Science.gov

Sample records for magnetic dipoles

  1. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  2. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…

  3. Magnetic dipole oscillations and radiation damping

    NASA Astrophysics Data System (ADS)

    Stump, Daniel R.; Pollack, Gerald L.

    1997-01-01

    We consider the problem of radiation damping for a magnetic dipole oscillating in a magnetic field. An equation for the radiation reaction torque is derived, and the damping of the oscillations is described. Also discussed are runaway solutions for a rotating magnetic dipole moving under the influence of the reaction torque, with no external torque.

  4. Magnetic dipole interactions in crystals

    DOE PAGES

    Johnston, David

    2016-01-13

    The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ˆ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ → i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices,more » 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ˆ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c/a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120 ° AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB 4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic

  5. Magnetic dipole interactions in crystals

    NASA Astrophysics Data System (ADS)

    Johnston, David C.

    2016-01-01

    The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ̂ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ⃗i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices, 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ̂ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c /a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120∘ AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic transition

  6. Magnetic dipole interactions in crystals

    SciTech Connect

    Johnston, David

    2016-01-13

    The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ˆ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices, 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ˆ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c/a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120 ° AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB 4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins

  7. How to Introduce the Magnetic Dipole Moment

    ERIC Educational Resources Information Center

    Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…

  8. Magnetic dipole moments for composite dark matter

    SciTech Connect

    Aranda, Alfredo; Barajas, Luis; Cembranos, Jose A.R. E-mail: luisedua@buffalo.edu

    2016-03-01

    We study neutral dark matter candidates with a nonzero magnetic dipole moment. We assume that they are composite states of new fermions related to the strong phase of a new gauge interaction. In particular, invoking a dark flavor symmetry, we analyze the composition structure of viable candidates depending on the assignations of hypercharge and the multiplets associated to the fundamental constituents of the extended sector. We determine the magnetic dipole moments for the neutral composite states in terms of their constituents masses.

  9. Conductor Development for High Field Dipole Magnets

    SciTech Connect

    Scanlan, R.M.; Dietderich, D.R.; Higley, H.C.

    2000-03-01

    Historically, improvements in dipole magnet performance have been paced by improvements in the superconductor available for use in these magnets. The critical conductor performance parameters for dipole magnets include current density, piece length, effective filament size, and cost. Each of these parameters is important for efficient, cost effective dipoles, with critical current density being perhaps the most important. Several promising magnet designs for the next hadron collider or a muon collider require fields of 12 T or higber, i.e. beyond the reach of NbTi. The conductor options include Nb{sub 3}Sn, Nb{sub 3}Al, or the high temperature superconductors. Although these conductors have the potential to provide the combination of performance and cost required, none of them have been developed sufficiently at this point to satisfy all the requirements. This paper will review the status of each class of advanced conductor and discuss the remaining problems that require solutions before these new conductors can be considered as practical. In particular, the plans for a new program to develop Nb{sub 3}Sn and Nb{sub 3}Al conductors for high energy physics applications will be presented. Also, the development of a multikiloamp Bi-2212 cable for dipole magnet applications will be reported.

  10. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  11. The Case of the Disappearing Magnetic Dipole

    ERIC Educational Resources Information Center

    Gough, W.

    2008-01-01

    The problem of an oscillating magnetic dipole at the centre of a lossless dielectric spherical shell is considered. For simplicity, the free-space wavelength is taken to be much greater than the shell radii, but the relative permittivity [epsilon][subscript r] of the shell is taken as much greater than unity, so the wavelength in the shell could…

  12. Single-layer high field dipole magnets

    SciTech Connect

    Vadim V. Kashikhin and Alexander V. Zlobin

    2001-07-30

    Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good field quality and minimum number of turns.

  13. The radiofrequency magnetic dipole discharge

    NASA Astrophysics Data System (ADS)

    Martines, E.; Zuin, M.; Marcante, M.; Cavazzana, R.; Fassina, A.; Spolaore, M.

    2016-05-01

    This paper describes a novel and simple concept of plasma source, which is able to produce a radiofrequency magnetized discharge with minimal power requirements. The source is based on the magnetron concept and uses a permanent magnet as an active electrode. The dipolar field produced by the magnet confines the electrons, which cause further ionization, thus producing a toroidally shaped plasma in the equatorial region around the electrode. A plasma can be ignited with such scheme with power levels as low as 5 W. Paschen curves have been built for four different working gases, showing that in Helium or Neon, plasma breakdown is easily obtained also at atmospheric pressure. The plasma properties have been measured using a balanced Langmuir probe, showing that the electron temperature is around 3-4 eV and higher in the cathode proximity. Plasma densities of the order of 1016 m-3 have been obtained, with a good positive scaling with applied power. Overall, the electron pressure appears to be strongly correlated with the magnetic field magnitude in the measurement point.

  14. Generation of squeezing: magnetic dipoles on cantilevers

    NASA Astrophysics Data System (ADS)

    Seok, Hyojun; Singh, Swati; Steinke, Steven; Meystre, Pierre

    2011-05-01

    We investigate the generation of motional squeezed states in a nano-mechanical cantilever. Our model system consists of a nanoscale cantilever - whose center-of-mass motion is initially cooled to its quantum mechanical ground state - magnetically coupled a classically driven mechanical tuning fork. We show that the magnetic dipole-dipole interaction can produce significant phonon squeezing of the center-of-mass motion of the cantilever, and evaluate the effect of various dissipation channels, including the coupling of the cantilever to a heat bath and phase and amplitude fluctuations in the oscillating field driving the tuning fork. US National Science Foundation, the US Army Research Office, DARPA ORCHID program through a grant from AFOSR.

  15. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  16. SSC collider dipole magnets field angle data

    SciTech Connect

    Kuchnir, M.; Bleadon, M.; Schmidt, E.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Lamm, M.J.; Mazur, P.O.; Orris, D.; Ozelis, J.; Strait, J.; Wake, M. ); DiMarco, J.; Devred, A.; Kuzminski, J.; Yu, Y.; Zheng, H. ); Ogitsu, T. (Superconducting Super Collider

    1992-09-01

    In the fabrication of both 40 and 50 mm collider dipole superconducting magnets, surveys of the direction of the magnetic field along their length have been taken. This data besides being used for certifying compliance with the specifications for the finished magnet, yields interesting information on the straightness and rigidity of the coil placement between some stages in their manufacture and testing. A discussion on the measuring equipment and procedures is given. All of the 40 mm magnets that were built or cryostat at Fermilab have at least one of these surveys, and a summary of the data on them is presented. Most of the 50 mm magnets built and cold tested at Fermilab have been surveyed before and after insertion in the cryostat and before and after being cold tested. A summary of this data is also presented.

  17. Magnetic dipole discharges. I. Basic properties

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Teodorescu-Soare, C. T.; Ionita, C.; Schrittwieser, R.

    2013-08-15

    A simple discharge is described which uses a permanent magnet as a cold cathode and the metallic chamber wall as an anode. The magnet's equator is biased strongly negative, which produces secondary electrons due to the impact of energetic ions. The emitted electrons are highly confined by the strong dipolar magnetic field and the negative potential in the equatorial plane of the magnet. The emitted electrons ionize near the sheath and produce further electrons, which drift across field lines to the anode while the nearly unmagnetized ions are accelerated back to the magnet. A steady state discharge is maintained at neutral pressures above 10{sup −3} mbar. This is the principle of magnetron discharges, which commonly use cylindrical and planar cathodes rather than magnetic dipoles as cathodes. The discharge properties have been investigated in steady state and pulsed mode. Different magnets and geometries have been employed. The role of a background plasma has been investigated. Various types of instabilities have been observed such as sheath oscillations, current-driven turbulence, relaxation instabilities due to ionization, and high frequency oscillations created by sputtering impulses, which are described in more detail in companion papers. The discharge has also been operated in reactive gases and shown to be useful for sputtering applications.

  18. Concentric Titled Double-Helix Dipole Magnets

    SciTech Connect

    Rainer Meinke, Ph.D; Carl Goodzeit; Millicent Ball, Ph.D

    2003-09-05

    The high magnetic fields required for future accelerator magnets can only be achieved with Nb3Sn, other A15 or HTS type conductors, which are brittle and sensitive to mechanical strain. The traditional ''cosine-theta'' dipole configuration has intrinsic drawbacks that make it difficult and expensive to employ such conductors in these designs. Some of these problems involve (1) difficulty in applying enough pre-stress to counteract Lorentz forces without compromising conductor performance; (2) small minimum bend radii of the conductor necessitating the intricate wind-and-react coil fabrication; (3) complex spacers in particular for coil ends and expensive tooling for coil fabrication; (4) typically only 2/3 of the coil aperture can be used with achievable field uniformity.

  19. Helical dipole magnets for polarized protons in RHIC

    SciTech Connect

    Syphers, M.; Courant, E.; Fischer, W.

    1997-07-01

    Superconducting helical dipole magnets will be used in the Brookhaven Relativistic Heavy Ion Collider (RHIC) to maintain polarization of proton beams and to perform localized spin rotations at the two major experimental detector regions. Requirements for the helical dipole system are discussed, and magnet prototype work is reported.

  20. Plasma expansion in the presence of a dipole magnetic field

    SciTech Connect

    Winske, D.; Omidi, N.

    2005-07-15

    Simulations of the initial expansion of a plasma injected into a stationary magnetized background plasma in the presence of a dipole magnetic field are carried out in two dimensions with a kinetic ion, massless fluid electron (hybrid) electromagnetic code. For small values of the magnetic dipole, the injected ions have large gyroradii compared to the scale length of the dipole field and are essentially unmagnetized. As a result, these ions expand, excluding the ambient magnetic field and plasma to form a diamagnetic cavity. However, for stronger magnetic dipoles, the ratio of the gyroradii of the injected ions to the dipole field scale length is small so that they remain magnetized, and hence trapped in the dipole field, as they expand. The trapping and expansion then lead to additional plasma currents and resulting magnetic fields that not only exclude the background field but also interact with the dipole field in a more complex manner that stretches the closed dipole field lines. A criterion to distinguish between the two regimes is derived and is then briefly discussed in the context of applying the results to the plasma sail scheme for the propulsion of small spacecraft in the solar wind.

  1. Effects of dipole magnet inhomogeneities on the beam ellipsoid

    SciTech Connect

    Tsoupas, N.; Colman, J.; Levine, M.; McKenzie-Wilson, R.; Ward, T.; Grand, P.

    1986-01-01

    The RAYTRACE computer code has been modified to accept magnetic fields measured in the median plane of a dipole magnet. This modification allows one to study the effects of a non-ideal dipole magnet on the beam ellipsoid (as defined by the TRANSPORT code manual). The effects on the beam ellipsoid are due to: field inhomogeneities in the interior region of the dipole, and discrepancies from design conditions of the magnetic field values in the fringe field region. The results of the RAYTRACE code calculations based on experimentally measured fields will be compared with the results derived using both an ideal (no inhomogeneities) dipole with SCOFF boundaries and an ideal dipole with perfect (according to design) fringe fields.

  2. Strongly magnetized rotating dipole in general relativity

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2016-10-01

    Context. Electromagnetic waves arise in many areas of physics. Solutions are difficult to find in the general case. Aims: We numerically integrate Maxwell equations in a 3D spherical polar coordinate system. Methods: Straightforward finite difference methods would lead to a coordinate singularity along the polar axis. Spectral methods are better suited for such artificial singularities that are related to the choice of a coordinate system. When the radiating object rotates like a star, for example, special classes of solutions to Maxwell equations are worthwhile to study, such as quasi-stationary regimes. Moreover, in high-energy astrophysics, strong gravitational and magnetic fields are present especially around rotating neutron stars. Results: To study such systems, we designed an algorithm to solve the time-dependent Maxwell equations in spherical polar coordinates including general relativity and quantum electrodynamical corrections to leading order. As a diagnostic, we computed the spin-down luminosity expected for these stars and compared it to the classical or non-relativistic and non-quantum mechanical results. Conclusions: Quantum electrodynamics leads to an irrelevant change in the spin-down luminosity even for a magnetic field of about the critical value of 4.4 × 109 T. Therefore the braking index remains close to its value for a point dipole in vacuum, namely n = 3. The same conclusion holds for a general-relativistic quantum electrodynamically corrected force-free magnetosphere.

  3. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  4. Lunar magnetic field - Permanent and induced dipole moments

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Coleman, P. J., Jr.; Schubert, G.

    1974-01-01

    Apollo 15 subsatellite magnetic field observations have been used to measure both the permanent and the induced lunar dipole moments. Although only an upper limit of 1.3 x 10 to the 18th gauss-cubic centimeters has been determined for the permanent dipole moment in the orbital plane, there is a significant induced dipole moment which opposes the applied field, indicating the existence of a weak lunar ionosphere.

  5. Need for remeasurements of nuclear magnetic dipole moments

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin G.; Mårtensson-Pendrill, Ann-Marie

    1998-11-01

    The need for a reassessment of nuclear magnetic dipole moments is prompted by recent experiments on the ground-state hyperfine structure in highly charged hydrogenlike systems which are sufficiently sensitive to probe QED effects. This work gives an overview of the magnetic dipole moments for the nuclei of interest, i.e., 165Ho, 185,187Re, 203,205Tl, 207Pb, and 209Bi. It is found that the present uncertainties in the nuclear magnetic dipole moment limit the interpretation of the accurate experimental hyperfine structures for these systems.

  6. Propagation of magnetic dipole radiation through a medium.

    PubMed

    Arnoldus, Henk F; Xu, Zhangjin

    2016-05-01

    An oscillating magnetic dipole moment emits radiation. We assume that the dipole is embedded in a medium with relative permittivity ϵr and relative permeability μr, and we have studied the effects of the surrounding material on the flow lines of the emitted energy. For a linear dipole moment in free space the flow lines of energy are straight lines, coming out of the dipole. When located in a medium, these field lines curve toward the dipole axis, due to the imaginary part of μr. Some field lines end on the dipole axis, giving a nonradiating contribution to the energy flow. For a rotating dipole moment in free space, each field line of energy flow lies on a cone around the axis perpendicular to the plane of rotation of the dipole moment. The field line pattern is an optical vortex. When embedded in a material, the cone shape of the vortex becomes a funnel shape, and the windings are much less dense than for the pattern in free space. This is again due to the imaginary part of μr. When the real part of μr is negative, the field lines of the vortex swirl around the dipole axis opposite to the rotation direction of the dipole moment. For a near-single-negative medium, the spatial extent of the vortex becomes huge. We compare the results for the magnetic dipole to the case of an embedded electric dipole.

  7. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, W.F.

    1983-08-31

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  8. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  9. Gyre-driven decay of the Earth's magnetic dipole

    PubMed Central

    Finlay, Christopher C.; Aubert, Julien; Gillet, Nicolas

    2016-01-01

    Direct observations indicate that the magnitude of the Earth's magnetic axial dipole has decreased over the past 175 years; it is now 9% weaker than it was in 1840. Here we show how the rate of dipole decay may be controlled by a planetary-scale gyre in the liquid metal outer core. The gyre's meridional limbs on average transport normal polarity magnetic flux equatorward and reverse polarity flux poleward. Asymmetry in the geomagnetic field, due to the South Atlantic Anomaly, is essential to the proposed mechanism. We find that meridional flux advection accounts for the majority of the dipole decay since 1840, especially during times of rapid decline, with magnetic diffusion making an almost steady contribution generally of smaller magnitude. Based on the morphology of the present field, and the persistent nature of the gyre, the current episode of dipole decay looks set to continue, at least for the next few decades. PMID:26814368

  10. Gyre-driven decay of the Earth's magnetic dipole.

    PubMed

    Finlay, Christopher C; Aubert, Julien; Gillet, Nicolas

    2016-01-27

    Direct observations indicate that the magnitude of the Earth's magnetic axial dipole has decreased over the past 175 years; it is now 9% weaker than it was in 1840. Here we show how the rate of dipole decay may be controlled by a planetary-scale gyre in the liquid metal outer core. The gyre's meridional limbs on average transport normal polarity magnetic flux equatorward and reverse polarity flux poleward. Asymmetry in the geomagnetic field, due to the South Atlantic Anomaly, is essential to the proposed mechanism. We find that meridional flux advection accounts for the majority of the dipole decay since 1840, especially during times of rapid decline, with magnetic diffusion making an almost steady contribution generally of smaller magnitude. Based on the morphology of the present field, and the persistent nature of the gyre, the current episode of dipole decay looks set to continue, at least for the next few decades.

  11. Properties of the superconductor in accelerator dipole magnets

    NASA Astrophysics Data System (ADS)

    Teravest, Derk

    Several aspects of the application of superconductors to high field dipole magnets for particle accelerators are discussed. The attention is focused on the 10 tesla (1 m model) magnet that is envisaged for the future Large Hadron Collider (LHC) accelerator. The basic motivation behind the study is the intention of employing superconductors to their utmost performance. An overview of practical supercomputers, their applications and their impact on high field dipole magnets used for particle accelerators, is presented. The LHC reference design for the dipole magnets is outlined. Several models were used to study the influence of a number of factors in the shape and in particular, the deviation from the shape that is due to the flux flow state. For the investigated extrinsic and intrinsic factors, a classification can be made with respect to the effect on the shape of the characteristic of a multifilamentary wire. The optimization of the coil structure for high field dipole magnets, with respect to the field quality is described. An analytical model for solid and hollow filaments, to calculate the effect of filament magnetization in the quality of the dipole field, is presented.

  12. All-dielectric hollow nanodisk for tailoring magnetic dipole emission.

    PubMed

    Feng, Tianhua; Xu, Yi; Liang, Zixian; Zhang, Wei

    2016-11-01

    We propose a silicon hollow nanodisk for enhancing magnetic dipole (MD) emission. The Purcell factor can be more than 300, which is one order of magnitude larger than the silicon nanosphere case. It is demonstrated that the silicon hollow nanodisk resembles the function of an azimuthally polarized beam for tailoring the magnetic and electric dipole (ED) emission. It is shown that MD emission can be significantly enhanced, while ED emission will be suppressed when emitters are located in the hollow of the nanodisk. The dependence of the Purcell factor on the geometry parameters is also studied. Our results might facilitate the on-chip engineering of magnetic light emission.

  13. Multiple Magnetic Dipole Modeling Coupled with a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Lientschnig, G.

    2012-05-01

    Magnetic field measurements of scientific spacecraft can be modelled successfully with the multiple magnetic dipole method. The existing GANEW software [1] uses a modified Gauss-Newton algorithm to find good magnetic dipole models. However, this deterministic approach relies on suitable guesses of the initial parameters which require a lot of expertise and time-consuming interaction of the user. Here, the use of probabilistic methods employing genetic algorithms is put forward. Stochastic methods like these are well- suited for providing good initial starting points for GANEW. Furthermore a computer software is reported upon that was successfully tested and used for a Cluster II satellite.

  14. Helical Dipole Magnets for Polarized Protons in RHIC

    NASA Astrophysics Data System (ADS)

    Syphers, M.; Courant, E.; Fischer, W.; Luccio, A.; Mariam, F.; Peggs, S.; Pilat, F.; Roser, T.; Tepikian, S.; Tsoupas, N.; Willen, E.; Katayama, T.; Hatanaka, K.; Kawaguchi, T.; Okamura, M.; Tominaka, T.; Wu, H.; Ptitsin, V.; Shatunov, Y.

    1997-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) will be able to support experiments using polarized proton beams. Siberian Snakes are used to maintain polarization in this high energy superconducting collider. To make efficient use of available space while taking advantage of high field superconducting magnets, 4 Tesla helical dipole magnets will be used. These magnets generate a central dipole field in which the field direction rotates through 360^circ about the longitudinal axis over the length of the device. An arrangement of four such magnets can produce the desired change in the spin direction while keeping the proton orbit outside of the ``Snake'' unaltered. Similar magnet arrangements will be used to produce longitudinal polarization at the two major interaction points in RHIC. The basic requirements and layout of these magnets are described, as well as tolerances on field quality and integrated field strengths. First results of tests of prototype helical magnets will be discussed.

  15. Longitudinal Gradient Dipole Magnet Prototype for APS at ANL

    SciTech Connect

    Kashikhin, V. S.; Borland, M.; Chlachidze, G.; Decker, G.; Dejus, R.; DiMarco, J.; Doose, C. L.; Gardner, T. J.; Harding, D. J.; Jaski, M. S.; Kerby, J. S.; Makarov, A. V.

    2016-01-26

    We planned an upgrade of the Advanced Photon Source at Argonne National Laboratory (ANL). The main goal of the upgrade is to improve the storage ring performance based on more advanced optics. One of the key magnet system elements is bending dipole magnets having a field strength change along the electron beam path. Moreover, a prototype of one such longitudinal gradient dipole magnet has been designed, built, and measured in a collaborative effort of ANL and Fermilab. Our paper discusses various magnetic design options, the selected magnet design, and the fabrication technology. The prototype magnet has been measured by rotational coils, a stretched wire, and a Hall probe. Measurement results are discussed and compared with simulations.

  16. Longitudinal Gradient Dipole Magnet Prototype for APS at ANL

    DOE PAGES

    Kashikhin, V. S.; Borland, M.; Chlachidze, G.; ...

    2016-01-26

    We planned an upgrade of the Advanced Photon Source at Argonne National Laboratory (ANL). The main goal of the upgrade is to improve the storage ring performance based on more advanced optics. One of the key magnet system elements is bending dipole magnets having a field strength change along the electron beam path. Moreover, a prototype of one such longitudinal gradient dipole magnet has been designed, built, and measured in a collaborative effort of ANL and Fermilab. Our paper discusses various magnetic design options, the selected magnet design, and the fabrication technology. The prototype magnet has been measured by rotationalmore » coils, a stretched wire, and a Hall probe. Measurement results are discussed and compared with simulations.« less

  17. Electromagnetic braking revisited with a magnetic point dipole model

    NASA Astrophysics Data System (ADS)

    Land, Sara; McGuire, Patrick; Bumb, Nikhil; Mann, Brian P.; Yellen, Benjamin B.

    2016-04-01

    A theoretical model is developed to predict the trajectory of magnetized spheres falling through a copper pipe. The derive magnetic point dipole model agrees well with the experimental trajectories for NdFeB spherical magnets of varying diameter, which are embedded inside 3D printed shells with fixed outer dimensions. This demonstration of electrodynamic phenomena and Lenz's law serves as a good laboratory exercise for physics, electromagnetics, and dynamics classes at the undergraduate level.

  18. Late kinetic decoupling of light magnetic dipole dark matter

    SciTech Connect

    Gondolo, Paolo; Kadota, Kenji

    2016-06-07

    We study the kinetic decoupling of light (≲10 GeV) magnetic dipole dark matter (DM). We find that present bounds from collider, direct DM searches, and structure formation allow magnetic dipole DM to remain in thermal equilibrium with the early universe plasma until as late as the electron-positron annihilation epoch. This late kinetic decoupling leads to a minimal mass for the earliest dark protohalos of thousands of solar masses, in contrast to the conventional weak scale DM scenario where they are of order 10{sup −6} solar masses.

  19. Bistability between equatorial and axial dipoles during magnetic field reversals.

    PubMed

    Gissinger, Christophe; Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel

    2012-06-08

    Numerical simulations of the geodynamo in the presence of heterogeneous heating are presented. We study the dynamics and the structure of the magnetic field when the equatorial symmetry of the flow is broken. If the symmetry breaking is sufficiently strong, the m=0 axial dipolar field is replaced by a hemispherical magnetic field, dominated by an oscillating m=1 magnetic field. Moreover, for moderate symmetry breaking, a bistability between the axial and the equatorial dipole is observed. In this bistable regime, the axial magnetic field exhibits chaotic switches of its polarity, involving the equatorial dipole during the transition period. This new scenario for magnetic field reversals is discussed within the framework of Earth's dynamo.

  20. Measurement of AC electrical characteristics of SSC superconducting dipole magnets

    SciTech Connect

    Smedley, K M; Shafer, R E

    1992-01-01

    Experiments were conducted to measure the AC electrical characteristics of SSC superconducting dipole magnets over the frequency range of 0.1 Hz to 10 kHz. A magnet equivalent circuit representing the magnet DC inductance, eddy current losses, coil-to-ground and turn-to-turn capacitance, was synthesized from the experimental data. This magnet equivalent circuit can be used to predict the current ripple distribution along the superconducting magnet string and can provide dynamic information for the design of the collider current regulation loop.

  1. Self-generated magnetic dipoles in weakly magnetized beam-plasma system.

    PubMed

    Jia, Qing; Mima, Kunioki; Cai, Hong-bo; Taguchi, Toshihiro; Nagatomo, Hideo; He, X T

    2015-02-01

    A self-generation mechanism of magnetic dipoles and the anomalous energy dissipation of fast electrons in a magnetized beam-plasma system are presented. Based on two-dimensional particle-in-cell simulations, it is found that the magnetic dipoles are self-organized and play important roles in the beam electron energy dissipation. These dipoles drift slowly in the direction of the return flow with a quasisteady velocity, which depends upon the magnetic amplitude of the dipole and the imposed external magnetic field. This dipole formation provides a mechanism for the anomalous energy dissipation of a relativistic electron beam, which would play an important role in collisionless shock and ion shock acceleration.

  2. The permanent and induced magnetic dipole moment of the moon

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Coleman, P. J., Jr.; Lichtenstein, B. R.; Schubert, G.

    1974-01-01

    Magnetic field observations with the Apollo 15 subsatellite have been used to deduce the components of both the permanent and induced lunar dipole moments in the orbital plane. The present permanent lunar magnetic dipole moment in the orbital plane is less than 1.3 times ten to the eighteenth power gauss-cu cm. Any uniformly magnetized near surface layer is therefore constrained to have a thickness-magnetization product less than 2.5 emu-cm per g. The induced moment opposes the external field, implying the existence of a substantial lunar ionosphere with a permeability between 0.63 and 0.85. Combining this with recent measures of the ratio of the relative field strength at the ALSEP and Explorer 35 magnetometers indicates that the global lunar permeability relative to the plasma in the geomagnetic tail lobes is between 1.008 and 1.03.

  3. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    SciTech Connect

    Córsico, A.H.; Althaus, L.G.; García-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  4. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Kepler, S. O.; García-Berro, E.

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pi dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pi dot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μν lesssim 10-11 μB. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  5. Retraining of the 1232 Main Dipole Magnets in the LHC

    SciTech Connect

    Verweij, A.; Auchmann, B.; Bednarek, M.; Bottura, L.; Charifoulline, Z.; Feher, S.; Hagen, P.; Modena, M.; Le Naour, S.; Romera, I.; Siemko, A.; Steckert, J.; Tock, J. Ph; Todesco, E.; Willering, G.; Wollmann, D.

    2016-01-05

    The Large Hadron Collider (LHC) contains eight main dipole circuits, each of them with 154 dipole magnets powered in series. These 15-m-long magnets are wound from Nb-Ti superconducting Rutherford cables, and have active quench detection triggering heaters to quickly force the transition of the coil to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. During the reception tests in 2002-2007, all these magnets have been trained up to at least 12 kA, corresponding to a beam energy of 7.1 TeV. After installation in the accelerator, the circuits have been operated at reduced currents of up to 6.8 kA, from 2010 to 2013, corresponding to a beam energy of 4 TeV. After the first long shutdown of 2013-2014, the LHC runs at 6.5 TeV, requiring a dipole magnet current of 11.0 kA. A significant number of training quenches were needed to bring the 1232 magnets up to this current. In this paper, the circuit behavior in case of a quench is presented, as well as the quench training as compared to the initial training during the reception tests of the individual magnets.

  6. Supersolid phase in atomic gases with magnetic dipole interaction

    SciTech Connect

    Buehler, Adam; Buechler, Hans Peter

    2011-08-15

    A major obstacle for the experimental realization of a supersolid phase with cold atomic gases in an optical lattice is the weakness of the nearest-neighbor interactions achievable via magnetic dipole-dipole interactions. In this paper, we show that by using a large filling of atoms within each well, the characteristic energy scales are strongly enhanced. Within this regime, the system is well described by the rotor model, and the qualitative behavior of the phase diagram derives from mean-field theory. We find a stable supersolid phase for realistic parameters with chromium atoms.

  7. Circular current loops, magnetic dipoles and spherical harmonic analysis.

    USGS Publications Warehouse

    Alldredge, L.R.

    1980-01-01

    Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author

  8. Electron Cloud Trapping in Recycler Combined Function Dipole Magnets

    SciTech Connect

    Antipov, Sergey A.; Nagaitsev, S.

    2016-10-04

    Electron cloud can lead to a fast instability in intense proton and positron beams in circular accelerators. In the Fermilab Recycler the electron cloud is confined within its combined function magnets. We show that the field of combined function magnets traps the electron cloud, present the results of analytical estimates of trapping, and compare them to numerical simulations of electron cloud formation. The electron cloud is located at the beam center and up to 1% of the particles can be trapped by the magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a Recycler combined function dipole this multiturn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The multi-turn build-up can be stopped by injection of a clearing bunch of 1010 p at any position in the ring.

  9. Magnetic field properties of Fermilab Energy-Saver dipoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Cooper, W.E.; Gross, D.A.; Michelotti, L.; Schmidt, E.E.; Turkot, F.

    1983-03-01

    At Fermilab we have operated a production line for the fabrication of 901 21 foot long superconducting dipoles for use in the Energy Saver/Doubler. At any one time 772 of these dipoles are installed in the accelerator and 62 in beamlines; the remainder are spares. Magnetic field data are now available for most of these dipoles; in this paper we present some of these data which show that we have been able to maintain the necessary consistency in field quality throughout the production process. Specifically we report harmonic field coefficients, showing that the mechanical design permits substantial reduction of the magnitudes of the normal and skew quadrupole harmonic coefficients; field shape profiles; integral field data; and field angle data.

  10. Modeling Barkhausen Noise in magnetic glasses with dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Dubey, Awadhesh K.; Hentschel, H. George E.; Jaiswal, Prabhat K.; Mondal, Chandana; Procaccia, Itamar; Gupta, Bhaskar Sen

    2015-10-01

    Long-ranged dipole-dipole interactions in magnetic glasses give rise to magnetic domains having labyrinthine patterns on the scale of about 1 micron. Barkhausen Noise then results from the movement of domain boundaries which is modeled by the motion of elastic membranes with random pinning. Here we propose that on the nanoscale new sources of Barkhausen Noise can arise. We propose an atomistic model of magnetic glasses in which we measure the Barkhausen Noise which results from the creation of new domains and the movement of domain boundaries on the nanoscale. The statistics of the Barkhausen Noise found in our simulations is in striking disagreement with the expectations in the literature. In fact we find exponential statistics without any power law, stressing the fact that Barkhausen Noise can belong to very different universality classes. In the present model the essence of the phenomenon is the fact that the spin response Green's function is decaying too rapidly for having sufficiently large magnetic jumps. A theory is offered in excellent agreement with the measured data without any free parameter.

  11. Magnetic dipole moment determination by near-field analysis

    NASA Technical Reports Server (NTRS)

    Eichhorn, W. L.

    1972-01-01

    A method for determining the magnetic moment of a spacecraft from magnetic field data taken in a limited region of space close to the spacecraft. The spacecraft's magnetic field equations are derived from first principles. With measurements of this field restricted to certain points in space, the near-field equations for the spacecraft are derived. These equations are solved for the dipole moment by a least squares procedure. A method by which one can estimate the magnitude of the error in the calculations is also presented. This technique was thoroughly tested on a computer. The test program is described and evaluated, and partial results are presented.

  12. Full length SSC R and D dipole magnet test results

    SciTech Connect

    Strait, J.; Bleadon, M.; Brown, B.C.; Hanft, R.; Kuchnir, M.; Lamm, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peoples, J.

    1989-03-01

    Four full scale SSC development dipole magnets have been tested for mechanical and quench behavior. Two are of a design similar to previous magnets but contain a number of improvements, including more uniform coil size, higher pre-stress and a redesigned inner-outer coil splice. One exceeds the SSC operating current on the second quench but the other appears to be limited by damaged superconductor to a lower current. The other two magnets are of alternate designs. One trains erratically and fails to reach a plateau and the other reaches plateau after four quenches. 12 refs., 4 figs.

  13. Dipole corrector magnets for the LBNE beam line

    SciTech Connect

    Yu, M.; Velev, G.; Harding, D.; /Fermilab

    2011-03-01

    The conceptual design of a new dipole corrector magnet has been thoroughly studied. The planned Long-Baseline Neutrino Experiment (LBNE) beam line will require correctors capable of greater range and linearity than existing correctors, so a new design is proposed based on the horizontal trim dipole correctors built for the Main Injector synchrotron at Fermilab. The gap, pole shape, length, and number of conductor turns remain the same. To allow operation over a wider range of excitations without overheating, the conductor size is increased, and to maintain better linearity, the back leg thickness is increased. The magnetic simulation was done using ANSYS to optimize the shape and the size of the yoke. The thermal performance was also modeled and analyzed.

  14. Spin waves in rings of classical magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Schmidt, Heinz-Jürgen; Schröder, Christian; Luban, Marshall

    2017-03-01

    We theoretically and numerically investigate spin waves that occur in systems of classical magnetic dipoles that are arranged at the vertices of a regular polygon and interact solely via their magnetic fields. There are certain limiting cases that can be analyzed in detail. One case is that of spin waves as infinitesimal excitations from the system’s ground state, where the dispersion relation can be determined analytically. The frequencies of these infinitesimal spin waves are compared with the peaks of the Fourier transform of the thermal expectation value of the autocorrelation function calculated by Monte Carlo simulations. In the special case of vanishing wave number an exact solution of the equations of motion is possible describing synchronized oscillations with finite amplitudes. Finally, the limiting case of a dipole chain with N\\longrightarrow ∞ is investigated and completely solved.

  15. Magnetic Shielding Studies for Electric Dipole Moment Experiments

    NASA Astrophysics Data System (ADS)

    Gould, Harvey; Feinberg, B.

    2014-09-01

    Electric dipole moment experiments are necessarily sensitive to magnetic fields and hence require effective magnetic shielding. In testing the shielding factor of single-layer Permalloy (Carpenter HyMu ``80'' ®) cylinders, we find time-dependent effects lasting tens of minutes to thousands of minutes when a static magnetic field is applied to a Permalloy cylinder that has been demagnetized in a region of near-zero field. A decrease in the magnetic field, measured at the center of the cylinder, of about 20 percent is observed for applied fields ranging from 0.5 A/m to 16 A/m. The latter applied field is comparable to the Earth's magnetic field. Effects that resemble these have been seen in other ferromagnetic materials.

  16. Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices

    NASA Astrophysics Data System (ADS)

    Montoya, S. A.; Couture, S.; Chess, J. J.; Lee, J. C. T.; Kent, N.; Henze, D.; Sinha, S. K.; Im, M.-Y.; Kevan, S. D.; Fischer, P.; McMorran, B. J.; Lomakin, V.; Roy, S.; Fullerton, E. E.

    2017-01-01

    The interesting physics and potential memory technologies resulting from topologically protected spin textures such as skyrmions have prompted efforts to discover new material systems that can host these kinds of magnetic structures. Here, we use the highly tunable magnetic properties of amorphous Fe/Gd multilayer films to explore the magnetic properties that lead to dipole-stabilized skyrmions and skyrmion lattices that form from the competition of dipolar field and exchange energy. Using both real space imaging and reciprocal space scattering techniques, we determined the range of material properties and magnetic fields where skyrmions form. Micromagnetic modeling closely matches our observation of small skyrmion features (˜50 to 70 nm) and suggests that these classes of skyrmions have a rich domain structure that is Bloch-like in the center of the film and more Néel-like towards each surface. Our results provide a pathway to engineer the formation and controllability of dipole skyrmion phases in a thin film geometry at different temperatures and magnetic fields.

  17. Low-cost, pseudo-Halbach dipole magnets for NMR

    NASA Astrophysics Data System (ADS)

    Tayler, Michael C. D.; Sakellariou, Dimitrios

    2017-04-01

    We present designs for compact, inexpensive and strong dipole permanent magnets aimed primarily at magnetic resonance applications where prepolarization and detection occur at different locations. Low-homogeneity magnets with a 7.5 mm bore size and field up to nearly 2 T are constructed using low-cost starting materials, standard workshop tools and only few hours of labor - an achievable project for a student or postdoc with spare time. As an application example we show how our magnet was used to polarize the nuclear spins in approximately 1 mL of pure [13C ]-methanol prior to detection of its high-resolution NMR spectrum at zero field (measurement field below 10-10 T), where signals appear at multiples of the carbon-hydrogen spin-spin coupling frequency 1JCH = 140.7 (1) Hz.

  18. Low-cost, pseudo-Halbach dipole magnets for NMR.

    PubMed

    Tayler, Michael C D; Sakellariou, Dimitrios

    2017-04-01

    We present designs for compact, inexpensive and strong dipole permanent magnets aimed primarily at magnetic resonance applications where prepolarization and detection occur at different locations. Low-homogeneity magnets with a 7.5mm bore size and field up to nearly 2T are constructed using low-cost starting materials, standard workshop tools and only few hours of labor - an achievable project for a student or postdoc with spare time. As an application example we show how our magnet was used to polarize the nuclear spins in approximately 1mL of pure [(13)C]-methanol prior to detection of its high-resolution NMR spectrum at zero field (measurement field below 10(-10)T), where signals appear at multiples of the carbon-hydrogen spin-spin coupling frequency (1)JCH=140.7(1)Hz.

  19. Pair Cascades and Deathlines in Offset Magnetic Dipole Fields

    NASA Technical Reports Server (NTRS)

    Harding, Alice; Muslimov, Alex

    2010-01-01

    We investigate electron-positron pair cascades in a dipole magnetic field whose axis is offset from the neutron star center. In such a field geometry, the polar cap is displaced from the neutron star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the polar cap of an offset dipole, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset parameter. We find that the pair multiplicity can change dramatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity.

  20. Space propulsion by fusion in a magnetic dipole

    SciTech Connect

    Teller, E.; Glass, A.J.; Fowler, T.K. ); Hasegawa, A. ); Santarius, J.F. . Fusion Technology Inst.)

    1991-04-12

    A conceptual design is discussed for a fusion rocket propulsion system based on the magnetic dipole configuration. The dipole is found to have features well suited to space applications. Example parameters are presented for a system producing a specific power of 1 kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power toward 10 kW/kg are discussed, as in an approach to implementing the concept through proof-testing on the moon. 21 refs., 14 figs., 2 tabs.

  1. Space propulsion by fusion in a magnetic dipole

    SciTech Connect

    Teller, E.; Glass, A.J.; Fowler, T.K. ); Hasegawa, A. ); Santarius, J.F. . Fusion Technology Inst.)

    1991-07-15

    The unique advantages of fusion rocket propulsion systems for distant missions are explored using the magnetic dipole configurations as an example. The dipole is found to have features well suited to space applications. Parameters are presented for a system producing a specific power of kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power performance than nuclear electric fission systems. Possibilities to further increase the specific power toward 10 kW/kg are discussed, as is an approach to implementing the concept through proof-testing on the moon. 20 refs., 14 figs., 2 tabs.

  2. Pulsar Pair Cascades in a Distorted Magnetic Dipole Field

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alex G.

    2010-01-01

    We investigate the effect of a distorted neutron star dipole magnetic field on pulsar pair cascade multiplicity and pair death lines. Using a simple model for a distorted dipole field that produces an offset polar cap (PC), we derive the accelerating electric field above the PC in space-charge-limited flow. We find that even a modest azimuthally asymmetric distortion can significantly increase the accelerating electric field on one side of the PC and, combined with a smaller field line radius of curvature, leads to larger pair multiplicity. The death line for producing pairs by curvature radiation moves downward in the P-P-dot diagram, allowing high pair multiplicities in a larger percentage of the radio pulsar population. These results could have important implications for the radio pulsar population, high energy pulsed emission, and the pulsar contribution to cosmic ray positrons.

  3. Measurement of the magnetic-field parameters of the NICA Booster dipole magnet

    NASA Astrophysics Data System (ADS)

    Kostromin, S. A.; Borisov, V. V.; Bichkov, A. V.; Golubitsky, O. M.; Donyagin, A. N.; Morozov, N. A.; Samsonov, E. V.; Omelyanenko, M. M.; Khodzhibagiyan, H. G.; Shemchuk, A. V.

    2016-12-01

    Serial assembly and tests of dipole and quadrupole magnets of the NICA Booster have started at the Laboratory of High Energy Physics of the Joint Institute for Nuclear Research (JINR). The accelerator is fitted with Nuclotron-type magnets with a superconducting winding and an iron yoke for shaping the needed magnetic field. The design of magnets for NICA was optimized (based on the experience gained in constructing and operating the JINR Nuclotron) for the production of magnetic fields of the required configuration in terms of the beam dynamics in the accelerator and the collider. Measurements of parameters of the field of each magnet are expected to be performed in the process of assembly and testing of each module of the magnet-cryostat system of the NICA Booster and Collider. The results of magnetic measurements for the NICA Booster dipole magnet are presented.

  4. Correction of magnetization sextupole and decapole in a 5 centimeter bore SSC dipole using passive superconductor

    SciTech Connect

    Green, M.A.

    1991-05-01

    Higher multipoles due to magnetization of the superconductor in four and five centimeter bore Superconducting Super Collider (SSC) superconducting dipole magnets have been observed. The use of passive superconductor to correct out the magnetization sextupole has been demonstrated on two dipoles built by the Lawrence Berkeley Laboratory (LBL). This reports shows how passive correction can be applied to the five centimeter SSC dipoles to remove sextupole and decapole caused by magnetization of the dipole superconductor. Two passive superconductor corrector options will be presented. The change in magnetization sextupole and decapole due to flux creep decay of the superconductor during injection can be partially compensated for using the passive superconductor. 9 refs; 5 figs.

  5. Dynamically fluctuating electric dipole moments in fullerene-based magnets.

    PubMed

    Kambe, Takashi; Oshima, Kokichi

    2014-09-19

    We report here the direct evidence of the existence of a permanent electric dipole moment in both crystal phases of a fullerene-based magnet--the ferromagnetic α-phase and the antiferromagnetic α'-phase of tetra-kis-(dimethylamino)-ethylene-C60 (TDAE-C60)--as determined by dielectric measurements. We propose that the permanent electric dipole originates from the pairing of a TDAE molecule with surrounding C60 molecules. The two polymorphs exhibit clear differences in their dielectric responses at room temperature and during the freezing process with dynamically fluctuating electric dipole moments, although no difference in their room-temperature structures has been previously observed. This result implies that two polymorphs have different local environment around the molecules. In particular, the ferromagnetism of the α-phase is founded on the homogeneous molecule displacement and orientational ordering. The formation of the different phases with respect to the different rotational states in the Jahn-Teller distorted C60s is also discussed.

  6. Magnetic field measurements of full length 50 mm aperture SSC dipole magnets at Fermilab

    SciTech Connect

    Strait, J.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Mazur, P.O.; Mokhtarani, A.; Orris, D.; Ozelis, J.; Wake, M. ); Devred, A.; DiMarco, J.; Kuzminski, J.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H. ); Ogitsu, T. (Supe

    1992-09-01

    Thirteen 16 m long, 50 mm aperture SSC dipole magnets, designed jointly by Fermilab, Brookhaven National Laboratory, Lawrence Berkeley Laboratory and the SSC Laboratory, have been built at Fermilab. The first nine magnets have been fully tested to date. The allowed harmonics are systematically shifted from zero by amounts larger than the specification. The unallowed harmonics, with the exception of the skew sextupole, are consistent with zero. The magnet-to-magnet RMS variation of all harmonics is much smaller than the specification.

  7. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  8. Study on magnetic field deviation due to manufacturing errors of the SIS100 superconducting dipole magnet

    NASA Astrophysics Data System (ADS)

    Sugita, Kei; Fischer, Egbert; Mierau, Anna; Roux, Christian; Schnizer, Pierre

    2016-12-01

    An international accelerator project, Facility for Antiproton and Ion Research in Europe (FAIR), is being constructed at Darmstadt, Germany. Central part of the accelerator chain is a superconducting heavy ion synchrotron SIS100, which accelerates injected particles from existing synchrotron SIS18, and provides them to experiment sites and further accelerators. Superconducting magnets in SIS100 are mainly superferric magnet with a Nuclotron cable. After R&D, the First of Series (FoS) main dipole magnet has been manufactured and tested successfully. However, magnetic field quality is unsatisfactory. We report on the investigation of the magnetic field quality by means of magnetic field measurements, geometrical measurements, and electromagnetic simulations.

  9. Nonadiabatic behavior of the magnetic moment of a charged particle in a dipole magnetic field

    NASA Technical Reports Server (NTRS)

    Murakami, Sadayoshi; Sato, Tetsuya; Hasegawa, Akira

    1990-01-01

    This paper investigates the dynamic behavior of the magnetic moment of a particle confined in a magnetic dipole field in the presence of a low-frequency electrostatic wave. It is shown that there exist two kinds of resonances (the bounce-E x B drift resonance and the wave-drift resonance) by which the adiabaticity of the magnetic moment is broken. The unstable conditions obtained by theoretical considerations showed good agreement with the numerical results.

  10. Ramp-rate sensitivity of SSC dipole magnet prototypes

    SciTech Connect

    Devred, A.; Ogitsu, T.

    1994-07-01

    One of the major achievements of the magnet R&D program for the Superconducting Super Collider (SSC) is the fabrication and test of a series of 20 5-cm aperture, 15-m long dipole magnet prototypes. The ramp rate sensitivity of these magnets appears to fall in at least two categories that can be correlated to the manufacturer and production batch of the strands used for the inner-coil cables. The first category, referred to as type-A, is characterized by a strong quench current degradation at high ramp rates, usually accompanied by large distortions of the multipole fields and large energy losses. The second category, referred to as type-B, is characterized by a sudden drop of quench current at low ramp rates, followed by a much milder degradation at larger rates. The multipole fields of the type-B magnets show little ramp-rate sensitivity, and the energy losses are smaller than for the type-A magnets. The behavior of the Type-A magnets can be explained in terms of inter-strand eddy currents arising from low and non-uniform resistances at the crossovers between the strands of the two-layer Rutherford-type cable. Anomalies in the transport-current repartition among the cable strands are suggested as a possible cause for the type-B behavior. The origins of these anomalies have not yet been clearly identified. The SSC project was canceled by decision of the United States Congress on October 21, 1994.

  11. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders.

    PubMed

    van de Haar, Marie Anne; van de Groep, Jorik; Brenny, Benjamin J M; Polman, Albert

    2016-02-08

    We propose a dielectric nanoresonator geometry consisting of hollow dielectric nanocylinders which support geometrical resonances. We fabricate such hollow Si particles with an outer diameter of 108-251 nm on a Si substrate, and determine their resonant modes with cathodo-luminescence (CL) spectroscopy and optical dark-field (DF) scattering measurements. The scattering behavior is numerically investigated in a systematic fashion as a function of wavelength and particle geometry. We find that the additional design parameter as a result of the introduction of a center gap can be used to control the relative spectral spacing of the resonant modes, which will enable additional control over the angular radiation pattern of the scatterers. Furthermore, the gap offers direct access to the enhanced magnetic dipole modal field in the center of the particle.

  12. Characterization and detection of oscillating magnetic dipole signals

    NASA Astrophysics Data System (ADS)

    Ram-Cohen, Tsuriel; Alimi, Roger; Weiss, Eyal; Zalevsky, Zeev

    2017-04-01

    The present paper deals with the problem of characterization of oscillating magnetic dipole (OMD) signals and the development of a suitable magnetic anomaly detection (MAD) algorithm for it. The resulting outcomes of investigating the above mentioned problem are: (1) a development of a complete model of the noise and the signal based on a non-linear gravity pendulum model. This model was compared and verified against real world magnetic signals, as well as simulated ones. (2) A detection algorithm that utilizes this model by whitening the noise and seeking for periodical features in the signal. The developed algorithm has high noise immunity with high detection probabilities even at as low SNR as  ‑10 dB. Compared to benchmark detectors, our detection scheme offers performance improved by 5–10 dB. Moreover, when testing the detector against real world signals, the SNR difference in respect to the performance predicted by the simulations was less than 2.5 dB.

  13. Neptune radio emission in dipole and multipole magnetic fields

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; King, N. V.; Romig, J. H.; Warwick, J. W.

    1995-01-01

    We study Neptune's smooth radio emission in two ways: we simulate the observations and we then consider the radio effects of Neptune's magnetic multipoles. A procedure to deduce the characteristics of radio sources observed by the Planetary Radio Astronomy experiment minimizes limiting assumptions and maximizes use of the data, including quantitative measurement of circular polarization. Study of specific sources simulates time variation of intensity and apparent polarization of their integrated emission over an extended time period. The method is applied to Neptune smooth recurrent emission (SRE). Time series are modeled with both broad and beamed emission patterns, and at two frequencies which exhibit different time variation of polarization. These dipole-based results are overturned by consideration of more complex models of Neptune's magnetic field. Any smooth emission from the anticipated auroral radio source is weak and briefly observed. Dominant SRE originates complex fields at midlatitude. Possible SRE source locations overlap that of 'high-latitude' emission (HLE) between +(out) and -(in) quadrupoles. This is the first identification of multipolar magnetic structure with a major source of planetary radio emission.

  14. ANALYTICAL CALCULATION OF STOKES PROFILES OF ROTATING STELLAR MAGNETIC DIPOLE

    SciTech Connect

    Martinez Gonzalez, M. J.

    2012-08-20

    The observation of the polarization emerging from a rotating star at different phases opens up the possibility to map the magnetic field in the stellar surface thanks to the well-known Zeeman-Doppler imaging. When the magnetic field is sufficiently weak, the circular and linear polarization profiles locally in each point of the star are proportional to the first and second derivatives of the unperturbed intensity profile, respectively. We show that the weak-field approximation (for weak lines in the case of linear polarization) can be generalized to the case of a rotating star including the Doppler effect and taking into account the integration on the stellar surface. The Stokes profiles are written as a linear combination of wavelength-dependent terms expressed as series expansions in terms of Hermite polynomials. These terms contain the surface-integrated magnetic field and velocity components. The direct numerical evaluation of these quantities is limited to rotation velocities not larger than eight times the Doppler width of the local absorption profiles. Additionally, we demonstrate that in a rotating star, the circular polarization flux depends on the derivative of the intensity flux with respect to the wavelength and also on the profile itself. Likewise, the linear polarization depends on the profile and on its first and second derivatives with respect to the wavelength. We particularize the general expressions to a rotating dipole.

  15. Temperature dependence of magnetic moments of nanoparticles and their dipole interaction in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Lebedev, A. V.

    2015-01-01

    Magnetic susceptibility measurements were carried out for magnetite-based fluids over a wide temperature range. The fluids were stabilized with commonly used surfactants (fatty acids) and new surfactants (polypropylene glycol and tallow acids). The coefficients of temperature dependence of the particle magnetic moments were determined by fitting of the measured and calculated values of magnetic susceptibility. The influence of the inter-particle dipole-dipole interaction on the susceptibility was taken into account in the framework of A.O. Ivanov's model. The corrections for thermal expansion were determined by density measurements of the carrier fluid. The obtained values of temperature coefficients correlate to the solidification temperature of the fluid samples. For fluids with a low solidification temperature the value of the temperature coefficient of particle magnetization coincides with its value for bulk magnetite.

  16. Emission quenching of magnetic dipole transitions near an absorbing nanoparticle (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chigrin, Dmitry N.; Kumar, Deepu; von Plessen, Gero

    2016-09-01

    Emission quenching is analysed at nanometer distances from the surface of an absorbing nanoparticle. It is demonstrated that emission quenching at small distances to the surface is much weaker for magnetic-dipole (MD) than for electric-dipole (ED) transitions. This difference is explained by the fact that the electric field induced by a magnetic dipole has a weaker distance dependence than the electric field of an electric dipole. It is also demonstrated that in the extreme near-field regime the non-locality of the optical response of the metal results in additional emission quenching for both ED and MD transitions.

  17. Magnetic dipole strength in 128Xe and 134Xe in the spin-flip resonance region

    NASA Astrophysics Data System (ADS)

    Massarczyk, R.; Rusev, G.; Schwengner, R.; Dönau, F.; Bhatia, C.; Gooden, M. Â. E.; Kelley, J. Â. H.; Tonchev, A. Â. P.; Tornow, W.

    2014-11-01

    The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in 128Xe and 134Xe using quasimonoenergetic and linearly polarized γ -ray beams at the High-Intensity γ -Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with phenomenological approximations and with predictions of a quasiparticle random phase approximation in a deformed basis.

  18. Solar rotating magnetic dipole?. [around axis perpendicular to rotation axis of the sun

    NASA Technical Reports Server (NTRS)

    Antonucci, E.

    1974-01-01

    A magnetic dipole rotating around an axis perpendicular to the rotation axis of the sun can account for the characteristics of the surface large-scale solar magnetic fields through the solar cycle. The polarity patterns of the interplanetary magnetic field, predictable from this model, agree with the observed interplanetary magnetic sector structure.

  19. Nb3Sn accelerator magnet technology scale up using cos-theta dipole coils

    SciTech Connect

    Nobrega, F.; Andreev, N.; Ambrosio, G.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; /Fermilab

    2007-06-01

    Fermilab is working on the development of Nb{sub 3}Sn accelerator magnets using shell-type dipole coils and the wind-and-react method. As a part of the first phase of technology development, Fermilab built and tested six 1 m long dipole model magnets and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. The technology scale up phase has started by building 2 m and 4 m dipole coils and testing them in a mirror configuration in which one of the two coils is replaced by a half-cylinder made of low carbon steel. This approach allows for shorter fabrication times and extensive instrumentation preserving almost the same level of magnetic field and Lorentz forces in the coils as in a complete dipole model magnet. This paper presents details on the 2 m (HFDM07) and 4 m long (HFDM08) Nb{sub 3}Sn dipole mirror magnet design and fabrication technology, as well as the magnet test results which are compared with 1 m long models.

