uncoated nanoparticles. The coated nanoparticles preserved their magnetite structure and magnetic properties. The influences of monomers and surfactant layers on interactions between the magnetic nanoparticles evidenced that the thickness of the polymer has a significant effect on magnetic properties.

  19. Synthesis of magnetic rhenium sulfide composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tang, Naimei; Tu, Weixia

    2009-10-01

    Rhenium sulfide nanoparticles are associated with magnetic iron oxide through coprecipitation of iron salts with tetramethylammonium hydroxide. Sizes of the formed magnetic rhenium sulfide composite particles are in the range 5.5-12.5 nm. X-ray diffraction and energy-dispersive analysis of X-rays spectra demonstrate the coexistence of Fe 3O 4 and ReS 2 in the composite particle, which confirm the formation of the magnetic rhenium sulfide composite nanoparticles. The association of rhenium sulfide with iron oxide not only keeps electronic state and composition of the rhenium sulfide nanoparticles, but also introduces magnetism with the level of 24.1 emu g -1 at 14 kOe. Surface modification with monocarboxyl-terminated poly(ethylene glycol) (MPEG-COOH) has the role of deaggregating the composite nanoparticles to be with average hydrodynamic size of 27.3 nm and improving the dispersion and the stability of the composite nanoparticles in water.

  20. Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers.

    PubMed

    Chen, Fu; Zhang, Zhi-Rong; Huang, Yuan

    2007-05-04

    N-Trimethyl chitosan chloride (TMC) nanoparticles were prepared by ionic crosslinking of TMC with tripolyphosphate (TPP). Two model proteins with different pI values, bovine serum albumin (BSA, pI=4.8) and bovine hemoglobin (BHb, pI=6.8), were used to investigate the loading and release features of the TMC nanoparticles. TMC samples with different degrees of quaternization were synthesized to evaluate its influence on the physicochemical properties and release profiles of the nanoparticles. Sodium alginate was used to modify the TMC nanoparticles to reduce burst release. The results indicated that the TMC nanoparticles had a high loading efficiency (95%) for BSA but a low one (30%) for BHb. The particle size and zeta potential were significantly affected by the BSA concentration but not by the BHb concentration. Nanoparticles of TMC with a lower degree of quaternization showed an increase in particle size, a decrease in zeta potential and a slower drug-release profile. As for the alginate-modified nanoparticles, a smaller size and lower zeta potential were observed and the burst release of BSA was reduced. These studies demonstrated that TMC nanoparticles are potential protein carriers, and that their physicochemical properties and release profile could be optimized by means of various modifications.

  1. Docetaxel-Chitosan nanoparticles for breast cancer treatment: cell viability and gene expression study.

    PubMed

    Mirzaie, Zahra H; Irani, Shiva; Mirfakhraie, Reza; Atyabi, Seyed Mohammad; Dinarvand, Meshkat; Dinarvand, Rassoul; Varshochian, Reyhaneh; Atyabi, Fatemeh

    2016-12-01

    Docetaxel acts through the inhibition of tubulin polymerization and reduction in the expression of BCL-2 gene. In this study, nanoparticles containing Docetaxel were prepared and their effects on the gene expression levels of BCL-2 and BAX genes were investigated. The drug was first conjugated to chitosan, and the nanoparticles were assembled in the presence of hyaluronic acid. Conjugations were confirmed by (1) H-NMR, and the obtained nanoparticles were characterized by dynamic light scattering and SEM. Cytotoxicity of the nanoparticles, cellular uptake, and cell death were evaluated. Finally, the effect of nanoparticles on the expression of BAX and BCL-2 genes in MCF-7 cells were investigated through real-time PCR. The results revealed that the prepared NPs had spherical shape with narrow size distribution of <200 nm with positive zeta potentials. In vitro cytotoxicity of Cs nanoparticles and free Docetaxel investigations revealed that increasing the treatment time with nanoparticles led to decrease in the rate of cell viability. BAX and BCL-2 gene expressions were decreased in nanoparticle-treated cells in comparison with intact cells, while the BAX/BCL-2 ratio was significantly elevated compared with free drug-treated cells after 72 h. Docetaxel-conjugated NPs may offer a promising treatment with low off-target toxicity for breast cancer. © 2016 John Wiley & Sons A/S.

  2. Galactosylated chitosan oligosaccharide nanoparticles for hepatocellular carcinoma cell-targeted delivery of adenosine triphosphate.

    PubMed

    Zhu, Xiu Liang; Du, Yong Zhong; Yu, Ri Sheng; Liu, Ping; Shi, Dan; Chen, Ying; Wang, Ying; Huang, Fang Fang

    2013-07-29

    Nanoparticles composed of galactosylated chitosan oligosaccharide (Gal-CSO) and adenosine triphosphate (ATP) were prepared for hepatocellular carcinoma cell-specific uptake, and the characteristics of Gal-CSO/ATP nanoparticles were evaluated. CSO/ATP nanoparticles were prepared as a control. The average diameter and zeta potential of Gal-CSO/ATP nanoparticles were 51.03 ± 3.26 nm and 30.50 ± 1.25 mV, respectively, suggesting suitable properties for a drug delivery system. Subsequently, the cytotoxicity of Gal-CSO/ATP nanoparticles were examined by the methyl tetrazolium (MTT) assay, and the half maximal inhibitory concentration (IC50) values were calculated with HepG2 (human hepatocellular carcinoma cell line) cells. The results showed that the cytotoxic effect of nanoparticles on HepG2 cells was low. In the meantime, it was also found that the Gal-CSO/ATP nanoparticles could be uptaken by HepG2 cells, due to expression of the asialoglycoprotein receptor (ASGP-R) on their surfaces. The presented results indicate that the Gal-CSO nanoparticles might be very attractive to be used as an intracellular drug delivery carrier for hepatocellular carcinoma cell targeting, thus warranting further in vivo or clinical investigations.

  3. Polyethylene glycol-modified arachidyl chitosan-based nanoparticles for prolonged blood circulation of doxorubicin.

    PubMed

    Termsarasab, Ubonvan; Yoon, In-Soo; Park, Ju-Hwan; Moon, Hyun Tae; Cho, Hyun-Jong; Kim, Dae-Duk

    2014-04-10

    Doxorubicin (DOX)-loaded nanoparticles based on polyethylene glycol-conjugated chitosan oligosaccharide-arachidic acid (CSOAA-PEG) were explored for potential application to leukemia therapy. PEG was conjugated with CSOAA backbone via amide bond formation and the final product was verified by (1)H NMR analysis. Using the synthesized CSOAA-PEG, nanoparticles having characteristics of a 166-nm mean diameter, positive zeta potential, and spherical shape were produced for the delivery of DOX. The mean diameter of CSOAA-PEG nanoparticles in the serum solution (50% fetal bovine serum) remained relatively constant over 72 h as compared with CSOAA nanoparticles (changes of 20.92% and 223.16%, respectively). The sustained release pattern of DOX from CSOAA-PEG nanoparticles was displayed at physiological pH, and the release rate increased under the acidic pH conditions. The cytotoxicity of the CSOAA-PEG conjugate was negligible in human leukemia cells (K562) at the concentrations tested (∼ 100 μg/ml). The uptake rate of DOX from the nanoparticles by K562 cells was higher than that from the solution. Judging from the results of pharmacokinetic studies in rats, in vivo clearance rate of DOX from the CSOAA-PEG nanoparticle group was slower than other groups, subsequently extending the circulation period. The PEGylated CSOAA-based nanoparticles could represent an effective nano-sized delivery system for DOX which has been used for the treatment of blood malignancies.

  4. Synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and its inhibition of liver cancer characteristics in vitro and in vivo.

    PubMed

    Cheng, Mingrong; Gao, Xiaoyan; Wang, Yong; Chen, Houxiang; He, Bing; Xu, Hongzhi; Li, Yingchun; Han, Jiang; Zhang, Zhiping

    2013-09-17

    Nanoparticle drug delivery (NDDS) is a novel system in which the drugs are delivered to the site of action by small particles in the nanometer range. Natural or synthetic polymers are used as vectors in NDDS, as they provide targeted, sustained release and biodegradability. Here, we used the chitosan and hepatoma cell-specific binding molecule, glycyrrhetinic acid (GA), to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by Fourier transformed infrared spectroscopy (FT-IR) and ¹H-nuclear magnetic resonance (¹H-NMR). By combining GA-CTS and 5-FU (5-fluorouracil), we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 217.2 nm, a drug loading of 1.56% and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained release system comprising three distinct phases of quick, steady and slow release. We demonstrated that the nanoparticle accumulated in the liver. In vitro data indicated that it had a dose- and time-dependent anti-cancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. Additionally, GA-CTS/5-FU significantly inhibited the growth of drug-resistant hepatoma, which may compensate for the drug-resistance of 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited tumor growth, resulting in increased survival time.