  20. Direct detection of light anapole and magnetic dipole DM

    SciTech Connect

    Nobile, Eugenio Del; Gelmini, Graciela B.; Huh, Ji-Haeng; Gondolo, Paolo E-mail: gelmini@physics.ucla.edu E-mail: jhhuh@physics.ucla.edu

    2014-06-01

    We present comparisons of direct detection data for ''light WIMPs'' with an anapole moment interaction (ADM) and a magnetic dipole moment interaction (MDM), both assuming the Standard Halo Model (SHM) for the dark halo of our galaxy and in a halo-independent manner. In the SHM analysis we find that a combination of the 90% CL LUX and CDMSlite limits or the new 90% CL SuperCDMS limit by itself exclude the parameter space regions allowed by DAMA, CoGeNT and CDMS-II-Si data for both ADM and MDM. In our halo-independent analysis the new LUX bound excludes the same potential signal regions as the previous XENON100 bound. Much of the remaining signal regions is now excluded by SuperCDMS, while the CDMSlite limit is much above them. The situation is of strong tension between the positive and negative search results both for ADM and MDM. We also clarify the confusion in the literature about the ADM scattering cross section.

  1. Matched dipole probe for precise electron density measurements in magnetized and non-magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-09-01

    We present a plasma diagnostics method based on impedance measurements of a short matched dipole placed in the plasma. This allows measuring the local electron density in the range from 1012-1015 m-3 with a magnetic field of at least 0-50 mT. The magnetic field strength is not directly influencing the data analysis and requires only that the dipole probe is oriented perpendicularly to the magnetic field. As a result, the magnetic field can be non-homogeneous or even non-defined within the probe length without any effect on the final tolerance of the measurements. The method can be applied to plasmas of relatively small dimensions (< 10 cm) and doesn't require any special boundary conditions. The high sensitivity of the impedance measurements is achieved by using a miniature matching system installed close to the probe tip, which also allows to suppress sheath resonance effects. We experimentally show here that the tolerance of the electron density measurements reaches values lower than 1%, both with and without the magnetic field. The method is successfully validated by both analytical modeling and experimental comparison with Langmuir probes. The validation experiments are conducted in a low pressure (1 mTorr) Ar discharge sustained in a 10 cm size plasma chamber with and without a transversal magnetic field of about 20 mT. This work was supported by a Marie Curie International Incoming Fellowships within FP7 (NEPTUNE PIIF-GA-2012-326054).

  2. Classical electrodynamics in material media and relativistic transformation of magnetic dipole moment

    NASA Astrophysics Data System (ADS)

    Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.

    2016-09-01

    We consider the relativistic transformation of the magnetic dipole moment and disclose its physical meaning, shedding light on the related difficulties in the physical interpretation of classical electrodynamics in material media.

  3. Heat leak testing of a superconducting RHIC dipole magnet at Brookhaven National Laboratory

    SciTech Connect

    DeLalio, J.T.; Brown, D.P.; Sondericker, J.H.

    1993-09-01

    Brookhaven National Laboratory is currently performing heat load tests on a superconducting dipole magnet. The magnet is a prototype of the 360, 8 cm bore, arc dipole magnets that will be used in the Relativistic Heavy Ion Collider (RMC). An accurate measurement of the heat load is needed to eliminate cumulative errors when determining the REUC cryogenic system load requirements. The test setup consists of a dipole positioned between two quadrupoles in a common vacuum tank and heat shield. Piping and instrumentation are arranged to facilitate measurement of the heat load on the primary 4.6 K magnet load and the secondary 55 K heat shield load. Initial results suggest that the primary heat load is well below design allowances. The secondary load was found to be higher than estimated, but remained close to the budgeted amount. Overall, the dipole performed to specifications.

  4. Lossless propagation of magnetic dipole excitations on chains of dielectric particles with high refractive index

    NASA Astrophysics Data System (ADS)

    Zhuromskyy, O.; Peschel, U.

    2014-09-01

    Lossless propagation of longitudinal magnetic dipole waves along chains of high-index subwavelength particles is predicted for a narrow frequency range around the magnetic Mie resonance of the individual particles. Mathematical analogies between dipole and magnetoinductive waves are used to reduce back-reflections thus improving the power transfer efficiency of respective particle waveguides. The proposed technique can be used to optimize the propagation of even more complex particle-based configurations.

  5. Interaction of counter-streaming plasma flows in a dipole magnetic field

    NASA Astrophysics Data System (ADS)

    Shaikhislamov, I. F.; Posukh, V. G.; Melekhov, A. V.; Prokopov, P. A.; Boyarintsev, E. L.; Zakharov, Yu P.; Ponomarenko, A. G.

    2016-11-01

    The transient interaction of counter-streaming super-sonic plasma flows in a dipole magnetic dipole is studied in a laboratory experiment. First quasi-stationary flow is produced by θ -pinch and forms a magnetosphere around the magnetic dipole, while laser beams focused at the surface of the dipole cover launch a second explosive plasma expanding outward from the inner dipole region. The laser plasma is energetic enough to disrupt the magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but an order of magnitude larger than the vacuum dipole field at considered distances. Because no compression of the magnetic field at the front of the laser plasma was observed, the realised interaction is different from previous experiments and theoretical models of laser plasma expansion into a uniform magnetized background. It was deduced based on the obtained data that, while expanding through the inner magnetosphere, laser plasma picks up a magnetised shell formed by background plasma and carries it for large distances beyond the previously existing magnetosphere.

  6. Full kinetic simulations of plasma flow interactions with meso- and microscale magnetic dipoles

    SciTech Connect

    Ashida, Y.; Yamakawa, H.; Usui, H.; Miyake, Y.; Shinohara, I.; Funaki, I.; Nakamura, M.

    2014-12-15

    We examined the plasma flow response to meso- and microscale magnetic dipoles by performing three-dimensional full particle-in-cell simulations. We particularly focused on the formation of a magnetosphere and its dependence on the intensity of the magnetic moment. The size of a magnetic dipole immersed in a plasma flow can be characterized by a distance L from the dipole center to the position where the pressure of the local magnetic field becomes equal to the dynamic pressure of the plasma flow under the magnetohydrodynamics (MHD) approximation. In this study, we are interested in a magnetic dipole whose L is smaller than the Larmor radius of ions r{sub iL} calculated with the unperturbed dipole field at the distance L from the center. In the simulation results, we confirmed the clear formation of a magnetosphere consisting of a magnetopause and a tail region in the density profile, although the spatial scale is much smaller than the MHD scale. One of the important findings in this study is that the spatial profiles of the plasma density as well as the current flows are remarkably affected by the finite Larmor radius effect of the plasma flow, which is different from the Earth's magnetosphere. The magnetopause found in the upstream region is located at a position much closer to the dipole center than L. In the equatorial plane, we also found an asymmetric density profile with respect to the plasma flow direction, which is caused by plasma gyration in the dipole field region. The ion current layers are created in the inner region of the dipole field, and the electron current also flows in the region beyond the ion current layer because ions with a large inertia can closely approach the dipole center. Unlike the ring current structure of the Earth's magnetosphere, the current layers in the microscale dipole fields are not circularly closed around the dipole center. Since the major current is caused by the particle gyrations, the current is independently determined

  7. Magnetization Dynamics in a Current-Driven Magnetic Nano-Pillar with Dipole-Dipole Coupling between Magnetic Layers (PREPRINT)

    DTIC Science & Technology

    2009-09-25

    gyromagnetic ratio. The structure of He! !,j will be clarified bellow. The second term a"( TD,j = M [Mj x [ Hef !,j x Mjll is dissipative torque that...nano-pillar looks as fol- lows: 8M· 8/ = "( [ Hef !,j x Mj ], j = 1,2. (2) The effective magnetic field Hef !,j for j-th layer, which enters the LLGS...equation, consists of the external bias magnetic field Hext and magnetodipolar fields, created by each of the two layers: 2 Hef !,j = Hext + L Hj,k

  8. Proposal for a cryogenic magnetic field measurement system for SSC dipole magnets

    SciTech Connect

    Green, M.I.; Hansen, L.

    1991-03-01

    This proposal describes the research and development required, and the subsequent fabrication of, a system capable of making integrated magnetic multipole measurements of cryogenic 40-mm-bore SSC dipole magnets utilizing a cryogenic probe. Our experience and some preliminary studies indicate that it is highly unlikely that a 16-meter-long probe can be fabricated that will have a twist below several milliradians at cryogenic temperatures. We would anticipate a twist of several milliradians just as a result of cooldown stresses. Consequently, this proposal describes a segmented 16-meter-long probe, for which we intend to calibrate the phase of each segment to within 0.1 milliradians. The data for all segments will be acquired simultaneously, and integrated data will be generated from the vector sums of the individual segments. The calibration techniques and instrumentation required to implement this system will be described. The duration of an integral measurement at one current is expected to be under 10 seconds. The system is based on an extrapolation of the techniques used at LBL to measure cryogenic 1-meter models of SSC magnets with a cryogenic probe. It should be noted that the expansion of the dipole bore from 40 to 50 mm may make a warm-finger device practical at a cost of approximately one quarter of the cryogenic probe. A warm quadrupole measurement system can be based upon the same principles. 5 refs., 9 figs., 1 tab.

  9. Reversals of the solar magnetic dipole in the light of observational data and simple dynamo models

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.; Moss, D.; Sokoloff, D.; Hoeksema, J. T.

    2014-07-01

    Context. Observations show that the photospheric solar magnetic dipole usually does not vanish during the reversal of the solar magnetic field, which occurs in each solar cycle. In contrast, mean-field solar dynamo models predict that the dipole field does become zero. In a recent paper it was suggested that this contradiction could be explained as a large-scale manifestation of small-scale magnetic fluctuations of the surface poloidal field. Aims: Our aim is to confront this interpretation with the available observational data. Methods: Here we compare this interpretation with Wilcox Solar Observatory (WSO) photospheric magnetic field data in order to determine the amplitude of magnetic fluctuations required to explain the phenomenon and to compare the results with predictions from a simple dynamo model which takes these fluctuations into account. Results: We demonstrate that the WSO data concerning the magnetic dipole reversals are very similar to the predictions from our very simple solar dynamo model, which includes both mean magnetic field and fluctuations. The ratio between the rms value of the magnetic fluctuations and the mean field is estimated to be about 2, in reasonable agreement with estimates from sunspot data. The reversal epoch, during which the fluctuating contribution to the dipole is larger than that from the mean field, is about 4 months. The memory time of the fluctuations is about 2 months. Observations demonstrate that the rms of the magnetic fluctuations is strongly modulated by the phase of the solar cycle. This gives additional support to the concept that the solar magnetic field is generated by a single dynamo mechanism rather than also by independent small-scale dynamo action. A suggestion of a weak nonaxisymmetric magnetic field of a fluctuating nature arises from the analysis, with a lifetime of about 1 year. Conclusions: The behaviour of the magnetic dipole during the reversal epoch gives valuable information about details of solar

  10. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.

    2016-08-01

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B0. The other antenna is an elongated loop with dipole moment parallel to B0. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  11. Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres: Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres

    DOE PAGES

    Khromova, Irina; Kužel, Petr; Brener, Igal; ...

    2016-06-27

    Monocrystalline titanium dioxide (TiO2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO2 micro-resonators can be used to enhance the interplay of magnetic and electric dipolemore » resonances in the emerging THz all-dielectric metamaterial technology.« less

  12. Quench performance of Fermilab/General Dynamics built full length SSC collider dipole magnets

    SciTech Connect

    Strait, J.; Orris, D.; Mazur, P.O.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Ozelis, J.; Wake, M. ); Devred, A.; DiMarco, J.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H. )

    1992-04-01

    In this paper we present results of quench testing of full length SSC dipole magnets at Fermilab. The data are from the first six of a series of thirteen 15 m long, 50 mm aperture SSC dipole magnets which are being built and tested at Fermilab. These magnets were designed jointly by Fermilab, Brookhaven Laboratory, Lawrence Berkeley Laboratory and the SSC laboratory. Among the major goals for this series of magnets are to transfer magnet production technology to the lead vendor for the Collider Dipole Magnet, the General Dynamics Corporation, and to demonstrate industrial production by the vendor. The first magnet in the series, DCA311, was built by Fermilab technicians to establish assembly procedures. The second magnet, DCA312, was the ''technology transfer magnet'' and was built jointly by Fermilab and General Dynamics technicians. The next seven, DCA313- 319 are being built by General Dynamics personnel using Fermilab facilities and procedures. However, Fermilab personnel still operate the major tooling, provide the welders, perform assembly of items that would not be part of production magnets (e.g. voltage taps), and oversee the QA program. Five of these 7 GD-built magnets will be used in the Accelerator Systems String Test (ASST) to be carried out in Dallas later this year. The last four magnets, DCA320-323, are being built by Fermilab alone.

  13. A table top experiment to study plasma confined by a dipole magnet

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudeep; Baitha, Anuj Ram

    2016-10-01

    There has been a long quest to understand charged particle generation, confinement and underlying complex processes in a plasma confined by a dipole magnet. Our earth's magnetosphere is an example of such a naturally occurring system. A few laboratory experiments have been designed for such investigations, such as the Levitated Dipole Experiment (LDX) at MIT, the Terella experiment at Columbia university, and the Ring Trap-1 (RT-1) experiment at the University of Tokyo. However, these are large scale experiments, where the dipole magnetic field is created with superconducting coils, thereby, necessitating power supplies and stringent cryogenic requirements. We report a table top experiment to investigate important physical processes in a dipole plasma. A strong cylindrical permanent magnet, is employed to create the dipole field inside a vacuum chamber. The magnet is suspended and cooled by circulating chilled water. The plasma is heated by electromagnetic waves of 2.45 GHz and a second frequency in the range 6 - 11 GHz. Some of the initial results of measurements and numerical simulation of magnetic field, visual observations of the first plasma, and spatial measurements of plasma parameters will be presented.

  14. Radiative heat transfer in many-body systems: Coupled electric and magnetic dipole approach

    NASA Astrophysics Data System (ADS)

    Dong, Jian; Zhao, Junming; Liu, Linhua

    2017-03-01

    The many-body radiative heat transfer theory [P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, Phys. Rev. Lett. 107, 114301 (2011), 10.1103/PhysRevLett.107.114301] considered only the contribution from the electric dipole moment. For metal particles, however, the magnetic dipole moment due to eddy current plays an important role, which can further couple with the electric dipole moment to introduce crossed terms. In this paper, we develop the coupled electric and magnetic dipole (CEMD) approach for the radiative heat transfer in a collection of objects in mutual interaction. Due to the coupled electric and magnetic interactions, four terms, namely the electric-electric, the electric-magnetic, the magnetic-electric, and the magnetic-magnetic terms, contribute to the radiative heat flux and the local energy density. The CEMD is applied to study the radiative heat transfer between various dimers of nanoparticles. It is found that each of the four terms can dominate the radiative heat transfer depending on the position and composition of particles. Moreover, near-field many-body interactions are studied by CEMD considering both dielectric and metallic nanoparticles. The near-field radiative heat flux and local energy density can be greatly increased when the particles are in coupled resonances. Surface plasmon polariton and surface phonon polariton can be coupled to enhance the radiative heat flux.

  15. Braking index of isolated pulsars. II. A novel two-dipole model of pulsar magnetism

    NASA Astrophysics Data System (ADS)

    Hamil, O.; Stone, N. J.; Stone, J. R.

    2016-09-01

    The magnetic dipole radiation model is currently the best approach we have to explain pulsar radiation. However, a most characteristic parameter of the observed radiation, the braking index nobs , shows deviations for all the eight best studied isolated pulsars, from the simple model prediction ndip=3 . The index depends upon the rotational frequency and its first and second time derivatives but also on the assumption that the magnetic dipole moment and inclination angle and the moment of inertia of the pulsar are constant in time. In a recent paper [Phys. Rev. D 91, 063007 (2015)], we showed conclusively that changes in the moment of inertia with frequency alone cannot explain the observed braking indices. Possible observational evidence for the magnetic dipole moment migrating away from the rotational axis at a rate α ˙ ˜0.6 ° per 100 years over the lifetime of the Crab pulsar has been recently suggested by Lyne et al. In this paper, we explore the magnetic dipole radiation model with constant moment of inertia and magnetic dipole moment but variable inclination angle α . We first discuss the effect of the variation of α on the observed braking indices and show they all can be understood. However, no explanation for the origin of the change in α is provided. After discussion of the possible source(s) of magnetism in pulsars, we propose a simple mechanism for the change in α based on a toy model in which the magnetic structure in pulsars consists of two interacting dipoles. We show that such a system can explain the Crab observation and the measured braking indices.

  16. Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. [Thermoremanent Magnetization implications for lunar magnetic field

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.

    1976-01-01

    The acquisition of thermoremanent magnetization (TRM) by a cooling spherical shell is studied for internal magnetizing dipole fields, using Runcorn's (1975) theorems on magnetostatics. If the shell cools progressively inward, inner regions acquire TRM in a net field composed of the dipole source term plus a uniform field due to the outer magnetized layers. In this case, the global dipole moment and external remanent field are nonzero when the whole shell has cooled below the Curie point and the source dipole has disappeared. The remanent field outside the shell is found to depend on the thickness, radii, and cooling rate of the shell, as well as the coefficient of TRM and the intensity of the magnetizing field. Some implications for the moon's remanent dipole moment are discussed.

  17. Magnetic anomaly inversion using magnetic dipole reconstruction based on the pipeline section segmentation method

    NASA Astrophysics Data System (ADS)

    Pan, Qi; Liu, De-Jun; Guo, Zhi-Yong; Fang, Hua-Feng; Feng, Mu-Qun

    2016-06-01

    In the model of a horizontal straight pipeline of finite length, the segmentation of the pipeline elements is a significant factor in the accuracy and rapidity of the forward modeling and inversion processes, but the existing pipeline segmentation method is very time-consuming. This paper proposes a section segmentation method to study the characteristics of pipeline magnetic anomalies—and the effect of model parameters on these magnetic anomalies—as a way to enhance computational performance and accelerate the convergence process of the inversion. Forward models using the piece segmentation method and section segmentation method based on magnetic dipole reconstruction (MDR) are established for comparison. The results show that the magnetic anomalies calculated by these two segmentation methods are almost the same regardless of different measuring heights and variations of the inclination and declination of the pipeline. In the optimized inversion procedure the results of the simulation data calculated by these two methods agree with the synthetic data from the original model, and the inversion accuracies of the burial depths of the two methods are approximately equal. The proposed method is more computationally efficient than the piece segmentation method—in other words, the section segmentation method can meet the requirements for precision in the detection of pipelines by magnetic anomalies and reduce the computation time of the whole process.

  18. POLARIZATION OF MAGNETIC DIPOLE EMISSION AND SPINNING DUST EMISSION FROM MAGNETIC NANOPARTICLES

    SciTech Connect

    Hoang, Thiem; Lazarian, Alex

    2016-04-20

    Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is potentially an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background B-mode signal. To obtain realistic predictions for the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that thermally rotating big grains with magnetic inclusions are weakly aligned and can achieve alignment saturation when the magnetic alignment rate becomes much faster than the rotational damping rate. We then compute the degree of alignment for free-flying magnetic nanoparticles, taking into account various interaction processes of grains with the ambient gas and radiation field, including neutral collisions, ion collisions, and infrared emission. We find that the rotational damping by infrared emission can significantly decrease the degree of alignment of small particles from the saturation level, whereas the excitation by ion collisions can enhance the alignment of ultrasmall particles. Using the computed degrees of alignment, we predict the polarization level of MDE from free-flying magnetic nanoparticles to be rather low. Such a polarization level is within the upper limits measured for anomalous microwave emission (AME), which indicates that MDE from free-flying iron particles may not be ruled out as a source of AME. We also quantify rotational emission from free-flying iron nanoparticles with permanent magnetic moments and find that its emissivity is about one order of magnitude lower than that from spinning polycyclic aromatic hydrocarbons.

  19. Design, fabrication and testing of a dipole magnet made with 2G HTS wire

    NASA Astrophysics Data System (ADS)

    Bogdanov, I. V.; Kozub, S. S.; Sytnik, V. V.; Terskiy, I. S.; Tkachenko, L. M.; Trusov, O. V.; Shirshov, L. S.; Smirnov, V. M.; Shuvalov, V. I.; Shcherbakov, P. A.; Molodyk, A. A.; Lee, S. R.; Samoilenkov, S. V.

    2016-10-01

    An HTS dipole magnet with a 1 T (at 77 K) central magnetic field in a 40 × 80 mm2 aperture has been designed, fabricated and tested. The magnet coils were wound with SuperOx 2G HTS wire. The paper describes the magnet design, properties of the magnet materials, and results of calculations and measurements. The central field in the dipole reached 1.12 T at 77 K and 1.66 T at 65 K. In a liquid helium bath the maximum input current of 847 A was limited by the capacity of the power supply, and in that case the central field was 3.03 T. The measurement data were in good agreement with the calculation results.

  20. Magnetic dipole moment estimates for an ancient lunar dynamo

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1983-01-01

    The four measured planetary magnetic moments combined with a recent theoretical prediction for dynamo magnetic fields suggests that no dynamo exists in the moon's interior today. For the moon to have had a magnetic moment in the past of sufficient strength to account for at least some of the lunar rock magnetism, the rotation would have been about twenty times faster than it is today and the radius of the fluid, conducting core must have been about 750 km. The argument depends on the validity of the Busse solution to the validity of the MHD problem of planetary dynamos.

  1. Matched dipole probe for magnetized low electron density laboratory plasma diagnostics

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-07-15

    In this paper, a diagnostic method for magnetized and unmagnetized laboratory plasma is proposed, based on impedance measurements of a short matched dipole. The range of the measured electron densities is limited to low density plasmas (10{sup 12}–10{sup 15 }m{sup −3}), where other diagnostic methods have strong limitations on the magnetic field strength and topology, plasma dimensions, and boundary conditions. The method is designed for use in both large- and small-dimension plasma (<10 cm) without or with strong non-homogeneous magnetic field, which can be undefined within the probe size. The design of a matched dipole probe allows to suppress the sheath resonance effects and to reach high sensitivity at relatively small probe dimensions. Validation experiments are conducted in both magnetized (B ∼ 170 G) and unmagnetized (B = 0) low density (7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3}) low pressure (1 mTorr) 10 cm scale plasmas. The experimentally measured data show very good agreement with an analytical theory both for a non-magnetized and a magnetized case. The electron density measured by the matched dipole and Langmuir probes in the range of 7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3} show less than 30% difference. An experimentally measured tolerance/uncertainty of the dipole probe method is estimated to ±1% for plasma densities above 2 × 10{sup 13 }m{sup −3}. A spatial resolution is estimated from the experiments to be about 3d, where d is the dipole diameter. The diagnostic method is also validated by comparing the measured plasma impedance curves with results of analytical modelling.

  2. The role of magnetic dipoles and non-zero-order Bragg waves in metamaterial perfect absorbers.

    PubMed

    Zeng, Yong; Chen, Hou-Tong; Dalvit, Diego A R

    2013-02-11

    We develop a simple treatment of a metamaterial perfect absorber (MPA) based on grating theory. We analytically prove that the condition of MPA requires the existence of two currents, which are nearly out of phase and have almost identical amplitude, akin to a magnetic dipole. Furthermore, we show that non-zero-order Bragg modes within the MPA may consume electromagnetic energy significantly.

  3. Different Paths to Some Fundamental Physical Laws: Relativistic Polarization of a Moving Magnetic Dipole

    ERIC Educational Resources Information Center

    Kholmetskii, Alexander L.; Yarman, T.

    2010-01-01

    In this paper we consider the relativistic polarization of a moving magnetic dipole and show that this effect can be understood via the relativistic generalization of Kirchhoff's first law to a moving closed circuit with a steady current. This approach allows us to better understand the law of relativistic transformation of four-current density…

  4. Development of cos-theta Nb{sub 3}Sn dipole magnets for VLHC

    SciTech Connect

    Alexander Zlobin et al.

    2001-07-20

    This paper describes the double aperture dipole magnets developed for a VLHC based on Nb{sub 3}Sn superconductor, a cos-theta coil, cold and warm iron yokes, and the wind-and-react fabrication technique. Status of the model R and D program, strand and cable and other major component development are also discussed.

  5. Quench calculations for the superconducting dipole magnet of CBM experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Kurilkin, P.; Akishin, P.; Bychkov, A.; Floch, E.; Gusakov, Yu.; Ladygin, V.; Malakhov, A.; Moritz, G.; Ramakers, H.; Senger, P.; Shabunov, A.; Szwangruber, P.; Toral, F.

    2016-08-01

    The scientific mission of the Compressed Baryonic Matter (CBM) experiment is the study of the nuclear matter properties at the high baryon densities in heavy ion collisions at the Facility of Antiproton and Ion Research (FAIR) in Darmstadt. The 5.15 MJ superconducting dipole magnet will be used in the silicon tracking system of the CBM detector. It will provide a magnetic field integral of 1 Tm which is required to obtain a momentum resolution of 1% for the track reconstruction. This paper presents quench modeling and evaluation of candidate protection schemes for the CBM dipole magnet. Two quench programs based on finite-difference method were used in simulation. One of them is currently used at GSI, and the other based on CIEMAT (Madrid, Spain) was modified to perform quench calculation for the CBM magnet.

  6. Concentration dependence of the wings of a dipole-broadened magnetic resonance line in magnetically diluted lattices

    NASA Astrophysics Data System (ADS)

    Zobov, V. E.; Kucherov, M. M.

    2017-01-01

    The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole-dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole-dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components are described by different equations. Second, the long-range type of the dipole-dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different 29Si concentrations in magnetic fields directed along three crystallographic axes is considered.

  7. Observation of Centrifugally Driven Interchange Instabilities in a Plasma Confined by a Magnetic Dipole

    SciTech Connect

    Levitt, B.; Maslovsky, D.; Mauel, M.E.

    2005-05-06

    Centrifugally driven interchange instabilities are observed in a laboratory plasma confined by a dipole magnetic field. The instabilities appear when an equatorial mesh is biased to drive a radial current that causes rapid axisymmetric plasma rotation. The observed instabilities are quasicoherent in the laboratory frame of reference; they have global radial mode structures and low azimuthal mode numbers, and they are modified by the presence of energetic, magnetically confined electrons. Results from a self-consistent nonlinear simulation reproduce the measured mode structures.

  8. Dipole magnetic field of neutron stars in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Bakirova, Elizat; Folomeev, Vladimir

    2016-10-01

    The structure of an interior dipole magnetic field of neutron stars in f( R) gravity is considered. For this purpose, the perturbative approaches are used when both the deviations from general relativity and the deformations of spherically symmetric configurations associated with the presence of the magnetic field are assumed to be small. Solutions are constructed which describe relativistic, spherically symmetric configurations consisting of a gravitating magnetized perfect fluid modeled by a realistic equation of state. Comparing configurations from general relativity and modified gravity, we reveal possible differences in the structure of the magnetic field which occur in considering neutron stars in modified gravity.

  9. Structural performance of the first SSC (Superconducting Super Collider) Design B dipole magnet

    SciTech Connect

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs.

  10. Magnetic field angle changes during manufacture and testing of SSC collider dipoles

    SciTech Connect

    Kuchnir, M.; Bleadon, M.; Delchamps, S.W.; Schmidt, E.; Bossert, R.; Carson, J.; Gourlay, S.; Hanft, R.; Koska, W.; Lamm, M.J.; Mazur, P.O.; Orris, D.; Ozelis, J.; Strait, J.; Wake, M.; Devred, A.; DiMarco, J.; Kuzminski, J.; Ogitsu, T.; Yu, Y.; Zheng, H.

    1992-10-01

    Measurements of the magnetic field angle along the length of collider dipole magnets are discussed. These superconducting magnets were built at Fermilab for the Superconducting Super Collider (SSC) by Fermilab and General Dynamics personnel. These measurements were made at four stages in the assembly and test sequence. The data show-that changes can occur both during installation in the cryostat and as a result of cold testing. Most of the changes during installation are correlated with the welding of the tie bar restraints. But the changes observed as a result of the cold testing can be attributed to changes in the magnetization of the iron laminations.

  11. Levitation and lateral forces between a point magnetic dipole and a superconducting sphere

    NASA Astrophysics Data System (ADS)

    H, M. Al-Khateeb; M, K. Alqadi; F, Y. Alzoubi; B, Albiss; M, K. Hasan (Qaseer; N, Y. Ayoub

    2016-05-01

    The dipole-dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.

  12. Test results from Fermilab 1.5 m model SSC collider dipole magnets

    SciTech Connect

    Koska, W.; Bossert, R.; Carson, J.; Coulter, K.J.; Delchamps, S.; Gourlay, S.; Jaffery, T.S.; Kinney, W.; Lamm, M.J.; Ozelis, J.P.; Strait, J.; Wake, M.

    1991-09-01

    We will present results from tests of 1.5 m model SSC collider dipole magnets. These R&D magnets are identical to the 15 m full length dipoles currently being assembled at Fermilab in all important aspects except length. Because of their small size they can be built faster and tested more extensively than the long magnets. The model magnets are used to optimize design parameters for, and to indicate the performance which can be expected from, the 15 m magnets. The are instrumented with voltage taps over the first two current blocks for quench localization and with several arrays of strain gauge transducers for the study of mechanical behavior. The stress at the poles of the inner and outer coils is monitored during construction and, along with end force and shell strain, during excitation. Magnetic measurements are made several times during each magnet`s lifetime, including at operating temperature and field. We will report on studies of the quench performance, mechanical behavior and magnetic field of these magnets.

  13. Electric Quadrupole and Magnetic Dipole Moments of Mirror Nuclei and Self-Conjugate Nuclei

    NASA Astrophysics Data System (ADS)

    Zickendraht, W.

    A transformation, which brings about the unification of the nuclear collective and single particle models, yields sumrules for the magnetic dipole moments and for the electric quadrupole moments of mirror nuclei. These sumrules are applied to cases, for which the numerical values of these moments are known.Translated AbstractElektrische Qadrupol- und Magnetische Dipolmomente von Spiegelkernen und Kernen mit N = ZMit Hilfe einer Transformation, die die Vereinigung von Kollektiv- und Schalenmodell liefert, lassen sich Summenregeln für die magnetischen Dipol- und die elektrischen Quadrupolmomente von Spiegelkernen ableiten. Diese Summenregeln werden auf Spiegelkerne angewandt, für die die numerischen Werte der Momente bekannt sind.

  14. Studies of time dependence of fields in TEVATRON superconducting dipole magnets

    SciTech Connect

    Hanft, R.W.; Brown, B.C.; Herrup, D.A.; Lamm, M.J.; McInturff, A.D.; Syphers, M.J.

    1988-08-22

    The time variation in the magnetic field of a model Tevatron dipole magnet at constant excitation current has been studied. Variations in symmetry allowed harmonic components over long time ranges show a log t behavior indicative of ''flux creep.'' Both short time range and long time range behavior depend in a detailed way on the excitation history. Similar effects are seen in the remnant fields present in full-scale Tevatron dipoles following current ramping. Both magnitudes and time dependences are observed to depend on details for the ramps, such as ramp rate, flattop duration, and number of ramps. In a few magnets, variations are also seen in symmetry unallowed harmonics. 9 refs., 10 figs.

  15. 3D Design, Contruction, and Field Analysis of CIS Main Dipole Magnets

    NASA Astrophysics Data System (ADS)

    Berg, G. P. A.; Fox, W.; Friesel, D. L.; Rinckel, T.

    1997-05-01

    The lattice for CIS ( Cooler Injection Synchroton ) requires four laminated 90^circ main dipole magnets with bending radius ρ = 1.273 m, EFL = 2 m, and an edge angle of 12^circ. Optimum Cooler injection and injection in the planned 15 GeV LISS ring requires operation up to about 1.75 T. Initial operation of 1 Hz, with later upgrade to 5 Hz is planned. We will present 2D and 3D field calculations used to optimize the shape of laminations and endpacks of the magnet. Endpacks are designed to determine edge angle and to compensate hexapole components, in particular above 1.4 T where saturation becomes significant. The large dipole curvature required a new type of dipole construction. Each magnet consists of wedge shaped blocks fabricated from stamped lamination of cold rolled low carbon iron. B-stage (dry) epopy was used for bonding and insulation. The end blocks are machined to include the calculated 3D shape of the endpacks. All four magnets were mapped in the field range from 0.3 T - 1.8 T. Comparison of calculations and data in terms of B(I) curves, EFL, edge angle, and hexapole component as function of field excitation will be presented. The constructed magnets are well within expected specifications.

  16. Magnetic design and field optimization of a superferric dipole for the RISP fragment separator

    NASA Astrophysics Data System (ADS)

    Zaghloul, A.; Kim, J. Y.; Kim, D. G.; Jo, H. C.; Kim, M. J.

    2015-10-01

    The in-flight fragment separator of the Rare Isotope Science Project requires eight dipole magnets to produce a gap field of 1.7 T in a deflection sector of 30 degree with a 6-m central radius. If the beam-optics requirements are to be met, an integral field homogeneity of a few units (1 unit = 10-4) must be achieved. A superferric dipole magnet has been designed by using the Low-Temperature Superconducting wire NbTi and soft iron of grade SAE1010. The 3D magnetic design and field optimization have been performed using the Opera code. The length and the width of the air slots in the poles have been determined in an optimization process that considered not only the uniformity of the field in the straight section but also the field errors in the end regions. The field uniformity has also been studied for a range of operation of the dipole magnet from 0.4 T to 1.7 T. The magnetic design and field uniformity are discussed.

  17. Inner-shell magnetic dipole transition in Tm atoms: A candidate for optical lattice clocks

    NASA Astrophysics Data System (ADS)

    Sukachev, D.; Fedorov, S.; Tolstikhina, I.; Tregubov, D.; Kalganova, E.; Vishnyakova, G.; Golovizin, A.; Kolachevsky, N.; Khabarova, K.; Sorokin, V.

    2016-08-01

    We consider a narrow magneto-dipole transition in the 169Tm atom at the wavelength of 1.14 μ m as a candidate for a two-dimensional-optical lattice clock. Calculating dynamic polarizabilities of the two clock levels [Xe] 4 f136 s2(J =7 /2 ) and [Xe] 4 f136 s2(J =5 /2 ) in the spectral range from 250 to 1200 nm, we find a "magic" wavelength for the optical lattice at 807 nm. Frequency shifts due to black-body radiation (BBR), the van der Waals interaction, the magnetic dipole-dipole interaction, and other effects which can perturb the transition frequency are calculated. The transition at 1.14 μ m demonstrates low sensitivity to the BBR shift corresponding to 8 ×10-17 in fractional units at room temperature which makes it an interesting candidate for high-performance optical clocks. The total estimated frequency uncertainty is less than 5 ×10-18 in fractional units. By direct excitation of the 1.14 μ m transition in Tm atoms loaded into an optical dipole trap, we set the lower limit for the lifetime of the upper clock level [Xe] 4 f136 s2(J =5 /2 ) of 112 ms which corresponds to a natural spectral linewidth narrower than 1.4 Hz. The polarizability of the Tm ground state was measured by the excitation of parametric resonances in the optical dipole trap at 532 nm.

  18. Fabrication and component testing results for a Nb{sub 3}Sn dipole magnet

    SciTech Connect

    Dell`Orco, D.; Scanlan, R.M.; Taylor, C.E.; Lietzke, A.; Caspi, S.; van Oort, J.M.; McInturff, A.D.

    1994-10-01

    At present, the maximum field achieved in accelerator R&D dipoles is slightly over 10T, with NbTi conductor at 1.8 K. Although Nb{sub 3}Sn has the potential to achieve much higher fields, none of the previous dipoles constructed from Nb{sub 3}Sn have broken the 10T barrier. We report here on the construction of a dipole with high current density Nb{sub 3}Sn with a predicted short sample limit of 13T. A wind and react technique, followed by epoxy impregnation of the fiberglass insulated coils, was used. The problems identified with the use of Nb{sub 3}SD in earlier dipole magnets were investigated in a series of supplemental tests. This includes measurement of the degradation of J{sub c} with transverse strain, cabling degradation, joint resistance measurements, and epoxy strength tests. In addition, coff assembly techniques were developed to ensure that adequate prestress could be applied without damaging the reacted Nb{sub 3}Sn cable. We report here the results of these tests and the construction status of this 50 mm bore dipole.

  19. Is the Non-Dipole Magnetic Field Random?

    NASA Technical Reports Server (NTRS)

    Walker, Andrew D.; Backus, George E.

    1996-01-01

    Statistical modelling of the Earth's magnetic field B has a long history. In particular, the spherical harmonic coefficients of scalar fields derived from B can be treated as Gaussian random variables. In this paper, we give examples of highly organized fields whose spherical harmonic coefficients pass tests for independent Gaussian random variables. The fact that coefficients at some depth may be usefully summarized as independent samples from a normal distribution need not imply that there really is some physical, random process at that depth. In fact, the field can be extremely structured and still be regarded for some purposes as random. In this paper, we examined the radial magnetic field B(sub r) produced by the core, but the results apply to any scalar field on the core-mantle boundary (CMB) which determines B outside the CMB.

  20. Polarity reversals and tilt of the Earth's magnetic dipole

    NASA Technical Reports Server (NTRS)

    Dolginov, A. Z.

    1993-01-01

    There is evidence that the terrestrial magnetic field is connected with the Earth's mantle: (1) there are magnetic anomalies that do not take part in the westward drift of the main field, but are fixed with respect to the mantle; (2) the geomagnetic pole position flips in a particular way by preferred meridional paths during a reversal; and (3) magnetic polarity reversals are correlated with the activations of geological processes. These facts may be explained if we take into account that a significant horizontal temperature gradient can exist in the top levels of the liquid core because of the different thermoconductivity of the different areas of the core-mantle boundary. These temperature inhomogeneities can penetrate the core because fluxes along the core boundary (the thermal wind) can be strongly suppressed by a small redistribution of the chemical composition in the top of the core. The nonparallel gradients of the temperature, density, and composition on the top of the core create a curled electric field that produces a current and a magnetic field. This seed-field can be amplified by motions in the core. The resulting field does not forget the seed-field distribution and in this way the field on the Earth surface (that can be created only in regions with high conductivity, i.e. in the core) is connected with the core-mantle boundary. Contrary to the usual approach to the dynamo problem, we will take into account that the seed field of thermoelectric origin is acting not only at some initial moment of time but permanently.

  1. Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays.

    PubMed

    Sersic, Ivana; Frimmer, Martin; Verhagen, Ewold; Koenderink, A Femius

    2009-11-20

    We present experimental observations of strong electric and magnetic interactions between split ring resonators (SRRs) in metamaterials. We fabricated near-infrared planar metamaterials with different inter-SRR spacings along different directions. Our transmission measurements show blueshifts and redshifts of the magnetic resonance, depending on SRR orientation relative to the lattice. The shifts agree well with simultaneous magnetic and electric near-field dipole coupling. We also find large broadening of the resonance, accompanied by a decrease in effective cross section per SRR with increasing density due to superradiant scattering. Our data shed new light on Lorentz-Lorenz approaches to metamaterials.

  2. Mercury intrinsic magnetic field : Limits of the offset-dipole representation

    NASA Astrophysics Data System (ADS)

    Chanteur, Gérard M.; Modolo, Ronan; Richer, Emilie; Hess, Sébastien; Leblanc, François

    2013-04-01

    The interaction of the solar wind (SW) with the magnetic field of The analysis of MESSENGER orbital observations led Anderson et al (2011) to propose a dipole centered on the spin axis of the planet with a northward offset equal to 484±11 km to represent the intrinsic magnetic field of Mercury at northern latitudes higher than 30°. The magnetic moment has a magnitude of 195±10nT, points southward and is tilted by less than 3° with respect to the spin axis. The restriction to northern latitude comes from the lack of low altitude measurements of the magnetic field at southern latitudes due to MESSENGER orbit. Hence for the moment being there is no observation to constrain the representation of the southern planetary field. The suggested offset is equal to about 20% of the planetary radius which is quite a large value by comparison to 8.5% in the terrestrial case although with a lateral offset. This representation of the intrinsic field by an offset dipole suggests that the southern polar cap should be much wider than the northern one, leading to important consequences for magnetospheric dynamics. Nevertheless the offset dipole is just a convenient representation that can be fitted by the first terms of the multipolar development. The surface field of the planet produced by the offset dipole (OD) proposed by Anderson et al (2011) is thus fitted by the sum of a dipolar and a quadrupolar field (DQ) for northern latitudes higher than 50°. The resulting field differs slightly from the offset dipole field at northern latitudes but a separatrix exists at southern latitudes between dipolar-like and quadrupolar like field lines. This separatrix begins on the polar axis at an altitude RS equal to three times the ratio of the quadrupolar to the dipolar moment. When the relative axial offset of the dipole becomes larger than 16% then RS becomes larger than the planetary radius leading to important topological changes of the southern field. Global hybrid simulations of the

  3. Lepton electric and magnetic dipole moments via lepton flavor-violating spin-1 unparticle interactions

    SciTech Connect

    Moyotl, A.; Rosado, A.; Tavares-Velasco, G.

    2011-10-01

    The magnetic dipole moment and the electric dipole moment of leptons are calculated under the assumption of lepton flavor violation (LFV) induced by spin-1 unparticles with both vector and axial-vector couplings to leptons, including a CP-violating phase. The experimental limits on the muon magnetic dipole moment and LFV process, such as the decay l{sub i}{sup -}{yields}l{sub j}{sup -}l{sub k}{sup -}l{sub k}{sup +}, are then used to constrain the LFV couplings for particular values of the unparticle operator dimension d{sub U} and the unparticle scale {Lambda}{sub U}, assuming that LFV transitions between the tau and muon leptons are dominant. It is found that the current experimental constraints favor a scenario with dominance of the vector couplings over the axial-vector couplings. We also obtain estimates for the electric dipole moments of the electron and the muon, which are well below the experimental values.

  4. Production and study of high-beta plasma confined by a superconducting dipole magnet

    SciTech Connect

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-05-15

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure ({beta}>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large.

  5. Simulation and Characterization of the MINER{nu}A Dipole Magnets

    SciTech Connect

    Felix, J.; Castorena, J.; Higuera, A.; Urrutia, Z.; Zavala, G.

    2009-12-17

    The MINER{nu}A (Main INjector ExpeRiment for {nu} A) experiment (http://minerva.fnal.gov/) is a neutrino scattering experiment which uses the NuMI beamline at Fermilab. It seeks to measure low energy neutrino interactions both to support neutrino oscillation experiments and to study the strong dynamics of the nucleon and nucleus that affect these interactions. For energy calibration of the main detector, a tertiary test beam line was designed and commissioned. This test beam consisted of target, collimator, two TOF stations and four wire chamber stations. Two dipole trim magnets were used to form a spectrometer. Here we present the simulation and characterization of these dipole magnets.

  6. Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems.

    PubMed

    Imamoğlu, Atac

    2009-02-27

    We analyze the magnetic dipole coupling of an ensemble of spins to a superconducting microwave stripline structure, incorporating a Josephson junction based transmon qubit. We show that this system is described by an embedded Jaynes-Cummings model: in the strong coupling regime, collective spin-wave excitations of the ensemble of spins pick up the nonlinearity of the cavity mode, such that the two lowest eigenstates of the coupled spin wave-microwave cavity-Josephson junction system define a hybrid two-level system. The proposal described here enables new avenues for nonlinear optics using optical photons coupled to spin ensembles via Raman transitions. The possibility of strong coupling cavity QED with magnetic dipole transitions also opens up the possibility of extending quantum information processing protocols to spins in silicon or graphene, without the need for single-spin confinement.

  7. Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization

    NASA Astrophysics Data System (ADS)

    Oliveira, J. S.; Wieczorek, M. A.

    2017-02-01

    Orbital magnetic field data show that portions of the Moon's crust are strongly magnetized, and paleomagnetic data of lunar samples suggest that Earth strength magnetic fields could have existed during the first several hundred million years of lunar history. The origin of the fields that magnetized the crust are not understood and could be the result of either a long-lived core-generated dynamo or transient fields associated with large impact events. Core dynamo models usually predict that the field would be predominantly dipolar, with the dipole axis aligned with the rotation axis. We test this hypothesis by modeling the direction of crustal magnetization using a global magnetic field model of the Moon derived from Lunar Prospector and Kaguya magnetometer data. We make use of a model that assumes that the crust is unidirectionally magnetized. The intensity of magnetization can vary with the crust, and the best fitting direction of magnetization is obtained from a nonnegative least squares inversion. From the best fitting magnetization direction we obtain the corresponding north magnetic pole predicted by an internal dipolar field. Some of the obtained paleopoles are associated with the current geographic poles, while other well-constrained anomalies have paleopoles at equatorial latitudes, preferentially at 90° east and west longitudes. One plausible hypothesis for this distribution of paleopoles is that the Moon possessed a long-lived dipolar field but that the dipole was not aligned with the rotation axis as a result of large-scale heat flow heterogeneities at the core-mantle boundary.

  8. Design study of 15-Tesla RHQT Nb3Al block type dipole magnet

    SciTech Connect

    Yamada, R.; Ambrosio, G.; Barzi, E.; Kashikin, V.; Kikuchi, A.; Novitski, I.; Takeuchi, T.; Wake, M.; Zlobin, A.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2005-09-01

    The design study of the block type 15-Tesla RHQT Nb{sub 3}Al dipole magnet, and its merits over Nb{sub 3}Sn magnets are presented. The copper stabilized RHQT Nb{sub 3}Al strand is now becoming commercially available for the application to the accelerator magnets. A 1 mm diameter RHQT Nb{sub 3}Al strand with filament size about 50 {mu}, non-copper Jc about 1000 A/mm{sup 2} at 15 Tesla at 4.2K, copper ratio of 50%, can now be produced over several hundred meters. The stress and strain characteristics of the Nb{sub 3}Al strand are superior to the Nb{sub 3}Sn strand. Another advantage is that it can tolerate a longitudinal strain up to 0.55%. The RHQT Nb{sub 3}Al Rutherford cable will have less chance of contamination of the stabilizer, compared to Nb{sub 3}Sn cable. These characteristics of the RHQT Nb{sub 3}Al will be beneficial for designing and producing 15-Tesla dipole magnets. An example 15-Tesla magnet cross section, utilizing the RHQT Nb{sub 3}Sn strand is presented. A systematic investigation on RHQT Nb{sub 3}Al strands, its Rutherford cables, and building a small racetrack magnet for cable testing are proposed.

  9. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    SciTech Connect

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab's new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long.

  10. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    SciTech Connect

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab`s new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long.

  11. Thermodynamic Properties of the Superconducting Dipole Magnet of the SIS100 Synchrotron

    NASA Astrophysics Data System (ADS)

    Bleile, A.; Fischer, E.; Freisleben, W.; Mierau, A.; Schnizer, P.; Szwangruber, P.

    The Heavy Ion Synchrotron SIS100 is the core facility of the international FAIR project at GSI in Darmstadt. The magnet system of the synchrotron will operate with a high cycle frequency up to 1 Hz. The magnet coils are made of a hollow NbTi composite cable cooled by forced flow of two phase helium. The dynamic heat losses in the magnets caused by fast ramping provide the major part of the heat load to the cryogenic system of SIS100. Recently the first series dipole magnet was produced and is being intensively tested at the cryogenic magnet test facility at GSI. We present the status of these tests together with the obtained opera- tion characteristics like a cool down and training behaviour, dynamic heat release and mass flow rates.

  12. Final Assembly and Factory Testing of the Jefferson Lab SHMS Spectrometer Quadrupole and Dipole Superconducting Magnets

    DOE PAGES

    Brindza, Paul; Lassiter, Steven; Sun, Eric; ...

    2017-06-01

    Jefferson Lab is constructing an 11 Gev/c electron spectrometer called the Super High Momentum Spectrometer (SHMS) as part of the 12 GeV JLAB upgrade for experimental Hall C. Three of the five superconducting(SC) SHMS magnets are under construction at SigmaPhi in Vannes France as a result of an international competition for design and fabrication. The three magnets Q2 and Q3 60 cm bore quadrupoles and the 60 cm warm bore dipole are complete or near complete and have many design features in common. All three magnets share a common superconductor, collaring system, cryostat design, cold to warm support, cryogenic interface,more » burnout resistant current leads, DC power supply, quench protection, instrumentation and controls. The three magnets are collared, installed in cryostats and welded up and in various stages of final testing. The Q2 quadrupole is due to ship from France to America in August arriving during this ASC conference and has passed all final hipot, leak and pressure tests. The dipole is in leak and pressure testing as of July 2016 while the Q3 quadrupole requires some outer vacuum vessel assembly. Delivery of the Q3 and Dipole magnets will follow the Q2 at about 1 month intervals. Lastly, factory testing have included hipot and electrical tests, magnetic tests at low field, mechanical alignments to center the coils, leak tests and ASME Code required pressure tests. Upon installation in Hall C at JLAB cold testing will commence.« less

  13. A 50 Hz dipole magnet for the TRIUMF KAON Factory booster ring

    SciTech Connect

    Otter, A.J. )

    1992-01-01

    The 3 GeV Booster synchrotron for TRIUMF's KAON Factory will need 24 dipole magnets each 3.0 m long operating with a resonant power system designed to give a 50 Hz ac field superimposed onto a dc field. The maximum and minimum field levels are 1.118 and 0.295 T respectively. In this paper the magnet design is presented and compared with measured results from a prototype which was constructed to evaluate fabrication procedures and to verify the ac loss calculations. The experiences gained from this fabrication are described.

  14. The Fermilab Main Injector Dipole construction techniques and prototype magnet measurements

    SciTech Connect

    Bleadon, M.E.; Brown, B.C.; Chester, N.S.; Desavouret, E.; Garvey, J.D.; Glass, H.D.; Harding, D.J.; Harfoush, F.A.; Holmes, S.D.; Humbert, J.C. )

    1992-01-01

    The Fermilab Main Injector Project will provide 120-150 GeV Proton and Antiproton Beams for Fermilab Fixed Target Physics and Colliding Beams Physics use. A dipole magnet has been designed and prototypes constructed for the principal bending magnets of this new accelerator. In this paper the design considerations and fabrication techniques are described. Measurement results on prototypes are reported, emphasizing the field uniformity achieved in both body field and end field at excitation levels from injection at 0.1 T to full field of 1.7 T.

  15. The Fermilab main injector dipole construction techniques and prototype magnet measurements

    SciTech Connect

    Bleadon, M.; Brown, B.; Chester, N.; Desavouret, E.; Garvey, J.; Glass, H.; Harding, D.; Harfoush, F.; Holmes, S.; Humbert, J.; Kerby, J.; Knauf, A.; Kobliska, G.; Lipski, A.; Martin, P.; Mazur, P.; Orris, D.; Ostiguy, J.; Peggs, S.; Pachnik, J.; Pewitt, E.; Satti, J.; Schmidt, E.; Sim, J.; Snowdon, S.; Walbridge, D.

    1991-09-01

    The Fermilab Main Injector Project will provide 120--150 GeV Proton and Antiproton Beams for Fermilab Fixed Target Physics and Colliding Beams Physics use. A dipole magnet has been designed and prototypes constructed for the principal bending magnets of this new accelerator. The design considerations and fabrication techniques are described. Measurement results on prototypes are reported, emphasizing the field uniformity achieved in both body field and end field at excitation levels from injection at 0.1 T to full field of 1.7 T. 6 refs., 5 figs., 3 tabs.

  16. Measurements of the persistent current decay and snapback effect in Tevatron dipole magnets

    SciTech Connect

    Velev, G.V.; Bauer, P.; DiMarco, J.; Hanft, R.; Lamm, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2006-08-01

    A systematic study of the persistent current decay and snapback effect in the fields of Tevatron accelerator dipoles was performed at the Fermilab Magnet Test Facility (MTF). The decay and snapback were measured under a range of conditions including variations of the current ramp parameters and magnet operational history. The study has mostly focused on the dynamic behavior of the normal sextupole component. In addition, the paper presents the persistent current effects observed in the other allowed field harmonics as well. The results provide new information about the previously observed ''excess'' decay during the first several seconds of the sextupole decay during injection and the correlation between the snapback amplitude and its duration.

  17. Axial variations in the magnetic field of superconducting dipoles and quadrupoles

    SciTech Connect

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1993-09-01

    A periodic variation in the magnetic field along the axis has been observed in both quadrupole and dipole magnets made from superconducting cable. This oscillation is present in all components of the field and has a wavelength equal to the transposition length of the cable. In general the amplitude of these variations increases with magnet current and is not reversible. The residual field patten at zero current depends on the energizing cycle and increases with time spent at high field. The decay of the oscillations has a complex time dependence which contains some extremely long time constants. Unbalanced currents in the individual strands of the cable appear to cause these effects and the field variations can only be completely erased by raising the magnet above its critical temperature.

  18. The dipole corrector magnets for the RHIC fast global orbit feedback system

    SciTech Connect

    Thieberger, P.; Arnold, L.; Folz, C.; Hulsart, R.; Jain, A.; Karl, R.; Mahler, G.; Meng, W.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Ptitsyn, V.; Ritter, J.; Smart, L.; Tuozzolo, J.; White, J.

    2011-03-28

    The recently completed RHIC fast global orbit feedback system uses 24 small 'window-frame' horizontal dipole correctors. Space limitations dictated a very compact design. The magnetic design and modelling of these laminated yoke magnets is described as well as the mechanical implementation, coil winding, vacuum impregnation, etc. Test procedures to determine the field quality and frequency response are described. The results of these measurements are presented and discussed. A small fringe field from each magnet, overlapping the opposite RHIC ring, is compensated by a correction winding placed on the opposite ring's magnet and connected in series with the main winding of the first one. Results from measurements of this compensation scheme are shown and discussed.

  19. Design and test of the benches for the magnetic measurement of the LHC dipoles

    NASA Astrophysics Data System (ADS)

    Billan, J.; Buckley, J.; Saban, R.; Sievers, P.; Walckiers, L.

    1994-07-01

    The magnetic measurement of more than 1300 LHC dipoles comprises the content of higher harmonic field components, field direction and field integrals. The measurements will be carried out along a warm bore installed inside the magnet cold bore, thus allowing the use of rotating coils at room temperature. This coil, together with Hall and NMR detectors is mounted at one end of a 12.5 m long shaft which is specially designed for very high rotational stiffness and which is controlled from its far end by a motor, an angular encoder and a level meter, all standard components placed outside the magnetic field without space restrictions. Particular emphasis has been put on the user-friendliness of the bench and its automated, computer-controlled operation requiring a minimum of staff, an important issue during production measurements of large series of magnets. The bench and its performance and precision achieved during its commissioning are described.

  20. Self-organized confinement by magnetic dipole: recent results from RT-1 and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Yoshida, Z.; Saitoh, H.; Yano, Y.; Mikami, H.; Kasaoka, N.; Sakamoto, W.; Morikawa, J.; Furukawa, M.; Mahajan, S. M.

    2013-01-01

    Inhomogeneous magnetic field gives rise to interesting properties of plasmas which are degenerate in homogeneous (or zero) magnetic fields. Magnetospheric plasmas, as observed commonly in the Universe, are the most simple, natural realization of strongly inhomogeneous structures created spontaneously in the vicinity of magnetic dipoles. The RT-1 device produces a ‘laboratory magnetosphere’ by which stable confinement (particle and energy confinement times ˜0.5 s) of high-β (local electron β ˜ 0.7 electron temperature ≳10 keV) plasma is achieved. By producing a pure-electron plasma, we obtain clear-cut evidence of inward (or up-hill) diffusion of particles. A statistical mechanical model reveals the ‘distortion’ of phase space, induced by the inhomogeneity of the ambient magnetic field, on which the plasma relaxes into an equilibrium with inhomogeneous density while it maximizes the entropy.

  1. Experimental determination of the magnetic dipole moment of candidate magnetoreceptor cells in trout

    NASA Astrophysics Data System (ADS)

    Winklhofer, M.; Eder, S.; Cadioiu, H.; McNaughton, P. A.; Kirschvink, J. L.

    2011-12-01

    Based on histological, physiological, and physical evidence, Walker et al (1997) and Diebel et al (2000) have identified distinctive cells in the olfactory epithelium of the rainbow trout (Onchorynchus mykiss) that contain magnetite and are closely associated with neurons that respond to changes in magnetic field. To put biophysical constraints on the possible transduction mechanism of magnetic signals, and in particular, to find out if the intracellular magnet is free to rotate or rather firmly anchored within the cell body, we have studied the magneto-mechanical response of isolated candidate receptor cells in suspension using a light microscope equipped with two pairs of Helmholtz coils. From the characteristic re-orientation time of suspended cells after a change in magnetic field direction, we have determined the magnitude of the magnetic dipole moment of the cells in function of the external field strength (0.4 mT to 3.2 mT) in order to find out whether or not the natural magnetic moment is remanence-based or induced (i.e., single-domain vs. superparamagnetic/multi-domain). Results: 1) The mechanical response of isolated cells to a change in magnetic field direction was always immediate, irrespective of the direction of change, which implies that the intracellular magnet is not free to rotate in the cell, but rather rigidly attached, probably to the plasma membrane, which is also suggested by our confocal fluorescence-microscope studies. 2) The cellular dipole moment turned out to be independent of the external field strength. Thus, the natural magnetic dipole moment is based on magnetic remanence, which points to single-domain particles and corroborates the results by Diebel et al (2000), who obtained switching fields consistent with single-domain magnetite. 3). The magnetic dipole moment is found to be of the order of several tens of fAm2, which greatly exceeds previous estimates (0.5 fAm2), and thus is similar to values reported for the most strongly

  2. Magnetic dipole transitions in 4d{sup N} configurations of tungsten ions

    SciTech Connect

    Jonauskas, V.; Kisielius, R.; Kyniene, A.; Kucas, S.; Norrington, P. H.

    2010-01-15

    Magnetic dipole transitions between the levels of ground 4d{sup N} configurations of tungsten ions were analyzed by employing a large basis of interacting configurations. Previously introduced configuration interaction strength between two configurations was used to determine the configurations with the largest contribution to wave functions of atomic states for the considered configurations. Collisional-radiative modeling was performed for the levels of the ground configuration coupled through electric dipole transitions with 4p{sup 5}4d{sup N+1} and 4d{sup N-1}4f configurations. New identification of some lines observed in the electron-beam ion trap plasma was proposed based on calculations in which wavelength convergence was reached.

  3. Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. 1: Dipole fields

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1995-01-01

    We model the temperature distribution at the surface of a magnetized neutron star and study the effects on the observed X-ray spectra and light curves. Generalrelativistic effects, i.e., redshift and lensing, are fully taken into account. Atmospheric effects on the emitted spectral flux are not included: we consider only blackbody emission at the local effective temperature. In this first paper we restrict ourselves to dipole fields. General features are studied and compared with the ROSAT data from the pulsars 0833 - 45 (Vela), 0656 + 14, 0630 + 178 (Geminga), and 1055 - 52, the four cases for which there is strong evidence that thermal radiation from the stellar surface is detected. The composite spectra we obtain are not very different from a blackbody spectrum at the star's effective temperature. We conclude that, as far as blackbody spectra are considered, temperature estimates using single-temperature models give results practically identical to our composite models. The change of the (composite blackbody) spectrum with the star's rotational phase is also not very large and may be unobservable inmost cases. Gravitational lensing strongly suppresses the light curve pulsations. If a dipole field is assumed, pulsed fractions comparable to the observed ones can be obtained only with stellar radii larger than those which are predicted by current models of neutron star struture, or with low stellar masses. Moreover, the shapes of the theoretical light curves with dipole fields do not correspond to the observations. The use of magnetic spectra may raise the pulsed fraction sufficiently but will certainly make the discrepancy with the light curve shapes worse: dipole fields are not sufficient to interpret the data. Many neutron star models with a meson condensate or hypersons predict very small radii, and hence very strong lensing, which will require highly nondipolar fields to be able to reproduce the observed pulsed fractions, if possible at all: this may be a new

  4. Magnetic field component demonstration for a neutron electric dipole moment search

    NASA Astrophysics Data System (ADS)

    Slutsky, Simon

    2016-09-01

    A neutron electric dipole moment (EDM) search at the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) will probe with a sensitivity of < 5 ×10-28 e-cm. Trapped, polarized ultracold neutrons will precess in a constant magnetic field and variable electric field, and a non-zero neutron EDM will appear as a variation in the precession frequency correlated with the electric field. Magnetic field gradients must be kept below 10 pT/cm to mitigate false EDMs produced by the geometric phase effect and to maximize the neutron spin-relaxation lifetime. I will discuss a prototype magnetic shielding system, including a nearly-hermetic superconducting lead shield, built to demonstrate the required gradients at 1/3-scale of the final experiment. Additionally, the system will evaluate the eddy current heating due to RF fields produced by a proposed neutron-``spin-dressing'' technique.

  5. Spin dephasing in a magnetic dipole field around large capillaries: Approximative and exact results.

    PubMed

    Kurz, F T; Buschle, L R; Kampf, T; Zhang, K; Schlemmer, H P; Heiland, S; Bendszus, M; Ziener, C H

    2016-12-01

    We present an analytical solution of the Bloch-Torrey equation for local spin dephasing in the magnetic dipole field around a capillary and for ensembles of capillaries, and adapt this solution for the study of spin dephasing around large capillaries. In addition, we provide a rigorous mathematical derivation of the slow diffusion approximation for the spin-bearing particles that is used in this regime. We further show that, in analogy to the local magnetization, the transverse magnetization of one MR imaging voxel in the regime of static dephasing (where diffusion effects are not considered) is merely the first term of a series expansion that constitutes the signal in the slow diffusion approximation. Theoretical results are in agreement with experimental data for capillaries in rat muscle at 7T.

  6. Spin dephasing in a magnetic dipole field around large capillaries: Approximative and exact results

    NASA Astrophysics Data System (ADS)

    Kurz, F. T.; Buschle, L. R.; Kampf, T.; Zhang, K.; Schlemmer, H. P.; Heiland, S.; Bendszus, M.; Ziener, C. H.

    2016-12-01

    We present an analytical solution of the Bloch-Torrey equation for local spin dephasing in the magnetic dipole field around a capillary and for ensembles of capillaries, and adapt this solution for the study of spin dephasing around large capillaries. In addition, we provide a rigorous mathematical derivation of the slow diffusion approximation for the spin-bearing particles that is used in this regime. We further show that, in analogy to the local magnetization, the transverse magnetization of one MR imaging voxel in the regime of static dephasing (where diffusion effects are not considered) is merely the first term of a series expansion that constitutes the signal in the slow diffusion approximation. Theoretical results are in agreement with experimental data for capillaries in rat muscle at 7 T.

  7. A fiber optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets

    SciTech Connect

    van Oort, J.M.; Scanlan, R.M.; ten Kate, H.H.J.

    1994-10-17

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot Interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13T Nb{sub 3}Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed.

  8. Design, Fabrication, and Test of a Superconducting Dipole Magnet Based on Tilted Solenoids

    SciTech Connect

    Caspi, S.; Dietderich, D. R.; Ferracin, P.; Finney, N. R.; Fuery, M. J.; Gourlay, S. A.; Hafalia, A. R.

    2007-06-01

    It can be shown that, by superposing two solenoid-like thin windings that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is 'cos-theta' like and the resulting magnetic field in the bore is a pure dipole. As a proof of principle, such a magnet was designed, built and tested as part of a summer undergraduate intern project. The measured field in the 25mm bore, 4 single strand layers using NbTi superconductor, exceeded 1 T. The simplicity of this high field quality design, void of typical wedges end-spacers and coil assembly, is especially suitable for insert-coils using High Temperature Superconducting wire as well as for low cost superconducting accelerator magnets for High Energy Physics. Details of the design, construction and test are reported.

  9. The dependence of the coupled magnetosphere-ionosphere-thermosphere system on the Earth's magnetic dipole moment

    NASA Astrophysics Data System (ADS)

    Cnossen, Ingrid; Richmond, Arthur D.; Wiltberger, Michael

    2012-05-01

    The strength of the Earth's magnetic field changes over time. We use simulations with the Coupled Magnetosphere-Ionosphere-Thermosphere model to investigate how the magnetosphere, upper atmosphere, and solar quiet (Sq) geomagnetic variation respond as the geomagnetic dipole moment M varies between 2ṡ1022 and 10ṡ1022 Am2. We find that the magnetopause stand-off distance and the cross-polar cap potential increase, while the polar cap size decreases, with increasing M. Their dependence on M is stronger than predicted by previous studies. We also show for the first time that the shape of the magnetosphere starts to change for M ≤ 4ṡ1022 Am2. This may be due to enhanced magnetopause erosion and/or to strong changes in the ionospheric conductance, which affect the field-aligned currents and the magnetic fields they create in the magnetosphere, thus modifying the magnetic pressure inside the magnetosphere. E × B drift velocities, Joule heating power, the global mean thermospheric temperature and the global mean height of the peak of the ionospheric F2 layer, hmF2, all increase with increasing M for low dipole moments, but all decrease with increasing M for larger dipole moments. The peak electron density of the F2 layer, NmF2, shows the opposite behavior. The Sq amplitude decreases with increasing M and this dependence can be roughly described by a power law scaling. Most scaling relations show a weak dependence on the solar activity level, which is likely associated with a change in the relative contributions to the Pedersen conductance from the upper and lower ionosphere, which scale differently with M.

  10. Material Procurement Report for the FNAL pp Forward Detector's Toroids and Cos8 Dipole Magnets

    SciTech Connect

    Cline, D.; Morse, R.; Orosz, I.; Thomas, L.C.

    1980-10-27

    We outline the possibilities of starting construction of the {bar p}p forward detector toroids and cos{theta} dipole magnets described in CDP Note 64 as soon as possible using material that already exists on the FNAL site. Personal inspection of the steel supplies indicates that as much as 2000 tons of steel or over 50% of all the steel needed for the toroids is now available at the FNAL boneyard. Copper inventories indicate that there is enough copper on the FNAL site to construct both the toroid magnets and the cos{theta} dipole magnets. A construction schedule of one toroid in FY81, two toroids in FY82, and the final toroid in FY83 is shown to be feasible. Floor space and loading requirements for the IR Hall housing the forward detector are examined and finally, budgets for the initial FY8l phase and the completed project are given. The FY81 costs are $393K and to-completion costs are $1506K.

  11. Influence of spin-orbit coupling on the magnetic dipole term Tα

    NASA Astrophysics Data System (ADS)

    Šipr, O.; Minár, J.; Ebert, H.

    2016-10-01

    The influence of the spin-orbit coupling (SOC) on the magnetic dipole term Tα is studied across a range of systems in order to check whether the Tα term can be eliminated from analysis of x-ray magnetic circular dichroism spectra performed via the spin moment sum rule. Fully relativistic Korringa-Kohn-Rostoker Green's function calculations for Co monolayers and adatoms on Cu, Pd, Ag, Pt, and Au (111) surfaces were performed to verify whether the sum over magnetic dipole terms Tx+Ty+Tz is zero and whether the angular dependence of the Tα term goes as 3 cos2θ -1 . It follows that there are circumstances when the influence of the SOC on Tα cannot be neglected even for 3 d atoms where the SOC is nominally small. The crucial factor appears to be the dimensionality of the system: For 3 d adatoms, the influence of SOC on Tα can be significant whereas for monolayers it is always practically negligible. Apart from the dimensionality, hybridization between adatom and substrate states is also important: Small hybridization enhances the importance of the SOC and vice versa.

  12. Quench problems of Nb3 Sn cosine theta high field dipole model magnets

    SciTech Connect

    Yamada, Ryuji; Wake, Masayoshi; /KEK, Tsukuba

    2004-12-01

    We have developed and tested several cosine theta high field dipole model magnets for accelerator application, utilizing Nb{sub 3}Sn strands made by MJR method and PIT method. With Rutherford cables made with PIT strand we achieved 10.1 Tesla central field at 2.2 K operation, and 9.5 Tesla at 4.5 K operation. The magnet wound with the MJR cable prematurely quenched at 6.8 Tesla at 4.5 K due to cryo-instability. Typical quench behaviors of these magnets are described for both types of magnets, HFDA-04 of MJR and HFDA-05 of PIT. Their characteristics parameters are compared on d{sub eff}, RRR, thermal conductivity and others, together with other historical Nb{sub 3}Sn magnets. It is suggested a larger RRR value is essential for the stability of the epoxy impregnated high field magnets made with high current density strands. It is shown that a magnet with a larger RRR value has a longer MPZ value and more stable, due to its high thermal conductivity and low resistivity.

  13. New method to determine proton trajectories in the equatorial plane of a dipole magnetic field.

    PubMed

    Ioanoviciu, Damaschin

    2015-01-01

    A parametric description of proton trajectories in the equatorial plane of Earth's dipole magnetic field has been derived. The exact expression of the angular coordinate contains an integral to be performed numerically. The radial coordinate results from the initial conditions by basic mathematical operations and by using trigonometric functions. With the approximate angular coordinate formula, applicable for a wide variety of cases of protons trapped in Earth's radiation belts, no numerical integration is needed. The results of exact and approximate expressions were compared for a specific case and small differences were found.

  14. Second order optical nonlinearity of graphene due to electric quadrupole and magnetic dipole effects.

    PubMed

    Cheng, J L; Vermeulen, N; Sipe, J E

    2017-03-06

    We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllability of these effects by tuning the chemical potential, taking advantage of the dominant role played by interband optical transitions in the response.

  15. Second order optical nonlinearity of graphene due to electric quadrupole and magnetic dipole effects

    PubMed Central

    Cheng, J. L.; Vermeulen, N.; Sipe, J. E.

    2017-01-01

    We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllability of these effects by tuning the chemical potential, taking advantage of the dominant role played by interband optical transitions in the response. PMID:28262762

  16. Birotor dipole model for Saturn's inner magnetic field from CASSINI RPWS measurements and MAG data

    NASA Astrophysics Data System (ADS)

    Galopeau, Patrick H. M.

    2016-10-01

    The radio and plasma wave science (RPWS) experiment on board the Cassini spacecraft, orbiting around Saturn since July 2004, revealed the presence of two distinct and variable rotation periods in the Saturnian kilometric radiation (SKR). These two periods were attributed to the northern and southern hemispheres respectively. The existence of a double period makes the study of the planetary magnetic field much more complicated and the building of a field model, based on the direct measurements of the MAG experiment from the magnetometers embarked on board Cassini, turns out to be uncertain. The first reason is the difficulty for defining a longitude system linked to the variable period, because the internal magnetic field measurements from MAG are not continuous. The second reason is the existence itself of two distinct periods which could imply the existence of a double rotation magnetic structure generated by Saturn's dynamo. However, the radio observations from the RPWS experiment allow a continuous and accurate follow-up of the rotation phase of the variable two periods, since the SKR emission is permanently observable and produced very close to the planetary surface. A wavelet transform analysis of the intensity of the SKR signal received at 290 kHz was performed in order to calculate the rotation phase of each Saturnian hemisphere. A dipole model was proposed for Saturn's inner magnetic field: this dipole presents the particularity to rotate around Saturn's axis at two different angular velocities; it is tilted and not centered. Then it is possible to fit the MAG data for each Cassini's revolution around the planet the periapsis of which is less than 5 Saturnian radii. This study suggests that Saturn's inner magnetic field is neither stationary nor fully axisymmetric. Such a result can be used as a boundary condition for modelling and constraining the planetary dynamo.

  17. Generalized magnetotail equilibria: Effects of the dipole field, thin current sheets, and magnetic flux accumulation

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Merkin, V. G.

    2016-08-01

    Generalizations of the class of quasi-1-D solutions of the 2-D Grad-Shafranov equation, first considered by Schindler in 1972, are investigated. It is shown that the effect of the dipole field, treated as a perturbation, can be included into the original 1972 class solution by modification of the boundary conditions. Some of the solutions imply the formation of singularly thin current sheets. Equilibrium solutions for such sheets resolving their singular current structure on the scales comparable to the thermal ion gyroradius can be obtained assuming anisotropic and nongyrotropic plasma distributions. It is shown that one class of such equilibria with the dipole-like boundary perturbation describes bifurcation of the near-Earth current sheet. Another class of weakly anisotropic equilibria with thin current sheets embedded into a thicker plasma sheet helps explain the formation of thin current sheets in a relatively distant tail, where such sheets can provide ion Landau dissipation for spontaneous magnetic reconnection. The free energy for spontaneous reconnection can be provided due to accumulation of the magnetic flux at the tailward end of the closed field line region. The corresponding hump in the normal magnetic field profile Bz(x,z = 0) creates a nonzero gradient along the tail. The resulting gradient of the equatorial magnetic field pressure is shown to be balanced by the pressure gradient and the magnetic tension force due to the higher-order correction of the latter in the asymptotic expansion of the tail equilibrium in the ratio of the characteristic tail current sheet variations across and along the tail.

  18. Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control

    NASA Astrophysics Data System (ADS)

    Kim, Paul Seung Soo; Becker, Aaron; Ou, Yan; Julius, Anak Agung; Kim, Min Jun

    2015-03-01

    Tetrahymena pyriformis is a single cell eukaryote that can be modified to respond to magnetic fields, a response called magnetotaxis. Naturally, this microorganism cannot respond to magnetic fields, but after modification using iron oxide nanoparticles, cells are magnetized and exhibit a constant magnetic dipole strength. In experiments, a rotating field is applied to cells using a two-dimensional approximate Helmholtz coil system. Using rotating magnetic fields, we characterize discrete cells' swarm swimming which is affected by several factors. The behavior of the cells under these fields is explained in detail. After the field is removed, relatively straight swimming is observed. We also generate increased heterogeneity within a population of cells to improve controllability of a swarm, which is explored in a cell model. By exploiting this straight swimming behavior, we propose a method to control discrete cells utilizing a single global magnetic input. Successful implementation of this swarm control method would enable teams of microrobots to perform a variety of in vitro microscale tasks impossible for single microrobots, such as pushing objects or simultaneous micromanipulation of discrete entities.

  19. Long term magnetic performance of the steel concrete dipoles in LEP

    SciTech Connect

    Billan, J.; Gourber, J.P.; Henrichsen, K.N.

    1994-07-01

    The steel-concrete cores of the LEP bending magnets were built of regularly spaced steel laminations, the spaces being filled with cement mortar. The effects of compressive stresses were studied on models and the long term behavior has been monitored during operation of the LEP machine over a period of four years. The requirements for stability and reproducibility of the magnetic field have increased in step with the development of the accelerator and its particle detectors. After the initial aging in the LEP tunnel, the most important parameter was the temperature coefficient. The temperatures of a number of magnet cores are therefore continuously monitored and corrections are applied to the indicated value of particle momentum as measured by NMR and a flip coil in a reference dipole connected in series with the bending magnets. This reference magnet is in turn calibrated periodically by a direct measurement of flux variations in a loop mounted in the lower poles of all bending magnets installed in the tunnel

  20. Stress management as an enabling technology for high-field superconducting dipole magnets

    NASA Astrophysics Data System (ADS)

    Holik, Eddie Frank, III

    This dissertation examines stress management and other construction techniques as means to meet future accelerator requirement demands by planning, fabricating, and analyzing a high-field, Nb3Sn dipole. In order to enable future fundamental research and discovery in high energy accelerator physics, bending magnets must access the highest fields possible. Stress management is a novel, propitious path to attain higher fields and preserve the maximum current capacity of advanced superconductors by managing the Lorentz stress so that strain induced current degradation is mitigated. Stress management is accomplished through several innovative design features. A block-coil geometry enables an Inconel pier and beam matrix to be incorporated in the windings for Lorentz Stress support and reduced AC loss. A laminar spring between windings and mica paper surrounding each winding inhibit any stress transferral through the support structure and has been simulated with ALGORRTM. Wood's metal filled, stainless steel bladders apply isostatic, surface-conforming preload to the pier and beam support structure. Sufficient preload along with mica paper sheer release reduces magnet training by inhibiting stick-slip motion. The effectiveness of stress management is tested with high-precision capacitive stress transducers and strain gauges. In addition to stress management, there are several technologies developed to assist in the successful construction of a high-field dipole. Quench protection has been designed and simulated along with full 3D magnetic simulation with OPERARTM. Rutherford cable was constructed, and cable thermal expansion data was analysed after heat treatment. Pre-impregnation analysis techniques were developed due to elemental tin leakage in varying quantities during heat treatment from each coil. Robust splicing techniques were developed with measured resistivites consistent with nO joints. Stress management has not been incorporated by any other high field dipole

  1. Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres: Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres

    SciTech Connect

    Khromova, Irina; Kužel, Petr; Brener, Igal; Reno, John L.; Chung Seu, U-Chan; Elissalde, Catherine; Maglione, Mario; Mounaix, Patrick; Mitrofanov, Oleg

    2016-06-27

    Monocrystalline titanium dioxide (TiO2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO2 micro-resonators can be used to enhance the interplay of magnetic and electric dipole resonances in the emerging THz all-dielectric metamaterial technology.

  2. Magnetic g_e-FACTORS and Electric Dipole Moments of Lanthanide Monoxides: PrO

    NASA Astrophysics Data System (ADS)

    Wang, Hailing; Steimle, Timothy C.; Linton, Colan

    2009-06-01

    The very complex optical spectra of the lanthanide monoxides are caused by the insensitivity of the electronic energies to the numerous possible arrangements of the Ln^{2+} electrons in the 4f and 6s orbitals. Disentangling the complex optical spectra may be aided by using simple Ligand Field Theory(LFT) to establish the global electronic structure for the low-lying electronic states. A comparison of experimentally determined permanent electric dipole moments, μ_{el}, and magnetic dipole moments, μ_{m}, is an effective means of sorting this myriad of states and assessing the quality of LFT and other electronic structure methodologies. Here we report on the determination of the permanent electric dipole moments, μ_{el}, and magnetic g{_e}-factors for the X_{2}(Ω = 4.5) and [18.1] (Ω = 5.5) states of PrO from the analysis of the optical Stark and Zeeman spectra. The g_{e}-factors are compared with those computed using wavefunctions predicted from ligand field theory. The μ_{el} value for the X_{2}(Ω = 4.5) state is compared to ab initio, and density functional predictions and with the experimental values of other lanthanide monoxides. A phenomenological fit of μ_{el} for the entire series of LnO is used to predict μ_{el} for the isovalent actinide monoxide series. Carette, P.,; Hocquet,A. J. Mol. Spectrosc. 131 301, 1988. Dolg, M.; Stoll, H. Theor. Chim. Acta. 75,369, 1989. Wu, Z.; Guan, W. Meng, J. Su, Z. J. Cluster Science 18 444, 2007.

  3. The permanent electric dipole moments and magnetic g factors of uranium monoxide

    NASA Astrophysics Data System (ADS)

    Heaven, Michael C.; Goncharov, Vasiliy; Steimle, Timothy C.; Ma, Tongmei; Linton, Colan

    2006-11-01

    Permanent electric dipole moments and magnetic g factors for uranium monoxide (UO) have been determined from analyses of optical Stark and Zeeman spectra recorded at a spectral resolution that approaches the natural linewidth limit. Numerous branch features in the previously characterized [L. A. Kaledin et al., J. Mol. Spectrosc. 164, 27 (1994)] (0,0) [18403]5-X(1)4 and (0,0) [18404]5-X(1)4 electronic transitions were recorded in the presence of tunable static electric (Stark effect) or magnetic (Zeeman effect) fields. The lines exhibited unusually large Zeeman tuning effects. A ligand field model and an ab initio electronic structure calculation [R. Tyagi, Ph.D. thesis, The Ohio State University (2005)] were used to interpret the ground state properties. The results indicate that the low energy electronic states of UO are sufficiently ionic for the meaningful application of ligand field theory models. The dipole moments and g factors were distinctly different for the three electronic states examined, which implies that these properties may be used to deduce the underlying electronic state configurations.

  4. Recent Test Results of the High Field Nb3Sn Dipole Magnet HD2

    SciTech Connect

    Ferracin, P.; Bingham, B.; Caspi, S.; Cheng, D. W.; Dietderich, D. R.; Felice, H.; Hafalia, A. R.; Hannaford, C. R.; Joseph, J.; Lietzke, A. F.; Lizarazo, J.; Sabbi, G.; Wang, X.

    2009-10-19

    The 1 m long Nb{sub 3}Sn dipole magnet HD2, fabricated and tested at Lawrence Berkeley National Laboratory, represents a step towards the development of block-type accelerator quality magnets operating in the range of 13-15 T. The magnet design features two coil modules composed of two layers wound around a titanium-alloy pole. The layer 1 pole includes a round cutout to provide room for a bore tube with a clear aperture of 36 mm. After a first series of tests where HD2 reached a maximum bore field of 13.8 T, corresponding to an estimated peak field on the conductor of 14.5 T, the magnet was disassembled and reloaded without the bore tube and with a clear aperture increased to 43 mm. We describe in this paper the magnet training observed in two consecutive tests after the removal of the bore tube, with a comparison of the quench performance with respect to the previous tests. An analysis of the voltage signals recorded before and after training quenches is then presented and discussed, and the results of coil visual inspections reported.

  5. Sequential CD34 cell fractionation by magnetophoresis in a magnetic dipole flow sorter

    PubMed Central

    Schneider, Thomas; Karl, Stephan; Moore, Lee R.; Chalmers, Jeffrey J.; Williams, P. Stephen; Zborowski, Maciej

    2010-01-01

    Cell separation and fractionation based on fluorescent and magnetic labeling procedures are common tools in contemporary research. These techniques rely on binding of fluorophores or magnetic particles conjugated to antibodies to target cells. Cell surface marker expression levels within cell populations vary with progression through the cell cycle. In an earlier work we showed the reproducible magnetic fractionation (single pass) of the Jurkat cell line based on the population distribution of CD45 surface marker expression. Here we present a study on magnetic fractionation of a stem and progenitor cell (SPC) population using the established acute myelogenous leukemia cell line KG-1a as a cell model. The cells express a CD34 cell surface marker associated with the hematopoietic progenitor cell activity and the progenitor cell lineage commitment (related to the CD34 marker expression level). The CD34 expression level is approximately an order of magnitude lower than that of the CD45 marker, which required further improvements of the magnetic fractionation apparatus. The cells were immuno-magnetically labeled using a sandwich of anti CD34 antibody-phycoerythrin (PE) conjugate and anti PE magnetic nanobead and fractionated into eight components using a continuous flow dipole magnetophoresis apparatus. The CD34 marker expression distribution between sorted fractions was measured by quantitative PE flow cytometry (using QuantiBRITE™ PE calibration beads), and it was shown to be correlated with the cell magnetophoretic mobility distribution. A flow outlet addressing scheme based on the concept of the transport lamina thickness was used to control cell distribution between the eight outlet ports. The fractional cell distributions showed good agreement with numerical simulations of the fractionation based on the cell magnetophoretic mobility distribution in the unsorted sample. PMID:20024182

  6. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    PubMed Central

    Guarendi, Andrew N.; Chandy, Abhilash J.

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  7. Magnetic measurement system for harmonic analysis of LBL SSC (Superconducting Super Collider) model dipoles and quadrupoles

    SciTech Connect

    Green, M.I.; Barale, P.J.; Gilbert, W.S.; Hassenzahl, W.V.; Nelson, D.H.; Taylor, C.E.; Travis, N.J.; Van Dyke, D.A.

    1987-09-01

    Specialized hardware and software have been developed to facilitate harmonic error analysis measurements of one-meter-long Superconducting Super Collider (SSC) model dipole and quadrupole magnets. Cold bore measurements feature cryogenic search-coil arrays with high bucking ratios that also have sufficient sensitivity to make room-temperature measurements at the low magnet currents of approx.10 A. Three sets of search coils allow measurements of the center, either end, and/or the axially integrated field. Signals from the search coils are digitally integrated by means of a voltage-to-frequency converter feeding an up-down counter. The data are drift corrected, Fourier analyzed, converted to physical quantities, and printed and plotted. A cycle of measurements including data acquisition, processing, and the generation of tabular and graphic output requires 80 seconds. The vast amount of data generated (several hundred measurement cycles for each magnet) has led to the development of postprocessing programs and procedures. Spreadsheets allow easy manipulation and comparison of results within a test series and between magnets. 8 refs., 4 figs., 1 tab.

  8. Implications of stochastic magnetization dynamics on reliability of dipole coupled nanomagnetic logic

    NASA Astrophysics Data System (ADS)

    Salehi Fashami, Mohammad; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2013-03-01

    Straintronic nanomagnetic logic (SML), where Boolean computation is elicited from dipole coupled multiferroic nanomagnets switched with electrically generated strain, has emerged as an extremely energy-efficient computing paradigm. We have studied the reliability of such logic circuits by computing the gate error rates in the presence of thermal noise by simulating switching trajectories with the stochastic Landau-Lifshitz-Gilbert (LLG) equation. In addition, we examine the lower bound of energy dissipation as a function of switching error and explain how the out-of-plane excursion of the magnetization vector leads to excess energy dissipation over this bound for a given switching error. This analysis is performed to understand the connection between reliability and energy dissipation for a single switch and then extended to larger nanomagnetic logic circuits to assess the viability of dipole coupled SML. This work is supported by the US National Science Foundation under the SHF-Small grant CCF-1216614, NEB 2020 grant ECCS-1124714 and by the Semiconductor Research Corporation (SRC) under NRI Task 2203.001.

  9. Sequential CD34 cell fractionation by magnetophoresis in a magnetic dipole flow sorter.

    PubMed

    Schneider, Thomas; Karl, Stephan; Moore, Lee R; Chalmers, Jeffrey J; Williams, P Stephen; Zborowski, Maciej

    2010-01-01

    Cell separation and fractionation based on fluorescent and magnetic labeling procedures are common tools in contemporary research. These techniques rely on binding of fluorophores or magnetic particles conjugated to antibodies to target cells. Cell surface marker expression levels within cell populations vary with progression through the cell cycle. In an earlier work we showed the reproducible magnetic fractionation (single pass) of the Jurkat cell line based on the population distribution of CD45 surface marker expression. Here we present a study on magnetic fractionation of a stem and progenitor cell (SPC) population using the established acute myelogenous leukemia cell line KG-1a as a cell model. The cells express a CD34 cell surface marker associated with the hematopoietic progenitor cell activity and the progenitor cell lineage commitment. The CD34 expression level is approximately an order of magnitude lower than that of the CD45 marker, which required further improvements of the magnetic fractionation apparatus. The cells were immunomagnetically labeled using a sandwich of anti-CD34 antibody-phycoerythrin (PE) conjugate and anti-PE magnetic nanobead and fractionated into eight components using a continuous flow dipole magnetophoresis apparatus. The CD34 marker expression distribution between sorted fractions was measured by quantitative PE flow cytometry (using QuantiBRITE PE calibration beads), and it was shown to be correlated with the cell magnetophoretic mobility distribution. A flow outlet addressing scheme based on the concept of the transport lamina thickness was used to control cell distribution between the eight outlet ports. The fractional cell distributions showed good agreement with numerical simulations of the fractionation based on the cell magnetophoretic mobility distribution in the unsorted sample.

  10. Similarity transformation approach for ferromagnetic mixed convection flow in the presence of chemically reactive magnetic dipole

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Ijaz Khan, Muhammad; Imtiaz, Maria; Alsaedi, Ahmed; Waqas, Muhammad

    2016-10-01

    A simple model of chemical reactions for two dimensional ferrofluid flows is constructed. The impact of magnetic dipole and mixed convection is further analyzed. Flow is caused by linear stretching of the sheet. Similarity transformation is adopted to convert the partial differential equations into ordinary differential equations and then solved by Euler's explicit method. The characteristics of sundry parameters on the velocity, temperature, and concentration fields are graphically elaborated. It is noted that the impact of magneto-thermomechanical interaction is to slow down the fluid motion. The skin friction coefficient enhances and affects the rate of heat transfer. For higher values of ferrohydrodynamics, the interaction velocity shows decreasing behavior. Further the Prandtl number on temperature has opposite behavior when compared with thermal radiation and ferrohydrodynamics interaction.

  11. Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment

    NASA Astrophysics Data System (ADS)

    Braumüller, Jochen; Sandberg, Martin; Vissers, Michael R.; Schneider, Andre; Schlör, Steffen; Grünhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey V.; Weides, Martin; Pappas, David P.

    2016-01-01

    We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μ s . We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z ̂ coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

  12. New measurements of sextupole field decay and snapback effect on Tevatron dipole magnets

    SciTech Connect

    Velev, G.V.; Bauer, P.; Carcagno, R.; DiMarco, J.; Lamm, M.; Orris, D.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2006-07-01

    To perform detailed studies of the dynamic effects in superconducting accelerator magnets, a fast continuous harmonics measurement system based on the application of a digital signal processor (DSP) has been built at Fermilab. Using this new system, the dynamic effects in the sextupole field, such as the field decay during the dwell at injection and the rapid subsequent ''snapback'' during the first few seconds of the energy ramp, are evaluated for more than ten Tevatron dipoles from the spare pool. The results confirm the previously observed fast drift in the first several seconds of the sextupole decay and provide additional information on a scaling law for predicting snapback duration. The information presented here can be used for an optimization of the Tevatron and for future LHC operations.

  13. Mass and magnetic dipole moment of negative-parity heavy baryons with spin-3/2

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Sundu, H.

    2017-01-01

    We calculate the mass and residue of the heavy spin-3/2 negative-parity baryons with single heavy bottom or charm quark by use of a two-point correlation function. We use the obtained results to investigate the diagonal radiative transitions among the baryons under consideration. In particular, we compute corresponding transition form factors via light cone QCD sum rules, which are then used to obtain the magnetic dipole moments of the heavy spin-3/2 negative-parity baryons. We remove the pollutions coming from the positive-parity spin-3/2 and positive/negative-parity spin-1/2 baryons by constructing sum rules for different Lorentz structures. We compare the results obtained with the existing theoretical predictions.

  14. Absolute measurement of the relativistic magnetic dipole transition energy in heliumlike argon.

    PubMed

    Amaro, Pedro; Schlesser, Sophie; Guerra, Mauro; Le Bigot, Eric-Olivier; Isac, Jean-Michel; Travers, Pascal; Santos, José Paulo; Szabo, Csilla I; Gumberidze, Alexandre; Indelicato, Paul

    2012-07-27

    The 1s2s (3)S(1)→1s(2) (1)S(0) relativistic magnetic dipole transition in heliumlike argon, emitted by the plasma of an electron-cyclotron resonance ion source, has been measured using a double-flat crystal x-ray spectrometer. Such a spectrometer, used for the first time on a highly charged ion transition, provides absolute (reference-free) measurements in the x-ray domain. We find a transition energy of 3104.1605(77) eV (2.5 ppm accuracy). This value is the most accurate, reference-free measurement done for such a transition and is in good agreement with recent QED predictions.

  15. Magnetic-dipole transitions in highly charged ions as a basis of ultraprecise optical clocks.

    PubMed

    Yudin, V I; Taichenachev, A V; Derevianko, A

    2014-12-05

    We evaluate the feasibility of using magnetic-dipole (M1) transitions in highly charged ions as a basis of an optical atomic clockwork of exceptional accuracy. We consider a range of possibilities, including M1 transitions between clock levels of the same fine-structure and hyperfine-structure manifolds. In highly charged ions these transitions lie in the optical part of the spectra and can be probed with lasers. The most direct advantage of our proposal comes from the low degeneracy of clock levels and the simplicity of atomic structure in combination with negligible quadrupolar shift. We demonstrate that such clocks can have projected fractional accuracies below the 10^{-20}-10^{-21} level for all common systematic effects, such as blackbody radiation, Zeeman, ac-Stark, and quadrupolar shifts.

  16. Fast electromagnetic modeling in cylindrically layered media excited by eccentred magnetic dipole

    NASA Astrophysics Data System (ADS)

    Nikitenko, Marina; Itskovich, Gregory B.; Seryakov, Alexander

    2016-06-01

    We developed a fast algorithm to calculate a response of cylindrically layered media excited by the vertical magnetic dipole eccentred with respect to the axis of symmetry. The algorithm calculates response in the range of frequencies typical for induction and dielectric logging. The media conductivity and dielectric constant are described by piecewise-constant functions. The corresponding boundary value problem is solved by method of separation of variables. Fourier transform is applied to Maxwell equations and boundary conditions to express field components through Fourier transforms of vertical components of an electrical and magnetic field. In addition, an expansion of vertical components into an infinite series with respect to angular harmonics is used to reduce the original problem to a series of 1-D problems that only depend on the radial coordinate. The solution to each 1-D radial problem for the angular harmonics is presented as a linear combination of modified Bessel functions. Finally, inverse Fourier transformation is applied to the angular harmonics of vertical components to derive electrical and magnetic field of the original boundary value problem. We provide detailed discussion on the elements that are critical for the numerical implementation of the algorithm: a proper normalization, convergence, and integration. Specifically, we show how to perform integration in the complex plane by avoiding intersection of the integration pass with the cuts located on the Riemann surface. Numerical results show the usefulness of the algorithm for solving inverse problems and for studying the effect of eccentricity in induction and dielectric logging.

  17. Suppression of Secondary Electron Emission using Triangular Grooved Surface in the ILC Dipole and Wiggler Magnets

    SciTech Connect

    Wang, L.; Bane, K.; Chen, C.; Himel, T.; Munro, M.; Pivi, M.; Raubenheimer, T.; Stupakov, G.; /SLAC

    2007-07-06

    The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit machine performance. The suppression of electrons in a magnet is a challenge for the positron damping ring of the International Linear Collider (ILC) as well as the Large Hadron Collider. Simulation show that grooved surfaces can significantly reduce the electron yield in a magnet. Some of the secondary electrons emitted from the grooved surface return to the surface within a few gyrations, resulting in a low effective secondary electron yield (SEY) of below 1.0 A triangular surface is an effective, technologically attractive mitigation with a low SEY and a weak dependence on the scale of the corrugations and the external magnetic field. A chamber with triangular grooved surface is proposed for the dipole and wiggler sections of the ILC and will be tested in KEKB in 2007. The strategy of electron cloud control in ILC and the optimization of the grooved chamber such as the SEY, impedance as well as the manufacturing of the chamber, are also discussed.

  18. Collaborative Simulation and Testing of the Superconducting Dipole Prototype Magnet for the FAIR Project

    NASA Astrophysics Data System (ADS)

    Zhu, Yinfeng; Zhu, Zhe; Xu, Houchang; Wu, Weiyue

    2012-08-01

    The superconducting dipole prototype magnet of the collector ring for the Facility for Antiproton and Ion Research (FAIR) is an international cooperation project. The collaborative simulation and testing of the developed prototype magnet is presented in this paper. To evaluate the mechanical strength of the coil case during quench, a 3-dimensional (3D) electromagnetic (EM) model was developed based on the solid97 magnetic vector element in the ANSYS commercial software, which includes the air region, coil and yoke. EM analysis was carried out with a peak operating current at 278 A. Then, the solid97 element was transferred into the solid185 element, the coupled analysis was switched from electromagnetic to structural, and the finite element model for the coil case and glass-fiber reinforced composite (G10) spacers was established by the ANSYS Parametric Design Language based on the 3D model from the CATIA V5 software. However, to simulate the friction characteristics inside the coil case, the conta173 surface-to-surface contact element was established. The results for the coil case and G10 spacers show that they are safe and have sufficient strength, on the basis of testing in discharge and quench scenarios.

  19. Magnetic dipole bands in 82Rb, 83Rb and 84Rb

    NASA Astrophysics Data System (ADS)

    Schwengner, R.; Schnare, H.; Frauendorf, S.; Dönau, F.; Käubler, L.; Prade, H.; Grosse, E.; Jungclaus, A.; Lieb, K. P.; Lingk, C.; Skoda, S.; Eberth, J.; de Angelis, G.; Gadea, A.; Farnea, E.; Napoli, D. R.; Ur, C. A.; Lo Bianco, G.

    1998-12-01

    We have studied the isotopes 82Rb45, 83Rb46 and 84Rb47 to search for magnetic rotation which is predicted in the tilted-axis cranking model for a certain mass region around A=80. Excited states in these nuclei were populated via the reaction 11B+76Ge with E=50 MeV at the XTU tandem accelerator of the LNL Legnaro. Based on a γ-coincidence experiment using the spectrometer GASP we have found magnetic dipole bands in each studied nuclide. The regular M1 bands observed in the odd-odd nuclei 82Rb and 84Rb include B(M1)/B(E2) ratios decreasing smoothly with increasing spin in a range of 13-⩽Jπ⩽16-. These bands are interpreted in the tilted-axis cranking model on the basis of four-quasiparticle configurations of the type π(fp)πg9/22νg9/2. This is the first evidence of magnetic rotation in the A≈80 region. In contrast, the M1 sequences in the odd-even nucleus 83Rb are not regular, and the B(M1)/B(E2) ratios show a pronounced staggering.

  20. NMR absolute shielding scale and nuclear magnetic dipole moment of (207)Pb.

    PubMed

    Adrjan, Bożena; Makulski, Włodzimierz; Jackowski, Karol; Demissie, Taye B; Ruud, Kenneth; Antušek, Andrej; Jaszuński, Michał

    2016-06-28

    An absolute shielding scale is proposed for (207)Pb nuclear magnetic resonance (NMR) spectroscopy. It is based on ab initio calculations performed on an isolated tetramethyllead Pb(CH3)4 molecule and the assignment of the experimental resonance frequency from the gas-phase NMR spectra of Pb(CH3)4, extrapolated to zero density of the buffer gas to obtain the result for an isolated molecule. The computed (207)Pb shielding constant is 10 790 ppm for the isolated molecule, leading to a shielding of 10799.7 ppm for liquid Pb(CH3)4 which is the accepted reference standard for (207)Pb NMR spectra. The new experimental and theoretical data are used to determine μ((207)Pb), the nuclear magnetic dipole moment of (207)Pb, by applying the standard relationship between NMR frequencies, shielding constants and nuclear moments of two nuclei in the same external magnetic field. Using the gas-phase (207)Pb and (reference) proton results and the theoretical value of the Pb shielding in Pb(CH3)4, we find μ((207)Pb) = 0.59064 μN. The analysis of new experimental and theoretical data obtained for the Pb(2+) ion in water solutions provides similar values of μ((207)Pb), in the range of 0.59000-0.59131 μN.

  1. Lymphocyte fractionation using immunomagnetic colloid and a dipole magnet flow cell sorter.

    PubMed

    Moore, L R; Zborowski, M; Sun, L; Chalmers, J J

    1998-09-24

    The relationship between cell function and surface marker expression is a subject of active investigation in biology and medicine. These investigations require separating cells of a homogeneous subset into multiple fractions of varying marker expression. We have developed a novel cell sorter, the dipole magnet flow sorter (DMFS), which separates selected T lymphocyte subpopulations, targeted by immunomagnetic colloid, into multiple fractions according to cell surface marker expression, as determined by flow cytometry. A narrow stream of cells is introduced into a sheath of carrier fluid in a rectangular channel while subjected to a perpendicular magnetic force. The special design of the pole pieces ensures a constant magnetic force acting on the magnetically labeled cells in the separation area. Cells are spread across the flow in relation to their magnetophoretic mobility. Separation is achieved by control of the positions of the effluent stream boundaries, which separate fluid volumes with cells of different magnetophoretic mobility. CD4 and CD8 T lymphocytes labeled with primary antibody-fluorescein isothiocyanate (FITC) conjugate and anti-FITC-magnetic colloid are the chosen cell systems. Flow cytometry analysis shows that, for CD4 cells, a three-fold increase in total marker number per cell is observed when comparing the highest to the lowest fluorescence fractions. Similarly, a four-fold increase in total marker number is observed for CD8 cells. We also observed the separation of two dissimilar cell types that differed in expression of the CD4 marker, monocytes and T helper lymphocytes. We believe that this type of separation is applicable to any cells in suspension for which a suitable antibody exists and, due to the comparatively gentle nature of the process, is particularly suitable for the sorting of fragile cells.

  2. Derivation of magnetic fields on a metal cylinder excited by longitudinal and transverse magnetic dipole transmitters: I. Cylinder in unbounded dissipative dielectric medium

    NASA Astrophysics Data System (ADS)

    Freedman, Robert

    2015-09-01

    We derive new and exact analytical and convergent integral representations for the frequency-dependent complex magnetic fields Hz(a, ϕ, z) and Hϕ(a, ϕ, z) excited by oscillating point magnetic dipole transmitters on the surface of an infinitely long metal cylinder of radius a in an unbounded dissipative dielectric medium. Hz(a, ϕ, z) is calculated for a longitudinally oriented magnetic dipole parallel to the cylinder axis and Hϕ(a, ϕ, z) for a transversely oriented magnetic dipole perpendicular to the axis. The solutions are relevant to the computation of phase shifts and attenuations measured by electromagnetic propagation logging tools, which have oscillating longitudinal and transverse magnetic dipole transmitters either on a metal drill collar or on a cylindrical antenna pad. The integral representations can be readily evaluated using simple numerical integration algorithms, e.g., Simpson's rule, to accurately compute the complex magnetic fields on the cylinder surface. A second paper will address the two-layer cylindrical media problem.

  3. Enabling automated magnetic resonance imaging-based targeting assessment during dipole field navigation

    NASA Astrophysics Data System (ADS)

    Latulippe, Maxime; Felfoul, Ouajdi; Dupont, Pierre E.; Martel, Sylvain

    2016-02-01

    The magnetic navigation of drugs in the vascular network promises to increase the efficacy and reduce the secondary toxicity of cancer treatments by targeting tumors directly. Recently, dipole field navigation (DFN) was proposed as the first method achieving both high field and high navigation gradient strengths for whole-body interventions in deep tissues. This is achieved by introducing large ferromagnetic cores around the patient inside a magnetic resonance imaging (MRI) scanner. However, doing so distorts the static field inside the scanner, which prevents imaging during the intervention. This limitation constrains DFN to open-loop navigation, thus exposing the risk of a harmful toxicity in case of a navigation failure. Here, we are interested in periodically assessing drug targeting efficiency using MRI even in the presence of a core. We demonstrate, using a clinical scanner, that it is in fact possible to acquire, in specific regions around a core, images of sufficient quality to perform this task. We show that the core can be moved inside the scanner to a position minimizing the distortion effect in the region of interest for imaging. Moving the core can be done automatically using the gradient coils of the scanner, which then also enables the core to be repositioned to perform navigation to additional targets. The feasibility and potential of the approach are validated in an in vitro experiment demonstrating navigation and assessment at two targets.

  4. Magnetic Dipole Inflation with Cascaded ARC and Applications to Mini-Magnetospheric Plasma Propulsion

    NASA Technical Reports Server (NTRS)

    Giersch, L.; Winglee, R.; Slough, J.; Ziemba, T.; Euripides, P.

    2003-01-01

    Mini-Magnetospheric Plasma Propulsion (M2P2) seeks to create a plasma-inflated magnetic bubble capable of intercepting significant thrust from the solar wind for the purposes of high speed, high efficiency spacecraft propulsion. Previous laboratory experiments into the M2P2 concept have primarily used helicon plasma sources to inflate the dipole magnetic field. The work presented here uses an alternative plasma source, the cascaded arc, in a geometry similar to that used in previous helicon experiments. Time resolved measurements of the equatorial plasma density have been conducted and the results are discussed. The equatorial plasma density transitions from an initially asymmetric configuration early in the shot to a quasisymmetric configuration during plasma production, and then returns to an asymmetric configuration when the source is shut off. The exact reasons for these changes in configuration are unknown, but convection of the loaded flux tube is suspected. The diffusion time was found to be an order of magnitude longer than the Bohm diffusion time for the period of time after the plasma source was shut off. The data collected indicate the plasma has an electron temperature of approximately 11 eV, an order of magnitude hotter than plasmas generated by cascaded arcs operating under different conditions. In addition, indirect evidence suggests that the plasma has a beta of order unity in the source region.

  5. Excitation of the centrifugally driven interchange instability in a plasma confined by a magnetic dipole

    SciTech Connect

    Levitt, B.; Maslovsky, D.; Mauel, M.E.; Waksman, J.

    2005-05-15

    The centrifugally driven electrostatic interchange instability is excited for the first time in a laboratory magnetoplasma. The plasma is confined by a dipole magnetic field, and the instability is excited when an equatorial mesh is biased to induce a radial current that creates rapid axisymmetric plasma rotation. The observed instabilities appear quasicoherent in the lab frame of reference; they have global radial mode structures and low azimuthal mode numbers, and they are modified by the presence of energetic, magnetically confined electrons. The mode structure is measured using a multiprobe correlation technique as well as a novel 96-point polar imaging diagnostic which measures particle flux along field lines that map to the pole. Interchange instabilities caused by hot electron pressure are simultaneously observed at the hot electron drift frequency. Adjusting the hot electron fraction {alpha} modifies the stability as well as the structures of the centrifugally driven modes. In the presence of larger fractions of energetic electrons, m=1 is observed to be the dominant mode. For faster rotating plasmas containing fewer energetic electrons, m=2 dominates. Results from a self-consistent nonlinear simulation reproduce the measured mode structures in both regimes. The low azimuthal mode numbers seen in the experiment and simulation can also be interpreted with a local, linear dispersion relation of the electrostatic interchange instability. Drift resonant hot electrons give the instability a real frequency, inducing stabilizing ion polarization currents that preferentially suppress high-m modes.

  6. Measurement of homonuclear magnetic dipole-dipole interactions in multiple 1/2-spin systems using constant-time DQ-DRENAR NMR

    NASA Astrophysics Data System (ADS)

    Ren, Jinjun; Eckert, Hellmut

    2015-11-01

    A new pulse sequence entitled DQ-DRENAR (Double-Quantum based Dipolar Recoupling Effects Nuclear Alignment Reduction) was recently described for the quantitative measurement of magnetic dipole-dipole interactions in homonuclear spin-1/2 systems involving multiple nuclei. As described in the present manuscript, the efficiency and performance of this sequence can be significantly improved, if the measurement is done in the constant-time mode. We describe both the theoretical analysis of this method and its experimental validation of a number of crystalline model compounds, considering both symmetry-based and back-to-back (BABA) DQ-coherence excitation schemes. Based on the combination of theoretical analysis and experimental results we discuss the effect of experimental parameters such as the chemical shift anisotropy (CSA), the spinning rate, and the radio frequency field inhomogeneity upon its performance. Our results indicate that constant-time (CT-) DRENAR is a method of high efficiency and accuracy for compounds with multiple homonuclear spin systems with particular promise for the analysis of stronger-coupled and short T2 spin systems.

  7. Design, fabrication, and calibration of curved integral coils for measuring transfer function, uniformity, and effective length of LBL ALS (Lawrence Berkeley Laboratory Advanced Light Source) Booster Dipole Magnets

    SciTech Connect

    Green, M.I.; Nelson, D.; Marks, S.; Gee, B.; Wong, W.; Meneghetti, J.

    1989-03-01

    A matched pair of curved integral coils has been designed, fabricated and calibrated at Lawrence Berkeley Laboratory for measuring Advanced Light Source (ALS) Booster Dipole Magnets. Distinctive fabrication and calibration techniques are described. The use of multifilar magnet wire in fabrication integral search coils is described. Procedures used and results of AC and DC measurements of transfer function, effective length and uniformity of the prototype booster dipole magnet are presented in companion papers. 8 refs.

  8. R&D steps of a 12-T common coil dipole magnet for SPPC pre-study

    NASA Astrophysics Data System (ADS)

    Wang, Chengtao; Zhang, Kai; Xu, Qingjin

    2016-11-01

    IHEP (the Institute of High Energy Physics, Beijing, China) has started the R&D of high field accelerator magnet technology from 2014 for recently proposed CEPC-SppC (Circular Electron Positron Collider, Super proton-proton Collider) project. The conceptual design study of a 20-T dipole magnet is ongoing with the common coil configuration, and a 12-T model magnet will be fabricated in the next two years. A 3-step R&D process has been proposed to realize this 12-T common-coil model magnet: first, a 12-T subscale magnet will be fabricated with Nb3Sn and NbTi superconductors to investigate the fabrication process and characteristics of Nb3Sn coils, then a 12-T subscale magnet will be fabricated with only Nb3Sn superconductors to test the stress management method and quench protection method of Nb3Sn coils; the final step is fabricating the 12-T common-coil dipole magnet with HTS (YBCO) and Nb3Sn superconductors to test the field optimization method of the HTS and Nb3Sn coils. The characteristics of these R&D steps will be introduced in the paper.

  9. Investigating the Effect of Line Dipole Magnetic Field on Hydrothermal Characteristics of a Temperature-Sensitive Magnetic Nanofluid Using Two-Phase Simulation.

    PubMed

    Bahiraei, Mehdi; Hangi, Morteza

    2016-12-01

    Hydrothermal characteristics of a temperature-sensitive magnetic nanofluid between two parallel plates are investigated in the presence of magnetic field produced by one or multiple line dipole(s) using the two-phase mixture model. As the nanofluid reaches the region where the magnetic field is applied, a rotation is developed due to the dependency of magnetization on temperature. This can lead to mixing in the flow and more uniform distribution of temperature due to the disturbance caused in the boundary layer, and consequently, enhancement in convective heat transfer. The results indicate that the disturbance in boundary layer adjacent to the lower wall is more significant than the upper wall. By application of the magnetic field, the convective heat transfer increases locally for both walls. Due to the intensified mixing, a sudden pressure drop occurs when the fluid reaches the region where the magnetic field is applied. For greater magnetic field strengths and lower Reynolds numbers, the improvement in convective heat transfer is more significant. For small magnetic field strengths, the effect of applying magnetic field on the upper wall is much smaller than that on the lower wall; however, this effect becomes almost the same for both walls at great magnetic field strengths.

  10. Magnetic sponge phenomena associated with interchain dipole-dipole interactions in a series of ferrimagnetic chain compounds doped with minor diamagnetic species.

    PubMed

    Nishio, Masaki; Miyasaka, Hitoshi

    2014-05-05

    The donor/acceptor ionic chain (i.e., the D(+)A(-) chain) [Ru2(2-MeO-4-ClPhCO2)4(BTDA-TCNQ)]·2.5(benzene) (1; 2-MeO-4-ClPhCO2(-) = 2-methoxy-4-chlorobenzoate; BTDA-TCNQ = bis(1,2,5-thiadiazolo)tetracyanoquinodimethane) is a ferrimagnetic chain with S = 3/2 from [Ru2(II,III)](+) (i.e., D(+)) and S = 1/2 from BTDA-TCNQ(•-) (i.e., A(-)), with J ≈ -100 K, in which long-range antiferromagnetic ordering at TN = 11 K occurs because interchain antiferromagnetic interactions are critical. Compound 1 undergoes a reversible crystal-to-crystal structural transformation with the elimination/absorption of the crystallization solvent to form the dried compound [Ru2(2-MeO-4-ClPhCO2)4(BTDA-TCNQ)] (1'), which has a higher TN (14 K). This change is clearly caused by the shortening of the interchain distances because the exchange coupling parameter for the chain is the same in both 1 and 1'. The chain compounds in 1 can be doped with minor diamagnetic [Rh2(II,II)] species, [{(Ru2)(1-x)(Rh2)(x)(2-MeO-4-ClPhCO2)4}(BTDA-TCNQ)]·2.5(benzene) (x = 0.03 for Rh-3%; x = 0.05 for Rh-5%; x = 0.16 for Rh-16%), which shifts the TN to lower temperatures, the magnitude of the shift being dependent on the doping ratio x (TN = 5.9 K for Rh-3%, TN = 3.7 K for Rh-5%, and TN was not observed above 1.8 K for Rh-16%). Drying a doped compound increased its TN, as was found for 1': TN = 9.9 K for Rh-3%', TN = 9.2 K for Rh-5%', and TN was not observed above 1.8 K for Rh-16%'. TN had a linear relationship with the doping ratio x of the [Rh2] species in both the fresh and dried compounds. The TN linear relationship is associated with the magnitude of the effective magnetic dipole (i.e., the average correlation length) in the chains caused by the [Rh2] defects as well as naturally generated defects in the synthetic process and with the interchain distances affected by the crystal-to-crystal transformations. These results demonstrate that slightly modifying the short-range correlation lengths, which changes

  11. Experimental demonstration of acoustic wave induced magnetization switching in dipole coupled magnetostrictive nanomagnets for ultralow power computing

    NASA Astrophysics Data System (ADS)

    Sampath, Vimal; D'Souza, Noel; Atkinson, Gary M.; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2016-09-01

    Dipole-coupled cobalt nanomagnet pairs of elliptical shape (with their major axes parallel) are delineated on 128° Y-cut lithium niobate. Each pair is initially magnetized along the major axis with a magnetic field forming the (↑↑) state. When an acoustic wave (AW) is launched in the substrate from interdigitated electrodes, the softer nanomagnet in the pair flips to produce the (↑↓) state since the AW modulates the stress anisotropy. This executes the logical NOT operation because the output bit encoded in the magnetization state of the softer nanomagnet becomes the logic complement of the input bit encoded in the magnetization of the harder one. The AW acts as a clock to trigger the NOT operation and the energy dissipated is a few tens of aJ. Such AW clocking can be utilized to flip nanomagnets in a chain sequentially to steer logic bits unidirectionally along a nanomagnetic logic wire with miniscule energy dissipation.

  12. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

    SciTech Connect

    Afach, S.; Fertl, M.; Franke, B. E-mail: bernhard.lauss@psi.ch; Kirch, K.; Bison, G.; Burri, F.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B. E-mail: bernhard.lauss@psi.ch; Meier, M.; Schmidt-Wellenburg, P.; Zsigmond, G.; Bodek, K.; Zejma, J.; Grujic, Z.; Kasprzak, M.; Weis, A.; Hélaine, V.; Koch, H.-C.; and others

    2014-08-28

    The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.

  13. Magnetic rotation phenomenon in the dipole (Δ I = 1) bands of transitional strontium (Sr) isotopes near N=50 shell closure

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Kumar, S.; Mandal, S. K.; Saha, S.; Sethi, J.; Palit, R.

    2017-02-01

    The lifetime measurements were done for the transitions of the dipole (Δ I=1) bands in 85,86Sr nuclei using the Doppler Shift Attenuation Method (DSAM). The high-spin states in these nuclei were populated in the 76Ge(13C, 4n)85Sr and 76Ge(13C, 3n)86Sr reactions. The B( M1) transition rates have been obtained for the states of two positive-parity dipole (Δ I=1) bands in the 85Sr nucleus and one positive-parity dipole (Δ I=1) band in the 86 Sr nucleus. The present results on the transition rates are important to know whether these dipole (Δ I=1) bands have the signatures of Magnetic Rotation (MR). In order to investigate their magnetic character, the experimental results have been compared with the calculations within the framework of hybrid Tilted-Axis-Cranking (TAC) model. On the basis of the TAC calculations, band 2 of the 85Sr nucleus is assigned the π (g_{9/2})2⊗ ν (g_{9/2})^{-1} configuration and shows the MR character, while for band 3, the π [(g_{9/2})2 (f_{5/2})2]⊗ ν (g_{9/2})^{-1} configuration is suggested. In the case of 86Sr nucleus, band 3 has the π (g_{9/2})2⊗ ν (g_{9/2})^{-2} configuration below the spin I^{π} = 16+ and above this spin the π [(g_{9/2})2 (f_{5/2})1 (p_{1/2}/p_{3/2})1] ⊗ ν (g_{9/2})^{-2} configuration plays an important role. The experimental B( M1) transition rates show a decreasing trend with the increase in spin and are comparable with the TAC calculations before the I^{π} = 16+.

  14. Self-assembly of three-dimensional ensembles of magnetic particles with laterally shifted dipoles.

    PubMed

    Yener, Arzu B; Klapp, Sabine H L

    2016-02-21

    We consider a model of colloidal spherical particles carrying a permanent dipole moment which is laterally shifted out of the particles' geometrical centres, i.e. the dipole vector is oriented perpendicular to the radius of the particles. Varying the shift δ from the centre, we analyse ground state structures for two, three and four hard spheres, using a simulated annealing procedure. We also compare earlier ground state results. We then consider a bulk system at finite temperatures and different densities. Using molecular dynamics simulations, we examine the equilibrium self-assembly properties for several shifts. Our results show that the shift of the dipole moment has a crucial impact on both the ground state configurations as well as the self-assembled structures at finite temperatures.

  15. Microscopic description of ground state magnetic moment and low-lying magnetic dipole excitations in heavy odd-mass 181Ta nucleus

    NASA Astrophysics Data System (ADS)

    Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar

    2016-07-01

    The ground state magnetic moments and the low-lying magnetic dipole (Ml) transitions from the ground to excited states in heavy deformed odd-mass 181Ta have been microscopically investigated on the basis of the quasiparticle-phonon nuclear model (QPNM). The problem of the spurious state mixing in M1 excitations is overcome by a restoration method allowing a self-consistent determination of the separable effective restoration forces. Due to the self-consistency of the method, these effective forces contain no arbitrary parameters. The results of calculations are compared with the available experimental data, the agreement being reasonably satisfactory.

  16. Third-Scale Prototype of a Shielded Magnet for Measurement of the Electric Dipole Moment of the Neutron

    NASA Astrophysics Data System (ADS)

    Biswas, Aritra

    2015-10-01

    Discovery of an electric dipole moment in neutrons (nEDM) would be a novel instance of CP violation, with implications for extending the Standard Model and potentially helping explain matter-antimatter asymmetry. Experiments using shifts in polarized neutron spin-precession frequency to measure the nEDM are prone to a geometric phase (GP) effect, caused by gradients of the magnetic field, that can create a false signal. Preventing the GP effect requires precise engineering to create a space-uniform magnetic field. We present a third-scale prototype of a shielded magnet suitable for a more precise nEDM measurement, with improvements over earlier models. The field is produced by a cosθ coil wound with superconducting (SC) wire. Two cylindrical shields made of ferromagnetic Metglas and SC lead surround the magnet; the lead shield is closed on top and bottom with SC lead endcaps. An aluminum shell surrounds these components and serves as a vacuum chamber, cooling its interior to 4 K such that the coil wire and lead shield become SC. A cavity in this shell serves as a warm bore, allowing a magnetic probe to explore the field around fiducial volumes which will be used to measure the nEDM in the full-scale experiment. The magnetic field profile of this prototype is presented.

  17. Electro-Magnetic Dipole Properties of The Even-Even {sup 160}Gd Nucleus in The Spectroscopic Region

    SciTech Connect

    Ertugral, Filiz; Kuliev, Ali; Guliyev, Ekber

    2008-11-11

    In this study result of calculations using rotational, translational and Galilean invariant quasiparticle random-phase approximation is presented for the low lying dipole excitations in the even-even {sup 60}Gd nucleus. To make detail structure analysis for electric and magnetic dipole states, calculations carried out for both {delta}K = 1 and {delta}K = 0 branches. The analysis shows that almost all transitions with {delta}K = 1 are magnetic character in 2.4 divide 4 MeV energy interval. However, the calculations indicate the presence of a few prominent negative parity K{sup {pi}} = 1 states in the investigated energy interval, one of them with rather high E1 strength B(E1) = 7.1{center_dot}10{sup -3} e{sup 2} fm{sup 2} at energy 3.2 MeV. Calculated M1 dipole strength of the scissors mode K{sup {pi}} = 1{sup +} excitations clustered in two groups around 2.7 and 3.3 MeV. A similar situation arises for the experimentally obtained states two bumps around {omega}{sub i} = 2.7 MeV and {omega}{sub i} = 3.3 MeV. It has been shown that main part of spin-1 states, observed at energy 2.4 divide 4 MeV in {sup 160}Gd may be attributed to have M1 character and may be interpreted as main fragments of the scissors mode. However, it is apparent that the experimental data exceeds the calculation results for the summed B(M1) by a factor of 1.13 for M1 transitions.

  18. Thermal and structural performance of a single tube support post for the Superconducting Super Collider dipole magnet cryostat

    SciTech Connect

    Boroski, W.N.; Nicol, T.H.; Ruschman, M.K.; Schoo, C.J.

    1993-07-01

    The reentrant support post currently incorporated in the Superconducting Super Collider (SSC) dipole cryostat has been shown to meet the structural and thermal requirements of the cryostat, both in prototype magnet assemblies and through component testing. However, the reentrant post design has two major drawbacks: tight dimensional control on all components, and cost driven by these tolerance constraints and a complex assembly procedure. A single tube support post has been developed as an alternative to the reentrant post design. Several prototype assemblies have been fabricated and subjected to structural testing. Compressive, tensile, and bending forces were applied to each assembly with deflection measured at several locations. A prototype support post has also been thermally evaluated in a heat leak measurement facility. Heat load to 4.2 K was measured with the intermediate post intercept operating at various temperatures while thermometers positioned along the conductive path of the post mapped thermal gradients. Results from these measurements indicate the single tube support post meets the design criteria for the SSC dipole magnet cryostat support system.

  19. Bound states for an induced electric dipole in the presence of an azimuthal magnetic field and a disclination

    SciTech Connect

    Bakke, K.

    2010-09-15

    Based on the Wei-Han-Wei setup [H. Wei, R. Han, and X. Wei, Phys. Rev. Lett. 75, 2071 (1995)], where a neutral particle with an induced electric dipole moment interacts with a configuration of crossed electric and magnetic fields, in this paper we study the bound states that arise when we change the Wei-Han-Wei field configuration and consider a field configuration of crossed azimuthal magnetic field and a radial electric field. Moreover, we consider here a spin-half neutral particle and the presence of a linear topological defect called disclination. We obtain the bound states in two distinct cases: in the first case, we consider that the wave function of the neutral particle is well-behaved at the origin and vanishes at the asymptotic limit; in the second case, we consider the neutral particle confined to a parabolic potential like a quantum dot.

  20. Limits on the monopole polarization magnetic field from measurements of the electric dipole moments of atoms, molecules, and the neutron

    NASA Astrophysics Data System (ADS)

    Flambaum, V. V.

    1997-03-01

    A radial magnetic field can induce a time-invariance-violating electric-dipole moment (EDM) in quantum systems. The EDMs of the Tl, Cs, Xe, and Hg atoms and the neutron that are produced by such a field are estimated. The contributions of such a field to the constants, χ of the T, P-odd interactions χeN.s/s and χNN.I/I are also estimated for the TlF, HgF, and YbF molecules [where s (I) is the electron (nuclear) spin and N is the molecular axis]. The best limit on the contact monopole field can be obtained from the measured value of the Tl EDM. The possibility of such a field being produced from polarization of the vacuum of electrically charged magnetic monopoles (dyons) by a Coulomb field is discussed, as well as the limit on these dyons. An alternative mechanism involves chromomagnetic and chromoelectric fields in QCD.

  1. In-orbit offline estimation of the residual magnetic dipole biases of the POPSAT-HIP1 nanosatellite

    NASA Astrophysics Data System (ADS)

    Seriani, S.; Brama, Y. L.; Gallina, P.; Manzoni, G.

    2016-05-01

    The nanosatellite POPSAT-HIP1 is a Cubesat-class spacecraft launched on the 19th of June 2014 to test cold-gas based micro-thrusters; it is, as of April 2015, in a low Earth orbit at around 600 km of altitude and is equipped, notably, with a magnetometer. In order to increment the performance of the attitude control of nanosatellites like POPSAT, it is extremely useful to determine the main biases that act on the magnetometer while in orbit, for example those generated by the residual magnetic moment of the satellite itself and those originating from the transmitter. Thus, we present a methodology to perform an in-orbit offline estimation of the magnetometer bias caused by the residual magnetic moment of the satellite (we refer to this as the residual magnetic dipole bias, or RMDB). The method is based on a genetic algorithm coupled with a simplex algorithm, and provides the bias RMDB vector as output, requiring solely the magnetometer readings. This is exploited to compute the transmitter magnetic dipole bias (TMDB), by comparing the computed RMDB with the transmitter operating and idling. An experimental investigation is carried out by acquiring the magnetometer outputs in different phases of the spacecraft life (stabilized, maneuvering, free tumble). Results show remarkable accuracy with an RMDB orientation error between 3.6 ° and 6.2 ° , and a module error around 7 % . TMDB values show similar coherence values. Finally, we note some drawbacks of the methodologies, as well as some possible improvements, e.g. precise transmitter operations logging. In general, however, the methodology proves to be quite effective even with sparse and noisy data, and promises to be incisive in the improvement of attitude control systems.

  2. Current distribution in parallel paths of the coils of a 50 Hz prototype dipole magnet

    SciTech Connect

    Otter, A.J.

    1996-07-01

    The prototype dipole made for TRIUMF`s Kaon Factory proposal used coils with 12 parallel paths to reduce eddy current losses in the conductors. The ac current distribution in these paths was non-uniform due to different self and mutual inductances. Small differences in inductance can cause large circulating currents in the parallel windings. This paper describes the measurement of the inductances and shows an attempt to predict the current distribution for two alternative connection schemes.

  3. Simple estimation of dipole source z-distance with compact magnetic gradiometer

    NASA Astrophysics Data System (ADS)

    Janošek, M.; Platil, A.; Vyhnánek, J.

    2016-03-01

    A compact magnetometer/gradiometer with combined homogeneous and gradient outputs facilitates precise measurement of both H and G values with good spatial and temporal coherence. By evaluating combination of both signals, it is possible to estimate distance to a dipole source with relatively small error and largely independent from precise knowledge of source strength, orientation and lateral displacement. The performance is limited primarily by ambient noise. With an AC-driven source, tool navigation or distance sensing is also possible.

  4. Selective Excitation of Terahertz Magnetic and Electric Dipoles in Er3 + Ions by Femtosecond Laser Pulses in ErFeO3

    NASA Astrophysics Data System (ADS)

    Mikhaylovskiy, R. V.; Huisman, T. J.; Pisarev, R. V.; Rasing, Th.; Kimel, A. V.

    2017-01-01

    We show that femtosecond laser pulse excitation of the orthoferrite ErFeO3 triggers pico- and subpicosecond dynamics of magnetic and electric dipoles associated with the low energy electronic states of the Er3 + ions. These dynamics are readily revealed by using polarization sensitive terahertz emission spectroscopy. It is shown that by changing the polarization of the femtosecond laser pulse one can excite either electric dipole-active or magnetic dipole-active transitions between the Kramers doublets of the 15/2I4 ground state of the Er3 + (4 f11 ) ions. These observations serve as a proof of principle of polarization-selective control of both electric and magnetic degrees of freedom at terahertz frequencies, opening up new vistas for optical manipulation of magnetoelectric materials.

  5. Direct measurement of the plasma loss width in an optimized, high ionization fraction, magnetic multi-dipole ring cusp

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Weisberg, D. B.; Khalzov, I.; Milhone, J.; Flanagan, K.; Peterson, E.; Wahl, C.; Forest, C. B.

    2016-10-01

    The loss width of plasma in the WiPAL multi-dipole magnetic ring cusp [Cooper et al., Phys. Plasmas 21, 13505 (2014); Forest et al., J. Plasma Phys. 81, 345810501 (2015)] has been directly measured using a novel array of probes embedded in the insulating plasma limiters. The large plasma volume ( ˜10 m3), small loss area associated with strong rare earth permanent magnets ( Bo˜2.23 kG at face), and large heating power ( ≤200 kW) produces a broad range of electron temperatures ( 2 magnetic fields, differs from previous devices: the cusp loss width is much larger than the Debye length and electron gyroradius and comparable to the collision length. Plasma parameters measured at the surface of ceramic limiter tiles covering the magnets and along radial chords in the cusp magnetic field indicate that electron density and temperature are nearly constant on magnetic field lines and that the mirror forces play little role in confining the plasma other than to constrict the loss area. Particle balance modeling is used to determine the cross field diffusion coefficient base on the measured losses to the limiters. The experimentally determined cross field diffusion coefficient (which determines the cusp loss width) is consistent with ambipolar diffusion across five orders of magnitude. The ambipolar diffusion across a given field line is set primarily by the electron-neutral collisions in the region where the magnetic field is the weakest, even though these plasmas can have ionization fractions near 1.

  6. Fabrication and Test Results of a Prototype, Nb3Sn Superconducting Racetrack Dipole Magnet

    SciTech Connect

    Gourlay, S. A.; Chow, K.; Dietderich, D.R.; Gupta, R.; Hannaford, R.; Harnden, W.; Lietzke, A.; McInturff, A.D.; Millos, G.A.; Morrison, L.; Morrison, M.; Scanlan, R.M.

    1998-09-01

    A prototype, Nb{sub 3}Sn superconducting magnet, utilizing a racetrack coil design has been built and tested. This magnet represents the first step in a recently implemented program to develop a high field, accelerator quality magnet. This magnet was constructed with coils wound from conductor developed for the ITER project, limiting the magnet to a field of 6-7 Tesla. Subsequent magnets in the program will utilize improved conductor, culminating in a magnet design capable of producing fields approaching 15 Tesla. The simple geometry is more suitable for the use of brittle superconductors necessary to eventually reach high field levels. In addition, fewer and simpler parts are used in fabricating these coils compared with the more conventional cosine theta cross section coils. The general fabrication steps, mechanical design and quench performance are discussed.

  7. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  8. Improvement of microwave feeding on a large bore ECRIS with permanent magnets by using coaxial semi-dipole antenna

    SciTech Connect

    Kurisu, Yosuke; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Yano, Keisuke; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-11-06

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). The first stage of this ECRIS has a large-bore with cylindrically comb-shaped permanent magnets. 2.45GHz and 11-13GHz microwaves can be supplied individually and simultaneously to the plasma chamber. For 2.45GHz, a coaxial semi-dipole antenna is used to feed the microwaves. In previous experiments, there were two problems encountered when running the 2.45GHz microwaves. High incident power was necessary to keep ECR discharge at low operating pressure because of high reflected microwave power. The surface of a support insulator between the inner and the outer electrodes of coaxial semi-dipole antenna was easily metalized by sputtering of the metal wall inside the chamber. The purpose of this study was to solve these problems. Performing several simulation experiments supports the hypothesis that the position of the support insulator is significant for microwave power efficiency. The end result was the ability to sustain ECR discharges at extremely low incident microwave power, several tens of watts, by optimized matching of the position and shape of the insulator.

  9. Changes in earth's dipole.

    PubMed

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

  10. MAGNETIC BRAKING FORMULATION FOR SUN-LIKE STARS: DEPENDENCE ON DIPOLE FIELD STRENGTH AND ROTATION RATE

    SciTech Connect

    Matt, Sean P.; Pinsonneault, Marc H.; Greene, Thomas P. E-mail: kmac@ucar.edu E-mail: thomas.p.greene@nasa.gov

    2012-08-01

    We use two-dimensional axisymmetric magnetohydrodynamic simulations to compute steady-state solutions for solar-like stellar winds from rotating stars with dipolar magnetic fields. Our parameter study includes 50 simulations covering a wide range of relative magnetic field strengths and rotation rates, extending from the slow- and approaching the fast-magnetic-rotator regimes. Using the simulations to compute the angular momentum loss, we derive a semi-analytic formulation for the external torque on the star that fits all of the simulations to a precision of a few percent. This formula provides a simple method for computing the magnetic braking of Sun-like stars due to magnetized stellar winds, which properly includes the dependence on the strength of the magnetic field, mass loss rate, stellar radius, surface gravity, and spin rate, and which is valid for both slow and fast rotators.

  11. About a peculiar extra U(1): Z{sup '} discovery limit, muon anomalous magnetic moment, and electron electric dipole moment

    SciTech Connect

    Heo, Jae Ho

    2009-08-01

    The model (Lagrangian) with a peculiar extra U(1)[S. M. Barr and I. Dorsner, Phys. Rev. D 72, 015011 (2005); S. M. Barr and A. Khan, Phys. Rev. D 74, 085023 (2006)] is clearly presented. The assigned extra U(1) gauge charges give a strong constraint to build Lagrangians. The Z{sup '} discovery limits are estimated and predicted at the Tevatron and the LHC. The new contributions of the muon anomalous magnetic moment are investigated at one and two loops, and we predict that the deviation from the standard model may be explained. The electron electric dipole moment could also be generated because of the explicit CP-violation effect in the Higgs sector, and a sizable contribution is expected for a moderately sized CP phase [argument of the CP-odd Higgs], 0.1{<=}sin{delta}{<=}1[6 deg. {<=}arg(A){<=}90 deg.].

  12. Search for magnetic dipole strength and giant spin-flip resonances in heavy nuclei. [120 to 200 MeV

    SciTech Connect

    Horen, D J

    1980-01-01

    A description is given of the use of high-resolution (n,n) scattering and the (p,n) reaction as tools to investigate highly excited states, with emphasis on information pertaining to magnetic dipole strength and giant spin-flip resonances in heavy nuclei. It is shown how the ability to determine uniquely the spins and parities of resonances observed in neutron scattering has been instrumental to an understanding of the distribution of M1 strength in /sup 207/ /sup 208/Pb. Some recent results of (p,n) studies with intermediate energy protons are discussed. Energy systematics of the giant Gamow-Teller (GT) resonance as well as new ..delta..l = ..delta..S = 1 resonance with J/sup ..pi../ = (1,2)/sup -/ are presented. It is shown how the (p,n) reaction might be useful in locating M1 strength in heavy nuclei. 20 figures.

  13. A Three-Dimensional MHD Simulation of the Solar Wind for a Tilted-Dipole Magnetic Field on the Sun

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2007-01-01

    Using a three-dimensional MHD model, we simulate the global steady-state structure of the solar corona and solar wind for a dipole magnetic field on the Sun inclined by 30 degrees to the solar rotation axis. This represents the solar conditions typical for a declining phase of solar cycle. The computations can extend from the coronal base out to 100-AU and at large heliospheric distances includes the effects of interstellar neutral hydrogen and their interaction with solar wind protons. The simulations can model the formation of corotating interaction regions and the heliospheric current sheet. The simulations are also capable of describing very strong rarefaction regions that include embedded sub-Alfvenic regions that form on the trailing edge of a fast flows.

  14. Constraint on the magnetic dipole moment of neutrinos by the tip-RGB luminosity in ω-Centauri

    NASA Astrophysics Data System (ADS)

    Arceo-Díaz, S.; Schröder, K.-P.; Zuber, K.; Jack, D.

    2015-10-01

    In this work, we use models constructed with the Eggleton code for stellar evolution, along with the photometric data of the super-rich globular cluster ω-Centauri (Sollima et al., 2004), to put a constraint on the magnetic dipole moment of neutrinos. We begin with a review of the idea proposed by Raffelt and Dearborn (1988), in which, as a consequence of a non-zero magnetic dipole moment, the tip-RGB luminosity of low mass stars gets increased over its standard value. First, we measure the dependence of the He-core mass and bolometric luminosity, at the tip-RGB, on the existing fits to characterize plasmon decay into neutrinos, namely those from Itoh et al. (1992), Haft et al. (1994), and the more recent results from Kantor and Gushakov (2007). Then, stating our definition of the tip-RGB, we revise multiple theoretical aspects: the consequences of non-standard neutrino emission on the internal structure of stellar models, its impact on the calibration of the Reimers mass-loss rate and later evolutionary phases and the influence of initial Helium abundance, metallicity, convection theory and opacities. Finally, we consider the specific case of ω-Cen. Using our tip-RGB models, and the bolometric correction obtained by the PHOENIX code for stellar atmospheres, to estimate the luminosity for canonical and non-standard evolution, also measuring the impact of the reported chemical spread in ω-Cen on our results. We find that the upper limit μν ≤ 2.2 ×10-12μB is already well constrained by observations. This result compares with the one obtained by Viaux et al. (2013), μν ≤ 2.6 ×10-12μB , from photometric study of the globular cluster M5.

  15. Magnetic dipole moments of {sup 58}Cu and {sup 59}Cu by in-source laser spectroscopy

    SciTech Connect

    Stone, N. J.; Koester, U.; Stone, J. Rikovska; Fedorov, D. V.; Fedoseyev, V. N.; Flanagan, K. T.; Hass, M.; Lakshmi, S.

    2008-06-15

    Online measurements of the magnetic dipole moments and isotope shifts of {sup 58}Cu and {sup 59}Cu by the in-source laser spectroscopy method are reported. The results for the magnetic moments are {mu} ({sup 58}Cu) =+0.52(8) {mu}{sub N},{mu}({sup 59}Cu) =+1.84(3) {mu}{sub N} and for the isotope shifts {delta}{nu}{sup 59,65}=1.72(22) GHz and {delta}{nu}{sup 58,65}=1.99(30) GHz in the transition from the 3d{sup 10}4s {sup 2}S{sub 1/2} ground state to the 3d{sup 10}4p {sup 2}P{sub 1/2} state in Cu I. The magnetic moment of {sup 58}Cu is discussed in the context of the strength of the subshell closure at {sup 56}Ni, additivity rules and large-scale shell model calculations.

  16. Alternate design concept for the SSC dipole magnet cryogenic support post

    SciTech Connect

    Lipski, A.; Nicol, T.H.; Richardson, R.

    1991-03-01

    New materials and developments in the field of advanced composites have created the opportunity to take a fresh look into the design of the cryogenic supports for SSC collider dipole cryostats. Although the present reentrant post design meets the structural and thermal requirements, its assembly requires precision and proficiency. The objective of the proposed alternate concept is to reduce the overall cost of the support post by means of simplifying and optimizing its component design and assembly process. The present shrink fitted tube assembly may potentially be replaced by injection molded parts. New resin systems with lower thermal conductivity and high strength properties enable the utilization of automated production techniques such as injection molding and filament winding. This paper will provide analysis and design information for the alternate support post concept and compare its test performance and cost to the present support post. 3 refs., 12 figs., 4 tabs.

  17. Laboratory Dipole Plasma Physics

    NASA Astrophysics Data System (ADS)

    Kesner, Jay

    2011-10-01

    Modern laboratory studies of plasma confined by a strong dipole magnet originated twenty years ago when it was learned that planetary magnetospheres have centrally-peaked plasma pressure profiles that form naturally when solar wind drives plasma circulation and heating. Unlike other internal rings devices, like spherators and octupoles, the magnetic flux tubes of the dipole field expand rapidly with radius. Unlike plasma confinement devices that obtain stability from magnetic shear and average good curvature, like tokamaks and levitrons, the dipole-confined plasma obtains stability from plasma compressibility. These two geometric characteristics of the dipole field have profound consequences: (i) plasma can be stable with local beta exceeding unity, (ii) fluctuations can drive either heat or particles inward to create stationary profiles that are strongly peaked, and (iii) the confinement of particles and energy can decouple. During the past decade, several laboratory dipole experiments and modeling efforts have lead to new understanding of interchange, centrifugal and entropy modes, nonlinear gyrokinetics, and plasma transport. Two devices, the LDX experiment at MIT and RT-1 at the University of Tokyo, operate with levitated superconducting dipole magnets. With a levitated dipole, not only is very high-beta plasma confined in steady state but, also, levitation produces high-temperature at low input power and demonstrates that toroidal magnetic confinement of plasma does not require a toroidal field. Modeling has explained many of the processes operative in these experiments, including the observation of a strong inward particle pinch. Turbulent low-frequency fluctuations in dipole confined plasma cause adiabatic transport and form a fundamental linkage between the radial variation of flux-tube volume and the centrally peaked density and pressure profiles. In collaboration with M.E. Mauel and D.T. Garnier; supported by DoE FG02-98ER54458.

  18. Hybrid fluid-particle simulation of whistler-mode waves in a compressed dipole magnetic field: Implications for dayside high-latitude chorus

    NASA Astrophysics Data System (ADS)

    Silva, C. L.; Wu, S.; Denton, R. E.; Hudson, M. K.; Millan, R. M.

    2017-01-01

    In this work we present a methodology for simulating whistler-mode waves self-consistently generated by electron temperature anisotropy in the inner magnetosphere. We present simulation results using a hybrid fluid/particle-in-cell code that treats the hot, anisotropic (i.e., ring current) electron population as particles and the background (i.e., the cold and inertialess) electrons as fluid. Since the hot electrons are only a small fraction of the total population, warm (and isotropic) particle electrons are added to the simulation to increase the fraction of particles with mass, providing a more accurate characterization of the wave dispersion relation. Ions are treated as a fixed background of positive charge density. The plasma transport equations are coupled to Maxwell's equations and solved in a meridional plane (a 2-D simulation with 3-D fields). We use a curvilinear coordinate system that follows the topological curvature of Earth's geomagnetic field lines, based on an analytic expression for a compressed dipole magnetic field. Hence, we are able to simulate whistler wave generation at dawn (pure dipole field lines) and dayside (compressed dipole) by simply adjusting one scalar quantity. We demonstrate how, on the dayside, whistler-mode waves can be locally generated at a range of high latitudes, within pockets of minimum magnetic field, and propagate equatorward. The obtained dayside waves (in a compressed dipole field) have similar amplitude and frequency content to their dawn sector counterparts (in a pure dipole field) but tend to propagate more field aligned.

  19. Investigation of the magnetic dipole field at the atomic scale in quasi-one-dimensional paramagnetic conductor Li0.9Mo6O17

    NASA Astrophysics Data System (ADS)

    Wu, Guoqing; Ye, Xiao-shan; Zeng, Xianghua; Wu, Bing; Clark, W. G.

    2016-01-01

    We report magnetic dipole field investigation at the atomic scale in a single crystal of quasi-one-dimensional (Q1D) paramagnetic conductor Li0.9Mo6O17, using a paramagnetic electron model and 7Li-NMR spectroscopy measurements with an externally applied magnetic field B 0  =  9 T. We find that the magnetic dipole field component (B\\parallel\\text{dip} ) parallel to B 0 at the Li site from the Mo electrons has no lattice axial symmetry; it is small around the middle between the lattice a and c axes in the ac-plane with the minimum at the field orientation angle θ =+{{52.5}\\circ} , while the B\\parallel\\text{dip} maximum is at θ =+{{142.5}\\circ} when B 0 is applied perpendicular to b ({{B}0}\\bot b ), where θ ={{0}\\circ} represents the direction of {{B}0}\\parallel c . Further estimation indicates that B\\parallel\\text{dip} has a maximum value of 0.35 G at B 0  =  9 T. By minimizing the potential magnetic contributions to the NMR spectra satellites with the NMR spectroscopy measurements at the direction where the value of the magnetic dipole field component B\\parallel\\text{dip} is  ∼0, the behavior of the electron charge statics is exhibited. This work demonstrates that the magnetic dipole field of the Mo electrons is the dominant source of the local magnetic fields at the Li site, and suggests that the unknown metal-‘insulator’ crossover at low temperatures is not a charge effect. The work also reveals valuable local electric and magnetic field information for further NMR investigation as recently suggested (2012 Phys. Rev. B 85 235128) regarding the unusual properties of the material.

  20. Electron beam focusing in a racetrack microtron by means of rotated two-sector dipole magnets

    NASA Astrophysics Data System (ADS)

    Delhez, J. L.; Webers, G. A.; Botman, J. I. M.; Hagedoorn, H. L.; Muzio, D.; Timmermans, C. J.

    1992-05-01

    We present an unconventional method of electron beam focusing in a racetrack microtron (RTM). The RTM bending magnets have a two-sector shape (valley and hill) and are slightly rotated in their median plane in order to guarantee closed orbits. Then, isochronism is automatically fulfilled. Comparison between this new arrangement and a previous three-sector design, inspired by Froelich [1], shows that the focusing properties are greatly improved, e.g. regarding beam acceptance and construction sensitivity. We will give a detailed description of the two-sector layout, make a comparison with the three-sector magnet (acceptance and sensitivity) and give magnet parameters for optimum performance.

  1. Magnetic flux transport and the sun's dipole moment - New twists to the Babcock-Leighton model

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Sheeley, N. R., Jr.

    1991-01-01

    The mechanisms that give rise to the sun's large-scale poloidal magnetic field are explored in the framework of the Babcock-Leighton (BL) model. It is shown that there are in general two quite distinct contributions to the generation of the 'alpha effect': the first is associated with the axial tilts of the bipolar magnetic regions as they erupt at the surface, while the second arises through the interaction between diffusion and flow as the magnetic flux is dispersed over the surface. The general relationship between flux transport and the BL dynamo is discussed.

  2. Derivation of the magnetic field on a metal cylinder excited by a longitudinal magnetic dipole transmitter: II. Cylinder in a two-layer dissipative dielectric medium

    NASA Astrophysics Data System (ADS)

    Freedman, Robert

    2016-11-01

    We derive an exact convergent analytical solution for the complex frequency-dependent magnetic field on the surface of an infinitely long and perfectly conducting metal cylinder situated in a cylindrically layered dissipative medium. The inhomogeneous medium consists of two exterior cylindrical layers that are concentric with the cylinder. The magnetic field on the cylinder is excited by a longitudinally oriented oscillating magnetic dipole transmitter on the cylinder surface. An exact analytical solution to this problem has not been previously published and is of theoretical as well as practical importance, e.g., in modeling the responses of electromagnetic wave propagation well logging tools. It is shown that the magnetic field on the cylinder surface can be expressed as a real-axis integral; however, the integrand oscillates rapidly and diverges for large values of the integration variable. The real-axis integral is replaced by the sum of two convergent branch line integrals and a sum over the residues of the complex poles in the integrand of the real-axis integral. The poles correspond physically to waveguide modes that propagate with discrete wave numbers. A pole search algorithm is developed to locate the positions of the poles and compute their residues. Phase shifts and attenuations of the magnetic field between receivers for a 1.1 GHz well logging tool are computed to elucidate the pole spectra and the relative contributions of the waveguide modes and the branch cut integrals for different thicknesses of the innermost dielectric layer and for different layer properties.

  3. Determination of Local Magnetic Dipole Moment of the Plasma at the PUPR Cusp-Mirror Machine

    SciTech Connect

    Leal-Quiros, Edbertho; Prelas, Mark

    2006-12-04

    A novel diagnostic that allows measurement of the magnetic moment {mu} has been designed. The {mu}-Analyzer consists of a Directional Energy Analyzer and a Magnetic Hall Probe in the same detector miniature case. The Directional Energy Analyzer measures the ion temperature in the perpendicular direction to the magnetic field. On the other side, the Hall Probe measures the magnetic field. The {mu}-Analyzer is a miniature analyzer to avoid plasma perturbation. This allows the measurement of the ion temperature and the local magnetic field at the same point at the same time, therefore {mu}, the first adiabatic invariant is found. From the above parameters, the local Larmor radius also will be calculated. From the analysis of the data simultaneously in time and space, the {mu} of the Local Plasma has been determined. This result is a very important quantity, among other properties that permit one to know the stability of the magnetic confinement device using the MHD Stability Criterium, and also very important in Space Plasma Research. In addition to the above, a direct measurement of the Larmor radius of each position is also possible. The experiments have been made in a Cusp/Mirror Plasma Machine where plasma parameters such as Density and Temperature are relatively easy to change in a very wide range.

  4. Of dipole antennas in a magnetized plasma in the resonance frequency band

    NASA Astrophysics Data System (ADS)

    Shirokov, E. A.; Chugunov, Yu. V.

    2011-12-01

    We consider characteristics of slow quasielectrostatic waves excited in the resonance frequency band by a source whose dimensions are much less than the wavelength of the electromagnetic wave. We primarily focus on the analysis of the radiation of a harmonic wave in pulsed mode by a dipole source. Firstly, we study the influence of electromagnetic, dispersive, and collisional corrections in the dispersion relation on the field shape. Secondly, we analyze the field structure near the resonance cone. In particular, the effects of the group delay and anomalous spreading of the wave are considered. The developed theory is used to interpret the "OEDIPUS-C" experiment. For example, a delay of 10-4 s and a significant (severalfold) spreading of the pulse were observed at a distance of about ten wavelengths. Finally, some aspects of the inverse problem of electrodynamics are examined. Namely, the role of the smoothness of the antenna charge distribution in the field structure formation is shown and a class of smooth charge distributions creating a given field structure is found.

  5. The permanent electric dipole moments and magnetic g(e)-factors of praseodymium monoxide (PrO).

    PubMed

    Wang, Hailing; Linton, Colan; Ma, Tongmei; Steimle, Timothy C

    2009-11-26

    The R(4.5) and P(6.5) branch features of the XX (0, 0) band of praseodymium monoxide (PrO) have been studied at a resolution of approximately 50 MHz field free and in the presence of static electric and magnetic fields. The permanent electric dipole moments, mu(el), of 3.01(6) D and 4.72(5) D for the X(2) (Omega = 4.5) and [18.1] (Omega = 5.5) states, respectively, were determined from the analysis of the Stark spectra. The magnetic g(e)-factors of 4.48(8) and 5.73(6) for the X(2) (Omega = 4.5) and [18.1] (Omega = 5.5) states, respectively, were determined from the analysis of the Zeeman spectra. The g(e)-factors are compared with those computed using wave functions predicted from ligand field theory and ab initio calculations. The mu(el) value for the X(2) (Omega = 4.5) state is compared to ab initio and density functional predicted values and with the experimental values of other lanthanide monoxides.

  6. Analogue of the quantum Hall effect for neutral particles with magnetic dipole moment

    NASA Astrophysics Data System (ADS)

    Ribeiro, L. R.; Passos, E.; Furtado, C.; Sergeenkov, S.

    2017-03-01

    In this paper we investigate a possibility for the existence of an analog of the Quantum Hall Effect for neutral particles with a permanent magnetic moment μ in the presence of crossed inhomogeneous magnetic and electric fields. We predict the appearance of Hall conductivity σH = (e2 / h) ν (μ) with the Landau filling factor ν (μ) ∝μ2. The estimates of the model parameters suggest quite an optimistic possibility to experimentally verify this prediction in optically trapped clouds of atomic BEC.

  7. Effect of the. delta. (1236) resonance on magnetic dipole properties of nuclei

    SciTech Connect

    Lawson, R.D.

    1983-01-01

    The effect of the ..delta..(1236) resonance on magnetic moments, M1 transition rates and beta decay is discussed. The main effect of including this resonance is to renormalize the g-factor of the valence nucleons and explicit values for this renormalization are given. The effect on l-forbidden M1 transitions is investigated.

  8. Electric field control of magnetic states in isolated and dipole-coupled FeGa nanomagnets delineated on a PMN-PT substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-10-01

    We report observation of a ‘non-volatile’ converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in ‘non-volatility’. In isolated nanomagnets, the magnetization rotates by \\lt 90^\\circ upon application of the electric field, but in a dipole-coupled pair consisting of one ‘hard’ and one ‘soft’ nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet’s magnetization rotates by \\gt 90^\\circ upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate.

  9. Electric field control of magnetic states in isolated and dipole-coupled FeGa nanomagnets delineated on a PMN-PT substrate.

    PubMed

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-10-09

    We report observation of a 'non-volatile' converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in 'non-volatility'. In isolated nanomagnets, the magnetization rotates by <90° upon application of the electric field, but in a dipole-coupled pair consisting of one 'hard' and one 'soft' nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet's magnetization rotates by [Formula: see text] upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate.

  10. Analytical description of the charged particle dynamics in the field of a spherical magnetic dipole

    NASA Astrophysics Data System (ADS)

    Baev, V. K.; Bogdanovich, B. Yu.; Nesterovich, A. V.

    2015-07-01

    The equations of charged particle motion in the earth's magnetic field are analyzed. Analytical data allow us to estimate important parameters of the charge dynamics, such as the charge capture conditions, oscillation amplitude and frequency, and longitudinal drift, and also relate these parameters to the parameters of the charged particles and the height of their trajectory. The results may be used in designing space vehicles intended for investigation of the near-earth space, specifically, earth's magnetosphere, with charged particle beams.

  11. The magnetic toroidal dipole in steric metamaterial for permittivity sensor application

    NASA Astrophysics Data System (ADS)

    Ye, Q. W.; Guo, L. Y.; Li, M. H.; Liu, Y.; Xiao, B. X.; Yang, H. L.

    2013-11-01

    A new kind of metamaterial composed of metallic split-ring structure arranged in a two-dimensional array is designed, which shows the multipoles' resonances, especially the magnetic toroidal dipolar (MTD) resonance. The calculated scattering power proves that the resonance at 14.416 GHz is mainly excited by MTD response. Compared with the other two resonances excited by normal multipoles, MTD response has the strongest dependence on permittivity of substrate and background material, which has potential applications on permittivity sensor.

  12. Magnetic dipole moment of the doubly-closed-shell plus one proton nucleus 49Sc.

    PubMed

    Ohtsubo, T; Stone, N J; Stone, J R; Towner, I S; Bingham, C R; Gaulard, C; Köster, U; Muto, S; Nikolov, J; Nishimura, K; Simpson, G S; Soti, G; Veskovic, M; Walters, W B; Wauters, F

    2012-07-20

    The nucleus 49Sc, having a single f(7/2) proton outside doubly magic 48Ca (Z=20, N=28), is one of the very few isotopes which makes possible testing of the fundamental theory of nuclear magnetism. The magnetic moment has been measured by online β NMR of nuclei oriented at milli-Kelvin temperatures to be (+)5.616(25)  μ(N). The result is discussed in terms of a detailed theory of the structure of the magnetic moment operator, showing excellent agreement with calculated departure from the f(7/2) Schmidt limit extreme single-particle value. The measurement completes the sequence of moments of Sc isotopes with even numbers of f(7/2) neutrons: the first such isotopic chain between two major shells for which a full set of moment measurements exists. The result further completes the isotonic sequence of ground-state moments of nuclei with an odd number of f(7/2) protons coupled to a closed subshell of f(7/2) neutrons. Comparison with a recent shell-model calculation of the latter sequence is made.

  13. A magnetospheric echo after pulsed switch-on of a ground level vertical magnetic dipole

    NASA Astrophysics Data System (ADS)

    Arykov, A. A.; Maltsev, Iu. P.

    1980-04-01

    An investigation of the field of a signal reflected by the conjugate ionosphere and returned to the source is presented. It is shown that during the day, the magnetic field of the magnetospheric echo is described by a quadrupole field which originates at the moment of the arrival of the echo to the point located specularly relative to the lower edge of the ionosphere. Two zones can be defined at night, a near and a distant zone; in both zones the field is approximately quadrupolar.

  14. Improved measurement surface for MEG using magnetic-dipole sources and a spherical-multipole expansion

    NASA Astrophysics Data System (ADS)

    Argin, F.; Ahrens, H.; Klinkenbusch, L.

    2012-09-01

    The multipole representation of Magnetoencephalography (MEG) signals is known as a useful tool for distinguishing between magnetic fields arising from the brain and external disturbances. In this contribution we extend this concept and show that a closed double-layer surface with magnetometer probes is better suited to determine the corresponding multipole amplitudes αlm than a conventional single-layer surface with gradiometers and magnetometer probes. For two different source configurations we show that the αlm rapidly converge to the exact values. This proof of concept motivates to further optimize the geometry of the double-layer surface and the sensors' positions.

  15. Transient particle acceleration in strongly magnetized neutron stars. II - Effects due to a dipole field geometry

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1991-01-01

    Sheared Alfven waves generated by nonradial crustal disturbances above the polar cap of a strongly magnetized neutron star induce an electric field component parallel to B. An attempt is made to determine the manner in which the strong radial dependence of B affects the propagation of these sheared Alfven waves, and whether this MHD process is still an effective particle accelerator. It is found that although the general field equation is quite complicated, a simple wavelike solution can still be obtained under the conditions of interest for which the Alfven phase velocity decouples from the wave equation. The results may be applicable to gamma-ray burst sources.

  16. Spin polarization effects on magnetic dipole moment of 153,155Eu

    NASA Astrophysics Data System (ADS)

    Hoşgör, Gamze; Yakut, Hakan; Tabar, Emre

    2017-02-01

    Using the Quasiparticle Phonon Nuclear Model (QPNM) and taking into account the spin-spin interaction the effects of the spin polarization on the intrinsic magnetic moments (gK) of 153-155Eu isotopes have been studied. Our calculations indicated that because of the spin polarization, the spin gyromagnetic factors (gs) of the nucleons in the nucleus reduce noticeable from its free nucleon value and the spin-spin interactions play an important role in the renormalization (gse f f .) of the gs factors. A very good reproduction of the phenomenological quenching of gs factor from its free values (gse f f≅0.6 -0.7 gsf r e e) is obtained. The calculated values of effective gse f f and gK are also in fair agreementwith the experiment data.

  17. Systematics of the Electric and Magnetic Dipole Response in N=82 Isotones Below the Neutron Separation Energy

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Kwan, E.; Raut, R.; Rusev, G.; Tornow, W.; Hammond, S.; Kelley, J. H.; Tsoneva, N.; Lenske, H.

    2013-03-01

    In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies around the neutron separation energy. This clustering of strong dipole states has been named the pygmy dipole resonance in contrast to the giant dipole resonance that dominates the E1 response. Understanding the pygmy resonance is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in N=82 nuclei using the quasi monoenergetic and 100% linearly-polarized photon beams from High-Intensity-Gamma-Ray Source facility is presented. The nuclear dipole-strength distribution of the pygmy resonance has been measured and novel information about the character of this mode of excitation has been obtained. The data are compared with predictions from statistical and quasiparticle random-phase approximation models.

  18. Magnetic dipole moments near 132Sn: Measurement on isomeric {11}/{2 -} states in odd- A131Te and 133Te by NMR/ON

    NASA Astrophysics Data System (ADS)

    White, G.; Rikovska, J.; Stone, N. J.; Copnell, J.; Towner, I. S.; Oros, A. M.; Heyde, K.; Fogelberg, B.; Jacobsson, L.; Gustavsson, F.

    1998-09-01

    On-line low temperature nuclear orientation (OLNO) experiments have been performed on the odd- A Te isotopes 131Te and 133Te using the technique of nuclear magnetic resonance on oriented nuclei (NMR/ON). The magnetic moments of the isomeric {11}/{2 -} states have been measured extending the known data on these states in the Te isotopes up to the neutron shell closure at N = 82. The contribution to the {11}/{2 -} magnetic moment in 133Te due to core polarisation is calculated using an RPA shell model as well as corrections to the magnetic dipole operator caused by mesonic exchange currents. The neutron number dependence of the magnetic moments of the {11}/{2 -} isomers in heavy Te isotopes is discussed in terms of particle-core coupling model (PCM) calculations.

  19. Generation of auroral kilometric radiation by a finite-size source in a dipole magnetic field

    NASA Astrophysics Data System (ADS)

    Burinskaya, T. M.; Shevelev, M. M.

    2016-10-01

    Generation, amplification, and propagation of auroral kilometric radiation in a narrow three-dimensional plasma cavity in which a weakly relativistic electron beam propagates is studied in the geometrical optics approximation. It is shown that the waves that start with a group velocity directed earthward and have optimal relation between the wave vector components determining the linear growth rate and the wave residence time inside the amplification region undergo the largest amplification. Taking into account the longitudinal velocity of fast electrons results in the shift of the instability domain toward wave vectors directed to the Earth and leads to a change in the dispersion relation, due to which favorable conditions are created for the generation of waves with frequencies above the cutoff frequency for the cold background plasma at the wave generation altitude. The amplification factor for these waves is lower than for waves that have the same wave vectors but are excited by the electron beams with lower velocities along the magnetic field. For waves excited at frequencies below the cutoff frequency of the background plasma at the generation altitude, the amplification factor increases with increasing longitudinal electron velocity, because these waves reside for a longer time in the amplification region.

  20. Ferrofluid Photonic Dipole Contours

    NASA Astrophysics Data System (ADS)

    Snyder, Michael; Frederick, Jonathan

    2008-03-01

    Understanding magnetic fields is important to facilitate magnetic applications in diverse fields in industry, commerce, and space exploration to name a few. Large electromagnets can move heavy loads of metal. Magnetic materials attached to credit cards allow for fast, accurate business transactions. And the Earth's magnetic field gives us the colorful auroras observed near the north and south poles. Magnetic fields are not visible, and therefore often hard to understand or characterize. This investigation describes and demonstrates a novel technique for the visualization of magnetic fields. Two ferrofluid Hele-Shaw cells have been constructed to facilitate the imaging of magnetic field lines [1,2,3,4]. We deduce that magnetically induced photonic band gap arrays similar to electrostatic liquid crystal operation are responsible for the photographed images and seek to mathematically prove the images are of exact dipole nature. We also note by comparison that our photographs are very similar to solar magnetic Heliosphere photographs.

  1. Magnetic Dipole Moment Measurements of Picosecond States in Even and Odd Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Ballon, Douglas Jude

    The perturbed angular correlation and transient field technique is used to measure the precession of nuclear magnetic moments of low lying excited states in isotopes of silver, neodymium, samarium, and gadolinium. The precession measurements are used to explore three main areas of study. First, from the measurements made on ('150)Sm traversing gadolinium targets, the temperature dependence of the transient hyperfine field is deduced at ('150)Sm nuclei traveling at 2 < v/v(,0) < 4. These are compared with similar measurements made using iron targets. Second, the deduced values of the g-factors of the 2(,1)('+) states in even neodymium, samarium and gadolinium isotopes are discussed in connection with a possible proton shell closure at Z = 64. Third, the deduced values of the g-factors of the 3/2(,1)('-) and 5/2(,1)('-) states of ('107,109)Ag are compared to various theoretical predictions in order to explore any simple relationships that may exist between these states and the first 2(,1)('+) states of neighboring even-even nuclei. The following is a list of g-factors that were measured during the course of this work: (UNFORMATTED TABLE FOLLOWS). g(('107)Ag, 3/2(,1)('-)) = 0.607 (119). g(('109)Ag, 3/2(,1)('-)) = 0.661 (105). g(('107)Ag, 5/2(,1)('-)) = 0.409 (66). g(('109)Ag, 5/2(,1)('-)) = 0.287 (57). g(('144)Nd, 2(,1)('+)) = 0.166 (41). g(('146)Nd, 2(,1)('+)) = 0.312 (49). g(('148)Nd, 2(,1)('+)) = 0.411 (42). g(('150)Nd,2(,1)('+)) = 0.418 (38). g(('148)Sm, 2(,1)('+)) = 0.301 (33). g(('150)Sm, 2(,1)('+)) = 0.381 (27). g(('152)Gd, 2(,1)('+)) = 0.444 (40). (TABLE ENDS). The results of the temperature dependence experiment show deviations from an earlier measurement made using thulium in iron. The g-factors measured in the lighter isotopes of neodymium and samarium are significantly below the collective Z/A value. Fair agreement with the data can be obtained if proton shell closure is assumed at Z = 64 for N < 88. The measured g-factors in the silver isotopes

  2. Preoperative localization of the central sulcus by dipole source analysis of early somatosensory evoked potentials and three-dimensional magnetic resonance imaging.

    PubMed

    Buchner, H; Adams, L; Knepper, A; Rüger, R; Laborde, G; Gilsbach, J M; Ludwig, I; Reul, J; Scherg, M

    1994-05-01

    Surgery of lesions within or close to the central area of the brain always carries the risk of iatrogenic motor or sensory deficits. Functional localization by means of intraoperative direct stimulation of the motor area or by recording somatosensory evoked potentials (SSEP's) from the surface of the somatosensory cortex is believed to reduce the operative risk. The authors introduce the combination of dipole source analysis of scalp-recorded SSEP's with three-dimensional (3-D) magnetic resonance (MR) imaging as a tool for preoperative localization of the central sulcus. This provides information on both functional and structural localization for preoperative planning. Four repeated measurements of right and left median nerve SSEP's were obtained from 20 subjects. Dipole source analysis showed a retest reliability of the 3-D localization error of 2.9 +/- 2.0 mm. Compared to the MR evaluation, dipole source analysis was found to mark the central sulcus within 3 mm for 15 conditions (subjects x side of stimulation), while the 3-D MR measurement was accurate to within 6 mm for 10 conditions and 9 mm for 14 conditions. Dipole locations were confirmed in six patients who underwent surgery of the central region. With respect to this application, dipole source analysis combined with 3-D MR imaging appears to be a valuable tool for preoperative functional localization. The accuracy in localization will be further improved when realistic head models become available that can take into account individual head geometry. Further development of the proposed new method holds promise that evoked potentials and electroencephalography will gain greater use in presurgical functional localization.

  3. Quasistatic dipole in magnetized plasma in resonance frequency band. Response of the receiving antenna, and charge distribution on the antenna wire

    NASA Astrophysics Data System (ADS)

    Chugunov, Yu. V.; Shirokov, E. A.

    2016-05-01

    The paper discusses issues related to the radiation and reception of quasi-electrostatic waves by short antennas in resonance conditions (in the whistler range) in magnetized plasma. First, the response of the receiving antenna on the incident field of slow quasipotential waves is analyzed. It made it possible to explain in detail the results of the two-point rocket experiment OEDIPUS-C in the Earth's ionosphere. Second, the problem of the charge distribution along the short transmission (reception) dipole antenna is considered. The corresponding integral equation is obtained and solved analytically. The impedance of the antenna is found. It is shown that in the majority of cases, charge distribution along the dipole length can be considered constant.

  4. Chaos of energetic positron orbits in a dipole magnetic field and its potential application to a new injection scheme

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Yano, Y.; Nishiura, M.; Kawazura, Y.; Horn-Stanja, J.; Pedersen, T. Sunn

    2016-10-01

    We study the behavior of high-energy positrons emitted from a radioactive source in a magnetospheric dipole field configuration. Because the conservation of the first and second adiabatic invariants is easily destroyed in a strongly inhomogeneous dipole field for high-energy charged particles, the positron orbits are nonintegrable, resulting in chaotic motions. In the geometry of a typical magnetospheric levitated dipole experiment, it is shown that a considerable ratio of positrons from a 22Na source, located at the edge of the confinement region, has chaotic long orbit lengths before annihilation. These particles make multiple toroidal circulations and form a hollow toroidal positron cloud. Experiments with a small 22Na source in the Ring Trap 1 (RT-1) device demonstrated the existence of such long-lived positrons in a dipole field. Such a chaotic behavior of high-energy particles is potentially applicable to the formation of a dense toroidal positron cloud in the strong-field region of the dipole field in future studies.

  5. Chaos of energetic positron orbits in a dipole magnetic field and its potential application to a new injection scheme.

    PubMed

    Saitoh, H; Yoshida, Z; Yano, Y; Nishiura, M; Kawazura, Y; Horn-Stanja, J; Pedersen, T Sunn

    2016-10-01

    We study the behavior of high-energy positrons emitted from a radioactive source in a magnetospheric dipole field configuration. Because the conservation of the first and second adiabatic invariants is easily destroyed in a strongly inhomogeneous dipole field for high-energy charged particles, the positron orbits are nonintegrable, resulting in chaotic motions. In the geometry of a typical magnetospheric levitated dipole experiment, it is shown that a considerable ratio of positrons from a ^{22}Na source, located at the edge of the confinement region, has chaotic long orbit lengths before annihilation. These particles make multiple toroidal circulations and form a hollow toroidal positron cloud. Experiments with a small ^{22}Na source in the Ring Trap 1 (RT-1) device demonstrated the existence of such long-lived positrons in a dipole field. Such a chaotic behavior of high-energy particles is potentially applicable to the formation of a dense toroidal positron cloud in the strong-field region of the dipole field in future studies.

  6. Modelling an arbitrarily oriented magnetic dipole over a homogeneous half-space for a rapid topographic correction of airborne EM data

    NASA Astrophysics Data System (ADS)

    Guillemoteau, Julien; Sailhac, Pascal; Behaegel, Mickael

    2015-10-01

    Most airborne electromagnetic (EM) processing programs assume a flat ground surface. However, in mountainous areas, the system can be at an angle with regard to the ground. As the system is no longer parallel to the ground surface, the measured magnetic field has to be corrected and the ground induced eddy current has to be modelled in a better way when performing a very fine interpretation of the data. We first recall the theoretical background for the modelling of a magnetic dipole source and study it in regard to the case of an arbitrarily oriented magnetic dipole. We show in particular how transient central loop helicopter borne data are influenced by this inclination. The result shows that the effect of topography on airborne EM is more important at early time windows and for systems using a short cut-off source. In this paper, we suggest that an estimate be made off the locally averaged inclination of the system to the ground and then to correct the data for this before inverting it (whether the inversion assumes a flat 1D, 2D or 3D sub-surface). Both 1D and 2D inversions are applied to synthetic and real data sets with such a correction. The consequence on the ground imaging is small for slopes with an angle less than 25° but the correction factor can be useful for improving the estimation of depths in mountainous areas.

  7. Observation of the Forbidden Magnetic Dipole Transition 6{sup 2}P{sub ½} --> 7{sup 2}P{sub ½} in Atomic Thallium

    DOE R&D Accomplishments Database

    Chu, S.

    1976-10-01

    A measurement of the 6{sup 2}P{sub ½} --> 7{sup 2}P{sub ½} forbidden magnetic dipole matrix element in atomic thallium is described. A pulsed, linearly polarized dye laser tuned to the transition frequency is used to excite the thallium vapor from the 6{sup 2}P{sub ½} ground state to the 7{sup 2}P{sub ½} excited state. Interference between the magnetic dipole M1 amplitude and a static electric field induced E1 amplitude results in an atomic polarization of the 7{sup 2}P{sub ½} state, and the subsequent circular polarization of 535 nm fluorescence. The circular polarization is seen to be proportional to / as expected, and measured for several transitions between hyperfine levels of the 6{sup 2}P{sub ½} and 7{sup 2}P{sub ½} states. The result is = -(2.11 +- 0.30) x 10{sup -5} parallel bar e parallel bar dirac constant/2mc, in agreement with theory.

  8. Progress toward measuring the 6S1/2 <--> 5D3/2 magnetic-dipole transition moment in Ba+

    NASA Astrophysics Data System (ADS)

    Williams, Spencer; Jayakumar, Anupriya; Hoffman, Matthew; Blinov, Boris; Fortson, Norval

    2015-05-01

    We report the latest results from our effort to measure the magnetic-dipole transition moment (M1) between the 6S1 / 2 and 5D3 / 2 manifolds in Ba+. We describe a new technique for calibrating view-port birefringence and how we will use it to enhance the M1 signal. To access the transition moment we use a variation of a previously proposed technique that allows us to isolate the magnetic-dipole coupling from the much larger electric-quadrupole coupling in the transition rates between particular Zeeman sub-levels. Knowledge of M1 is crucial for a parity-nonconservation experiment in the ion where M1 will be a leading source of systematic errors. No measurement of this M1 has been made in Ba+, however, there are three calculations that predict it to be 80 ×10-5μB, 22 ×10-5μB, and 17 ×10-5μB. A precise measurement may help resolve this theoretical discrepancy which originates from their different estimations of many-body effects. Supported by NSF Grant No. 09-06494F.

  9. Classical and quantum interaction of the dipole

    PubMed

    Anandan

    2000-08-14

    A unified and fully relativistic treatment of the interaction of the electric and magnetic dipole moments of a particle with the electromagnetic field is given. New forces on the particle due to the combined effect of electric and magnetic dipoles are obtained. Several new experiments are proposed, which include observation of topological phase shifts.

  10. Dipole nanolaser

    NASA Astrophysics Data System (ADS)

    Protsenko, I. E.; Uskov, A. V.; Zaimidoroga, O. A.; Samoilov, V. N.; O'Reilly, E. P.

    2005-06-01

    A “dipole” laser is proposed consisting of a nanoparticle and a two-level system with population inversion. If the threshold conditions are fulfilled, the dipole interaction between the two-level system and the nanoparticle leads to coherent oscillations in the polarization of the particles, even in the absence of an external electromagnetic field. The emitted radiation has a dipolar distribution. It does not need an optical cavity, and has a very small volume, ˜0.1μm3 , which can be important for applications in microelectronics. Estimates of the threshold conditions are carried out for a dipole laser composed of a quantum dot and a silver nanoparticle.

  11. Fermion dipole moment and holography

    NASA Astrophysics Data System (ADS)

    Kulaxizi, Manuela; Rahman, Rakibur

    2015-12-01

    In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.

  12. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    SciTech Connect

    Zlobin, Alexander; Andreev, Nicolai; Barzi, Emanuela; Chlachidze, Guram; Kashikhin, Vadim; Nobrega, Alfred; Novitski, Igor; Turrioni, Daniele; Karppinen, Mikko; Smekens, David

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.

  13. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2013-10-01

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water 1H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  14. Measurement of magnetic dipole moments of 129Xem and 131Xem by spin exchange with optically pumped Rb

    NASA Astrophysics Data System (ADS)

    Kitano, M.; Bourzutschky, M.; Calaprice, F. P.; Clayhold, J.; Happer, W.; Musolf, M.

    1986-11-01

    The magnetic moments of xenon atoms (129Xem and 131Xem) have been measured with a high precision nuclear-magnetic-resonance method. The nuclei of gaseous xenon were polarized by spin exchange with optically pumped rubidium and the polarization was measured by gamma-ray anisotropy. The static magnetic field for the nuclear magnetic resonance experiment was stabilized and calibrated by optical pumping magnetometers. The measured magnetic moments are ||μ(129m)||=0.891 223(4) μN and ||μ(131>)||=0.994 048(6) μN.

  15. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  16. Passive temperature compensation in hybrid magnets with application to the Fermilab stacker and recycler ring dipole design

    SciTech Connect

    Schlueter, R.D.; Marks, S.; Loper, C.; Halbach, K.

    1995-06-01

    Design theory of hybrid (permanent magnet plus iron) accelerator magnets with application to the proposed permanent magnet recycler and stacker rings at the Fermi National Laboratory is presented. Field stability in such devices requires that changes in the strength of the permanent magnet material with temperature be compensated. Field tuning techniques, including those employing variable capacitance between energized pole and magnet yoke and those employing variable energization of magnet pole pieces, are described. Mechanical configurations capable of achieving temperature compensation passively, including use of expanding liquids/gases and bimetallic springs are outlined. Active configurations, relying on a actuator, in addition to temperature compensation, have the additional benefit of enabling magnet tuning about a nominal operating field level.

  17. A measurement of the magnetic dipole moment of the. delta. /sup + +/(1232) from the bremsstrahlung process. pi. p. -->. pi. p. gamma

    SciTech Connect

    Meyer, C.A.

    1987-06-01

    We have measured the cross section from the bremsstrahlung process ..pi../sup +/p ..-->.. ..pi../sup +/p..gamma.. for incident pions of energy 299 MeV. We detected the out going pion in the angular range from 55 to 95/sup 0/ in the lab, and photons were detected near 240/sup 0/ in the lab. We compare this measured cross-section to the MIT theory in order to extract a measurement of the magnetic dipole moment of the ..delta../sup + +/(1232), ..mu../sub ..delta../. In order to compare our results with the MIT theory, we have folded the MIT theory into the acceptance of our apparatus. We find that for pion angles between 55 and 75/sup 0/ the theory gives us a dipole moment of: 2.3..mu../sub p/ < ..mu../sub ..delta../ < 3.3..mu../sup p/ where the quoted error arises from an experimental uncertainty of +-0.25..mu../sub p/ and from theoretical uncertainties of +-0.25 ..mu../sub p/. However, for pion angles between 75 and 95/sup 0/ we find that the MIT theory predicts a cross-section which is larger than our measured cross-section, and makes it difficult to extract a value of ..mu../sub ..delta../. This over prediction is not understood, but consistent with a similar effect when the MIT theory is fit to previous data. 78 figs., 29 tabs.

  18. Nuclear Magnetic Resonance Structure of a Major Lens Protein, Human γC-Crystallin: Role of the Dipole Moment in Protein Solubility.

    PubMed

    Dixit, Karuna; Pande, Ajay; Pande, Jayanti; Sarma, Siddhartha P

    2016-06-07

    A hallmark of the crystallin proteins is their exceptionally high solubility, which is vital for maintaining the high refractive index of the eye lens. Human γC-crystallin is a major γ-crystallin whose mutant forms are associated with congenital cataracts but whose three-dimensional structure is not known. An earlier study of a homology model concluded that human γC-crystallin has low intrinsic solubility, mainly because of the atypical magnitude and fluctuations of its dipole moment. On the contrary, the high-resolution tertiary structure of human γC-crystallin determined here shows unequivocally that it is a highly soluble, monomeric molecule in solution. Notable differences between the orientations and interactions of several side chains are observed upon comparison to those in the model. No evidence of the pivotal role ascribed to the effect of dipole moment on protein solubility was found. The nuclear magnetic resonance structure should facilitate a comprehensive understanding of the deleterious effects of cataract-associated mutations in human γC-crystallin.

  19. The response of the coupled magnetosphere-ionosphere-thermosphere system to a 25% reduction in the dipole moment of the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Cnossen, Ingrid; Richmond, Arthur D.; Wiltberger, Michael; Wang, Wenbin; Schmitt, Peter

    2011-12-01

    The Earth's magnetic field changes in orientation and strength over time. We study the response of the magnetosphere-ionosphere-thermosphere system to a 25% reduction in magnetic field intensity, using the coupled magnetosphere-ionosphere-thermosphere (CMIT) model. Simulations were performed with a dipole moment of 8 × 1022 A m2, close to the present-day value, and a dipole moment of 6 × 1022 A m2, both under the same solar wind conditions, intermediate solar activity (F10.7 = 150), and for March equinox and June solstice. The 25% reduction in field strength causes the magnetosphere to shrink and the polar cap to expand, in agreement with theory. The Pedersen and the Hall ionospheric conductances increase by 50%-60% and 60%-65%, respectively. This causes a ˜9%-12% decrease in electric potential and a ˜20% increase in field-aligned currents during equinox. Ion E × B drift velocities are enhanced by ˜10%-15%. The Joule heating also increases, by 13%-30%, depending on the season. Changes in the neutral temperature structure are caused partly by changes in Joule heating and partly by changes in the neutral wind. The neutral wind itself is also affected by changes in neutral temperature and by changes in ion velocities. The changes in the neutral wind, together with changes in the vertical component of the E × B drift, affect the height of the ionospheric F2 layer. Changes in electron density are related to changes in the O/N2 ratio. The global mean increase in neutral temperature causes the thermosphere to expand, resulting in a global mean uplift of the ionosphere. These effects are generally smaller during solstice.

  20. The Response of the Coupled Magnetosphere-Ionosphere-Thermosphere System to a 25% Reduction in the Dipole Moment of the Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cnossen, I.; Richmond, A. D.; Wiltberger, M. J.; Wang, W.; Schmitt, P. J.

    2011-12-01

    The Earth's magnetic field changes in orientation and strength over time. We study the response of the magnetosphere-ionosphere-thermosphere system to a 25% reduction in magnetic field intensity, using the Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) model. Simulations were performed with a dipole moment of 8×1022 Am2, close to the present-day value, and a dipole moment of 6×1022 Am2, both under the same solar wind conditions, intermediate solar activity (F10.7 = 150), and for March equinox and June solstice. The 25% reduction in field strength causes the magnetosphere to shrink and the polar cap to expand, in agreement with theory. The Pedersen and Hall ionospheric conductances increase by 50-60% and 60-65%, respectively. This causes a ~9-12% decrease in electric potential and a ~20% increase in field-aligned currents during equinox. Ion ExB drift velocities are enhanced by ~10-15%. The Joule heating also increases, by 13-30%, depending on the season. Changes in the temperature structure are caused partly by changes in Joule heating and partly by changes in the neutral wind. The neutral wind itself is also affected by changes in temperature and by changes in ion velocities. The changes in the neutral wind, together with changes in the vertical component of the ExB drift, affect the height of the ionospheric F2 layer. Changes in electron density are related to changes in the O/N2 ratio. The global mean increase in neutral temperature causes the thermosphere to expand, resulting in a global mean uplift of the ionosphere. These effects are generally smaller during solstice.

  1. Visualizing dipole radiation

    NASA Astrophysics Data System (ADS)

    Girwidz, Raimund V.

    2016-11-01

    The Hertzian dipole is fundamental to the understanding of dipole radiation. It provides basic insights into the genesis of electromagnetic waves and lays the groundwork for an understanding of half-wave antennae and other types. Equations for the electric and magnetic fields of such a dipole can be derived mathematically. However these are very abstract descriptions. Interpreting these equations and understanding travelling electromagnetic waves are highly limited in that sense. Visualizations can be a valuable supplement that vividly present properties of electromagnetic fields and their propagation. The computer simulation presented below provides additional instructive illustrations for university lectures on electrodynamics, broadening the experience well beyond what is possible with abstract equations. This paper refers to a multimedia program for PCs, tablets and smartphones, and introduces and discusses several animated illustrations. Special features of multiple representations and combined illustrations will be used to provide insight into spatial and temporal characteristics of field distributions—which also draw attention to the flow of energy. These visualizations offer additional information, including the relationships between different representations that promote deeper understanding. Finally, some aspects are also illustrated that often remain unclear in lectures.

  2. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  3. The polarization trajectory of terahertz magnetic dipole radiation in (110)-oriented PrFeO{sub 3} single crystal

    SciTech Connect

    Song, Gaibei; Jin, Zuanming; Lin, Xian; Jiang, Junjie; Wang, Xinyan; Wu, Hailong; Ma, Guohong E-mail: sxcao@shu.edu.cn; Cao, Shixun E-mail: sxcao@shu.edu.cn

    2014-04-28

    By using the polarized terahertz (THz) time-domain spectroscopy, the macro-magnetization motion in (110)-oriented PrFeO{sub 3} single crystal was constructed. We emphasize that the trajectory of the emitted THz waveforms relies on not only the motion of macroscopic magnetization vector, but also the spin configuration in the ground state and the propagation of THz pulse. The azimuthal angle (the incident THz pulse polarization with respect to the crystal axes) enables us to control the polarization trajectories of the quasiferromagnetic and quasiantiferromagnetic mode radiations that can lead to further applications on multiple information storing and quantum processing.

  4. Neutron star crustal plate tectonics. I. Magnetic dipole evolution in millisecond pulsars and low-mass X-ray binaries

    SciTech Connect

    Ruderman, M. )

    1991-01-01

    Crust lattices in spinning-up or spinning-down neutron stars have growing shear stresses caused by neutron superfluid vortex lines pinned to lattice nuclei. For the most rapidly spinning stars, this stress will break and move the crust before vortex unpinning occurs. In spinning-down neutron stars, crustal plates will move an equatorial subduction zone in which the plates are forced into the stellar core below the crust. The opposite plate motion occurs in spinning-up stars. Magnetic fields which pass through the crust or have sources in it move with the crust. Spun-up neutron stars in accreting low-mass X-ray binaries LMXBs should then have almost axially symmetric magnetic fields. Spun-down ones with very weak magnetic fields should have external magnetic fields which enter and leave the neutron star surface only near its equator. The lowest field millisecond radiopulsars seem to be orthogonal rotators implying that they have not previously been spun-up in LMXBs but are neutron stars initially formed with periods near 0.001 s that subsequently spin down to their present periods. Accretion-induced white dwarf collapse is then the most plausible genesis for them. 29 refs.

  5. DQ-DRENAR: A new NMR technique to measure site-resolved magnetic dipole-dipole interactions in multispin-1/2 systems: Theory and validation on crystalline phosphates

    NASA Astrophysics Data System (ADS)

    Ren, Jinjun; Eckert, Hellmut

    2013-04-01

    A new solid state NMR technique is described for measuring homonuclear dipole-dipole interactions in multi-spin-1/2 systems under magic-angle spinning conditions. Re-coupling is accomplished in the form of an effective double quantum (DQ) Hamiltonian created by a symmetry-based POST-C7 sequence consisting of two excitation blocks, attenuating the signal (intensity S'). For comparison, a reference signal S0 with the dipolar re-coupling absent is generated by shifting the phase of the second block by 90° relative to the first block. As in rotational echo double resonance, the homonuclear dipole-dipole coupling constant can then be extracted from a plot of the normalized difference signal (S0 - S')/S0 versus dipolar mixing time. The method is given the acronym DQ-DRENAR ("Double-Quantum-based Dipolar Re-coupling effects Nuclear Alignment Reduction"). The method is analyzed mathematically, and on the basis of detailed simulations, with respect to the order and the geometry of the spin system, the dipolar truncation phenomenon, and the influence of the chemical shift anisotropy on experimental curves. Within the range of (S0 - S')/S0 ≤0.3-0.5 such DRENAR curves can be approximated by simple parabolae, yielding effective squared dipole-dipole coupling constants summed over all the pairwise interactions present. The method has been successfully validated for 31P-31P distance determinations of numerous crystalline model compounds representing a wide range of dipolar coupling strengths.

  6. Electric dipole radiation near a mirror

    SciTech Connect

    Li Xin; Arnoldus, Henk F.

    2010-05-15

    The emission of radiation by a linearly oscillating electric dipole is drastically altered when the dipole is close to the surface of a mirror. The energy is not emitted along optical rays, as for a free dipole, but as a set of four optical vortices. The field lines of energy flow spiral around a set of two lines through the dipole. At a larger distance from the dipole, singularities and isolated vortices appear. It is shown that these interference vortices are due to the vanishing of the magnetic field at their centers. In the plane of the mirror there is a singular circle with a diameter which is proportional to the distance between the dipole and the mirror. Inside this circle, all energy flows to a singularity on the mirror surface.

  7. Magnetic-dipole-to-electric-quadrupole cross-susceptibilities for relativistic hydrogenlike atoms in some low-lying discrete energy eigenstates

    NASA Astrophysics Data System (ADS)

    Stefańska, Patrycja

    2017-01-01

    In this paper we present tabulated data for magnetic-dipole-to-electric-quadrupole cross-susceptibilities (χ M 1 →E 2) for Dirac one-electron atoms with a pointlike, spinless and motionless nucleus of charge Ze. Numerical values of this susceptibility for the hydrogen atom (Z = 1) and for hydrogenic ions with 2 ⩽ Z ⩽ 137 are computed from the general analytical formula, recently derived by us (Stefanska, 2016), valid for an arbitrary discrete energy eigenstate. In this work we provide 30 tables with the values of χ M 1 →E 2 for the ground state, and also for the first, the second and the third set of excited states (i.e.: 2s1/2, 2p1/2, 2p3/2, 3s1/2, 3p1/2, 3p3/2, 3d3/2, 3d5/2, 4s1/2, 4p1/2, 4p3/2, 4d3/2, 4d5/2, 4f5/2 and 4f7/2) of the relativistic hydrogenlike atoms. The value of the inverse of the fine-structure constant used in the calculations is α-1 = 137.035999139, and was taken from CODATA 2014.

  8. Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range.

    PubMed

    Mühlig, Stefan; Cunningham, Alastair; Scheeler, Sebastian; Pacholski, Claudia; Bürgi, Thomas; Rockstuhl, Carsten; Lederer, Falk

    2011-08-23

    We theoretically analyze, fabricate, and characterize a three-dimensional plasmonic nanostructure that exhibits a strong and isotropic magnetic response in the visible spectral domain. Using two different bottom-up approaches that rely on self-organization and colloidal nanochemistry, we fabricate clusters consisting of dielectric core spheres, which are smaller than the wavelength of the incident radiation and are decorated by a large number of metallic nanospheres. Hence, despite having a complicated inner geometry, such a core-shell particle is sufficiently small to be perceived as an individual object in the far field. The optical properties of such complex plasmonic core-shell particles are discussed for two different core diameters.

  9. The protons and electrons trapped in the Jovian dipole magnetic field region and their interaction with Io

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Hamilton, D. C.; Mckibben, R. B.; Mogro-Campero, A.; Pyle, K. R.; Tuzzolino, A. J.

    1974-01-01

    Detailed analysis of electrons equal to or greater than 3 MeV and of protons 0.5 to 1.8 MeV and equal to or greater than 35 MeV for both the inbound and the outbound passes of the Pioneer 10 spacecraft. Conclusive evidence is obtained that the trapped radiation in Jupiter's inner magnetosphere is maintained and supplied by inward diffusion from the outer regions of the trapped radiation zone. It is shown that the time required for isotropization of an anisotropic flux by pitch angle scattering inside L approximately equal to 6 is long in comparison with the time required for particles to diffuse inward from L approximately equal to 6 to L approximately equal to 3, that the high-energy protons were not injected at high energies by the Crand (cosmic ray albedo neutron decay) process but were accelerated in the magnetosphere of Jupiter, and that the main conclusions of this analysis are unaffected by use of either the D sub 1 or the D sub 2 magnetic field models. Theoretical studies of the capture of trapped electrons and protons by Io have been carried out, and it is found that the probability of capture by Io depends strongly upon the particle species and kinetic energy.

  10. A Dipole Assisted IEC Neutron Source

    SciTech Connect

    Prajakti Joshi Shrestha

    2005-11-28

    A potential opportunity to enhance Inertial Electrostatic Confinement (IEC) fusion exists by augmenting it with a magnetic dipole configuration. The theory is that the dipole fields will enhance the plasma density in the center region of the IEC and the combined IEC and dipole confinement properties will reduce plasma losses. To demonstrate that a hybrid Dipole-IEC configuration can provide an improved neutron source vs. a stand alone IEC, a first model Dipole-IEC experiment was benchmarked against a reference IEC. A triple Langmuir probe was used to find the electron temperature and density. It was found that the magnetic field increases the electron density by a factor of 16, the electron temperature decreases in the presence of a magnetic field, the discharge voltage decreases in the presence of a magnetic field, the potential of the dipole strongly influences the densities obtained in the center. The experimental set-up and plasma diagnostics are discussed in detail, as well as the results, and the developmental issues.

  11. Vanishing of dipole matrix elements at level crossings.

    NASA Technical Reports Server (NTRS)

    Kocher, C. A.

    1972-01-01

    Demonstration that the vanishing of certain coupling matrix elements at level crossings follow from angular momentum commutation relations. A magnetic dipole transition having delta M = plus or minus 1, induced near a crossing of the levels in a nonzero magnetic field, is found to have a dipole matrix element comparable to or smaller than the quotient of the level separation and the field. This result also applies in the analogous electric field electric dipole case.

  12. Hybrid of Quantum Phases for Induced Dipole Moments

    NASA Astrophysics Data System (ADS)

    Ma, Kai

    2016-09-01

    The quantum phase effects for induced electric and magnetic dipole moments are investigated. It is shown that the phase shift received by induced electric dipole has the same form with the one induced by magnetic dipole moment, therefore the total phase is a hybrid of these two types of phase. This feature indicates that in order to have a decisive measurement on either one of these two phases, it is necessary to measure the velocity dependence of the observed phase.

  13. Relativistic unitary coupled-cluster study of the electric quadrupole moment and magnetic dipole hyperfine constants of {sup 199}Hg{sup +}

    SciTech Connect

    Sur, Chiranjib; Chaudhuri, Rajat K.

    2007-09-15

    Searching for an accurate optical clock which can serve as a better time standard than the present-day atomic clock is highly demanding from several areas of science and technology. Several attempts have been made to build more accurate clocks with different ion species. In this paper, we discuss the electric quadrupole and hyperfine shifts in the 5d{sup 9}6s{sup 2} {sup 2}D{sub 5/2}(F=0,m{sub F}=0){r_reversible}5d{sup 10}6s {sup 2}S{sub 1/2}(F=2,m{sub F}=0) clock transition in {sup 199}Hg{sup +}, one of the most promising candidates for next-generation optical clocks. We have applied Fock-space unitary coupled-cluster theory to study the electric quadrupole moment of the 5d{sup 9}6s{sup 2} {sup 2}D{sub 5/2} state and magnetic dipole hyperfine constants of 5d{sup 9}6s{sup 2} {sup 2}D{sub 3/2,5/2} and 5d{sup 10}6s{sup 1} {sup 2}S{sub 1/2} states, respectively, of {sup 199}Hg{sup +}. We have also compared our results with available data. To the best of our knowledge, this is the first time a variant of coupled-cluster theories has been applied to study these kinds of properties of Hg{sup +} and is the most accurate estimate of these quantities to date.

  14. Axion induced oscillating electric dipole moments

    DOE PAGES

    Hill, Christopher T.

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  15. Axion induced oscillating electric dipole moments

    SciTech Connect

    Hill, Christopher T.

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  16. Trapped field internal dipole superconducting motor generator

    DOEpatents

    Hull, John R.

    2001-01-01

    A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.

  17. Dipole power supply for National Synchrotron Light Source Booster upgrade

    SciTech Connect

    Olsen, R.; Dabrowski, J.; Murray, J.

    1992-12-31

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far.

  18. Dipole power supply for National Synchrotron Light Source Booster upgrade

    SciTech Connect

    Olsen, R.; Dabrowski, J. ); Murray, J. )

    1992-01-01

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far.

  19. Simulation of Whistler Chorus in a Compressed Dipole Field

    NASA Astrophysics Data System (ADS)

    Wu, S.; Denton, R. E.; Hudson, M.

    2015-12-01

    Earth's dipole magnetic field is constantly compressed by the solar wind and the compression is enhanced during magnetic storm. We simulate whistler chorus in a compressed dipole field using a hybrid code. The hybrid code uses the particle-in-cell technique in generalized orthogonal coordinates. In the hybrid code, a small fraction of electrons are treated as particles with anisotropic temperature that leads to the whistler instability. Other electrons are treated as a cold fluid without mass. The density of the fluid electrons is large such that the plasma frequency exceeds the electron gyro frequency. Ions serve as a fixed background. We model the compressed dipole field by adding a constant magnetic field component to the dipole field. The direction of the compressed component is the same as that of the dipole field at the equator. This model of the compressed dipole field yields a magnetic field with off-equator minima and smaller inhomogeneity than the dipole field near the equator. The distribution of hot anisotropic electrons along the magnetic field is a function of adiabatic invariants that satisfies MHD force balance. In the compressed dipole field, the hot electron anisotropy, hot electron density and plasma beta in the direction parallel to the background magnetic field are the maximum at the minimum magnetic field. In our simulation, whistler chorus are generated at the minimum magnetic field with a peak frequency in agreement with the prediction by WHAMP, a local dispersion relation solver. The waves propagate in both directions along the magnetic field. Waves that propagate to higher magnetic latitude are damped at the boundary by the artificial resistive layers, while waves that propagate to lower latitude towards the equator continue to grow.

  20. electric dipole superconductor in bilayer exciton system

    NASA Astrophysics Data System (ADS)

    Sun, Qing-Feng; Jiang, Qing-Dong; Bao, Zhi-Qiang; Xie, X. C.

    Recently, it was reported that the bilayer exciton systems could exhibit many new phenomena, including the large bilayer counterflow conductivity, the Coulomb drag, etc. These phenomena imply the formation of exciton condensate superfluid state. On the other hand, it is now well known that the superconductor is the condensate superfluid state of the Cooper pairs, which can be viewed as electric monopoles. In other words, the superconductor state is the electric monopole condensate superfluid state. Thus, one may wonder whether there exists electric dipole superfluid state. In this talk, we point out that the exciton in a bilayer system can be considered as a charge neutral electric dipole. And we derive the London-type and Ginzburg-Landau-type equations of electric dipole superconductivity. From these equations, we discover the Meissner-type effect (against spatial variation of magnetic fields), and the dipole current Josephson effect. The frequency in the AC Josephson effect of the dipole current is equal to that in the normal (monopole) superconductor. These results can provide direct evidence for the formation of exciton superfluid state in the bilayer systems and pave new ways to obtain the electric dipole current. We gratefully acknowledge the financial support by NBRP of China (2012CB921303 and 2015CB921102) and NSF-China under Grants Nos. 11274364 and 11574007.

  1. Bent Solenoids with Superimposed Dipole Fields

    SciTech Connect

    Meinke, Rainer, B.; Goodzeit, Carl, L.

    2000-03-21

    A conceptual design and manufacturing technique were developed for a superconducting bent solenoid magnet with a superimposed dipole field that would be used as a dispersion device in the cooling channel of a future Muon Collider. The considered bent solenoid is equivalent to a 180° section of a toroid with a major radius of ~610 mm and a coil aperture of ~416 mm. The required field components of this magnet are 4 tesla for the solenoid field and 1 tesla for the superimposed dipole field. A magnet of this size and shape, operating at these field levels, has to sustain large Lorentz forces resulting in a maximum magnetic pressure of about 2,000 psi. A flexible round mini-cable with 37 strands of Cu-NbTi was selected as the superconductor. Detailed magnetic analysis showed that it is possible to obtain the required superimposed dipole field by tilting the winding planes of the solenoid by ~25°. A complete structural analysis of the coil support system and the helium containment vessel under thermal, pressure, and Lorentz force loads was carried out using 3D finite element models of the structures. The main technical issues were studied and solutions were worked out so that a highly reliable magnet of this type can be produced at an affordable cost.

  2. Diagnostics of the Fermilab Tevatron using an AC dipole

    SciTech Connect

    Miyamoto, Ryoichi

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  3. CONSTRAINT ON LIGHT DIPOLE DARK MATTER FROM HELIOSEISMOLOGY

    SciTech Connect

    Lopes, Ilídio; Kadota, Kenji; Silk, Joseph E-mail: ilopes@uevora.pt E-mail: silk@astro.ox.ac.uk

    2014-01-10

    We investigate the effects of a magnetic dipole moment of asymmetric dark matter (DM) in the evolution of the Sun. The dipole interaction can lead to a sizable DM scattering cross section even for light DM, and asymmetric DM can lead to a large DM number density in the Sun. We find that solar model precision tests, using as diagnostic the sound speed profile obtained from helioseismology data, exclude dipolar DM particles with a mass larger than 4.3 GeV and magnetic dipole moment larger than 1.6 × 10{sup –17} e cm.

  4. Planetary magnetism

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1981-01-01

    A synoptic view of early and recent data on the planetary magnetism of Mercury, Venus, the moon, Mars, Jupiter, and Saturn is presented. The data on Mercury from Mariner 10 are synthesized with various other sources, while data for Venus obtained from 120 orbits of Pioneer Venus give the upper limit of the magnetic dipole. Explorer 35 Lunar Orbiter data provided the first evidence of lunar magnetization, but it was the Apollo subsatellite data that measured accurately the magnetic dipole of the moon. A complete magnetic survey of Mars is still needed, and only some preliminary data are given on the magnetic dipole of the planet. Figures on the magnetic dipoles of Jupiter and Saturn are also suggested. It is concluded that if the magnetic field data are to be used to infer the interior properties of the planets, good measures of the multiple harmonics in the field are needed, which may be obtained only through low altitude polar orbits.

  5. Absolute shielding scales for Al, Ga, and In and revised nuclear magnetic dipole moments of {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In nuclei

    SciTech Connect

    Antušek, A. Holka, F.

    2015-08-21

    We present coupled cluster calculations of NMR shielding constants of aluminum, gallium, and indium in water-ion clusters. In addition, relativistic and dynamical corrections and the influence of the second solvation shell are evaluated. The final NMR shielding constants define new absolute shielding scales, 600.0 ± 4.1 ppm, 2044.4 ± 31.4 ppm, and 4507.7 ± 63.7 ppm for aluminum, gallium, and indium, respectively. The nuclear magnetic dipole moments for {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In isotopes are corrected by combining the computed shielding constants with experimental NMR frequencies. The absolute magnitude of the correction increases along the series and for indium isotopes it reaches approximately −8.0 × 10{sup −3} of the nuclear magneton.

  6. Bounding the magnetic and electric dipole moments of {nu}{sub {tau}} from the process e{sup +}e{sup -}{yields}{nu}{nu}{gamma} in E{sub 6} superstring models

    SciTech Connect

    Gutierrez-Rodriguez, A.; Jayme-Valdes, B.; Hernandez-Ruiz, M. A.; Perez, M. A.

    2006-09-01

    We obtain bounds on the anomalous magnetic and electric dipole moments of the tau-neutrino through the reaction e{sup +}e{sup -}{yields}{nu}{nu}{gamma} at the Z{sub 1}-pole in the framework of a Left-Right symmetric model and a class of E{sub 6} inspired models with an additional neutral vector boson Z{sub {theta}}. We use the data collected by the L3 Collaboration at LEP. For the parameters of the E{sub 6} model we consider the mixing angle {theta}{sub E{sub 6}}=37.8 deg. and M{sub Z{sub {theta}}}=7M{sub Z{sub 1}}. We find that our bounds are of the same order of magnitude as those obtained in other extensions of the standard model.

  7. Quantum Electromagnetic Nonlinearity Affecting Charges and Dipole Moments

    NASA Astrophysics Data System (ADS)

    Adorno, T. C.; Gitman, D. M.; Shabad, A. E.; Shishmarev, A. A.

    2017-03-01

    Due to the nonlinearity of QED, a static charge becomes a magnetic dipole if placed in a magnetic field, and a magnetic monopole on the background is a combination of constant electric and magnetic fields. Already without external field, the cubic Maxwell equation for the field of a point charge has a soliton solution with a finite field energy and finite potential, the energy-momentum vector of a moving soliton being the same as that of a point massive particle. Equations are given for self-coupling dipole moments. Any theoretically found value for a multipole moment of a baryon or a meson should be subjected to nonlinear renormalization.

  8. Experiments with Dipole Antennas

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…

  9. Geometrical Simplification of the Dipole-Dipole Interaction Formula

    ERIC Educational Resources Information Center

    Kocbach, Ladislav; Lubbad, Suhail

    2010-01-01

    Many students meet dipole-dipole potential energy quite early on when they are taught electrostatics or magnetostatics and it is also a very popular formula, featured in encyclopedias. We show that by a simple rewriting of the formula it becomes apparent that, for example, by reorienting the two dipoles, their attraction can become exactly twice…

  10. Final Report: Levitated Dipole Experiment

    SciTech Connect

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross

  11. Symplectic Propagation of the Map, Tangent Map and Tangent Map Derivative through Quadrupole and Combined-Function Dipole Magnets without Truncation

    NASA Astrophysics Data System (ADS)

    Bruhwiler, D. L.; Cary, J. R.; Shasharina, S.

    1998-04-01

    The MAPA accelerator modeling code symplectically advances the full nonlinear map, tangent map and tangent map derivative through all accelerator elements. The tangent map and its derivative are nonlinear generalizations of Browns first- and second-order matrices(K. Brown, SLAC-75, Rev. 4 (1982), pp. 107-118.), and they are valid even near the edges of the dynamic aperture, which may be beyond the radius of convergence for a truncated Taylor series. In order to avoid truncation of the map and its derivatives, the Hamiltonian is split into pieces for which the map can be obtained analytically. Yoshidas method(H. Yoshida, Phys. Lett. A 150 (1990), pp. 262-268.) is then used to obtain a symplectic approximation to the map, while the tangent map and its derivative are appropriately composed at each step to obtain them with equal accuracy. We discuss our splitting of the quadrupole and combined-function dipole Hamiltonians and show that typically few steps are required for a high-energy accelerator.

  12. Photoelectron spectroscopy and the dipole approximation

    SciTech Connect

    Hemmers, O.; Hansen, D.L.; Wang, H.

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  13. Role of noncollinear magnetization for the first-order electric-dipole hyperpolarizability at the four-component Kohn-Sham density functional theory level.

    PubMed

    Bast, Radovan; Saue, Trond; Henriksson, Johan; Norman, Patrick

    2009-01-14

    The quadratic response function has been derived and implemented at the adiabatic four-component Kohn-Sham density functional theory level with inclusion of noncollinear spin magnetization and gradient corrections in the exchange-correlation functional-a work that is an extension of our previous report where magnetization dependencies in the exchange-correlation functional were ignored [J. Henriksson, T. Saue, and P. Norman, J. Chem. Phys. 128, 024105 (2008)]. The electric-field induced second-harmonic generation experiments on CF(3)Cl and CF(3)Br are addressed by a determination of beta(-2omega;omega, omega) for a wavelength of 694.3 nm, and the same property is also determined for CF(3)I. The relativistic effects on the static hyperpolarizability for the series of molecules amount to 1%, 5%, and 9%, respectively. At the experimental wavelength, the contributions to beta due to the magnetization dependence in the exchange-correlation functional are negligible for CF(3)Cl and CF(3)Br and small for CF(3)I. The noticeable effect of magnetization in the latter case is attributed to a near two-photon resonance with the excited state 1 (3)E (nonrelativistic notation). It is emphasized, however, that the effect of magnetization on beta for CF(3)I is negligible both in comparison to the total relativistic correction as well as to the effects of electron correlation. It is concluded that, in calculations of hyperpolarizabilities under nonresonant conditions, the magnetization dependence in the exchange-correlation functional may be ignored.

  14. Pygmy dipole resonance and dipole polarizability in 90Zr

    NASA Astrophysics Data System (ADS)

    Iwamoto, C.; Tamii, A.; Utsunomiya, H.; Akimune, H.; Nakada, H.; Shima, T.; Hashimoto, T.; Yamagata, T.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Suzuki, T.; Fujita, H.; Shimbara, Y.; Nagashima, M.; Sakuda, M.; Mori, T.; Izumi, T.; Okamoto, A.; Kondo, T.; Lui, T.-W.; Bilgier, B.; Kozer, H. C.; Hatanaka, K.

    2014-05-01

    Electric dipole (E1) reduced transition probability B(E1) of 90Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability αD which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.

  15. Infinite geometric frustration in a cubic dipole cluster

    NASA Astrophysics Data System (ADS)

    Schönke, Johannes; Schneider, Tobias M.; Rehberg, Ingo

    2015-01-01

    The geometric arrangement of interacting (magnetic) dipoles is a question of fundamental importance in physics, chemistry, and engineering. Motivated by recent progress concerning the self-assembly of magnetic structures, the equilibrium orientation of eight interacting dipoles in a cubic cluster is investigated in detail. Instead of discrete equilibria we find a type of ground state consisting of infinitely many orientations. This continuum of energetically degenerate states represents a yet unknown form of magnetic frustration. The corresponding dipole rotations in the flat potential valley of this Goldstone mode enable the construction of frictionless magnetic couplings. Using computer-assisted algebraic geometry methods, we moreover completely enumerate all equilibrium configurations. The seemingly simple cubic system allows for exactly 9536 unstable discrete equilibria falling into 183 distinct energy families.

  16. Three dimensional field calculations for a Short Superconducting Dipole for the UCLA Ultra Compact Synchrotron

    SciTech Connect

    Green, M.A.; Taylor, C.E.

    1998-08-01

    The Ultra Compact Synchrotron (UCS), proposed for UCLA, is a compact 1.5 GeV electron light source with superconducting magnets to produce X rays with a critical energy of about 10 keV. The design physical length (cold length) for the dipole is 418 mm. The synchrotron requires that a uniform field be produced in a region that is 180 mm wide by 40 mm high by about 380 mm long. The end regions of the dipole should be short compared to the overall length of the dipole field region. A Vobly H type of dipole was selected for the synchrotron bending magnets. In order for each dipole to bend a 1.5 GeV electron beam 30 degrees, the central induction must be in the range of 6.4 to 6.9 T (depending on the dipole magnetic length). The pole width for the dipole was set so that over 90% of the X rays generated by the magnet can be extracted. The three dimensional field calculations were done using TOSCA. This report shows that a Vobly type of dipole will behave magnetically as a conventional water cooled iron dominated dipole. The uniformity of the integrated magnetic field can be controlled by varying the current in the shield coil with respect to the gap and cross-over coils. The two dimensional field in the center of the magnet can be tuned to be very uniform over a width of 110 to 120 mm. The three dimensional calculations show that the magnetic length along a particle track in the dipole is about 29 mm longer than the length of the iron pole pieces. This report will present the three dimensional design of the UCS Vobly dipole and the results of the field calculations for that magnet.

  17. Controlling the dipole-dipole interactions between terbium(III) phthalocyaninato triple-decker moieties through spatial control using a fused phthalocyaninato ligand.

    PubMed

    Morita, Takaumi; Katoh, Keiichi; Breedlove, Brian K; Yamashita, Masahiro

    2013-12-02

    Using a fused phthalocyaninato ligand to control the spatial arrangement of Tb(III) moieties in Tb(III) single-molecule magnets (SMMs), we could control the dipole-dipole interactions in the molecules and prepared the first tetranuclear Tb(III) SMM complex. [Tb(obPc)2]Tb(Fused-Pc)Tb[Tb(obPc)2] (abbreviated as [Tb4]; obPc = 2,3,9,10,16,17,23,24-octabutoxyphthalocyaninato, Fused-Pc = bis{7(2),8(2),12(2),13(2),17(2),18(2)-hexabutoxytribenzo[g,l,q]-5,10,15,20-tetraazaporphirino}[b,e]benzenato). In direct-current magnetic susceptibility measurements, ferromagnetic interactions among the four Tb(3+) ions were observed. In [Tb4], there are two kinds of magnetic dipole-dipole interactions. One is strong interactions in the triple-decker moieties, which dominate the magnetic relaxations, and the other is the weak one through the fused phthalocyaninato (Pc) ligand linking the two triple-decker complexes. In other words, [Tb4] can be described as a weakly ferromagnetically coupled dimer of triple-decker Tb2(obPc)3 complexes with strong dipole-dipole interactions in the triple-decker moieties and weak ones through the fused phthalocyaninato ligand linking the two triple-decker complexes. For [Tb4], dual magnetic relaxation processes were observed similar to other dinuclear Tb(III)Pc complexes. The relaxation processes are due to the anisotropic centers. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb(3+) ions in the systems. Through a better understanding of the magnetic dipole-dipole interactions obtained in these studies, we have developed a new strategy for preparing Tb(III) SMMs. Our work shows that the SMM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in a controlled SMM spatial arrangement.

  18. Report of the SSC Collider Dipole Review Panel

    SciTech Connect

    Voss, G.; Kirk, T.

    1989-06-01

    This report contains the following review on the SSC dipole magnets: subpanel on the R&D program and industrialization; subpanel on magnet measurement; subpanel on cold mass mechanics; subpanel on superconductor; subpanel on cryogenics; subpanel on quench protection; and subpanel on bore tube corrector coils.

  19. Is the earth's dipole actually inclined with respect to the rotation axis?

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Saito, T.

    1990-01-01

    Planetary exploration by deep space probes in recent years has shown that the dipole moment of some magnetized planets has a surprisingly large inclination angle with respect to the rotation axis. Applying the method developed for the source surface magnetic field of the sun (a spherical surface of 2.5 solar radii), it is suggested that the main dipole of the earth and the magnetized planets may actually be axial (the magnetic moment being parallel or antiparallel to the rotation axis), and that two or three smaller dipoles near the core surface could be responsible for the apparent inclination of the main dipole. In formulating a dynamo theory of the planetary magnetic field, such a possibility should be considered, as well as the inclined dipole case.

  20. Conceptual design of Dipole Research Experiment (DREX)

    NASA Astrophysics Data System (ADS)

    Qingmei, XIAO; Zhibin, WANG; Xiaogang, WANG; Chijie, XIAO; Xiaoyi, YANG; Jinxing, ZHENG

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  1. Final Report: Levitated Dipole Experiment

    SciTech Connect

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routine investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m-3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.

  2. Design Concept and Parameters of a 15 T $Nb_{3}Sn$ Dipole Demonstrator for a 100 TEV Hadron Collider

    SciTech Connect

    Zlobin, A. V.; Andreev, N.; Barzi, E.; Kashikhin, V. V.; Novitski, I.

    2015-06-01

    FNAL has started the development of a 15 T $Nb_{3}Sn$ dipole demonstrator for a 100 TeV scale hadron collider. This paper describes the design concept and parameters of the 15 T $Nb_{3}Sn$ dipole demonstrator. The dipole magnetic, mechanical and quench protection concept and parameters are presented and discussed.

  3. Sextupole correction coils for SSC model dipoles

    SciTech Connect

    Rechen, J.B.; Gilbert, W.S.; Hassenzahl, W.V.

    1985-05-01

    Local correction of the sextupole error field is proposed for the dipoles of the SSC. This requirement is imposed on the design by the high field quality required both during injection at low fields and during colliding beam operation at high fields. Error fields in the main dipole windings due to superconductor magnetization and conductor misplacements and unwanted sextupole and decapole magnetic field terms. To correct the sextupole error field we have constructed sextupole coils made of a single layer of superconducting wire and have mounted them with high precision on the stainless steel bore tube. These correction coils have been operated with 1 meter long SSC model dipoles in both the self-powered and externally-powered modes. The sextupole field in the bore has been reduced by as much as a factor of 50. The level of correction depends strongly on the angular alignment of the correction coil with respect to the sextupole error field it is to correct. Results of tests, performance of the correction coils and alignment requirements for the system are presented.

  4. 11 T Twin-Aperture Nb$_3$Sn Dipole Development for LHC Upgrades

    SciTech Connect

    Zlobin, A. V.; Andreev, N.; Apollinari, G.; Auchmann, B.; Barzi, E.; Izquierdo Bermudez, S.; Bossert, R.; Buehler, M.; Chlachidze, G.; DiMarco, J.; Karppinen, M.; Nobrega, F.; Novitski, I.; Rossi, L.; Smekens, D.; Tartaglia, M.; Turrioni, D.; Velev, Genadi

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T Nb3Sn dipole suitable for installation in the LHC. This paper describes the design and parameters of the 11 T dipole developed at FNAL for the LHC upgrades in both single-aperture and twin-aperture configurations, and presents details of the constructed dipole models. Results of studies of magnet quench performance, quench protection and magnetic measurements performed using short 1 m long coils in the dipole mirror and single-aperture configurations are reported and discussed.

  5. Retardation effects in induced atomic dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Graham, S. D.; McGuirk, J. M.

    2017-02-01

    We present mean-field calculations of azimuthally averaged retarded dipole-dipole interactions in a Bose-Einstein condensate induced by a laser, at both long and short wavelengths. Our calculations demonstrate that dipole-dipole interactions become significantly stronger at shorter wavelengths, by as much as 30-fold, due to retardation effects. This enhancement, along with the inclusion of the dynamic polarizability, indicate a method of inducing long-range interatomic interactions in neutral atom condensates at significantly lower intensities than previously realized.

  6. Lithium electric dipole polarizability

    SciTech Connect

    Puchalski, M.; KePdziera, D.; Pachucki, K.

    2011-11-15

    The electric dipole polarizability of the lithium atom in the ground state is calculated including relativistic and quantum electrodynamics corrections. The obtained result {alpha}{sub E}=164.0740(5) a.u. is in good agreement with the less accurate experimental value of 164.19(1.08) a.u. The small uncertainty of about 3 parts per 10{sup 6} comes from the approximate treatment of quantum electrodynamics corrections. Our theoretical result can be considered as a benchmark for more general atomic structure methods and may serve as a reference value for the relative measurement of polarizabilities of the other alkali-metal atoms.

  7. Restoring the skew quadrupole moment in the Tevatron dipoles

    SciTech Connect

    Harding, D.J.; Bauer, P.C.; Blowers, J.N.; DiMarco, J.; Glass, H.D.; Hanft, R.W.; Carson, J.A.; Robotham, W.F.; Tartaglia, M.A.; Tompkins, J.C.; Velev, G.; /Fermilab

    2005-05-01

    In early 2003 it was realized that mechanical changes in the Tevatron dipoles had led to a deterioration of the magnetic field quality that was hindering operation of the accelerator. After extensive study, a remediation program was started in late 2003 that will continue through 2005. The mechanical and magnetic effects are discussed. The readjustment process and experience are reported, along with other observations on aging magnets. In January 2003 two lines of inquiry converged, leading to the recognition that the severe betatron coupling that was hindering operation of the Tevatron could be explained by a systematic shift on the skew quadrupole field in the dipole magnets of the same size expected from observed mechanical movement of the coils inside the magnet yokes [1]. This paper reports on subsequent magnet studies that were conducted in parallel with additional beam studies and accelerator modeling [2] exploring the feasibility of the eventual remediation effort [3].

  8. The dipole repeller

    NASA Astrophysics Data System (ADS)

    Hoffman, Yehuda; Pomarède, Daniel; Tully, R. Brent; Courtois, Hélène M.

    2017-01-01

    Our Local Group of galaxies is moving with respect to the cosmic microwave background (CMB) with a velocity 1 of V CMB = 631 ± 20 km s‑1 and participates in a bulk flow that extends out to distances of ~20,000 km s‑1 or more 2-4 . There has been an implicit assumption that overabundances of galaxies induce the Local Group motion 5-7 . Yet underdense regions push as much as overdensities attract 8 , but they are deficient in light and consequently difficult to chart. It was suggested a decade ago that an underdensity in the northern hemisphere roughly 15,000 km s‑1 away contributes significantly to the observed flow 9 . We show here that repulsion from an underdensity is important and that the dominant influences causing the observed flow are a single attractor — associated with the Shapley concentration — and a single previously unidentified repeller, which contribute roughly equally to the CMB dipole. The bulk flow is closely anti-aligned with the repeller out to 16,000 ± 4,500 km s‑1. This 'dipole repeller' is predicted to be associated with a void in the distribution of galaxies.

  9. Space Propulsion Based on Dipole Assisted IEC System

    SciTech Connect

    Miley, George H.; Thomas, Robert; Takeyama, Yoshikazu; Momota, Hiromu; Shrestha, Prajakti J.

    2006-01-20

    A potential opportunity to enhance Inertial Electrostatic Confinement (IEC) fusion propulsion exists by introducing a magnetic dipole into the IEC chamber. The dipole fields should increase the plasma density, hence fusion rate, in the center region of the IEC and the combined IEC and dipole confinement properties will reduce plasma losses. To demonstrate that a hybrid Dipole-IEC (DaIEC) configuration can provide improved confinement vs. a stand alone IEC, a first model DaIEC experiment has been benchmarked against a reference IEC. A triple Langmuir probe was used to measure the electron temperature and density. It was confirmed that the magnetic field increases the electron density by an order of magnitude and the addition of a controlled electrical potential to the dipole structure allows control of space charge buildup in the dense core region. This paper describes the dipole assisted IEC concept, its advantages, and soon missions it is well suited for. Here the present status of DaIEC experiments are described, the issues for scale up are discussed, and a conceptual plan for a power unit development is presented.

  10. Developmentof the 15 T Nb3Sn dipole HD2

    SciTech Connect

    Caspi, S.; Cheng, D.W.; Dietderich, D.R.; Hafalia, A.R.; Hannaford, C.R.; Higley, H.; Lietzke, A.F.; Lizarazo, J.; McInturff, A.D.; Sabbi, G.; Ferracin, P.

    2008-06-01

    The Superconducting Magnet Program at Lawrence Berkeley National Laboratory (LBNL) is continuing the development of HD2, a 1 m long Nb{sub 3}Sn dipole generating a dipole field of 15 T in a 36 mm clear bore. With tilted (flared) ends to avoid obstructing the beam path, HD2 represents a step towards the development of cost effective accelerator quality magnets. The design has been optimized to minimize geometric harmonics and to address iron saturation and conductor magnetization effects. The support structure is based on an external aluminum shell, pre-tensioned with pressurized bladders and interference keys. Aluminum axial rods and stainless steel end plates provide longitudinal support to the coil ends during magnet excitation. This paper reports on field quality optimization and magnet parameters. The design and fabrication of the coil and structure components, and results from coil winding, reaction, and potting are also presented.

  11. Roll measurement of Tevatron dipoles and quadrupoles

    SciTech Connect

    Volk, J.T.; Elementi, L.; Gollwitzer, K.; Jostlein, H.; Nobrega, F.; Shiltsev, V.; Stefanski, R.

    2006-09-01

    In 2003 a simple digital level system was developed to allow for rapid roll measurements of all dipoles and quadrupoles in the Tevatron. The system uses a Mitutoyo digital level and a PC running MS WINDOWS XP and LAB VIEW to acquire data on the upstream and downstream roll of each magnet. The system is sufficiently simple that all 1,000 magnets in the Tevatron can be measured in less than 3 days. The data can be quickly processed allowing for correction of rolled magnets by the Fermilab alignment group. Data will be presented showing the state of the Tevatron in 2003 and the changes in rolls as measured in each shutdown since then.

  12. The optimised sc dipole of SIS100 for series production

    NASA Astrophysics Data System (ADS)

    Roux, Christian; Mierau, Anna; Bleile, Alexander; Fischer, Egbert; Kaether, Florian; Körber, Boris; Schnizer, Pierre; Sugita, Kei; Szwangruber, Piotr

    2017-02-01

    At the international facility for antiproton and ion research (FAIR) in Darmstadt, Germany, an accelerator complex is developed for fundamental research in various fields of modern physics. In the SIS100 heavy-ion synchrotron, the main accelerator of FAIR, superconducting dipoles are used to bend the particle beam. The fast ramped dipoles are 3 m long super-ferric curved magnets operated at 4.5 K. The demands on field homogeneity required for sufficient beam stability are given by ΔB/B ≤ ±6 · 10‑4. An intense measurement program of the First of Series (FoS) dipole showed excellent quench behavior and lower than expected AC losses yielding the main load on the SIS100 cryoplant. The FoS is capable to provide a field strength of 1.9 T. However, with sophisticated measurement systems slight distortions of the dipole field were detected. Those effects were tracked down to mechanical inaccuracies of the yoke proven by appropriate geometrical measurements and simulations. After a survey on alternative fabrication techniques a magnet with a new yoke was built with substantial changes to improve the mechanical accuracy. Its characteristics concerning cryogenic losses, cold geometry and the resulting magnetic-field quality are presented and an outlook on the series production of superconducting dipoles for SIS100 is given.

  13. DESIGN OF AN AC-DIPOLE FOR USE IN RHIC.

    SciTech Connect

    PARKER,B.; BAI,M.; JAIN,A.; MCINTYRE,G.; METH,M.; PEGGS,S.; ROSER,T.; SANDERS,R.; TRBOJEVIC,D.

    1999-03-29

    We present two options for implementing a pair of AC-dipoles in RHIC for spin flipping, measuring linear optical functions and nonlinear diagnostics. AC-dipoles are magnets that can be adiabatically excited and de-excited with a continuous sine-wave in order to coherently move circulating beam out to large betatron amplitudes without incurring emittance blow up [1]. The AGS already uses a similar device for getting polarized proton beams through depolarizing resonances [2]. By placing the magnets in the IP4 common beam region, two AC-dipoles are sufficient to excite both horizontal and vertical motion in both RHIC rings. While we initially investigated an iron-dominated magnet design using available steel tape cores; we now favor a new air coil plus ferrite design featuring mechanical frequency tuning, in order to best match available resources to demanding frequency sweeping requirements. Both magnet designs are presented here along with model magnet test results. The challenge is to make AC-dipoles available for year 2000 RHIC running.

  14. Air-cooled trim dipoles for the Fermilab Main Injector

    SciTech Connect

    Harding, D. J.; Chester, N. S.; Garvey, J. D.; Krafczyk, G. E.; Makarov, A. I.; Terechkine, I.; Yarba, V. A.

    1997-05-01

    New horizontal and vertical trim dipoles have been designed for the Fermilab Main Injector (FMI) and are being assembled in the Fermilab Technical Division. Magnets are 42.6 cm in length (30.5 cm steel length) and have similar cross-section dimensions. The horizontal (vertical) magnet gap is 50.8 mm (127 mm) and the target integrated strength is 0.072 T*m (0.029 T*m). The major design effort lay in making air cooling possible for these magnets. This report presents the magnets` thermal and magnetic properties and discusses the limitation on excitation current.

  15. Highly Automated Dipole EStimation (HADES)

    PubMed Central

    Campi, C.; Pascarella, A.; Sorrentino, A.; Piana, M.

    2011-01-01

    Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many dipole-based methods, particle filtering does not assume stationarity of the source configuration: the number of dipoles and their positions are estimated and updated dynamically during the course of the MEG sequence. We have now developed a Matlab-based graphical user interface, which allows nonexpert users to do automatic dipole estimation from MEG data with particle filtering. In the present paper, we describe the main features of the software and show the analysis of both a synthetic data set and an experimental dataset. PMID:21437232

  16. Highly Automated Dipole EStimation (HADES).

    PubMed

    Campi, C; Pascarella, A; Sorrentino, A; Piana, M

    2011-01-01

    Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many dipole-based methods, particle filtering does not assume stationarity of the source configuration: the number of dipoles and their positions are estimated and updated dynamically during the course of the MEG sequence. We have now developed a Matlab-based graphical user interface, which allows nonexpert users to do automatic dipole estimation from MEG data with particle filtering. In the present paper, we describe the main features of the software and show the analysis of both a synthetic data set and an experimental dataset.

  17. Progress toward 10 tesla accelerator dipoles

    SciTech Connect

    Hassenzahl, W.; Gilbert, G.; Taylor, C.; Meuser, R.

    1983-08-01

    A 9.1 T central field has been achieved in a Nb-Ti dipole operating in pressurized helium II at 1.8 K. Three different Nb-Ti dipoles, without iron yokes, have achieved central fields of 8.0, 8.6, and 9.1 T - all short sample performance for the conductors at 1.8 K. In helium I, at 4.3 K, the maximum central fields are from 1.5 to 2.0 T lower. Ten-tesla magnets have been designed for both Nb-Ti operating at 1.8 K and Nb/sub 3/Sn operating at 4.2 K. They are based on a very small beam aperture, (40 to 45 mm), very high current density in the superconductors (over 1000 A/mm/sup 2/), and a very low ratio of stabilizing copper to superconductor (about 1). Both layer and block designs have been developed that utilize Rutherford Cable. Magnet cycling from 0 to 6 T has been carried out for field change rate up to 1 T/s; the cyclic heating at 1 T/s is 36 W per meter. At a more representative rate of 0.2 T/s the heating rate is only 2 W/m. Progress in the program to use Nb/sub 3/Sn and NbTi superconductor, in 10 T accelerator magnets is also discussed.

  18. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    NASA Astrophysics Data System (ADS)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  19. Observation of Stueckelberg oscillations in dipole-dipole interactions

    SciTech Connect

    Ditzhuijzen, C. S. E. van; Tauschinsky, Atreju; Van Linden van den Heuvell, H. B.

    2009-12-15

    We have observed Stueckelberg oscillations in the dipole-dipole interaction between Rydberg atoms with an externally applied radio-frequency field. The oscillating rf field brings the interaction between cold Rydberg atoms in two separated volumes into resonance. We observe multiphoton transitions when varying the amplitude of the rf field and the static electric field offset. The angular momentum states we use show a quadratic Stark shift, which leads to a fundamentally different behavior than linearly shifting states. Both cases are studied theoretically using the Floquet approach and are compared. The amplitude of the sidebands, related to the interaction strength, is given by the Bessel function in the linearly shifting case and by the generalized Bessel function in the quadratically shifting case. The oscillatory behavior of both functions corresponds to Stueckelberg oscillations, an interference effect described by the semiclassical Landau-Zener-Stueckelberg model. The measurements prove coherent dipole-dipole interaction during at least 0.6 mus.

  20. Emittance growth due to dipole ripple and sextupole

    SciTech Connect

    Shih, H.J.; Ellison, J.A.; Syphers, M.J.; Newberger, B.S.

    1993-05-01

    Ripple in the power supplies for storage ring magnets can have adverse effects on the circulating beams: orbit distortion and emittance growth from dipole ripple, tune modulation and dynamic aperture reduction from quadrupole ripple, etc. In this paper, we study the effects of ripple in the horizontal bending field of the SSC in the presence of nonlinearity, in particular, the growth in beam emittance.

  1. Singular Behaviour of the Electrodynamic Fields of an Oscillating Dipole

    ERIC Educational Resources Information Center

    Leung, P. T.

    2008-01-01

    The singularity of the exact electromagnetic fields is derived to include the "source terms" for harmonically oscillating electric (and magnetic) dipoles, so that the fields will be consistent with the full Maxwell equations with a source. It is shown explicitly, as somewhat expected, that the same [delta]-function terms for the case of static…

  2. BFKL approach and dipole picture

    SciTech Connect

    Fadin, V. S.

    2009-03-23

    Inter-relation of the BFKL approach and the colour dipole model is discussed. In the case of scattering of colourless objects the colour singlet BFKL kernel can be taken in the special representation called Moebius form. In the leading order (LO) it coincides with the kernel of the colour dipole model. In the next-to-leading order (NLO) the quark parts of the Moebius form and the colour dipole kernel are in accord with each other, but the gluon parts do not agree. Possible sources of this discrepancy are analyzed.

  3. Dipole-dipole interaction between rubidium Rydberg atoms

    SciTech Connect

    Altiere, Emily; Fahey, Donald P.; Noel, Michael W.; Smith, Rachel J.; Carroll, Thomas J.

    2011-11-15

    Ultracold Rydberg atoms in a static electric field can exchange energy via the dipole-dipole interaction. The Stark effect shifts the energy levels of the atoms which tunes the energy exchange into resonance at specific values of the electric field (Foerster resonances). We excite rubidium atoms to Rydberg states by focusing either a 480 nm beam from a tunable dye laser or a pair of diode lasers into a magneto-optical trap. The trap lies at the center of a configuration of electrodes. We scan the electric field by controlling the voltage on the electrodes while measuring the fraction of atoms that interact. Dipole-dipole interaction spectra are presented for initially excited rubidium nd states for n=31 to 46 and for four different pairs of initially excited rubidium ns states. We also present the dipole-dipole interaction spectra for individual rubidium 32d (j, m{sub j}) fine structure levels that have been selectively excited. The data are compared to calculated spectra.

  4. Radiation from an off-centred rotating dipole in vacuum

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2016-12-01

    When a neutron star forms, after the collapse of its progenitor, a strong magnetic field survives in its interior. This magnetic topology is usually assumed to be well approximated by a dipole located right at the centre of the star. However, there is no particular reason why this dipole should be attached to this very special point. A slight shift from the stellar centre could have strong implications for the surrounding electromagnetic field configuration leading to clear observational signatures. We study the effect of the most general off-centred dipole anchored in the neutron star interior. Exact analytical solutions are given in vacuum outside the star to any order of accuracy in the small parameter ɛ = d/R, where d is the displacement of the dipole from the stellar centre and R the neutron star radius. As a simple diagnostic of this decentred dipole, the spin-down luminosity and the torque exerted on its crust are computed to the lowest leading order in ɛ. Results are compared to earlier works and a discussion on repercussions on pulsar braking index and multiwavelength light curves is proposed.

  5. Polarized emission from an off-centred dipole

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2017-03-01

    Radio polarization measurements of pulsed emission from pulsars offer a valuable insight into the basic geometry of the neutron star: inclination angle between the magnetic and rotation axis and inclination of the line of sight. So far, all studies about radio polarization focused on the standard rotating vector model with the underlying assumption of a centred dipole. In this Letter, we extend this model to the most general off-centred dipole configuration and give an exact closed analytic expression for the phase-resolved polarization angle. It is shown that contrary to the rotating vector model, for an off-centred dipole, the polarization angle also depends on the emission altitude. Although the fitting parameter space increases from two to six (position of the dipole, altitude and shift of the zero phase), statistical analysis should remain tractable. Observations revealing an evolution of the polarization angle with frequency would undeniably furnish a strong hint for the presence of a decentred magnetic dipole in neutron stars.

  6. Simulations of the angular dependence of the dipole-dipole interaction among Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Bigelow, Jacob L.; Hollingsworth, Jacob; Paul, Jacob T.; Peleg, Matan; Sanford, Veronica L.; Carroll, Thomas J.; Noel, Michael W.

    2016-05-01

    The dipole-dipole interaction between two Rydberg atoms depends on the relative orientation of the atoms and on the change in the magnetic quantum number. We simulate the effect of this anisotropy on the energy transport in an amorphous many atom system of ultracold Rydberg atoms subject to a homogeneous applied electric field. We consider two experimentally feasible geometries and find that the effects should be measurable in current generation imaging experiments. We also examine evidence for Anderson localization. This work was supported by the National Science Foundation under Grants No. 1205895 and No. 1205897 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.

  7. Dipole Alignment in Rotating MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  8. SPEAR3 Gradient Dipole Core Fabrication

    SciTech Connect

    Li, Nanyang

    2003-07-29

    Traditional means of core fabrication are to glue the laminations or weld them to form the yoke structure. These means result in good yoke assemblies for shorter (<0.6m) magnets. However, because of weld distortions or mechanical strength limitations, welding and/or gluing techniques are difficult to gain high mechanical precision for longer cores. The SPEAR3 gradient dipoles are up to 1.45m long and require distortions of <0.05mm. Therefore, the SPEAR3 gradient dipole core design incorporated an assembly technique, originally devised for the PEPII insertion quadrupoles and later adapted for the ALS gradient magnets. This technique involved fabricating a rigid frame for the core, precisely stacking and compressing the laminations using hydraulic jacks and granite surfaces and straight edges, and fixing the laminations in the frame by filling the grooves between the laminations and frame using steel loaded epoxy. Although this technique has been used in the past, it has never been fully described and published. This paper is written to provide a detailed description of the procedure and to present measurement data demonstrating the mechanical precision and stiffness of the resulting product.

  9. Symmetry Analysis of Spin-Dependent Electric Dipole and Its Application to Magnetoelectric Effects

    NASA Astrophysics Data System (ADS)

    Matsumoto, Masashige; Chimata, Kosuke; Koga, Mikito

    2017-03-01

    Spin-dependent electric dipole operators are investigated group-theoretically for the emergence of an electric dipole induced by a single spin or by two spins, where the spin dependences are completely classified up to the quadratic order. For a single spin, a product of spin operators behaves as an even-parity electric quadrupole operator, which differs from an odd-parity electric dipole. The lack of the inversion symmetry allows the even- and odd-parity mixing, which leads to the electric dipole described by the electric quadruple operators. Point-group tables are given for classification of the possible spin-dependent electric dipoles and for the qualitative analysis of multiferroic properties, such as an emergent electric dipole moment coexisting with a magnetic moment, electromagnon excitation, and directional dichroism. The results can be applied to a magnetic ion in crystals or embedded in molecules at a site without the inversion symmetry. In the presence of an inversion symmetry, the electric dipole does not appear for a single spin. This is not the case for the electric dipole induced by two spins with antisymmetric spin dependence, which is known as vector spin chirality, in the presence of the inversion center between the two spins. In the absence of the inversion center, symmetric spin-dependent electric dipoles are also relevant. The detailed analysis of various symmetries of two-spin states is applied to spin dimer systems and the related multiferroic properties.

  10. NONLINEAR DIAGNOSTICS USING AC DIPOLES.

    SciTech Connect

    PEGGS,S.

    1999-03-29

    There are three goals in the accurate nonlinear diagnosis of a storage ring. First, the beam must be moved to amplitudes many times the natural beam size. Second, strong and long lasting signals must be generated. Third, the measurement technique should be non-destructive. Conventionally, a single turn kick moves the beam to large amplitudes, and turn-by-turn data are recorded from multiple beam position monitors (BPMs) [1-6]. Unfortunately, tune spread across the beam causes the center of charge beam signal to ''decohere'' on a time scale often less than 100 turns. Filamentation also permanently destroys the beam emittance (in a hadron ring). Thus, the ''strong single turn kick'' technique successfully achieves only one out of the three goals. AC dipole techniques can achieve all three. Adiabatically excited AC dipoles slowly move the beam out to large amplitudes. The coherent signals then recorded last arbitrarily long. The beam maintains its original emittance if the AC dipoles are also turned off adiabatically, ready for further use. The AGS already uses an RF dipole to accelerate polarized proton beams through depolarizing resonances with minimal polarization loss [7]. Similar AC dipoles will be installed in the horizontal and vertical planes of both rings in RHIC [8]. The RHIC AC dipoles will also be used as spin flippers, and to measure linear optical functions [9].

  11. Pulsar Magnetospheres: Beyond the Flat Spacetime Dipole

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Lupsasca, Alexandru; Philippov, Alexander

    2016-12-01

    Most studies of the pulsar magnetosphere have assumed a pure magnetic dipole in flat spacetime. However, recent work suggests that the effects of general relativity are in fact of vital importance and that realistic pulsar magnetic fields will have a significant nondipolar component. We introduce a general analytical method for studying the axisymmetric force-free magnetosphere of a slowly rotating star of arbitrary magnetic field, mass, radius, and moment of inertia, including all the effects of general relativity. We confirm that spacelike current is generically present in the polar caps (suggesting a pair production region), irrespective of the stellar magnetic field. We show that general relativity introduces a ∼ 60 % correction to the formula for the dipolar component of the surface magnetic field inferred from spindown. Finally, we show that the location and shape of the polar caps can be modified dramatically by even modestly strong higher moments. This can affect emission processes occurring near the star and may help explain the modified beam characteristics of millisecond pulsars.

  12. Possible benefits from shuffling dipoles in the RHIC

    SciTech Connect

    Ohnuma, S.

    1986-01-06

    An example is given which demonstrates how dipole shuffling can be done to minimize various effects of magnetic errors. The concepts of ''global'' and ''local'' compensation are explained. With a Gaussian distribution, it is found to be possible to achieve an improvement of factor four or five over the statistically expected values without too much sacrifice in nonlinear distortion. There was no difference found in the performance between shuffling eight dipoles and shuffling twelve, and the tune dependence of the performance is found to be acceptable when the change in tune is less than about 0.5. (LEW)

  13. Field Quality Measurements in the FNAL Twin-Aperture 11 T Dipole for LHC Upgrades

    SciTech Connect

    Strauss, T.; Apollinari, G.; Apollinari, G.; Barzi, E.; Chlachidze, G.; Di Marco, J.; Nobrega, F.; Novitski, I.; Stoynev, S.; Turrioni, D.; Velev, G.; Zlobin, A. V.; Auchmann, B.; Izquierdo Bermudez, S,; Karppinen, M.; Rossi, L.; Savary, F.; Smekens, D.

    2016-11-08

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC to provide room for additional collimators. Two 1 m long collared coils previously tested at FNAL in single-aperture dipole configuration were assembled into the twin-aperture configuration and tested including magnet quench performance and field quality. The results of magnetic measurements are reported and discussed in this paper.

  14. Plasmonic interferometry: Probing launching dipoles in scanning-probe plasmonics

    NASA Astrophysics Data System (ADS)

    Mollet, Oriane; Bachelier, Guillaume; Genet, Cyriaque; Huant, Serge; Drezet, Aurélien

    2014-03-01

    We develop a semi-analytical method for analyzing surface plasmon interferometry using scanning-probe tips as SP launchers. We apply our approach to Young double-hole interferometry experiments in a scanning tunneling microscope discussed recently in the literature as well as to new experiments—reported here—with an aperture near-field scanning optical microscope source positioned near a ring-like aperture slit in a thick gold film. In both experimental configurations, the agreement between experiments and model is very good. Our work reveals the role of the launching dipole orientations and magnetic versus electric dipole contributions to the interference imaging process. It also stresses the different orientations of the effective dipoles associated with the two different scanning-probe techniques.

  15. Deciphering the Dipole Anisotropy of Galactic Cosmic Rays.

    PubMed

    Ahlers, Markus

    2016-10-07

    Recent measurements of the dipole anisotropy in the arrival directions of Galactic cosmic rays (CRs) indicate a strong energy dependence of the dipole amplitude and phase in the TeV-PeV range. We argue here that these observations can be well understood within standard diffusion theory as a combined effect of (i) one or more local sources at Galactic longitude 120°≲l≲300° dominating the CR gradient below 0.1-0.3 PeV, (ii) the presence of a strong ordered magnetic field in our local environment, (iii) the relative motion of the solar system, and (iv) the limited reconstruction capabilities of ground-based observatories. We show that an excellent candidate of the local CR source responsible for the dipole anisotropy at 1-100 TeV is the Vela supernova remnant.

  16. Electron dipole-dipole ESEEM in field-step ELDOR of nitroxide biradicals.

    PubMed

    Kulik, L V; Grishin, Yu A; Dzuba, S A; Grigoryev, I A; Klyatskaya, S V; Vasilevsky, S F; Tsvetkov, Yu D

    2002-07-01

    The use of a rapid stepping of the magnetic field for investigation of electron dipole-dipole ESEEM in pulsed X-band ELDOR is described. The magnetic field jump, synchronized with a microwave pumping pulse, is positioned between the second and the third pulses of the stimulated echo pulse sequence. This echo is measured as a function of the delay between the first and the second pulses. The data are analyzed for a Fourier transform resulting in a Pake resonance pattern. To remove the electron-nuclear contributions to ESEEM, time traces with pumping were divided by those without. This resulted in complete elimination of electron-nuclear contributions, which is seen from the absence of peaks at nuclear frequencies and the similarity of results for protonated and deuterated solvents. For increasing the electron-electron modulation depth, a scanning of the magnetic field during the microwave pumping is proposed. The interspin distances and their distribution are determined for two long-chained (ca. 2 nm) nitroxide biradicals in glassy toluene and in frozen nematic liquid crystal 4-cyano-4'-pentyl-biphenyl. For the latter solvent, the alignment of the axis connecting two nitroxides in biradicals is quantitatively analyzed.

  17. Electron Dipole-Dipole ESEEM in Field-Step ELDOR of Nitroxide Biradicals

    NASA Astrophysics Data System (ADS)

    Kulik, L. V.; Grishin, Yu. A.; Dzuba, S. A.; Grigoryev, I. A.; Klyatskaya, S. V.; Vasilevsky, S. F.; Tsvetkov, Yu. D.

    2002-07-01

    The use of a rapid stepping of the magnetic field for investigation of electron dipole-dipole ESEEM in pulsed X-band ELDOR is described. The magnetic field jump, synchronized with a microwave pumping pulse, is positioned between the second and the third pulses of the stimulated echo pulse sequence. This echo is measured as a function of the delay between the first and the second pulses. The data are analyzed for a Fourier transform resulting in a Pake resonance pattern. To remove the electron-nuclear contributions to ESEEM, time traces with pumping were divided by those without. This resulted in complete elimination of electron-nuclear contributions, which is seen from the absence of peaks at nuclear frequencies and the similarity of results for protonated and deuterated solvents. For increasing the electron-electron modulation depth, a scanning of the magnetic field during the microwave pumping is proposed. The interspin distances and their distribution are determined for two long-chained (ca. 2 nm) nitroxide biradicals in glassy toluene and in frozen nematic liquid crystal 4-cyano-4'-pentyl-biphenyl. For the latter solvent, the alignment of the axis connecting two nitroxides in biradicals is quantitatively analyzed.

  18. On the dipole polarisability and dipole sum rules of ozone

    NASA Astrophysics Data System (ADS)

    Kalugina, Yulia N.; Thakkar, Ajit J.

    2015-10-01

    Ab initio calculations of the dipole polarisability and other Cauchy moments of the dipole oscillator strength distribution (DOSD) of ozone are reported to help resolve discrepancies between theory and experiment. A number of coupled-cluster methods based on a Hartree-Fock reference function, multiconfiguration-reference configuration interaction methods, and perturbatively corrected, complete-active-space self-consistent field methods are used. The C DOSD of Kumar and Thakkar is probably preferable to their B1 distribution. Our best estimate of the mean polarisability is ? atomic units.

  19. Dipole-Dipole Interactions of High-spin Paramagnetic Centers in Disordered Systems

    SciTech Connect

    Maryasov, Alexander G.; Bowman, Michael K.; Tsvetkov, Yuri D.

    2007-09-13

    Dipole-dipole interactions between distant paramagnetic centers (PCs) where at least one PC has spin S>1/2 are examined. The results provide a basis for the application of pulsed DEER or PELDOR methods to the measurement of distances between PC involving high-spin species. A projection operator technique based on spectral decomposition of the secular Hamiltonian is used to calculate EPR line splitting caused by the dipole coupling. This allows calculation of operators projecting arbitrary wavefunction onto high PC eigenstates when the eigenvectors of the Hamiltonian are not known. The effective spin vectors-that is, the expectation values for vector spin operators in the PC eigenstates-are calculated. The dependence of these effective spin vectors on the external magnetic field is calculated. There is a qualitative difference between pairs having at least one integer spin (non Karmers PC) and pairs of two half-integer (Kramers PC) spins. With the help of these effective spin vectors, the dipolar lineshape of EPR lines is calculated. Analytical relations are obtained for PCs with spin S=1/2 and 1. The dependence of Pake patterns on variations of zero field splitting, Zeeman energy, temperature and dipolar coupling are illustrated.

  20. R&D ERL: Magnetic measurements of the ERL magnets

    SciTech Connect

    Jain, A.

    2010-08-01

    The magnet system of ERL consists of G5 solenoids, 6Q12 quadrupoles with 0.58 T/m gradient, 3D60 dipoles with 0.4 T central field, 15 and 30 degree Z-bend injection line dipole/quadrupole combined function magnets, and extraction line magnets. More details about the magnets can be found in a report by G. Mahler. Field quality in all the 6Q12 quadrupoles, 3D60 dipoles and the injection line magnets has been measured with either a rotating coil, or a Hall probe mapper. This report presents the results of these magnetic measurements.

  1. The dipole moment of the spin density as a local indicator for phase transitions

    PubMed Central

    Schmitz, D.; Schmitz-Antoniak, C.; Warland, A.; Darbandi, M.; Haldar, S.; Bhandary, S.; Eriksson, O.; Sanyal, B.; Wende, H.

    2014-01-01

    The intra-atomic magnetic dipole moment - frequently called 〈Tz〉 term - plays an important role in the determination of spin magnetic moments by x-ray absorption spectroscopy for systems with nonspherical spin density distributions. In this work, we present the dipole moment as a sensitive monitor to changes in the electronic structure in the vicinity of a phase transiton. In particular, we studied the dipole moment at the Fe2+ and Fe3+ sites of magnetite as an indicator for the Verwey transition by a combination of x-ray magnetic circular dichroism and density functional theory. Our experimental results prove that there exists a local change in the electronic structure at temperatures above the Verwey transition correlated to the known spin reorientation. Furthermore, it is shown that measurement of the dipole moment is a powerful tool to observe this transition in small magnetite nanoparticles for which it is usually screened by blocking effects in classical magnetometry. PMID:25041757

  2. The dipole moment of the spin density as a local indicator for phase transitions.

    PubMed

    Schmitz, D; Schmitz-Antoniak, C; Warland, A; Darbandi, M; Haldar, S; Bhandary, S; Eriksson, O; Sanyal, B; Wende, H

    2014-07-21

    The intra-atomic magnetic dipole moment - frequently called ⟨Tz⟩ term - plays an important role in the determination of spin magnetic moments by x-ray absorption spectroscopy for systems with nonspherical spin density distributions. In this work, we present the dipole moment as a sensitive monitor to changes in the electronic structure in the vicinity of a phase transiton. In particular, we studied the dipole moment at the Fe(2+) and Fe(3+) sites of magnetite as an indicator for the Verwey transition by a combination of x-ray magnetic circular dichroism and density functional theory. Our experimental results prove that there exists a local change in the electronic structure at temperatures above the Verwey transition correlated to the known spin reorientation. Furthermore, it is shown that measurement of the dipole moment is a powerful tool to observe this transition in small magnetite nanoparticles for which it is usually screened by blocking effects in classical magnetometry.

  3. Dipole oscillations in fermionic mixtures

    SciTech Connect

    Chiacchiera, S.; Macri, T.; Trombettoni, A.

    2010-03-15

    We study dipole oscillations in a general fermionic mixture. Starting from the Boltzmann equation, we classify the different solutions in the parameter space through the number of real eigenvalues of the small oscillations matrix. We discuss how this number can be computed using the Sturm algorithm and its relation with the properties of the Laplace transform of the experimental quantities. After considering two components in harmonic potentials having different trapping frequencies, we study dipole oscillations in three-component mixtures. Explicit computations are done for realistic experimental setups using the classical Boltzmann equation without intraspecies interactions. A brief discussion of the application of this classification to general collective oscillations is also presented.

  4. Coherent and incoherent dipole-dipole interactions between atoms

    NASA Astrophysics Data System (ADS)

    Robicheaux, Francis

    2016-05-01

    Results will be presented on the collective interaction between atoms due to the electric dipole-dipole coupling between states of different parity on two different atoms. A canonical example of this effect is when the electronic state of one atom has S-character and the state of another atom has P-character. The energy difference between the two states plays an important role in the interaction since the change in energy determines the wave number of a photon that would cause a transition between the states. If the atoms are much closer than the wave length of this photon, then the dipole-dipole interaction is in the near field and has a 1 /r3 dependence on atomic separation. If the atoms are farther apart than the wave length, then the interaction is in the far field and has a 1 / r dependence. When many atoms interact, collective effects can dominate the system with the character of the collective effect depending on whether the atomic separation leads to near field or far field coupling. As an example of the case where the atoms are in the far field, the line broadening of transitions and strong deviations from the Beer-Lambert law in a diffuse gas will be presented. As an example of near field collective behavior, the radiative properties of a Rydberg gas will be presented. Based upon work supported by the National Science Foundation under Grant No. 1404419-PHY in collaboration with R.T. Sutherland.

  5. Quantum electric-dipole liquid on a triangular lattice.

    PubMed

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F; Sun, Young

    2016-02-04

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.

  6. Quantum electric-dipole liquid on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F.; Sun, Young

    2016-02-01

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.

  7. Quantum electric-dipole liquid on a triangular lattice

    PubMed Central

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F.; Sun, Young

    2016-01-01

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics. PMID:26843363

  8. RHIC D0 INSERTION DIPOLE DESIGN ITERATIONS DURING PRODUCTION.

    SciTech Connect

    SCHMALZLE,J.; ANERELLA,M.; GANETIS,G.; GHOSH,A.; GUPTA,R.; JAIN,A.; KAHN,S.; MORGAN,G.; MURATORE,J.; SAMPSON,W.; WANDERER,P.; WILLEN,E.

    1997-05-12

    Iterations to the cross section of the Relativistic Heavy Ion Collider (RHIC) D0 Insertion Dipole magnets were made during the production. This was included as part of the production plan because no R&D or pre-production magnets were built prior to the start of production. The first magnet produced had the desired coil pre-stress and low field harmonics in the body of the magnet and is therefore being used in the RHIC Machine. On the first eight magnets, iterations were carried out to minimize the iron saturation and to compensate for the end harmonics. This paper will discuss the details of the iterations made, the obstacles encountered, and the results obtained. Also included will be a brief summary of the magnet design and performance.

  9. Induced dipole-dipole interactions in light diffusion from point dipoles

    NASA Astrophysics Data System (ADS)

    Cherroret, Nicolas; Delande, Dominique; van Tiggelen, Bart A.

    2016-07-01

    We develop a perturbative treatment of induced dipole-dipole interactions in the diffusive transport of electromagnetic waves through disordered atomic clouds. The approach is exact at order 2 in the atomic density and accounts for the vector character of light. It is applied to the calculations of the electromagnetic energy stored in the atomic cloud, which modifies the energy transport velocity, and of the light scattering and transport mean free paths. Results are compared to those obtained from a purely scalar model for light.

  10. Dipole polarizabilities of charged pions

    NASA Astrophysics Data System (ADS)

    Fil'kov, L. V.; Kashevarov, V. L.

    2017-01-01

    We discuss main experimental works, where dipole polarizabilities of charged pions have been determined. Possible reasons for the differences between the experimental data are discussed. In particular, it is shown that the account of the -meson gives a significant correction to the value of the polarizability obtained in the latest experiment of the COMPASS collaboration.

  11. On the color dipole picture

    NASA Astrophysics Data System (ADS)

    Schildknecht, Dieter

    2017-03-01

    We give a brief representation of the theoretical results from the color dipole picture, covering the total photoabsorption cross section, high-energy J/ψ photoproduction with respect to recent experimental data from the LHCb Collaboration at CERN, and ultra-high energy neutrino scattering, relevant for the ICE-CUBE experiment.

  12. Progress towards an electron electric dipole moment measurement with laser-cooled atoms

    NASA Astrophysics Data System (ADS)

    Solmeyer, Neal

    This dissertation recounts the progress made towards a measurement of the electron electric dipole moment. The existence of a permanent electric dipole moment of any fundamental particle would imply that both time reversal and parity invariance are violated. If an electric dipole moment were measured within current experimental limits it would be the first direct evidence for physics beyond the standard model. For our measurement we use laser-cooled alkali atoms trapped in a pair of 1D optical lattices. The lattices run through three electric field plates so that the two groups of atoms see opposing electric fields. The measurement chamber is surrounded by a four layer mu-metal magnetic shield. Under electric field quantization, the atoms are prepared in a superposition of magnetic sublevels that is sensitive to the electron electric dipole moment in Ramsey-like spectroscopy. The experiment requires very large electric fields and very small magnetic fields. Engineering a system compatible with both of these goals simultaneously is not trivial. Searches for electric dipole moments using neutral atoms in optical lattices have much longer possible interaction times and potentially give more precise information about the inherent symmetry breaking than other methods. This comes at the cost of a higher sensitivity to magnetic fields and possible sources of error associated with the trapping light. If noise and systematic errors can be controlled to our design specifications our experiment will significantly improve the current experimental limit of the electron electric dipole moment.

  13. Status of the 11 T Nb$_{3}$Sn Dipole Project for the LHC

    SciTech Connect

    Savary, F.; et al.

    2015-01-01

    The planned upgrade of the LHC collimation system includes additional collimators in the LHC lattice. The longitudinal space for the collimators could be obtained by replacing some LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. A joint development program with the goal of building a 5.5 m long two-in-one aperture Nb_3Sn dipole prototype suitable for installation in the LHC is being conducted by FNAL and CERN magnet groups. As part of the first phase of the program, 1 m long and 2 m long single aperture models are being built and tested, and the collared coils from these magnets will be assembled and tested in two-in-one configuration in both laboratories. In parallel with the short model magnet activities, the work has started on the production line in view of the scale-up to 5.5 m long prototype magnet. The development of the final cryo-assembly comprising two 5.5 m long 11 T dipole cold masses and the warm collimator in the middle, fully compatible with the LHC main systems and the existing machine interfaces, has also started at CERN. This paper summarizes the progress made at CERN and FNAL towards the construction of 5.5 m long 11 T Nb_3Sn dipole prototype and the present status of the activities related to the integration of the 11 T dipole and collimator in the LHC.

  14. Complete dipole response in {sup 208}Pb from high-resolution polarized proton scattering at 0 deg

    SciTech Connect

    Neumann-Cosel, P. von; Kalmykov, Y.; Poltoratska, I.; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Adachi, T.; Fujita, Y.; Matsubara, H.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Yosoi, M.; Bertulani, C. A.; Carter, J.; Fujita, H.; Dozono, M.; Fujita, K.; Hashimoto, H.; Hatanaka, K.

    2009-01-28

    The structure of electric and magnetic dipole modes in {sup 208}Pb is investigated in a high-resolution measurement of the (p-vector,p-vector') reaction under 0 deg. First results on the E1 strength in the region of the pygmy dipole resonance are reported.

  15. Measurements of Loma Linda proton therapy gantry dipoles

    SciTech Connect

    Glass, H.D.; Mazur, P.O.; Sim, J.W.

    1993-07-01

    We describe the procedures used by the Fermilab Magnet Test Facility (MTF) to perform tests of dipoles to be installed in the beam lines of the Loma Linda University Medical Center Proton Therapy Facility. The dipoles were manufactured in two styles, one style having a 45{degree} bending angle and the other a 135{degree} bending angle. The tests included magnetic field measurements using a Hall probe and the measurement of coil temperatures, voltages, and water flow rates. The probe was mounted on a movable cart which could be wheeled along the magnet beam pipe; we mounted extensions onto each end of the beam pipe to allow for the probe to measure the magnet end fields. The probe was also mounted at varying transverse positions on the cart to allow for field shape measurements, from which body quadrupole and sextupole coefficients were determined. A longitudinal sampling of the field down the entire length of the magnet allowed us to measure the total integrated field of each magnet. Hall probe measurements were controlled by a C program running on a Unix workstation.

  16. Molecules with an induced dipole moment in a stochastic electric field.

    PubMed

    Band, Y B; Ben-Shimol, Y

    2013-10-01

    The mean-field dynamics of a molecule with an induced dipole moment (e.g., a homonuclear diatomic molecule) in a deterministic and a stochastic (fluctuating) electric field is solved to obtain the decoherence properties of the system. The average (over fluctuations) electric dipole moment and average angular momentum as a function of time for a Gaussian white noise electric field are determined via perturbative and nonperturbative solutions in the fluctuating field. In the perturbative solution, the components of the average electric dipole moment and the average angular momentum along the deterministic electric field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a Gaussian white noise magnetic field. In the nonperturbative solution, the component of the average electric dipole moment and the average angular momentum in the deterministic electric field direction also decay to zero.

  17. Dynamics of an electric dipole moment in a stochastic electric field.

    PubMed

    Band, Y B

    2013-08-01

    The mean-field dynamics of an electric dipole moment in a deterministic and a fluctuating electric field is solved to obtain the average over fluctuations of the dipole moment and the angular momentum as a function of time for a Gaussian white-noise stochastic electric field. The components of the average electric dipole moment and the average angular momentum along the deterministic electric-field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a stochastic magnetic field with Gaussian white noise in all three components. The components of the average electric dipole moment and the average angular momentum perpendicular to the deterministic electric-field direction oscillate with time but decay to zero, and their variance grows with time.

  18. Quench Protection Studies of 11T Nb$_3$Sn Dipole Models for LHC Upgrades

    SciTech Connect

    Zlobin, Alexander; Chlachidze, Guram; Nobrega, Alfred; Novitski, Igor; Karppinen, Mikko

    2014-07-01

    CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil tested in a magnetic mirror configuration.

  19. Limit on the Electron Electric Dipole Moment in Gadolinium-Iron Garnet

    SciTech Connect

    Heidenreich, B.J.; Elliott, O.T.; Charney, N.D.; Virgien, K.A.; Bridges, A.W.; McKeon, M.A.; Peck, S.K.; Krause, D. Jr.; Gordon, J.E.; Hunter, L.R.; Lamoreaux, S.K.

    2005-12-16

    A new method for the detection of the electron electric dipole moment (EDM) using a solid is described. The method involves the measurement of a voltage induced across the solid by the alignment of the sample's magnetic dipoles in an applied magnetic field, H. A first application of the method to GdIG has resulted in a limit on the electron EDM of 5x10{sup -24}e cm, which is a factor of 40 below the limit obtained from the only previous solid-state EDM experiment. The result is limited by the imperfect discrimination of an unexpectedly large voltage that is even upon the reversal of the sample magnetization.

  20. The main dipole prototype for KfK Synchrotron Radiation Source

    SciTech Connect

    Kashikhin, V.; Miasnikov, Yu.; Nagaenko, M.

    1996-07-01

    The KfK Synchrotron Radiation Source is designed to be a 2.5 GeV electron storage ring with circulating current 100 mA and critical radiation wave length 0.2 nm. The storage ring consists of dipoles and quadrupoles. The prototype dipole magnet has been built by Efremov Research Institute, Russia and will be delivered in KfK, Karlsruhe at the end of June this year. A magnetic measurements facility has been set up for magnetic field mapping, which includes Hall probe field mapping and rotating coil harmonic analysis system. The results of the measurements are shown.

  1. Dipole Resonances in 4He

    SciTech Connect

    Matsumoto, E.; Nakayama, S.; Hayami, R.; Fushimi, K.; Kawasuso, H.; Yasuda, K.; Yamagata, T.; Akimune, H.; Ikemizu, H.; Fujiwara, M.; Yosoi, M.; Nakanishi, K.; Kawase, K.; Hashimoto, H.; Oota, T.; Sagara, K.; Kudoh, T.; Asaji, S.; Ishida, T.; Tanaka, M.

    2007-02-26

    We investigated the analogs of the giant dipole resonance (GDR) and spin-dipole resonance (SDR) of 4He by using the 4He(7Li,7Be) reaction at an incident energy of 455 MeV and at forward scattering angles. The {delta}S=0 and {delta}S=1 spectra for 4He were obtained by measuring the 0.43-MeV 7Be {gamma}-ray in coincidence with the scattered 7Be. From the {delta}S=0 and {delta}S=1 spectra thus obtained, the strength distributions of the GDR and SDR in 4He can be derived and the results are compared with the previous data.

  2. Theoretical electric dipole moments of SiH, GeH and SnH

    NASA Technical Reports Server (NTRS)

    Pettersson, L. G. M.; Langhoff, S. R.

    1986-01-01

    Accurate theoretical dipole moments have been computed for the X2Pi ground states of Si(-)H(+) (0.118 D), Ge(+)H(-) (0.085 D), and Sn(+)H(-) (0.357 D). The trend down the periodic table is regular and follows that expected from the electronegativities of the group IV atoms. The dipole moment of 1.24 + or - 0.1 D for GeH recently derived by Brown, Evenson and Sears (1985) from the relative intensities of electric and magnetic dipole transitions in the 10-micron spectrum of the X2Pi state is seriously questioned.

  3. Theoretical Electric Dipole Moments of SiH, GeH and SnH

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Langhoff, Stephen R.

    1986-01-01

    Accurate theoretical dipole moments (mu(sub c) have been computed for the X(exp 2)Pi ground states of Si(-)H(+)(0.118 D), Ge(+)H(-)(0.085 D) and Sn(+)H(-)(0.357 D). The trend down the periodic table is regular and follows that expected from the electronegativities of the group IV atoms. The dipole moment of 1.24 +/- 0.1 D for GeH recently derived by Brown, Evenson and Sears from the relative intensities of electric and magnetic dipole transitions in the 10 microns spectrum of the X(exp 2)Pi state is seriously questioned.

  4. Relativistic Dipole Matrix Element Zeros

    NASA Astrophysics Data System (ADS)

    Lajohn, L. A.; Pratt, R. H.

    2002-05-01

    There is a special class of relativistic high energy dipole matrix element zeros (RZ), whose positions with respect to photon energy ω , only depend on the bound state l quantum number according to ω^0=mc^2/(l_b+1) (independent of primary quantum number n, nuclear charge Z, central potential V and dipole retardation). These RZ only occur in (n,l_b,j_b)arrow (ɛ , l_b+1,j_b) transitions such as ns_1/2arrow ɛ p_1/2; np_3/2arrow ɛ d_3/2: nd_5/2arrow ɛ f_5/2 etc. The nonrelativistic limit of these matrix elements can be established explicitly in the Coulomb case. Within the general matrix element formalism (such as that in [1]); when |κ | is substituted for γ in analytic expressions for matrix elements, the zeros remain, but ω^0 now becomes dependent on n and Z. When the reduction to nonrelativistic form is completed by application of the low energy approximation ω mc^2 mc^2, the zeros disappear. This nonzero behavior was noted in nonrelativistic dipole Coulomb matrix elements by Fano and Cooper [2] and later proven by Oh and Pratt[3]. (J. H. Scofield, Phys. Rev. A 40), 3054 (1989 (U. Fano and J. W. Cooper, Rev. Mod. Phys. 40), 441 (1968). (D. Oh and R. H. Pratt, Phys. Rev. A 34), 2486 (1986); 37, 1524 (1988); 45, 1583 (1992).

  5. Efficient treatment of induced dipoles

    PubMed Central

    Simmonett, Andrew C.; Pickard, Frank C.; Shao, Yihan; Cheatham, Thomas E.; Brooks, Bernard R.

    2015-01-01

    Most existing treatments of induced dipoles in polarizable molecular mechanics force field calculations use either the self-consistent variational method, which is solved iteratively, or the “direct” approximation that is non-iterative as a result of neglecting coupling between induced dipoles. The variational method is usually implemented using assumptions that are only strictly valid under tight convergence of the induced dipoles, which can be computationally demanding to enforce. In this work, we discuss the nature of the errors that result from insufficient convergence and suggest a strategy that avoids such problems. Using perturbation theory to reintroduce the mutual coupling into the direct algorithm, we present a computationally efficient method that combines the precision of the direct approach with the accuracy of the variational approach. By analyzing the convergence of this perturbation series, we derive a simple extrapolation formula that delivers a very accurate approximation to the infinite order solution at the cost of only a few iterations. We refer to the new method as extrapolated perturbation theory. Finally, we draw connections to our previously published permanent multipole algorithm to develop an efficient implementation of the electric field and Thole terms and also derive some necessary, but not sufficient, criteria that force field parameters must obey. PMID:26298123

  6. Coupling between Two Arbitrarily Oriented Dipoles through Multilayered Shields.

    DTIC Science & Technology

    1983-06-01

    Appendix I) (xyz) fId e j a(x-x’)+B(y-y’)+Y(z-z’)J dad (21)z 2 /k _a2 _ 2A~(x~~z - - . e ada(1 From Maxwell’s equation we have H -Az E 1 gHX A z = -y x...that the z-oriented magnetic dipole placed at the z-axis can only couple the z-component of the magnetic field. From Maxwell’s equation we have Hz

  7. Electromagnetic moments and electric dipole transitions in carbon isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-07-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12C, 13C, and 14C, both in the low energy region below ħω=14 MeV and in the high energy giant resonance region (14 MeV <ħω⩽30 MeV). The calculated transition strength below the giant dipole resonance (ħω⩽14 MeV) in C isotopes heavier than 15C is found to exhaust about 12 16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50 80 % of the cluster sum rule value.

  8. Free induction decay caused by a dipole field

    NASA Astrophysics Data System (ADS)

    Ziener, C. H.; Kurz, F. T.; Kampf, T.

    2015-03-01

    We analyze the free induction decay of nuclear spins under the influence of restricted diffusion in a magnetic dipole field around cylindrical objects. In contrast to previous publications no restrictions or simplifications concerning the diffusion process are made. By directly solving the Bloch-Torrey equation, analytical expressions for the magnetization are given in terms of an eigenfunction expansion. The field strength-dependent complex nature of the eigenvalue spectrum significantly influences the shape of the free induction decay. As the dipole field is the lowest order of the multipole expansion, the obtained results are important for understanding fundamental mechanisms of spin dephasing in many other applied fields of nuclear magnetic resonance such as biophysics or material science. The analytical methods are applied to interpret the spin dephasing in the free induction decay in cardiac muscle and skeletal muscle. A simple expression for the relevant transverse relaxation time is found in terms of the underlying microscopic parameters of the muscle tissue. The analytical results are in agreement with experimental data. These findings are important for the correct interpretation of magnetic resonance images for clinical diagnosis at all magnetic field strengths and therapy of cardiovascular diseases.

  9. Simple and Inexpensive Classroom Demonstrations of Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

    ERIC Educational Resources Information Center

    Olson, Joel A.; Nordell, Karen J.; Chesnik, Marla A.; Landis, Clark R.; Ellis, Arthur B.; Rzchowski, M. S.; Condren, S. Michael; Lisensky, George C.

    2000-01-01

    Describes a set of simple, inexpensive, classical demonstrations of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) principles that illustrate the resonance condition associated with magnetic dipoles and the dependence of the resonance frequency on environment. (WRM)

  10. On minimal energy dipole moment distributions in regular polygonal agglomerates

    NASA Astrophysics Data System (ADS)

    Rosa, Adriano Possebon; Cunha, Francisco Ricardo; Ceniceros, Hector Daniel

    2017-01-01

    Static, regular polygonal and close-packed clusters of spherical magnetic particles and their energy-minimizing magnetic moments are investigated in a two-dimensional setting. This study focuses on a simple particle system which is solely described by the dipole-dipole interaction energy, both without and in the presence of an in-plane magnetic field. For a regular polygonal structure of n sides with n ≥ 3 , and in the absence of an external field, it is proved rigorously that the magnetic moments given by the roots of unity, i.e. tangential to the polygon, are a minimizer of the dipole-dipole interaction energy. Also, for zero external field, new multiple local minima are discovered for the regular polygonal agglomerates. The number of found local extrema is proportional to [ n / 2 ] and these critical points are characterized by the presence of a pair of magnetic moments with a large deviation from the tangential configuration and whose particles are at least three diameters apart. The changes induced by an in-plane external magnetic field on the minimal energy, tangential configurations are investigated numerically. The two critical fields, which correspond to a crossover with the linear chain minimal energy and with the break-up of the agglomerate, respectively are examined in detail. In particular, the numerical results are compared directly with the asymptotic formulas of Danilov et al. (2012) [23] and a remarkable agreement is found even for moderate to large fields. Finally, three examples of close-packed structures are investigated: a triangle, a centered hexagon, and a 19-particle close packed cluster. The numerical study reveals novel, illuminating characteristics of these compact clusters often seen in ferrofluids. The centered hexagon is energetically favorable to the regular hexagon and the minimal energy for the larger 19-particle cluster is even lower than that of the close packed hexagon. In addition, this larger close packed agglomerate has two

  11. Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Ozeri, Roee; Kimball, Derek F. Jackson

    2015-08-01

    New constraints on exotic dipole-dipole interactions between electrons at the micrometer scale are established, based on a recent measurement of the magnetic interaction between two trapped 88Sr+ ions. For light bosons (mass≤0.1 eV ) we obtain a 90% confidence interval for an axial-vector-mediated interaction strength of |gAegAe/4 π ℏc | ≤1.2 ×10-17 . Assuming C P T invariance, this constraint is compared to that on anomalous electron-positron interactions, derived from positronium hyperfine spectroscopy. We find that the electron-electron constraint is 6 orders of magnitude more stringent than the electron-positron counterpart. Bounds on pseudoscalar-mediated interaction as well as on torsion gravity are also derived and compared with previous work performed at different length scales. Our constraints benefit from the high controllability of the experimental system which contained only two trapped particles. It therefore suggests a useful new platform for exotic particle searches, complementing other experimental efforts.

  12. Trapped-flux internal-dipole superconducting motor/generator.

    SciTech Connect

    Hull, J. R.

    1998-09-03

    A new class of motor/generator (M/G) utilizes the magnetic flux trapping capability of high-temperature superconductors (HTSs). The rotor, consists of a cylindrical shell composed of HTS segments. These segments act as trapped-field magnets, magnetized in such a way that a dipole magnetic field is produced in the interior of the shell. A stator coil assembly is placed in the interior of the shell and current passing through the conductors of the coil produce a rotational torque, either as a hysteresis motor or as a synchronous motor. The coil may be either conventional, with copper wires and an iron core, or composed of superconductors and can be used to establish the trapped fields in the HTSs.

  13. Communication: Permanent dipoles contribute to electric polarization in chiral NMR spectra

    SciTech Connect

    Buckingham, A. David

    2014-01-07

    Nuclear magnetic resonance spectroscopy is blind to chirality because the spectra of a molecule and its mirror image are identical unless the environment is chiral. However, precessing nuclear magnetic moments in chiral molecules in a strong magnetic field induce an electric polarization through the nuclear magnetic shielding polarizability. This effect is equal and opposite for a molecule and its mirror image but is small and has not yet been observed. It is shown that the permanent electric dipole moment of a chiral molecule is partially oriented through the antisymmetric part of the nuclear magnetic shielding tensor, causing the electric dipole to precess with the nuclear magnetic moment and producing a much larger temperature-dependent electric polarization with better prospects of detection.

  14. Nanophotonic control of circular dipole emission

    NASA Astrophysics Data System (ADS)

    Le Feber, B.; Rotenberg, N.; Kuipers, L.

    2015-04-01

    Controlling photon emission by single emitters with nanostructures is crucial for scalable on-chip information processing. Nowadays, nanoresonators can affect the lifetime of linear dipole emitters, while nanoantennas can steer the emission direction. Expanding this control to the emission of orbital angular momentum-changing transitions would enable a future coupling between solid state and photonic qubits. As these transitions are associated with circular dipoles, such control requires knowledge of the interaction of a complex dipole with optical eigenstates containing local helicity. We experimentally map the coupling of classical, circular dipoles to photonic modes in a photonic crystal waveguide. We show that, depending on the combination of the local helicity of the mode and the dipole helicity, circular dipoles can couple to left- or rightwards propagating modes with a near-unity directionality. The experimental maps are in excellent agreement with calculations. Our measurements, therefore, demonstrate the possibility of coupling the spin to photonic pathway.

  15. Electric dipole polarizability from first principles calculations

    NASA Astrophysics Data System (ADS)

    Miorelli, M.; Bacca, S.; Barnea, N.; Hagen, G.; Jansen, G. R.; Orlandini, G.; Papenbrock, T.

    2016-09-01

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In this paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. We find good agreement with data for the 4He,40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.

  16. Electric dipole polarizability from first principles calculations

    SciTech Connect

    Miorelli, M.; Bacca, S.; Barnea, N.; Hagen, G.; Jansen, G. R.; Orlandini, G.; Papenbrock, T.

    2016-09-19

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the 4He, 40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.

  17. Electric dipole polarizability from first principles calculations

    DOE PAGES

    Miorelli, M.; Bacca, S.; Barnea, N.; ...

    2016-09-19

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for themore » 4He, 40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.« less

  18. New experiment to measure the electron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Kittle, M.; Burton, T.; Feeney, L.; Heinzen, D. J.

    2004-05-01

    We are building a new experiment to measure the electric dipole moment (edm) of the electron. The experiment will use laser-cooled Cs atoms trapped in two, side-by-side, standing wave, far-off resonance optical dipole force traps. High voltage electrodes will apply opposite polarity electric fields to the two traps. The signature of an edm would be a first-order electric field shift of the atomic Zeeman levels. The traps will be loaded inside a titanium vacuum chamber with atoms captured in optical molasses from a 2D MOT cold atom source. We have paid special attention to the magnetic noise generated by Johnson noise currents of conductors in the design of this apparatus. The apparatus is designed to be sensitive to an electron edm as small as 10-29 e cm. In this presentation, we will discuss the design of our experiment and our experimental progress.

  19. Multipacting optimization of a 750 MHz rf dipole

    SciTech Connect

    Delayen, Jean R.; Castillo, Alejandro

    2014-12-01

    Crab crossing schemes have been proposed to re-instate luminosity degradation due to crossing angles at the interaction points in next generation colliders to avoid the use of sharp bending magnets and their resulting large synchrotron radiation generation, highly undessirable in the detector region. The rf dipole has been considered for a different set of applications in several machines, both rings and linear colliders. We present in this paper a study of the effects on the multipacting levels and location depending on geometrical variations on the design for a crabbing/deflecting application in a high current (3/0.5 A), high repetition (750 MHz) electron/proton collider, as a matter to provide a comparison point for similar applications of rf dipoles.

  20. Which dipole are you studying in lab?

    NASA Astrophysics Data System (ADS)

    Binder, P.-M.; Tate, Reuben B.; Crowder, Callie K.

    2017-01-01

    We explore the similarities and differences between the electric dipole studied in introductory physics and the purportedly equivalent elementary experiment in which the electric potential is measured on a conductive sheet as a current flows. The former is a three-dimensional electrostatic dipole while the latter is a two-dimensional steady-state dipole. In spite of these differences, and as shown in this work, the potentials due to these dipoles look very similar. This may be misleading to either students or unaware instructors.

  1. Spectral Distortions of the CMB Dipole

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Kholupenko, E. E.; Chluba, J.; Ivanchik, A. V.; Varshalovich, D. A.

    2015-09-01

    We consider the distortions of the cosmic microwave background (CMB) dipole anisotropy related to primordial recombination radiation (PRR) and primordial y- and μ-distortions. The signals arise due to our motion relative to the CMB restframe and appear as a frequency-dependent distortion of the CMB temperature dipole. To leading order, the expected relative distortion of the CMB dipole does not depend on the particular observation directions and reaches the level of 10-6 for the PRR- and μ-distortions and 10-5 for the y-distortion in the frequency range 1-700 GHz. The temperature differences arising from the dipole anisotropy of the relic CMB distortions depend on the observation directions. For mutually opposite directions, collinear to the CMB dipole axis, the temperature differences due to the PRR- and μ-dipole anisotropy attain values {{Δ }}T≃ 10 {nK} in the considered range. The temperature difference arising from the y-dipole anisotropy may reach values of up to 1 μ {{K}}. The key features of the considered effect are as follow: (i) an observation of the effect does not require absolute calibration; (ii) patches of sky with minimal foreground contamination can be chosen. Future measurements of the CMB dipole distortion thus will provide an alternative method for direct detection of the PRR-, y-, and μ-distortions. The y-distortion dipole may be detectable with PIXIE at a few standard deviations.

  2. Hyperfine dipole-dipole broadening of selective reflection spectroscopy at the gas-solid interface

    NASA Astrophysics Data System (ADS)

    Meng, Tengfei; Ji, Zhonghua; Zhao, Yanting; Xiao, Liantuan; Jia, Suotang

    2016-09-01

    We theoretically and experimentally investigate hyperfine dipole-dipole broadening in the selective reflection (SR) spectroscopy at the gas-solid interface with the atomic density of 1014-1015 cm-3. The two-level SR theory considering pump beam and dipole-dipole interaction between excited-state atom and ground-state atom is presented. The numerical simulation of the SR spectrum is in agreement with experimental results. The reduction of spectral width is observed by introducing a pump beam which is an effective technique to improve the resolution of spectroscopy. We analyze the dependence of dipole-dipole broadening on atomic density and pump beam power. This study is helpful for the description of the SR spectroscopy at the gas-solid interface where the Doppler broadening is comparable with dipole-dipole broadening.

  3. Orientation of emitting dipoles of chlorophyll A in thylakoids: considerations on the orientation factor in vivo.

    PubMed Central

    Garab, G I; Kiss, J G; Mustárdy, L A; Michel-Villaz, M

    1981-01-01

    Orientation angles of five emitting dipoles of chlorophyll a in thylakoids were estimated from low temperature fluorescence polarization ratio spectra of magnetically oriented chloroplasts. A simple expression is given also for the evaluation of data from linear dichroism measurements. It is shown that the Qy dipoles of chlorophylls lie more in the plane of the membranes and span a larger angular interval than was previously thought. Values for the orientation factor are calculated using various models corresponding to different degrees of local order of the Qy dipoles of chlorophylls in the thylakoid. We show that the characteristic orientation pattern of the Qy dipoles of chlorophylls in the membrane, i.e., increasing dichroism toward longer wavelengths, may favour energy transfer between the antenna chlorophylls as well as funnel the excitation energy into the reaction centers. Images FIGURE 1 FIGURE 4 PMID:7248470

  4. Quench protection studies of the 11-T Nb3Sn dipole for the LHC upgrade

    DOE PAGES

    Bermudez, Susana Izquierdo; Auchmann, Bernhard; Bajas, Hugues; ...

    2016-06-01

    The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas. Fermilab and CERN are developing an 11 T Nb3Sn dipole to replace some 8.33 T-15-m-long Nb-Ti LHC main dipoles providing longitudinal space for the collimators. In case of a quench, the large stored energy and the low copper stabilizer fraction make the protection of the 11 T Nb3Sn dipoles challenging. This paper presents the results of quench protection analysis, including quench protection heater design and efficiency, quench propagation and coil heating. The numerical results are compared with the experimental data frommore » the 2-m-long Nb3Sn dipole models. Here, the validated model is used to predict the current decay and hot spot temperature under operating conditions in the LHC and the presently foreseen magnet protection scheme is discussed.« less

  5. Interactions between uniformly magnetized spheres

    NASA Astrophysics Data System (ADS)

    Edwards, Boyd F.; Riffe, D. M.; Ji, Jeong-Young; Booth, William A.

    2017-02-01

    We use simple symmetry arguments suitable for undergraduate students to demonstrate that the magnetic energy, forces, and torques between two uniformly magnetized spheres are identical to those between two point magnetic dipoles. These arguments exploit the equivalence of the field outside of a uniformly magnetized sphere with that of a point magnetic dipole, and pertain to spheres of arbitrary sizes, positions, and magnetizations. The point dipole/sphere equivalence for magnetic interactions may be useful in teaching and research, where dipolar approximations for uniformly magnetized spheres can now be considered to be exact. The work was originally motivated by interest in the interactions between collections of small neodymium magnetic spheres used as desk toys.

  6. Dipole Engineering for Conducting Polymers

    NASA Astrophysics Data System (ADS)

    McClain, William Edward

    A method for the growth of a TiO2 adhesion layer on PEDOT:PSS (poly[3,4- ethylenedioxythiophene]: poly[styrenesulfonate]) and for further functionalization with self-assembled monolayers of phosphonates (SAMPs) was developed. The TiO2 adhesion layer was grown via chemical vapor deposition using a titanium(IV) t-butoxide precursor, and was characterized by goniometry and X-ray photoelectron spectroscopy. TiO 2 grown on a model system, H-terminated silicon, indicated that the surface was t-butoxide terminated. Phenylphosphonic acids were synthesized with a variety of molecular dipoles and were used to change the work function of PEDOT:PSS through the formation of an aggregate surface dipole. Good correlation was found between the z-component of the molecular dipole and the change in work function, indicating that the film was well-ordered and dense. The magnitude of the changes in work function and goniometry measurements were similar to measurements on ITO, a substrate on which phosphonates form well-ordered monolayers. As-grown PEDOT:PSS/TiO 2 electrodes showed a lower work function compared to PEDOT:PSS, which is attributed to residual t-butoxide groups on the TiO 2 surface. UPS measurements revealed that reductions in work function in the modified electrodes lowered the difference in energy between the Fermi energy (EF) of the conducting polymer and the LUMO of PCBM ([6,6]-phenyl-C 61-butyric acid methyl ester). A reduction of this energy difference should translate into increased electron injection in electron-only diodes; however, devices with modified electrodes showed decreased current densities. UPS/IPES measurements show that TiO2 grown using this method has a much larger band gap than bulk or nanocrystalline TiO2, which is likely responsible for this decrease in device currents. At high bias, device currents increase dramatically, and the effects of the phosphonates or t-butoxide terminated TiO2 vanish. This is attributed to a reduction of the TiO2 to

  7. Development of a single-layer Nb3Sn common coil dipole model

    SciTech Connect

    Igor Novitski et al.

    2002-12-13

    A high-field dipole magnet based on the common coil design was developed at Fermilab for a future Very Large Hadron Collider. A short model of this magnet with a design field of 11 T in two 40-mm apertures is being fabricated using the react-and-wind technique. In order to study and optimize the magnet design two 165-mm long mechanical models were assembled and tested. A technological model consisting of magnet straight section and ends was also fabricated in order to check the tooling and the winding and assembly procedures. This paper describes the design and technology of the common coil dipole magnet and summarizes the status of short model fabrication.The results of the mechanical model tests and comparison with FE mechanical analysis are also presented.

  8. Radiating dipoles in photonic crystals

    PubMed

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  9. Dipole Relaxation in an Electric Field.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)

  10. High-field dipoles for future accelerators

    SciTech Connect

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.

  11. Nongeocentric axial dipole field behavior during the Mono Lake excursion

    NASA Astrophysics Data System (ADS)

    Negrini, Robert M.; McCuan, Daniel T.; Horton, Robert A.; Lopez, James D.; Cassata, William S.; Channell, James E. T.; Verosub, Kenneth L.; Knott, Jeffrey R.; Coe, Robert S.; Liddicoat, Joseph C.; Lund, Steven P.; Benson, Larry V.; Sarna-Wojcicki, Andrei M.

    2014-04-01

    A new record of the Mono Lake excursion (MLE) is reported from the Summer Lake Basin of Oregon, USA. Sediment magnetic properties indicate magnetite as the magnetization carrier and imply suitability of the sediments as accurate recorders of the magnetic field including relative paleointensity (RPI) variations. The magnitudes and phases of the declination, inclination, and RPI components of the new record correlate well with other coeval but lower resolution records from western North America including records from the Wilson Creek Formation exposed around Mono Lake. The virtual geomagnetic pole (VGP) path of the new record is similar to that from another high-resolution record of the MLE from Ocean Drilling Program (ODP) Site 919 in the Irminger Basin between Iceland and Greenland but different from the VGP path for the Laschamp excursion (LE), including that found lower in the ODP-919 core. Thus, the prominent excursion recorded at Mono Lake, California, is not the LE but rather one that is several thousands of years younger. The MLE VGP path contains clusters, the locations of which coincide with nonaxial dipole features found in the Holocene geomagnetic field. The clusters are occupied in the same time progression by VGPs from Summer Lake and the Irminger Basin, but the phase of occupation is offset, a behavior that suggests time-transgressive decay and return of the principal field components at the beginning and end of the MLE, respectively, leaving the nonaxial dipole features associated with the clusters dominant during the excursion.

  12. The effects of dipole tilt on magnetotail structure and dynamics

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Ashour-Abdalla, Maha; Ogino, Tatsuki

    1989-01-01

    A three-dimensional time-dependent global magnetohydrodynamic (MHD) model of the interaction between the solar wind and the earth's magnetosphere has been used to study the effects of dipole tilt on the structure and dynamics of the magnetotail. The location of the tail neutral sheet shifts in the north-south direction following changes in the dipole tilt. When the northern edge of the geomagnetic dipole is tilted toward the sun (positive tilt), it is above the geocentric solar magnetosphere (GSM) equator, while for negative tilt, it is below. The neutral sheet forms an arc across the tail in the y-z plane for nonzero tilt. For positive tilt, the neutral sheet rises above the GSM equatorial plane near the noon-midnight meridian and returns to the equator near the magnetopause. The position and shape of the neutral sheet result from the requirement that the earthward magnetic flux equals the tailward flux and can be well explained by a simple analytical model.

  13. An apparent paradox concerning the field of an ideal dipole

    NASA Astrophysics Data System (ADS)

    Parker, Edward

    2017-03-01

    The electric or magnetic field of an ideal dipole is known to have a Dirac delta function at the origin. The usual textbook derivation of this delta function is rather ad hoc and cannot be used to calculate the delta-function structure for higher multipole moments. Moreover, a naive application of Gauss’s law to the ideal dipole field appears to give an incorrect expression for the dipole’s effective charge density. We derive a general result for the delta-function structure at the origin of an arbitrary ideal multipole field without using any advanced techniques from distribution theory. We find that the divergence of a singular vector field can contain a derivative of a Dirac delta function even if the field itself does not contain a delta function. We also argue that a physical interpretation of the delta function in the dipole field previously given in the literature is perhaps misleading and may require clarification. Both the explanation of and the resolution to this ‘paradox’ should be accessible to someone who has taken a graduate- or advanced undergraduate-level course in classical electrodynamics.

  14. Dipole oscillator strengths, dipole properties and dispersion energies for SiF4

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Kumar, Mukesh; Meath, William J.

    2003-01-01

    A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silicon tetrafluoride (SiF4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums and mean excitation energies for the molecule. A pseudo-DOSD for SiF4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C6, for the interaction of SiF4 with itself and with 43 other species and the triple-dipole dispersion energy coefficient C9 for (SiF4)3.

  15. Theoretical study of the dipole moment of oxygen monofluoride (OF)

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1983-01-01

    The ground-state potential curve and dipole-moment function of OF are calculated theoretically using the complete active-space self-consistent-field levels, externally contracted configuration-interaction levels, or multireference (singles plus doubles) configuration-interaction levels. Both an extended Gaussian basis set and a double-zeta-plus-polarization basis set were applied. The results are presented in extensive tables and graphs. Best results are achieved using a large Gaussian basis set and taking the valence-correlation energy into account. It is suggested that OF may best be detected by its laser-magnetic-resonance spectrum in the IR.

  16. Smashing magnets

    NASA Astrophysics Data System (ADS)

    Ferrier-Barbut, Igor

    2016-11-01

    Understanding or designing phases of matter relies in the first place on the knowledge at the microscopic level of the interactions taking place between the constituents. In quantum gases, a renewed interest is rising about the interaction between two dipoles, owing to its anisotropic and long-range character. In a new paper, Burdick et al (2016 New J. Phys. 18 113004) demonstrate experimentally the angular-dependence of collisions between two dysprosium atoms, an atomic species that carries a magnetic dipole moment among the largest in the periodic table. This is realized by colliding two 164Dy Bose-Einstein condensates, and the experiments are backed by a theoretical analysis to connect these results with the two-body scattering cross-section. This represents a further step on the way to the full control of dipole-interacting many-body systems.

  17. Historical variation of the geomagnetic axial dipole

    NASA Astrophysics Data System (ADS)

    Finlay, Christopher C.

    2008-09-01

    The geomagnetic axial dipole (hereinafter denoted g10) is the largest component of our planet's magnetic field. Its magnitude determines the morphology of solar-terrestrial electrical current systems and it is the most fundamental diagnostic property of the core-generated geodynamo. Elucidating past and future variations of g10(t) is consequently of central importance in geomagnetism. Previous historical geomagnetic field models, such as gufm1 of Jackson et al. [Jackson, A., Jonkers, A.R.T., Walker, M.R., 2000. Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond. A 358, 957-990], used direct observations to constrain g10(t) only after 1840 A.D.; before this time a crude linear extrapolation of the post-1840 A.D. rate of change (15 nT/year) was employed. In this contribution I construct historical field models with g10(t) instead constrained from 1590 A.D. to 1840 A.D. by an archaeointensity dataset compiled by Korte et al. [Korte, M., Genevey, A., Constable, C.G., Frank, U., Schnepp, E., 2005. Continuous geomagnetic field models for the past 7 millennia. 1. A new global data compilation. Geochem. Geophys. Geosyst. 6, doi:10.1029/2004GC000800]. A range of possible linear models of the form g10(t)=g10(1840)+β(t-1840) are first explored; β=2.74±42.32 nT/year is found to explain the archaeointensity dataset with maximum likelihood, consistent with the recent findings of Gubbins et al. [Gubbins, D., Jones, A.L., Finlay, C.C., 2006. Fall in Earth's magnetic field is erratic. Science 312, 900-902]. Relaxing the linear constraint in an effort to find more physically plausible models, I find it is necessary to artificially increase the weight given to the archaeointensity data in order to obtain acceptable models. Despite satisfactorily explaining both the historical and archaeointensity data, and possessing reasonable spatial and temporal complexity, such free evolution models perform worse than the simpler linearly

  18. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  19. Dumbbell dipole model and its application in UXO discrimination

    NASA Astrophysics Data System (ADS)

    Sun, K.; O'Neill, K.; Barrowes, B. E.; Fernández, J. P.; Shubitidze, F.; Shamatava, I.; Paulsen, K. D.

    2006-05-01

    Electromagnetic Induction (EMI) is one of the most promising techniques for UXO discrimination. Target discrimination is usually formulated as an inverse problem typically requiring fast forward models for efficiency. The most successful and widely applied EMI forward model is the simple dipole model, which works well for simple objects when the observation points are not close to the target. For complicated cases, a single dipole is not sufficient and a number of dipoles (displaced dipoles) has been suggested. However, once more than one dipole is needed, it is difficult to infer a unique set of model parameters from measurement data, which is usually limited. Inspired by the displaced dipole model, we developed the dumbbell dipole model, which consists of a special combination of dipoles. We placed a center dipole and two anti-symmetric side dipoles on the target axis. The center dipole functions like the traditional single dipole model and the two side dipoles provide the non-symmetric response of the target. When the distance between dipoles is small, this model is essentially a dipole plus a quadrupole. The advantage of the dumbbell model is that the model parameters can be inferred more easily from measurement data. The center dipole represents the main response of the target, the side dipoles act as additional backup in case a simple dipole is not sufficient. Regularization terms are applied so that the dumbbell dipole model automatically reduces to the simple dipole model in degenerate cases. Preliminary test shows that the dumbbell model can fit the measurement data better than the simple dipole model, and the inferred model parameters are unique for a given UXO. This suggests that the model parameters can be used as a discriminator for UXO. In this paper the dumbbell dipole model is introduced and its performance is compared with that of both the simple dipole model and the displaced dipole model.

  20. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  1. Magnetic chicane for terahertz management

    DOEpatents

    Benson, Stephen; Biallas, George Herman; Douglas, David; Jordan, Kevin Carl; Neil, George R.; Michelle D. Shinn; Willams, Gwyn P.

    2010-12-28

    The introduction of a magnetic electron beam orbit chicane between the wiggler and the downstream initial bending dipole in an energy recovering Linac alleviates the effects of radiation propagated from the downstream bending dipole that tend to distort the proximate downstream mirror of the optical cavity resonator.

  2. Modeling and Measurements by Hall probes of Magnetic Structures of Undulators HU256

    SciTech Connect

    Batrakov, A.; Churkin, I.; Ilyin, I.; Steshov, A.; Vobly, P.; Briquez, F.; Chubar, O.; Dael, A.; Roux, G.; Valleau, M.

    2007-01-19

    The magnetic calculations of the individual dipoles and dipoles in 'undulator environment' were executed by means of Mermaid 3D Code and these results were confirmed by magnetic measurements of the individual dipoles and the assembled undulators. The magnetic parameters of all dipoles were estimated on basis of the mechanical measurement of the dipole characteristics (pole gap, yoke width, coil position) and the main dependences obtained from magnetic calculations and measurements. These parameters were used for optimal placing of the dipoles in undulators (sorting). The special Hall probe system was designed and manufactured for magnetic measurements of the undulators. It allowed us to observe the inner structure of the magnetic fields. At a magnetic field measurement accuracy of {+-} 15 {mu}T the accuracy of the 1st integral calculated on the basis of the measured magnetic fields is {approx} 50 {mu}Tm. All three undulators were magnetically measured at BINP and are being re-measured at Soleil after transportation.

  3. Dipole strength from first principles calculations

    NASA Astrophysics Data System (ADS)

    Miorelli, Mirko; Bacca, Sonia; Barnea, Nir; Hagen, Gaute; Jansen, Gustav R.; Papenbrock, Thomas; Orlandini, Giuseppina

    2016-09-01

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength. It is related to the proton and neutron distributions of the nucleus, and thereby can be used to constrain the neutron equation of state and the physics of neutron stars. Only recently however, new developments in ab initio methods finally allowed first principles studies of the dipole strength in medium-mass nuclei. Using the Lorentz integral transform coupled cluster method with the newly developed chiral interaction NNLOsat we study the low energy behavior of the dipole strength in 4He, 16O and 22O. For the exotic 22O we observe large contributions to the dipole strength at very low energy, indicating the presence of a pygmy dipole resonance, in agreement with what experimentally found by Leistenschneider et al.. We then study correlations between the electric dipole polarizability and the charge radius in 16O and 40Ca using a variety of realistic Hamiltonians, showing the importance of three-nucleon forces. We aknowledge NRC and NSERC.

  4. A Method to Calculate Protein Dipole Moments

    NASA Astrophysics Data System (ADS)

    Mellor, Brett; Mazzeo, Brian

    2009-10-01

    The electric dipole moments of globular proteins, determined experimentally by dielectric relaxation spectroscopy, contribute to both protein function and structure. Numerical computations of dipole moments can be obtained from structures in the Protein Data Bank. However, previous computations in literature have agreed with experimental results for only a limited number of proteins. This paper presents a method to compute the pH-dependent dipole moment. The protein molecule is considered as an array of electrical point charges in aqueous solution. The dipole moment is calculated as the vector sum of two components: (1)the core dipole moment which emerges from the unequal sharing of electrons in covalent bonds; (2)the surface charge dipole moment resulting from pH-dependent side chain partial charges. pKa shifts for each side chain amino acid are determined by the H++ server employing the Poisson-Boltzmann equation. The net charge and dipole moment over a range of pH are calculated. The Oncley equation is used to predict the dielectric increment at arbitrary pH, temperature, and protein concentration.

  5. Driven assembly with multiaxial fields: Creating a soft mode in assemblies of anisometric induced dipoles

    DOE PAGES

    Martin, James E.; Swol, Frank Van

    2015-07-10

    We show that multiaxial fields can induce time-averaged, noncentrosymmetric interactions between particles having polarization anisotropy, yet the multiaxial field itself does not exert either a force or a torque on an isolated particle. These induced interactions lead to particle assemblies whose energy is strongly dependent on both the translational and orientational degrees of freedom of the system. The situation is similar to a collection of permanent dipoles, but the symmetry of the time-averaged interaction is quite distinct, and the scale of the system energy can be dynamically controlled by the magnitude of the applied multiaxial field. In our paper, themore » case of polarizable rods is considered in detail, and it is suggested that collections of rods embedded in spheres can be used to create a material with a dynamically tunable magnetic permeability or dielectric permittivity. We report on Monte Carlo simulations performed to investigate the behavior of assemblies of both multiaxial-field induced dipoles and permanent dipoles arranged onto two-dimensional lattices. Lastly, the ground state of the induced dipoles is an orientational soft mode of aligned dipoles, whereas that of the permanent dipoles is a vortex state.« less

  6. Driven assembly with multiaxial fields: Creating a soft mode in assemblies of anisometric induced dipoles

    SciTech Connect

    Martin, James E.; Swol, Frank Van

    2015-07-10

    We show that multiaxial fields can induce time-averaged, noncentrosymmetric interactions between particles having polarization anisotropy, yet the multiaxial field itself does not exert either a force or a torque on an isolated particle. These induced interactions lead to particle assemblies whose energy is strongly dependent on both the translational and orientational degrees of freedom of the system. The situation is similar to a collection of permanent dipoles, but the symmetry of the time-averaged interaction is quite distinct, and the scale of the system energy can be dynamically controlled by the magnitude of the applied multiaxial field. In our paper, the case of polarizable rods is considered in detail, and it is suggested that collections of rods embedded in spheres can be used to create a material with a dynamically tunable magnetic permeability or dielectric permittivity. We report on Monte Carlo simulations performed to investigate the behavior of assemblies of both multiaxial-field induced dipoles and permanent dipoles arranged onto two-dimensional lattices. Lastly, the ground state of the induced dipoles is an orientational soft mode of aligned dipoles, whereas that of the permanent dipoles is a vortex state.

  7. Mechanical and electromagnetic analysis of 50 millimeter designs for the SSC dipole

    SciTech Connect

    Jayakumar, J.; Leung, K.; Nobrega, F.; Orrell, D.; Sanger, P.; Snitchler, G.; Spigo, G.; Turner, J. ); Goodzeit, C.; Gupta, R.; Kahn, S.; Morgan, G.; Willen, E. ); Kerby, J.; Strait, J. ); Schermer, R. (Lawrence Berkeley Lab., CA (Uni

    1990-09-01

    Several designs for the Superconducting Super Collider dipole magnet have been analyzed. This note discusses the mechanical and electromagnetic features of each design. Electromagnetic and Mechanical analyses were performed using hand, computer programs and finite element techniques to evaluate the design. 10 refs., 6 figs., 3 tabs.

  8. Formation number for vortex dipoles

    NASA Astrophysics Data System (ADS)

    Sadri, Vahid; Krueger, Paul S.

    2016-11-01

    This investigation considers the axisymmetric formation of two opposite sign concentric vortex rings from jet ejection between concentric cylinders. This arrangement is similar to planar flow in that the vortex rings will travel together when the gap between the cylinders is small, similar to a vortex dipole, but it has the advantage that the vortex motion is less constrained than the planar case (vortex stretching and vortex line curvature is allowed). The flow was simulated numerically at a jet Reynolds number of 1,000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio (L / ΔR) in the range 10-20, and gap-to-outer radius ratio (ΔR /Ro) in the range 0.01-0.1. Small gap ratios were chosen for comparison with 2D results. In contrast with 2D results, the closely paired vortices in this study exhibited pinch-off from the generating flow and finite formation numbers. The more complex flow evolution afforded by the axisymmetric model and its influence on the pinch-off process will be discussed. This material is based on work supported by the National Science Foundation under Grant No. 1133876 and SMU. This supports are gratefully acknowledged.

  9. Coupled and uncoupled dipole models of nonlinear scattering.

    PubMed

    Balla, Naveen K; Yew, Elijah Y S; Sheppard, Colin J R; So, Peter T C

    2012-11-05

    Dipole models are one of the simplest numerical models to understand nonlinear scattering. Existing dipole model for second harmonic generation, third harmonic generation and coherent anti-Stokes Raman scattering assume that the dipoles which make up a scatterer do not interact with one another. Thus, this dipole model can be called the uncoupled dipole model. This dipole model is not sufficient to describe the effects of refractive index of a scatterer or to describe scattering at the edges of a scatterer. Taking into account the interaction between dipoles overcomes these short comings of the uncoupled dipole model. Coupled dipole model has been primarily used for linear scattering studies but it can be extended to predict nonlinear scattering. The coupled and uncoupled dipole models have been compared to highlight their differences. Results of nonlinear scattering predicted by coupled dipole model agree well with previously reported experimental results.

  10. Effect of electromagnetic dipole dark matter on energy transport in the solar interior

    NASA Astrophysics Data System (ADS)

    Geytenbeek, Ben; Rao, Soumya; Scott, Pat; Serenelli, Aldo; Vincent, Aaron C.; White, Martin; Williams, Anthony G.

    2017-03-01

    In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or an anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with an anapole moment of ~ 1 GeV‑2 or magnetic dipole moment of ~ 10‑3μp can improve the sound-speed profile, small frequency separations and convective zone radius with respect to the Standard Solar Model. However, the required dipole moments are strongly excluded by direct detection experiments.

  11. Classification of Uxo by Principal Dipole Polarizability

    NASA Astrophysics Data System (ADS)

    Kappler, K. N.

    2010-12-01

    Data acquired by multiple-Transmitter, multiple-receiver time-domain electromagnetic devices show great potential for determining the geometric and compositional information relating to near surface conductive targets. Here is presented an analysis of data from one such system; the Berkeley Unexploded-ordnance Discriminator (BUD) system. BUD data are succinctly reduced by processing the multi-static data matrices to obtain magnetic dipole polarizability matrices for data from each time gate. When viewed over all time gates, the projections of the data onto the principal polar axes yield so-called polarizability curves. These curves are especially well suited to discriminating between subsurface conductivity anomalies which correspond to objects of rotational symmetry and irregularly shaped objects. The curves have previously been successfully employed as library elements in a pattern recognition scheme aimed at discriminating harmless scrap metal from dangerous intact unexploded ordnance. However, previous polarizability-curve matching methods have only been applied at field sites which are known a priori to be contaminated by a single type of ordnance, and furthermore, the particular ordnance present in the subsurface was known to be large. Thus signal amplitude was a key element in the discrimination process. The work presented here applies feature-based pattern classification techniques to BUD field data where more than 20 categories of object are present. Data soundings from a calibration grid at the Yuma, AZ proving ground are used in a cross validation study to calibrate the pattern recognition method. The resultant method is then applied to a Blind Test Grid. Results indicate that when lone UXO are present and SNR is reasonably high, Polarizability Curve Matching successfully discriminates UXO from scrap metal when a broad range of objects are present.

  12. Field quality of the Fermilab NB3SN cos-theta dipole models

    SciTech Connect

    E. Barzi et al.

    2002-06-28

    Three short Nb{sub 3}Sn dipole models based on a single-bore cos-theta coil and a cold iron yoke have been fabricated and tested at Fermilab. This paper summarizes the results of magnetic measurements in those models. The geometrical harmonics, coil magnetization effects, cable eddy currents with and without a stainless steel core, and the ''snap-back'' effect at injection are presented.

  13. Dipole-dipole induced global motion of Rydberg-dressed atom clouds

    NASA Astrophysics Data System (ADS)

    Genkin, M.; Wüster, S.; Möbius, S.; Eisfeld, A.; Rost, J. M.

    2014-05-01

    We consider two clouds of ground-state alkali atoms in two distinct hyperfine ground states. Each level is far off-resonantly coupled to a Rydberg state, which leads to dressed ground states with a weak admixture of the Rydberg state properties. Due to this admixture, for a proper choice of the Rydberg states, the atoms experience resonant dipole-dipole interactions that induce mechanical forces acting on all atoms within both clouds. This behaviour is in contrast to the dynamics predicted for bare dipole-dipole interactions between Rydberg superatoms, where only a single atom per cloud is subject to dipole-dipole induced motion (Möbius et al 2013 Phys. Rev. A 88 012716).

  14. OPEN MIDPLANE DIPOLE DESIGN FOR LHC IR UPGRADE.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; SCHMALZLE,J.; MOKHOV,N.

    2004-01-21

    The proposed luminosity upgrade of the Large Hadron Collider (LHC), now under construction, will bring a large increase in the number of secondary particles from p-p collisions at the interaction point (IP). Energy deposition will be so large that the lifetime and quench performance of interaction region (IR) magnets may be significantly reduced if conventional designs are used. Moreover, the cryogenic capacity of the LHC will have to be significantly increased as the energy deposition load on the interaction region (IR) magnets by itself will exhaust the present capacity. We propose an alternate open midplane dipole design concept for the dipole-first optics that mitigates these issues. The proposed design takes advantage of the fact that most of the energy is deposited in the midplane region. The coil midplane region is kept free of superconductor, support structure and other material. Initial energy deposition calculations show that the increase in temperature remains within the quench tolerance of the superconducting coils. In addition, most of the energy is deposited in a relatively warm region where the heat removal is economical. We present the basic concept and preliminary design that includes several innovations.

  15. Superconducting combined function magnets

    SciTech Connect

    Hahn, H.; Fernow, R.C.

    1983-01-01

    Superconducting accelerators and storage rings, presently under construction or in the design phase, are based on separate dipole and quadrupole magnets. It is here suggested that a hybrid lattice configuration consisting of dipoles and combined function gradient magnets would: (1) reduce the number of magnet units and their total cost; and (2) increase the filling factor and thus the energy at a given field. Coil cross sections are presented for the example of the Brookhaven Colliding Beam Accelerator. An asymmetric two-layer cable gradient magnet would have transfer functions of 10.42 G/A and 0.628 G cm/sup -1//A versus 15.77 G/A and 2.03 G cm/sup -1//A of the present separate dipoles and quadrupoles.

  16. Evidence for a magnetic Seebeck effect.

    PubMed

    Brechet, Sylvain D; Vetro, Francesco A; Papa, Elisa; Barnes, Stewart E; Ansermet, Jean-Philippe

    2013-08-23

    The irreversible thermodynamics of a continuous medium with magnetic dipoles predicts that a temperature gradient in the presence of magnetization waves induces a magnetic induction field, which is the magnetic analog of the Seebeck effect. This thermal gradient modulates the precession and relaxation. The magnetic Seebeck effect implies that magnetization waves propagating in the direction of the temperature gradient and the external magnetic induction field are less attenuated, while magnetization waves propagating in the opposite direction are more attenuated.

  17. On the dipole moment of CO/+/.

    NASA Technical Reports Server (NTRS)

    Certain, P. R.; Woods, R. C.

    1973-01-01

    Results of self-consistent field calculations on neutral CO, its positive ion, and on neutral CN to verify an earlier estimate of the dipole moment of CO(+) in its ground super 2 Sigma state. Based on the above-mentioned calculations, direct evidence is obtained that the dipole moment (relative to the center of mass) is approximately 2.5 plus or minus 0.5 C, as previously determined by Kopelman and Klemperer (1962).

  18. LOG PERIODIC DIPOLE ARRAY WITH PARASITIC ELEMENTS

    DTIC Science & Technology

    The design and measured characteristics of dipole and monopole versions of a log periodic array with parasitic elements are discussed. In a dipole...for the elements to obtain log periodic performance of the anntenna. This design with parasitic elements lends itself to a monopole version of the...antenna which has a simplified feeding configuration. The result is a log periodic antenna design that can be used from high frequencies through microwave frequencies.

  19. Dipole-moment-driven cooperative supramolecular polymerization.

    PubMed

    Kulkarni, Chidambar; Bejagam, Karteek K; Senanayak, Satyaprasad P; Narayan, K S; Balasubramanian, S; George, Subi J

    2015-03-25

    While the mechanism of self-assembly of π-conjugated molecules has been well studied to gain control over the structure and functionality of supramolecular polymers, the intermolecular interactions underpinning it are poorly understood. Here, we study the mechanism of self-assembly of perylene bisimide derivatives possessing dipolar carbonate groups as linkers. It was observed that the combination of carbonate linkers and cholesterol/dihydrocholesterol self-assembling moieties led to a cooperative mechanism of self-assembly. Atomistic molecular dynamics simulations of an assembly in explicit solvent strongly suggest that the dipole-dipole interaction between the carbonate groups imparts a macro-dipolar character to the assembly. This is confirmed experimentally through the observation of a significant polarization in the bulk phase for molecules following a cooperative mechanism. The cooperativity is attributed to the presence of dipole-dipole interaction in the assembly. Thus, anisotropic long-range intermolecular interactions such as dipole-dipole interaction can serve as a way to obtain cooperative self-assembly and aid in rationalizing and predicting the mechanisms in various synthetic supramolecular polymers.

  20. Superconducting multipole corrector magnet

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2004-10-01

    A novel concept of superconducting multipole corrector magnet is discussed. This magnet assembled from 12 identical racetrack type coils and can generate any combination of dipole, quadrupole and sextupole magnetic fields. The coil groups are powered from separate power supplies. In the case of normal dipole, quadrupole and sextupole fields the total field is symmetrical relatively the magnet median plane and there are only five powered separately coil groups. This type multipole corrector magnet was proposed for BTeV, Fermilab project and has following advantages: universal configuration, simple manufacturing and high mechanical stability. The results of magnetic design including the field quality and magnetic forces in comparison with known shell type superconducting correctors are presented.

  1. A Nb sub 3 Sn high field dipole

    SciTech Connect

    McClusky, R.; Robins, K.E.; Sampson, W.B.

    1990-01-01

    A dipole magnet approximately 1 meter long with an 8 cm bore has been fabricated from cable made from Nb{sub 3}Sn multifilamentary strands. The coil consists of four layers of conductor wound in pairs to eliminate internal joints. Each set of layers is separately constrained with Kevlar-epoxy bands and the complete assembly clamped in a split laminated iron yoke. The inner coil pairs were wound before heat treating while the outer coils were formed from pre-reacted cable using conventional insulation. A NbTi version of the magnet was fabricated using SSC version of the magnet was fabricated using SSC conductor to test the construction techniques. This magnet reached a maximum central field of 7.6 Tesla, at 4.4K which is very close to the limit estimated from conductor measurements. The Nb{sub 3}Sn magnet, however, only reached a maximum field at 8.1T considerably short of the field expected from measurements on the inner cable. 7 refs., 5 figs.

  2. PERSISTENT CURRENT EFFECT IN 15-16 T NB3SN ACCELERATOR DIPOLES AND ITS CORRECTION

    SciTech Connect

    Kashikhin, V. V.; Zlobin, A. V.

    2016-11-08

    Nb3Sn magnets with operating fields of 15-16 T are considered for the LHC Energy Doubler and a future Very High Energy pp Collider. Due to large coil volume, high critical current density and large superconducting (SC) filament size the persistent current effect is very large in Nb3Sn dipoles al low fields. This paper presents the results of analysis of the persistent current effect in the 15 T Nb3Sn dipole demonstrator being developed at FNAL, and describes different possibilities of its correction including passive SC wires, iron shims and coil geometry.

  3. Micromagnetic simulations of interacting dipoles on an fcc lattice: application to nanoparticle assemblies.

    PubMed

    Plumer, M L; van Lierop, J; Southern, B W; Whitehead, J P

    2010-07-28

    Micromagnetic simulations are used to examine the effects of cubic and axial anisotropy, magnetostatic interactions and temperature on M-H loops for a collection of magnetic dipoles on fcc and sc lattices. We employ a simple model of interacting dipoles that represent single-domain particles in an attempt to explain recent experimental data on ordered arrays of magnetoferritin nanoparticles that demonstrate the crucial role of interactions between particles in an fcc lattice. Significant agreement between the simulation and experimental results is achieved, and the impact of intra-particle degrees of freedom and surface effects on thermal fluctuations is investigated.

  4. QED vacuum fluctuations and induced electric dipole moment of the neutron

    SciTech Connect

    Dominguez, C. A.; Falomir, H.; Ipinza, M.; Loewe, M.; Kohler, S.; Rojas, J. C.

    2009-08-01

    Quantum fluctuations in the QED vacuum generate nonlinear effects, such as peculiar induced electromagnetic fields. In particular, we show here that an electrically neutral particle, possessing a magnetic dipole moment, develops an induced electric dipole-type moment with unusual angular dependence, when immersed in a quasistatic, constant external electric field. The calculation of this effect is done in the framework of the Euler-Heisenberg effective QED Lagrangian, corresponding to the weak field asymptotic expansion of the effective action to one-loop order. It is argued that the neutron might be a good candidate to probe this signal of nonlinearity in QED.

  5. Dipole-dipole interactions in the computational micromagnetism of iron (1955-2010) (invited)

    NASA Astrophysics Data System (ADS)

    Arrott, Anthony S.

    2011-04-01

    Basic treatment of magnetically soft ferromagnetic metals has been a long struggle during the 55 years of the MMM conferences. At the first conference, Charles Bean brought on stage a four-foot-long mechanical analog of a domain wall. Landau, twenty years earlier had shown that the wall exists to minimize the magnetostatic self-energy of the dipole moments that accompany the spins responsible for ferromagnetism, but no one could calculate the energy of the simple structure that Landau used to illustrate his conjecture. The structure itself was not adequately described. Today, computer programs use the full power of micromagnetics to properly describe the vortex structure that was hidden in Landau's model. Vortices terminate in swirls that can be manipulated by small bias fields (mT) or currents (mA). The swirls carry external fields of 0.5 T and can oscillate (driven or freely) over distances of tens of nm in times of tenths of ns, providing new tools for scientific and technical advances on the atomic scale. That this could have been overlooked for so long is evidence of the difficulty of visualizing the consequence of what for all these years has been called the pole-avoidance principle.

  6. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  7. Flute instability in the tandem mirror with the divertor/dipole regions

    SciTech Connect

    Katanuma, I.; Masaki, S.; Sato, S.; Sekiya, K.; Ichimura, M.; Imai, T.

    2011-11-15

    The numerical simulation is performed in GAMMA10 A-divertor magnetic configuration, which is a candidate of remodeled device of the GAMMA10 tandem mirror [M. Inutake et al., Phys. Rev. Lett. 55, 939 (1985)]. Both divertor and dipole regions are included in the numerical calculation, which is a new point. The electron short circuit effect along x-point, therefore, is not assumed so that it is not used the boundary condition of the electrostatic perturbations being zero at the separatrix on which the magnetic field lines pass through x-point. The simulation results reveal that the dipole field plays a role of a good magnetic field line curvature to the GAMMA10 A-divertor, and so the flute modes are stabilized without help of electron short circuit effects.

  8. Design and Fabrication of a Single-Aperture 11T Nb3Sn Dipole Model for LHC Upgrades

    SciTech Connect

    Andreev, N.; Apollinari, G.; Barzi, E.; Bossert, R.; Nobrega, F.; Novitski, I.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Auchmann, B.; Karppinen, M.; /CERN

    2011-11-28

    The planned upgrade of the LHC collimation system includes additional collimators to be installed in the dispersion suppressor areas of points 2, 3 and 7. To provide the necessary longitudinal space for the collimators, a replacement of 8.33 T Nb-Ti LHC main dipoles with 11 T dipoles based on Nb{sub 3}Sn superconductor compatible with the LHC lattice and main systems is being considered. To demonstrate this possibility FNAL and CERN have started a joint program to develop a 2 m long single-aperture dipole magnet with the nominal field of 11 T at {approx}11.85 kA current and 60 mm bore. This paper describes the demonstrator magnet magnetic and mechanical designs and analysis, coil fabrication procedure. The Nb{sub 3}Sn strand and cable parameters and test results are also reported.

  9. Reflection/transmission calculation of complex particle slabs for normal incidence through dipole approximation

    NASA Astrophysics Data System (ADS)

    Karamanos, Theodosios; Papadimopoulos, Athanasios; Kantartzis, Nikolaos; Tsiboukis, Theodoros

    2017-01-01

    The computation of the reflection/transmission coefficients from normally illuminated bianisotropic metamaterial slabs through a rigorous method is presented in this paper. The bianisotropic particles that compose finite slabs are approximated as electric and magnetic dipoles. Modeling these slabs as a succession of 2D arrays, the interaction of all dipoles is described via Green's function series, for a given wave illumination on each array, and the excited dipole moments are obtained by the resulting linear system. Finally, the reflection/transmission coefficients are derived in terms of summing the scattering from the equivalent surfaces that comprise the slab. The new algorithm is applied to a bianisotropic and a complicated chiral particle, while all results are compared to numerically simulated ones.

  10. Direct summation of dipole-dipole interactions using the Wolf formalism.

    PubMed

    Stenqvist, Björn; Trulsson, Martin; Abrikosov, Alexei I; Lund, Mikael

    2015-07-07

    We present an expanded Wolf formalism for direct summation of long-range dipole-dipole interactions and rule-of-thumbs how to choose optimal spherical cutoff (Rc) and damping parameter (α). This is done by comparing liquid radial distribution functions, dipole-dipole orientation correlations, particle energies, and dielectric constants, with Ewald sums and the Reaction field method. The resulting rule states that ασ < 1 and αRc > 3 for reduced densities around ρ(∗) = 1 where σ is the particle size. Being a pair potential, the presented approach scales linearly with system size and is applicable to simulations involving point dipoles such as the Stockmayer fluid and polarizable water models.

  11. Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism

    NASA Astrophysics Data System (ADS)

    Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang

    Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.

  12. Electric dipole transition moments and permanent dipole moments for spin-orbit configuration interaction wave functions

    NASA Astrophysics Data System (ADS)

    Roostaei, B.; Ermler, W. C.

    2012-03-01

    A procedure for calculating electric dipole transition moments and permanent dipole moments from spin-orbit configuration interaction (SOCI) wave functions has been developed in the context of the COLUMBUS ab initio electronic structure programs. The SOCI procedure requires relativistic effective core potentials and their corresponding spin-orbit coupling operators to define the molecular Hamiltonian, electric dipole transition moment and permanent dipole moment matrices. The procedure can be used for any molecular system for which the COLUMBUS SOCI circuits are applicable. Example applications are reported for transition moments and dipole moments for a series of electronic states of LiBe and LiSr defined in diatomic relativistic ωω-coupling.

  13. A search for the electric dipole of the electron

    SciTech Connect

    Abdullah, K.F.

    1989-08-01

    We report a new upper limit on the electric dipole moment (EDM) of the electron of d{sub e} = 0.1 {plus minus} 3.2 {times} 10{sup {minus}26} e-cm. This precision is one hundred times better than any previously published limit and a factor of two better than that of unofficial reports. Recently there has been a great deal of theoretical interest in the possibility of a non-zero electron EDM. Models such as the left-right-symmetric Standard Model and an off-standard'' model with new heavy neutrinos are constrained by the new limit on d{sub e}. A non-zero electron EDM would violate the time reversal and parity space-time symmetries. T-violation was observed in neutral kaon decay and is still not fully explained by the Standard Model. Our experimental technique involves searching for an energy shift, linear in applied electric field, between the m{sub F} = 1 and m{sub F} = {minus}1 magnetic sublevels of the F=1 hyperfine level of the 6{sup 2}P{sub 1/2} ground state of atomic thallium. If the electron has a non-zero EDM, this thallium state will exhibit an atomic electric dipole moment that is roughly 600 times larger. The energy shift is detected with the technique of magnetic resonance spectroscopy, employing separated oscillating fields, applied to an atomic beam of thallium. In the approach, any relative phase-shift between the m{sub F} = {plus minus}1 components of the F=1 wavefunction acquired by the atom as it travels through an electric field is detected through interference with two separate oscillating magnetic fields located on either side of the electric field. The new level of precision is achieved through several improvements on previous experiments including employment of a vertical apparatus, two opposing atomic beams, and optical pumping for atomic state selection and analysis.

  14. Controllable Nanoparticle Assembly and Actuation with Modified Dipole Potentials in Simulation

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua

    fixed. This theory reveals that the chains are good candidates for contracting muscles in microscopic devices with a conveniently harmonic form for their potentials. Ensembles of free chains can be put to more elaborate uses. To illustrate, a regime is designed that spins the chains into a self-healing cross-linked gel. Finally, we will turn to self-replication. Decorating a permanent dipole with a single permanent binding site is enough to enable self-replication using dimers as the template. A periodic magnetic drive provides the energy to drive replication. Several theoretical principles regarding the statistics of linear self-replicators are deduced and used to optimize the dipole replicating system.

  15. A simple stochastic model for dipole moment fluctuations in numerical dynamo simulations

    NASA Astrophysics Data System (ADS)

    Meduri, Domenico G.; Wicht, Johannes

    2016-04-01

    Earth's axial dipole field changes in a complex fashion on many different time scales ranging from less than a year to tens of million years. Documenting, analysing, and replicating this intricate signal is a challenge for data acquisition, theoretical interpretation, and dynamo modelling alike. Here we explore whether axial dipole variations can be described by the superposition of a slow deterministic drift and fast stochastic fluctuations, i.e. by a Langevin-type system. The drift term describes the time averaged behaviour of the axial dipole variations, whereas the stochastic part mimics complex flow interactions over convective time scales. The statistical behaviour of the system is described by a Fokker-Planck equation which allows useful predictions, including the average rates of dipole reversals and excursions. We analyse several numerical dynamo simulations, most of which have been integrated particularly long in time, and also the palaeomagnetic model PADM2M which covers the past 2 Myr. The results show that the Langevin description provides a viable statistical model of the axial dipole variations on time scales longer than about 1 kyr. For example, the axial dipole probability distribution and the average reversal rate are successfully predicted. The exception is PADM2M where the stochastic model reversal rate seems too low. The dependence of the drift on the axial dipole moment reveals the nonlinear interactions that establish the dynamo balance. A separate analysis of inductive and diffusive magnetic effects in three dynamo simulations suggests that the classical quadratic quenching of induction predicted by mean-field theory seems at work.

  16. Harmonic strengths of PEP dipoles and some related effects and lessons

    SciTech Connect

    Spencer, J.E.

    1981-09-01

    The harmonic content of magnets such as the standard PEP bend is (among other things) a function of excitation current, the way the current is set and even the magnetization history. For instance, harmonic strengths generally vary not only with the magnitude of the current but the direction and rate at which the current is approached and set. The field distribution resulting from different procedures can vary markedly depending on both the mechanical and magnetic design and the degree to which eddy current effects are emphasized. Variations among magnets of the same design result from variations in the iron as well as overall magnet fabrication procedures. Because the field distribution may also depend in the previous history of a magnet, all PEP dipoles were subjected to what are called ''magnetization'' and ''standardization'' cycles before measurement---the latter depending on the former and intended to set the initial conditions of the magnet to a reproducible standard. The primary goal of the magnetic measurements was then to determine the dipole strength as a function of current for each magnet based on a practical setting algorithm. The main constraints on the algorithm were reproducibility of the integrated field, speed, power and reduction of higher harmonics. Quadrupole and sextupole strengths were also measured on about one-half of the magnets at one current. This note presents the data and discusses it from the the viewpoint of subsequent measurements with stored beams. The most important conclusion is that inability to fully distribute laminations according to heat number and/or strike number results in ''magnetic personalities'' among the magnets which are quite difficult to deal with afterwards although one can distribute ''non-standard'' magnets to minimize orbit distributions. 26 refs., 8 figs., 3 tabs.

  17. Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms

    NASA Astrophysics Data System (ADS)

    Frisch, A.; Mark, M.; Aikawa, K.; Baier, S.; Grimm, R.; Petrov, A.; Kotochigova, S.; Quéméner, G.; Lepers, M.; Dulieu, O.; Ferlaino, F.

    2015-11-01

    In a combined experimental and theoretical effort, we demonstrate a novel type of dipolar system made of ultracold bosonic dipolar molecules with large magnetic dipole moments. Our dipolar molecules are formed in weakly bound Feshbach molecular states from a sample of strongly magnetic bosonic erbium atoms. We show that the ultracold magnetic molecules can carry very large dipole moments and we demonstrate how to create and characterize them, and how to change their orientation. Finally, we confirm that the relaxation rates of molecules in a quasi-two-dimensional geometry can be reduced by using the anisotropy of the dipole-dipole interaction and that this reduction follows a universal dipolar behavior.

  18. Helical dipole partial Siberian snake for the AGS

    NASA Astrophysics Data System (ADS)

    Takano, J.; Ahrens, L. A.; Alforque, R.; Bai, M.; Brown, K.; Courant, E. D.; Ganetis, G.; Gardner, C. J.; Glenn, J. W.; Hattori, T.; Huang, H.; Jain, A.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Roser, T.; Tsoupas, N.; Tepikian, S.; Tuozzolo, J.; Wood, J.; Zelenski, A.; Zeno, K.

    2006-11-01

    Overcoming depolarization resonances in medium class synchrotrons (3 to 50 GeV) is one of the key issues in accelerating a highly polarized proton beam up to very high energies. Since such synchrotrons, including the Alternating Gradient Synchrotron (AGS) and the J-PARC Main Ring, generally do not have sufficiently long straight sections to accommodate full Siberian snakes with reasonable beam excursions, the practical solution is to use partial Siberian snakes that rotate the particle spin about a horizontal axis by a fraction of 180 degrees. For the AGS, we designed and installed a new partial Siberian snake consisting of a helical dipole magnet with a double pitch structure. The helical structure reduced the amount of transverse coupling as compared to that achieved by the previous solenoidal partial snake. This coupling led to partial depolarization at certain energies from horizontal betatron oscillations. The helical magnetic field in the snake magnet was calculated using a 3D magnetic field code TOSCA, and was optimized by segmenting the helical pitch and varying the lengths of the segments. Fabrication errors were checked and verified to be within required tolerances. Finally, the transverse field was measured by rotating harmonic coils. After installation, we achieved a 37.5% improvement in polarization - from 40% with the old solenoid to 55% with the new helical snake, thereby demonstrating that the helical partial snake is an effective device to suppress depolarization resonances in medium-sized synchrotrons.

  19. Geomagnetic dipole strength and reversal rate over the past two million years.

    PubMed

    Valet, Jean-Pierre; Meynadier, Laure; Guyodo, Yohan

    2005-06-09

    Independent records of relative magnetic palaeointensity from sediment cores in different areas of the world can be stacked together to extract the evolution of the geomagnetic dipole moment and thus provide information regarding the processes governing the geodynamo. So far, this procedure has been limited to the past 800,000 years (800 kyr; ref. 3), which does not include any geomagnetic reversals. Here we present a composite curve that shows the evolution of the dipole moment during the past two million years. This reconstruction is in good agreement with the absolute dipole moments derived from volcanic lavas, which were used for calibration. We show that, at least during this period, the time-averaged field was higher during periods without reversals but the amplitude of the short-term oscillations remained the same. As a consequence, few intervals of very low intensity, and thus fewer instabilities, are expected during periods with a strong average dipole moment, whereas more excursions and reversals are expected during periods of weak field intensity. We also observe that the axial dipole begins to decay 60-80 kyr before reversals, but rebuilds itself in the opposite direction in only a few thousand years.

  20. Report on Modifications to the BX12 and BX13 BC1 Dipoles

    SciTech Connect

    Welch, James; DeBarge, S.; Emma, P.; Fisher, A.; Li, N.; Wu, J.; /SLAC

    2010-11-23

    Emittance growth seen during the last commissioning run in the bunch compressor optics section, BC1, was blamed on inadequate dipole field quality. The significant linear and nonlinear field non-uniformities generated large horizontal dispersion errors beyond BC1. The linear dispersion after BC1 was corrected using two small 'corrector' quadrupoles placed in BC1 for this purpose, but the remaining nonlinear field caused growth of the normalized horizontal emittance of 40% or more. At best {gamma}{epsilon}{sub x} went from 1.2 {micro}m before BC1 up to 1.7 {micro}m after BC1. The problem was magnified by the larger-than-design energy spread in BC1 due to a long initial bunch length. To improve the field quality we decided to modify the two 'inner dipoles', BX12 and BX13, of the four magnet chicane during the four month down time in the Fall of 2007. Only the two inner dipoles were chosen because of the limited time available and the fact that the beam is particularly sensitive to field quality of the inner dipoles due to its very large transverse size when going through them. The modifications were completed in November and included new poles and a new pinning scheme. The outer dipoles were left unchanged.

  1. Gluon structure function of a color dipole in the light-cone limit of lattice QCD

    SciTech Connect

    Gruenewald, D.; Ilgenfritz, E.-M.; Pirner, H. J.

    2009-10-01

    We calculate the gluon structure function of a color dipole in near-light-cone SU(2) lattice QCD as a function of x{sub B}. The quark and antiquark are external nondynamical degrees of freedom which act as sources of the gluon string configuration defining the dipole. We compute the color dipole matrix element of transversal chromo-electric and chromo-magnetic field operators separated along a direction close to the light cone, the Fourier transform of which is the gluon structure function. As vacuum state in the pure glue sector, we use a variational ground state of the near-light-cone Hamiltonian. We derive a recursion relation for the gluon structure function on the lattice similar to the perturbative Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation. It depends on the number of transversal links assembling the Schwinger string of the dipole. Fixing the mean momentum fraction of the gluons to the 'experimental value' in a proton, we compare our gluon structure function for a dipole state with four links with the next-to-leading-order MRST 2002 and the CTEQ AB-0 parametrizations at Q{sup 2}=1.5 GeV{sup 2}. Within the systematic uncertainty we find rather good agreement. We also discuss the low x{sub B} behavior of the gluon structure function in our model calculation.

  2. Elementary quantum mechanics of the neutron with an electric dipole moment.

    PubMed

    Baym, Gordon; Beck, D H

    2016-07-05

    The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, [Formula: see text], is not constrained to lie along the spin operator. Although the expectation value of [Formula: see text] in the neutron is less than [Formula: see text] of the neutron radius, [Formula: see text], the expectation value of [Formula: see text] is of order [Formula: see text] We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron.

  3. Elementary quantum mechanics of the neutron with an electric dipole moment

    PubMed Central

    Baym, Gordon; Beck, D. H.

    2016-01-01

    The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, D→, is not constrained to lie along the spin operator. Although the expectation value of D→ in the neutron is less than 10−13 of the neutron radius, rn, the expectation value of D→ 2 is of order rn2. We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron. PMID:27325765

  4. Sound scattering by a vortex dipole.

    PubMed

    Naugolnykh, Konstantin

    2013-04-01

    Sound scattering by a system of two counter-rotating vortices (Lamb dipole) is considered, using the effective approach of Pitaevskii [J. Exp. Theor. Phys (USSR) 35, 1271-1275 (1958); Sov. Phys. JETP 85, 888-890 (1959)], based on application of the asymptotic representation of the scattering Green function, the Dirac delta function modeling of the vortex, and the Fourier transformation of the vector of scattering. The sound frequency is supposed to be low. The directivity pattern of the radiation, scattered by the Lamb dipole is obtained. There is no singularity in scattering field in this case as it must be for the vorticity with zero circulation, so the dipole is a more appropriate object for the approximation used.

  5. Bunched beam longitudinal instability: Coherent dipole motion

    SciTech Connect

    Zhang, S.Y.; Weng, W.T.

    1993-04-23

    In this paper, the authors present a new formulation for the longitudinal coherent dipole motion, where a quadrature response of the environmental impedance is shown to be the effective longitudinal impedance for the beam instability. The Robinson-Pedersen formulation for the longitudinal dipole motion is also presented, the difference of the two approaches is discussed in the comparison. The results by using the Sacherer integral equation for the coherent dipole motion can generate the same results as by using the other two approaches, except for a scaling difference. The formulation is further generalized to the rigid bunch motion using signal analysis method, where a form factor shows up naturally. Finally, the formulation is applied to solve the coupled bunch instabilities. Examples of the AGS Booster and the AGS coupled bunch instabilities are used to illustrate the applications of the formulation.

  6. Thermodynamics of systems of aligned dipoles

    NASA Astrophysics Data System (ADS)

    Daily, K. M.; Blume, D.

    2013-05-01

    The high-temperature thermodynamics of two-component Fermi gases with interspecies s-wave scattering length is well described by the virial equation of state. This work determines the virial equation of state of weakly-interacting dipolar Bose and Fermi gases under external spherically symmetric confinement. The second-order virial coefficients for two identical dipolar bosons, two identical dipolar fermions and two distinguishable dipoles are calculated from the trap energy spectra. Away from resonance, we employ the Born approximation and find that the virial coefficient for two identical fermions depends quadratically on the dipole length. This suggests that dipolar effects are suppressed in the high temperature limit. Fine tuning the scattering properties of two identical fermions, we identify conditions in which the second-order virial coefficient depends linearly on the dipole length. Analytical expressions are derived and corroborated by numerical calculations. We acknowledge support from the NSF.

  7. Color dipole cross section and inelastic structure function

    NASA Astrophysics Data System (ADS)

    Jeong, Yu Seon; Kim, C. S.; Luu, Minh Vu; Reno, Mary Hall

    2014-11-01

    Instead of starting from a theoretically motivated form of the color dipole cross section in the dipole picture of deep inelastic scattering, we start with a parametrization of the deep inelastic structure function for electromagnetic scattering with protons, and then extract the color dipole cross section. Using the parametrizations of F 2(ξ = x or W 2 , Q 2) by Donnachie-Landshoff and Block et al., we find the dipole cross section from an approximate form of the presumed dipole cross section convoluted with the perturbative photon wave function for virtual photon splitting into a color dipole with massless quarks. The color dipole cross section determined this way reproduces the original structure function within about 10% for 0 .1 GeV2 ≤ Q 2 ≤10 GeV2. We discuss the dipole cross section at large and small dipole sizes and compare our results with other parametrizations.

  8. Quench performance and field quality of FNAL twin-aperture 11 T Nb3Sn dipole model for LHC upgrades

    DOE PAGES

    Stoynev, Stoyan; Andreev, Nikolai; Apollinari, Giorgio; ...

    2016-12-07

    A 2 m long single-aperture dipole demonstrator and two 1 m long single-aperture models based on Nb3Sn superconductor have been built and tested at FNAL. The two 1 m long collared coils were then assembled in a twin-aperture Nb3Sn dipole demonstrator compatible with the LHC main dipole and tested in two thermal cycles. This paper summarizes the quench performance of the FNAL twin-aperture Nb3Sn 11 T dipole in the temperature range of 1.9-4.5 K. The results of magnetic measurements for one of the two apertures are also presented. Test results are compared to the performance of coils in a single-aperturemore » configuration. Lastly, a summary of quench propagation studies in both apertures is given.« less

  9. Development and test of Nb(3)Sn cos-theta dipoles based on PIT strands

    SciTech Connect

    Zlobin, A.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Chichili, D.R.; Elementi, L.; Feher, S.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Yamada, R.; /Fermilab

    2004-11-01

    Fermilab is involved in the development of new generation high-field accelerator magnets using state-of-the-art Nb{sub 3}Sn strands produced using different technologies. Two 1-m long models--mirror configuration and dipole magnet--were fabricated recently at Fermilab based on powder-in-tube (PIT) Nb{sub 3}Sn strands with small effective filament size. This paper describes the parameters of superconducting strands and cable, the details of magnet design and fabrication procedure, and reports the results of PIT coil testing.

  10. Axion Induced Oscillating Electric Dipole Moment of the Electron

    SciTech Connect

    Hill, Christopher T.

    2016-01-12

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10-32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ta(t) ∝ mα → 0. The analysis is subtle, and we find the general form of the action involves a local contact interaction and a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (me >> ma). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.

  11. Axion Induced Oscillating Electric Dipole Moment of the Electron

    DOE PAGES

    Hill, Christopher T.

    2016-01-12

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10-32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ta(t) ∝ mα → 0. The analysis is subtle, and we find the general form of the action involves a local contact interaction and a nonlocalmore » contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (me >> ma). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less

  12. The electric dipole moment of cobalt monoxide, CoO

    SciTech Connect

    Zhuang, Xiujuan; Steimle, Timothy C.

    2014-03-28

    A number of low-rotational lines of the E{sup 4}Δ{sub 7/2} ← X{sup 4}Δ{sub 7/2} (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h{sub 7/2}, and the electron quadrupole parameter, eQq{sub 0}, for the E{sup 4}Δ{sub 7/2}(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ{sup -vector}{sub el}, for the X{sup 4}Δ{sub 7/2} (υ = 0) and E{sup 4}Δ{sub 7/2} (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F′ = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F′ = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  13. The electric dipole moment of cobalt monoxide, CoO.

    PubMed

    Zhuang, Xiujuan; Steimle, Timothy C

    2014-03-28

    A number of low-rotational lines of the E(4)Δ7/2 ← X(4)Δ7/2 (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h7/2, and the electron quadrupole parameter, eQq0, for the E(4)Δ7/2(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ(→)(el), for the X(4)Δ7/2 (υ = 0) and E(4)Δ7/2 (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F' = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F' = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  14. Hot Electron Instability in a Dipole Confined Plasma

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Mauel, M. E.

    2005-10-01

    In plasma containing energetic electrons, two interacting collective modes, an MHD-like mode and a hot electron interchange (HEI) modeootnotetextN. A. Krall, Phys. Fluids, 9, 820 (1966)., may be present. The linear stability of interchange modes in a z-pinch at arbitrary beta, including a bulk and hot electron species was recently studiedootnotetextN. Krasheninnikova, P. J. Catto, Phys. Plasmas, 12, 32101 (2005).. Using the dispersion relation derived in this reference we show that when necessary conditions are satisfied the two modes may be present or absent in a closed-field line magnetic confinement geometry such as a hard core z-pinch or a dipole. The HEI instability and the MHD-like centrifugally-driven mode have been studied previouslyootnotetextB. Levitt, et al., Phys. Plasmas, 9, 2507 (2002), and 12, 055703 (2005)., including a comparison between the measured mode structure and the predictions of a global low-beta simulation. The radial eigenmode is seen to effect the saturation level of the mode. In the Levitated Dipole Experimenthttp://psfcwww2.psfc.mit.edu/ldx/ electron cyclotron resonance heating produces high beta plasmas containing hot electrons, and instability observations will be discussed and compared with theoretical predictions.

  15. Dipole modes with depressed amplitudes in red giants are mixed modes

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Belkacem, K.; Pinçon, C.; Takata, M.; Vrard, M.; Barban, C.; Goupil, M.-J.; Kallinger, T.; Samadi, R.

    2017-02-01

    Context. Seismic observations with the space-borne Kepler mission have shown that a number of evolved stars exhibit low-amplitude dipole modes, which is referred to as depressed modes. Recently, these low amplitudes have been attributed to the presence of a strong magnetic field in the stellar core of those stars. Subsequently, and based on this scenario, the prevalence of high magnetic fields in evolved stars has been inferred. It should be noted, however, that this conclusion remains indirect. Aims: We intend to study the properties of mode depression in evolved stars, which is a necessary condition before reaching conclusions about the physical nature of the mechanism responsible for the reduction of the dipole mode amplitudes. Methods: We perform a thorough characterization of the global seismic parameters of depressed dipole modes and show that these modes have a mixed character. The observation of stars showing dipole mixed modes that are depressed is especially useful for deriving model-independent conclusions on the dipole mode damping. We use a simple model to explain how mode visibilities are connected to the extra damping seen in depressed modes. Results: Observations prove that depressed dipole modes in red giants are not pure pressure modes but mixed modes. This result, observed in more than 90% of the bright stars (mV ≤ 11), invalidates the hypothesis that depressed dipole modes result from the suppression of the oscillation in the radiative core of the stars. Observations also show that, except for visibility, seismic properties of the stars with depressed modes are equivalent to those of normal stars. The measurement of the extra damping that is responsible for the reduction of mode amplitudes, without any prior on its physical nature, potentially provides an efficient tool for elucidating the mechanism responsible for the mode depression. Conclusions: The mixed nature of the depressed modes in red giants and their unperturbed global seismic

  16. Waves in space plasma dipole antenna subsystem

    NASA Technical Reports Server (NTRS)

    Thomson, Mark

    1993-01-01

    The Waves In Space Plasma (WISP) flight experiment requires a 50-meter-long deployable dipole antenna subsystem (DASS) to radiate radio frequencies from the STS Orbiter cargo bay. The transmissions are to excite outer ionospheric plasma between the dipole and a free-flying receiver (Spartan) for scientific purposes. This report describes the singular DASS design requirements and how the resulting design satisfies them. A jettison latch is described in some detail. The latch releases the antenna in case of any problems which might prevent the bay doors from closing for re-entry and landing of the Orbiter.

  17. The viscous modulation of Lamb's dipole vortex

    NASA Astrophysics Data System (ADS)

    van de Fliert, B. W.

    1996-07-01

    A description of the adiabatic decay of the Lamb dipolar vortex is motivated by a variational characterization of the dipole. The parameters in the description are the values of the entrophy and linear momentum integrals, which change in time due to the dissipation. It is observed that the dipole dilates during the decay process [radius R˜(νt)1/2], while the amplitude of the vortex and its translation speed diminish in time proportional to (νt)-3/2 and (νt)-1.

  18. Tip-to-Tail: Developing a Conceptual Model of Magnetism with Kindergartners Using Inquiry-Based Instruction

    ERIC Educational Resources Information Center

    Van Hook, Stephen J.; Huziak-Clark, Tracy L.

    2007-01-01

    This study reports changes in kindergarten students' understanding of magnets after participating in a series of hands-on, inquiry-based lessons. The lessons focused on the dipole nature of magnets and employed a visual representation of a magnet as an arrow for the kindergarten students. This dipole model was used to describe how magnets interact…

  19. Whistler choruswaves: Linear theory and nonlinear simulations in dipole geometry

    NASA Astrophysics Data System (ADS)

    Wu, Shuo

    2015-12-01

    Whistler-mode chorus waves have recently drawn tremendous attention as an important mechanism for controlling the energetic electron flux in Earth's radiation belt. This dissertation aims to answer questions about whistler-mode chorus waves, such as "What is the effect of cold plasma density on the linear whistler instability? How do whistler mode chorus waves evolve in a meridional plane? How would chorus waves occur if the magnetosphere is compressed?" First, we derive the real dispersion relation and linear growth rate of whistler mode in mixed hot and cold plasma. We find that there is a peak in the temporal and convective growth rates with respect to cold plasma density. We model the relation between the linear growth rate and various plasma parameters and use this model to explain the observed modulation of chorus intensity by cold plasma density. Second, we simulate the nonlinear growth of whistler-mode chorus waves in a dipole field using a hybrid code. The hybrid code uses the particle-in-cell technique in generalized orthogonal coordinates. A small fraction of electrons is treated as particles with anisotropic temperature that leads to the whistler instability. Other electrons are treated as a cold fluid without mass. The rough validity of our model is confirmed by comparing results from our hybrid code and a full dynamics particle in cell code. Our 1-D simulations along the dipole field line reproduce chorus generation in agreement with observations and past studies. We find that it is easier to simulate temporal frequency variation in a scaled down system with greater magnetic field inhomogeneity. Our 2-D simulations reveal features of chorus propagation in a meridional plane and the effects of background plasma density on that propagation. These are the first 2-D first principles simulations of whistler-mode chorus waves in Earth's dipole field. Our preliminary simulation in a 1-D compressed dipole field is the first attempt to self

  20. Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system

    NASA Astrophysics Data System (ADS)

    Singh, Mahi R.; Schindel, Daniel G.; Hatef, Ali

    2011-10-01

    We have studied quantum coherence and interference phenomena in a quantum dot (QD)-metallic nanorod (MNR) hybrid system. Probe and control laser fields are applied to the hybrid system. Induced dipole moments are created in the QD and the MNR, and they interact with each other via the dipole-dipole interaction. Using the density matrix method, it was found that the power spectrum of MNR has two transparent, states and they can be switched to one transparent state by the control field. Ultrafast switching and sensing nanodevices could be produced using this model.

  1. Development of a Francium Electron Electric Dipole Moment Experiment

    NASA Astrophysics Data System (ADS)

    Munger, Charles T., Jr.; Feinberg, B.; Gould, Harvey; Kalnins, Juris; Nishimura, Hiroshi; Jentschura, Ulrich; Behr, John; Pearson, Matt

    2014-09-01

    An experiment to discover or rule out a permanent electric dipole moment (EDM) of the electron, at a sensitivity well beyond the present experimental limit, is being developed. The experiment will use 211Fr, obtainable online at TRIUMF at rates of 109/s, in a laser-cooled fountain. The experiment is done in free space and free fall, with an electric field, but no applied magnetic field, between optical state preparation and analysis. The relation between an electron EDM and an EDM of a francium atom has recently been recalculated using field theory alone (Blundell, Griffith & Sapirstein, Phys. Rev. D 86, 025023 [2012]), confirming previous atomic physics calculations and removing any ambiguity in the experimental interpretation.

  2. Towards a new measurement of the neutron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Altarev, I.; Ban, G.; Bison, G.; Bodek, K.; Burghoff, M.; Cvijovic, M.; Daum, M.; Fierlinger, P.; Gutsmiedl, E.; Hampel, G.; Heil, W.; Henneck, R.; Horras, M.; Khomutov, N.; Kirch, K.; Kistryn, St.; Knappe-Grüneberg, S.; Knecht, A.; Knowles, P.; Kozela, A.; Kratz, J. V.; Kuchler, F.; Kuźniak, M.; Lauer, T.; Lauss, B.; Lefort, T.; Mtchedlishvili, A.; Naviliat-Cuncic, O.; Paul, S.; Pazgalev, A. S.; Petzoldt, G.; Pierre, E.; Plonka-Spehr, C.; Quéméner, G.; Rebreyend, D.; Roccia, S.; Rogel, G.; Sander-Thoemmes, T.; Schnabel, A.; Severijns, N.; Sobolev, Yu.; Stoepler, R.; Trahms, L.; Weis, A.; Wiehl, N.; Zejma, J.; Zsigmond, G.

    2009-12-01

    The effort towards a new measurement of the neutron electric dipole moment (nEDM) at the Paul Scherrer Institut's (PSI) new high intensity source of ultracold neutrons (UCN) is described. The experimental technique relies on Ramsey's method of separated oscillatory fields, using UCN in vacuum with the apparatus at ambient temperature. In the first phase, R&D towards the upgrade of the RAL/Sussex/ILL apparatus is being performed at the Institut Laue-Langevin (ILL). In the second phase the apparatus, moved from ILL to PSI, will allow an improvement in experimental sensitivity by a factor of 5. In the third phase, a new spectrometer should gain another order of magnitude in sensitivity. The improvements will be mainly due to (1) much higher UCN intensity, (2) improved magnetometry and magnetic field control, and (3) a double chamber configuration with opposite electric field directions.

  3. Parallel resistivity and ohmic heating of laboratory dipole plasmas

    NASA Astrophysics Data System (ADS)

    Fox, W.

    2012-08-01

    The parallel resistivity is calculated in the long-mean-free-path regime for the dipole plasma geometry; this is shown to be a neoclassical transport problem in the limit of a small number of circulating electrons. In this regime, the resistivity is substantially higher than the Spitzer resistivity due to the magnetic trapping of a majority of the electrons. This suggests that heating the outer flux surfaces of the plasma with low-frequency parallel electric fields can be substantially more efficient than might be naively estimated. Such a skin-current heating scheme is analyzed by deriving an equation for diffusion of skin currents into the plasma, from which quantities such as the resistive skin-depth, lumped-circuit impedance, and power deposited in the plasma can be estimated. Numerical estimates indicate that this may be a simple and efficient way to couple power into experiments in this geometry.

  4. Parallel resistivity and ohmic heating of laboratory dipole plasmas

    SciTech Connect

    Fox, W.

    2012-08-15

    The parallel resistivity is calculated in the long-mean-free-path regime for the dipole plasma geometry; this is shown to be a neoclassical transport problem in the limit of a small number of circulating electrons. In this regime, the resistivity is substantially higher than the Spitzer resistivity due to the magnetic trapping of a majority of the electrons. This suggests that heating the outer flux surfaces of the plasma with low-frequency parallel electric fields can be substantially more efficient than might be naively estimated. Such a skin-current heating scheme is analyzed by deriving an equation for diffusion of skin currents into the plasma, from which quantities such as the resistive skin-depth, lumped-circuit impedance, and power deposited in the plasma can be estimated. Numerical estimates indicate that this may be a simple and efficient way to couple power into experiments in this geometry.

  5. Electromagnetic Force on a Moving Dipole

    ERIC Educational Resources Information Center

    Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.

    2011-01-01

    We analyse the force acting on a moving dipole due to an external electromagnetic field and show that the expression derived in Vekstein (1997 "Eur. J. Phys." 18 113) is erroneous and suggest the correct equation for the description of this force. We also discuss the physical meaning of the relativistic transformation of current for a closed…

  6. Hertzian Dipole Radiation over Isotropic Magnetodielectric Substrates

    DTIC Science & Technology

    2015-03-01

    public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This report investigates dipole antennas printed on grounded...engineering of thin planar antennas . Since these materials often require complicated constitutive equations to describe their properties rigorously, the...material properties and substrate thickness. 15. SUBJECT TERMS Magnetodielectrics, planar antennas , boundary value problems, contour integration, branch

  7. A Microstrip Reflect Array Using Crossed Dipoles

    NASA Technical Reports Server (NTRS)

    Pozar, David M.; Targonski, Stephen D.

    1998-01-01

    Microstrip reflect arrays offer a flat profile and light weight, combined with many of the electrical characteristics of reflector antennas. Previous work [1]-[7] has demonstrated a variety of microstrip reflect arrays, using different elements at a range of frequencies. In this paper we describe the use of crossed dipoles as reflecting elements in a microstrip reflectarray. Theory of the solution will be described, with experimental results for a 6" square reflectarray operating at 28 GHz. The performance of crossed dipoles will be directly compared with microstrip patches, in terms of bandwidth and loss. We also comment on the principle of operation of reflectarray elements, including crossed dipoles, patches of variable length, and patch elements with tuning stubs. This research was prompted by the proposed concept of overlaying a flat printed reflectarray on the surface of a spacecraft solar panel. Combining solar panel and antenna apertures in this way would lead to a reduction in weight and simpler deployment, with some loss of flexibility in independently pointing the solar panel and the antenna. Using crossed dipoles as reflectarray elements will minimize the aperture blockage of the solar cells, in contrast to the use of elements such as microstrip patches.

  8. Whistler-Mode Radiation from a Dipole

    NASA Astrophysics Data System (ADS)

    James, H. G.

    1999-01-01

    Bistatic observations of an active dipole in a space plasma were made during the suborbital tethered experiment OEDIPUS C, carried out on a sounding rocket flight in late 1995. Throughout the flight, whistler-mode waves were transmitted at 25 kHz from a 19-m dipole on the forward payload to a 13-m dipole on the aft payload. This frequency was very much less than the plasma frequency fp, which in turn lay well below the gyrofrequency fc for most of the flight. The change of fp with time caused the receiver position to be swept through the 25-kHz group resonance cone during a segment of the flight. Signal strengths were found to be enhanced along the group cone, as predicted by theory. Observed radiated levels are about a hundred times greater than theoretical predictions based on independent estimates of the driving-point current. The modulation of the received signal caused by the spin of the receiving dipole was consistent with the theoretical expectation that the quasielectrostatic electric field is polarized predominantly along the wave-vector direction

  9. Dipole nano-laser: Theory and properties

    SciTech Connect

    Ghannam, T.

    2014-03-31

    In this paper we outline the main quantum properties of the system of nano-based laser called Dipole Nano-Laser emphasizing mainly on its ability to produce coherent light and for different configurations such as different embedding materials and subjecting it to an external classical electric field.

  10. Electric dipole polarizabilities of atomic clusters of Sodium

    NASA Astrophysics Data System (ADS)

    Liang, Anthony; Bowlan, John; Deheer, Walter

    2012-06-01

    A new discussion of the electronic shell structure of simple metal clusters is presented. Due to size quantization, cluster valence electrons order into energy shells as in atoms. We show that the oscillation of electric dipole polarizability as a function of size for sodium clusters (both in amplitude and shell closing numbers) can be explained by spherical well filling of electron wavefunctions. The shell closing numbers are closely examined. Interestingly, most theories involving cluster shape deformations do not yield the measured amplitude and closing numbers, while an existing simple spherical shape theory has correctly predicts both. This may hint at the occurrence of proposed resonant shape coexistence in nanoclusters. We also discuss the trend of oscillations (again, both in amplitude and shell closing numbers) in measurements of atomic separation energy of sodium clusters, the magnetic moments of nickel clusters, the magnetic moment of the sodium cluster Na69, and photoabsorption of sodium clusters, and point out interesting similarities. It appears that there may be more universal properties originating from shell filling in simple metal clusters than previously observed. The electric and magnetic field deflection measurements were carried out with a 20 K sodium cluster molecular beam apparatus.

  11. BKT phase transition in a 2D system with long-range dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Fedichev, P. O.; Men'shikov, L. I.

    2012-01-01

    We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.

  12. Master equation with quantized atomic motion including dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-05-01

    We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and is relevant for experiments with ultracold trapped atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find analytical formulas for a number of relevant states (Gaussian states, Fock states and thermal states). In particular, we show that the dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion. The effects predicted should be experimentally observable with Rydberg atoms. FD would like to thank the F.R.S.-FNRS for financial support. FD is a FRIA Grant holder of the Fonds de la Recherche Scientifique-FNRS.

  13. Performance of three 4. 5 m dipoles for SSC reference design D

    SciTech Connect

    Dahl, P.; Cottingham, J.; Fernow, R.; Garber, M.; Ghosh, A.; Goodzeit, C.; Greene, A.; Herrera, J.; Kahn, S.; Kelly, E.

    1985-01-01

    Three 4.5 m long dipoles for Reference Design D of the proposed Superconducting Super Collider have been successfully tested. The magnets are cold-iron (and cold bore) 1-in-1 dipoles, wound with current density-graded high homogeneity NbTi cable in a two-layer cos theta coil of 40 mm inner diameter. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported in a cylindrical yoke containment vessel. At 4.5 K the magnets reached a field of about 6.6T with little training, or the short sample limit of the conductor, and in subcooled (2.6 to 2.4 K) liquid, 8T was achieved. The allowed harmonics were close to the predicted values, and the unallowed harmonics small. The sextupole trim coil operated at eight times the required current without training.

  14. ``Cold Denaturation'' induces inversion of dipole and spin transfer in chiral peptide monolayers

    NASA Astrophysics Data System (ADS)

    Sarkar, Soumyajit; Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Gavrilov, Yulian; Mathew, Shinto; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    Using a combination of several experimental and computational techniques, we show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear conformation upon cooling, due to interaction with neighboring molecules in a self-assembled monolayer (SAM) structure. This process is similar to the known ``cold denaturation'' in peptides, but here the SAM plays the role of the solvent. Our DFT-based first principles calculations show that the structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by an associated change in the spin channel that is preferred in electron transfer through the molecules. This is also experimentally observed via a new solid state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.

  15. An explanation for both the large inclination and eccentricity of the dipole-like field of Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.; Lee, L.-H.; Saito, T.

    1991-01-01

    It is shown that the offset tilted dipole model of Uranus and Neptune, deduced from the spherical harmonic analysis of the Voyager magnetic field observation, can be represented fairly well by the combined field of an axial and an auxiliary dipole; the latter is roughly oriented in the east-west direction and is located near the surface of the core in low latitude. The present dynamo theories of planetary magnetism consider an axial dipolar field as an essential element, since the planetary rotation plays a vital role in the dynamo process. On the other hand, the auxiliary dipoles may be a result of leakage of the toroidal field, like a pair of sunspots on the photosphere, which is also an essential part of the dynamo process.

  16. The source surface and photospheric magnetic field models

    NASA Technical Reports Server (NTRS)

    Saito, T.; Kozuka, Y.; Oki, T.; Akasofu, S.-I.

    1991-01-01

    It is possible to reproduce the configuration of the neutral line on the solar source surface by the axial dipole at the center of the sun and a few fictitious dipoles on the photosphere. An attempt is made to identify the nature of such fictitious dipoles in the photospheric magnetic fields. It is shown that large-scale photospheric dipole fields can be identified clearly at the locations indicated by the fictitious dipoles when the photospheric field is very simple. They are found to be active regions.

  17. Competition between finite-size effects and dipole-dipole interactions in few-atom systems

    NASA Astrophysics Data System (ADS)

    Damanet, François; Martin, John

    2016-11-01

    In this paper, we study the competition between finite-size effects (i.e. discernibility of particles) and dipole-dipole interactions in few-atom systems coupled to the electromagnetic field in vacuum. We consider two hallmarks of cooperative effects, superradiance and subradiance, and compute for each the rate of energy radiated by the atoms and the coherence of the atomic state during the time evolution. We adopt a statistical approach in order to extract the typical behaviour of the atomic dynamics and average over random atomic distributions in spherical containers with prescribed {k}0R with k 0 the radiation wavenumber and R the average interatomic distance. Our approach allows us to highlight the tradeoff between finite-size effects and dipole-dipole interactions in superradiance/subradiance. In particular, we show the existence of an optimal value of {k}0R for which the superradiant intensity and coherence pulses are the less affected by dephasing effects induced by dipole-dipole interactions and finite-size effects.

  18. Neutron electric dipole moment and possibilities of increasing accuracy of experiments

    SciTech Connect

    Serebrov, A. P. Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Aleksandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.

    2016-01-15

    The paper reports the results of an experiment on searching for the neutron electric dipole moment (EDM), performed on the ILL reactor (Grenoble, France). The double-chamber magnetic resonance spectrometer (Petersburg Nuclear Physics Institute (PNPI)) with prolonged holding of ultra cold neutrons has been used. Sources of possible systematic errors are analyzed, and their influence on the measurement results is estimated. The ways and prospects of increasing accuracy of the experiment are discussed.

  19. Development and test of Nb3Sn cos-theta magnets based on RRP and PIT strands

    SciTech Connect

    Feher, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bordini, B.; Bossert, R.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2005-09-01

    As part of the High Field Magnet program at Fermilab three cos({theta}) magnets--two mirror dipole magnets utilizing RRP cable and one dipole magnet utilizing PIT cable--have been designed, fabricated and tested recently. Both mirror magnets with RRP strands only reached {approx}50-60% of their estimated critical current limit. The PIT conductor based dipole however reached its critical current limit producing over 10 T magnetic field in the bore of the magnet. This paper describes the parameters of superconducting strands and cable, the details of magnet design and fabrication procedure, and reports the results.

  20. Development of a 15 T Nb3Sn accelerator dipole demonstrator at Fermilab

    DOE PAGES

    Novitski, I.; Andreev, N.; Barzi, E.; ...

    2016-06-01

    Here, a 100 TeV scale Hadron Collider (HC) with a nominal operation field of at least 15 T is being considered for the post-LHC era, which requires using the Nb3Sn technology. Practical demonstration of this field level in an accelerator-quality magnet and substantial reduction of the magnet costs are the key conditions for realization of such a machine. FNAL has started the development of a 15 T Nb3Sn dipole demonstrator for a 100 TeV scale HC. The magnet design is based on 4-layer shell type coils, graded between the inner and outer layers to maximize the performance and reduce themore » cost. The experience gained during the Nb3Sn magnet R&D is applied to different aspects of the magnet design. This paper describes the magnetic and structural designs and parameters of the 15 T Nb3Sn dipole and the steps towards the demonstration model fabrication.« less

  1. INITIAL TEST OF A FAST RAMPED SUPERCONDUCTING MODEL DIPOLE FOR GSIS PROPOSED SIS200 ACCELERATOR.

    SciTech Connect

    WANDERER,P.; ANERELLA,M.; GANETIS,G.; GHOSH,A.; JOSHI,P.; MARONE,A.; MURATORE,J.; SCHMALZLE,J.; SOIKA,R.; THOMAS,R.; KAUGERTS,J.; MORITZ,G.; HASSENZAHL,W.; WILSON,N.M.

    2003-05-12

    Gesellschaft fur Schwerionenforschung (GSI) has proposed a large expansion of the existing facility in Darmstadt, Germany. The proposal includes an accelerator, SIS200, with rigidity of 200 Tam that utilizes 4 T superconducting dipoles ramped at 1 T/s. An R&D program including both the superconductor and the magnet is directed at achieving the desired ramp rate with minimal energy loss. The RHIC arc dipoles, with 8 cm aperture, possess adequate aperture and field strength but are ramped at only 1/20 of the desired rate. However, for reasons of speed and economy, the RHIC dipole is being used as the basis for this work. The superconductor R&D has progressed far enough to permit the manufacture of an initial cable with satisfactory properties. This cable has been used in the construction of a I m model magnet, appropriately modified from the RHIC design. The magnet has been tested successfully at 2 T/s to 4.38 T.

  2. Heat Treatment Optimization of Rutherford Cables for a 15 T Nb3Sn Dipole Demonstrator

    DOE PAGES

    Barzi, Emanuela; Bossert, Marianne; Field, Michael; ...

    2017-01-09

    FNAL has been developing a 15 T Nb3Sn dipole demonstrator for a future Very High Energy pp Collider based on an optimized 60-mm aperture 4-layer “cos-theta” coil. In order to increase magnet efficiency, we graded the coil by using two cables with same 15 mm width and different thicknesses made of two different Restacked Rod Process (RRP®) wires. Due to the non-uniform field distribution in dipole coils the maximum field in the inner coil will reach 15-16 T, whereas the maximum field in the outer coil is 12-13 T. In preparation for the 15 T dipole coil reaction, heat treatmentmore » studies were performed on strands extracted from these cables with the goal of achieving the best coil performance in the corresponding magnetic fields. Particularly, the effect of maximum temperature and time on the cable critical current was studied to take into account actual variations of these parameters during coil reaction. In parallel and in collaboration with OST, development was performed on optimizing Nb3Sn RRP® wire design and layout. Index Terms— Accelerator magnet, critical current density, Nb3Sn strand, Rutherford cable.« less

  3. Application of the marine circular electric dipole method in high latitude Arctic regions using drifting ice floes

    NASA Astrophysics Data System (ADS)

    Mogilatov, Vladimir; Goldman, Mark; Persova, Marina; Soloveichik, Yury; Koshkina, Yulia; Trubacheva, Olga; Zlobinskiy, Arkadiy

    2016-12-01

    Theoretically, a circular electric dipole is a horizontal analogue of a vertical electric dipole and, similarly to the latter, it generates the unimodal transverse magnetic field. As a result, it demonstrates exceptionally high signal detectability and both vertical and lateral resolutions, particularly regarding thin resistive targets. The ideal circular electric dipole is represented by two concentric continuums of electrodes connected to different poles of the transmitter. In practice, the ideal dipole is adequately approximated by eight outer electrodes and one central electrode. The greatest disadvantage of circular electric dipoles stems from the necessity to provide perfectly symmetrical radial grounded lines with equal current in each line. In addition, relocating such a cumbersome system is very difficult on land and offshore. All these disadvantages might be significantly reduced in the proposed ice-borne system. The system utilizes drifting ice floes in high latitude Arctic regions as stable platforms for locating marine circular electric dipole transmitters, while the underlain ocean water is a perfect environment for grounding transmitter and receiver electrodes. Taking into account the limited size of drifting floes, mainly short offset methods can be applied from the surface. Among those, the proposed method is superior in providing sufficiently high signal detectability and resolution to delineate deep targets below very conductive ocean water and sub-seafloor sediments. Other existing methods, which are able to provide similar characteristics, utilize near bottom arrays and would be hard to employ in the presence of a thick ice cover.

  4. Electron electric dipole moment experiment using electric-fieldquantized slow cesium atoms

    SciTech Connect

    Amini, Jason M.; Munger Jr., Charles T.; Gould, Harvey.

    2007-04-05

    A proof-of-principle electron electric dipole moment (e-EDM)experiment using slow cesium atoms, nulled magnetic fields, and electricfield quantization has been performed. With the ambient magnetic fieldsseen by the atoms reduced to less than 200 pT, an electric field of 6MV/m lifts the degeneracy between states of unequal lbar mF rbar and,along with the low (approximately 3 m/s) velocity, suppresses thesystematic effect from the motional magnetic field. The low velocity andsmall residual magnetic field have made it possible to induce transitionsbetween states and to perform state preparation, analysis, and detectionin regions free of applied static magnetic and electric fields. Thisexperiment demonstrates techniques that may be used to improve the e-EDMlimit by two orders of magnitude, but it is not in itself a sensitivee-EDM search, mostly due to limitations of the laser system.

  5. Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron

    SciTech Connect

    Summers, D.J.; Cremaldi, L.M.; Hart, T.L.; Perera, L.P.; Reep, M.; Witte, H.; Hansen, S.; Lopes, M.L.; Reidy Jr., J.; /Oxford High School

    2012-05-01

    A 1.8 T dipole magnet using thin grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own Opera-2d simulations, joints are mitred to take advantage of the magnetic properties of the steel which are much better in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein frame show a high magnetic permeability which minimizes stored energy in the yoke allowing the magnet to ramp quickly with modest voltage. Coercivity is low which minimizes hysteresis losses. A power supply with a fast Insulated Gate Bipolar Transistor (IGBT) switch and a capacitor was constructed. Coils are wound with 12 gauge copper wire. Thin wire and laminations minimize eddy current losses. The magnetic field was measured with a peak sensing Hall probe.

  6. Simple method for producing Bose-Einstein condensates of metastable helium using a single-beam optical dipole trap

    NASA Astrophysics Data System (ADS)

    Flores, Adonis Silva; Mishra, Hari Prasad; Vassen, Wim; Knoop, Steven

    2015-12-01

    We demonstrate a simple scheme to reach Bose-Einstein condensation (BEC) of metastable triplet helium atoms using a single-beam optical dipole trap with moderate power of less than 3 W. Our scheme is based on RF-induced evaporative cooling in a quadrupole magnetic trap and transfer to a single-beam optical dipole trap that is located below the magnetic trap center. We transfer 1× 10^6 atoms into the optical dipole trap, with an initial temperature of 14 \\upmu{K}, and observe efficient forced evaporative cooling both in a hybrid trap, in which the quadrupole magnetic trap operates just below the levitation gradient, and in the pure optical dipole trap, reaching the onset of BEC with 2× 10^5 atoms and a pure BEC of 5× 10^4 atoms. Our work shows that a single-beam hybrid trap can be applied for a light atom, for which evaporative cooling in the quadrupole magnetic trap is strongly limited by Majorana spin-flips, and the very small levitation gradient limits the axial confinement in the hybrid trap.

  7. Assembly of magnetic spheres in strong homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Messina, René; Stanković, Igor

    2017-01-01

    The assembly in two dimensions of spherical magnets in strong magnetic field is addressed theoretically. It is shown that the attraction and assembly of parallel magnetic chains is the result of a delicate interplay of dipole-dipole interactions and short ranged excluded volume correlations. Minimal energy structures are obtained by numerical optimization procedure as well as analytical considerations. For a small number of constitutive magnets Ntot ≤ 26, a straight chain is found to be the ground state. In the regime of larger Ntot ≥ 27, the magnets form two touching chains with equally long tails at both ends. We succeed to identify the transition from two to three touching chains at Ntot = 129. Overall, this study sheds light on the mechanisms of the recently experimentally observed ribbon formation of superparamagnetic colloids via lateral aggregation of magnetic chains in magnetic field (Darras et al., 2016).

  8. The Antarctic dipole and its predictability

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaojun; Martinson, Douglas G.

    This study investigates the nature of interannual variability of Antarctic sea ice and its relationship with the tropical climate. We find that the dominant interannual variance structure in the sea ice edge and surface air temperature fields is organized as a quasi-stationary wave which we call the “Antarctic Dipole” (ADP). It is characterized by an out-of-phase relationship between the ice and temperature anomalies in the central/eastern Pacific and Atlantic sectors of the Antarctic. The dipole consists of a strong standing mode and a weaker propagating motion within each basin's ice field. It has the same wavelength as the Antarctic Circumpolar Wave (ACW) and dominates the ACW variance. The dipole is clearly associated with tropical ENSO events; it can be predicted with moderate skill using linear regression involving surface temperature two to four months ahead. The prediction performs better in extreme warm/cold years, and best in La Niña years.

  9. Revisiting the NVSS number count dipole

    SciTech Connect

    Tiwari, Prabhakar; Nusser, Adi E-mail: adi@physics.technion.ac.il

    2016-03-01

    We present a realistic modeling of the dipole component of the projected sky distribution of NVSS radio galaxies. The modeling relies on mock catalogs generated within the context of ΛCDM cosmology, in the linear regime of structure formation. After removing the contribution from the solar motion, the mocks show that the remaining observed signal is mostly (70%) due to structures within z ∼< 0.1. The amplitude of the model signal depends on the bias factor b of the NVSS mock galaxies. For sources with flux density, S > 15 mJy, the bias recipe inferred from higher order moments is consistent with the observed dipole signal at 2.12σ. Flux thresholds above 20 mJy yield a disagreement close to the 3σ level. A constant high bias, b = 3 is needed to mitigate the tension to the ∼ 2.3σ level.

  10. Development and test of single-bore CosJ Nb{sub 3}Sn dipole models with cold iron yoke

    SciTech Connect

    Alexander V Zlobin et al.

    2002-01-14

    Two short Nb{sub 3}Sn dipole models based on a single-bore cos-theta coil with a cold iron yoke were fabricated and tested at Fermilab. This paper summarizes the details of magnet design and fabrication procedure, and reports the test results including quench performance and quench heater studies, and the magnetic measurements.

  11. Photoinduced magnetic force between nanostructures

    NASA Astrophysics Data System (ADS)

    Guclu, Caner; Tamma, Venkata Ananth; Wickramasinghe, Hemantha Kumar; Capolino, Filippo

    2015-12-01

    Photoinduced magnetic force between nanostructures, at optical frequencies, is investigated theoretically. Till now optical magnetic effects were not used in scanning probe microscopy because of the vanishing natural magnetism with increasing frequency. On the other hand, artificial magnetism in engineered nanostructures led to the development of measurable optical magnetism. Here two examples of nanoprobes that are able to generate strong magnetic dipolar fields at optical frequency are investigated: first, an ideal magnetically polarizable nanosphere and then a circular cluster of silver nanospheres that has a looplike collective plasmonic resonance equivalent to a magnetic dipole. Magnetic forces are evaluated based on nanostructure polarizabilities, i.e., induced magnetic dipoles, and magnetic-near field evaluations. As an initial assessment on the possibility of a magnetic nanoprobe to detect magnetic forces, we consider two identical magnetically polarizable nanoprobes and observe magnetic forces on the order of piconewtons, thereby bringing it within detection limits of conventional atomic force microscopes at ambient pressure and temperature. The detection of magnetic force is a promising method in studying optical magnetic transitions that can be the basis of innovative spectroscopy applications.

  12. The midpoint between dipole and parton showers

    SciTech Connect

    Höche, Stefan; Prestel, Stefan

    2015-09-28

    We present a new parton-shower algorithm. Borrowing from the basic ideas of dipole cascades, the evolution variable is judiciously chosen as the transverse momentum in the soft limit. This leads to a very simple analytic structure of the evolution. A weighting algorithm is implemented that allows one to consistently treat potentially negative values of the splitting functions and the parton distributions. Thus, we provide two independent, publicly available implementations for the two event generators PYTHIA and SHERPA.

  13. Pygmy dipole response in 238U nucleus

    NASA Astrophysics Data System (ADS)

    Guliyev, Ekber; Kuliev, Ali Akbar; Quliyev, Huseynqulu

    2017-02-01

    The presence of the El pygmy dipole resonance (PDR) in the actinide nucleus 238U was shown via QRPA. Below the particle threshold energy, 24 excitation states were calculated. The calculations, is demonstrating the presence of a PDR with evidence for K splitting. The calculations further suggest that the PDR in 238U is predominantly K=0. The obtained results show universality of the PDR in atomic nuclei.

  14. Toroidal Dipole Moment of a Massless Neutrino

    SciTech Connect

    Cabral-Rosetti, L. G.; Mondragon, M.; Perez, E. Reyes

    2009-04-20

    We obtain the toroidal dipole moment of a massless neutrino {tau}{sub v{sub I}}{sup M} using the results for the anapole moment of a massless Dirac neutrino a{sub v{sub I}}{sup D}, which was obtained in the context of the Standard Model of the electroweak interactions (SM)SU(2){sub L} x U(1){sub Y}.

  15. Electric dipole moment of light nuclei

    SciTech Connect

    Gibson, Benjamin; Afnan, I R

    2010-01-01

    We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.

  16. Search for the electron electric dipole moment

    SciTech Connect

    De Mille, D.; Bickman, S.; Hamilton, P.; Jiang, Y.; Prasad, V.; Kawall, D.; Paolino, R.

    2006-07-11

    Extensions to the Standard Model (SM) typically include new heavy particles and new mechanisms for CP violation. These underlying phenomena can give rise to electric dipole moments of the electron and other particles. Tabletop-scale experiments used to search for these effects are described. Present experiments are already sensitive to new physics at the TeV scale, and new methods could extend this range dramatically. Such experiments could be among the first to show evidence for physics beyond the SM.

  17. Local electric dipole moments: A generalized approach.

    PubMed

    Groß, Lynn; Herrmann, Carmen

    2016-09-30

    We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, "naively" defined local dipole moments are origin-dependent. Inspired by previous work based on Bader's atoms-in-molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin-independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc.

  18. Dynamics of two-dimensional dipole systems

    SciTech Connect

    Golden, Kenneth I.; Kalman, Gabor J.; Hartmann, Peter; Donko, Zoltan

    2010-09-15

    Using a combined analytical/molecular dynamics approach, we study the current fluctuation spectra and longitudinal and transverse collective mode dispersions of the classical two-dimensional (point) dipole system (2DDS) characterized by the {phi}{sub D}(r)={mu}{sup 2}/r{sup 3} repulsive interaction potential; {mu} is the electric dipole strength. The interest in the 2DDS is twofold. First, the quasi-long-range 1/r{sup 3} interaction makes the system a unique classical many-body system, with a remarkable collective mode behavior. Second, the system may be a good model for a closely spaced semiconductor electron-hole bilayer, a system that is in the forefront of current experimental interest. The longitudinal collective excitations, which are of primary interest for the liquid phase, are acoustic at long wavelengths. At higher wave numbers and for sufficiently high coupling strength, we observe the formation of a deep minimum in the dispersion curve preceded by a sharp maximum; this is identical to what has been observed in the dispersion of the zero-temperature bosonic dipole system, which in turn emulates so-called roton-maxon excitation spectrum of the superfluid {sup 4}He. The analysis we present gives an insight into the emergence of this apparently universal structure, governed by strong correlations. We study both the liquid and the crystalline solid state. We also observe the excitation of combination frequencies, resembling the roton-roton, roton-maxon, etc. structures in {sup 4}He.

  19. Magnetic light

    PubMed Central

    Kuznetsov, Arseniy I.; Miroshnichenko, Andrey E.; Fu, Yuan Hsing; Zhang, JingBo; Luk’yanchuk, Boris

    2012-01-01

    Spherical silicon nanoparticles with sizes of a few hundreds of nanometers represent a unique optical system. According to theoretical predictions based on Mie theory they can exhibit strong magnetic resonances in the visible spectral range. The basic mechanism of excitation of such modes inside the nanoparticles is very similar to that of split-ring resonators, but with one important difference that silicon nanoparticles have much smaller losses and are able to shift the magnetic resonance wavelength down to visible frequencies. We experimentally demonstrate for the first time that these nanoparticles have strong magnetic dipole resonance, which can be continuously tuned throughout the whole visible spectrum varying particle size and visually observed by means of dark-field optical microscopy. These optical systems open up new perspectives for fabrication of low-loss optical metamaterials and nanophotonic devices. PMID:22768382

  20. Design considerations and prototype performance of the Fermilab Main Injector dipole

    SciTech Connect

    Harding, D.J.; Bleadon, M.E.; Brown, B.C.; Desavouret, E.; Garvey, J.D.; Glass, H.D.; Harfoush, F.A.; Holmes, S.D.; Humbert, J.C.; Jagger, J.M.; Kobliska, G.R.; Lipski, A.; Martin, P.S.; Mazur, P.O.; Mills, F.E.; Orris, D.F.; Ostiguy, J.F.; Peggs, S.G.; Pachnik, J.E.; Schmidt, E.E.; Sim, J.W.; Snowdon, S.C.; Walbridge, D.G.

    1991-05-01

    The Main Injector project at Fermilab requires a dipole with good field quality from 0.1 T to 1.73 T with ramps to full field at up to 2.4 T/s over an aperture of 10 {times} 5 cm. Operation of this magnet for the variety of purposes proposed for the Main Injector results in a design with low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction. The resulting design is presented, along with measurement results of a prototype magnet emphasizing the field uniformity. 6 refs., 4 figs., 2 tabs.