  5. In situ preparation of high relaxivity iron oxide nanoparticles by coating with chitosan: A potential MRI contrast agent useful for cell tracking

    NASA Astrophysics Data System (ADS)

    Tsai, Zei-Tsan; Wang, Jen-Fei; Kuo, Hsiao-Yun; Shen, Chia-Rui; Wang, Jiun-Jie; Yen, Tzu-Chen

    2010-01-01

    Iron oxide nanocrystals are of considerable interest in nanoscience and nanotechnology because of their nanoscale dimensions, nontoxic nature, and superior magnetic properties. Colloidal solutions of magnetic nanoparticles (ferrofluids) with a high magnetite content are highly desirable for most molecular imaging applications. In this paper, we present a method for in situ coating of superparamagnetic iron oxide (SPIO) with chitosan in order to increase the content of magnetite. Iron chloride salts (Fe 3+ and Fe 2+) were directly coprecipitated inside a porous matrix of chitosan by Co-60 γ-ray irradiation in an aqueous solution of acetic acid. Following sonication, iron oxide nanoparticles were formed inside the chitosan matrix at a pH value of 9.5 and a temperature of 50 °C. The [Fe 3+]:[Fe 2+]:[NH 4OH] molar ratio was 1.6:1:15.8. The final ferrofluid was formed with a pH adjustment to approximately 2.0/3.0, alongside with the addition of mannitol and lactic acid. We subsequently characterized the particle size, the zeta potential, the iron concentration, the magnetic contrast, and the cellular uptake of our ferrofluid. Results showed a z-average diameter of 87.2 nm, a polydispersity index (PDI) of 0.251, a zeta potential of 47.9 mV, and an iron concentration of 10.4 mg Fe/mL. The MRI parameters included an R1 value of 22.0 mM -1 s -1, an R2 value of 202.6 mM -1 s -1, and a R2/R1 ratio of 9.2. An uptake of the ferrofluid by mouse macrophages was observed. Altogether, our data show that Co-60 γ-ray radiation on solid chitosan may improve chitosan coating of iron oxide nanoparticles and tackle its aqueous solubility at pH 7. Additionally, our methodology allowed to obtain a ferrofluid with a higher content of magnetite and a fairly unimodal distribution of monodisperse clusters. Finally, MRI and cell experiments demonstrated the potential usefulness of this product as a potential MRI contrast agent that might be used for cell tracking.

  6. Preparation of size-controlled silver nanoparticles and chitosan-based composites and their anti-microbial activities.

    PubMed

    Nguyen, Vinh Quang; Ishihara, Masayuki; Mori, Yasutaka; Nakamura, Shingo; Kishimoto, Satoko; Fujita, Masanori; Hattori, Hidemi; Kanatani, Yasuhiro; Ono, Takeshi; Miyahira, Yasushi; Matsui, Takemi

    2013-01-01

    We previously reported a simple method for the preparation of size-controlled spherical silver nanoparticles (Ag NPs) generated by autoclaving a mixture of silver-containing glass powder and glucose. The particle size is regulated by the glucose concentration, with concentrations of 0.25, 1.0 and 4.0 wt% glucose providing small (3.48 ± 1.83 nm in diameter), medium (6.53 ± 1.78 nm) and large (12.9 ± 2.5 nm) particles, respectively. In this study, Ag NP/chitosan composites were synthesized by mixing each of these three Ag NP suspensions with a 75% deacetylated (DAc) chitosan suspension (pH 5.0) at room temperature. The Ag NPs were homogeneously dispersed and stably embedded in the chitosan matrices. The Ag NP/chitosan composites were obtained as yellow or brown flocs. It was estimated that approximately 60, 120 and 360 μg of the small, medium and large Ag NPs, respectively, were maximally embedded in 1 mg of chitosan. The bactericidal and anti-fungal activities of the Ag NP/chitosan composites increased as the amount of Ag NPs in the chitosan matrix increased. Furthermore, smaller Ag NPs (per weight) in the chitosan composites provided higher bactericidal and anti-fungal activities.

  7. Design of peptide-conjugated glycol chitosan nanoparticles for near infrared fluorescent (NIRF) in vivo imaging of bladder tumors

    NASA Astrophysics Data System (ADS)

    Key, Jaehong; Dhawan, Deepika; Knapp, Deborah W.; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiw