Science.gov

Sample records for magnetic domain wall

  1. Collective magnetism at multiferroic vortex domain walls.

    PubMed

    Geng, Yanan; Lee, N; Choi, Y J; Cheong, S-W; Wu, Weida

    2012-12-12

    Cross-coupled phenomena of multiferroic domains and domain walls are of fundamental scientific and technological interest. Using cryogenic magnetic force microscopy, we find alternating net magnetic moments at ferroelectric domain walls around vortex cores in multiferroic hexagonal ErMnO(3), which correlate with each other throughout the entire vortex network. This collective nature of domain wall magnetism originates from the uncompensated Er(3+) moments at domain walls and the self-organization of the vortex network. Our results demonstrate that the collective domain wall magnetism can be controlled by external magnetic fields and represent a major advancement in the manipulation of local magnetic moments by harnessing cross-coupled domain walls.

  2. Chiral spin torque at magnetic domain walls.

    PubMed

    Ryu, Kwang-Su; Thomas, Luc; Yang, See-Hun; Parkin, Stuart

    2013-07-01

    Spin-polarized currents provide a powerful means of manipulating the magnetization of nanodevices, and give rise to spin transfer torques that can drive magnetic domain walls along nanowires. In ultrathin magnetic wires, domain walls are found to move in the opposite direction to that expected from bulk spin transfer torques, and also at much higher speeds. Here we show that this is due to two intertwined phenomena, both derived from spin-orbit interactions. By measuring the influence of magnetic fields on current-driven domain-wall motion in perpendicularly magnetized Co/Ni/Co trilayers, we find an internal effective magnetic field acting on each domain wall, the direction of which alternates between successive domain walls. This chiral effective field arises from a Dzyaloshinskii-Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire. Elucidating the mechanism for the manipulation of domain walls in ultrathin magnetic films will enable the development of new families of spintronic devices.

  3. Magnetic domain and domain wall in Co/Pt multilayer

    NASA Astrophysics Data System (ADS)

    Talapatra, A.; Mohanty, J.

    2016-05-01

    We report systematic micromagnetic investigation of formation of magnetic domains in perpendicularly magnetized Co/Pt multilayer with the variation in magnetic anisotropy and stack thickness. The lowering of anisotropy makes the domain wall broader and domain formation less efficient. Domain sizeincreases with increasing thickness of the stack to minimize the stray field energy.The minimization of energy of the system due to domain formation makes the M-H loop narrower whereas, lower stack thickness results in a wider loop. The magnetization reversalin this system occurs due tothe nucleation and growth of reverse domains.

  4. Tunable inertia of chiral magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Torrejon, Jacob; Martinez, Eduardo; Hayashi, Masamitsu

    2016-11-01

    The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall is a topological object that has been observed to follow this behaviour. Here we show that acceleration and deceleration times of chiral Neel walls driven by current are different in a system with low damping and moderate Dzyaloshinskii-Moriya exchange constant. The time needed to accelerate a domain wall with current via the spin Hall torque is much faster than the time it needs to decelerate once the current is turned off. The deceleration time is defined by the Dzyaloshinskii-Moriya exchange constant whereas the acceleration time depends on the spin Hall torque, enabling tunable inertia of chiral domain walls. Such unique feature of chiral domain walls can be utilized to move and position domain walls with lower current, key to the development of storage class memory devices.

  5. Tunable inertia of chiral magnetic domain walls.

    PubMed

    Torrejon, Jacob; Martinez, Eduardo; Hayashi, Masamitsu

    2016-11-24

    The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall is a topological object that has been observed to follow this behaviour. Here we show that acceleration and deceleration times of chiral Neel walls driven by current are different in a system with low damping and moderate Dzyaloshinskii-Moriya exchange constant. The time needed to accelerate a domain wall with current via the spin Hall torque is much faster than the time it needs to decelerate once the current is turned off. The deceleration time is defined by the Dzyaloshinskii-Moriya exchange constant whereas the acceleration time depends on the spin Hall torque, enabling tunable inertia of chiral domain walls. Such unique feature of chiral domain walls can be utilized to move and position domain walls with lower current, key to the development of storage class memory devices.

  6. Tunable inertia of chiral magnetic domain walls

    PubMed Central

    Torrejon, Jacob; Martinez, Eduardo; Hayashi, Masamitsu

    2016-01-01

    The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall is a topological object that has been observed to follow this behaviour. Here we show that acceleration and deceleration times of chiral Neel walls driven by current are different in a system with low damping and moderate Dzyaloshinskii–Moriya exchange constant. The time needed to accelerate a domain wall with current via the spin Hall torque is much faster than the time it needs to decelerate once the current is turned off. The deceleration time is defined by the Dzyaloshinskii–Moriya exchange constant whereas the acceleration time depends on the spin Hall torque, enabling tunable inertia of chiral domain walls. Such unique feature of chiral domain walls can be utilized to move and position domain walls with lower current, key to the development of storage class memory devices. PMID:27882932

  7. Domain wall orientation in magnetic nanowires.

    PubMed

    Vedmedenko, E Y; Kubetzka, A; von Bergmann, K; Pietzsch, O; Bode, M; Kirschner, J; Oepen, H P; Wiesendanger, R

    2004-02-20

    Scanning tunneling microscopy reveals that domain walls in ultrathin Fe nanowires are oriented along a certain crystallographic direction, regardless of the orientation of the wires. Monte Carlo simulations on a discrete lattice are in accordance with the experiment if the film relaxation is taken into account. We demonstrate that the wall orientation is determined by the atomic lattice and the resulting strength of an effective exchange interaction. The magnetic anisotropy and the magnetostatic energy play a minor role for the wall orientation in that system.

  8. Tunable resistivity of individual magnetic domain walls.

    PubMed

    Franken, J H; Hoeijmakers, M; Swagten, H J M; Koopmans, B

    2012-01-20

    Despite the relevance of current-induced magnetic domain wall (DW) motion for new spintronics applications, the exact details of the current-domain wall interaction are not yet understood. A property intimately related to this interaction is the intrinsic DW resistivity. Here, we investigate experimentally how the resistivity inside a DW depends on the wall width Δ, which is tuned using focused ion beam irradiation of Pt/Co/Pt strips. We observe the nucleation of individual DWs with Kerr microscopy, and measure resistance changes in real time. A 1/Δ(2) dependence of DW resistivity is found, compatible with Levy-Zhang theory. Also quantitative agreement with theory is found by taking full account of the current flowing through each individual layer inside the multilayer stack.

  9. Chiral damping of magnetic domain walls.

    PubMed

    Jué, Emilie; Safeer, C K; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-03-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).

  10. Tunable conductance of magnetic nanowires with structured domain walls.

    PubMed

    Dugaev, V K; Berakdar, J; Barnaś, J

    2006-02-03

    We show that in a magnetic nanowire with double magnetic domain walls, quantum interference results in spin-split quasistationary states localized mainly between the domain walls. Spin-flip-assisted transmission through the domain structure increases strongly when these size-quantized states are tuned on resonance with the Fermi energy, e.g., upon varying the distance between the domain walls which results in resonance-type peaks of the wire conductance. This novel phenomenon is shown to be utilizable to manipulate the spin density in the domain vicinity. The domain wall parameters are readily controllable, and the predicted effect is hence exploitable in spintronic devices.

  11. Magnetic bubblecade memory based on chiral domain walls.

    PubMed

    Moon, Kyoung-Woong; Kim, Duck-Ho; Yoo, Sang-Cheol; Je, Soong-Geun; Chun, Byong Sun; Kim, Wondong; Min, Byoung-Chul; Hwang, Chanyong; Choe, Sug-Bong

    2015-03-16

    Unidirectional motion of magnetic domain walls is the key concept underlying next-generation domain-wall-mediated memory and logic devices. Such motion has been achieved either by injecting large electric currents into nanowires or by employing domain-wall tension induced by sophisticated structural modulation. Herein, we demonstrate a new scheme without any current injection or structural modulation. This scheme utilizes the recently discovered chiral domain walls, which exhibit asymmetry in their speed with respect to magnetic fields. Because of this asymmetry, an alternating magnetic field results in the coherent motion of the domain walls in one direction. Such coherent unidirectional motion is achieved even for an array of magnetic bubble domains, enabling the design of a new device prototype-magnetic bubblecade memory-with two-dimensional data-storage capability.

  12. Characterization of magnetic domain walls using electron magnetic chiral dichroism.

    PubMed

    Che, Ren Chao; Liang, Chong Yun; He, Xiang; Liu, Hai Hua; Duan, Xiao Feng

    2011-04-01

    Domain walls and spin states of permalloy were investigated by electron magnetic chiral dichroism (EMCD) technique in Lorentz imaging mode using a JEM-2100F transmission electron microscope. EMCD signals from both Fe and Ni L3,2 edges were detected from the Bloch lines but not from the adjacent main wall. The magnetic polarity orientation of the circular Bloch line is opposite to that of the cross Bloch line. The orientations of Fe and Ni spins are parallel rather than antiparallel, both at the cross Bloch line and circular Bloch line.

  13. Magnetization reversal in ferromagnetic spirals via domain wall motion

    NASA Astrophysics Data System (ADS)

    Schumm, Ryan D.; Kunz, Andrew

    2016-11-01

    Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.

  14. Electric-field-driven dynamics of magnetic domain walls in magnetic nanowires patterned on ferroelectric domains

    NASA Astrophysics Data System (ADS)

    Van de Wiele, Ben; Leliaert, Jonathan; Franke, Kévin J. A.; van Dijken, Sebastiaan

    2016-03-01

    Strong coupling of magnetic domain walls onto straight ferroelastic boundaries of a ferroelectric layer enables full and reversible electric-field control of magnetic domain wall motion. In this paper, the dynamics of this new driving mechanism is analyzed using micromagnetic simulations. We show that transverse domain walls with a near-180° spin structure are stabilized in magnetic nanowires and that electric fields can move these walls with high velocities. Above a critical velocity, which depends on material parameters, nanowire geometry and the direction of domain wall motion, the magnetic domain walls depin abruptly from the ferroelastic boundaries. Depinning evolves either smoothly or via the emission and annihilation of a vortex or antivortex core (Walker breakdown). In both cases, the magnetic domain wall slows down after depinning in an oscillatory fashion and eventually comes to a halt. The simulations provide design rules for hybrid ferromagnetic-ferroelectric domain-wall-based devices and indicate that material disorder and structural imperfections only influence Walker-breakdown-like depinning at high domain wall velocities.

  15. Effective pinning energy landscape perturbations for propagating magnetic domain walls

    PubMed Central

    Burn, D. M.; Atkinson, D.

    2016-01-01

    The interaction between a magnetic domain wall and a pinning site is explored in a planar nanowire using micromagnetics to reveal perturbations of the pinning energetics for propagating domain walls. Numerical simulations in the high damping ’quasi-static’ and low damping ’dynamic’ regimes are compared and show clear differences in de-pinning fields, indicating that dynamical micromagnetic models, which incorporate precessionally limited magnetization processes, are needed to understand domain wall pinning. Differences in the micromagnetic domain wall structure strongly influence the pinning and show periodic behaviour with increasing applied field associated with Walker breakdown. In the propagating regime pinning is complicated. PMID:27694953

  16. Effective pinning energy landscape perturbations for propagating magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Burn, D. M.; Atkinson, D.

    2016-10-01

    The interaction between a magnetic domain wall and a pinning site is explored in a planar nanowire using micromagnetics to reveal perturbations of the pinning energetics for propagating domain walls. Numerical simulations in the high damping ’quasi-static’ and low damping ’dynamic’ regimes are compared and show clear differences in de-pinning fields, indicating that dynamical micromagnetic models, which incorporate precessionally limited magnetization processes, are needed to understand domain wall pinning. Differences in the micromagnetic domain wall structure strongly influence the pinning and show periodic behaviour with increasing applied field associated with Walker breakdown. In the propagating regime pinning is complicated.

  17. Effective pinning energy landscape perturbations for propagating magnetic domain walls.

    PubMed

    Burn, D M; Atkinson, D

    2016-10-03

    The interaction between a magnetic domain wall and a pinning site is explored in a planar nanowire using micromagnetics to reveal perturbations of the pinning energetics for propagating domain walls. Numerical simulations in the high damping 'quasi-static' and low damping 'dynamic' regimes are compared and show clear differences in de-pinning fields, indicating that dynamical micromagnetic models, which incorporate precessionally limited magnetization processes, are needed to understand domain wall pinning. Differences in the micromagnetic domain wall structure strongly influence the pinning and show periodic behaviour with increasing applied field associated with Walker breakdown. In the propagating regime pinning is complicated.

  18. Magnetic vortices as localized mesoscopic domain wall pinning sites

    NASA Astrophysics Data System (ADS)

    Novak, R. L.; Sampaio, L. C.

    2017-07-01

    We report on the controllable pinning of domain walls in a stripe with perpendicular magnetic anisotropy by magnetostatic coupling to a magnetic vortex in disks located above the stripe. Pinning mechanisms and depinning fields, studied by means of micromagnetic simulations, are reported. An asymmetric magnetization reversal process is observed and explained in terms of two main contributions to the domain wall pinning: coupling between the in-plane and out-of-plane components of its stray field and the vortex. The in-plane coupling is symmetric with respect to the wall sense of motion while the out-of-plane coupling leads to the observed asymmetry in the hysteresis loops. The energy landscape of the domain wall derived from the micromagnetic simulations supports these findings. This novel pinning strategy, which can be realized by current nanofabrication techniques, opens up new possibilities for the non-destructive control of domain wall mobility in domain wall based spintronic devices.

  19. Magnetic Domain Wall Floating on a Spin Superfluid

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Kim, Se Kwon; Tserkovnyak, Yaroslav

    2017-03-01

    We theoretically investigate the transfer of angular momentum between a spin superfluid and a domain wall in an exchange coupled easy-axis and easy-plane magnetic insulator system. A domain wall in the easy-axis magnet absorbs spin angular momentum via disrupting the flow of a superfluid spin current in the easy-plane magnet. Focusing on an open geometry, where the spin current is injected electrically via a nonequilibrium spin accumulation, we derive analytical expressions for the resultant superfluid-mediated motion of the domain wall. The analytical results are supported by micromagnetic simulations. The proposed phenomenon extends the regime of magnon-driven domain-wall motion to the case where the magnons are condensed and exhibit superfluidity. Furthermore, by controlling the pinning of the domain wall, we propose a realization of a reconfigurable spin transistor. The long-distance dissipationless character of spin superfluids can thus be exploited for manipulating soliton-based memory and logic devices.

  20. Dynamics of magnetic domain walls under their own inertia.

    PubMed

    Thomas, Luc; Moriya, Rai; Rettner, Charles; Parkin, Stuart S P

    2010-12-24

    The motion of magnetic domain walls induced by spin-polarized current has considerable potential for use in magnetic memory and logic devices. Key to the success of these devices is the precise positioning of individual domain walls along magnetic nanowires, using current pulses. We show that domain walls move surprisingly long distances of several micrometers and relax over several tens of nanoseconds, under their own inertia, when the current stimulus is removed. We also show that the net distance traveled by the domain wall is exactly proportional to the current pulse length because of the lag derived from its acceleration at the onset of the pulse. Thus, independent of its inertia, a domain wall can be accurately positioned using properly timed current pulses.

  1. Mechanical Actuation of Magnetic Domain-Wall Motion

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Hill, Daniel; Tserkovnyak, Yaroslav

    2016-12-01

    We theoretically study the motion of a magnetic domain wall induced by transverse elastic waves in a one-dimensional magnetic wire, which respects both rotational and translational symmetries. By invoking the conservation of the associated total angular and linear momenta, we are able to derive the torque and the force on the domain wall exerted by the waves. We then show how ferromagnetic and antiferromagnetic domain walls can be driven by circularly and linearly polarized waves, respectively. We envision that elastic waves may provide effective means to drive the dynamics of magnetic solitons in insulators.

  2. Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure.

    PubMed

    Atkinson, Del; Allwood, Dan A; Xiong, Gang; Cooke, Michael D; Faulkner, Colm C; Cowburn, Russell P

    2003-02-01

    As fabrication technology pushes the dimensions of ferromagnetic structures into the nanoscale, understanding the magnetization processes of these structures is of fundamental interest, and key to future applications in hard disk drives, magnetic random access memory and other 'spintronic' devices. Measurements on elongated magnetic nanostructures highlighted the importance of nucleation and propagation of a magnetic boundary, or domain wall, between opposing magnetic domains in the magnetization reversal process. Domain-wall propagation in confined structures is of basic interest and critical to the performance of a recently demonstrated magnetic logic scheme for spintronics. A previous study of a 500-nm-wide NiFe structure obtained very low domain-wall mobility in a three-layer device. Here we report room-temperature measurements of the propagation velocity of a domain wall in a single-layer planar Ni80Fe20 ferromagnetic nanowire 200 nm wide. The wall velocities are extremely high and, importantly, the intrinsic wall mobility is close to that in continuous films, indicating that lateral confinement does not significantly affect the gyromagnetic spin damping parameter to the extreme extent previously suggested. Consequently the prospects for high-speed domain-wall motion in future nanoscale spintronic devices are excellent.

  3. Manipulation of vortices by magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Goa, P. E.; Hauglin, H.; Olsen, A.˚. A. F.; Shantsev, D.; Johansen, T. H.

    2003-01-01

    In a type-II superconductor, the magnetic field penetrates in the form of thin filaments called vortices. The controlled behavior of these vortices may provide the basis for a new generation of nanodevices. We present here a series of experiments showing simultaneous manipulation and imaging of individual vortices in a NbSe2 single crystal. The magnetic field from a Bloch wall in a ferrite garnet film (FGF) is used to manipulate the vortices. High-resolution magneto-optical imaging enables real-time observation of the vortex positions using the Faraday effect in the same FGF. Depending on the thickness of the sample, the vortices are either swept away or merely bent with the Bloch wall.

  4. Thermal spin-transfer torques on magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Yuan, Zhe; Wang, Shuai; Xia, Ke

    2010-04-01

    We studied the spin-transfer torques acting on magnetic domain walls in the presence of a nonequilibrium thermal distribution using a generalized Landauer-Büttiker formalism, where the energy flow is described on the same footing as the electric current. First-principles transport calculations have been performed in Ni and Co domain walls as typical examples. The temperature difference between two sides of the domain wall can induce remarkable spin- transfer torques, which are comparable with the current-induced torques required for the domain wall motion.

  5. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire

    PubMed Central

    Zhang, S. F.; Gan, W. L.; Kwon, J.; Luo, F. L.; Lim, G. J.; Wang, J. B.; Lew, W. S.

    2016-01-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~1012 A/m2. Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 1011 A/m2. Micromagnetic simulations reveal the evolution of the domain nucleation – first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line. PMID:27098108

  6. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire

    NASA Astrophysics Data System (ADS)

    Zhang, S. F.; Gan, W. L.; Kwon, J.; Luo, F. L.; Lim, G. J.; Wang, J. B.; Lew, W. S.

    2016-04-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~1012 A/m2. Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 1011 A/m2. Micromagnetic simulations reveal the evolution of the domain nucleation - first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  7. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire.

    PubMed

    Zhang, S F; Gan, W L; Kwon, J; Luo, F L; Lim, G J; Wang, J B; Lew, W S

    2016-04-21

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~10(12) A/m(2). Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 10(11) A/m(2). Micromagnetic simulations reveal the evolution of the domain nucleation - first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  8. Ultrafast domain wall dynamics in magnetic nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Hertel, R.

    2016-12-01

    The dynamic properties of magnetic domain walls in nanotubes and in cylindrical nanowires can be significantly different from the well known domain wall dynamics in thin films and in flat thin strips. The main differences are the occurrence of chiral symmetry breaking and, perhaps more importantly, the possibility to obtain magnetic domain walls that are stable against the usual Walker breakdown. This stability enables the magnetic field-driven propagation of the domain walls in nanotubes and nanocylinders at constant velocities which are significantly higher than the usual propagation speeds of the domain walls. Simulations predict that the ultrafast motion of magnetic domain walls at velocities in a range above 1000 m s-1 can lead to the spontaneous excitation of spin waves in a process that is the magnetic analog of the Cherenkov effect. In the case of solid cylindrical wires, the domain wall can contain a micromagnetic point singularity. We discuss the current knowledge on the ultrafast dynamics of such Bloch points, which remains still largely unexplored.

  9. Magnetic domain wall conduits for single cell applications.

    PubMed

    Donolato, M; Torti, A; Kostesha, N; Deryabina, M; Sogne, E; Vavassori, P; Hansen, M F; Bertacco, R

    2011-09-07

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls generated in micro- and nano-structures fabricated on a chip surface can be used to handle single yeast cells labeled with magnetic beads. In detail, first we show that the proposed approach maintains the microorganism viable, as proven by monitoring the division of labeled yeast cells trapped by domain walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation.

  10. Influence of magnetic domain walls and magnetic field on the thermal conductivity of magnetic nanowires.

    PubMed

    Huang, Hao-Ting; Lai, Mei-Feng; Hou, Yun-Fang; Wei, Zung-Hang

    2015-05-13

    We investigated the influence of magnetic domain walls and magnetic fields on the thermal conductivity of suspended magnetic nanowires. The thermal conductivity of the nanowires was obtained using steady-state Joule heating to measure the change in resistance caused by spontaneous heating. The results showed that the thermal conductivity coefficients of straight and wavy magnetic nanowires decreased with an increase in the magnetic domain wall number, implying that the scattering between magnons and domain walls hindered the heat transport process. In addition, we proved that the magnetic field considerably reduced the thermal conductivity of a magnetic nanowire. The influence of magnetic domain walls and magnetic fields on the thermal conductivity of polycrystalline magnetic nanowires can be attributed to the scattering of long-wavelength spin waves mediated by intergrain exchange coupling.

  11. Thermal effects on transverse domain wall dynamics in magnetic nanowires

    SciTech Connect

    Leliaert, J.; Van de Wiele, B.; Vandermeulen, J.; Coene, A.; Dupré, L.; Vansteenkiste, A.; Waeyenberge, B. Van; Laurson, L.; Durin, G.

    2015-05-18

    Magnetic domain walls are proposed as data carriers in future spintronic devices, whose reliability depends on a complete understanding of the domain wall motion. Applications based on an accurate positioning of domain walls are inevitably influenced by thermal fluctuations. In this letter, we present a micromagnetic study of the thermal effects on this motion. As spin-polarized currents are the most used driving mechanism for domain walls, we have included this in our analysis. Our results show that at finite temperatures, the domain wall velocity has a drift and diffusion component, which are in excellent agreement with the theoretical values obtained from a generalized 1D model. The drift and diffusion component are independent of each other in perfect nanowires, and the mean square displacement scales linearly with time and temperature.

  12. Thermal stability of a magnetic domain wall in nanowires

    NASA Astrophysics Data System (ADS)

    Fukami, S.; Ieda, J.; Ohno, H.

    2015-06-01

    We study the thermal stability of a magnetic domain wall pinned in nanowires with various widths and thicknesses made of Co/Ni multilayers and analyze the effective volume that governs the thermal stability. We find that, above a critical wire width, the domain wall depinning is initiated by a subvolume excitation and that the critical width is dependent on the wire thickness. The obtained findings are supported by the distribution of critical current density for domain wall depinning and are qualitatively described by an analytical model in which the balance between the Zeeman energy and domain wall elastic energy is considered. We also show a different behavior between the device size dependence of the thermal stability and that of critical current, leading to an enhancement of domain wall motion efficiency with decreasing the device size.

  13. Majorana Fermion Rides on a Magnetic Domain Wall

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Tewari, Sumanta; Tserkovnyak, Yaroslav

    Owing to the recent progress on endowing the electronic structure of magnetic nanowires with topological properties, the associated topological solitons in the magnetic texture--magnetic domain walls--appear as very natural hosts for exotic electronic excitations. Here, we propose to use the magnetic domain walls to engender Majorana fermions, which has several notable advantages compared to the existing approaches. First of all, the local tunneling density-of-states anomaly associated with the Majorana zero mode bound to a smooth magnetic soliton is immune to most of parasitic artifacts associated with the abrupt physical ends of a wire, which mar the existing experimental probes. Second, a viable route to move and braid Majorana fermions is offered by domain-wall motion. In particular, we envision the recently demonstrated heat-current induced motion of domain walls in insulating ferromagnets as a promising tool for nonintrusive displacement of Majorana modes. This leads us to propose a feasible scheme for braiding domain walls within a magnetic nanowire network, which manifests the nob-Abelian exchange statistics within the Majorana subspace. This work has been supported in part by the U.S. DOE-BES, FAME, and AFOSR grants.

  14. Dzyaloshinskii-Moriya domain walls in magnetic nanotubes

    NASA Astrophysics Data System (ADS)

    Goussev, Arseni; Robbins, J. M.; Slastikov, Valeriy; Tretiakov, Oleg A.

    2016-02-01

    We present an analytic study of domain-wall statics and dynamics in ferromagnetic nanotubes with spin-orbit-induced Dzyaloshinskii-Moriya interaction (DMI). Even at the level of statics, dramatic effects arise from the interplay of space curvature and DMI: the domains become chirally twisted, leading to more compact domain walls. The dynamics of these chiral structures exhibits several interesting features. Under weak applied currents, they propagate without distortion. The dynamical response is further enriched by the application of an external magnetic field: the domain-wall velocity becomes chirality dependent and can be significantly increased by varying the DMI. These characteristics allow for enhanced control of domain-wall motion in nanotubes with DMI, increasing their potential as information carriers in future logic and storage devices.

  15. Non-volatile polarization switch of magnetic domain wall velocity

    SciTech Connect

    Huang, Z.; Stolichnov, I.; Setter, N.; Bernand-Mantel, A.; Schott, Marine; Pizzini, S.; Ranno, L.; Auffret, S.; Gaudin, G.

    2015-12-21

    Controlled propagation speed of individual magnetic domains in metal channels at the room temperature is obtained via the non-volatile field effect associated with the switchable polarization of P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) ferroelectric polymer. Polarization domains directly written using conducting atomic force microscope probe locally accelerate/decelerate the magnetic domains in the 0.6 nm thick Co film. The change of the magnetic domain wall velocity is consistent with the magnetic anisotropy energy modulation through the polarization upward/downward orientation. Excellent retention is observed. The demonstrated local non-destructive and reversible change of magnetic properties via rewritable patterning of ferroelectric domains could be attractive for exploring the ultimate limit of miniaturization in devices based on ferromagnetic/ferroelectric bilayers.

  16. Magnetic domain walls as reconfigurable spin-wave nanochannels

    NASA Astrophysics Data System (ADS)

    Wagner, K.; Kákay, A.; Schultheiss, K.; Henschke, A.; Sebastian, T.; Schultheiss, H.

    2016-05-01

    In the research field of magnonics, it is envisaged that spin waves will be used as information carriers, promoting operation based on their wave properties. However, the field still faces major challenges. To become fully competitive, novel schemes for energy-efficient control of spin-wave propagation in two dimensions have to be realized on much smaller length scales than used before. In this Letter, we address these challenges with the experimental realization of a novel approach to guide spin waves in reconfigurable, nano-sized magnonic waveguides. For this purpose, we make use of two inherent characteristics of magnetism: the non-volatility of magnetic remanence states and the nanometre dimensions of domain walls formed within these magnetic configurations. We present the experimental observation and micromagnetic simulations of spin-wave propagation inside nano-sized domain walls and realize a first step towards a reconfigurable domain-wall-based magnonic nanocircuitry.

  17. Magnetic domain walls as reconfigurable spin-wave nanochannels.

    PubMed

    Wagner, K; Kákay, A; Schultheiss, K; Henschke, A; Sebastian, T; Schultheiss, H

    2016-05-01

    In the research field of magnonics, it is envisaged that spin waves will be used as information carriers, promoting operation based on their wave properties. However, the field still faces major challenges. To become fully competitive, novel schemes for energy-efficient control of spin-wave propagation in two dimensions have to be realized on much smaller length scales than used before. In this Letter, we address these challenges with the experimental realization of a novel approach to guide spin waves in reconfigurable, nano-sized magnonic waveguides. For this purpose, we make use of two inherent characteristics of magnetism: the non-volatility of magnetic remanence states and the nanometre dimensions of domain walls formed within these magnetic configurations. We present the experimental observation and micromagnetic simulations of spin-wave propagation inside nano-sized domain walls and realize a first step towards a reconfigurable domain-wall-based magnonic nanocircuitry.

  18. a Numerical Investigation of Magnetic Domain Wall Motion

    NASA Astrophysics Data System (ADS)

    Patterson, George Nicholas

    1993-01-01

    Numerical simulation has given new insight into magnetization dynamics in thin films. This thesis reports on a numerical investigation of magnetic domain wall motion in thin iron garnet films. The magnetization is modeled as a continuum field with constant magnitude, subject to exchange, anisotropy, magnetic interactions, and an external drive field. The features of these systems are domains, walls, and lines. A co-moving formulation of the Landau -Lifshitz-Gilbert equation was developed and implemented on the Connection Machine 2. This approach allowed the investigation of large systems for useful length and time scales. This investigation confirms several mechanisms of domain wall motion and reports on one which is new. At low drive fields, the domain wall moves with a constant velocity and time-invariant profile. Beyond a critical field, a single horizontal Bloch line (HBL) is formed and moves through the wall. The HBL reduces the wall mobility and the average wall velocity varies quadratically with the applied field. At larger fields, HBLs are formed in the center of the wall by a local breakdown mechanism, nucleating a pair of HBLs. The HBLs propagate to the surface of the material where they unwind, and the process repeats. The domain wall velocity is a weak function of the external field in this region. The motion of a domain wall in a stripe array is also described and compared with experiment. Simulation results corroborate the features of overshoot and wall oscillation observed in experimental data, and indicate that they are due to the presence of an HBL in the wall. Comparison of the overall time scale indicates that the gyromagnetic ratio is incorrect for this material. This investigation also reports on the statics and dynamics of vertical Bloch line (VBL) pairs. The structure of a domain wall containing two pi VBLs, and a single 2pi VBL has been determined. The VBLs inhibit the formation of HBLs and significantly reduce wall mobility. The 2pi VBL

  19. Rashba Torque Driven Domain Wall Motion in Magnetic Helices.

    PubMed

    Pylypovskyi, Oleksandr V; Sheka, Denis D; Kravchuk, Volodymyr P; Yershov, Kostiantyn V; Makarov, Denys; Gaididei, Yuri

    2016-03-24

    Manipulation of the domain wall propagation in magnetic wires is a key practical task for a number of devices including racetrack memory and magnetic logic. Recently, curvilinear effects emerged as an efficient mean to impact substantially the statics and dynamics of magnetic textures. Here, we demonstrate that the curvilinear form of the exchange interaction of a magnetic helix results in an effective anisotropy term and Dzyaloshinskii-Moriya interaction with a complete set of Lifshitz invariants for a one-dimensional system. In contrast to their planar counterparts, the geometrically induced modifications of the static magnetic texture of the domain walls in magnetic helices offer unconventional means to control the wall dynamics relying on spin-orbit Rashba torque. The chiral symmetry breaking due to the Dzyaloshinskii-Moriya interaction leads to the opposite directions of the domain wall motion in left- or right-handed helices. Furthermore, for the magnetic helices, the emergent effective anisotropy term and Dzyaloshinskii-Moriya interaction can be attributed to the clear geometrical parameters like curvature and torsion offering intuitive understanding of the complex curvilinear effects in magnetism.

  20. Rashba Torque Driven Domain Wall Motion in Magnetic Helices

    PubMed Central

    Pylypovskyi, Oleksandr V.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Yershov, Kostiantyn V.; Makarov, Denys; Gaididei, Yuri

    2016-01-01

    Manipulation of the domain wall propagation in magnetic wires is a key practical task for a number of devices including racetrack memory and magnetic logic. Recently, curvilinear effects emerged as an efficient mean to impact substantially the statics and dynamics of magnetic textures. Here, we demonstrate that the curvilinear form of the exchange interaction of a magnetic helix results in an effective anisotropy term and Dzyaloshinskii–Moriya interaction with a complete set of Lifshitz invariants for a one-dimensional system. In contrast to their planar counterparts, the geometrically induced modifications of the static magnetic texture of the domain walls in magnetic helices offer unconventional means to control the wall dynamics relying on spin-orbit Rashba torque. The chiral symmetry breaking due to the Dzyaloshinskii–Moriya interaction leads to the opposite directions of the domain wall motion in left- or right-handed helices. Furthermore, for the magnetic helices, the emergent effective anisotropy term and Dzyaloshinskii–Moriya interaction can be attributed to the clear geometrical parameters like curvature and torsion offering intuitive understanding of the complex curvilinear effects in magnetism. PMID:27008975

  1. Tailoring the chirality of magnetic domain walls by interface engineering.

    PubMed

    Chen, Gong; Ma, Tianping; N'Diaye, Alpha T; Kwon, Heeyoung; Won, Changyeon; Wu, Yizheng; Schmid, Andreas K

    2013-01-01

    Contacting ferromagnetic films with normal metals changes how magnetic textures respond to electric currents, enabling surprisingly fast domain wall motions and spin texture-dependent propagation direction. These effects are attributed to domain wall chirality induced by the Dzyaloshinskii-Moriya interaction at interfaces, which suggests rich possibilities to influence domain wall dynamics if the Dzyaloshinskii-Moriya interaction can be adjusted. Chiral magnetism was seen in several film structures on appropriately chosen substrates where interfacial spin-orbit-coupling effects are strong. Here we use real-space imaging to visualize chiral domain walls in cobalt/nickel multilayers in contact with platinum and iridium. We show that the Dzyaloshinskii-Moriya interaction can be adjusted to stabilize either left-handed or right-handed Néel walls, or non-chiral Bloch walls by adjusting an interfacial spacer layer between the multilayers and the substrate. Our findings introduce domain wall chirality as a new degree of freedom, which may open up new opportunities for spintronics device designs.

  2. Indirect localization of a magnetic domain wall mediated by quasi walls

    PubMed Central

    Lacour, D.; Montaigne, F.; Rougemaille, N.; Belkhou, R.; Raabe, J.; Hehn, M.

    2015-01-01

    The manipulation of magnetic domain walls in thin films and nanostructures opens new opportunities for fundamental and applied research. But controlling reliably the position of a moving domain wall still remains challenging. So far, most of the studies aimed at understanding the physics of pinning and depinning processes in the magnetic layer in which the wall moves (active layer). In these studies, the role of other magnetic layers in the stack has been often ignored. Here, we report an indirect localization process of 180° domain walls that occurs in magnetic tunnel junctions, commonly used in spintronics. Combining Scanning Transmission X-Ray Microscopy and micromagnetic simulations, magnetic configurations in both layers are resolved. When nucleating a 180° domain wall in the active layer, a quasi wall is created in the reference layer, atop the wall. The wall and its quasi wall must then be moved or positioned together, as a unique object. As a mutual effect, a localized change of the magnetic properties in the reference layer induces a localized quasi wall in the active layer. The two types of quasi walls are shown to be responsible for an indirect localization process of the 180° domain wall in the active layer. PMID:26011004

  3. Indirect localization of a magnetic domain wall mediated by quasi walls.

    PubMed

    Lacour, D; Montaigne, F; Rougemaille, N; Belkhou, R; Raabe, J; Hehn, M

    2015-05-26

    The manipulation of magnetic domain walls in thin films and nanostructures opens new opportunities for fundamental and applied research. But controlling reliably the position of a moving domain wall still remains challenging. So far, most of the studies aimed at understanding the physics of pinning and depinning processes in the magnetic layer in which the wall moves (active layer). In these studies, the role of other magnetic layers in the stack has been often ignored. Here, we report an indirect localization process of 180° domain walls that occurs in magnetic tunnel junctions, commonly used in spintronics. Combining Scanning Transmission X-Ray Microscopy and micromagnetic simulations, magnetic configurations in both layers are resolved. When nucleating a 180° domain wall in the active layer, a quasi wall is created in the reference layer, atop the wall. The wall and its quasi wall must then be moved or positioned together, as a unique object. As a mutual effect, a localized change of the magnetic properties in the reference layer induces a localized quasi wall in the active layer. The two types of quasi walls are shown to be responsible for an indirect localization process of the 180° domain wall in the active layer.

  4. Geometrical Dependence of Domain-Wall Propagation and Nucleation Fields in Magnetic-Domain-Wall Sensors

    NASA Astrophysics Data System (ADS)

    Borie, B.; Kehlberger, A.; Wahrhusen, J.; Grimm, H.; Kläui, M.

    2017-08-01

    We study the key domain-wall properties in segmented nanowire loop-based structures used in domain-wall-based sensors. The two reasons for device failure, namely, distribution of the domain-wall propagation field (depinning) and the nucleation field are determined with magneto-optical Kerr effect and giant-magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni81 Fe19 , a complete GMR stack with Co90 Fe10 /Ni81Fe19 as a free layer, and a single layer of Co90 Fe10 are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy, and the fabrication processes. We show that the propagation field is influenced only slightly by the geometry but significantly by material parameters. Simulations for a realistic wire shape yield a curling-mode type of magnetization configuration close to the nucleation field. Nonetheless, we find that the domain-wall nucleation fields can be described by a typical Stoner-Wohlfarth model related to the measured geometrical parameters of the wires and fitted by considering the process parameters. The GMR effect is subsequently measured in a substantial number of devices (3000) in order to accurately gauge the variation between devices. This measurement scheme reveals a corrected upper limit to the nucleation fields of the sensors that can be exploited for fast characterization of the working elements.

  5. Magnetic domain wall engineering in a nanoscale permalloy junction

    NASA Astrophysics Data System (ADS)

    Wang, Junlin; Zhang, Xichao; Lu, Xianyang; Zhang, Jason; Yan, Yu; Ling, Hua; Wu, Jing; Zhou, Yan; Xu, Yongbing

    2017-08-01

    Nanoscale magnetic junctions provide a useful approach to act as building blocks for magnetoresistive random access memories (MRAM), where one of the key issues is to control the magnetic domain configuration. Here, we study the domain structure and the magnetic switching in the Permalloy (Fe20Ni80) nanoscale magnetic junctions with different thicknesses by using micromagnetic simulations. It is found that both the 90-° and 45-° domain walls can be formed between the junctions and the wire arms depending on the thickness of the device. The magnetic switching fields show distinct thickness dependencies with a broad peak varying from 7 nm to 22 nm depending on the junction sizes, and the large magnetic switching fields favor the stability of the MRAM operation.

  6. Switchable spin-current source controlled by magnetic domain walls.

    PubMed

    Savero Torres, W; Laczkowski, P; Nguyen, V D; Rojas Sanchez, J C; Vila, L; Marty, A; Jamet, M; Attané, J P

    2014-07-09

    Using nonlocal spin injection, spin-orbit coupling, or spincaloritronic effects, the manipulation of pure spin currents in nanostructures underlies the development of new spintronic devices. Here, we demonstrate the possibility to create switchable pure spin current sources, controlled by magnetic domain walls. When the domain wall is located at a given point of the magnetic circuit, a pure spin current is injected into a nonmagnetic wire. Using the reciprocal measurement configuration, we demonstrate that the proposed device can also be used as a pure spin current detector. Thanks to its simple geometry, this device can be easily implemented in spintronics applications; in particular, a single current source can be used both to induce the domain wall motion and to generate the spin signal.

  7. Asymmetric angular dependence of domain wall motion in magnetic nanowires.

    PubMed

    Nam, Chunghee

    2013-03-01

    An angular dependence of domain wall (DW) motion is studied in a magnetic wire consisting of a giant-magnetoresistance spin-valve. A DW pinning site is formed by a single notch, where a conventional linear one and a specially designed tilted one are compared. The asymmetric angular dependence was found in the DW depinning behavior with the tilted notch. The geometry control of the pinning site can be useful for DW diode devices using a rotating magnetic field.

  8. Electric polarization of magnetic domain walls in magnetoelectrics.

    PubMed

    Lobzenko, I P; Goncharov, P P; Ter-Oganessian, N V

    2015-06-24

    Two prominent magnetoelectrics MnWO4 and CuO possess low-temperature commensurate paraelectric magnetically ordered phase. Here using Monte Carlo simulations we show that the walls between the domains of this phase are ferroelectric with the same electric polarization direction and value as those in the magnetoelectric phases of these compounds. We also suggest that experimental observation of electric polarization of domain walls in MnWO4 should help to determine the macroscopic interactions responsible for its magnetoelectric properties.

  9. Thermal variations of domain wall thickness and number of domains in magnetic rectangular grains

    NASA Astrophysics Data System (ADS)

    Xu, Song; Merrill, Ronald T.

    1990-12-01

    Equilibrium domain wall thickness and number of domains in rectangular magnetic grains are determined by using a modified Amar model. It is shown that domain structure, particularly domain wall thickness, in a magnetized grain depends strongly on grain shape and orientation. These dependencies are attributed to the existence of two competing self-magnetostatic interactions, one from the ends of the grain and the other from the sides. One of the consequences of this is that the thermal variation of domain wall thickness in an elongated grain is greater (smaller) than predicted by classical theory when the grain is magnetized along the shortest (longest) dimension. For magnetite, classical theory provides a good approximation in predicting both domain wall thickness and number of domains in equal-dimensional grains larger than about 4 μm.

  10. Dissipative dynamics of composite domain walls in magnetic nanostrips

    NASA Astrophysics Data System (ADS)

    Tretiakov, O.; Bazaliy, Ya. B.; Tchernyshyov, O.

    2007-03-01

    We describe the dynamics of domain walls in thin magnetic nanostrips of submicron width under the action of magnetic field. Once the fast precession of magnetization is averaged out, the dynamics reduces to purely dissipative motion where the system follows the direction of the local energy gradient (Glauber's model A) [1]. We then apply the method of collective coordinates [2] to our variational model of the domain wall [3] reducing the dynamics to the evolution of two collective coordinates (the location of the vortex core). In weak magnetic fields the wall moves steadily. The calculated velocity is in good agreement with the results of numerical simulations (no adjustable parameters were used). In higher fields the steady motion breaks down and acquires an oscillatory character caused by periodic creation and annihilation of topological defects comprising the domain wall [3]. Numerical simulations uncover at least two different modes of oscillation. [1] C. J. Garc'ia-Cervera and W. E, J. Appl. Phys. 90, 370 (2001). [2] A. S'anchez and A. R. Bishop, SIAM Rev. 40, 579 (1998). [3] Preceding talk by O. Tchernyshyov.

  11. Third type of domain wall in soft magnetic nanostrips.

    PubMed

    Nguyen, V D; Fruchart, O; Pizzini, S; Vogel, J; Toussaint, J-C; Rougemaille, N

    2015-07-23

    Magnetic domain walls (DWs) in nanostructures are low-dimensional objects that separate regions with uniform magnetisation. Since they can have different shapes and widths, DWs are an exciting playground for fundamental research, and became in the past years the subject of intense works, mainly focused on controlling, manipulating, and moving their internal magnetic configuration. In nanostrips with in-plane magnetisation, two DWs have been identified: in thin and narrow strips, transverse walls are energetically favored, while in thicker and wider strips vortex walls have lower energy. The associated phase diagram is now well established and often used to predict the low-energy magnetic configuration in a given magnetic nanostructure. However, besides the transverse and vortex walls, we find numerically that another type of wall exists in permalloy nanostrips. This third type of DW is characterised by a three-dimensional, flux closure micromagnetic structure with an unusual length and three internal degrees of freedom. Magnetic imaging on lithographically-patterned permalloy nanostrips confirms these predictions and shows that these DWs can be moved with an external magnetic field of about 1 mT. An extended phase diagram describing the regions of stability of all known types of DWs in permalloy nanostrips is provided.

  12. Dynamics of magnetic domain wall motion after nucleation: dependence on the wall energy.

    PubMed

    Fukumoto, K; Kuch, W; Vogel, J; Romanens, F; Pizzini, S; Camarero, J; Bonfim, M; Kirschner, J

    2006-03-10

    The dynamics of magnetic domain wall motion in the FeNi layer of a FeNi/Al2O3/Co trilayer has been investigated by a combination of x-ray magnetic circular dichroism, photoelectron emission microscopy, and a stroboscopic pump-probe technique. The nucleation of domains and subsequent expansion by domain wall motion in the FeNi layer during nanosecond-long magnetic field pulses was observed in the viscous regime up to the Walker limit field. We attribute an observed delay of domain expansion to the influence of the domain wall energy that acts against the domain expansion and that plays an important role when domains are small.

  13. Discontinuous properties of current-induced magnetic domain wall depinning.

    PubMed

    Hu, X F; Wu, J; Niu, D X; Chen, L; Morton, S A; Scholl, A; Huang, Z C; Zhai, Y; Zhang, W; Will, I; Xu, Y B; Zhang, R; van der Laan, G

    2013-10-30

    The current-induced motion of magnetic domain walls (DWs) confined to nanostructures is of great interest for fundamental studies as well as for technological applications in spintronic devices. Here, we present magnetic images showing the depinning properties of pulse-current-driven domain walls in well-shaped Permalloy nanowires obtained using photoemission electron microscopy combined with x-ray magnetic circular dichroism. In the vicinity of the threshold current density (Jth = 4.2 × 10(11) A.m(-2)) for the DW motion, discontinuous DW depinning and motion have been observed as a sequence of "Barkhausen jumps". A one-dimensional analytical model with a piecewise parabolic pinning potential has been introduced to reproduce the DW hopping between two nearest neighbour sites, which reveals the dynamical nature of the current-driven DW motion in the depinning regime.

  14. Discontinuous properties of current-induced magnetic domain wall depinning

    PubMed Central

    Hu, X. F.; Wu, J.; Niu, D. X.; Chen, L.; Morton, S. A.; Scholl, A.; Huang, Z. C.; Zhai, Y.; Zhang, W.; Will, I.; Xu, Y. B.; Zhang, R.; van der Laan, G.

    2013-01-01

    The current-induced motion of magnetic domain walls (DWs) confined to nanostructures is of great interest for fundamental studies as well as for technological applications in spintronic devices. Here, we present magnetic images showing the depinning properties of pulse-current-driven domain walls in well-shaped Permalloy nanowires obtained using photoemission electron microscopy combined with x-ray magnetic circular dichroism. In the vicinity of the threshold current density (Jth = 4.2 × 1011 A.m−2) for the DW motion, discontinuous DW depinning and motion have been observed as a sequence of “Barkhausen jumps”. A one-dimensional analytical model with a piecewise parabolic pinning potential has been introduced to reproduce the DW hopping between two nearest neighbour sites, which reveals the dynamical nature of the current-driven DW motion in the depinning regime. PMID:24170087

  15. Domain wall propagation tuning in magnetic nanowires through geometric modulation

    NASA Astrophysics Data System (ADS)

    Arzuza, L. C. C.; López-Ruiz, R.; Salazar-Aravena, D.; Knobel, M.; Béron, F.; Pirota, K. R.

    2017-06-01

    The magnetic behavior of nickel modulated nanowires embedded in porous alumina membranes is investigated. Their diameters exhibit a sharp transition between below (35 nm) and above (52 nm) the theoretical limit for transverse and vortex domain walls. Magnetic hysteresis loops and first-order reversal curves (FORCs) were measured on several ordered nanowire arrays with different wide-narrow segment lengths ratio and compared with those from homogenous nanowires. The experimental magnetic response evidences a rather complex susceptibility behavior for nanowires with modulated diameter. Micromagnetic simulations on isolated and first-neighbors arrays of nanowires show that the domain wall structure, which depends on the segment diameter, suffers a transformation while crossing the diameter modulation, but without any pinning. The experimental array magnetic behavior can be ascribed to a heterogeneous stray field induced by the diameter modulation, yielding a stronger interaction field at the wide extremity than at the narrow one. The results evidence the possibility to control the domain wall propagation and morphology by modulating the lateral aspect of the magnetic entity.

  16. Scanning of magnetic space groups and the analysis of non-magnetic domain walls.

    PubMed

    Janovec, V; Litvin, D B

    2007-09-01

    Similarly to atomic positions in a crystal being fixed, or at least constrained by the space group of that crystal, the displacements of atoms in a domain wall are determined or constrained by the symmetry of the wall given by the sectional layer group of the corresponding domain pair. The sectional layer group can be interpreted as comprised of operations that leave invariant a plane transecting two overlapping structures, the domain states of the two domains adhering to the domain wall. The procedure of determining the sectional layer groups for all orientations and positions of a transecting plane is called scanning of the space group. Scanning of non-magnetic space groups has been described and tabulated. It is shown here that the scanning of magnetic groups can be determined from that of non-magnetic groups. The information provided by scanning of magnetic space groups can be utilized in the symmetry analysis of domain walls in non-magnetic crystals since, for any dichromatic space group, which expresses the symmetry of overlapped structures of two non-magnetic domains, there exists an isomorphic magnetic space group. Consequently, a sectional layer group of a magnetic space group expresses the symmetry of a non-magnetic domain wall. Examples of this are given in the symmetry analysis of ferroelectric domain walls in non-magnetic perovskites.

  17. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization

    PubMed Central

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-01-01

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties. PMID:27487941

  18. Domain wall motion driven by an oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Moon, Kyoung-Woong; Kim, Duck-Ho; Kim, Changsoo; Kim, Dae-Yun; Choe, Sug-Bong; Hwang, Chanyong

    2017-03-01

    The coherent unidirectional motion of magnetic domain walls (DWs) is a key technology used in memory and logic device applications, as demonstrated in magnetic strips by electric current flow as well as in films by oscillation of a tilted magnetic field. Here we introduce a coherent unidirectional motion of DWs in the strip, utilizing an oscillating field, which is described within a previous 1D model. The essential criterion for DW motion in this approach is the oscillating-field-induced modulation of the DW width, which has not been previously considered. This DW motion driven by width modulation sheds light on high frequency domain manipulation in spin devices. A comprehensive inspection of field angle dependence reveals that unidirectional DW motion in this model requires chiral DWs, followed by asymmetric deformation of the domain shape.

  19. Electric-field control of magnetic domain wall motion and local magnetization reversal

    PubMed Central

    Lahtinen, Tuomas H. E.; Franke, Kévin J. A.; van Dijken, Sebastiaan

    2012-01-01

    Spintronic devices currently rely on magnetic switching or controlled motion of domain walls by an external magnetic field or spin-polarized current. Achieving the same degree of magnetic controllability using an electric field has potential advantages including enhanced functionality and low power consumption. Here we report on an approach to electrically control local magnetic properties, including the writing and erasure of regular ferromagnetic domain patterns and the motion of magnetic domain walls, in CoFe-BaTiO3 heterostructures. Our method is based on recurrent strain transfer from ferroelastic domains in ferroelectric media to continuous magnetostrictive films with negligible magnetocrystalline anisotropy. Optical polarization microscopy of both ferromagnetic and ferroelectric domain structures reveals that domain correlations and strong inter-ferroic domain wall pinning persist in an applied electric field. This leads to an unprecedented electric controllability over the ferromagnetic microstructure, an accomplishment that produces giant magnetoelectric coupling effects and opens the way to electric-field driven spintronics. PMID:22355770

  20. Domain wall resistance in perpendicularly magnetized (Ga,Mn)As

    NASA Astrophysics Data System (ADS)

    Chiba, D.; Yamanouchi, M.; Matsukura, F.; Dietl, T.; Ohno, H.

    2007-03-01

    Domain wall (DW) resistance in perpendicularly magnetized (Ga,Mn)As has been investigated. The observed DW resistance is decomposed into extrinsic and intrinsic contributions. The former is explained quantitatively by the zig-zaging current due to an abrupt polarity change of the Hall electric field at DW. The latter is consistent with the disorder-induced mixing of spin channels due to small non-adiabacity of carrier spins subject to spatially varying local magnetic moment and is shown to be an order of magnitude greater than a contribution from anisotropic magnetoresistance.

  1. Magnetic domain walls of relic fermions as Dark Energy

    SciTech Connect

    Yajnik, Urjit A.

    2005-12-02

    We show that relic fermions of the Big Bang can enter a ferromagnetic state if they possess a magnetic moment and satisfy the requirements of Stoner theory of itinerant ferromagnetism. The domain walls of this ferromagnetism can successfully simulate Dark Energy over the observable epoch spanning {approx} 10 billion years. We obtain conditions on the anomalous magnetic moment of such fermions and their masses. Known neutrinos fail to satisfy the requirements thus pointing to the possibility of a new ultralight sector in Particle Physics.

  2. Tunable chiral spin texture in magnetic domain-walls.

    PubMed

    Franken, J H; Herps, M; Swagten, H J M; Koopmans, B

    2014-06-11

    Magnetic domain-walls (DWs) with a preferred chirality exhibit very efficient current-driven motion. Since structural inversion asymmetry (SIA) is required for their stability, the observation of chiral domain walls in highly symmetric Pt/Co/Pt is intriguing. Here, we tune the layer asymmetry in this system and observe, by current-assisted DW depinning experiments, a small chiral field which sensitively changes. Moreover, we convincingly link the observed efficiency of DW motion to the DW texture, using DW resistance as a direct probe for the internal orientation of the DW under the influence of in-plane fields. The very delicate effect of capping layer thickness on the chiral field allows for its accurate control, which is important in designing novel materials for optimal spin-orbit-torque-driven DW motion.

  3. Nanoscale thermoelectrical detection of magnetic domain wall propagation

    NASA Astrophysics Data System (ADS)

    Krzysteczko, Patryk; Wells, James; Fernández Scarioni, Alexander; Soban, Zbynek; Janda, Tomas; Hu, Xiukun; Saidl, Vit; Campion, Richard P.; Mansell, Rhodri; Lee, Ji-Hyun; Cowburn, Russell P.; Nemec, Petr; Kazakova, Olga; Wunderlich, Joerg; Schumacher, Hans Werner

    2017-06-01

    In magnetic nanowires with perpendicular magnetic anisotropy (PMA) magnetic domain walls (DWs) are narrow and can move rapidly driven by current induced torques. This enables important applications like high-density memories for which the precise detection of the position and motion of a propagating DW is of utmost interest. Today's DW detection tools are often limited in resolution, require complex instrumentation, or can only be applied on specific materials. Here we show that the anomalous Nernst effect provides a simple and powerful tool to precisely track the position and motion of a single DW propagating in a PMA nanowire. We detect field and current driven DW propagation in both metallic heterostructures and dilute magnetic semiconductors over a broad temperature range. The demonstrated spatial accuracy below 20 nm is comparable to the DW width in typical metallic PMA systems.

  4. Magnetic damping: domain wall dynamics versus local ferromagnetic resonance.

    PubMed

    Weindler, T; Bauer, H G; Islinger, R; Boehm, B; Chauleau, J-Y; Back, C H

    2014-12-05

    Magnetic relaxation is one of the dominating features of magnetization dynamics. Depending on the magnetic structure and the experimental approach, different magnitudes of the damping parameter are reported even for a given material. In this study, we experimentally address this issue by accessing the damping parameter in the same magnetic nanotracks using different approaches: local ferromagnetic resonance (α=0.0072) and field-driven domain wall dynamics (α=0.023). The experimental results cannot fully be accounted for by modeling only roughness in micromagnetic simulations. Consequently, we have included nonlocal texture induced damping to the micromagnetic code. We find excellent agreement with the observed increased damping in the vortex structures for the same input Gilbert alpha when texture-induced nonlocal damping is included.

  5. Quantum Annealing and Tunable Magnetic Domain Wall Tunneling

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Thomas F.

    2001-03-01

    Traditional simulated annealing utilizes thermal fluctuations for convergence in optimization problems. Quantum tunneling provides a different mechanism for moving between states, with the potential for reduced time scales. We compare thermal and quantum annealing in a model Ising ferromagnet composed of holmium dipoles in a lithium tetrafluoride matrix. The effects of quantum mechanics can be tuned in the laboratory by varying a magnetic field applied transverse to the Ising axis. This new knob permits us to: (1) tune the crossover between a classical Arrhenius response at high temperatures and an athermal response below 100 mK; (2) quantify the tunneling of magnetic domain walls through potential energy barriers in terms of an effective mass [1]; and (3) hasten convergence to the optimal state [2]. [1] "Tunable Quantum Tunneling of Magnetic Domain Walls," J. Brooke, T.F. Rosenbaum and G. Aeppli, preprint (2000). [2] "Quantum Annealing of a Disordered Magnet," J. Brooke, D. Bitko, T.F. Rosenbaum and G. Aeppli, Science 284, 779 (1999).

  6. Increased magnetic damping of a single domain wall and adjacent magnetic domains detected by spin torque diode in a nanostripe

    NASA Astrophysics Data System (ADS)

    Lequeux, Steven; Sampaio, Joao; Bortolotti, Paolo; Devolder, Thibaut; Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2015-11-01

    Spin torque resonance has been used to simultaneously probe the dynamics of a magnetic domain wall and of magnetic domains in a nanostripe magnetic tunnel junction. Due to the large associated resistance variations, we are able to analyze quantitatively the resonant properties of these single nanoscale magnetic objects. In particular, we find that the magnetic damping of both the domains and the domain wall is doubled compared to the damping value of the host magnetic layer. We estimate the contributions to the damping arising from the dipolar couplings between the different layers in the junction and from the intralayer spin pumping effect, and find that they cannot explain the large damping enhancement that we observe. We conclude that the measured increased damping is intrinsic to large amplitudes excitations of spatially localized modes or solitons such as vibrating or propagating domain walls.

  7. Increased magnetic damping of a single domain wall and adjacent magnetic domains detected by spin torque diode in a nanostripe

    SciTech Connect

    Lequeux, Steven; Sampaio, Joao; Bortolotti, Paolo; Cros, Vincent; Grollier, Julie; Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Tsunekawa, Koji

    2015-11-02

    Spin torque resonance has been used to simultaneously probe the dynamics of a magnetic domain wall and of magnetic domains in a nanostripe magnetic tunnel junction. Due to the large associated resistance variations, we are able to analyze quantitatively the resonant properties of these single nanoscale magnetic objects. In particular, we find that the magnetic damping of both the domains and the domain wall is doubled compared to the damping value of the host magnetic layer. We estimate the contributions to the damping arising from the dipolar couplings between the different layers in the junction and from the intralayer spin pumping effect, and find that they cannot explain the large damping enhancement that we observe. We conclude that the measured increased damping is intrinsic to large amplitudes excitations of spatially localized modes or solitons such as vibrating or propagating domain walls.

  8. Angular Dependence of Domain Wall Resistivity in Artificial Magnetic Domain Structures

    NASA Astrophysics Data System (ADS)

    Aziz, A.; Bending, S. J.; Roberts, H. G.; Crampin, S.; Heard, P. J.; Marrows, C. H.

    2006-11-01

    We exploit the ability to precisely control the magnetic domain structure of perpendicularly magnetized Pt/Co/Pt trilayers to fabricate artificial domain wall arrays and study their transport properties. The scaling behavior of this model system confirms the intrinsic domain wall origin of the magnetoresistance, and systematic studies using domains patterned at various angles to the current flow are excellently described by an angular-dependent resistivity tensor containing perpendicular and parallel domain wall resistivities. We find that the latter are fully consistent with Levy-Zhang theory, which allows us to estimate the ratio of minority to majority spin carrier resistivities, ρ↓/ρ↑˜5.5, in good agreement with thin film band structure calculations.

  9. Chiral damping in magnetic domain-walls (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jue, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stéphane; Schuhl, Alain; Manchon, Aurélien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-10-01

    The Dzyaloshinskii-Moriya interaction is responsible for chiral magnetic textures (skyrmions, spin spiral structures, …) in systems with structural inversion asymmetry and high spin-orbit coupling. It has been shown that the domain wall (DW) dynamics in such materials can be explained by chiral DWs with (partly or fully) Néel structure, whose stability derives from an interfacial DMI [1]. In this work, we show that DMI is not the only effect inducing chiral dynamics and demonstrate the existence of a chiral damping [2]. This result is supported by the study of the asymmetry induced by an in-plane magnetic field on field induced domain wall motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. Whereas the asymmetry of the DW motion is consistent with the spatial symmetries expected with the DMI, we show that this asymmetry cannot be attributed to an effective field but originates from a purely dissipative mechanism. The observation of chiral damping, not only enriches the spectrum of physical phenomena engendered by the SIA, but since it can coexist with DMI it is essential for conceiving DW and skyrmion devices. [1] A. Thiaville, et al., EPL 100, 57002 (2012) [2] E. Jué, et al., Nat. Mater., in press (doi: 10.1038/nmat4518)

  10. Magnetic domain wall induced ferroelectricity in double perovskites

    NASA Astrophysics Data System (ADS)

    Zhou, Hai Yang; Zhao, Hong Jian; Zhang, Wen Qing; Chen, Xiang Ming

    2015-04-01

    Recently, a magnetically induced ferroelectricity occurring at magnetic domain wall of double perovskite Lu2CoMnO6 has been reported experimentally. However, there exists a conflict whether the electric polarization is along b or c direction. Here, by first-principles calculations, we show that the magnetic domain wall (with ↑↑↓↓ spin configuration) can lead to the ferroelectric displacements of R3+, Ni2+, Mn4+, and O2- ions in double perovskites R2NiMnO6 (R = rare earth ion) via exchange striction. The resulted electric polarization is along b direction with the P21 symmetry. We further reveal the origin of the ferroelectric displacements as that: (1) on a structural point of view, such displacements make the two out-of-plane Ni-O-Mn bond angles as well as Ni-Mn distance unequal, and (2) on an energy point of view, such displacements weaken the out-of-plane Ni-Mn super-exchange interaction obviously. Finally, our calculations show that such a kind of ferroelectric order is general in ferromagnetic double perovskites.

  11. Magnetic domain wall induced ferroelectricity in double perovskites

    SciTech Connect

    Zhou, Hai Yang; Zhao, Hong Jian E-mail: xmchen59@zju.edu.cn; Chen, Xiang Ming E-mail: xmchen59@zju.edu.cn; Zhang, Wen Qing

    2015-04-13

    Recently, a magnetically induced ferroelectricity occurring at magnetic domain wall of double perovskite Lu{sub 2}CoMnO{sub 6} has been reported experimentally. However, there exists a conflict whether the electric polarization is along b or c direction. Here, by first-principles calculations, we show that the magnetic domain wall (with ↑↑↓↓ spin configuration) can lead to the ferroelectric displacements of R{sup 3+}, Ni{sup 2+}, Mn{sup 4+}, and O{sup 2−} ions in double perovskites R{sub 2}NiMnO{sub 6} (R = rare earth ion) via exchange striction. The resulted electric polarization is along b direction with the P2{sub 1} symmetry. We further reveal the origin of the ferroelectric displacements as that: (1) on a structural point of view, such displacements make the two out-of-plane Ni-O-Mn bond angles as well as Ni-Mn distance unequal, and (2) on an energy point of view, such displacements weaken the out-of-plane Ni-Mn super-exchange interaction obviously. Finally, our calculations show that such a kind of ferroelectric order is general in ferromagnetic double perovskites.

  12. Distribution of critical current density for magnetic domain wall motion

    NASA Astrophysics Data System (ADS)

    Fukami, S.; Yamanouchi, M.; Nakatani, Y.; Kim, K.-J.; Koyama, T.; Chiba, D.; Ikeda, S.; Kasai, N.; Ono, T.; Ohno, H.

    2014-05-01

    The bit-to-bit distribution of a critical current density for magnetic domain wall (DW) motion is studied using Co/Ni wires with various wire widths (ws). The distribution inherently decreases with the w, and the ratio of standard deviation to average is 9.8% for wires with w = 40 nm. It is found that a self-distribution within one device, which is evaluated through repeated measurement, is a dominant factor in the bit-to-bit distribution. Micromagnetic simulation reveals that the distribution originates from DW configuration, which varies with device size.

  13. Accurate calculation of the transverse anisotropy of a magnetic domain wall in perpendicularly magnetized multilayers

    NASA Astrophysics Data System (ADS)

    Büttner, Felix; Krüger, Benjamin; Eisebitt, Stefan; Kläui, Mathias

    2015-08-01

    Bloch domain walls are the most common type of transition between two out-of-plane magnetized domains (one magnetized upwards, one downwards) in films with perpendicular magnetic anisotropy. The rotation of the spins of such domain walls in the plane of the film requires energy, which is described by an effective anisotropy, the so-called transverse or hard axis anisotropy K⊥. This anisotropy and the related Döring mass density of the domain wall are key parameters of the one-dimensional model to describe the motion of magnetic domain walls. In particular, the critical field strength or current density where oscillatory domain wall motion sets in (Walker breakdown) is directly proportional to K⊥. So far, no general framework is available to determine K⊥ from static characterizations such as magnetometry measurements. Here, we derive a universal analytical expression to calculate the transverse anisotropy constant for the important class of perpendicular magnetic multilayers. All the required input parameters of the model, such as the number of repeats, the thickness of a single magnetic layer, and the layer periodicity, as well as the effective perpendicular anisotropy, the saturation magnetization, and the static domain wall width are accessible by static sample characterizations. We apply our model to a widely used multilayer system and find that the effective transverse anisotropy constant is a factor of seven different from that when using the conventional approximations, showing the importance of using our analysis scheme. Our model is also applicable to domain walls in materials with Dzyaloshinskii-Moriya interaction (DMI). The accurate knowledge of K⊥ is needed to determine other unknown parameters from measurements, such as the DMI strength or the spin polarization of the spin current in current-induced domain wall motion experiments.

  14. Theoretical study of magnetic domain walls through a cobalt nanocontact

    NASA Astrophysics Data System (ADS)

    Balogh, László; Palotás, Krisztián; Udvardi, László; Szunyogh, László; Nowak, Ulrich

    2012-07-01

    To calculate the magnetic ground state of nanoparticles we present a self-consistent first-principles method in terms of a fully relativistic embedded cluster multiple scattering Green's function technique. Based on the derivatives of the band energy, a Newton-Raphson algorithm is used to find the ground-state configuration. The method is applied to a cobalt nanocontact that turned out to show a cycloidal domain wall configuration between oppositely magnetized leads. We found that a wall of cycloidal spin structure is about 30 meV lower in energy than the one of helical spin structure. A detailed analysis revealed that the uniaxial on-site anisotropy of the central atom is mainly responsible to this energy difference. This high uniaxial anisotropy energy is accompanied by a huge enhancement and anisotropy of the orbital magnetic moment of the central atom. By varying the magnetic orientation at the central atom, we identified the term related to exchange couplings (Weiss-field term), various on-site anisotropy terms, and also those due to higher order spin interactions.

  15. Domain wall motion in sub-100 nm magnetic wire

    NASA Astrophysics Data System (ADS)

    Siddiqui, Saima; Dutta, Sumit; Currivan, Jean Anne; Ross, Caroline; Baldo, Marc

    2015-03-01

    Nonvolatile memory devices such as racetrack memory rely on the manipulation of domain wall (DW) in magnetic nanowires, and scaling of these devices requires an understanding of domain wall behavior as a function of the wire width. Due to the increased importance of edge roughness and magnetostatic interaction, DW pinning increases dramatically as the wire dimensions decrease and stochastic behavior is expected depending on the distribution of pinning sites. We report on the field driven DW statistics in sub-100 nm wide nanowires made from Co films with very small edge roughness. The nanowires were patterned in the form of a set of concentric rings of 10 μm diameter. Two different width nanowires with two different spacings have been studied. The rings were first saturated in plane to produce onion states and then the DWs were translated in the wires using an orthogonal in-plane field. The position of the DWs in the nanowires was determined with magnetic force microscopy. From the positions of the DWs in the nanowires, the strength of the extrinsic pinning sites was identified and they follow two different distributions in two different types of nanowire rings. For the closely spaced wires, magnetostatic interactions led to correlated movement of DWs in neighboring wires. The implications of DW pinning and interaction in nanoscale DW devices will be discussed.

  16. Magnetic domain wall depinning assisted by spin wave bursts

    NASA Astrophysics Data System (ADS)

    Woo, Seonghoon; Delaney, Tristan; Beach, Geoffrey S. D.

    2017-01-01

    Spin waves (SWs) in magnetic structures could potentially be exploited for high-speed, low-power magnonic devices for signal transmission and magnetic logic applications. The short wavelengths and high frequencies of dipole-exchange-mode SWs in metallic ferromagnets make them particularly suitable for nanoscale devices. However, these same characteristics make generation and detection challenging due to the length-scale mismatch of conventional SW interfaces such as microwave striplines. Here we show numerically and experimentally that colliding domain walls (DWs) release energetic spin wave bursts that can couple to and assist depinning of nearby DWs. Hence, DWs can be used as stationary reservoirs of exchange energy that can be efficiently generated, manipulated, and used to release SWs on demand, which can subsequently be detected again using DWs. This work highlights a route towards integrating DWs and SWs for enhanced functionality in spintronics applications.

  17. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization.

    PubMed

    Chiba, D; Kawaguchi, M; Fukami, S; Ishiwata, N; Shimamura, K; Kobayashi, K; Ono, T

    2012-06-06

    Controlling the displacement of a magnetic domain wall is potentially useful for information processing in magnetic non-volatile memories and logic devices. A magnetic domain wall can be moved by applying an external magnetic field and/or electric current, and its velocity depends on their magnitudes. Here we show that the applying an electric field can change the velocity of a magnetic domain wall significantly. A field-effect device, consisting of a top-gate electrode, a dielectric insulator layer, and a wire-shaped ferromagnetic Co/Pt thin layer with perpendicular anisotropy, was used to observe it in a finite magnetic field. We found that the application of the electric fields in the range of ± 2-3 MV cm(-1) can change the magnetic domain wall velocity in its creep regime (10(6)-10(3) m s(-1)) by more than an order of magnitude. This significant change is due to electrical modulation of the energy barrier for the magnetic domain wall motion.

  18. Magnetic domain walls in bulk and thin film Fe: first principles noncollinear magnetism study

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Takeda, Y.; Akiyama, T.; Ito, T.; Freeman, A. J.

    2004-03-01

    We investigate the electronic and magnetic structures of domain walls in ferromagnetic Fe bulk and Fe(110) monolayer by using the first-principles FLAPW method(Wimmer, Krakauer, Weinert and Freeman, PRB 24, 864(1981)) including noncollinear magnetism with no shape approximation of the magnetization density.(Nakamura, Freeman, Wang, Zhong, and Fernandez-de-Castro, PRB 65, 12402 (2002); 67, 14420 (2003)) In the bulk case, the self-consistent LSDA results demonstrate that the magnetic moments change continuously from one orientation to another as seen in a Bloch wall, and reveal that the formation energy of the domain wall significantly decreases when the domain wall thickness increases, as expected from phenomenological theory. The domain walls in thin film behave very differently: Surprisingly, the magnetic moment directions change rapidly; thus the wall width is only about 8 ÅThis consists and supports the atomically sharp domain wall in Fe/W(110) by the recently proposed SP-STM measurements.(Pratzer, Elmers, Bode, Pietzsch, Kubetzka and Wiesendanger, PRL 87, 127201 (2001))

  19. Efficient and controlled domain wall nucleation for magnetic shift registers.

    PubMed

    Alejos, Oscar; Raposo, Víctor; Sanchez-Tejerina, Luis; Martinez, Eduardo

    2017-09-19

    Ultrathin ferromagnetic strips with high perpendicular anisotropy have been proposed for the development of memory devices where the information is coded in tiny domains separated by domain walls. The design of practical devices requires creating, manipulating and detecting domain walls in ferromagnetic strips. Recent observations have shown highly efficient current-driven domain wall dynamics in multilayers lacking structural symmetry, where the walls adopt a chiral structure and can be driven at high velocities. However, putting such a device into practice requires the continuous and synchronous injection of domain walls as the first step. Here, we propose and demonstrate an efficient and simple scheme for nucleating domain walls using the symmetry of the spin orbit torques. Trains of short sub-nanosecond current pulses are injected in a double bit line to generate a localized longitudinal Oersted field in the ferromagnetic strip. Simultaneously, other current pulses are injected through the heavy metal under the ferromagnetic strip. Notably, the Slonczewski-like spin orbit torque assisted by the Oersted field allows the controlled injection of a series of domain walls, giving rise to a controlled manner for writing binary information and, consequently, to the design of a simple and efficient domain wall shift register.

  20. Magnetic bead detection using domain wall-based nanosensor

    SciTech Connect

    Corte-León, H.; Krzysteczko, P.; Schumacher, H. W.; Manzin, A.; Cox, D.; Antonov, V.; Kazakova, O.

    2015-05-07

    We investigate the effect of a single magnetic bead (MB) on the domain wall (DW) pinning/depinning fields of a DW trapped at the corner of an L-shaped magnetic nanodevice. DW propagation across the device is investigated using magnetoresistance measurements. DW pinning/depinning fields are characterized in as-prepared devices and after placement of a 1 μm-sized MB (Dynabeads{sup ®} MyOne{sup ™}) at the corner. The effect of the MB on the DW dynamics is seen as an increase in the depinning field for specific orientations of the device with respect to the external magnetic field. The shift of the depinning field, ΔB{sub dep} = 4.5–27.0 mT, is highly stable and reproducible, being significantly above the stochastic deviation which is about 0.5 mT. The shift in the deppinning field is inversely proportional to the device width and larger for small negative angles between the device and the external magnetic field. Thus, we demonstrate that DW-based devices can be successfully used for detection of single micron size MB.

  1. X-ray imaging of extended magnetic domain walls in Ni80Fe20 wires

    SciTech Connect

    Basu, S.; Fry, P. W.; Allwood, D. A.; Bryan, M. T.; Gibbs, M. R. J.; Schrefl, T.; Im, M.-Y.; Fischer, P.

    2009-06-20

    We have used magnetic transmission X-ray microscopy to image magnetization configurations in 700 nm wide Ni{sub 80}Fe{sub 20} planar wires attached to 'nucleation' pads Domain walls were observed to inject only across half of the wire width but extend to several micrometers in length. Magnetostatic interactions with adjacent wires caused further unusual domain wall behavior. Micromagnetic modeling suggests the extended walls have Neel-like structure along their length and indicates weaker exchange coupling than is often assumed. These observations explain previous measurements of domain wall injection and demonstrate that magnetic domain walls in larger nanowires cannot always be considered as localized entities.

  2. Structure and dynamic properties of the twisted magnetic domain wall in an electric field

    NASA Astrophysics Data System (ADS)

    Borich, M. A.; Tankeev, A. P.; Smagin, V. V.

    2016-01-01

    The structure of the domain wall in a magnetically uniaxial ferromagnetic film placed in an external electric field has been studied. It has been shown that the domain wall has a complex twisted structure whose characteristics (thickness, profile, and limit velocity of steady motion) depend on the film thickness, quality factor, and external electric field. The effect of the electric field on the domain wall is caused by inhomogeneous magnetoelectric coupling taking place in domain walls with a twisted structure.

  3. Magnetic domain wall shift registers for data storage applications

    NASA Astrophysics Data System (ADS)

    Read, Dan; O'Brien, L.; Zeng, H. T.; Lewis, E. R.; Petit, D.; Sampaio, J.; Thevenard, L.; Cowburn, R. P.

    2009-03-01

    Data storage devices based on magnetic domain walls (DWs) propagating through permalloy (Py) nanowires have been proposed [Allwood et al. Science 309, 1688 (2005), S. S. Parkin, US Patent 6,834,005 (2004)] and have attracted a great deal of attention. We experimentally demonstrate such a device using shift registers constructed from magnetic NOT gates used in combination with a globally applied rotating magnetic field. We have demonstrated data writing, propagation, and readout in individually addressable Py nanowires 90 nm wide and 10 nm thick. Electrical data writing is achieved using the Oersted field due to current pulses in gold stripes (4 μm wide, 150 nm thick), patterned on top of and perpendicular to the nanowires. The conduit-like properties of the nanowires allow the propagation of data sequences over distances greater than 100 μm. Using spatially resolved magneto-optical Kerr effect (MOKE) measurements we can directly detect the propagation of single DWs in individual nanostructures without requiring data averaging. Electrical readout was demonstrated by detecting the presence of DWs at deliberately introduced pinning sites in the wire.

  4. Magnetic Hardening from the Suppression of Domain Walls by Nonmagnetic Particles

    SciTech Connect

    Hu, Shenyang Y.; Li, Yulan; McCloy, John S.; Montgomery, Robert O.; Henager, Charles H.

    2013-03-07

    Magnetic domain switching and hysteresis loops in a single crystal α-iron with and without nonmagnetic particles were simulated based on the magnetization dynamics of the Landau–Lifshitz–Gilbert equation. It is found that the 360o Bloch domain wall is the easiest nucleation site for an anti-direction domain. The nucleation occurs by splitting the 360o Bloch domain wall into two 180o domain walls. However, the existence of nonmagnetic particles destroys the 180o domain walls and prevents the formation of 360o Bloch domain walls. Simulation results demonstrate that the impact of nonmagnetic particle on the formation of the 360o Bloch domain wall is a magnetic hardening mechanism.

  5. Topological repulsion between domain walls in magnetic nanowires leading to the formation of bound states.

    PubMed

    Thomas, Luc; Hayashi, Masamitsu; Moriya, Rai; Rettner, Charles; Parkin, Stuart

    2012-05-01

    Head-to-head and tail-to-tail magnetic domain walls in nanowires behave as free magnetic monopoles carrying a single magnetic charge. Since adjacent walls always carry opposite charges, they attract one another. In most cases this long-range attractive interaction leads to annihilation of the two domain walls. Here, we show that, in some cases, a short-range repulsive interaction suppresses annihilation of the walls, even though the lowest energy state is without any domain walls. This repulsive interaction is a consequence of topological edge defects that have the same winding number. We show that the competition between the attractive and repulsive interactions leads to the formation of metastable bound states made up of two or more domain walls. We have created bound states formed from up to eight domain walls, corresponding to the magnetization winding up over four complete 360° rotations.

  6. The Spatial Resolution Limit for an Individual Domain Wall in Magnetic Nanowires.

    PubMed

    Dutta, Sumit; Siddiqui, Saima A; Currivan-Incorvia, Jean Anne; Ross, Caroline A; Baldo, Marc A

    2017-09-13

    Magnetic nanowires are the foundation of several promising nonvolatile computing devices, most notably magnetic racetrack memory and domain wall logic. Here, we determine the analog information capacity in these technologies, analyzing a magnetic nanowire containing a single domain wall. Although wires can be deliberately patterned with notches to define discrete positions for domain walls, the line edge roughness of the wire can also trap domain walls at dimensions below the resolution of the fabrication process, determining the fundamental resolution limit for the placement of a domain wall. Using a fractal model for the edge roughness, we show theoretically and experimentally that the analog information capacity for wires is limited by the self-affine statistics of the wire edge roughness, a relevant result for domain wall devices scaled to regimes where edge roughness dominates the energy landscape in which the walls move.

  7. Bi-directional magnetic domain wall shift register

    NASA Astrophysics Data System (ADS)

    Read, D. E.; O'Brien, L.; Zeng, H. T.; Lewis, E. R.; Petit, D.; Cowburn, R. P.

    2010-03-01

    Data storage devices based on magnetic domain walls (DWs) propagating through ferromagnetic nanowires have attracted a great deal of attention in recent years [1,2]. Here we experimentally demonstrate a shift register based on an open-ended chain of ferromagnetic NOT gates. When used in combination with a globally applied magnetic field such devices can support bi-directional data flow [3]. We have demonstrated data writing, propagation, and readout in individually addressable NiFe nanowires 90 nm wide and 10 nm thick. Up to eight data bits are electrically input to the device, stored for extended periods without power supplied to the device, and then output using either a first in first out or a last in first out mode of operation. Compared to traditional electronic transistor-based circuits, the inherent bi-directionality afforded by these DW logic gates offers a range of devices that are reversible and not limited to only one mode of operation. [1] S. S. Parkin, US Patent 6,834,005 (2004) [2] D. A. Allwod, et al., Science 309 (5741), 1688 (2005) [3] L. O'Brien, et al. accepted for publication in APL (2009)

  8. Spin waves and domain wall modes in curved magnetic nanowires.

    PubMed

    Bocklage, Lars; Motl-Ziegler, Sandra; Topp, Jesco; Matsuyama, Toru; Meier, Guido

    2014-07-02

    The confinement of spin waves in inhomogeneous fields and spin wave interaction with domain walls has attracted interest due to possible applications in magnonics. We investigate spin waves in curved ferromagnetic nanowires. The field dispersion and localization of spin waves is revealed by comparison to known modes in stripes and taking into account the specific field reversal of the curved wire. In small wires we find a strongly altered mode spectrum in a certain field regime. Micromagnetic simulations show an extended domain wall within the wire in this field region. The domain wall shows several dynamic modes and changes the remaining spin wave modes. We find mode suppression as well as newly arising modes due to the strong inhomogenous internal field of the wall.

  9. Mobile metallic domain walls in an all-in-all-out magnetic insulator.

    PubMed

    Ma, Eric Yue; Cui, Yong-Tao; Ueda, Kentaro; Tang, Shujie; Chen, Kai; Tamura, Nobumichi; Wu, Phillip M; Fujioka, Jun; Tokura, Yoshinori; Shen, Zhi-Xun

    2015-10-30

    Magnetic domain walls are boundaries between regions with different configurations of the same magnetic order. In a magnetic insulator, where the magnetic order is tied to its bulk insulating property, it has been postulated that electrical properties are drastically different along the domain walls, where the order is inevitably disturbed. Here we report the discovery of highly conductive magnetic domain walls in a magnetic insulator, Nd2Ir2O7, that has an unusual all-in-all-out magnetic order, via transport and spatially resolved microwave impedance microscopy. The domain walls have a virtually temperature-independent sheet resistance of ~1 kilohm per square, show smooth morphology with no preferred orientation, are free from pinning by disorders, and have strong thermal and magnetic field responses that agree with expectations for all-in-all-out magnetic order.

  10. Electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers

    NASA Astrophysics Data System (ADS)

    López González, Diego; Shirahata, Yasuhiro; Van de Wiele, Ben; Franke, Kévin J. A.; Casiraghi, Arianna; Taniyama, Tomoyasu; van Dijken, Sebastiaan

    2017-03-01

    We report on reversible electric-field-driven magnetic domain wall motion in a Cu/Ni multilayer on a ferroelectric BaTiO3 substrate. In our heterostructure, strain-coupling to ferroelastic domains with in-plane and perpendicular polarization in the BaTiO3 substrate causes the formation of domains with perpendicular and in-plane magnetic anisotropy, respectively, in the Cu/Ni multilayer. Walls that separate magnetic domains are elastically pinned onto ferroelectric domain walls. Using magneto-optical Kerr effect microscopy, we demonstrate that out-of-plane electric field pulses across the BaTiO3 substrate move the magnetic and ferroelectric domain walls in unison. Our experiments indicate an exponential increase of domain wall velocity with electric field strength and opposite domain wall motion for positive and negative field pulses. The application of a magnetic field does not affect the velocity of magnetic domain walls, but independently tailors their internal spin structure, causing a change in domain wall dynamics at high velocities.

  11. Influence of domain wall interactions on nanosecond switching in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Vogel, J.; Kuch, W.; Hertel, R.; Camarero, J.; Fukumoto, K.; Romanens, F.; Pizzini, S.; Bonfim, M.; Petroff, F.; Fontaine, A.; Kirschner, J.

    2005-12-01

    We have obtained microscopic evidence of the influence of domain wall stray fields on the nanosecond magnetization switching in magnetic trilayer systems. The nucleation barrier initiating the magnetic switching of the soft magnetic Fe20Ni80 layer in magnetic tunnel junctionlike FeNi/Al2O3/Co trilayers is considerably lowered by stray fields generated by domain walls present in the hard magnetic Co layer. This internal bias field can significantly increase the local switching speed of the soft layer. The effect is made visible using nanosecond time- and layer-resolved magnetic domain imaging and confirmed by micromagnetic simulations.

  12. Suppression of the intrinsic stochastic pinning of domain walls in magnetic nanostripes

    PubMed Central

    Muñoz, Manuel; Prieto, José L.

    2011-01-01

    Nanofabrication has allowed the development of new concepts such as magnetic logic and race-track memory, both of which are based on the displacement of magnetic domain walls on magnetic nanostripes. One of the issues that has to be solved before devices can meet the market demands is the stochastic behaviour of the domain wall movement in magnetic nanostripes. Here we show that the stochastic nature of the domain wall motion in permalloy nanostripes can be suppressed at very low fields (0.6–2.7 Oe). We also find different field regimes for this stochastic motion that match well with the domain wall propagation modes. The highest pinning probability is found around the precessional mode and, interestingly, it does not depend on the external field in this regime. These results constitute an experimental evidence of the intrinsic nature of the stochastic pinning of domain walls in soft magnetic nanostripes. PMID:22127058

  13. Current-driven magnetic domain wall motion and its real-time detection

    NASA Astrophysics Data System (ADS)

    Kim, Kab-Jin; Yoshimura, Yoko; Ono, Teruo

    2017-08-01

    Current-controlled magnetic domain wall motion has opened the possibility of a novel type of shift register memory device, which has been optimistically predicted to replace existing magnetic memories. Owing to this promising prospect, intensive work has been carried out during the last few decades. In this article, we first review the progress in the study of current-induced magnetic domain wall motion. Underlying mechanisms behind the domain wall motion, which have been discovered during last few decades, as well as technological achievements are presented. We then present our recent experimental results on the real-time detection of current-driven multiple magnetic domain wall motion, which directly demonstrates the operation of a magnetic domain wall shift register.

  14. Suppression of the intrinsic stochastic pinning of domain walls in magnetic nanostripes.

    PubMed

    Muñoz, Manuel; Prieto, José L

    2011-11-29

    Nanofabrication has allowed the development of new concepts such as magnetic logic and race-track memory, both of which are based on the displacement of magnetic domain walls on magnetic nanostripes. One of the issues that has to be solved before devices can meet the market demands is the stochastic behaviour of the domain wall movement in magnetic nanostripes. Here we show that the stochastic nature of the domain wall motion in permalloy nanostripes can be suppressed at very low fields (0.6-2.7 Oe). We also find different field regimes for this stochastic motion that match well with the domain wall propagation modes. The highest pinning probability is found around the precessional mode and, interestingly, it does not depend on the external field in this regime. These results constitute an experimental evidence of the intrinsic nature of the stochastic pinning of domain walls in soft magnetic nanostripes.

  15. Direct observation of massless domain wall dynamics in nanostripes with perpendicular magnetic anisotropy.

    PubMed

    Vogel, J; Bonfim, M; Rougemaille, N; Boulle, O; Miron, I M; Auffret, S; Rodmacq, B; Gaudin, G; Cezar, J C; Sirotti, F; Pizzini, S

    2012-06-15

    Domain wall motion induced by nanosecond current pulses in nanostripes with perpendicular magnetic anisotropy (Pt/Co/AlO(x)) is shown to exhibit negligible inertia. Time-resolved magnetic microscopy during current pulses reveals that the domain walls start moving, with a constant speed, as soon as the current reaches a constant amplitude, and no or little motion takes place after the end of the pulse. The very low "mass" of these domain walls is attributed to the combination of their narrow width and high damping parameter α. Such a small inertia should allow accurate control of domain wall motion by tuning the duration and amplitude of the current pulses.

  16. Pinning induced by inter-domain wall interactions in planar magnetic nanowires

    SciTech Connect

    Hayward, T.J.; Bryan, M.T.; Fry, P.W.; Fundi, P.M.; Gibbs, M.R.J.; Allwood, D.A.; Im, M.-Y.; Fischer, P.

    2009-10-30

    We have investigated pinning potentials created by inter-domain wall magnetostatic interactions in planar magnetic nanowires. We show that these potentials can take the form of an energy barrier or an energy well depending on the walls' relative monopole moments, and that the applied magnetic fields required to overcome these potentials are significant. Both transverse and vortex wall pairs are investigated and it is found that transverse walls interact more strongly due to dipolar coupling between their magnetization structures. Simple analytical models which allow the effects of inter-domain wall interactions to be estimated are also presented.

  17. Domain wall pinning controlled by the magnetic field of four nanoparticles in a ferromagnetic nanowire

    NASA Astrophysics Data System (ADS)

    Ermolaeva, O. L.; Skorokhodov, E. V.; Mironov, V. L.

    2016-11-01

    This paper presents the results of theoretical and experimental investigations of the domain wall pinning in a planar ferromagnetic system consisting of a nanowire and four rectangular uniformly magnetized nanoparticles located at an angle to the nanowire axis. Based on the calculations of the interaction energy of the domain wall with stray fields of nanoparticles and the micromagnetic simulation, it has been demonstrated that, in this system, there are different variants of the domain wall pinning, which are determined by the relative orientation of the magnetic moments of nanoparticles and the magnetization of the nanowire. The possibility of the creation of magnetic logic cells based on the structures under consideration has been discussed.

  18. Domain wall motion driven by spin Hall effect—Tuning with in-plane magnetic anisotropy

    SciTech Connect

    Rushforth, A. W.

    2014-04-21

    This letter investigates the effects of in-plane magnetic anisotropy on the current induced motion of magnetic domain walls in systems with dominant perpendicular magnetic anisotropy, where accumulated spins from the spin Hall effect in an adjacent heavy metal layer are responsible for driving the domain wall motion. It is found that that the sign and magnitude of the domain wall velocity in the uniform flow regime can be tuned significantly by the in-plane magnetic anisotropy. These effects are sensitive to the ratio of the adiabatic and non-adiabatic spin transfer torque parameters and are robust in the presence of pinning and thermal fluctuations.

  19. Domain wall trapping and influence of the asymmetry in magnetic nanoring studied by micromagnetic simulations.

    PubMed

    Wang, X H; Wang, W Z; Kong, T F; Lew, W S

    2011-03-01

    We have studied the magnetic switching behavior of permalloy asymmetric rings using micromagnetic simulations. The simulation results have revealed that a domain wall trapping feature is present at the narrow arm of the asymmetric ring. This trapping feature is obtained via precise control of the lateral geometric features, the ring asymmetry and the film thickness. Our results show that the trapped domain walls do not annihilate until the magnetization in the wide arm is reversed under a relatively large magnetic field. Furthermore, the magnetic field strength needed to annihilate the domain wall is found to be decreasing with larger asymmetry ratio.

  20. Control of ultranarrow Co magnetic domain wall widths in artificially patterned H-bar structures

    NASA Astrophysics Data System (ADS)

    Yang, Z. J.; Sun, L.; Zhang, X. P.; Cao, M.; Deng, X. Y.; Hu, An; Ding, H. F.

    2009-02-01

    Micromagnetic simulations of Co domain walls on nanometer crossbars that join two oppositely magnetized parallel legs of "H" shaped patterns are studied. The crossbar domain walls can twist in the plane of the H-pattern, out of the plane, or swirl, forming Néel, Bloch, or vortex structures, respectively, depending on the initial configurations. An energy phase diagram as a function of the crossbar constriction yields the Néel wall as the energetically most favorable, followed by the Bloch wall, which becomes unstable and changes into a vortex-like wall with increasing crossbar size. Most interestingly, the Néel wall width can either shrink or expand depending on the crossbar dimensions. In the case that both the crossbar length and width are small, desirable, ultranarrow domain walls can be obtained. These findings are useful for spintronic device design based on domain wall pinning via nanonotch and domain-wall magnetoresistance approaches.

  1. Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy.

    PubMed

    Franken, J H; Swagten, H J M; Koopmans, B

    2012-08-01

    The movement of magnetic domain walls can be used to build a device known as a shift register, which has applications in memory and logic circuits. However, the application of magnetic domain wall shift registers has been hindered by geometrical restrictions, by randomness in domain wall displacement and by the need for high current densities or rotating magnetic fields. Here, we propose a new approach in which the energy landscape experienced by the domain walls is engineered to favour a unidirectional ratchet-like propagation. The domain walls are defined between domains with an out-of-plane (perpendicular) magnetization, which allows us to route domain walls along arbitrary in-plane paths using a time-varying applied magnetic field with fixed orientation. In addition, this ratchet-like motion causes the domain walls to lock to discrete positions along these paths, which is useful for digital devices. As a proof-of-principle experiment we demonstrate the continuous propagation of two domain walls along a closed-loop path in a platinum/cobalt/platinum strip.

  2. Measurement of magnetic domain wall width using energy-filtered Fresnel images.

    PubMed

    Lloyd, S J; Loudon, J C; Midgley, P A

    2002-08-01

    Magnetic domain walls in Nd2Fe14B have been examined using a series of energy-filtered Fresnel images in the field emission gun transmission electron microscope (FEGTEM). We describe the changes in the intensity distribution of the convergent wall image as a function of defocus, foil thickness and domain wall width. The effect of tilted domain walls and beam convergence on the fringe pattern is also discussed. A comparison of the experimental intensity profile with that from simulations allows the domain wall width to be determined. Measurement of very narrow walls is made possible only by using a relatively thick foil, which necessitates energy-filtering to allow quantitative comparison with simulations. The magnetic domain wall width in Nd2Fe14B was found to be 3 +/- 2 nm.

  3. Coupled Néel domain wall motion in sandwiched perpendicular magnetic anisotropy nanowires.

    PubMed

    Purnama, I; Kerk, I S; Lim, G J; Lew, W S

    2015-03-04

    The operating performance of a domain wall-based magnetic device relies on the controlled motion of the domain walls within the ferromagnetic nanowires. Here, we report on the dynamics of coupled Néel domain wall in perpendicular magnetic anisotropy (PMA) nanowires via micromagnetic simulations. The coupled Néel domain wall is obtained in a sandwich structure, where two PMA nanowires that are separated by an insulating layer are stacked vertically. Under the application of high current density, we found that the Walker breakdown phenomenon is suppressed in the sandwich structure. Consequently, the coupled Néel domain wall of the sandwich structure is able to move faster as compared to individual domain walls in a single PMA nanowire.

  4. Observation of field-induced domain wall propagation in magnetic nanowires by magnetic transmission X-ray microscopy

    SciTech Connect

    Bryan, M. T.; Fry, P. W.; Fischer, P.; Allwood, D. A.

    2007-12-01

    Magnetic transmission X-ray microscopy (M-TXM) is used to image domain walls in magnetic ring structures formed by a 300 nm wide, 24 nm thick Ni{sub 81}Fe{sub 19} nanowire. Both transverse and vortex type domain walls are observed after application of different field sequences. Domain walls can be observed by comparing images obtained from opposite field sequences, or else domain wall propagation observed by comparing successive images in a particular field sequence. This demonstrates the potential use of M-TXM in developing and understanding planar magnetic nanowire behavior.

  5. Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer-matrix soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Dobák, Samuel; Füzer, Ján; Kollár, Peter; Fáberová, Mária; Bureš, Radovan

    2017-03-01

    This study sheds light on the dynamic magnetization process in iron/resin soft magnetic composites from the viewpoint of quantitative decomposition of their complex permeability spectra into the viscous domain wall motion and magnetization rotation. We present a comprehensive view on this phenomenon over the broad family of samples with different average particles dimension and dielectric matrix content. The results reveal the pure relaxation nature of magnetization processes without observation of spin resonance. The smaller particles and higher amount of insulating resin result in the prevalence of rotations over domain wall movement. The findings are elucidated in terms of demagnetizing effects rising from the heterogeneity of composite materials.

  6. Reconfigurable magnetic logic based on the energetics of pinned domain walls

    NASA Astrophysics Data System (ADS)

    López González, Diego; Casiraghi, Arianna; Van de Wiele, Ben; van Dijken, Sebastiaan

    2016-01-01

    A magnetic logic concept based on magnetic switching in three stripe domains separated by pinned magnetic domain walls is proposed. The relation between the inputs and the output of the logic operator is determined by the energetics of the domain walls, which can be switched between two distinctive states by an external magnetic field. Together with magnetic read-out along two orthogonal directions, non-volatile AND, OR, NAND, and NOR gates can be created. The logic concept is experimentally demonstrated using CoFeB films on BaTiO3 substrates, and micromagnetic simulations are used to analyze the energetics of the system.

  7. Domain wall motion and Barkhausen effect in magnetic nanoparticles for EOR applications

    NASA Astrophysics Data System (ADS)

    Baig, Mirza Khurram; Soleimani, Hassan; Yahya, Noorhana

    2016-11-01

    The domain wall motion in magnetic nanoparticles is a useful parameter of study. The subject of this research is to study of the phenomenon of discontinuous domain wall motion, or the Barkhausen Effect in magnetic nanoparticles. In this work hematite (Fe2O3) nanoparticles have been synthesized using sol-gel auto-combustion and characterized using X-ray diffraction, Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) for crystal structure, morphology, shape, size and magnetic properties respectively. The FESEM and TEM results show that the particles are spherical in nature and average size is 60nm that is suitable for domain walls and barkhuasen effect. The VSM results show high coercivity 175 Oe and low saturation magnetization due to domain wall pinning and barkhausen effect. The size and magnetic properties reveals the existence of domain walls in the synthesized sample. The magnetic properties confirm the energy losses due to domain wall pinning, discontinuous domain rotation or barkhausen effect during magnetization which is useful for oil-water interfacial tension reduction and viscosity of oil. The high surface charge of magnetic nanoparticles and adsorption at the rock surface is useful for wettability alteration of rocks.

  8. Domain walls in the (Ga,Mn)as diluted magnetic semiconductor.

    PubMed

    Sugawara, Akira; Kasai, H; Tonomura, A; Brown, P D; Campion, R P; Edmonds, K W; Gallagher, B L; Zemen, J; Jungwirth, T

    2008-02-01

    We report experimental and theoretical studies of magnetic domain walls in an in-plane magnetized (Ga,Mn)As dilute moment ferromagnetic semiconductor. Our high-resolution electron holography technique provides direct images of domain wall magnetization profiles. The experiments are interpreted based on microscopic calculations of the micromagnetic parameters and Landau-Lifshitz-Gilbert simulations. We find that the competition of uniaxial and biaxial magnetocrystalline anisotropies in the film is directly reflected in orientation dependent wall widths, ranging from approximately 40 to 120 nm. The domain walls are of the Néel type and evolve from near-90 degrees walls at low temperatures to large angle [11[over ]0]-oriented walls and small angle [110]-oriented walls at higher temperatures.

  9. Spin-wave-driven high-speed domain-wall motions in soft magnetic nanotubes

    SciTech Connect

    Yang, Jaehak; Yoo, Myoung-Woo; Kim, Sang-Koog

    2015-10-28

    We report on a micromagnetic simulation study of interactions between propagating spin waves and a head-to-head domain wall in geometrically confined magnetic nanotubes. We found that incident spin waves of specific frequencies can lead to sufficiently high-speed (on the order of a few hundreds of m/s or higher) domain-wall motions in the same direction as that of the incident spin-waves. The domain-wall motions and their speed vary remarkably with the frequency and the amplitude of the incident spin-waves. High-speed domain-wall motions originate from the transfer torque of spin waves' linear momentum to the domain wall, through the partial or complete reflection of the incident spin waves from the domain wall. This work provides a fundamental understanding of the interaction of the spin waves with a domain wall in the magnetic nanotubes as well as a route to all-magnetic control of domain-wall motions in the magnetic nanoelements.

  10. Dynamic effects of quenched disorder on domain wall motion in magnetic nanowires

    NASA Astrophysics Data System (ADS)

    He, Y. Y.; Zheng, B.; Zhou, N. J.

    2016-10-01

    The domain wall dynamics in magnetic nanowires is numerically studied with the Landau-Lifshitz-Gilbert equation. Below the Walker breakdown threshold, the domain wall presents a stable propagation, while above the threshold where the retrograde mode dominates, the oscillation period is controlled by the external field and anisotropy. More importantly, the dynamic effects of quenched disorder on the domain wall motion are explored. A continuous pinning-depinning phase transition is detected. The dynamic scaling form is analyzed with the data collapse of the domain wall velocity, and both the static and dynamic critical exponents are extracted.

  11. Current driven domain wall motion in rare-earth transition metal alloys with perpendicular magnetic anisotropy.

    PubMed

    Li, Songtian; Liu, Xiaoxi; Morisako, Akimistu

    2012-09-01

    The domain wall movement behaviors under current combining with magnetic field in perpendicularly magnetized TbFeCo wire were studied by a polar magneto-optical Kerr effect microscope. The velocity for domain wall creeping along electrons flowing direction was found to be apparently higher than that of domain wall creeping against electrons flowing, which is the signature of the spin transfer torque effect. By employing the modified field-driven creep motion law, a spin transfer efficiency of 2.7 Oe cm2/10(6) A was determined for TbFeCo wire by treating the spin transfer torque as an effective field adding to the external field. The high spin transfer efficiency suggests that perpendicularly magnetized system with sharp domain walls in TbFeCo film shows high superiorities for applications in spin transfer torque based devices compared with in-plane magnetized systems.

  12. Combined effect of magnetic field and charge current on antiferromagnetic domain-wall dynamics

    NASA Astrophysics Data System (ADS)

    Yamane, Yuta; Gomonay, Olena; Velkov, Hristo; Sinova, Jairo

    2017-08-01

    We theoretically examine a cross effect of magnetic field and charge current on antiferromagnetic domain wall dynamics. Since antiferromagnetic materials are largely insensitive to external magnetic fields in general, charge current has been shown recently as an alternative and efficient way to manipulate antiferromagnets. We find a new role of the magnetic field in the antiferromagnetic dynamics that appears when it is combined with charge current, demonstrating a domain wall motion in the presence of both field and current. We show that a spatially varying magnetic field can shift the current-driven domain-wall velocity, depending on the domain-wall structure and the direction of the field gradient. Our result suggests a novel concept of field control of current-driven antiferromagnetic dynamics.

  13. Imaging and Tailoring the Chirality of Domain Walls in Magnetic Films.

    PubMed

    Chen, Gong; Schmid, Andreas K

    2015-10-14

    Electric-current-induced magnetization switching is a keystone concept in the development of spintronics devices. In the last few years this field has experienced a significant boost with the discovery of ultrafast domain wall motions and very low threshold currents in structures designed to stabilize chiral spin textures. Imaging domain-wall spin textures in situ, while fabricating magnetic multilayer structures, is a powerful way to investigate the forces stabilizing this type of chirality, and informs strategies to engineer structures with controlled spin textures. Here, recent results applying spin-polarized low-energy electron microscopy to image chiral domain walls in magnetic multilayer films are summarized. Providing a way to measure the strength of the asymmetric exchange interaction that causes the chirality, this approach can be used to tailor the texture and handedness of magnetic domain walls by interface engineering. These results advance understanding of the underlying physics and offer new insights toward the design of spintronic devices.

  14. Magneto-optical Kerr effect susceptometer for the analysis of magnetic domain wall dynamics.

    PubMed

    Kataja, Mikko; van Dijken, Sebastiaan

    2011-10-01

    Domain wall dynamics in thin magnetic films with perpendicular and in-plane anisotropy is studied using a novel magneto-optical Kerr effect susceptometery method. The method allows for measurements of domain wall motion under ac field excitation and the analysis of dynamic modes as a function of driving frequency and magnetic field amplitude. Domain wall dynamics in the perpendicular anisotropy system, a Co/Pt multilayer, is characterized by thermally activated creep motion. For this dynamic mode, a polydispersivity exponent of β = 0.50 ± 0.03 is derived at small excitation energy, which is in excellent agreement with theoretical models. The dynamics of the other system, a Co wire with transverse uniaxial anisotropy, is dominated by viscous slide motion in a regular magnetic stripe pattern. Analytical expressions are derived for this magnetic configuration and by using these expressions, accurate values for the depinning field and the domain wall mobility are extracted from the susceptibility measurements.

  15. Magnetic Domain Walls as Hosts of Spin Superfluids and Generators of Skyrmions

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2017-07-01

    A domain wall in a magnet with easy-axis anisotropy is shown to harbor spin superfluid associated with its spontaneous breaking of the U(1) spin-rotational symmetry. The spin superfluid is shown to have several topological properties, which are absent in conventional superfluids. First, the associated phase slips create and destroy Skyrmions to obey the conservation of the total Skyrmion charge, which allows us to use a domain wall as a generator and detector of Skyrmions. Second, the domain wall engenders the emergent magnetic flux for magnons along its length, which are proportional to the spin supercurrent flowing through it, and thereby provides a way to manipulate magnons. Third, the spin supercurrent can be driven by the magnon current traveling across it owing to the spin transfer between the domain wall and magnons, leading to the magnonic manipulation of the spin superfluid. The theory for superfluid spin transport within the domain wall is confirmed by numerical simulations.

  16. Fast Magnetic Domain-Wall Motion in a Ring-Shaped Nanowire Driven by a Voltage.

    PubMed

    Hu, Jia-Mian; Yang, Tiannan; Momeni, Kasra; Cheng, Xiaoxing; Chen, Lei; Lei, Shiming; Zhang, Shujun; Trolier-McKinstry, Susan; Gopalan, Venkatraman; Carman, Gregory P; Nan, Ce-Wen; Chen, Long-Qing

    2016-04-13

    Magnetic domain-wall motion driven by a voltage dissipates much less heat than by a current, but none of the existing reports have achieved speeds exceeding 100 m/s. Here phase-field and finite-element simulations were combined to study the dynamics of strain-mediated voltage-driven magnetic domain-wall motion in curved nanowires. Using a ring-shaped, rough-edged magnetic nanowire on top of a piezoelectric disk, we demonstrate a fast voltage-driven magnetic domain-wall motion with average velocity up to 550 m/s, which is comparable to current-driven wall velocity. An analytical theory is derived to describe the strain dependence of average magnetic domain-wall velocity. Moreover, one 180° domain-wall cycle around the ring dissipates an ultrasmall amount of heat, as small as 0.2 fJ, approximately 3 orders of magnitude smaller than those in current-driven cases. These findings suggest a new route toward developing high-speed, low-power-dissipation domain-wall spintronics.

  17. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    PubMed Central

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-01-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs. PMID:28220893

  18. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires.

    PubMed

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-21

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  19. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    NASA Astrophysics Data System (ADS)

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  20. Manipulating antiferromagnets with magnetic fields: Ratchet motion of multiple domain walls induced by asymmetric field pulses

    NASA Astrophysics Data System (ADS)

    Gomonay, O.; Kläui, M.; Sinova, J.

    2016-10-01

    Future applications of antiferromagnets (AFs) in many spintronics devices rely on the precise manipulation of domain walls. The conventional approach using static magnetic fields is inefficient due to the low susceptibility of AFs. Recently proposed electrical manipulation with spin-orbit torques is restricted to metals with a specific crystal structure. Here, we propose an alternative, broadly applicable approach: using asymmetric magnetic field pulses to induce controlled ratchet motion of AF domain walls. The efficiency of this approach is based on three peculiarities of AF dynamics. First, a time-dependent magnetic field couples with an AF order parameter stronger than a static magnetic field, which leads to higher mobility of the domain walls. Second, the rate of change of the magnetic field couples with the spatial variation of the AF order parameter inside the domain, and this enables a synchronous motion of multiple domain walls with the same structure. Third, tailored asymmetric field pulses in combination with static friction can prevent backward motion of domain walls and thus lead to the desired controlled ratchet effect. The proposed use of an external field, rather than internal spin-orbit torques, avoids any restrictions on size, conductivity, and crystal structure of the AF material. We believe that our approach paves a way for the development of AF-based devices based on the controlled motion of AF domain walls.

  1. Tunable short-wavelength spin wave excitation from pinned magnetic domain walls

    PubMed Central

    Van de Wiele, Ben; Hämäläinen, Sampo J.; Baláž, Pavel; Montoncello, Federico; van Dijken, Sebastiaan

    2016-01-01

    Miniaturization of magnonic devices for wave-like computing requires emission of short-wavelength spin waves, a key feature that cannot be achieved with microwave antennas. In this paper, we propose a tunable source of short-wavelength spin waves based on highly localized and strongly pinned magnetic domain walls in ferroelectric-ferromagnetic bilayers. When driven into oscillation by a microwave spin-polarized current, the magnetic domain walls emit spin waves with the same frequency as the excitation current. The amplitude of the emitted spin waves and the range of attainable excitation frequencies depend on the availability of domain wall resonance modes. In this respect, pinned domain walls in magnetic nanowires are particularly attractive. In this geometry, spin wave confinement perpendicular to the nanowire axis produces a multitude of domain wall resonances enabling efficient spin wave emission at frequencies up to 100 GHz and wavelengths down to 20 nm. At high frequency, the emission of spin waves in magnetic nanowires becomes monochromatic. Moreover, pinning of magnetic domain wall oscillators onto the same ferroelectric domain boundary in parallel nanowires guarantees good coherency between spin wave sources, which opens perspectives towards the realization of Mach-Zehnder type logic devices and sensors. PMID:26883893

  2. Tunable short-wavelength spin wave excitation from pinned magnetic domain walls.

    PubMed

    Van de Wiele, Ben; Hämäläinen, Sampo J; Baláž, Pavel; Montoncello, Federico; van Dijken, Sebastiaan

    2016-02-17

    Miniaturization of magnonic devices for wave-like computing requires emission of short-wavelength spin waves, a key feature that cannot be achieved with microwave antennas. In this paper, we propose a tunable source of short-wavelength spin waves based on highly localized and strongly pinned magnetic domain walls in ferroelectric-ferromagnetic bilayers. When driven into oscillation by a microwave spin-polarized current, the magnetic domain walls emit spin waves with the same frequency as the excitation current. The amplitude of the emitted spin waves and the range of attainable excitation frequencies depend on the availability of domain wall resonance modes. In this respect, pinned domain walls in magnetic nanowires are particularly attractive. In this geometry, spin wave confinement perpendicular to the nanowire axis produces a multitude of domain wall resonances enabling efficient spin wave emission at frequencies up to 100 GHz and wavelengths down to 20 nm. At high frequency, the emission of spin waves in magnetic nanowires becomes monochromatic. Moreover, pinning of magnetic domain wall oscillators onto the same ferroelectric domain boundary in parallel nanowires guarantees good coherency between spin wave sources, which opens perspectives towards the realization of Mach-Zehnder type logic devices and sensors.

  3. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    SciTech Connect

    Jordanovic, J.; Frandsen, C.; Beleggia, M.; Schiøtz, J.

    2015-07-28

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic “superspin.” Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results.

  4. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Jordanovic, J.; Beleggia, M.; Schiøtz, J.; Frandsen, C.

    2015-07-01

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic "superspin." Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results.

  5. Dynamics of domain walls in thin films with out-of-plane magnetization

    NASA Astrophysics Data System (ADS)

    Makhfudz, Imam; Krüger, Benjamin; Tchernyshyov, Oleg

    2010-03-01

    A thin magnetic film with a strong easy-axis anisotropy favoring the out-of-plane direction breaks up into mesoscopic magnetic domains separated by Bloch domain walls. Depending on magnetic history, these domains can form ordered stripes or disordered labyrinthine patterns. The physics of these domain walls is strongly influenced by dipolar interactions that mediate a long-range interaction between domain walls and make the wall tension negative [1]. Here we point out that the dominance of the gyrotropic force over the viscous one makes the dynamics of Bloch walls rather unusual. Low-frequency waves on such a wall are chiral: the speed of propagation is different for the two directions along the wall. The puzzling star-shaped trajectory of a magnetic bubble noted in [2] is a result of superposition of two waves with the same wavenumber and different frequencies running in opposite directions along the wall that surrounds the bubble. We point out a similarity to the edges of a quantum Hall state. [1] S. A. Langer, R. E. Goldstein, and D. P. Jackson, Phys. Rev. A 46, 4894 (1992). [2] C. Moutafis, S. Komineas, and J. A. C. Bland, Phys. Rev. B 79, 224429 (2009).

  6. Coupled domain wall oscillations in magnetic cylindrical nanowires

    SciTech Connect

    Murapaka, Chandrasekhar; Goolaup, S.; Purnama, I.; Lew, W. S.

    2015-02-07

    We report on transverse domain wall (DW) dynamics in two closely spaced cylindrical nanowires. The magnetostatically coupled DWs are shown to undergo an intrinsic oscillatory motion along the nanowire length in addition to their default rotational motion. In the absence of external forces, the amplitude of the DW oscillation is governed by the change in the frequency of the DW rotation. It is possible to sustain the DW oscillations by applying spin-polarized current to the nanowires to balance the repulsive magnetostatic coupling. The current density required to sustain the DW oscillation is found to be in the order of 10{sup 5 }A/cm{sup 2}. Morover, our analysis of the oscillation reveals that the DWs in cylindrical nanowires possess a finite mass.

  7. Domain wall oscillations induced by spin torque in magnetic nanowires

    SciTech Connect

    Sbiaa, R.; Chantrell, R. W.

    2015-02-07

    Using micromagnetic simulations, the effects of the non-adiabatic spin torque (β) and the geometry of nanowires on domain wall (DW) dynamics are investigated. For the case of in-plane anisotropy nanowire, it is observed that the type of DW and its dynamics depends on its dimension. For a fixed length, the critical switching current decreases almost exponentially with the width W, while the DW speed becomes faster for larger W. For the case of perpendicular anisotropy nanowire, it was observed that DW dynamics depends strongly on β. For small values of β, oscillations of DW around the center of nanowire were revealed even after the current is switched off. In addition to nanowire geometry and intrinsic material properties, β could provide a way to control DW dynamics.

  8. Controlling the stability of both the structure and velocity of domain walls in magnetic nanowires

    SciTech Connect

    Brandão, J.; Atkinson, D.

    2016-08-08

    For magnetic nanowire devices, the precise control of both domain wall (DW) motion and pinning behaviour is essential for reliable functional performance. The domain wall velocity and wall structure are typically sensitive to the driving field or spin-polarized current, and the pinning behaviour depends on the walls' structure and chirality, leading to variability in behaviour. Here, a systematic study combining experimental measurements and micromagnetic simulations of planar nanowires with small fixed-angle structural modulations on both edges was undertaken to study the domain wall reversal regime. A phase diagram for the reversal field as a function of modulation amplitude was obtained that shows that three DW reversal regime. A range of field and modulation amplitudes were identified in which stable DW reversal occurs, where the wall velocity is constant as a function of field and the wall structure is stable, which is well suited to applications.

  9. Switching local magnetization by electric-field-induced domain wall motion

    NASA Astrophysics Data System (ADS)

    Kakizakai, Haruka; Ando, Fuyuki; Koyama, Tomohiro; Yamada, Kihiro; Kawaguchi, Masashi; Kim, Sanghoon; Kim, Kab-Jin; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2016-06-01

    Electric field effect on magnetism is an appealing technique for manipulating magnetization at a low energy cost. Here, we show that the local magnetization of an ultrathin Co film can be switched by simply applying a gate electric field without the assistance of any external magnetic field or current flow. The local magnetization switching is explained by nucleation and annihilation of magnetic domains through domain wall motion induced by the electric field. Our results lead to external-field-free and ultralow-energy spintronic applications.

  10. Shape of magnetic domain walls formed by coupling to mobile charges

    NASA Astrophysics Data System (ADS)

    Ozawa, Ryo; Hayami, Satoru; Barros, Kipton; Motome, Yukitoshi

    2017-09-01

    Magnetic domain walls, which are crucially important in both fundamental physics and technical applications, often have a preference in their form due to many different origins, such as the crystalline shape, lattice symmetry, and magnetic anisotropy. We theoretically investigate yet another origin stemming from the coupling to mobile charges in itinerant magnets. Performing a large-scale numerical simulation in a minimal model for itinerant magnets, i.e., the Kondo lattice model with classical localized spins, we show that the shape of magnetic domain walls depends on the electronic band structure and electron filling. While Néel and 120∘ antiferromagnetic states do not show a strong preference in the shape of domain walls, noncoplanar spin states with scalar chiral ordering have distinct directional preferences of the domain walls depending on the electron filling. We find that the directional preference is rationalized by the wave-number dependence of the effective magnetic interactions induced by the mobile charges, which are set by the band structure and electron filling. We also observe that, in the noncoplanar chiral states, an electric current is induced along the domain walls owing to the spin Berry phase mechanism, with different spatial distributions depending on whether the bulk state is metallic or insulating.

  11. Universal charge and current on magnetic domain walls in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Araki, Yasufumi; Yoshida, Akihide; Nomura, Kentaro

    2016-09-01

    Domain walls in three-dimensional Weyl semimetals, formed by localized magnetic moments, are investigated. There appear bound states around the domain wall with the discrete spectrum, among which we find "Fermi arc" states with the linear dispersion. The Fermi arc modes contribute to the electric charge and current localized at the domain wall, which reveal a universal behavior depending only on chemical potential and the splitting of the Weyl nodes. This equilibrium current can be traced back to the chiral magnetic effect, or the edge counterpart of the anomalous Hall effect in the bulk. We propose a way to manipulate the motion of the domain wall, accompanied with the localized charge, by applying an external electric field.

  12. Magnetized domain wall in f(R, T) theory of gravity

    NASA Astrophysics Data System (ADS)

    Agrawal, P. K.; Pawar, D. D.

    2017-07-01

    We studied Bianchi type-V space-time using magnetic domain wall in f(R, T) theory of gravity and deciphered the exact solutions of the corresponding field equations. In this study, we discussed the physical behavior of the resultant cosmological model in the presence and absence of magnetic field with the help of few physical parameters.

  13. Characterization and modeling of magnetic domain wall dynamics using reconstituted hysteresis loops from Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Ducharne, B.; Le, M. Q.; Sebald, G.; Cottinet, P. J.; Guyomar, D.; Hebrard, Y.

    2017-06-01

    By means of a post-processing technique, we succeeded in plotting magnetic Barkhausen noise energy hysteresis cycles MBNenergy(H). These cycles were compared to the usual hysteresis cycles, displaying the evolution of the magnetic induction field B versus the magnetic excitation H. The divergence between these comparisons as the excitation frequency was increased gave rise to the conclusion that there was a difference in the dynamics of the induction field and of the MBNenergy related to the domain wall movements. Indeed, for the MBNenergy hysteresis cycle, merely the domain wall movements were involved. On the other hand, for the usual B(H) cycle, two dynamic contributions were observed: domain wall movements and diffusion of the magnetic field excitation. From a simulation point of view, it was demonstrated that over a large frequency bandwidth a correct dynamic behavior of the domain wall movement MBNenergy(H) cycle could be taken into account using first-order derivation whereas fractional orders were required for the B(H) cycles. The present article also gives a detailed description of how to use the developed process to obtain the MBNenergy(H) hysteresis cycle as well as its evolution as the frequency increases. Moreover, this article provides an interesting explanation of the separation of magnetic loss contributions through a magnetic sample: a wall movement contribution varying according to first-order dynamics and a diffusion contribution which in a lump model can be taken into account using fractional order dynamics.

  14. Disentangling the physical contributions to the electrical resistance in magnetic domain walls: a multiscale study.

    PubMed

    Seemann, K M; Garcia-Sanchez, F; Kronast, F; Miguel, J; Kákay, A; Schneider, C M; Hertel, R; Freimuth, F; Mokrousov, Y; Blügel, S

    2012-02-17

    We analyze the origin of the electrical resistance arising in domain walls of perpendicularly magnetized materials by considering a superposition of anisotropic magnetoresistance and the resistance implied by the magnetization chirality. The domain wall profiles of L1(0)-FePd and L1(0)-FePt are determined by micromagnetic simulations based on which we perform first-principles calculations to quantify electron transport through the core and closure region of the walls. The wall resistance, being twice as high in L1(0)-FePd than in L1(0)-FePt, is found to be clearly dominated in both cases by a high gradient of magnetization rotation, which agrees well with experimental observations.

  15. Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire.

    PubMed

    Koyama, T; Chiba, D; Ueda, K; Kondou, K; Tanigawa, H; Fukami, S; Suzuki, T; Ohshima, N; Ishiwata, N; Nakatani, Y; Kobayashi, K; Ono, T

    2011-03-01

    The spin transfer torque is essential for electrical magnetization switching. When a magnetic domain wall is driven by an electric current through an adiabatic spin torque, the theory predicts a threshold current even for a perfect wire without any extrinsic pinning. The experimental confirmation of this 'intrinsic pinning', however, has long been missing. Here, we give evidence that this intrinsic pinning determines the threshold, and thus that the adiabatic spin torque dominates the domain wall motion in a perpendicularly magnetized Co/Ni nanowire. The intrinsic nature manifests itself both in the field-independent threshold current and in the presence of its minimum on tuning the wire width. The demonstrated domain wall motion purely due to the adiabatic spin torque will serve to achieve robust operation and low energy consumption in spintronic devices.

  16. Magnetic domain walls as reconfigurable spin-wave nano-channels (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schultheiss, Helmut

    2016-10-01

    In the research field of magnonics, it is envisaged that spin waves will be used as information carriers, promoting operation based on their wave properties. However, the field still faces major challenges. To become fully competitive, novel schemes for energy-efficient control of spin-wave propagation in two dimensions have to be realized on much smaller length scales than used before. In this presentation, these challenges are addressed with the experimental realization of a novel approach to guide spin waves in reconfigurable, nano-sized magnonic waveguides. For this purpose, two inherent characteristics of magnetism are used: the non-volatility of magnetic remanence states and the nanometre dimensions of domain walls formed within these magnetic configurations. The experimental observation and micromagnetic simulations of spin-wave propagation inside nano-sized domain walls and a first step towards a reconfigurable domain-wall-based magnonic nanocircuitry will be presented.

  17. Quantum Oscillations of Interacting Nanoscale Structural Inhomogeneities in a Domain Wall of Magnetic Stripe Domain

    NASA Astrophysics Data System (ADS)

    Shevchenko, Andriy; Barabash, Maksym

    2016-10-01

    It was established that at low temperatures, quantum oscillations of a pair of interacting nanoscale structural inhomogeneities (vertical Bloch lines) occur in a domain wall of stripe domain in uniaxial ferromagnetic film. The effective mass of vertical Bloch line and conditions for this effect were determined. The effect can be used in the hybrid storage devices bit + q-bit.

  18. Energy-efficient writing scheme for magnetic domain-wall motion memory

    NASA Astrophysics Data System (ADS)

    Kim, Kab-Jin; Yoshimura, Yoko; Ham, Woo Seung; Ernst, Rick; Hirata, Yuushou; Li, Tian; Kim, Sanghoon; Moriyama, Takahiro; Nakatani, Yoshinobu; Ono, Teruo

    2017-04-01

    We present an energy-efficient magnetic domain-writing scheme for domain wall (DW) motion-based memory devices. A cross-shaped nanowire is employed to inject a domain into the nanowire through current-induced DW propagation. The energy required for injecting the magnetic domain is more than one order of magnitude lower than that for the conventional field-based writing scheme. The proposed scheme is beneficial for device miniaturization because the threshold current for DW propagation scales with the device size, which cannot be achieved in the conventional field-based technique.

  19. Electrical effects of spin density wave quantization and magnetic domain walls in chromium.

    PubMed

    Kummamuru, Ravi K; Soh, Yeong-Ah

    2008-04-17

    The role of magnetic domains (and the walls between domains) in determining the electrical properties of ferromagnetic materials has been investigated in great detail for many years, not least because control over domains offers a means of manipulating electron spin to control charge transport in 'spintronic' devices. In contrast, much less attention has been paid to the effects of domains and domain walls on the electrical properties of antiferromagnets: antiferromagnetic domains show no net external magnetic moment, and so are difficult to manipulate or probe. Here we describe electrical measurements on chromium--a simple metal and quintessential spin density wave antiferromagnet--that show behaviour directly related to spin density wave formation and the presence of antiferromagnetic domains. Two types of thermal hysteresis are seen in both longitudinal and Hall resistivity: the first can be explained by the quantization of spin density waves due to the finite film thickness (confirmed by X-ray diffraction measurements) and the second by domain-wall scattering of electrons. We also observe the striking influence of the electrical lead configuration (a mesoscopic effect) on the resistivity of macroscopic samples in the spin density wave state. Our results are potentially of practical importance, in that they reveal tunable electrical effects of film thickness and domain walls that are as large as the highest seen for ferromagnets.

  20. Asymmetric driven dynamics of Dzyaloshinskii domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Sánchez-Tejerina, L.; Alejos, Ó.; Martínez, E.; Muñoz, J. M.

    2016-07-01

    The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy is studied from both numerical and analytical micromagnetics. The influence of a moderate interfacial Dzyaloshinskii-Moriya interaction associated to a bi-layer strip arrangement has been considered, giving rise to the formation of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions an inner magnetization structure defined by a certain orientation angle that make them to be considered as intermediate configurations between Bloch and Néel walls. Two different dynamics are considered, a field-driven and a current-driven dynamics, in particular, the one promoted by the spin torque due to the spin-Hall effect. Results show an inherent asymmetry associated with the rotation of the domain wall magnetization orientation before reaching the stationary regime, characterized by a constant terminal speed. For a certain initial DW magnetization orientation at rest, the rotation determines whether the reorientation of the DW magnetization prior to reach stationary motion is smooth or abrupt. This asymmetry affects the DW motion, which can even reverse for a short period of time. Additionally, it is found that the terminal speed in the case of the current-driven dynamics may depend on either the initial DW magnetization orientation at rest or the sign of the longitudinally injected current.

  1. Analytical modelling and x-ray imaging of oscillations of a single magnetic domain wall

    SciTech Connect

    Bocklage, Lars; Kruger, Benjamin; Fischer, Peter; Meier, Guido

    2009-07-10

    Domain-wall oscillation in a pinnig potential is described analytically in a one dimensional model for the feld-driven case. For a proper description the pinning potential has to be extended by nonharmonic contributions. Oscillations of a domain wall are observed on its genuine time scale by magnetic X-ray microscopy. It is shown that the nonharmonic terms are present in real samples with a strong restoring potential. In the framework of our model we gain deep insight into the domain-wall motion by looking at different phase spaces. The corrections of the harmonic potential can change the motion of the domain wall significantly. The damping parameter of permalloy is determined via the direct imaging technique.

  2. Electric field driven magnetic domain wall motion in ferromagnetic-ferroelectric heterostructures

    SciTech Connect

    Van de Wiele, Ben; Laurson, Lasse; Franke, Kévin J. A.; Dijken, Sebastiaan van

    2014-01-06

    We investigate magnetic domain wall (MDW) dynamics induced by applied electric fields in ferromagnetic-ferroelectric thin-film heterostructures. In contrast to conventional driving mechanisms where MDW motion is induced directly by magnetic fields or electric currents, MDW motion arises here as a result of strong pinning of MDWs onto ferroelectric domain walls (FDWs) via local strain coupling. By performing extensive micromagnetic simulations, we find several dynamical regimes, including instabilities such as spin wave emission and complex transformations of the MDW structure. In all cases, the time-averaged MDW velocity equals that of the FDW, indicating the absence of Walker breakdown.

  3. Atomic-scale magnetic domain walls in quasi-one-dimensional Fe nanostripes.

    PubMed

    Pratzer, M; Elmers, H J; Bode, M; Pietzsch, O; Kubetzka, A; Wiesendanger, R

    2001-09-17

    Fe nanostripes on W(110) are investigated by Kerr magnetometry and spin-polarized scanning tunneling microscopy (SP-STM). An Arrhenius law is observed for the temperature dependent magnetic susceptibility indicating a one-dimensional magnetic behavior. The activation energy for creating antiparallel spin blocks indicates extremely narrow domain walls with a width on a length scale of the lattice constant. This is confirmed by imaging the domain wall by SP-STM. This information allows the quantification of the exchange stiffness and the anisotropy constant.

  4. Trapping and injecting single domain walls in magnetic wire by local fields.

    PubMed

    Vázquez, Manuel; Basheed, G A; Infante, Germán; Del Real, Rafael P

    2012-01-20

    A single domain wall (DW) moves at linearly increasing velocity under an increasing homogeneous drive magnetic field. Present experiments show that the DW is braked and finally trapped at a given position when an additional antiparallel local magnetic field is applied. That position and its velocity are further controlled by suitable tuning of the local field. In turn, the parallel local field of small amplitude does not significantly affect the effective wall speed at long distance, although it generates tail-to-tail and head-to-head pairs of walls moving along opposite directions when that field is strong enough.

  5. Stability of a pinned magnetic domain wall as a function of its internal configuration

    SciTech Connect

    Montaigne, F.; Duluard, A.; Briones, J.; Lacour, D.; Hehn, M.; Childress, J. R.

    2015-01-14

    It is shown that there are many stable configurations for a domain wall pinned by a notch along a magnetic stripe. The stability of several of these configurations is investigated numerically as a function of the thickness of the magnetic film. The depinning mechanism depends on the structure of the domain wall and on the thickness of the magnetic film. In the case of a spin-valve structure, it appears that the stray fields emerging from the hard layer at the notch location influence the stability of the micromagnetic configuration. Different depinning mechanisms are thus observed for the same film thickness depending on the magnetization orientation of the propagating domain. This conclusion qualitatively explains experimental magnetoresistance measurements.

  6. Domain wall creep in magnetic thin films near the depinning transition

    NASA Astrophysics Data System (ADS)

    Geng, L. D.; Jin, Y. M.

    2016-11-01

    Domain wall creep near the depinning transition is investigated by using micromagnetic simulations of Pt/Co/Pt magnetic thin films with perpendicular anisotropy. Weak quenched disorder is considered which provides a depinning field lower than the Walker field thus allows access to the depinning transition below the Walker field. The simulated domain wall velocity is analyzed as a function of applied magnetic field in the creep, depinning, steady flow, and precessional flow regimes and compared with the experimental measurements. The energy barrier exponent and characteristic energy scale characterizing domain wall creep near the depinning transition are obtained by analyzing both the simulation and experimental data, and the results are examined against general theories of creep near the depinning threshold.

  7. Integrated capture, transport, and magneto-mechanical resonant sensing of superparamagnetic microbeads using magnetic domain walls.

    PubMed

    Rapoport, E; Montana, D; Beach, G S D

    2012-11-07

    An integrated platform for the capture, transport, and detection of individual superparamagnetic microbeads is described for lab-on-a-chip biomedical applications. Magnetic domain walls in magnetic tracks have previously been shown to be capable of capturing and transporting individual beads through a fluid at high speeds. Here it is shown that the strong magnetostatic interaction between a bead and a domain wall leads to a distinct magneto-mechanical resonance that reflects the susceptibility and hydrodynamic size of the trapped bead. Numerical and analytical modeling is used to quantitatively explain this resonance, and the magneto-mechanical resonant response under sinusoidal drive is experimentally characterized both optically and electrically. The observed bead resonance presents a new mechanism for microbead sensing and metrology. The dual functionality of domain walls as both bead carriers and sensors is a promising platform for the development of lab-on-a-bead technologies.

  8. Disorder-induced domain wall velocity shift at high fields in perpendicularly magnetized thin films

    NASA Astrophysics Data System (ADS)

    Voto, Michele; Lopez-Diaz, Luis; Torres, Luis; Moretti, Simone

    2016-11-01

    Domain wall dynamics in a perpendicularly magnetized system is studied by means of micromagnetic simulations in which disorder is introduced as a dispersion of both the easy-axis orientation and the anisotropy constant over regions reproducing a granular structure of the material. High field dynamics show a linear velocity-field relationship and an additional grain size dependent velocity shift, weakly dependent on both applied field and intrinsic Gilbert's damping parameter. We find the origin of this velocity shift in the nonhomogeneous in-plane effective field generated by the tilting of anisotropy easy axis introduced by disorder. We show that a one-dimensional analytical approach cannot predict the observed velocities and we augment it with the additional dissipation of energy arising from internal domain wall dynamics triggered by disorder. This way we prove that the main cause of higher velocity is the ability of the domain wall to irradiate energy into the domains, acquired with a precise feature of disorder.

  9. Suppression of stochastic pinning in magnetic nanowire devices using “virtual” domain walls

    SciTech Connect

    Hodges, M. P. P.; Hayward, T. J.; Bryan, M. T.; Fry, P. W.; Im, M.-Y.; Fischer, P.

    2014-09-28

    We have investigated the pinning and depinning of “virtual” domain walls in planar magnetic nanowires. Such virtual walls are created when a conventional domain wall becomes annihilated at a narrow gap between two segments of a discontinuous nanowire. By using focused magneto-optical Kerr effect magnetometry to study the repeatability of their depinning, we show that virtual walls exhibit single-mode depinning distributions, characterized by remarkably low, sub-Oersted standard deviations. This is in stark contrast to the depinning of domain walls from conventional notch-shaped defects, which typically exhibit multi-mode depinning field distributions spanning tens to hundreds of Oersteds. High-resolution magnetic soft x-ray microscopy measurements are used to reveal that this high level of repeatability is the result of a simple mediated-nucleation process, which decouples the depinning mechanism from structure of the initially injected DWs. Our work serves as an example of how the complex and dynamical stochastic behaviors exhibited by domain walls in nanowires can be controlled.

  10. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide

    NASA Astrophysics Data System (ADS)

    Farokhipoor, S.; Magén, C.; Venkatesan, S.; Íñiguez, J.; Daumont, C. J. M.; Rubi, D.; Snoeck, E.; Mostovoy, M.; de Graaf, C.; Müller, A.; Döblinger, M.; Scheu, C.; Noheda, B.

    2014-11-01

    Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets, ferroelectrics and superconductors. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities. In addition, these materials often contain ferroelastic domains. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material's properties. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and

  11. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide.

    PubMed

    Farokhipoor, S; Magén, C; Venkatesan, S; Íñiguez, J; Daumont, C J M; Rubi, D; Snoeck, E; Mostovoy, M; de Graaf, C; Müller, A; Döblinger, M; Scheu, C; Noheda, B

    2014-11-20

    Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets, ferroelectrics and superconductors. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities. In addition, these materials often contain ferroelastic domains. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material's properties. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and

  12. Magnetic domain walls in nanostrips of single-crystalline Fe4N(001) thin films with fourfold in-plane magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ito, Keita; Rougemaille, Nicolas; Pizzini, Stefania; Honda, Syuta; Ota, Norio; Suemasu, Takashi; Fruchart, Olivier

    2017-06-01

    We investigated head-to-head domain walls in nanostrips of epitaxial Fe4N(001) thin films, displaying a fourfold magnetic anisotropy. Magnetic force microscopy and micromagnetic simulations show that the domain walls have specific properties, compared to soft magnetic materials. In particular, strips aligned along a hard axis of magnetization are wrapped by partial flux-closure concertina domains below a critical width, while progressively transforming to zigzag walls for wider strips. Transverse walls are favored upon the initial application of a magnetic field transverse to the strip, while transformation to vortex walls is favored upon motion under a longitudinal magnetic field. In all cases, the magnetization texture of such fourfold anisotropy domain walls exhibits narrow micro-domain walls, which may give rise to peculiar spin-transfer features.

  13. Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination

    NASA Astrophysics Data System (ADS)

    Ding, Song; Tian, GuiYun; Dobmann, Gerd; Wang, Ping

    2017-01-01

    Skewness of Magnetic Barkhausen Noise (MBN) signal is used as a new feature for applied stress determination. After experimental studies, skewness presents its ability for measuring applied tensile stress compared with conventional feature, meanwhile, a non-linear behavior of this new feature and an independence of the excitation conditions under compressive stress are found and discussed. Effective damping during domain wall motion influencing the asymmetric shape of the MBN statistical distribution function is discussed under compressive and tensile stress variation. Domain wall (DW) energy and distance between pinning edges of the DW are considered altering the characteristic relaxation time, which is the reason for the non-linear phenomenon of skewness.

  14. Torsion constraints from cosmological magnetic field and QCD domain walls

    NASA Astrophysics Data System (ADS)

    Garcia de Andrade, L. C.

    2014-10-01

    Earlier Kostelecky [Phys. Rev. D 69, 105009 (2004)] has investigated the role of gravitational sector in Riemann-Cartan (RC) spacetime with torsion, in Lorentz and CPT violating (LV) Standard Model extension (SME). In his paper use of quantum electrodynamic (QED) extension in RC spacetime is made. More recently L. C. Garcia de Andrade [Phys. Lett. B 468, 28 (2011)] obtained magnetic field galactic dynamo seeds in the bosonic sector with massless photons, which proved to decay faster than necessary [Phys. Lett. B 711, 143 (2012)] to be able to seed galactic dynamos. In this paper it is shown that by using the fermionic sector of Kostelecky-Lagrangian and torsion written as a chiral current, one obtains torsion and magnetic fields explicitly from a Heisenberg-Ivanenko form of Dirac equation whose solution allows us to express torsion in terms of LV coefficients and magnetic field in terms of fermionic matter fields. When minimal coupling between electromagnetic and torsion fields is used it is shown that the fermionic sector of QED with torsion leads to resonantly amplify magnetic fields which mimics an α2-dynamo mechanism. Fine-tuning of torsion is shown to result in the dynamo reversal, a phenomenon so important in solar physics and geophysics. Of course this is only an analogy since torsion is very weak in solar and geophysics contexts. An analogous expression for the α-effect of mean-field dynamos is also obtained where the α-effect is mimic by torsion. Similar resonant amplification mechanisms connected to early universe have been considered by Finelli and Gruppuso.

  15. Novel chiral magnetic domain wall structure in Fe/Ni/Cu(001) films.

    PubMed

    Chen, G; Zhu, J; Quesada, A; Li, J; N'Diaye, A T; Huo, Y; Ma, T P; Chen, Y; Kwon, H Y; Won, C; Qiu, Z Q; Schmid, A K; Wu, Y Z

    2013-04-26

    Using spin-polarized low energy electron microscopy, we discovered a new type of domain wall structure in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100). Specifically, we observed unexpected Néel-type walls with fixed chirality in the magnetic stripe phase. Furthermore, we find that the chirality of the domain walls is determined by the film growth order with the chirality being right handed in Fe/Ni bilayers and left handed in Ni/Fe bilayers, suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces. Our observations may open a new route to control chiral spin structures using interfacial engineering in transition metal heterostructures.

  16. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

    DOE PAGES

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; ...

    2017-05-19

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to bemore » non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.« less

  17. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

    NASA Astrophysics Data System (ADS)

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; N'diaye, Alpha T.; Kwon, Hee Young; Qiu, Ryan T.; Won, Changyeon; Liu, Kai; Wu, Yizheng; Schmid, Andreas K.

    2017-05-01

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to be non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.

  18. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

    PubMed Central

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; N'Diaye, Alpha T.; Kwon, Hee Young; Qiu, Ryan T.; Won, Changyeon; Liu, Kai; Wu, Yizheng; Schmid, Andreas K.

    2017-01-01

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to be non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii–Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices. PMID:28524875

  19. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets.

    PubMed

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; N'Diaye, Alpha T; Kwon, Hee Young; Qiu, Ryan T; Won, Changyeon; Liu, Kai; Wu, Yizheng; Schmid, Andreas K

    2017-05-19

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to be non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.

  20. Frequency-Induced Bulk Magnetic Domain-Wall Freezing Visualized by Neutron Dark-Field Imaging

    NASA Astrophysics Data System (ADS)

    Betz, B.; Rauscher, P.; Harti, R. P.; Schäfer, R.; Van Swygenhoven, H.; Kaestner, A.; Hovind, J.; Lehmann, E.; Grünzweig, C.

    2016-08-01

    We use neutron dark-field imaging to visualize and interpret the response of bulk magnetic domain walls to static and dynamic magnetic excitations in (110)-Goss textured iron silicon high-permeability steel alloy. We investigate the domain-wall motion under the influence of an external alternating sinusoidal magnetic field. In particular, we perform scans combining varying levels of dcoffset (0 - 30 A /m ) , oscillation amplitude Aac (0 - 1500 A /m ) , and frequency fac ((0 - 200 Hz ) . By increasing amplitude Aac while maintaining constant values of dcoffset and fac , we record the transition from a frozen domain-wall structure to a mobile one. Vice versa, increasing fac while keeping Aac and dcoffset constant led to the reverse transition from a mobile domain-wall structure into a frozen one. We show that varying both Aac and fac shifts the position of the transition region. Furthermore, we demonstrate that higher frequencies require higher oscillation amplitudes to overcome the freezing phenomena. The fundamental determination and understanding of the frequency-induced freezing process in high-permeability steel alloys is of high interest to the further development of descriptive models for bulk macromagnetic phenomena. Likewise, the efficiency of transformers can be improved based on our results, since these alloys are used as transformer core material.

  1. Universal magnetic domain wall dynamics in the presence of weak disorder

    NASA Astrophysics Data System (ADS)

    Ferré, Jacques; Metaxas, Peter J.; Mougin, Alexandra; Jamet, Jean-Pierre; Gorchon, Jon; Jeudy, Vincent

    2013-10-01

    The motion of elastic interfaces in disordered media is a broad topic relevant to many branches of physics. Field-driven magnetic domain wall motion in ultrathin ferromagnetic Pt/Co/Pt films can be well interpreted within the framework of theories developed to describe elastic interface dynamics in the presence of weak disorder. Indeed, the three theoretically predicted dynamic regimes of creep, depinning, and flow have all been directly evidenced in this model experimental system. We discuss these dynamic regimes and demonstrate how field-driven creep can be controlled not only by temperature and pinning, but also via interactions with magnetic entities located inside or outside the magnetic layer. Consequences of confinement effects in nano-devices are briefly reviewed, as some recent results on domain wall motion driven by an electric current or assisted by an electric field. Finally new theoretical developments and perspectives are discussed.

  2. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures.

    PubMed

    Lei, Na; Devolder, Thibaut; Agnus, Guillaume; Aubert, Pascal; Daniel, Laurent; Kim, Joo-Von; Zhao, Weisheng; Trypiniotis, Theodossis; Cowburn, Russell P; Chappert, Claude; Ravelosona, Dafiné; Lecoeur, Philippe

    2013-01-01

    The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.

  3. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures

    PubMed Central

    Lei, Na; Devolder, Thibaut; Agnus, Guillaume; Aubert, Pascal; Daniel, Laurent; Kim, Joo-Von; Zhao, Weisheng; Trypiniotis, Theodossis; Cowburn, Russell P.; Chappert, Claude; Ravelosona, Dafiné; Lecoeur, Philippe

    2013-01-01

    The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices. PMID:23340418

  4. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures

    NASA Astrophysics Data System (ADS)

    Lei, Na; Devolder, Thibaut; Agnus, Guillaume; Aubert, Pascal; Daniel, Laurent; Kim, Joo-Von; Zhao, Weisheng; Trypiniotis, Theodossis; Cowburn, Russell P.; Chappert, Claude; Ravelosona, Dafiné; Lecoeur, Philippe

    2013-01-01

    The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.

  5. Domain wall dynamics in ultrathin Pt/Co/AlOx microstrips under large combined magnetic fields

    NASA Astrophysics Data System (ADS)

    Jué, E.; Thiaville, A.; Pizzini, S.; Miltat, J.; Sampaio, J.; Buda-Prejbeanu, L. D.; Rohart, S.; Vogel, J.; Bonfim, M.; Boulle, O.; Auffret, S.; Miron, I. M.; Gaudin, G.

    2016-01-01

    The dynamics of magnetic domain walls in ultrathin strip-patterned Pt/Co/AlOx samples with perpendicular easy axis has been studied experimentally under an easy-axis field, superposed to a hard-axis field oriented along the strip. The easy-axis field is large so that the domain walls move well beyond the creep regime. A chiral effect is observed where the domain wall velocity shows a monotonous and surprisingly large variation with an in-plane field. A micromagnetic analysis, combining analytic, one-dimensional, and two-dimensional simulations with structural disorder, shows that this behavior can be reproduced with a Dzyaloshinskii-Moriya interaction of the interfacial type, with due consideration of the dynamics of the tilt degree of freedom of the domain wall. The estimated effective value of this interaction (D ≈-2.2 mJ /m2 for a 0.6 nm Co thickness) is consistent with values obtained by other techniques. It is also shown, by micromagnetic analysis, that several modes and characteristic times occur in the dynamics of the tilt of such domain walls.

  6. Spin distributions and dynamics in domain walls guided by soft magnetic nanowire structures

    NASA Astrophysics Data System (ADS)

    Yang, Jusang; Erskine, James L.

    2017-01-01

    Numerical simulations are used to investigate static and dynamic properties of spin distributions within domain walls confined by rectangular cross section Permalloy nanowire conduits having widths up to 1000 nm and thickness up to 50 nm. Phase boundaries and critical regions associated with domain-wall spin distributions of various topologies [transverse (or asymmetric transverse), vortex, double-vortex, triple-vortex and cross-tie] are accurately determined using high-performance computing resources. Mobility curves are calculated that characterize domain-wall propagation for an interesting region of the spin texture phase diagram: 20 nm thick nanowires with widths of 60-700 nm at axial drive fields extending to 150 Oe. The simulations (and corresponding experiments, which are discussed), reveal new propagating fixed configuration domain-wall topologies with enhanced velocity. Effects of temperature on the spin distributions and dynamics are explored, by conducting simulations that include separately varying temperature-dependent parameters (saturation magnetization and exchange constant) and simulating effects of temperature-dependent fluctuations using the Langevin dynamics feature of the simulation code. Related temperature-dependent experiments are discussed. The simulation studies demonstrate a close connection between static and (field-driven) dynamic spin configurations in nanowire-confined domain walls and demonstrate the importance of exploring model-system parameter space at high numerical precision.

  7. Domain wall pinning sites in Sm(CoFeCuZr) x magnets

    NASA Astrophysics Data System (ADS)

    Wong, Bunsen Y.; Willard, Matthew; Laughlin, David E.

    1997-05-01

    The magnetic domain structure of Sm(CoFeCuZr) x magnets was studied along various crystallographic zone axes with high resolution Focault mode Lorentz microscopy. The domain wall has been observed to be pinned at (1) 60° hexagonal (H) SmCo 5 cell boundaries, (2) features parallel to RSm 2Co 17c-axis, (3) features parallel to the RSm 2Co 17 basal plane, and (4) linear features with no specific crystallographic direction. The wall pinning features which are parallel to the c-axis were determined to be RSm 2Co 17 antiphase boundaries (APB) and possibly vertical section of HSmCo 5 cell boundaries. Both these microstructure features were found to have a higher Cu content than the RSm 2Co 17 matrix. This chemical inhomogeneity leads to local variations in magnetocrystalline anisotropy assists domain wall pinning, similar to the role of HSmCo 5 suggested previously. Since not all the domain wall pinning features observed are in a strained state, this suggested that chemical segregation to nanostructural features such as HSmCo 5 cell boundaries and APB play a more important role than coherency strain in determining Hci.

  8. Magnetic domain wall manipulation in (Ga,Mn)As nanostructures for spintronic applications

    SciTech Connect

    Wosinski, Tadeusz; Andrearczyk, Tomasz; Figielski, Tadeusz; Olender, Karolina; Wrobel, Jerzy

    2014-02-21

    Ring-shaped nanostructures have been designed and fabricated by electron-beam lithography patterning and chemical etching from thin epitaxial layers of the ferromagnetic semiconductor (Ga,Mn)As. The nanostructures, in a form of planar rings with a slit, were supplied with four electrical terminals and subjected to magneto-transport studies under planar weak magnetic field. Magnetoresistive effects caused by manipulation of magnetic domain walls and magnetization reversal in the nanostructures have been investigated and possible applications of the nanostructures as four-terminal spintronic devices are discussed.

  9. Fast domain wall propagation under an optimal field pulse in magnetic nanowires.

    PubMed

    Sun, Z Z; Schliemann, J

    2010-01-22

    We investigate field-driven domain wall (DW) propagation in magnetic nanowires in the framework of the Landau-Lifshitz-Gilbert equation. We propose a new strategy to speed up the DW motion in a uniaxial magnetic nanowire by using an optimal space-dependent field pulse synchronized with the DW propagation. Depending on the damping parameter, the DW velocity can be increased by about 2 orders of magnitude compared to the standard case of a static uniform field. Moreover, under the optimal field pulse, the change in total magnetic energy in the nanowire is proportional to the DW velocity, implying that rapid energy release is essential for fast DW propagation.

  10. Depinning field of domain walls with a misaligned grain boundary in iron-based soft magnets

    NASA Astrophysics Data System (ADS)

    Yamada, Keisuke; Irie, Shota; Murayama, Soh; Nakatani, Yoshinobu

    2016-05-01

    We report on the domain wall (DW) depinning in an iron-based soft magnet with a misaligned grain boundary (GB) using micromagnetic simulations. The results show that the depinning magnetic field decreases with increasing roughness of the misaligned GB. This effect can be explained from the ratio of the overlapping areas of the GB to the DW when the DW is depinned from the GB. The results presented here offer a promising route to the design of soft magnets to decrease coercive force.

  11. Logic and memory concepts for all-magnetic computing based on transverse domain walls

    NASA Astrophysics Data System (ADS)

    Vandermeulen, J.; Van de Wiele, B.; Dupré, L.; Van Waeyenberge, B.

    2015-06-01

    We introduce a non-volatile digital logic and memory concept in which the binary data is stored in the transverse magnetic domain walls present in in-plane magnetized nanowires with sufficiently small cross sectional dimensions. We assign the digital bit to the two possible orientations of the transverse domain wall. Numerical proofs-of-concept are presented for a NOT-, AND- and OR-gate, a FAN-out as well as a reading and writing device. Contrary to the chirality based vortex domain wall logic gates introduced in Omari and Hayward (2014 Phys. Rev. Appl. 2 044001), the presented concepts remain applicable when miniaturized and are driven by electrical currents, making the technology compatible with the in-plane racetrack memory concept. The individual devices can be easily combined to logic networks working with clock speeds that scale linearly with decreasing design dimensions. This opens opportunities to an all-magnetic computing technology where the digital data is stored and processed under the same magnetic representation.

  12. Geometrically pinned magnetic domain wall for multi-bit per cell storage memory

    NASA Astrophysics Data System (ADS)

    Bahri, M. Al; Sbiaa, R.

    2016-06-01

    Spintronic devices currently rely on magnetic switching or controlled motion of domain walls (DWs) by an external magnetic field or a spin-polarized current. Controlling the position of DW is essential for defining the state/information in a magnetic memory. During the process of nanowire fabrication, creating an off-set of two parts of the device could help to pin DW at a precise position. Micromagnetic simulation conducted on in-plane magnetic anisotropy materials shows the effectiveness of the proposed design for pinning DW at the nanoconstriction region. The critical current for moving DW from one state to the other is strongly dependent on nanoconstricted region (width and length) and the magnetic properties of the material. The DW speed which is essential for fast writing of the data could reach values in the range of hundreds m/s. Furthermore, evidence of multi-bit per cell memory is demonstrated via a magnetic nanowire with more than one constriction.

  13. Normal modes of magnetic domain wall motion in a confined stripe domain lattice

    SciTech Connect

    Spreen, J.H.; Argyle, B.E.

    1982-06-01

    We report the observation of standing wave modes in an array of stripe domains confined by a pair of parallel cracks in a Gd, Ga:YIG film. These modes appear in the response spectrum of the confined lattice as shallow minima or maxima at frequencies lower than that of the usual domain wall resonance peak. A simple model, analogous to the forced response of a membrane clamped at the edges, fits the spatial patterns of wall motion observed at the frequencies of the maxima and minima. Experimental frequency-wave vector values, interpreted with guidance from this analogy, provide the first experimental dispersion curve for a stripe domain lattice. We compare this result with recent theoretical calculations. The experimental value of the uniform mode frequency is 41.5 +- 0.2 MHz, with a long wavelength group velocity of 330 +- 50 m/sec. A surprising conclusion from the observed extrema of the spatial patterns is that the damping of the waves is an order of magnitude less than expected from the damping of the uniform mode. The estimated decay length for a propagating wave is 400 ..mu...

  14. Resonant translational, breathing, and twisting modes of transverse magnetic domain walls pinned at notches

    NASA Astrophysics Data System (ADS)

    Metaxas, Peter J.; Albert, Maximilian; Lequeux, Steven; Cros, Vincent; Grollier, Julie; Bortolotti, Paolo; Anane, Abdelmadjid; Fangohr, Hans

    2016-02-01

    We study resonant translational, breathing, and twisting modes of transverse magnetic domain walls pinned at notches in ferromagnetic nanostrips. We demonstrate that a mode's sensitivity to notches depends strongly on the mode's characteristics. For example, the frequencies of modes that involve lateral motion of the wall are the most sensitive to changes in the notch intrusion depth, especially at the narrow, more strongly confined end of the domain wall. In contrast, the breathing mode, whose dynamics are concentrated away from the notches is relatively insensitive to changes in the notches' sizes. We also demonstrate a sharp drop in the translational mode's frequency towards zero when approaching depinning which is confirmed, using a harmonic oscillator model, to be consistent with a reduction in the local slope of the notch-induced confining potential at its edge.

  15. Motion of Domain Walls and the Dynamics of Kinks in the Magnetic Peierls Potential

    NASA Astrophysics Data System (ADS)

    Buijnsters, F. J.; Fasolino, A.; Katsnelson, M. I.

    2014-11-01

    We study the dynamics of magnetic domain walls in the Peierls potential due to the discreteness of the crystal lattice. The propagation of a narrow domain wall (comparable to the lattice parameter) under the effect of a magnetic field proceeds through the formation of kinks in its profile. We predict that, despite the discreteness of the system, such kinks can behave like sine-Gordon solitons in thin films of materials such as yttrium iron garnets, and we derive general conditions for other materials. In our simulations, we also observe long-lived breathers. We provide analytical expressions for the effective mass and limiting velocity of the kink in excellent agreement with our numerical results.

  16. Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls

    NASA Astrophysics Data System (ADS)

    Currivan-Incorvia, J. A.; Siddiqui, S.; Dutta, S.; Evarts, E. R.; Zhang, J.; Bono, D.; Ross, C. A.; Baldo, M. A.

    2016-01-01

    Spintronic computing promises superior energy efficiency and nonvolatility compared to conventional field-effect transistor logic. But, it has proven difficult to realize spintronic circuits with a versatile, scalable device design that is adaptable to emerging material physics. Here we present prototypes of a logic device that encode information in the position of a magnetic domain wall in a ferromagnetic wire. We show that a single three-terminal device can perform inverter and buffer operations. We demonstrate one device can drive two subsequent gates and logic propagation in a circuit of three inverters. This prototype demonstration shows that magnetic domain wall logic devices have the necessary characteristics for future computing, including nonlinearity, gain, cascadability, and room temperature operation.

  17. Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls

    PubMed Central

    Currivan-Incorvia, J. A.; Siddiqui, S.; Dutta, S.; Evarts, E. R.; Zhang, J.; Bono, D.; Ross, C. A.; Baldo, M. A.

    2016-01-01

    Spintronic computing promises superior energy efficiency and nonvolatility compared to conventional field-effect transistor logic. But, it has proven difficult to realize spintronic circuits with a versatile, scalable device design that is adaptable to emerging material physics. Here we present prototypes of a logic device that encode information in the position of a magnetic domain wall in a ferromagnetic wire. We show that a single three-terminal device can perform inverter and buffer operations. We demonstrate one device can drive two subsequent gates and logic propagation in a circuit of three inverters. This prototype demonstration shows that magnetic domain wall logic devices have the necessary characteristics for future computing, including nonlinearity, gain, cascadability, and room temperature operation. PMID:26754412

  18. Motion of domain walls and the dynamics of kinks in the magnetic Peierls potential.

    PubMed

    Buijnsters, F J; Fasolino, A; Katsnelson, M I

    2014-11-21

    We study the dynamics of magnetic domain walls in the Peierls potential due to the discreteness of the crystal lattice. The propagation of a narrow domain wall (comparable to the lattice parameter) under the effect of a magnetic field proceeds through the formation of kinks in its profile. We predict that, despite the discreteness of the system, such kinks can behave like sine-Gordon solitons in thin films of materials such as yttrium iron garnets, and we derive general conditions for other materials. In our simulations, we also observe long-lived breathers. We provide analytical expressions for the effective mass and limiting velocity of the kink in excellent agreement with our numerical results.

  19. Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls.

    PubMed

    Currivan-Incorvia, J A; Siddiqui, S; Dutta, S; Evarts, E R; Zhang, J; Bono, D; Ross, C A; Baldo, M A

    2016-01-12

    Spintronic computing promises superior energy efficiency and nonvolatility compared to conventional field-effect transistor logic. But, it has proven difficult to realize spintronic circuits with a versatile, scalable device design that is adaptable to emerging material physics. Here we present prototypes of a logic device that encode information in the position of a magnetic domain wall in a ferromagnetic wire. We show that a single three-terminal device can perform inverter and buffer operations. We demonstrate one device can drive two subsequent gates and logic propagation in a circuit of three inverters. This prototype demonstration shows that magnetic domain wall logic devices have the necessary characteristics for future computing, including nonlinearity, gain, cascadability, and room temperature operation.

  20. Magnetic domain configurations and huge wall resistivity in half-metallic chromium dioxide nanostructures

    NASA Astrophysics Data System (ADS)

    Zou, Xiaojing

    We have fabricated, studied and compared the electrical and magnetic behavior of several sub-micron-sized polycrystalline and epitaxial chromium dioxide (CrO2) nanostructures, grown using selective-area growth technique. Magnetic domain structures were studied by magnetic force microscopy, and in-plane, lamellar domain structure with fragmented walls aligned along the magnetic easy axis direction have been observed, indicating the existence of a large magnetocrystalline anisotropy in epitaxial CrO2 nanostructures. Low-temperature transport measurements on nanowires have shown that the dc resistivity of polycrystalline CrO2 wires is strongly dependent on the linewidth. Below a critical temperature, a transition from a positive to a negative temperature coefficient of resistivity have been observed, which we attribute to a competition between the scattering of the conduction electrons inside the grains and scattering across the grain boundaries. Using a model based on grain boundary scattering, we estimate a mean transmission probability through the grain boundaries to be on the order of 10-1 . Furthermore, magnetoresistance (MR) measurement indicates that the MR behavior of polycrystalline CrO2 wires is dominated by the shape anisotropy; however, for epitaxial CrO2 wires, both the shape and magnetocrystalline anisotropy play important roles, and the resulting MR properties are found to be closely related to the orientation of the wire axis. By studying the MR curves, we inferred the internal magnetic domain structures in various single crystal CrO2 wires and found that the spin-dependent transport is much stronger across a grain boundary than a magnetic domain wall. We have also studied the magnetotransport properties of CrO2 nanoscale continuous contacts. Manipulating the domain walls using a large dc current in the contact area yields a magnetoresistance of up to 25%, which is the largest ever seen in a single ferromagnetic film. The single domain-wall

  1. Influence of sloped electric field on magnetic-field-induced domain wall creep in a perpendicularly magnetized Co wire

    NASA Astrophysics Data System (ADS)

    Kakizakai, Haruka; Yamada, Kihiro; Ando, Fuyuki; Kawaguchi, Masashi; Koyama, Tomohiro; Kim, Sanghoon; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2017-05-01

    A creep motion of the magnetic domain wall (DW) in a perpendicularly magnetized Co wire, where the DW energy is artificially varied by applying a sloped electric field, is studied. Under the sloped electric field and a constant external magnetic field, the DW velocity gradually changes according to the position of the wire owing to the spatially varying DW energy. Although the sloped DW energy can be a source to drive a DW, no clear electric-field-induced DW motion is observed, most likely because the effective magnetic field induced by the sloped electric field is very small in the present system.

  2. Extrinsic anisotropic magnetoresistance contribution to measured domain wall resistances of in-plane magnetized (Ga,Mn)As

    NASA Astrophysics Data System (ADS)

    Roberts, H. G.; Crampin, S.; Bending, S. J.

    2007-07-01

    We demonstrate the presence of an important extrinsic anisotropic magnetoresistance contribution to the domain wall resistance recently measured in thin-film (Ga,Mn)As with in-plane magnetic anisotropy. Analytic results for simple domain wall orientations supplemented by numerical results for more general cases show that this previously omitted contribution can largely explain the observed negative resistance.

  3. Domain wall depinning from notches using combined in- and out-of-plane magnetic fields

    NASA Astrophysics Data System (ADS)

    Goertz, Jelle J. W.; Ziemys, Grazvydas; Eichwald, Irina; Becherer, Markus; Swagten, Henk J. M.; Breitkreutz-v. Gamm, Stephan

    2016-05-01

    Controlled domain wall motion and pinning in nanowires with perpendicular magnetic anisotropy are of great importance in modern magnetic memory and logic devices. Here, we investigate by experiment the DW pinning and depinning from a notch in a magnetic nanowire, under the influence of combined in- and out-of-plane magnetic fields. In our experiment, the perpendicular magnetization of the Co/Pt nanowires is tilted with the help of sub-μs in-plane field pulses generated by an on-chip coil. Consequently, the energy density of the DW is decreased and the depinning field of the notch is reduced. A theoretical model is applied and compared to the measurement results. The DW depinning mechanism and the DW type are further investigated by micromagnetic simulations.

  4. Distortion of Magnetic Domain Wall Measured by Magneto-Resistance Changes in a Co Nanoring.

    PubMed

    Nam, Chunghee

    2015-01-01

    The electrical anisotropic magneto-resistance (AMR) measurements were performed to see the formation of a 360 degree magnetic domain wall (360 DW) and distortion of the magnetic moments in a Co nanoring structure. Since the 360 DW is consisted of two 180 degree DWs, a decrease of the resistance was found in the switching process from the vortex to reverse onion state by the AMR effects, which is consistent with micromagnetic simulations. In addition, a decrease of the resistance in the switching process from the onion to vortex state was observed by the distortion of the local magnetic moments due to an applied magnetic field. The stochastic behavior in the switching process is caused by thermally induced magnetic moments changes.

  5. Nonadiabatic spin transfer torque in high anisotropy magnetic nanowires with narrow domain walls.

    PubMed

    Boulle, O; Kimling, J; Warnicke, P; Kläui, M; Rüdiger, U; Malinowski, G; Swagten, H J M; Koopmans, B; Ulysse, C; Faini, G

    2008-11-21

    Current induced domain wall (DW) depinning of a narrow DW in out-of-plane magnetized (Pt/Co)_{3}/Pt multilayer elements is studied by magnetotransport. We find that for conventional measurements Joule heating effects conceal the real spin torque efficiency and so we use a measurement scheme at a constant sample temperature to unambiguously extract the spin torque contribution. From the variation of the depinning magnetic field with the current pulse amplitude we directly deduce the large nonadiabaticity factor in this material and we find that its amplitude is consistent with a momentum transfer mechanism.

  6. Depinning process of magnetic domain walls in cylindrical nanowires with a chemical constraint

    NASA Astrophysics Data System (ADS)

    Castilla, D.; Maicas, M.; Prieto, J. L.; Proenca, M. P.

    2017-03-01

    In this work we have studied with micromagnetic simulations the pinning process of a magnetic domain wall (DW) travelling in a cylindrical magnetic nanowire with a section where the composition has been altered with respect to the rest of the nanowire (chemical constraint). We have studied the depinning process for a non-magnetic, a paramagnetic and a ferromagnetic constraint and we show that the pinning strength in this type of defect can be tailored by a change of composition. The ferromagnetic chemical constraint is the strongest pinning site but it can stop the DW only when there is a significant reduction of the exchange energy and the saturation magnetization with respect to the rest of the wire. Chemical constraints may constitute a promising alternative to geometrical constraints in some devices such as the race-track memory.

  7. Control of domain wall pinning in ferromagnetic nanowires by magnetic stray fields.

    PubMed

    Ahn, Sung-Min; Moon, Kyoung-Woong; Cho, Cheong-Gu; Choe, Sug-Bong

    2011-02-25

    We have found that the depinning field of domain walls (DWs) in permalloy (Ni(81)Fe(19)) nanowires can be experimentally controlled by interactions between magnetic stray fields and artificial constrictions. A pinning geometry that consists of a notch and a nanobar is considered, where a DW traveling in the nanowire is pinned by the notch with a nanobar vertical to it. We have found that the direction of magnetization of the nanobar affects the shape and local energy minimum of the potential landscape experienced by the DW; therefore, the pinning strength strongly depends on the interaction of the magnetic stray field from the nanobar with the external pinning force of the notch. The mechanism of this pinning behavior is applied for the instant and flexible control of the pinning strength with respect to various DW motions in DW-mediated magnetic memory devices.

  8. Magnetization Reversal by Electric-Field Decoupling of Magnetic and Ferroelectric Domain Walls in Multiferroic-Based Heterostructures

    NASA Astrophysics Data System (ADS)

    Skumryev, V.; Laukhin, V.; Fina, I.; Martí, X.; Sánchez, F.; Gospodinov, M.; Fontcuberta, J.

    2011-02-01

    We demonstrate that the magnetization of a ferromagnet in contact with an antiferromagnetic multiferroic (LuMnO3) can be speedily reversed by electric-field pulsing, and the sign of the magnetic exchange bias can switch and recover isothermally. As LuMnO3 is not ferroelastic, our data conclusively show that this switching is not mediated by strain effects but is a unique electric-field driven decoupling of the ferroelectric and antiferromagnetic domain walls. Their distinct dynamics are essential for the observed magnetic switching.

  9. Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures.

    PubMed

    Skumryev, V; Laukhin, V; Fina, I; Martí, X; Sánchez, F; Gospodinov, M; Fontcuberta, J

    2011-02-04

    We demonstrate that the magnetization of a ferromagnet in contact with an antiferromagnetic multiferroic (LuMnO(3)) can be speedily reversed by electric-field pulsing, and the sign of the magnetic exchange bias can switch and recover isothermally. As LuMnO(3) is not ferroelastic, our data conclusively show that this switching is not mediated by strain effects but is a unique electric-field driven decoupling of the ferroelectric and antiferromagnetic domain walls. Their distinct dynamics are essential for the observed magnetic switching.

  10. Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets.

    PubMed

    Duerrschnabel, M; Yi, M; Uestuener, K; Liesegang, M; Katter, M; Kleebe, H-J; Xu, B; Gutfleisch, O; Molina-Luna, L

    2017-07-04

    A higher saturation magnetization obtained by an increased iron content is essential for yielding larger energy products in rare-earth Sm2Co17-type pinning-controlled permanent magnets. These are of importance for high-temperature industrial applications due to their intrinsic corrosion resistance and temperature stability. Here we present model magnets with an increased iron content based on a unique nanostructure and -chemical modification route using Fe, Cu, and Zr as dopants. The iron content controls the formation of a diamond-shaped cellular structure that dominates the density and strength of the domain wall pinning sites and thus the coercivity. Using ultra-high-resolution experimental and theoretical methods, we revealed the atomic structure of the single phases present and established a direct correlation to the macroscopic magnetic properties. With further development, this knowledge can be applied to produce samarium cobalt permanent magnets with improved magnetic performance.Understanding the factors that determine the properties of permanent magnets, which play a central role in many industrial applications, can help in improving their performance. Here, the authors study how changes in the iron content affect the microstructure of samarium cobalt magnets.

  11. Controlling domain wall nucleation and injection through focussed ion beam irradiation in perpendicularly magnetized nanowires

    NASA Astrophysics Data System (ADS)

    Beguivin, A.; Petit, D. C. M. C.; Mansell, R.; Cowburn, R. P.

    2017-01-01

    Using Ga+ focussed ion beam irradiation of Ta/Pt/CoFeB/Pt perpendicularly magnetized nanowires, the nucleation and injection fields of domain walls into the nanowires is controlled. The nucleation and injection fields can be varied as a function of dose, however, the range of injection fields is found to be limited by the creation of a step in anisotropy between the irradiated and unirradiated regions. This can be altered by defocussing the beam, which allows the injection fields to be further reduced. The ability to define an arbitrary dose profile allows domain walls to be injected at different fields either side of an asymmetrically irradiated area, which could form the initial stage of a logic device. The effect of the thickness of the magnetic layer and the thickness of a Ta underlayer on the dose required to remove the perpendicular anisotropy is also studied and is seen that for similar Ta underlayers the dose is determined by the thickness of the magnetic layer rather than its anisotropy. This finding is supported by some transport of ions in matter simulations.

  12. Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Ono, Teruo

    Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions start to play an important role in modern magnetism due to their extraordinary stability which can be hailed as future memory devices. Recently, novel type of antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction (DMI), has been uncovered and found to influence on the formation of topological defects. Exploring how the DMI affects the dynamics of topological defects is therefore an important task. Here we investigate the dynamics of the magnetic domain wall (DW) under a DMI by developing a time-of-flight measurement scheme which allows us to measure the DW velocity for magnetic fields up to 0.3T. For a weak DMI, the trend of DW velocity follows the Walker's model which predicts that the velocity of DW increases with field up to a threshold (Walker field) and decreases abruptly. On the other hand, for a strong DMI, velocity breakdown is completely suppressed and the DW keeps its maximum velocity even far above the Walker field. Such a distinct trend of the DW velocity, which has never been predicted, can be explained in terms of magnetic soliton, of which topology can be protected by the DMI. Importantly, such a soliton-like DW motion is only observed in two dimensional systems, implying that the vertical Bloch lines (VBLs) creating inside of the magnetic domain-wall play a crucial role. This work was partly supported by JSPS KAKENHI Grant Numbers 15H05702, 26870300, 26870304, 26103002, 25.4251, Collaborative Research Program of the Institute for Chemical Research, Kyoto University, and R & D Project for ICT Key Technology of MEXT from the Japan Society for the Promotion of Science (JSPS).

  13. Controlled pinning and depinning of domain walls in nanowires with perpendicular magnetic anisotropy.

    PubMed

    Gerhardt, Theo; Drews, André; Meier, Guido

    2012-01-18

    We investigate switching and field-driven domain wall motion in nanowires with perpendicular magnetic anisotropy comprising local modifications of the material parameters. Intentional nucleation and pinning sites with various geometries inside the nanowires are realized via a local reduction of the anisotropy constant. Micromagnetic simulations and analytical calculations are employed to determine the switching fields and to characterize the pinning potentials and the depinning fields. Nucleation sites in the simulations cause a significant reduction of the switching field and are in excellent agreement with analytical calculations. Pinning potentials and depinning fields caused by the pinning sites strongly depend on their shapes and are well explained by analytical calculations.

  14. Current-Driven Motion of Magnetic Domain Wall with Many Bloch Lines

    NASA Astrophysics Data System (ADS)

    Iwasaki, Junichi; Nagaosa, Naoto

    2015-08-01

    The current-driven motion of a domain wall (DW) in a ferromagnet with many Bloch lines (BLs) via the spin transfer torque is studied theoretically. It is found that the motion of BLs changes the current-velocity (j-v) characteristic considerably. In particular, the critical current density for overcoming the pinning force is even lower than that of a skyrmion by the factor of the Gilbert damping coefficient α. This is in sharp contrast to the case of magnetic-field-driven motion, where the existence of BLs reduces the mobility of the DW.

  15. Tuning interfacial domain walls in GdCo/Gd/GdCo' spring magnets

    NASA Astrophysics Data System (ADS)

    Blanco-Roldán, C.; Choi, Y.; Quirós, C.; Valvidares, S. M.; Zarate, R.; Vélez, M.; Alameda, J. M.; Haskel, D.; Martín, J. I.

    2015-12-01

    Spring magnets based on GdCo multilayers have been prepared to study the nucleation and evolution of interfacial domain walls (iDWs) depending on layer composition and interlayer coupling. GdCo alloy compositions in each layer were chosen so that their net magnetization aligns either with the Gd (G d35C o65 ) or Co (G d11C o89 ) sublattices. This condition forces an antiparallel arrangement of the layers' net magnetization and leads to nucleation of iDWs above critical magnetic fields whose values are dictated by the interplay between Zeeman and exchange energies. By combining x-ray resonant magnetic scattering with Kerr magnetometry, we provide detailed insight into the nucleation and spatial profile of the iDWs. For strong coupling (GdCo/GdCo' bilayer), iDWs are centered at the interface but with asymmetric width depending on each layer magnetization. When interlayer coupling is weakened by introducing a thin Gd interlayer, the exchange spring effect becomes restricted to a lower temperature and field range than observed in the bilayer structure. Due to the ferromagnetic alignment between the high magnetization G d35C o65 layer and the Gd interlayer, the iDW shrinks and moves into the lower exchange Gd interlayer, causing a reduction of iDW energy.

  16. Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure

    PubMed Central

    Murapaka, C.; Sethi, P.; Goolaup, S.; Lew, W. S.

    2016-01-01

    An all-magnetic logic scheme has the advantages of being non-volatile and energy efficient over the conventional transistor based logic devices. In this work, we present a reconfigurable magnetic logic device which is capable of performing all basic logic operations in a single device. The device exploits the deterministic trajectory of domain wall (DW) in ferromagnetic asymmetric branch structure for obtaining different output combinations. The programmability of the device is achieved by using a current-controlled magnetic gate, which generates a local Oersted field. The field generated at the magnetic gate influences the trajectory of the DW within the structure by exploiting its inherent transverse charge distribution. DW transformation from vortex to transverse configuration close to the output branch plays a pivotal role in governing the DW chirality and hence the output. By simply switching the current direction through the magnetic gate, two universal logic gate functionalities can be obtained in this device. Using magnetic force microscopy imaging and magnetoresistance measurements, all basic logic functionalities are demonstrated. PMID:26839036

  17. Geometrically pinned magnetic domain wall for multi-bit per cell storage memory

    PubMed Central

    Bahri, M. Al; Sbiaa, R.

    2016-01-01

    Spintronic devices currently rely on magnetic switching or controlled motion of domain walls (DWs) by an external magnetic field or a spin-polarized current. Controlling the position of DW is essential for defining the state/information in a magnetic memory. During the process of nanowire fabrication, creating an off-set of two parts of the device could help to pin DW at a precise position. Micromagnetic simulation conducted on in-plane magnetic anisotropy materials shows the effectiveness of the proposed design for pinning DW at the nanoconstriction region. The critical current for moving DW from one state to the other is strongly dependent on nanoconstricted region (width and length) and the magnetic properties of the material. The DW speed which is essential for fast writing of the data could reach values in the range of hundreds m/s. Furthermore, evidence of multi-bit per cell memory is demonstrated via a magnetic nanowire with more than one constriction. PMID:27334038

  18. Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure

    NASA Astrophysics Data System (ADS)

    Murapaka, C.; Sethi, P.; Goolaup, S.; Lew, W. S.

    2016-02-01

    An all-magnetic logic scheme has the advantages of being non-volatile and energy efficient over the conventional transistor based logic devices. In this work, we present a reconfigurable magnetic logic device which is capable of performing all basic logic operations in a single device. The device exploits the deterministic trajectory of domain wall (DW) in ferromagnetic asymmetric branch structure for obtaining different output combinations. The programmability of the device is achieved by using a current-controlled magnetic gate, which generates a local Oersted field. The field generated at the magnetic gate influences the trajectory of the DW within the structure by exploiting its inherent transverse charge distribution. DW transformation from vortex to transverse configuration close to the output branch plays a pivotal role in governing the DW chirality and hence the output. By simply switching the current direction through the magnetic gate, two universal logic gate functionalities can be obtained in this device. Using magnetic force microscopy imaging and magnetoresistance measurements, all basic logic functionalities are demonstrated.

  19. Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure.

    PubMed

    Murapaka, C; Sethi, P; Goolaup, S; Lew, W S

    2016-02-03

    An all-magnetic logic scheme has the advantages of being non-volatile and energy efficient over the conventional transistor based logic devices. In this work, we present a reconfigurable magnetic logic device which is capable of performing all basic logic operations in a single device. The device exploits the deterministic trajectory of domain wall (DW) in ferromagnetic asymmetric branch structure for obtaining different output combinations. The programmability of the device is achieved by using a current-controlled magnetic gate, which generates a local Oersted field. The field generated at the magnetic gate influences the trajectory of the DW within the structure by exploiting its inherent transverse charge distribution. DW transformation from vortex to transverse configuration close to the output branch plays a pivotal role in governing the DW chirality and hence the output. By simply switching the current direction through the magnetic gate, two universal logic gate functionalities can be obtained in this device. Using magnetic force microscopy imaging and magnetoresistance measurements, all basic logic functionalities are demonstrated.

  20. Magnetic domain-wall velocity enhancement induced by a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Jusang; Beach, Geoffrey S. D.; Knutson, Carl; Erskine, James L.

    2016-01-01

    Spin dynamics of field-driven domain walls (DWs) guided by permalloy nanowires are studied by high-speed magneto-optic polarimetry and numerical simulations. DW velocities and spin configurations are determined as functions of longitudinal drive field, transverse bias field, and nanowire width. Nanowires having cross-sectional dimensions large enough to support vortex wall structures exhibit regions of drive-field strength (at zero bias field) that have enhanced DW velocity resulting from coupled vortex structures that suppress oscillatory motion. Factor of 10 enhancements of the DW velocity are observed above the critical longitudinal drive-field (that marks the onset of oscillatory DW motion) when a transverse bias field is applied. Nanowires having smaller cross-sectional dimensions that support transverse wall structures also exhibit a region of higher mobility above the critical field, and similar transverse-field induced velocity enhancement but with a smaller enhancement factor. The bias-field enhancement of DW velocity is explained by numerical simulations of the spin distribution and dynamics within the propagating DW that reveal dynamic stabilization of coupled vortex structures and suppression of oscillatory motion in the nanowire conduit resulting in uniform DW motion at high speed. The enhanced velocity and drive field range are achieved at the expense of a less compact DW spin distribution.

  1. Voltage-gated pinning in a magnetic domain-wall conduit

    NASA Astrophysics Data System (ADS)

    Franken, J. H.; Yin, Y.; Schellekens, A. J.; van den Brink, A.; Swagten, H. J. M.; Koopmans, B.

    2013-09-01

    In spintronic devices relying on magnetic domain-wall (DW) motion, robust control over the DW position is required. We use electric-field control of perpendicular magnetic anisotropy to create a voltage-gated pinning site in a microstructured Pt/Co/AlOx DW conduit. A DW pins at the edge of a gate electrode, and the strength of pinning can be tuned linearly and reversibly with an efficiency of 0.22(1) mT/V. This result is supported by a micromagnetic model, taking full account of the anisotropy step at the gate edge, which is directly caused by a change in the electron density due to the choice of material.

  2. Magnetic domain wall motion in Co/Ni nanowires induced by a sloped electric field

    NASA Astrophysics Data System (ADS)

    Yamada, Keisuke; Murayama, Soh; Nakatani, Yoshinobu

    2016-05-01

    We report the sloped-electric-field (SEF)-driven motion of a magnetic domain wall (DW) in a Co/Ni nanowire with a perpendicular anisotropy using micromagnetic simulations. The results show that the DW velocity increases in proportion to the modulation ratio of the SEF, and rapidly decreases above a threshold ratio of SEF (i.e., the breakdown). We derived the analytical equation of the effective magnetic field caused by the SEF, and show the resultant DW velocity. Also, we found that the maximum DW velocity is three times faster when the Dzyaloshinskii-Moriya interaction is 0.06 erg/cm2. The results presented here offer a promising route for the design of non-volatile memory and logic devices using only the electric-field.

  3. Electric current effect on the energy barrier of magnetic domain wall depinning: origin of the quadratic contribution.

    PubMed

    Kim, Kab-Jin; Ryu, Jisu; Gim, Gi-Hong; Lee, Jae-Chul; Shin, Kyung-Ho; Lee, Hyun-Woo; Choe, Sug-Bong

    2011-11-18

    The energy barrier of a magnetic domain wall trapped at a defect is measured experimentally. When the domain wall is pushed by an electric current and/or a magnetic field, the depinning time from the barrier exhibits perfect exponential distribution, indicating that a single energy barrier governs the depinning. The electric current is found to generate linear and quadratic contributions to the energy barrier, which are attributed to the nonadiabatic and adiabatic spin-transfer torques, respectively. The adiabatic spin-transfer torque reduces the energy barrier and, consequently, causes depinning at lower current densities, promising a way toward low-power current-controlled magnetic applications.

  4. Phantom domain walls

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Ferreira, V. M. C.; Menezes, J.; Sousa, L.

    2017-08-01

    We consider a model with two real scalar fields which admits phantom domain wall solutions. We investigate the structure and evolution of these phantom domain walls in an expanding homogeneous and isotropic universe. In particular, we show that the increase of the tension of the domain walls with cosmic time, associated to the evolution of the phantom scalar field, is responsible for an additional damping term in their equations of motion. We describe the macroscopic dynamics of phantom domain walls, showing that extended phantom defects whose tension varies on a cosmological time scale cannot be the dark energy.

  5. Current-induced resonance and mass determination of a single magnetic domain wall.

    PubMed

    Saitoh, Eiji; Miyajima, Hideki; Yamaoka, Takehiro; Tatara, Gen

    2004-11-11

    A magnetic domain wall (DW) is a spatially localized change of magnetization configuration in a magnet. This topological object has been predicted to behave at low energy as a composite particle with finite mass. This particle will couple directly with electric currents as well as magnetic fields, and its manipulation using electric currents is of particular interest with regard to the development of high-density magnetic memories. The DW mass sets the ultimate operation speed of these devices, but has yet to be determined experimentally. Here we report the direct observation of the dynamics of a single DW in a ferromagnetic nanowire, which demonstrates that such a topological particle has a very small but finite mass of 6.6 x 10(-23) kg. This measurement was realized by preparing a tunable DW potential in the nanowire, and detecting the resonance motion of the DW induced by an oscillating current. The resonance also allows low-current operation, which is crucial in device applications; a DW displacement of 10 microm was induced by a current density of 10(10) A m(-2).

  6. Chirality dependent pinning and depinning of magnetic vortex domain walls at nano-constrictions

    NASA Astrophysics Data System (ADS)

    Mohanan P, Vineeth; Kumar, P. S. Anil

    2017-01-01

    The implementation of magnetic domain wall (DW) based memory and logic devices critically depend on the control over DW assisted magnetization reversal processes. Here we investigate the magnetization reversal by DW injection, pinning and depinning at a geometrical constriction in permalloy nanowire (NW) driven by external in-plane magnetic field, using local electrical probes. The observations of two distinct depinning field values are identified with the help of micromagnetic simulations, as being due to vortex DWs of different chiralities. Statistical analysis gave an estimate of chirality dependent pinning probability of DWs at this constriction. The stochastic nature of the DW based reversal driven by magnetic field is revealed here. The asymmetry in the depinning field of the DWs to move to either side of constriction indicates the asymmetric nature of the barrier potential seen by the DWs. The results demonstrate the difficulties in achieving deterministic switching behavior of DW assisted reversal, and provide a platform to understand the main bottlenecks in the technological implementation of DWs.

  7. Effects of Magnetic Domain Walls on the Anisotropic Magnetoresistance in NiFe Nanowires.

    PubMed

    Nam, Chunghee

    2015-10-01

    We show that a type of magnetic domain walls (DWs) can be monitored by anisotropic magnetoresistance (AMR) measurements due to a specific DW volume depending on the DW type in NiFe magnetic wires. A circular DW injection pad is used to generate DWs at a low magnetic field, resulting in reliable DW introduction into magnetic wires. DW pinning is induced by a change of DW energy at an asymmetric single notch. The injection of DW from the circular pad and its pinning at the notch is observed by using AMR and magnetic force microscope (MFM) measurements. A four-point probe AMR measurement allows us to distinguish the DW type in the switching process because DWs are pinned at the single notch, where voltage probes are closely placed around the notch. Two types of AMR behavior are observed in the AMR measurements, which is owing to a change of DW structures. MFM images and micromagnetic simulations are consistent with the AMR results.

  8. Domain walls riding the wave.

    SciTech Connect

    Karapetrov, G.; Novosad, V.; Materials Science Division

    2010-11-01

    Recent years have witnessed a rapid proliferation of electronic gadgets around the world. These devices are used for both communication and entertainment, and it is a fact that they account for a growing portion of household energy consumption and overall world consumption of electricity. Increasing the energy efficiency of these devices could have a far greater and immediate impact than a gradual switch to renewable energy sources. The advances in the area of spintronics are therefore very important, as gadgets are mostly comprised of memory and logic elements. Recent developments in controlled manipulation of magnetic domains in ferromagnet nanostructures have opened opportunities for novel device architectures. This new class of memories and logic gates could soon power millions of consumer electronic devices. The attractiveness of using domain-wall motion in electronics is due to its inherent reliability (no mechanical moving parts), scalability (3D scalable architectures such as in racetrack memory), and nonvolatility (retains information in the absence of power). The remaining obstacles in widespread use of 'racetrack-type' elements are the speed and the energy dissipation during the manipulation of domain walls. In their recent contribution to Physical Review Letters, Oleg Tretiakov, Yang Liu, and Artem Abanov from Texas A&M University in College Station, provide a theoretical description of domain-wall motion in nanoscale ferromagnets due to the spin-polarized currents. They find exact conditions for time-dependent resonant domain-wall movement, which could speed up the motion of domain walls while minimizing Ohmic losses. Movement of domain walls in ferromagnetic nanowires can be achieved by application of external magnetic fields or by passing a spin-polarized current through the nanowire itself. On the other hand, the readout of the domain state is done by measuring the resistance of the wire. Therefore, passing current through the ferromagnetic wire is

  9. Interaction of magnetization and heat dynamics for pulsed domain wall movement with Joule heating

    NASA Astrophysics Data System (ADS)

    Lepadatu, Serban

    2016-10-01

    Pulsed domain wall movement is studied here in Ni80Fe20 nanowires on SiO2, using a fully integrated electrostatic, thermoelectric, and micromagnetics solver based on the Landau-Lifshitz-Bloch equation, including Joule heating, anisotropic magneto-resistance, and Oersted field contributions. During the applied pulse, the anisotropic magneto-resistance of the domain wall generates a dynamic heat gradient, which increases the current-driven velocity by up to 15%. Using a temperature-dependent conductivity, significant differences are found between the constant voltage-pulsed and constant current-pulsed domain wall movement: constant voltage pulses are shown to be more efficient at displacing domain walls whilst minimizing the increase in temperature, with the total domain wall displacement achieved over a fixed pulse duration having a maximum with respect to the driving pulse strength.

  10. Visualizing domain wall and reverse domain superconductivity.

    PubMed

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  11. Visualizing domain wall and reverse domain superconductivity

    PubMed Central

    Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.

    2014-01-01

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004

  12. Magnetic fingerprint of interfacial coupling between CoFe and nanoscale ferroelectric domain walls

    NASA Astrophysics Data System (ADS)

    Zhang, Qintong; Murray, Peyton; You, Lu; Wan, Caihua; Zhang, Xuan; Li, Wenjing; Khan, Usman; Wang, Junling; Liu, Kai; Han, Xiufeng

    2016-08-01

    Magnetoelectric coupling in ferromagnetic/multiferroic systems is often manifested in the exchange bias effect, which may have combined contributions from multiple sources, such as domain walls, chemical defects, or strain. In this study we magnetically "fingerprint" the coupling behavior of CoFe grown on epitaxial BiFeO3 (BFO) thin films by magnetometry and the first-order-reversal-curves (FORC). The contribution to exchange bias from 71°, 109° and charged ferroelectric domain walls (DWs) was elucidated by the FORC distribution. CoFe samples grown on BFO with 71° DWs only exhibit an enhancement of the coercivity, but little exchange bias. Samples grown on BFO with 109° DWs and mosaic DWs exhibit a much larger exchange bias, with the main enhancement attributed to 109° and charged DWs. Based on the Malozemoff random field model, a varying-anisotropy model is proposed to account for the exchange bias enhancement. This work sheds light on the relationship between the exchange bias effect of the CoFe/BFO heterointerface and the ferroelectric DWs, and provides a path for multiferroic device analysis and design.

  13. Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain.

    PubMed

    Shepley, P M; Rushforth, A W; Wang, M; Burnell, G; Moore, T A

    2015-01-21

    The perpendicular magnetic anisotropy K(eff), magnetization reversal, and field-driven domain wall velocity in the creep regime are modified in Pt/Co(0.85-1.0 nm)/Pt thin films by strain applied via piezoelectric transducers. K(eff), measured by the extraordinary Hall effect, is reduced by 10 kJ/m(3) by tensile strain out-of-plane ε(z) = 9 × 10(-4), independently of the film thickness, indicating a dominant volume contribution to the magnetostriction. The same strain reduces the coercive field by 2-4 Oe, and increases the domain wall velocity measured by wide-field Kerr microscopy by 30-100%, with larger changes observed for thicker Co layers. We consider how strain-induced changes in the perpendicular magnetic anisotropy can modify the coercive field and domain wall velocity.

  14. Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain

    PubMed Central

    Shepley, P. M.; Rushforth, A. W.; Wang, M.; Burnell, G.; Moore, T. A.

    2015-01-01

    The perpendicular magnetic anisotropy Keff, magnetization reversal, and field-driven domain wall velocity in the creep regime are modified in Pt/Co(0.85–1.0 nm)/Pt thin films by strain applied via piezoelectric transducers. Keff, measured by the extraordinary Hall effect, is reduced by 10 kJ/m3 by tensile strain out-of-plane εz = 9 × 10−4, independently of the film thickness, indicating a dominant volume contribution to the magnetostriction. The same strain reduces the coercive field by 2–4 Oe, and increases the domain wall velocity measured by wide-field Kerr microscopy by 30-100%, with larger changes observed for thicker Co layers. We consider how strain-induced changes in the perpendicular magnetic anisotropy can modify the coercive field and domain wall velocity. PMID:25605499

  15. Domain wall filters

    SciTech Connect

    Baer, Oliver; Narayanan, Rajamani; Neuberger, Herbert; Witzel, Oliver

    2007-03-15

    We propose using the extra dimension separating the domain walls carrying lattice quarks of opposite handedness to gradually filter out the ultraviolet fluctuations of the gauge fields that are felt by the fermionic excitations living in the bulk. This generalization of the homogeneous domain wall construction has some theoretical features that seem nontrivial.

  16. Voltage Control of Domain Wall Motion in Perpendicular Magnetic Anisotropy Materials

    NASA Astrophysics Data System (ADS)

    Bauer, Uwe; Emori, Satoru; Beach, Geoffrey S. D.

    2013-03-01

    High-performance solid-state operation of a wide variety of spintronic devices requires efficient electrical control of domain walls (DWs). In this work we examine DW dynamics in ultrathin Co films under the influence of an electric field applied across a gadolinium oxide gate dielectric. By measuring the velocity scaling with temperature, driving field, and gate voltage, we verify domain expansion via thermally-activated creep dynamics. We show that an electric field linearly modulates the activation energy barrier EA that governs DW creep, leading to an exponential dependence of DW velocity on gate voltage. As a consequence, significant voltage-induced velocity enhancement can be achieved in the low-velocity regime, but the efficiency is diminished at high velocities where EA is correspondingly small. We overcome this limitation by engineering novel device structures with significantly larger voltage induced effects on magnetic anisotropy and demonstrate voltage modulation of the DW propagation field by hundreds of Oe. Implementation into magnetic nanowire devices allows us to engineer gate voltage controlled DW traps which are nonvolatile and robustly switchable for many cycles. This work is supported by the National Science Foundation through grant ECCS-1128439

  17. Micromagnetic simulation of domain wall propagation along meandering magnetic strip with spatially modulated material parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Tanaka, T.; Matsuyama, K.

    2017-05-01

    Feasibility of two-dimensional propagation of the domain wall (DW) was investigated by micromagnetic simulations. Successful bit-by-bit propagation of the DW was demonstrated in a designed meandering magnetic strip with periodic material parameter modulation, used as DW pinning sites (PSs). The DW was successively shifted along the straight part and around the corner with a spin polarized current pulses with 1 ns-width, 3 ns-interval and same amplitude. A practical current amplitude margin (30 % of mid value) was achieved by analyzing the energy landscape around the meandering corner and optimizing the location of the PSs, which energy barrier height assures a thermal stability criterion (>60 kBT).

  18. Domain Walls in Bent Nanowires

    NASA Astrophysics Data System (ADS)

    Lofink, F.; Philippi-Kobs, A.; Rahbar Azad, M. R.; Hankemeier, S.; Hoffmann, G.; Frömter, R.; Oepen, H. P.

    2017-08-01

    The influence of geometric parameters on the magnetic fine structure of domain walls in bent nanowires is investigated. The domain pattern in the soft-magnetic Co39Fe54Si7 alloy is studied via scanning electron microscopy with polarization analysis and modeled via micromagnetic simulations. It is demonstrated that the bending angle affects details of the microstructure as well as the preponderant domain-wall type. A phenomenological model is developed that provides the global energy minimum of individual types of domain walls as a function of the geometric parameters of the wire. The results can be directly transferred to permalloy wires, as permalloy and Co39Fe54Si7 alloy have a comparable magnetostatic exchange length.

  19. Electrical detection of magnetic domain wall in Fe4N nanostrip by negative anisotropic magnetoresistance effect

    NASA Astrophysics Data System (ADS)

    Gushi, Toshiki; Ito, Keita; Higashikozono, Soma; Takata, Fumiya; Oosato, Hirotaka; Sugimoto, Yoshimasa; Toko, Kaoru; Honda, Syuta; Suemasu, Takashi

    2016-09-01

    The magnetic structure of the domain wall (DW) of a 30-nm-thick Fe4N epitaxial film with a negative spin polarization of the electrical conductivity is observed by magnetic force microscopy and is well explained by micromagnetic simulation. The Fe4N film is grown by molecular beam epitaxy on a SrTiO3(001) substrate and processed into arc-shaped ferromagnetic nanostrips 0.3 μm wide by electron beam lithography and reactive ion etching with Cl2 and BCl3 plasma. Two electrodes mounted approximately 12 μm apart on the nanostrip register an electrical resistance at 8 K. By changing the direction of an external magnetic field (0.2 T), the presence or absence of a DW positioned in the nanostrip between the two electrodes can be controlled. The resistance is increased by approximately 0.5 Ω when the DW is located between the electrodes, which signifies the negative anisotropic magnetoresistance effect of Fe4N. The electrical detection of the resistance change is an important step toward the electrical detection of current-induced DW motion in Fe4N.

  20. Enhanced stochasticity of domain wall motion in magnetic racetracks due to dynamic pinning.

    PubMed

    Jiang, Xin; Thomas, Luc; Moriya, Rai; Hayashi, Masamitsu; Bergman, Bastiaan; Rettner, Charles; Parkin, Stuart S P

    2010-06-15

    Understanding the details of domain wall (DW) motion along magnetic racetracks has drawn considerable interest in the past few years for their applications in non-volatile memory devices. The propagation of the DW is dictated by the interplay between its driving force, either field or current, and the complex energy landscape of the racetrack. In this study, we use spin-valve nanowires to study field-driven DW motion in real time. By varying the strength of the driving magnetic field, the propagation mode of the DW can be changed from a simple translational mode to a more complex precessional mode. Interestingly, the DW motion becomes much more stochastic at the onset of this propagation mode. We show that this unexpected result is a consequence of an unsustainable gain in Zeeman energy of the DW, as it is driven faster by the magnetic field. As a result, the DW periodically releases energy and thereby becomes more susceptible to pinning by local imperfections in the racetrack.

  1. Elementary depinning processes of magnetic domain walls under fields and currents.

    PubMed

    Nguyen, V D; Torres, W Savero; Laczkowski, P; Marty, A; Jamet, M; Beigné, C; Notin, L; Vila, L; Attané, J P

    2014-10-01

    The probability laws associated to domain wall depinning under fields and currents have been studied in NiFe and FePt nanowires. Three basic domain wall depinning processes, associated to different potential landscapes, are found to appear identically in those systems with very different anisotropies. We show that these processes constitute the building blocks of any complex depinning mechanism. A Markovian analysis is proposed, that provides a unified picture of the depinning mechanism and an insight into the pinning potential landscape.

  2. The stability of steady motion of magnetic domain wall: Role of higher-order spin-orbit torques

    SciTech Connect

    He, Peng-Bin Yan, Han; Cai, Meng-Qiu; Li, Zai-Dong

    2015-12-14

    The steady motion of magnetic domain wall driven by spin-orbit torques is investigated analytically in the heavy/ferromagnetic metal nanowires for three cases with a current transverse to the in-plane and perpendicular easy axis, and along the in-plane easy axis. By the stability analysis of Walker wall profile, we find that if including the higher-order spin-orbit torques, the Walker breakdown can be avoided in some parameter regions of spin-orbit torques with a current transverse to or along the in-plane easy axis. However, in the case of perpendicular anisotropy, even considering the higher-order spin-orbit torques, the velocity of domain wall cannot be efficiently enhanced by the current. Furthermore, the direction of wall motion is dependent on the configuration and chirality of domain wall with a current along the in-plane easy axis or transverse to the perpendicular one. Especially, the direction of motion can be controlled by the initial chirality of domain wall. So, if only involving the spin-orbit mechanism, it is preferable to adopt the scheme of a current along the in-plane easy axis for enhancing the velocity and controlling the direction of domain wall.

  3. Electrical probing of magnetic phase transition and domain wall motion in single-crystalline Mn₅Ge₃ nanowire.

    PubMed

    Tang, Jianshi; Wang, Chiu-Yen; Jiang, Wanjun; Chang, Li-Te; Fan, Yabin; Chan, Michael; Wu, Can; Hung, Min-Hsiu; Liu, Pei-Hsuan; Yang, Hong-Jie; Tuan, Hsing-Yu; Chen, Lih-Juann; Wang, Kang L

    2012-12-12

    In this Letter, the magnetic phase transition and domain wall motion in a single-crystalline Mn(5)Ge(3) nanowire were investigated by temperature-dependent magneto-transport measurements. The ferromagnetic Mn(5)Ge(3) nanowire was fabricated by fully germaniding a single-crystalline Ge nanowire through the solid-state reaction with Mn contacts upon thermal annealing at 450 °C. Temperature-dependent four-probe resistance measurements on the Mn(5)Ge(3) nanowire showed a clear slope change near 300 K accompanied by a magnetic phase transition from ferromagnetism to paramagnetism. The transition temperature was able to be controlled by both axial and radial magnetic fields as the external magnetic field helped maintain the magnetization aligned in the Mn(5)Ge(3) nanowire. Near the magnetic phase transition, the critical behavior in the 1D system was characterized by a power-law relation with a critical exponent of α = 0.07 ± 0.01. Besides, another interesting feature was revealed as a cusp at about 67 K in the first-order derivative of the nanowire resistance, which was attributed to a possible magnetic transition between two noncollinear and collinear ferromagnetic states in the Mn(5)Ge(3) lattice. Furthermore, temperature-dependent magneto-transport measurements demonstrated a hysteretic, symmetric, and stepwise axial magnetoresistance of the Mn(5)Ge(3) nanowire. The interesting features of abrupt jumps indicated the presence of multiple domain walls in the Mn(5)Ge(3) nanowire and the annihilation of domain walls driven by the magnetic field. The Kurkijärvi model was used to describe the domain wall depinning as thermally assisted escape from a single energy barrier, and the fitting on the temperature-dependent depinning magnetic fields yielded an energy barrier of 0.166 eV.

  4. Programmable manipulation of superparamagnetic microbeads at junctions using magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Rapoport, Elizabeth; Bono, David; Beach, Geoffrey

    2014-03-01

    There has been a steady progression in the advancement of magnetic technologies for bead manipulation in chip-based devices. Recently, we demonstrated that with curvilinear magnetic tracks, both domain wall (DW)-driven transport and detection of superparamagnetic (SPM) beads can be achieved. Here, we demonstrate that the direction of bead motion at junctions in branched curvilinear structures can be precisely selected with a vertical field. Upon exiting a junction, a single DW is split into two of opposite configuration. A vertical field strengthens the bead-DW interaction for one DW configuration, while simultaneously weakening the interaction for the other. The result is preferential bead motion with one DW over the other, allowing for the design of complex bead routing networks. Numerical work is presented in support of the theoretical basis for selective motion, and experiment reveals a threshold vertical select field for a sample of nominally identical beads. This routing technique is also shown to be able to sort a mixed population of SPM beads by simple application of a vertical field. With this work, we add an essential capability to the set of DW-mediated SPM bead handling functions required for an integrated lab-on-a-chip platform. This work is supported by the MIT CMSE under NSF-DMR-0819762 and by the MIT Deshpande Center.

  5. Exploring 360 domain walls in ferromagnetic nanostructures using circular magnetic fields

    NASA Astrophysics Data System (ADS)

    Sarella, Anandakumar; Kaya, F. I.; Aidala, K. E.

    Ferromagnetic nanostructures can exhibit intriguing magnetic states, such as the metastable 360 domain wall (DW), in which two 180 DWs combine to form a nearly flux closed state in sufficiently thin structures. These composite structures have potential to maximize storage densities due to their minimal stray fields. We study a straightforward method to nucleate 360 DWs in nanorings, nanowires, using in-plane circular fields, as if from a current carrying wire passing through the substrate in close proximity to the nanostructures. Our simulations, using OOMMF, predict that the vortex state of a ring with appropriate geometry will reverse from CW to CCW through an intermediate state consisting of pairs of 360 DWs. We examine the dependence of the switching field and intermediate states on geometric properties such as the diameter, thickness, and width of the ring. Using the local circular field, we can also nucleate 360 DWs in nanowires, pinning the location of the DWs at notches spaced as close as 100 nm apart, suggesting high density storage. We are currently studying these structures experimentally using AFM/MFM. We generate the circular field by passing current through AFM tip and image the resulting magnetic states with MFM. NSF Grants No. DMR 1208042 and 1207924. Simulations were run on the Odyssey cluster, Research Computing Group at Harvard.

  6. Temperature dependence of the threshold magnetic field for nucleation and domain wall propagation in an inhomogeneous structure with grain boundary

    NASA Astrophysics Data System (ADS)

    Mohakud, Sasmita; Andraus, Sergio; Nishino, Masamichi; Sakuma, Akimasa; Miyashita, Seiji

    2016-08-01

    In order to study the dependence of the coercive force of sintered magnets on temperature, nucleation and domain wall propagation at the grain boundary are studied as rate-determining processes of the magnetization reversal phenomena in magnets consisting of bulk hard magnetic grains contacting via grain boundaries of a soft magnetic material. These systems have been studied analytically for a continuum model at zero temperature [A. Sakuma et al., J. Magn. Magn. Mater. 84, 52 (1990), 10.1016/0304-8853(90)90162-J]. In the present study, the temperature dependence is studied by making use of the stochastic Landau-Lifshitz-Gilbert equation at finite temperatures. In particular, the threshold fields for nucleation and domain wall propagation are obtained as functions of ratios of magnetic interactions and anisotropies of the soft and hard magnets for various temperatures. It was found that the threshold field for domain wall propagation is robust against thermal fluctuations, while that for nucleation is fragile. The microscopic mechanisms of the observed temperature dependence are discussed.

  7. Calculating a parameter space to smoothly transport magnetically-trapped suspended superparamagnetic microbeads with electric-field domain wall control

    NASA Astrophysics Data System (ADS)

    McLellan, Brenda; Nowakowski, Mark; Bokor, Jeffrey; Liang, Cheng-Yen; Hockel, Joshua; Wetzlar, Kyle; Keller, Scott; Sohn, Hyunmin; Carman, Gregory; Young, Anthony; Doran, Andrew; Marcus, Matthew; Klaui, Mathias; Candler, Robert

    2015-03-01

    We demonstrate the capture and electrically-driven piecewise transport of superparamagnetic microbeads trapped in a magnetostatic potential energy well produced by the magnetic domain walls of Ni microrings on a [Pb(Mg1/3Nb2/3) O3]0.66-[PbTiO3]0.34 (PMN-PT) substrate. Here I present micromagnetic simulations that illustrate the formation of field-initialized domain walls in Ni microrings and calculate the approximate force of attraction experienced by superparamagnetic microbeads near the domain walls. This force is estimated as a function of the ring geometry, bead diameter, and distance from the domain wall, and provides an upper bound for the strain-mediated, electrically-induced domain wall velocity that can be implemented to smoothly transport coupled microbeads within a fluidic environment. These results provide an initial estimate for important technological parameters and set a foundation for the optimization of this microfluidic magnetic control scheme. Supported by E3S and TANMS.

  8. Automotion of domain walls for spintronic interconnects

    SciTech Connect

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-07

    We simulate “automotion,” the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  9. Functional domain walls in multiferroics.

    PubMed

    Meier, Dennis

    2015-11-25

    During the last decade a wide variety of novel and fascinating correlation phenomena has been discovered at domain walls in multiferroic bulk systems, ranging from unusual electronic conductance to inseparably entangled spin and charge degrees of freedom. The domain walls represent quasi-2D functional objects that can be induced, positioned, and erased on demand, bearing considerable technological potential for future nanoelectronics. Most of the challenges that remain to be solved before turning related device paradigms into reality, however, still fall in the field of fundamental condensed matter physics and materials science. In this topical review seminal experimental findings gained on electric and magnetic domain walls in multiferroic bulk materials are addressed. A special focus is put on the physical properties that emerge at so-called charged domain walls and the added functionality that arises from coexisting magnetic order. The research presented in this review highlights that we are just entering a whole new world of intriguing nanoscale physics that is yet to be explored in all its details. The goal is to draw attention to the persistent challenges and identify future key directions for the research on functional domain walls in multiferroics.

  10. Non-planar Dzyaloshinskii spirals and magnetic domain walls in non-centrosymmetric systems with orthorhombic anisotropy.

    PubMed

    Heide, Marcus; Bihlmayer, Gustav; Blügel, Stefan

    2011-04-01

    The basic micromagnetic models of Landau, Lifshitz, and Dzyaloshinskii, are extended by an anisotropy term with two independent parameters. The resulting ground states of the magnetic domains and the domain-wall profiles are discussed for crystal lattices with orthorhombic unit cells. In these simple geometries, the magnetization is not confined to a single plane. Depending on the relations between the spin-stiffness, anisotropy, and Dzyaloshinskii-Moriya interaction several different zero-temperature phases of the magnetic structure are found. The corresponding phase diagrams are obtained numerically. Analytical results are given for some special cases. The studied model is of particular relevance for magnetic wires, nanostripes and ultrathin magnetic films deposited on non-magnetic surfaces.

  11. Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer

    NASA Astrophysics Data System (ADS)

    Benitez, M. J.; Hrabec, A.; Mihai, A. P.; Moore, T. A.; Burnell, G.; McGrouther, D.; Marrows, C. H.; McVitie, S.

    2015-12-01

    The microscopic magnetization variation in magnetic domain walls in thin films is a crucial property when considering the torques driving their dynamic behaviour. For films possessing out-of-plane anisotropy normally the presence of Néel walls is not favoured due to magnetostatic considerations. However, they have the right structure to respond to the torques exerted by the spin Hall effect. Their existence is an indicator of the interfacial Dzyaloshinskii-Moriya interaction (DMI). Here we present direct imaging of Néel domain walls with a fixed chirality in device-ready Pt/Co/AlOx films using Lorentz transmission electron and Kerr microscopies. It is shown that any independently nucleated pair of walls in our films form winding pairs when they meet that are difficult to annihilate with field, confirming that they all possess the same topological winding number. The latter is enforced by the DMI. The field required to annihilate these winding wall pairs is used to give a measure of the DMI strength. Such domain walls, which are robust against collisions with each other, are good candidates for dense data storage.

  12. Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer

    PubMed Central

    Benitez, M. J.; Hrabec, A.; Mihai, A. P.; Moore, T. A.; Burnell, G.; McGrouther, D.; Marrows, C. H.; McVitie, S.

    2015-01-01

    The microscopic magnetization variation in magnetic domain walls in thin films is a crucial property when considering the torques driving their dynamic behaviour. For films possessing out-of-plane anisotropy normally the presence of Néel walls is not favoured due to magnetostatic considerations. However, they have the right structure to respond to the torques exerted by the spin Hall effect. Their existence is an indicator of the interfacial Dzyaloshinskii–Moriya interaction (DMI). Here we present direct imaging of Néel domain walls with a fixed chirality in device-ready Pt/Co/AlOx films using Lorentz transmission electron and Kerr microscopies. It is shown that any independently nucleated pair of walls in our films form winding pairs when they meet that are difficult to annihilate with field, confirming that they all possess the same topological winding number. The latter is enforced by the DMI. The field required to annihilate these winding wall pairs is used to give a measure of the DMI strength. Such domain walls, which are robust against collisions with each other, are good candidates for dense data storage. PMID:26642936

  13. Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer.

    PubMed

    Benitez, M J; Hrabec, A; Mihai, A P; Moore, T A; Burnell, G; McGrouther, D; Marrows, C H; McVitie, S

    2015-12-08

    The microscopic magnetization variation in magnetic domain walls in thin films is a crucial property when considering the torques driving their dynamic behaviour. For films possessing out-of-plane anisotropy normally the presence of Néel walls is not favoured due to magnetostatic considerations. However, they have the right structure to respond to the torques exerted by the spin Hall effect. Their existence is an indicator of the interfacial Dzyaloshinskii-Moriya interaction (DMI). Here we present direct imaging of Néel domain walls with a fixed chirality in device-ready Pt/Co/AlOx films using Lorentz transmission electron and Kerr microscopies. It is shown that any independently nucleated pair of walls in our films form winding pairs when they meet that are difficult to annihilate with field, confirming that they all possess the same topological winding number. The latter is enforced by the DMI. The field required to annihilate these winding wall pairs is used to give a measure of the DMI strength. Such domain walls, which are robust against collisions with each other, are good candidates for dense data storage.

  14. Valence-bond-solid domain walls in a 2D quantum magnet

    NASA Astrophysics Data System (ADS)

    Shao, Hui; Guo, Wenan; Sandvik, Anders

    sing quantum Monte Carlo simulations, we study properties of domain walls in a square-lattice S=1/2 Heisenberg model with additional interactions which can drive the system from an antiferromagnetic (AFM) ground state to a valence-bond solid (VBS). We study the finite-size scaling of the domain-wall energy at the putative ''deconfined'' critical AFM-VBS point, which gives access to the critical exponent governing the domain-wall width. This length-scale diverges faster than the correlation length and also is related to the scale of spinon deconfinement. Our results show additional evidence of deconfied quantum criticality and are compatible with critical exponents extracted from finite-size scaling of other quantities. NSFC Grant No. 11175018, NSF Grant No. DMR-1410126.

  15. Magnetic-field-induced domain-wall motion in permalloy nanowires with modified Gilbert damping

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.; Möhrke, Philipp; Heyne, Lutz; Kaldun, Andreas; Kläui, Mathias; Backes, Dirk; Rhensius, Jan; Heyderman, Laura J.; Thiele, Jan-Ulrich; Woltersdorf, Georg; Fraile Rodríguez, Arantxa; Nolting, Frithjof; Menteş, Tevfik O.; Niño, Miguel Á.; Locatelli, Andrea; Potenza, Alessandro; Marchetto, Helder; Cavill, Stuart; Dhesi, Sarnjeet S.

    2010-09-01

    Domain wall (DW) depinning and motion in the viscous regime induced by magnetic fields, are investigated in planar permalloy nanowires in which the Gilbert damping α is tuned in the range 0.008-0.26 by doping with Ho. Real time, spatially resolved magneto-optic Kerr effect measurements yield depinning field distributions and DW mobilities. Depinning occurs at discrete values of the field which are correlated with different metastable DW states and changed by the doping. For α<0.033 , the DW mobilities are smaller than expected while for α≥0.033 , there is agreement between the measured DW mobilities and those predicted by the standard one-dimensional model of field-induced DW motion. Micromagnetic simulations indicate that this is because as α increases, the DW spin structure becomes increasingly rigid. Only when the damping is large can the DW be approximated as a pointlike quasiparticle that exhibits the simple translational motion predicted in the viscous regime. When the damping is small, the DW spin structure undergoes periodic distortions that lead to a velocity reduction. We therefore show that Ho doping of permalloy nanowires enables engineering of the DW depinning and mobility, as well as the extent of the viscous regime.

  16. Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet

    NASA Astrophysics Data System (ADS)

    Korkusinski, M.; Hawrylak, P.; Liu, H. W.; Hirayama, Y.

    2017-03-01

    The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means.

  17. Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet

    PubMed Central

    Korkusinski, M.; Hawrylak, P.; Liu, H. W.; Hirayama, Y.

    2017-01-01

    The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means. PMID:28262758

  18. Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet.

    PubMed

    Korkusinski, M; Hawrylak, P; Liu, H W; Hirayama, Y

    2017-03-06

    The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means.

  19. Characteristic dynamic modes and domain-wall motion in magnetic nanotubes excited by resonant rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Yang, Jaehak; Kim, Junhoe; Kim, Bosung; Cho, Young-Jun; Lee, Jae-Hyeok; Kim, Sang-Koog

    2016-07-01

    We performed micromagnetic numerical calculations to explore a cylindrical nanotube's magnetization dynamics and domain-wall (DW) motions driven by eigen-circular-rotating magnetic fields of different frequencies. We discovered the presence of two different localized DW oscillations as well as asymmetric ferromagnetic resonance precession and azimuthal spin-wave modes at the corresponding resonant frequencies of the circular-rotating fields. Associated with these intrinsic modes, there exist very contrasting DW motions of different speed and propagation direction for a given DW chirality. The direction and speed of the DW propagation were found to be controllable according to the rotation sense and frequency of noncontact circular-rotating fields. Furthermore, spin-wave emissions from the moving DW were observed at a specific field frequency along with their Doppler effect. This work furthers the fundamental understanding of soft magnetic nanotubes' intrinsic dynamic modes and spin-wave emissions and offers an efficient means of manipulating the speed and direction of their DW propagations.

  20. Axion domain wall baryogenesis

    SciTech Connect

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu

    2015-07-28

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m≃10{sup 8}–10{sup 13} GeV and f≃10{sup 13}–10{sup 16} GeV. Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  1. Axion domain wall baryogenesis

    SciTech Connect

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu E-mail: kitajima@tuhep.phys.tohoku.ac.jp

    2015-07-01

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m ≅ 10{sup 8}–10{sup 13} GeV and f ≅ 10{sup 13}–10{sup 16} GeV . Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  2. Field Evolution of Antiferromagnetic Domains and Domain Walls

    NASA Astrophysics Data System (ADS)

    Fullerton, Eric E.; Hellwig, Olav; Berger, Andreas K.

    2003-03-01

    We have used magnetron sputtered [Co(4Å)Pt(7Å)]X Co(4Å)Ru(9Å)N multiplayer films to create artificially layered antiferromagnets. In contrast to atomic antiferromagnets our model system has an antiferromagnetic (AF) exchange energy comparable to the Zeemann energy in moderate fields and allows to fine tune the relative magnitude of the different magnetic energy terms by varying the parameters X and N. With increasing X and N we observe a transition from traditionally observed sharp AF domain walls towards AF domain walls with a finite width which consist of ferromagnetic stripes, i.e. the AF domains have zero net moment whereas the domain walls carry a finite magnetic moment. Such AF domain walls have not been observed before and are a direct consequence of balancing out exchange and Zeeman energy. We also show that such domain walls are expected from theoretical energy calculations. In this contribution we study the nature and field evolution of the AF stripe domain walls by Magnetic Force Microscopy (MFM). The surface sensitivity of MFM and the finite moment of the AF domain walls allow us to image AF domains as well as domain walls. We are showing first experiments to study the AF domain wall evolution in real space while applying an external field. O.H. was supported by the Deutsche Forschungsgemeinschaft via a Forschungsstipendium under the contract number HE 3286/1-1.

  3. Roles of the magnetic field and electric current in thermally activated domain wall motion in a submicrometer magnetic strip with perpendicular magnetic anisotropy.

    PubMed

    Emori, Satoru; Beach, Geoffrey S D

    2012-01-18

    We have experimentally studied micrometer-scale domain wall (DW) motion driven by a magnetic field and an electric current in a Co/Pt multilayer strip with perpendicular magnetic anisotropy. The thermal activation energy for DW motion, along with its scaling with the driving field and current, has been extracted directly from the temperature dependence of the DW velocity. The injection of DC current resulted in an enhancement of the DW velocity independent of the current polarity, but produced no measurable change in the activation energy barrier. Through this analysis, the observed current-induced DW velocity enhancement can be entirely and unambiguously attributed to Joule heating.

  4. Simultaneous magneto-optical Kerr effect and Sixtus-Tonks method for analyzing the shape of propagating domain walls in ultrathin magnetic wires.

    PubMed

    Ţibu, M; Lostun, M; Óvári, T-A; Chiriac, H

    2012-06-01

    The controlled nucleation and propagation of magnetic domain walls in ultrathin ferromagnetic wires, such as nanowires and submicrometer wires, is extremely important for the development of new high performance magnetic domain wall logic devices. Therefore, it is equally essential to possess adequate advanced experimental investigation techniques in order to be able to achieve a comprehensive in situ analysis of as many as possible parameters related to the domain wall propagation, e.g., wall shape besides wall velocity and position. In this paper, we report on a method developed specifically for the investigation of the shape of propagating magnetic domain walls in ultrathin magnetic wires, i.e., with the diameter of the magnetic wire in the range 100-950 nm. The newly developed experimental method is based on the simultaneous use of two full-fledged experimental techniques: the magneto-optical Kerr effect for analyzing the surface effects of the passing domain wall and the Sixtus-Tonks method for the investigation of the entire moving wall. The results obtained offer essential information about the shape of the propagating magnetic domain walls, being unique to this new method.

  5. Ferroelectricity driven magnetism at domain walls in LaAlO3/PbTiO3 superlattices

    PubMed Central

    Zhou, P. X.; Dong, S.; Liu, H. M.; Ma, C. Y.; Yan, Z. B.; Zhong, C. G.; Liu, J. -M.

    2015-01-01

    Charge dipole moment and spin moment rarely coexist in single-phase bulk materials except in some multiferroics. Despite the progress in the past decade, for most multiferroics their magnetoelectric performance remains poor due to the intrinsic exclusion between charge dipole and spin moment. As an alternative approach, the oxide heterostructures may evade the intrinsic limits in bulk materials and provide more attractive potential to realize the magnetoelectric functions. Here we perform a first-principles study on LaAlO3/PbTiO3 superlattices. Although neither of the components is magnetic, magnetic moments emerge at the ferroelectric domain walls of PbTiO3 in these superlattices. Such a twist between ferroelectric domain and local magnetic moment, not only manifests an interesting type of multiferroicity, but also is possible useful to pursuit the electrical-control of magnetism in nanoscale heterostructures. PMID:26269322

  6. Formation mechanisms of magnetic bubbles in an M -type hexaferrite: Role of chirality reversal at domain walls

    NASA Astrophysics Data System (ADS)

    Nakajima, H.; Kotani, A.; Harada, K.; Ishii, Y.; Mori, S.

    2016-12-01

    We examined the formation mechanisms of magnetic bubbles in an M -type hexaferrite via Lorentz microscopy. When magnetic fields were perpendicularly applied to a thin sample of BaF e12-x-0.05S cxM g0.05O19(x = 1.6 ) , Bloch lines, which were identified as reversals of domain-wall chirality, appeared, and magnetic bubbles were formed when the magnetic stripes were pinched off at these Bloch lines. The number of Bloch lines increased with the amount of Sc in BaF e12 -x -0.05S cxM g0.05O19 , probably because of the reduction in magnetic anisotropy. A Lorentz microscopic observation revealed that Bloch lines with high magnetostatic energy may play an important role in the formation of magnetic bubbles.

  7. Reversible electrically-driven magnetic domain wall rotation in multiferroic heterostructures to manipulate suspended on-chip magnetic particles

    NASA Astrophysics Data System (ADS)

    Nowakowski, Mark; Sohn, Hyunmin; Liang, Cheng-Yen; Hockel, Joshua; Wetzlar, Kyle; Keller, Scott; McLellan, Brenda; Marcus, Matthew; Doran, Andrew; Young, Anthony; Kläui, Mathias; Carman, Gregory; Bokor, Jeffrey; Candler, Robert

    2015-03-01

    We experimentally demonstrate reversible electrically-driven, strain-mediated domain wall (DW) rotation in Ni rings fabricated on piezoelectric [Pb(Mg1/3Nb2/3) O3]0.66-[PbTiO3]0.34 (PMN-PT) substrates. An electric field applied across the PMN-PT substrate induces a strain in the Ni rings producing DW rotation around the ring toward the dominant PMN-PT strain axis by inverse magnetostriction. We observe DWs reversibly cycled between their initial and rotated state as a function of the applied electric field with x-ray magnetic circular dichroism photo-emission electron microscopy. The DW rotation is analytically predicted using a fully coupled micromagnetic/elastodyanmic multi-physics simulation to verify that the experimental behavior is caused by the electrically-generated strain in this multiferroic system. Finally, this DW rotation is used to capture and manipulate magnetic particles in a fluidic environment to demonstrate a proof-of-concept energy-efficient pathway for multiferroic-based lab-on-a-chip applications. Supported by TANMS (NSF 11-537), E3S, US Dept of Energy (DE-AC02-05CH11231), EU, and DFG.

  8. Electrically driven magnetic domain wall rotation in multiferroic heterostructures to manipulate suspended on-chip magnetic particles.

    PubMed

    Sohn, Hyunmin; Nowakowski, Mark E; Liang, Cheng-yen; Hockel, Joshua L; Wetzlar, Kyle; Keller, Scott; McLellan, Brenda M; Marcus, Matthew A; Doran, Andrew; Young, Anthony; Kläui, Mathias; Carman, Gregory P; Bokor, Jeffrey; Candler, Robert N

    2015-05-26

    In this work, we experimentally demonstrate deterministic electrically driven, strain-mediated domain wall (DW) rotation in ferromagnetic Ni rings fabricated on piezoelectric [Pb(Mg1/3Nb2/3)O3]0.66-[PbTiO3]0.34 (PMN-PT) substrates. While simultaneously imaging the Ni rings with X-ray magnetic circular dichroism photoemission electron microscopy, an electric field is applied across the PMN-PT substrate that induces strain in the ring structures, driving DW rotation around the ring toward the dominant PMN-PT strain axis by the inverse magnetostriction effect. The DW rotation we observe is analytically predicted using a fully coupled micromagnetic/elastodynamic multiphysics simulation, which verifies that the experimental behavior is caused by the electrically generated strain in this multiferroic system. Finally, this DW rotation is used to capture and manipulate micrometer-scale magnetic beads in a fluidic environment to demonstrate a proof-of-concept energy-efficient pathway for multiferroic-based lab-on-a-chip applications.

  9. Charged magnetic domain walls as observed in nanostructured thin films: dependence on both film thickness and anisotropy.

    PubMed

    Favieres, C; Vergara, J; Madurga, V

    2013-02-13

    The magnetic domain configurations of soft magnetic, nanostructured, pulsed laser-deposited Co films were investigated. Their dependence on both the thickness t (20 nm ≤ t ≤ 200 nm) and the anisotropy was studied. Charged zigzag walls, with a characteristic saw-tooth vertex angle θ, were observed. θ changed with t from θ ≈ 17° to ≈25°, presenting an intermediate sharp maximum that has not been described before. The reduced length of the zigzag walls also exhibited a peak at t ≈ 70 nm. The relationship between the total reduced length and the density energy of the magnetic wall allowed us to establish a change from a Néel-type to a Bloch-type core of the zigzag walls at this thickness, t ≈ 70 nm. We also accounted for the magnetic energy arising from the surface roughness of the thinner films after imaging the film surface morphologies. Moreover, this distinctive behaviour of the zigzag walls of these low-anisotropy films was compared to that of high-anisotropy films.

  10. Runaway dilatonic domain walls

    SciTech Connect

    Aguirre, Anthony; Johnson, Matthew C.; Larfors, Magdalena

    2010-02-15

    We explore the stability of domain wall and bubble solutions in theories with compact extra dimensions. The energy density stored inside of the wall can destabilize the volume modulus of a compactification, leading to solutions containing either a timelike singularity or a region where space decompactifies, depending on the metric ansatz. We determine the structure of such solutions both analytically and using numerical simulations, and analyze how they arise in compactifications of Einstein-Maxwell theory and type IIB string theory. The existence of instabilities has important implications for the formation of networks of topological defects and the population of vacua during eternal inflation.

  11. Domain wall dynamics under electric field in CoFeB-MgO structures with perpendicular magnetic anisotropy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ravelosona, Dafine

    2016-10-01

    One crucial breakthrough in spin electronics has recently been achieved regarding the possibility to move magnetic domain walls (DWs) in magnetic tracks using the sole action of an electrical current instead of a conventional magnetic field. Here, we will present our recent results of DW dynamics obtained in Ta-CoFeB-MgO nanodevices with perpendicular magnetic anisotropy (PMA), which are widely used in STT-RAM applications, and discuss the critical problems to be addressed for implementation into a memory device. Using NV center microscopy to map DW pinning along a magnetic wire, we will first show1 that Ta/CoFeB(1nm)/MgO structures exhibit a very low density of pinning defects with respect to others materials with PMA. Then, we will focus on the possibility to use Electric Field Effect to control domain wall motion with low power dissipation. We will demonstrate gate voltage modulation of DW dynamics using different approaches based on dielectrics, piezoelectrics and ionic liquid layers.

  12. Determination of magnetic anisotropy constants and domain wall pinning energy of Fe/MgO(001) ultrathin film by anisotropic magnetoresistance.

    PubMed

    Hu, Bo; He, Wei; Ye, Jun; Tang, Jin; Zhang, Yong-Sheng; Ahmad, Syed Sheraz; Zhang, Xiang-Qun; Cheng, Zhao-Hua

    2015-09-15

    It is challenging to determine domain wall pinning energy and magnetic anisotropy since both coherent rotation and domain wall displacement coexist during magnetization switching process. Here, angular dependence anisotropic magnetoresistance (AMR) measurements at different magnetic fields were employed to determine magnetic anisotropy constants and domain wall pinning energy of Fe/MgO(001) ultrathin film. The AMR curves at magnetic fields which are high enough to ensure the coherent rotation of magnetization indicate a smooth behavior without hysteresis between clockwise (CW) and counter-clockwise (CCW) rotations. By analyzing magnetic torque, the magnetic anisotropy constants can be obtained. On the other hand, the AMR curves at low fields show abrupt transitions with hysteresis between CW and CCW rotations, suggesting the presence of multi-domain structures. The domain wall pinning energy can be obtained by analyzing different behaviors of AMR. Our work suggests that AMR measurements can be employed to figure out precisely the contributions of magnetic anisotropy and domain wall pinning energy, which is still a critical issue for spintronics.

  13. Domain walls in antiferromagnetically coupled multilayer films.

    PubMed

    Hellwig, Olav; Berger, Andreas; Fullerton, Eric E

    2003-11-07

    We report experimentally observed magnetic domain-wall structures in antiferromagnetically coupled multilayer films with perpendicular anisotropy. Our studies reveal a first-order phase transition from domain walls with no net moment to domain walls with ferromagnetic cores. The transition originates from the competition between dipolar and exchange energies, which we tune by means of layer thickness. Although observed in a synthetic antiferromagnetic system, such domain-wall structures may be expected to occur in A-type antiferromagnets with anisotropic exchange coupling.

  14. Magnetic Barkhausen noise study of domain wall dynamics in grain-oriented 3% Si-Fe

    SciTech Connect

    Birsan, M.; Szpunar, J.A.; Krause, T.W.; Atherton, D.L.

    1996-03-01

    Magnetic Barkhausen noise measurements were performed on various samples of 3% Si steel laminates in order to clarify the relationship between the domain structure, grain orientation, and power losses. The total Barkhausen noise power has been measured versus applied field. The statistical parameters characterizing the Barkhausen noise were related to macroscopic material properties. The results obtained show that a correlation exists between the Barkhausen noise power and the total power losses. This makes it possible to connect the crystallographic structure to the magnetic behavior of grain oriented materials at both microscopic and macroscopic levels.

  15. Magnetic force microscopy study of domain walls in Co{sub 2}Z ferrite

    SciTech Connect

    Qin, Lang; Verweij, Henk

    2014-03-01

    Graphical abstract: - Highlights: • Hexaferrite Co{sub 2}Z is synthesized through the modified Pechini method. • Magnetic domains are observed in anisotropic Co{sub 2}Z single grain using MFM. • Observed single grain domain thickness is in good agreement with Dotsh model. - Abstract: Hexaferrite Co{sub 2}Z was synthesized through the modified Pechini method. Partially oriented samples were obtained after consolidation with uniaxial pressing and calcination/sintering at 1300 °C/1330 °C. The sample composition and morphology was identified with X-ray diffractometry (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometry (EDS). MFM studies of the single grains revealed a domain structure with 0.7 μm wide. The Co{sub 2}Z static magnetization was measured with a vibrating sample magnetometer (VSM), and was used to calculate a single grain domain with a thickness of 4.8 μm. This result is in good agreement with SEM observations of the single grain thickness.

  16. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide

    NASA Astrophysics Data System (ADS)

    Noheda, Beatriz

    Progress in nanotechnology requires new paradigms for materials synthesis that allow controlling their functionality down to the smallest scales. Here we report a novel two-dimensional ferromagnetic phase that is synthesized at the domain walls (DWs) of the antiferromagnetic insulator TbMnO3 when grown in thin layers under epitaxial strain. This Mn oxide phase presents an atomic arrangement that does not exist in bulk and cannot be synthesized by standard chemical routes. The number of 2D ferromagnetic sheets can be controlled by tuning the thickness of the thin films, giving rise to volume fractions that go up to 25% of the total film volume. Such novel phases are driven by a unique environment induced by the symmetry breaking and large stresses present at domain walls, which function as nanoreactors. This new class of nanoscale materials may find innovative applications in nanoelectronics and spintronics. The work is published as S. Farokhipoor, C. Magén, S. Venkatesan, J. Íñiguez, C. J. M. Daumont, D. Rubi, E. Snoeck, M. Mostovoy, C. de Graaf, A. Müller, M. Döblinger, C. Scheu, B. Noheda, Nature 515, 379 (2014)

  17. Unified Drift-Diffusion Theory for Transverse Spin Currents in Spin Valves, Domain Walls, and Other Textured Magnets

    NASA Astrophysics Data System (ADS)

    Petitjean, Cyril; Luc, David; Waintal, Xavier

    2012-09-01

    Spins transverse to the magnetization of a ferromagnet only survive over a short distance. We develop a drift-diffusion approach that captures the main features of transverse spin effects in systems with arbitrary spin textures (e.g., vortices and domain walls) and generalizes the Valet-Fert theory. In addition to the standard characteristic lengths (mean free path for majority and minority electrons, and spin diffusion length), the theory introduces two length scales, the transverse spin coherence length ℓ⊥ and the (Larmor) spin precession length ℓL. We show how ℓL and ℓ⊥ can be extracted from ab initio calculations or measured with giant magnetoresistance experiments. In long (adiabatic) domain walls, we provide an analytic formula that expresses the so-called “nonadiabatic” (or fieldlike) torque in terms of these length scales. However, this nonadiabatic torque is no longer a simple material parameter but depends on the actual spin texture: in thin (<10nm) domain walls, we observe very significant deviations from the adiabatic limit.

  18. Analytical solution of the strain-controlled magnetic domain wall motion in bilayer piezoelectric/magnetostrictive nanostructures

    NASA Astrophysics Data System (ADS)

    Consolo, Giancarlo; Valenti, Giovanna

    2017-01-01

    The one-dimensional propagation of magnetic domain walls in an isotropic, linearly elastic, magnetostrictive material is investigated in the framework of the extended Landau-Lifshitz-Gilbert equation where the effects of a spin-polarized current and a rate-independent dry-friction dissipation are taken into account. In our analysis, it is assumed that the ferromagnet is subject to a spatially uniform biaxial in-plain stress generated by a piezoelectric substrate combined with the former in a multiferroic heterostructure. Moreover, a possible connection between the dry-friction mechanism and the piezo-induced strains is conjectured. By adopting the traveling waves ansatz, the effect of such a stress on the domain wall dynamics is explored in both steady and precessional regimes. In particular, it is proved that the magnetoelastic contribution, while it does not formally modify the classical solution, affects both the propagation threshold and the Walker Breakdown conditions involved in the steady regime, in agreement with recent experimental results. In the precessional regime, it is shown that the existence of a correlation between the piezo-induced strains and dry-friction leads to an upward shift of the domain wall velocity.

  19. Field tuning of ferromagnetic domain walls on elastically coupled ferroelectric domain boundaries

    NASA Astrophysics Data System (ADS)

    Franke, Kévin J. A.; Lahtinen, Tuomas H. E.; van Dijken, Sebastiaan

    2012-03-01

    We report on the evolution of ferromagnetic domain walls during magnetization reversal in elastically coupled ferromagnetic-ferroelectric heterostructures. Using optical polarization microscopy and micromagnetic simulations, we demonstrate that the spin rotation and width of ferromagnetic domain walls can be accurately controlled by the strength of the applied magnetic field if the ferromagnetic walls are pinned onto 90∘ ferroelectric domain boundaries. Moreover, reversible switching between magnetically charged and uncharged domain walls is initiated by magnetic field rotation. Switching between both wall types reverses the wall chirality and abruptly changes the width of the ferromagnetic domain walls by up to 1000%.

  20. Controlling Chaos of Magnetic-Domain-Wall Motion by using Delayed-Feedback-Control with Automatic Gain-Adjustment

    NASA Astrophysics Data System (ADS)

    Utsumi, Takuya; Okuno, Hikaru

    In this research, the chaotic motion of magnetic domain wall is controlled by using Delayed-Feedback-Control (DFC) with automatic gain-adjustment, modified by Nakajima and Ueda in 1995. The method of automatic gain-adjustment is newly applied to Extended-DFC (E-DFC) for more highly performance. It is clearly confirmed that the control-gain was automatically adjusted on each results. But, in this case, the response of E-DFC has not been improved. It is found that the delayed time has strongly influenced on the response. The selective E-DFC is proposed and the response was best.

  1. Atomistic-model study of temperature-dependent domain walls in the neodymium permanent magnet Nd2Fe14B

    NASA Astrophysics Data System (ADS)

    Nishino, Masamichi; Toga, Yuta; Miyashita, Seiji; Akai, Hisazumi; Sakuma, Akimasa; Hirosawa, Satoshi

    2017-03-01

    We studied the properties of domain walls (DWs) of the Neodymium magnet, Nd2Fe14B . Applying an atomistic model, in which the magnetic moments of all atoms and exchange interactions were determined by a first-principles calculation (Korringa-Kohn-Rostoker Green's function method), we performed a Monte Carlo simulation for two types of DW, i.e., moving along the a axis and along the c axis, which are classified into a Bloch-type wall and a Neel-type wall, respectively. We found that the shapes of the DWs of both types are described well by those derived from the continuum model used in micromagnetics. We show that the estimated DW widths are very close to the experimentally evaluated ones. Furthermore, we discovered that the width of the latter type is smaller than that of the former type. We also investigated the temperature dependence of the DW width and found that at higher temperatures it becomes larger and the magnitude of the magnetization becomes smaller, which agrees with experimental observations.

  2. Effect of a pinning field on the critical current density for current-induced domain wall motion in perpendicular magnetic anisotropy nanowires.

    PubMed

    Ooba, Ayaka; Fujimura, Yuma; Takahashi, Kota; Komine, Takashi; Sugita, Ryuji

    2012-09-01

    In this study, the effect of a pinning field on the critical current density for current-induced domain wall motion in nanowires with perpendicular magnetic anisotropy was investigated using micromagnetic simulations. In order to estimate the pinning field in notched nanowires, we conducted wall energy calculations for nanowires with various saturation magnetizations. The pinning field increased as the notch size increased. The pinning field decreased as the saturation magnetization decreased. As a result, the decreased in the pinning field causes the reduction of the critical current density. Therefore, a significant reduction of the critical current density can be obtained by decreasing the saturation magnetization, even if wall pinning occurs.

  3. Domain wall magneto-Seebeck effect

    NASA Astrophysics Data System (ADS)

    Krzysteczko, Patryk; Hu, Xiukun; Liebing, Niklas; Sievers, Sibylle; Schumacher, Hans W.

    2015-10-01

    The interplay between charge, spin, and heat currents in magnetic nanostructures subjected to a temperature gradient has led to a variety of novel effects and promising applications studied in the fast-growing field of spin caloritronics. Here, we explore the magnetothermoelectrical properties of an individual magnetic domain wall in a permalloy nanowire. In thermal gradients of the order of few K /μ m along the long wire axis, we find a clear magneto-Seebeck signature due to the presence of a single domain wall. The observed domain wall magneto-Seebeck effect can be explained by the magnetization-dependent Seebeck coefficient of permalloy in combination with the local spin configuration of the domain wall.

  4. Electrical detection of magnetic domain walls by inverse and direct spin Hall effect

    NASA Astrophysics Data System (ADS)

    Pham, V. T.; Zahnd, G.; Marty, A.; Savero Torres, W.; Jamet, M.; Noël, P.; Vila, L.; Attané, J. P.

    2016-11-01

    Domain wall (DW) detection is a prerequisite to perform current-induced DW motion. In this letter, we demonstrate a detection method, based on the ability for a ferromagnetic nanowire, in which a DW is pinned, to inject or detect a pure spin current. The device consists of such a ferromagnetic nanowire in contact with an orthogonal spin Hall effect (SHE) nanowire. When a current flows along the ferromagnetic nanowire, and provided a DW is pinned, the pure spin current is transformed into a transverse voltage by inverse spin Hall effect (ISHE). In the reciprocal configuration, the pure spin current created by the direct SHE, generates a transverse voltage along the ferromagnetic wire. Finite element method (FEM) simulations allow estimating the Pt spin Hall angle (SHA) (7.5 ± 0.5%). This technique provides an electrical way to study the DW motion, a device akin to the ferromagnetic/spin Hall effect bilayers typically used for spin-orbit torques experiments.

  5. In-plane current induced domain wall nucleation and its stochasticity in perpendicular magnetic anisotropy Hall cross structures

    NASA Astrophysics Data System (ADS)

    Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S.

    2015-11-01

    Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation.

  6. In-plane current induced domain wall nucleation and its stochasticity in perpendicular magnetic anisotropy Hall cross structures

    SciTech Connect

    Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S.

    2015-11-09

    Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation.

  7. Investigation of domain wall motion in RE-TM magnetic wire towards a current driven memory and logic

    NASA Astrophysics Data System (ADS)

    Awano, Hiroyuki

    2015-06-01

    Current driven magnetic domain wall (DW) motions of ferri-magnetic TbFeCo wires have been investigated. In the case of a Si substrate, the critical current density (Jc) of DW motion was successfully reduced to 3×106 A/cm2. Moreover, by using a polycarbonate (PC) substrate with a molding groove of 600 nm width, the Jc was decreased to 6×105 A/cm2. In order to fabricate a logic in memory, a current driven spin logics (AND, OR, NOT) have been proposed and successfully demonstrated under the condition of low Jc. These results indicate that TbFeCo nanowire is an excellent candidate for next generation power saving memory and logic.

  8. Robust ferromagnetism carried by antiferromagnetic domain walls

    NASA Astrophysics Data System (ADS)

    Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji

    2017-02-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

  9. Robust ferromagnetism carried by antiferromagnetic domain walls

    PubMed Central

    Hirose, Hishiro T.; Yamaura, Jun-ichi; Hiroi, Zenji

    2017-01-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics. PMID:28195565

  10. Robust ferromagnetism carried by antiferromagnetic domain walls.

    PubMed

    Hirose, Hishiro T; Yamaura, Jun-Ichi; Hiroi, Zenji

    2017-02-14

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

  11. Combined effects of magnetic interaction and domain wall pinning on the coercivity in a bulk Nd60Fe30Al10 ferromagnet

    PubMed Central

    Tan, X. H.; Chan, S. F.; Han, K.; Xu, H.

    2014-01-01

    Understanding the coercivity mechanism has a substantial impact on developing novel permanent materials. However, the current coercivity mechanisms used widely in permanent alloys cannot explain well the amorphous phase produced hard magnetic behavior of Nd-based bulk amorphous alloys (BAAs). Here, we propose that the coercivity in as-cast Nd60Fe30Al10 alloy is from the combination of magnetic interaction and strong pinning of domain walls. Moreover, the role of domain wall pinning is less affected after crystallization, while the magnetic interaction is dependent on the annealing temperature. Our findings give further insight into the coercivity mechanism of Nd-based bulk ferromagnets and provide a new idea to design prospective permanent alloys with coercivity from the combination of magnetic interaction and pinning of domain walls. PMID:25348232

  12. Combined effects of magnetic interaction and domain wall pinning on the coercivity in a bulk Nd60Fe30Al10 ferromagnet

    NASA Astrophysics Data System (ADS)

    Tan, X. H.; Chan, S. F.; Han, K.; Xu, H.

    2014-10-01

    Understanding the coercivity mechanism has a substantial impact on developing novel permanent materials. However, the current coercivity mechanisms used widely in permanent alloys cannot explain well the amorphous phase produced hard magnetic behavior of Nd-based bulk amorphous alloys (BAAs). Here, we propose that the coercivity in as-cast Nd60Fe30Al10 alloy is from the combination of magnetic interaction and strong pinning of domain walls. Moreover, the role of domain wall pinning is less affected after crystallization, while the magnetic interaction is dependent on the annealing temperature. Our findings give further insight into the coercivity mechanism of Nd-based bulk ferromagnets and provide a new idea to design prospective permanent alloys with coercivity from the combination of magnetic interaction and pinning of domain walls.

  13. Dynamical depinning of chiral domain walls

    NASA Astrophysics Data System (ADS)

    Moretti, Simone; Voto, Michele; Martinez, Eduardo

    2017-08-01

    The domain wall depinning field represents the minimum magnetic field needed to move a domain wall, typically pinned by samples' disorder or patterned constrictions. Conventionally, such a field is considered independent on the Gilbert damping since it is assumed to be the field at which the Zeeman energy equals the pinning energy barrier (both damping independent). Here we analyze numerically the domain wall depinning field as a function of the Gilbert damping in a system with perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interaction. Contrary to expectations, we find that the depinning field depends on the Gilbert damping and that it strongly decreases for small damping parameters. We explain this dependence with a simple one-dimensional model and we show that the reduction of the depinning field is related to the finite size of the pinning barriers and to the domain wall internal dynamics, connected to the Dzyaloshinskii-Moriya interaction and the shape anisotropy.

  14. Dispersive Stiffness of Dzyaloshinskii Domain Walls

    NASA Astrophysics Data System (ADS)

    Pellegren, J. P.; Lau, D.; Sokalski, V.

    2017-07-01

    It is well documented that subjecting perpendicular magnetic films that exhibit the interfacial Dzyaloshinskii-Moriya interaction to an in-plane magnetic field results in a domain wall (DW) energy σ , which is highly anisotropic with respect to the orientation of the DW in the film plane Θ . We demonstrate that this anisotropy has a profound impact on the elastic response of the DW as characterized by the surface stiffness σ ˜ (Θ )=σ (Θ )+σ''(Θ ) and evaluate its dependence on the length scale of deformation. The influence of stiffness on DW mobility in the creep regime is assessed, with analytic and numerical calculations showing trends in σ ˜ that better represent experimental measurements of domain wall velocity in magnetic thin films compared to σ alone. Our treatment provides experimental support for theoretical models of the mobility of anisotropic elastic manifolds and makes progress toward a more complete understanding of magnetic domain wall creep.

  15. Correlation between spin structure oscillations and domain wall velocities.

    PubMed

    Bisig, André; Stärk, Martin; Mawass, Mohamad-Assaad; Moutafis, Christoforos; Rhensius, Jan; Heidler, Jakoba; Büttner, Felix; Noske, Matthias; Weigand, Markus; Eisebitt, Stefan; Tyliszczak, Tolek; Van Waeyenberge, Bartel; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2013-01-01

    Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the extrinsic pinning from imperfections in the nanowire only affects slow domain walls and we identify the magnetostatic energy, which scales with the domain wall velocity, as the energy reservoir for the domain wall to overcome the local pinning potential landscape.

  16. Correlation between spin structure oscillations and domain wall velocities

    PubMed Central

    Bisig, André; Stärk, Martin; Mawass, Mohamad-Assaad; Moutafis, Christoforos; Rhensius, Jan; Heidler, Jakoba; Büttner, Felix; Noske, Matthias; Weigand, Markus; Eisebitt, Stefan; Tyliszczak, Tolek; Van Waeyenberge, Bartel; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2013-01-01

    Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the extrinsic pinning from imperfections in the nanowire only affects slow domain walls and we identify the magnetostatic energy, which scales with the domain wall velocity, as the energy reservoir for the domain wall to overcome the local pinning potential landscape. PMID:23978905

  17. Controlling magnetic domain wall motion in the creep regime in He{sup +}-irradiated CoFeB/MgO films with perpendicular anisotropy

    SciTech Connect

    Herrera Diez, L. García-Sánchez, F.; Adam, J.-P.; Devolder, T.; Eimer, S.; El Hadri, M. S.; Ravelosona, D.; Lamperti, A.; Mantovan, R.; Ocker, B.

    2015-07-20

    This study presents the effective tuning of perpendicular magnetic anisotropy in CoFeB/MgO thin films by He{sup +} ion irradiation and its effect on domain wall motion in a low field regime. Magnetic anisotropy and saturation magnetisation are found to decrease as a function of the irradiation dose which can be related to the observed irradiation-induced changes in stoichiometry at the CoFeB/MgO interface. These changes in the magnetic intrinsic properties of the film are reflected in the domain wall dynamics at low magnetic fields (H) where irradiation is found to induce a significant decrease in domain wall velocity (v). For all irradiation doses, domain wall velocities at low fields are well described by a creep law, where Ln(v) vs. H{sup −1∕4} behaves linearly, up to a maximum field H*, which has been considered as an approximation to the value of the depinning field H{sub dep}. In turn, H* ≈ H{sub dep} is seen to increase as a function of the irradiation dose, indicating an irradiation-induced extension of the creep regime of domain wall motion.

  18. Structure of axionic domain walls

    NASA Astrophysics Data System (ADS)

    Huang, M. C.; Sikivie, P.

    1985-09-01

    The structure of axionic domain walls is investigated using the low-energy effective theory of axions and pions. We derive the spatial dependence of the phases of the Peccei-Quinn scalar field and the QCD quark-antiquark condensates inside an axionic domain wall. Thence an accurate estimate of the wall surface energy density is obtained. The equations of motion for axions, photons, leptons, and baryons in the neighborhood of axionic domain walls are written down and estimates are given for the wall reflection and transmission coefficients of these particles. Finally, we discuss the energy dissipation by axionic domain walls oscillating in the early universe due to the reflection of particles in the primordial soup.

  19. Scaling analysis of domain-wall free energy in the Edwards-Anderson Ising spin glass in a magnetic field.

    PubMed

    Sasaki, M; Hukushima, K; Yoshino, H; Takayama, H

    2007-09-28

    The stability of the spin-glass phase against a magnetic field is studied in the three- and four-dimensional Edwards-Anderson Ising spin glasses. Effective couplings J(eff) and effective fields H(eff) associated with length scale L are measured by a numerical domain-wall renormalization-group method. The results obtained by scaling analysis of the data strongly indicate the existence of a crossover length beyond which the spin-glass order is destroyed by field H. The crossover length well obeys a power law of H which diverges as H --> 0 but remains finite for any nonzero H, implying that the spin-glass phase is absent even in an infinitesimal field. These results are well consistent with the droplet theory for short-range spin glasses.

  20. Statics and field-driven dynamics of transverse domain walls in biaxial nanowires under uniform transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Lu, Jie

    2016-06-01

    In this work, we report analytical results on transverse domain wall (TDW) statics and field-driven dynamics in quasi-one-dimensional biaxial nanowires under arbitrary uniform transverse magnetic fields (TMFs) based on the Landau-Lifshitz-Gilbert equation. Without axial driving fields, the static TDW should be symmetric about its center while twisted in its azimuthal angle distribution. By decoupling polar and azimuthal degrees of freedom, an approximate solution is provided which reproduces these features to a great extent. When an axial driving field is applied, the dynamical behavior of a TDW is viewed as the response of its static profile to external excitations. By means of the asymptotic expansion method, the TDW velocity in the traveling-wave mode is obtained, which provides the extent and boundary of the "velocity-enhancement" effect of TMFs on TDWs in biaxial nanowires. Finally, numerical simulations are performed and strongly support our analytics.

  1. Transient and steady-state velocity of domain walls for a complete range of drive fields. [in magnetic material

    NASA Technical Reports Server (NTRS)

    Bourne, H. C., Jr.; Bartran, D. S.

    1974-01-01

    Approximate analytic solutions for transient and steady-state 180 deg domain-wall motion in bulk magnetic material are obtained from the dynamic torque equations with a Gilbert damping term. The results for the Walker region in which the transient solution approaches the familiar Walker steady-state solution are presented in a slightly new form for completeness. An analytic solution corresponding to larger drive fields predicts an oscillatory motion with an average value of the velocity which decreases with drive field for reasonable values of the damping parameter. These results agree with those obtained by others from a computer solution of the torque equation and those obtained by others with the assumption of a very large anisotropy field.

  2. Predicted nucleation of domain walls in p(x)+ip(y) superconductors by a Z(2) symmetry-breaking transition in external magnetic fields.

    PubMed

    Vadimov, Vasily; Silaev, Mihail

    2013-10-25

    We show that time reversal symmetry-breaking p(x)+ip(y) wave superconductors undergo several phase transitions subjected to an external magnetic field or supercurrent. In such a system, the discrete Z(2) symmetry can recover before a complete destruction of the order parameter. The domain walls associated with Z(2) symmetry can be created in a controllable way by a magnetic field or current sweep according to the Kibble-Zurek scenario. Such domain wall generation can take place in exotic superconductors like Sr(2)RuO(4), thin films of superfluid (3)He-A, and some heavy fermion compounds.

  3. Magnetic domain-wall creep driven by field and current in Ta/CoFeB/MgO

    NASA Astrophysics Data System (ADS)

    DuttaGupta, S.; Fukami, S.; Kuerbanjiang, B.; Sato, H.; Matsukura, F.; Lazarov, V. K.; Ohno, H.

    2017-05-01

    Creep motion of magnetic domain wall (DW), thermally activated DW dynamics under subthreshold driving forces, is a paradigm to understand the interaction between driven interfaces and applied external forces. Previous investigation has shown that DW in a metallic system interacts differently with current and magnetic field, manifesting itself as different universality classes for the creep motion. In this article, we first review the experimental determination of the universality classes for current- and field-driven DW creeps in a Ta/CoFeB/MgO wire, and then elucidate the underlying factors governing the obtained results. We show that the nature of torque arising from current in association with DW configuration determines universality class for the current-induced creep in this system. We also discuss the correlation between the field-induced DW creep characteristics and structure observed by a transmission electron microscope. The observed results are expected to provide a deeper understanding for physics of DW motion in various magnetic materials.

  4. Polarization control at spin-driven ferroelectric domain walls.

    PubMed

    Leo, Naëmi; Bergman, Anders; Cano, Andres; Poudel, Narayan; Lorenz, Bernd; Fiebig, Manfred; Meier, Dennis

    2015-04-14

    Unusual electronic states arise at ferroelectric domain walls due to the local symmetry reduction, strain gradients and electrostatics. This particularly applies to improper ferroelectrics, where the polarization is induced by a structural or magnetic order parameter. Because of the subordinate nature of the polarization, the rigid mechanical and electrostatic boundary conditions that constrain domain walls in proper ferroics are lifted. Here we show that spin-driven ferroelectricity promotes the emergence of charged domain walls. This provides new degrees of flexibility for controlling domain-wall charges in a deterministic and reversible process. We create and position a domain wall by an electric field in Mn0.95Co0.05WO4. With a magnetic field we then rotate the polarization and convert neutral into charged domain walls, while its magnetic properties peg the wall to its location. Using atomistic Landau-Lifshitz-Gilbert simulations we quantify the polarization changes across the two wall types and highlight their general occurrence.

  5. Moving Towards Domain Wall Devices in Ferroics

    NASA Astrophysics Data System (ADS)

    Gregg, Marty

    Domain walls in ferroelectric, ferroelastic and multiferroic oxides are distinct functional materials in their own right. They can be conducting, or even superconducting, when surrounding domains are insulating; they can demonstrate magnetism when the surrounding bulk is non-magnetic and they can contain ordered electrical dipoles when the matrix containing them is non-polar. Since domain walls can also be created, destroyed, and controllably moved from place to place, there is an amazing opportunity for us to design new forms of devices in which functionality is actively and dynamically deployed (now you see it; now you don't). This is the essence of the emerging field known as ``domain wall nanoelectronics''. In time, this arena of research could change the way we think of nanoscale functional devices, moving increasingly towards agile circuitry and neuromorphic device architectures. While the control of domain wall injection, movement and annihilation has been developed rather well in the nanomagnetics community (in race-track and domain wall logic research), similar research has not been widely performed in nanoscale ferroelectrics, ferroelastics and multiferroics. This talk will discuss progress that has been made to date and the way in which nanomagnetics research can be used as a source of inspiration. Site-specific domain wall injection and motion control in both proper and improper ferroelectrics using inhomogeneous electric and elastic fields, as well as dielectric patterning in uniaxial ferroelectrics, will be specifically considered. As will be shown, sufficient control has been developed to allow the creation of a diode for domain wall motion in ferroelectrics, for example. The author acknowledges support from the Engineering and Physical Sciences Research Council (EPSRC).

  6. Influence of topography and Co domain walls on the magnetization reversal of the FeNi layer in FeNi/Al2O3/Co magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Romanens, F.; Vogel, J.; Kuch, W.; Fukumoto, K.; Camarero, J.; Pizzini, S.; Bonfim, M.; Petroff, F.

    2006-11-01

    We have studied the magnetization reversal dynamics of FeNi/Al2O3/Co magnetic tunnel junctions deposited on step-bunched Si substrates using magneto-optical Kerr effect and time-resolved x-ray photoelectron emission microscopy combined with x-ray magnetic circular dichroism (XMCD-PEEM). Different reversal mechanisms have been found depending on the substrate miscut angle. Larger terraces (smaller miscut angles) lead to a higher nucleation density and stronger domain wall pinning. The width of domain walls with respect to the size of the terraces seems to play an important role in the reversal. We used the element selectivity of XMCD-PEEM to reveal the strong influence of the stray field of domain walls in the hard magnetic layer on the magnetic switching of the soft magnetic layer.

  7. Anomalous feedback and negative domain wall resistance

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Zhu, Jian-Gang; Xiao, Di

    2016-11-01

    Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α. The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine.

  8. Birth, growth and death of an antivortex during the propagation of a transverse domain wall in magnetic nanostrips

    NASA Astrophysics Data System (ADS)

    Yuan, H. Y.; Wang, X. R.

    2014-11-01

    Antivortex birth, growth and death accompanying the propagation of a transverse domain wall (DW) in magnetic nanostrips are observed and analyzed. Antivortex formation is an intrinsic process of a strawberry-like transverse DW originated from magnetostatic interaction. Under an external magnetic field, the wider width region of a DW tends to move faster than the narrower one. This speed mismatch tilts and elongates DW center line. As a result, an antivortex with a well-defined polarity is periodically born near the tail of the DW center line. The antivortex either moves along the center line and dies on the other side of the nanostrip, or grows to its maximum size, detaches itself from the DW, and vanishes eventually. The former route reverses the polarity of DW while the later keeps the DW polarity unchanged. The evolution of the DW structures is analyzed using winding numbers assigned to each topological defects. The phase diagram in the field-width plane is obtained and the damping constant's influence on the phase diagram is discussed.

  9. Collective coordinate models of domain wall motion in perpendicularly magnetized systems under the spin hall effect and longitudinal fields

    NASA Astrophysics Data System (ADS)

    Nasseri, S. Ali; Moretti, Simone; Martinez, Eduardo; Serpico, Claudio; Durin, Gianfranco

    2017-03-01

    Recent studies on heterostructures of ultrathin ferromagnets sandwiched between a heavy metal layer and an oxide have highlighted the importance of spin-orbit coupling (SOC) and broken inversion symmetry in domain wall (DW) motion. Specifically, chiral DWs are stabilized in these systems due to the Dzyaloshinskii-Moriya interaction (DMI). SOC can also lead to enhanced current induced DW motion, with the Spin Hall effect (SHE) suggested as the dominant mechanism for this observation. The efficiency of SHE driven DW motion depends on the internal magnetic structure of the DW, which could be controlled using externally applied longitudinal in-plane fields. In this work, micromagnetic simulations and collective coordinate models are used to study current-driven DW motion under longitudinal in-plane fields in perpendicularly magnetized samples with strong DMI. Several extended collective coordinate models are developed to reproduce the micromagnetic results. While these extended models show improvements over traditional models of this kind, there are still discrepancies between them and micromagnetic simulations which require further work.

  10. Controlling magnetic domain wall positions with an external magnetic field and a low spin-polarized current in chamfered L-shaped ferromagnetic thin ribbons

    NASA Astrophysics Data System (ADS)

    Honda, Syuta; Yamamoto, Daiki; Ohsawa, Tomokatsu; Gushi, Toshiki; Ito, Keita; Suemasu, Takashi

    2016-09-01

    Current-induced magnetic domain wall (DW) motion in ferromagnetic ribbons is utilized in spintronic devices. The direction of the motion changes in response to the sign of the spin-polarizability of the current through the ribbon. The DW motion is expected to measure the sign. In this study, we investigate the magnetic structures of chamfered L-shaped nano-ribbons using micro-magnetic simulations, and show that the position at which the DW is produced can be controlled by applying an external magnetic field with a low spin-polarized current (SPC). In particular, we use the material parameters of Fe4N and permalloy to simulate the magnetic structure of the ribbon. The DW can be produced at either of two locations in a chamfered corner of the ribbon, and disappears upon applying an external magnetic field. From this point, after the field is removed, a new DW is produced at either of two locations, and its position can be controlled by adjusting the low SPC.

  11. The interaction of transverse domain walls.

    PubMed

    Krüger, Benjamin

    2012-01-18

    The interaction between transverse domain walls is calculated analytically using a multipole expansion up to third order. Starting from an analytical expression for the magnetization in the wall, the monopole, dipole, and quadrupole moments are derived and their impact on the interaction is investigated using the surface and volume charges. The surface charges are important for the dipole moment while the volume charges constitute the monopole and quadrupole moments. For domain walls that are situated in different wires it is found that there is a strong deviation from the interaction of two monopoles. This deviation is caused by the interaction of the monopole of the wall in the first wire with the dipole of the wall in the second wire and vice versa. The dipole-dipole and the quadrupole-monopole interactions are found to be also of considerable size and non-negligible. A comparison with micromagnetic simulations shows a good agreement.

  12. Structural domain walls in polar hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu

    2014-03-01

    The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.

  13. High-speed transport and magneto-mechanical resonant sensing of superparamagnetic microbeads using magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Rapoport, Elizabeth

    2013-03-01

    Surface-functionalized superparamagnetic (SPM) microbeads are of great interest in biomedical research and diagnostic device engineering for tagging, manipulating, and detecting chemical and biological species in a fluid environment. Recent work has shown that magnetic domain walls (DWs) can be used to shuttle individual SPM microbeads and magnetically tagged entities across the surface of a chip. This talk will describe the dynamics of SPM microbead transport by nanotrack-guided DWs, and show how these coupled dynamics can be exploited for on-chip digital biosensing applications. Using curvilinear magnetic nanotracks, we demonstrate rapid transport of SPM microbeads at speeds approaching 1000 μm/s, and present a mechanism for selective transport at a junction that allows for the design of complex bead routing networks. We further demonstrate that a SPM bead trapped by a DW exhibits a distinct magneto-mechanical resonance that depends on its hydrodynamic characteristics in the host fluid, and that this resonance can be used for robust size-based discrimination of commercial microbead populations. By embedding a spin-valve sensor within a DW transport conduit, we show that the resonance can be detected electrically and on-the-fly. Thus, we demonstrate a complete set of essential bead handling functions, including capture, transport, identification, and release, required for an integrated lab-on-a-chip platform. In collaboration with Daniel Montana, David Bono, and Geoffrey S.D. Beach, Massachusetts Institute of Technology. This work is supported by the MIT CMSE under NSF-DMR-0819762 and by the MIT Deshpande Center.

  14. Skyrmion domain wall collision and domain wall-gated skyrmion logic

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-08-01

    Skyrmions and domain walls are significant spin textures of great technological relevance to magnetic memory and logic applications, where they can be used as carriers of information. The unique topology of skyrmions makes them display emergent dynamical properties as compared with domain walls. Some studies have demonstrated that the two topologically inequivalent magnetic objects could be interconverted by using cleverly designed geometric structures. Here, we numerically address the skyrmion domain wall collision in a magnetic racetrack by introducing relative motion between the two objects based on a specially designed junction. An electric current serves as the driving force that moves a skyrmion toward a trapped domain wall pair. We see different types of collision dynamics depending on the driving parameters. Most importantly, the modulation of skyrmion transport using domain walls is realized in this system, allowing a set of domain wall-gated logical NOT, NAND, and NOR gates to be constructed. This work provides a skyrmion-based spin-logic architecture that is fully compatible with racetrack memories.

  15. Baryogenesis from unstable domain walls

    NASA Astrophysics Data System (ADS)

    Ben-Menahem, Shahar; Cooper, Adrian R.

    1992-12-01

    There exists a class of cosmic strings that turn matter into antimatter (Alice strings). In a GUT where the unbroken gauge group contains charge conjugation (C), such strings form when a phase transition renders C a discrete symmetry. They become boundaries of domain walls at a later, C-breaking transition. These ``Alice walls'' are cosmologically harmless, but can play an important role in baryogenesis. We present a three-generation toy model with scalar baryons, where a quasi-static Alice wall (or a gas of such walls) temporarily gives rise to net baryogenesis of uniform sign everywhere in space. This becomes a permanent baryon excess if the wall shrinks away early enough. We comment on the possible relevance of a similar mechanism to baryogenesis in a realistic SO(10) unification model, where Alice walls would form at the scale of left-right symmetry breaking.

  16. Dynamic dependence to domain wall propagation through artificial spin ice

    NASA Astrophysics Data System (ADS)

    Burn, D. M.; Chadha, M.; Branford, W. R.

    2017-03-01

    Domain wall propagation dynamics has been studied in nanostructured artificial kagome spin-ice structures. A stripline circuit has been used to provide localized pulsed magnetic fields within the artificial spin-ice (ASI) structure. This provides control of the system through electrically assisted domain wall nucleation events. Synchronization of the pulsed fields with additional global magnetic fields and the use of a focused magneto-optical Kerr effect magnetometer allows our experiments to probe the domain wall transit through an extended ASI structure. We find that the propagation distance depends on the driving field revealing field-driven properties of domain walls below their intrinsic nucleation field.

  17. PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Marrows, C. H.; Meier, G.

    2012-01-01

    Domain structures in magnetic materials are ubiquitous and have been studied for decades. The walls that separate them are topological defects in the magnetic order parameter and have a wide variety of complex forms. In general, their investigation is difficult in bulk materials since only the domain structure on the surface of a specimen is visible. Cutting the sample to reveal the interior causes a rearrangement of the domains into a new form. As with many other areas of magnetism, the study of domain wall physics has been revitalised by the advent of nanotechnology. The ability to fabricate nanoscale structures has permitted the formation of simplified and controlled domain patterns; the development of advanced microscopy methods has permitted them to be imaged and then modelled; subjecting them to ultrashort field and current pulses has permitted their dynamics to be explored. The latest results from all of these advances are described in this special issue. Not only has this led to results of great scientific beauty, but also to concepts of great applicability to future information technologies. In this issue the reader will find the latest results for these domain wall dynamics and the high-speed processes of topological structures such as domain walls and magnetic vortices. These dynamics can be driven by the application of magnetic fields, or by flowing currents through spintronic devices using the novel physics of spin-transfer torque. This complexity has been studied using a wide variety of experimental techniques at the edge of the spatial and temporal resolution currently available, and can be described using sophisticated analytical theory and computational modelling. As a result, the dynamics can be engineered to give rise to finely controlled memory and logic devices with new functionality. Moreover, the field is moving to study not only the conventional transition metal ferromagnets, but also complex heterostructures, novel magnets and even other

  18. Pinning-dependent field-driven domain wall dynamics and thermal scaling in an ultrathin Pt/Co/Pt magnetic film.

    PubMed

    Gorchon, J; Bustingorry, S; Ferré, J; Jeudy, V; Kolton, A B; Giamarchi, T

    2014-07-11

    Magnetic-field-driven domain wall motion in an ultrathin Pt/Co(0.45  nm)/Pt ferromagnetic film with perpendicular anisotropy is studied over a wide temperature range. Three different pinning dependent dynamical regimes are clearly identified: the creep, the thermally assisted flux flow, and the depinning, as well as their corresponding crossovers. The wall elastic energy and microscopic parameters characterizing the pinning are determined. Both the extracted thermal rounding exponent at the depinning transition, ψ=0.15, and the Larkin length crossover exponent, ϕ=0.24, fit well with the numerical predictions.

  19. Switchable field-tuned control of magnetic domain wall pinning along Co microwires by 3D e-beam lithographed structures

    NASA Astrophysics Data System (ADS)

    Blanco-Roldán, C.; Quirós, C.; Rodriguez-Rodriguez, G.; Vélez, M.; Martín, J. I.; Alameda, J. M.

    2016-02-01

    Three-dimensional magnetic circuits composed of Co microwires crossed by elevated Co bridges have been patterned on Si substrate by e-beam lithography and lift-off process. The lithographic procedure includes a double resist procedure that optimizes the shape of the bridge, so that 200 nm air gaps can be routinely achieved in between the wire and bridge elements. Microwire magnetization reversal processes have been analyzed by magneto-optical Kerr effect microscopy with different remanent bridge configurations. When the Co bridge is magnetized along the in-plane direction parallel to the wire axis, its stray field induces a marked pinning effect on domain wall propagation along the wire below it, even without being in contact. Changing the sign of the remanent state of the bridge, domain wall pinning can be selected to occur in either the ascending or descending branches of the wire hysteresis loop. Thus, these wire-bridge 3D circuits provide a simple system for tunable domain wall pinning controllable through the pre-recorded bridge remanent state.

  20. Ferroelectricity of domain walls in rare earth iron garnet films

    NASA Astrophysics Data System (ADS)

    Popov, A. I.; Zvezdin, K. A.; Gareeva, Z. V.; Mazhitova, F. A.; Vakhitov, R. M.; Yumaguzin, A. R.; Zvezdin, A. K.

    2016-11-01

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  1. Ferroelectricity of domain walls in rare earth iron garnet films.

    PubMed

    Popov, A I; Zvezdin, K A; Gareeva, Z V; Mazhitova, F A; Vakhitov, R M; Yumaguzin, A R; Zvezdin, A K

    2016-11-16

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  2. Ballistic rectification of vortex domain wall chirality at nanowire corners

    SciTech Connect

    Omari, K.; Bradley, R. C.; Broomhall, T. J.; Hodges, M. P. P.; Hayward, T. J.; Rosamond, M. C.; Linfield, E. H.; Im, M.-Y.; Fischer, P.

    2015-11-30

    The interactions of vortex domain walls with corners in planar magnetic nanowires are probed using magnetic soft X-ray transmission microscopy. We show that when the domain walls are propagated into sharp corners using applied magnetic fields above a critical value, their chiralities are rectified to either clockwise or anticlockwise circulation depending on whether the corners turn left or right. Single-shot focused magneto-optic Kerr effect measurements are then used to demonstrate how, when combined with modes of domain propagation that conserve vortex chirality, this allows us to dramatically reduce the stochasticity of domain pinning at artificial defect sites. Our results provide a tool for controlling domain wall chirality and pinning behavior both in further experimental studies and in future domain wall-based memory, logic and sensor technologies.

  3. Magnetoelastic contribution in domain wall propagation of micrometric wires.

    PubMed

    Zhukov, A; Blanco, J M; Ipatov, M; Zhukova, V

    2012-09-01

    We report on studies of domain wall propagation of magnetically-bistable Fe-Co-rich microwires paying attention on the effect of applied and internal stresses. We measured magnetic domain propagation in various magnetic Fe-Co-rich amorphous microwires with metallic nucleus diameters (from 2.8 microm to 18 microm) using Sixtus Tonks-like experiments. We found that application of applied stresses and increasing of internal stresses result in decreasing of domain wall (DW) velocity. We assume that in order to achieve higher DW propagation velocity at the same magnetic field and enhanced DW mobility, special attention should be paid to the decrease of magnetoelastic energy.

  4. Low-frequency resonance of domain walls in the iron garnet Tb{sub 3}Fe{sub 5}O{sub 12} near the magnetic compensation point

    SciTech Connect

    Sokolov, B. Yu. Sharipov, M. Z.

    2013-05-15

    The vibrational motion dynamics of domain walls (DWs) in the iron garnet Tb{sub 3}Fe{sub 5}O{sub 12}, a low-frequency magnetic field, and the temperature range 200-295 K (which includes the magnetic compensation point of this ferrimagnet, T{sub c} Almost-Equal-To 249 K) is studied by a magnetooptical method. The temperature dependence of the DW vibration amplitude in this garnet crystal near T{sub c} has a resonance character. A theoretical model of the magnetic resonance of DWs is proposed to interpret the obtained experimental results; according to this model, the DW mass tends to infinity and the resonance frequency tends to zero when temperature approaches the magnetic compensation point.

  5. Domain wall pinning in ultra-narrow electromigrated break junctions.

    PubMed

    Reeve, Robert M; Loescher, André; Mawass, Mohamad-Assaad; Hoffmann-Vogel, Regina; Kläui, Mathias

    2014-11-26

    The study of magnetic domain walls in constrained geometries is an important topic, yet when dealing with extreme nanoscale magnetic systems artefacts can often dominate the measurements and obscure the effects of intrinsic magnetic origin. In this work we study the evolution of domain wall depinning in electromigrated ferromagnetic junctions which are both initially fabricated and subsequently tailored in-situ in clean ultra-high vacuum conditions. Carefully designed Ni(80)Fe(20) (Permalloy) notched half-ring structures are fabricated and investigated as a function of constriction width by tailoring the size of the contact using controlled in-situ electromigration. It is found that the domain wall pinning strength is increased on reducing the contact size in line with a reduction of the wall energy in narrower constrictions. Furthermore, the angular dependency and symmetry of the depinning field is measured to determine the full pinning potential for a domain wall in a system with a narrow constriction.

  6. Local Domain-Wall Velocity Engineering via Tailored Potential Landscapes in Ferromagnetic Rings

    NASA Astrophysics Data System (ADS)

    Richter, Kornel; Krone, Andrea; Mawass, Mohamad-Assaad; Krüger, Benjamin; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2016-02-01

    We report the local control of the domain-wall velocity by tailoring the domain-wall potential landscape via local variations of a curved ring geometry. Employing time-resolved scanning-transmission x-ray microscopy, we dynamically image the motion of domain walls in rotating magnetic fields and quantify the contribution of the spatially varying potential to the domain-wall dynamics. We explain our experimentally obtained angular dependences of domain-wall velocities by the interplay between long-range forces arising from the Zeeman interaction of domain walls with the external magnetic field with local forces arising from variations of domain-wall energy due to a varying ring width. The interplay of these forces leads to distortion-free wall motion, and we use the engineered domain-wall potential landscape for spatial synchronization of domain-wall velocities in ferromagnetic rings, which are both a key prerequisite for the implementation of domain-wall-based devices.

  7. Fast domain wall dynamics in magnetic nanotubes: Suppression of Walker breakdown and Cherenkov-like spin wave emission

    NASA Astrophysics Data System (ADS)

    Yan, Ming; Andreas, Christian; Kákay, Attila; García-Sánchez, Felipe; Hertel, Riccardo

    2011-09-01

    We report on a micromagnetic study on domain wall (DW) propagation in ferromagnetic nanotubes. It is found that DWs in a tubular geometry are much more robust than ones in flat strips. This is explained by topological considerations. Our simulations show that the Walker breakdown of the DW can be completely suppressed. Constant DW velocities above 1000 m/s are achieved by small fields. A different velocity barrier of the DW propagation is encountered, which significantly reduces the DW mobility. This effect occurs as the DW reaches the phase velocity of spin waves (SWs), thereby triggering a Cherenkov-like emission of SWs.

  8. Mechanically driven domain wall movement in magnetoelastic nanomagnets

    NASA Astrophysics Data System (ADS)

    Mathurin, Théo; Giordano, Stefano; Dusch, Yannick; Tiercelin, Nicolas; Pernod, Philippe; Preobrazhensky, Vladimir

    2016-07-01

    Magnetic domain walls are fundamental objects arising in ferromagnetic materials, largely investigated both through micromagnetic simulations and experiments. While current- and field-based techniques for inducing domain wall propagation have been widely studied for fundamental understanding and application-oriented purposes, the possibility to manipulate domain walls using mechanical stress in magnetoelastic materials has only recently drawn interest. Here, a complete analytical model describing stress-induced transverse domain wall movement in ferromagnetic nanostripe with variable cross-section is presented. This approach yields a nonlinear integro-differential equation describing the magnetization field. Its numerical implementation, based on the nonlinear relaxation method, demonstrates the possibility to precisely control the position of a domain wall through mechanical action.

  9. Domain wall motion by localized temperature gradients

    NASA Astrophysics Data System (ADS)

    Moretti, Simone; Raposo, Victor; Martinez, Eduardo; Lopez-Diaz, Luis

    2017-02-01

    Magnetic domain wall (DW) motion induced by a localized Gaussian temperature profile is studied in a Permalloy nanostrip within the framework of the stochastic Landau-Lifshitz-Bloch equation. The different contributions to thermally induced DW motion, entropic torque and magnonic spin transfer torque, are isolated and compared. The analysis of magnonic spin transfer torque includes a description of thermally excited magnons in the sample. A third driving force due to a thermally induced dipolar field is found and described. Finally, thermally induced DW motion is studied under realistic conditions by taking into account the edge roughness. The results give quantitative insights into the different mechanisms responsible for domain wall motion in temperature gradients and allow for comparison with experimental results.

  10. Novel domain wall dynamics in synthetic antiferromagnets

    NASA Astrophysics Data System (ADS)

    Yang, See-Hun; Parkin, Stuart

    2017-08-01

    In this article, we review fascinating new mechanisms on recently observed remarkable current driven domain wall motion in nanowires formed from perpendicularly magnetized synthetic antiferromagnets interfaced with heavy metallic layers, sources of spin-orbit torques. All the associated torques such as volumetric adiabatic and non-adiabatic spin-transfer-torque, spin-orbit torques, shape anisotropy field torques, Dzyaloshinkii-Moriya interaction torques and most importantly a new powerful torque, exchange coupling torque, will be discussed based on an analytical model that provides an intuitive description of domain wall dynamics in synthetic ferromagnets as well as synthetic antiferromagnets. In addition, the current driven DW motion in the presence of in-plane fields will be investigated, thus deepening our knowledge about the role of the exchange coupling torque, which will be of potential use for application to various novel spintronic devices.

  11. Direct observation of closure domain wall mediated spin waves

    SciTech Connect

    Mozooni, Babak McCord, Jeffrey

    2015-07-27

    The generation and guiding of spin waves from and by magnetic domain walls are demonstrated. The spin waves radiate from pinned and oscillating magnetic closure domain walls and propagate linearly along a narrow path formed by the surrounding 180° asymmetric Bloch domain walls. The propagating spin wave modes are directly visualized by time-resolved magneto-optical Kerr microscopy with picosecond temporal resolution. A linear relationship between excitation frequency, wavelength, and number of spin waves per domain exists. Independent of the field excitation frequency, a constant phase velocity of spin waves propagation is obtained. Spin waves characteristics can be tuned by varying the magnetic domain dynamics, allowing for variable spin wave characteristics with magnetic field characteristics and histories.

  12. Nonlinear dynamics of domain walls with cross-ties

    SciTech Connect

    Dubovik, M. N.; Zverev, V. V.; Filippov, B. N.

    2016-07-15

    The dynamic behavior of a domain wall with cross-ties is analyzed on the basis of micromagnetic simulation with exact allowance for all main (exchange, magnetoanisotropic, and magnetostatic) interactions in thin magnetically uniaxial ferromagnetic films with planar anisotropy. It is found that the peculiarities of motion of such domain walls are closely related to the behavior of topological defects in the magnetization distribution (generation, motion, and annihilation of vortex–antivortex pairs on the film surface and Bloch points). We observe three different regimes of motion (stationary, periodic, and turbulent regimes), each of which is realized in a certain range of fields oriented along the easy magnetization axis. It is shown that the experimentally observed dynamic bends of the walls with cross-ties are determined by the type of motion of vortices and antivortices. The velocities of domain walls in different regimes are calculated, and the dynamic configurations of the magnetization and existing dynamic transitions between them are investigated.

  13. Fast switching and signature of efficient domain wall motion driven by spin-orbit torques in a perpendicular anisotropy magnetic insulator/Pt bilayer

    NASA Astrophysics Data System (ADS)

    Avci, Can Onur; Rosenberg, Ethan; Baumgartner, Manuel; Beran, Lukáš; Quindeau, Andy; Gambardella, Pietro; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-08-01

    We report fast and efficient current-induced switching of a perpendicular anisotropy magnetic insulator thulium iron garnet by using spin-orbit torques (SOT) from the Pt overlayer. We first show that, with quasi-DC (10 ms) current pulses, SOT-induced switching can be achieved with an external field as low as 2 Oe, making TmIG an outstanding candidate to realize efficient switching in heterostructures that produce moderate stray fields without requiring an external field. We then demonstrate deterministic switching with fast current pulses (≤20 ns) with an amplitude of ˜1012 A/m2, similar to all-metallic structures. We reveal that, in the presence of an initially nucleated domain, the critical switching current is reduced by up to a factor of five with respect to the fully saturated initial state, implying efficient current-driven domain wall motion in this system. Based on measurements with 2 ns-long pulses, we estimate the domain wall velocity of the order of ˜400 m/s per j = 1012 A/m2.

  14. Spin Hall torque magnetometry of Dzyaloshinskii domain walls

    NASA Astrophysics Data System (ADS)

    Emori, Satoru; Martinez, Eduardo; Lee, Kyung-Jin; Lee, Hyun-Woo; Bauer, Uwe; Ahn, Sung-Min; Agrawal, Parnika; Bono, David C.; Beach, Geoffrey S. D.

    2014-11-01

    Current-induced domain wall motion in the presence of the Dzyaloshinskii-Moriya interaction (DMI) is experimentally and theoretically investigated in heavy-metal/ferromagnet bilayers. The angular dependence of the current-induced torque and the magnetization structure of Dzyaloshinskii domain walls are described and quantified simultaneously in the presence of in-plane fields. We show that the DMI strength depends strongly on the heavy metal, varying by a factor of 20 between Ta and Pa, and that strong DMI leads to wall distortions not seen in conventional materials. These findings provide essential insights for understanding and exploiting chiral magnetism for emerging spintronics applications.

  15. Asymmetric counter propagation of domain walls

    NASA Astrophysics Data System (ADS)

    Andrade-Silva, I.; Clerc, M. G.; Odent, V.

    2016-07-01

    Far from equilibrium systems show different states and domain walls between them. These walls, depending on the type of connected equilibria, exhibit a rich spatiotemporal dynamics. Here, we investigate the asymmetrical counter propagation of domain walls in an in-plane-switching cell filled with a nematic liquid crystal. Experimentally, we characterize the shape and speed of the domain walls. Based on the molecular orientation, we infer that the counter propagative walls have different elastic deformations. These deformations are responsible of the asymmetric counter propagating fronts. Theoretically, based on symmetry arguments, we propose a simple bistable model under the influence of a nonlinear gradient, which qualitatively describes the observed dynamics.

  16. Skyrmions from Instantons inside Domain Walls

    NASA Astrophysics Data System (ADS)

    Eto, Minoru; Nitta, Muneto; Ohashi, Keisuke; Tong, David

    2005-12-01

    Some years ago, Atiyah and Manton described a method to construct approximate Skyrmion solutions from Yang-Mills instantons. Here we present a dynamical realization of this construction using domain walls in a five-dimensional gauge theory. The non-Abelian gauge symmetry is broken in each vacuum but restored in the core of the domain wall, allowing instantons to nestle inside the wall. We show that the world volume dynamics of the wall is given by the Skyrme model, including the four-derivative term, and the instantons appear as domain wall Skyrmions.

  17. Spin torque and interactions in ferromagnetic semiconductor domain walls

    NASA Astrophysics Data System (ADS)

    Golovatski, Elizabeth Ann

    The motion of domain walls due to the spin torque generated by coherent carrier transport is of considerable interest for the development of spintronic devices. We model the charge and spin transport through domain walls in ferromagnetic semiconductors for various systems. With an appropriate model Hamiltonian for the spin-dependent potential, we calculate wavefunctions inside the domain walls which are then used to calculate transmission and reflection coefficients, which are then in turn used to calculate current and spin torque. Starting with a simple approximation for the change in magnetization inside the domain wall, and ending with a sophisticated transfer matrix method, we model the common pi wall, the less-studied 2pi wall, and a system of two pi walls separated by a variable distance. We uncover an interesting width dependence on the transport properties of the domain wall. 2pi walls in particular, have definitive maximums in resistance and spin torque for certain domain wall widths that can be seen as a function of the spin mistracking in the system---when the spins are either passing straight through the domain wall (narrow walls) or adiabatically following the magnetization (wide walls), the resistance is low as transmission is high. In the intermediate region, there is room for the spins to rotate their magnetization, but not necessarily all the way through a 360 degree rotation, leading to reflection and resistance. We also calculate that there are widths for which the total velocity of a 2pi wall is greater than that of a same-sized pi wall. In the double-wall system, we model how the system reacts to changes in the separation of the domain walls. When the domain walls are far apart, they act as a spin-selective resonant double barrier, with sharp resonance peaks in the transmission profile. Brought closer and closer together, the number and sharpness of the peaks decrease, the spectrum smooths out, and the domain walls brought together have a

  18. Domain wall motion in synthetic Co2Si nanowires.

    PubMed

    Liu, Gang; Lin, Yung-Chen; Liao, Lei; Liu, Lixin; Chen, Yu; Liu, Yuan; Weiss, Nathan O; Zhou, Hailong; Huang, Yu; Duan, Xiangfeng

    2012-04-11

    We report the synthesis of single crystalline Co(2)Si nanowires and the electrical transport studies of single Co(2)Si nanowire devices at low temperature. The butterfly shaped magnetoresistance shows interesting ferromagnetic features, including negative magnetoresistance, hysteretic switch fields, and stepwise drops in magnetoresistance. The nonsmooth stepwise magnetoresistance response is attributed to magnetic domain wall pinning and depinning motion in the Co(2)Si nanowires probably at crystal or morphology defects. The temperature dependence of the domain wall depinning field is observed and described by a model based on thermally assisted domain wall depinning over a single energy barrier.

  19. Experimental Study on Current-Driven Domain Wall Motion

    NASA Astrophysics Data System (ADS)

    Ono, T.; Yamaguchi, A.; Tanigawa, H.; Yano, K.; Kasai, S.

    2006-06-01

    Current-driven domain wall (DW) motion for a well-defined single DW in a micro-fabricated magnetic wire with submicron width was investigated by real-space observation with magnetic force microscopy. Magnetic force microscopy visualizes that a single DW introduced in a wire is displaced back and forth by positive and negative pulsed-current, respectively. Effect of the Joule heating, reduction of the threshold current density by shape control, and magnetic ratchet effect are also presented.

  20. Unidirectional thermal effects in current-induced domain wall motion.

    PubMed

    Torrejon, J; Malinowski, G; Pelloux, M; Weil, R; Thiaville, A; Curiale, J; Lacour, D; Montaigne, F; Hehn, M

    2012-09-07

    We report experimental evidence of thermal effects on the displacement of vortex walls in NiFe nanostrips. With the use of nanosecond current pulses, a unidirectional motion of the magnetic domain walls towards the hotter part of the nanostrips is observed, in addition to current-induced domain wall motion. By tuning the heat dissipation in the samples and modeling the heat diffusion, we conclude that this unidirectional motion can only be explained by the presence of a temperature profile along the nanostrip. A quantitative analysis of the experiments shows that, on top of the classical thermodynamic pressure on the domain wall, another force, probably the magnonic spin Seebeck effect, is displacing the domain walls.

  1. Supercurrent enhancement in Bloch domain walls.

    PubMed

    Robinson, J W A; Chiodi, F; Egilmez, M; Halász, Gábor B; Blamire, M G

    2012-01-01

    Conventional spin-singlet Cooper pairs convert into spin-triplet pairs in ferromagnetic Josephson junctions in which the superconductor/ferromagnet interfaces (S/F) are magnetically inhomogeneous. Although much of the theoretical work describing this triplet proximity effect has considered ideal junctions with magnetic domain walls (DW) at the interfaces, in practice it is not easily possible to isolate a DW and propagate a supercurrent through it. The rare-earth magnet Gd can form a field-tuneable in-plane Bloch DW if grown between non-co-linearly aligned ferromagnets. Here we report supercurrents through magnetic Ni-Gd-Ni nanopillars: by field annealing at room temperature, we are able to modify the low temperature DW-state in Gd and this result has a striking effect on the junction supercurrent at 4.2 K. We argue that this result can only be explained in terms of the interconversion of triplet and singlet pairs, the efficiency of which depends on the magnetic helicity of the structure.

  2. Supercurrent enhancement in Bloch domain walls

    PubMed Central

    Robinson, J. W. A.; Chiodi, F.; Egilmez, M.; Halász, Gábor B.; Blamire, M. G.

    2012-01-01

    Conventional spin-singlet Cooper pairs convert into spin-triplet pairs in ferromagnetic Josephson junctions in which the superconductor/ferromagnet interfaces (S/F) are magnetically inhomogeneous. Although much of the theoretical work describing this triplet proximity effect has considered ideal junctions with magnetic domain walls (DW) at the interfaces, in practice it is not easily possible to isolate a DW and propagate a supercurrent through it. The rare-earth magnet Gd can form a field-tuneable in-plane Bloch DW if grown between non-co-linearly aligned ferromagnets. Here we report supercurrents through magnetic Ni-Gd-Ni nanopillars: by field annealing at room temperature, we are able to modify the low temperature DW-state in Gd and this result has a striking effect on the junction supercurrent at 4.2 K. We argue that this result can only be explained in terms of the interconversion of triplet and singlet pairs, the efficiency of which depends on the magnetic helicity of the structure. PMID:23019520

  3. Strain-induced magnetic domain wall control by voltage in hybrid piezoelectric BaTiO3 ferrimagnetic TbFe structures

    NASA Astrophysics Data System (ADS)

    Rousseau, Olivier; Weil, Raphael; Rohart, Stanislas; Mougin, Alexandra

    2016-03-01

    This paper reports on the voltage dependence of the magnetization reversal of a thin amorphous ferromagnetic TbFe film grown on a ferroelectric and piezoelectric BaTiO3 single crystal. Magneto-optical measurements, at macroscopic scale or in a microscope, demonstrate how the ferroelectric BaTiO3 polarisation history influences the properties of the perpendicularly magnetized TbFe film. Unpolarised and twinned regions are obtained when the sample is zero voltage cooled whereas flat and saturated regions are obtained when the sample is voltage cooled through the ferroelectric ordering temperature of the BaTiO3 crystal, as supported by atomic force microscopy experiments. The two steps involved in the TbFe magnetization reversal, namely nucleation and propagation of magnetic domain walls, depend on the polarisation history. Nucleation is associated to coupling through strains with the piezoelectric BaTiO3 crystal and propagation to pinning with the ferroelastic surface patterns visible in the BaTiO3 topography.

  4. Strain-induced magnetic domain wall control by voltage in hybrid piezoelectric BaTiO3 ferrimagnetic TbFe structures

    PubMed Central

    Rousseau, Olivier; Weil, Raphael; Rohart, Stanislas; Mougin, Alexandra

    2016-01-01

    This paper reports on the voltage dependence of the magnetization reversal of a thin amorphous ferromagnetic TbFe film grown on a ferroelectric and piezoelectric BaTiO3 single crystal. Magneto-optical measurements, at macroscopic scale or in a microscope, demonstrate how the ferroelectric BaTiO3 polarisation history influences the properties of the perpendicularly magnetized TbFe film. Unpolarised and twinned regions are obtained when the sample is zero voltage cooled whereas flat and saturated regions are obtained when the sample is voltage cooled through the ferroelectric ordering temperature of the BaTiO3 crystal, as supported by atomic force microscopy experiments. The two steps involved in the TbFe magnetization reversal, namely nucleation and propagation of magnetic domain walls, depend on the polarisation history. Nucleation is associated to coupling through strains with the piezoelectric BaTiO3 crystal and propagation to pinning with the ferroelastic surface patterns visible in the BaTiO3 topography. PMID:26987937

  5. Finite elements micromagnetic simulation of domain wall resonance

    NASA Astrophysics Data System (ADS)

    Ntallis, N.; Efthimiadis, K. G.

    2016-09-01

    In this work, the finite elements method is used to simulate, by micromagnetic modeling, the motion of a magnetic domain wall under the action of an oscillating external field. In the micromagnetic magnetization dynamics, a nonzero inertia tensor is used, resulting in a partial differential equation also containing the second time derivative of the magnetization. The model is investigated in all of its parameters, and it is validated by solving the NIST problem μMag#4. All the simulations were carried out on spherical particles of an uniaxial magnetocrystalline anisotropy, and they started with the nucleation and the growth of the magnetic domains. Under the influence of an oscillating external field, the susceptibility spectra are calculated for different magnetic parameters. For low damping values in the susceptibility spectra, beyond the contribution of the coherent oscillating domain wall, multiple resonances are also found.

  6. Domain walls and defects in ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Rojac, Tadej; Damjanovic, Dragan

    2017-10-01

    The results of recent studies of domain walls and their interaction with defects in BaTiO3, Pb(Zr,Ti)O3, and BiFeO3 are discussed. The studies reveal why donor- and acceptor-doped Pb(Zr,Ti)O3 behave differently, what is the role of stationary charged domain walls in enhanced properties of domain engineered BaTiO3 crystals, and give evidence of a large concentration of specific charged point defects within domain walls in BiFeO3 ceramics.

  7. Voltage-controlled domain wall traps in ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Bauer, Uwe; Emori, Satoru; Beach, Geoffrey S. D.

    2013-06-01

    Electrical control of magnetism has the potential to bring about revolutionary new spintronic devices, many of which rely on efficient manipulation of magnetic domain walls in ferromagnetic nanowires. Recently, it has been shown that voltage-induced charge accumulation at a metal-oxide interface can influence domain wall motion in ultrathin metallic ferromagnets, but the effects have been relatively modest and limited to the slow, thermally activated regime. Here we show that a voltage can generate non-volatile switching of magnetic properties at the nanoscale by modulating interfacial chemistry rather than charge density. Using a solid-state ionic conductor as a gate dielectric, we generate unprecedentedly strong voltage-controlled domain wall traps that function as non-volatile, electrically programmable and switchable pinning sites. Pinning strengths of at least 650 Oe can be readily achieved, enough to bring to a standstill domain walls travelling at speeds of at least ~20 m s-1. We exploit this new magneto-ionic effect to demonstrate a prototype non-volatile memory device in which voltage-controlled domain wall traps facilitate electrical bit selection in a magnetic nanowire register.

  8. Voltage-controlled domain wall traps in ferromagnetic nanowires.

    PubMed

    Bauer, Uwe; Emori, Satoru; Beach, Geoffrey S D

    2013-06-01

    Electrical control of magnetism has the potential to bring about revolutionary new spintronic devices, many of which rely on efficient manipulation of magnetic domain walls in ferromagnetic nanowires. Recently, it has been shown that voltage-induced charge accumulation at a metal-oxide interface can influence domain wall motion in ultrathin metallic ferromagnets, but the effects have been relatively modest and limited to the slow, thermally activated regime. Here we show that a voltage can generate non-volatile switching of magnetic properties at the nanoscale by modulating interfacial chemistry rather than charge density. Using a solid-state ionic conductor as a gate dielectric, we generate unprecedentedly strong voltage-controlled domain wall traps that function as non-volatile, electrically programmable and switchable pinning sites. Pinning strengths of at least 650 Oe can be readily achieved, enough to bring to a standstill domain walls travelling at speeds of at least ~20 m s(-1). We exploit this new magneto-ionic effect to demonstrate a prototype non-volatile memory device in which voltage-controlled domain wall traps facilitate electrical bit selection in a magnetic nanowire register.

  9. Domain wall order and motion in Mn3O4

    NASA Astrophysics Data System (ADS)

    Thaler, Alexander; Zakjevskii, Alexander; Nguyen, Brian; Gim, Yewon; Aczel, Adam; Debeer-Schmitt, Lisa; Cooper, S. Lance; MacDougall, Gregory

    Mn3O4 is an orbitally ordered, magnetically frustrated spinel with strong spin-lattice coupling, which exhibits a series of low temperature magnetic and structural transitions. Transverse field μSR has shown that ordered and disordered volumes coexist within this material, while MFM measurements have further shown that the magnetic domain walls themselves order in specific crystallographic directions, with a typical length scale of 100's of nm. In order to directly study these phenomena, we have performed small angle neutron scattering (SANS) measurements at both zero and applied magnetic field. We will present the results of these measurements and discuss what they show as far as the formation of domains, as well as the motion of the domain walls. We will also discuss the effects of internal disorder on the behavior of the material. This work was sponsored by the National Science Foundation, under Grant Number DMR-1455264.

  10. Enhanced controllability of domain-wall pinning by asymmetric control of domain-wall injection.

    PubMed

    Ahn, Sung-Min; Moon, Kyoung-Woong

    2013-03-15

    We investigate a control scheme for enhancing the controllability of domain-wall (DW) pinning on ferromagnetic devices using an interaction between magnetic charges distributed on a nanobar and at a notch, respectively. The scheme is realized at an artificial notch with a nanobar vertical to it on Permalloy nanowires with an asymmetrical pad. Injection fields for injecting the DWs from the asymmetrical pad to the nanowire show an asymmetrical dependence on the saturation angle for initializing the magnetization of the nanowire, and the injected DWs are pinned by the notch with the nanobar vertical to it. We have found that the landscape of the pinning potential energy experienced by the DWs depends on the magnetized direction of the nanobar and that its level is shifted by the injection field, leading to an increase or decrease in the depinning field with respect to the saturation angle. This is consistent with our estimation based on micromagnetic simulation.

  11. The formation and evolution of domain walls

    NASA Technical Reports Server (NTRS)

    Press, William H.; Ryden, Barbara S.; Spergel, David N.

    1991-01-01

    Domain walls are sheet-like defects produced when the low energy vacuum has isolated degenerate minima. The researchers' computer code follows the evolution of a scalar field, whose dynamics are determined by its Lagrangian density. The topology of the scalar field determines the evolution of the domain walls. This approach treats both wall dynamics and reconnection. The researchers investigated not only potentials that produce single domain walls, but also potentials that produce a network of walls and strings. These networks arise in axion models where the U(1) Peccei-Quinn symmetry is broken into Z sub N discrete symmetries. If N equals 1, the walls are bounded by strings and the network quickly disappears. For N greater than 1, the network of walls and strings behaved qualitatively just as the wall network shown in the figures given here. This both confirms the researchers' pessimistic view that domain walls cannot play an important role in the formation of large scale structure and implies that axion models with multiple minimum can be cosmologically disastrous.

  12. Imaging Domains In Magnetic Garnets By Use Of TSMFM

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.; Wu, Jiin-Chuan; Stadler, Henry L.; Rice, Paul

    1994-01-01

    Tunneling-stabilized magnetic-force microscopy (TSMFM) demonstrated to yield images of magnetic domains in low-coercivity magnetic garnets with perpendicular anisotropy. Ability to generate images of domain walls and minute vertical Bloch lines aids study of vertical-Bloch-line magnetic memory devices that contain garnets. TSMFM provides desired resolution because its resolution not limited by diffraction.

  13. Microwave background distortions from domain walls

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1990-01-01

    Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.

  14. Microwave background distortions from domain walls

    NASA Astrophysics Data System (ADS)

    Goetz, Guenter; Noetzold, Dirk

    1990-08-01

    Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.

  15. Microwave background distortions from domain walls.

    NASA Astrophysics Data System (ADS)

    Goetz, G.; Nötzold, D.

    1991-03-01

    Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large-scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. The authors find that the maximal redshift distortion for both spherical and planar walls is of the order πGσH0-1, where σ is the surface energy density and H0 the Hubble parameter. They also find that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e. the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor γ the redshift distortion is enhanced by γ3.

  16. Electric field induced domain-wall dynamics: Depinning and chirality switching

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Dusad, Ritika; Hoffman, Silas; Tserkovnyak, Yaroslav; Alzate, Juan G.; Amiri, Pedram Khalili; Wang, Kang L.

    2013-12-01

    We theoretically study the equilibrium and dynamic properties of nanoscale magnetic tunnel junctions (MTJs) and magnetic wires, in which an electric field controls the magnetic anisotropy through spin-orbit coupling. By performing micromagnetic simulations, we construct a rich phase diagram and find that, in particular, the equilibrium magnetic textures can be tuned between Néel and Bloch domain walls in an elliptical MTJ. Furthermore, we develop a phenomenological model of a quasi-one-dimensional domain wall confined by a parabolic potential and show that, near the Néel-to-Bloch-wall transition, a pulsed electric field induces precessional domain-wall motion which can be used to reverse the chirality of a Néel wall and even depin it. This domain-wall motion controlled by electric fields, in lieu of applied current, may provide a model for ultralow-power domain-wall memory and logic devices.

  17. Stable charged antiparallel domain walls in hyperferroelectrics

    NASA Astrophysics Data System (ADS)

    Liu, S.; Cohen, R. E.

    2017-06-01

    Charge-neutral 180° domain walls that separate domains of antiparallel polarization directions are common structural topological defects in ferroelectrics. In normal ferroelectrics, charged 180° domain walls running perpendicular to the polarization directions are highly energetically unfavorable because of the depolarization field and are difficult to stabilize. We explore both neutral and charged 180° domain walls in hyperferroelectrics, a class of proper ferroelectrics with persistent polarization in the presence of a depolarization field, using density functional theory. We obtain zero temperature equilibrium structures of head-to-head and tail-to-tail walls in recently discovered ABC-type hexagonal hyperferroelectrics. Charged domain walls can also be stabilized in canonical ferroelectrics represented by LiNbO3 without any dopants, defects or mechanical clamping. First-principles electronic structure calculations show that charged domain walls can reduce and even close the band gap of host materials and support quasi-two-dimensional electron(hole) gas with enhanced electrical conductivity.

  18. Epitaxial Engineering of Domain Walls and Distortions in Ferrite Heterostructures

    NASA Astrophysics Data System (ADS)

    Mundy, Julia

    The defining feature of ferroics is the ability of an external stimulus--electric field, magnetic field, or stress--to move domain walls. These topological defects and their motion enables many useful attributes, e.g., memories that can be reversibly written between stable states as well as enhanced conductivity, permittivity, permeability, and piezoelectricity. Although methods are known to drastically increase their density, the placement of domain walls with atomic precision has until now evaded control. Here we engineer the location of domain walls with monolayer precision and exploit this ability to create a novel multiferroic in which ferroelectricity enhances magnetism at all relevant length scales. Starting with hexagonal LuFeO3, a geometric ferroelectric with the greatest known planar rumpling, we introduce individual extra monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 within the LuFeO3 matrix, i.e., (LuFeO3)m /(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighboring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state and reduces the LuFe2O4 spin frustration. This increases the magnetic transition temperature significantly--to 281 K for the (LuFeO3)9 /(LuFe2O4)1 superlattice. Moreover, LuFeO3 can form charged ferroelectric domain walls, which we align to the LuFe2O4 bilayers with monolayer precision. Charge transfers to these domain walls to alleviate the otherwise electrostatically unstable polarization arrangement, further boosting the magnetic moment. Our results demonstrate the utility of combining ferroics at the atomic-layer level with attention to domain walls, geometric frustration and polarization doping to create multiferroics by design.

  19. Influence of frequency of the excitation magnetic field and material's electric conductivity on domain wall dynamics in ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Chávez-González, A. F.; Pérez-Benítez, J. A.; Espina-Hernández, J. H.; Grössinger, R.; Hallen, J. M.

    2016-03-01

    The present work analyzes the influence of electric conductivity on the Magnetic Barkhausen Noise (MBN) signal using a microscopic model which includes the influence of eddy currents. This model is also implemented to explain the dependence of MBN on the frequency of the applied magnetic field. The results presented in this work allow analyzing the influence of eddy currents on MBN signals for different values of the material's electric conductivity and for different frequencies of applied magnetic field. Additionally, the outcomes of this research can be used as a reference to differentiate the influence of eddy currents from that of second phase particles in the MBN signal, which has been reported in previous works.

  20. Transverse field-induced nucleation pad switching modes during domain wall injection

    SciTech Connect

    Bryan, M. T.; Fry, P. W.; Schrefl, T.; Gibbs, M. R. J.; Allwood, D. A.; Im, M.-Y.; Fischer, P.

    2010-03-12

    We have used magnetic transmission X-ray microscopy (M-TXM) to image in-field magnetization configurations of patterned Ni{sub 80}Fe{sub 20} domain wall 'injection pads' and attached planar nanowires. Comparison with micromagnetic simulations suggests that the evolution of magnetic domains in rectangular injection pads depends on the relative orientation of closure domains in the remanent state. The magnetization reversal pathway is also altered by the inclusion of transverse magnetic fields. These different modes explain previous results of domain wall injection into nanowires. Even more striking was the observation of domain walls injecting halfway across the width of wider (>400 nm wide) wires but over wire lengths of several micrometers. These extended Neel walls can interact with adjacent nanowires and cause a switching in the side of the wire undergoing reversal as the domain wall continues to expand.

  1. Acoustic emission, domain walls and hysteresis in YIG

    NASA Astrophysics Data System (ADS)

    Guyot, M.; Merceron, T.; Cagan, V.

    1987-02-01

    The acoustic emission (AE) is experimentally shown to vary along the hysteresis loop of YIG samples with the creation and/or annihilation of domain walls. The AE and the Barkhausen activities are in anticorrelation. AE and hysteresis losses are proportional, which could mean that AE is the fundamental step to convert magnetic energy into heat.

  2. Geometrical control of pure spin current induced domain wall depinning

    NASA Astrophysics Data System (ADS)

    Pfeiffer, A.; Reeve, R. M.; Voto, M.; Savero-Torres, W.; Richter, N.; Vila, L.; Attané, J. P.; Lopez-Diaz, L.; Kläui, Mathias

    2017-03-01

    We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this can be explained by the asymmetry of the pinning potential. By direct comparison of the calculated efficiencies for different external field and spin current directions, we are able to disentangle the different contributions from the spin transfer torque, Joule heating and the Oersted field. The observed high efficiency of the pure spin current induced spin transfer torque allows for a complete depinning of the domain wall at zero external field for a charge current density of 6\\centerdot {{10}11} A m-2, which is attributed to the optimal control of the position of the domain wall.

  3. On thick domain walls in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.

  4. Domain walls as probes of gravity

    SciTech Connect

    Dvali, Gia; Gabadadze, Gregory; Pujolas, Oriol; Rahman, Rakibur

    2007-06-15

    We show that domain walls are probes that enable one to distinguish large-distance modified gravity from general relativity (GR) at short distances. For example, low-tension domain walls are stealth in modified gravity, while they do produce global gravitational effects in GR. We demonstrate this by finding exact solutions for various domain walls in the DGP model. A wall with tension lower than the fundamental Planck scale does not inflate and has no gravitational effects on a 4D observer, since its 4D tension is completely screened by gravity itself. We argue that this feature remains valid in a generic class of models of infrared modified gravity. As a byproduct, we obtain exact solutions for supermassive codimension-2 branes.

  5. Critical domain-wall dynamics of model B.

    PubMed

    Dong, R H; Zheng, B; Zhou, N J

    2009-05-01

    With Monte Carlo methods, we simulate the critical domain-wall dynamics of model B, taking the two-dimensional Ising model as an example. In the macroscopic short-time regime, a dynamic scaling form is revealed. Due to the existence of the quasirandom walkers, the magnetization shows intrinsic dependence on the lattice size L . An exponent which governs the L dependence of the magnetization is measured to be sigma=0.243(8) .

  6. Domain-wall motion in random potential and hysteresis modeling

    SciTech Connect

    Pasquale, M.; Basso, V.; Bertotti, G.; Jiles, D.C.; Bi, Y.

    1998-06-01

    Two different approaches to hysteresis modeling are compared using a common ground based on energy relations, defined in terms of dissipated and stored energy. Using the Preisach model and assuming that magnetization is mainly due to domain-wall motion, one can derive the expression of magnetization along a major loop typical of the Jiles{endash}Atherton model and then extend its validity to cases where mean-field effects and reversible contributions are present. {copyright} {ital 1998 American Institute of Physics.}

  7. Realization of a Ferroelectric-Domain-Wall Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Santamaria, Jacobo; Sanchez-Santolino, G.; Tornos, J.; Hernandez-Martin, D.; Beltran, J. I.; Cabero, M.; Perez-Muñoz, A.; Sefrioui, Z.; Leon, C.; Varela, M.; Munuera, C.; Mompean, F.; Garcia-Hernandez, M.; Muñoz, M. C.; Pennycook, S. J.

    Incorporating ferroelectric domain walls as an active part of electronic devices holds the promise of interesting new functionalities. Here we form a ferroelectric BaTiO3 tunnel barrier just 4.4-nanometer thick, with ferromagnetic La0.7Sr0.3MnO3 electrodes, containing a head-to-head domain wall within its thickness. A confined electron gas is formed at the domain wall, stabilized by oxygen vacancies, which controls the tunneling transport of the magnetic tunnel junction. Resonant tunneling assisted by the discrete levels of the ferroelectric quantum well gives rise to strong quantum oscillations of the tunneling conductance. Our engineered, highly constrained, domain wall provides a major step forward towards the new concept ``The Wall is the Device'', exploiting the electronic properties of domain walls for ferroelectric tunnel barriers with new functionalities. Work at UCM supported by MINECO MAT2014-52405-C02-01 and ERC Starting Investigator Grant #239739 STEMOX. MCM acknowledges financial support from MICINN through grant MAT2012-38045-C04-04.

  8. Engineered magnetic domain textures in exchange bias bilayer systems

    SciTech Connect

    Gaul, Alexander; Holzinger, Dennis; Müglich, Nicolas David; Ehresmann, Arno; Hankemeier, Sebastian; Staeck, Philipp; Frömter, Robert; Oepen, Hans Peter

    2016-07-21

    A magnetic domain texture has been deterministically engineered in a topographically flat exchange-biased (EB) thin film system. The texture consists of long-range periodically arranged unit cells of four individual domains, characterized by individual anisotropies, individual geometry, and with non-collinear remanent magnetizations. The texture has been engineered by a sequence of light-ion bombardment induced magnetic patterning of the EB layer system. The magnetic texture's in-plane spatial magnetization distribution and the corresponding domain walls have been characterized by scanning electron microscopy with polarization analysis (SEMPA). The influence of magnetic stray fields emerging from neighboring domain walls and the influence of the different anisotropies of the adjacent domains on the Néel type domain wall core's magnetization rotation sense and widths were investigated. It is shown that the usual energy degeneracy of clockwise and counterclockwise rotating magnetization through the walls is revoked, suppressing Bloch lines along the domain wall. Estimates of the domain wall widths for different domain configurations based on material parameters determined by vibrating sample magnetometry were quantitatively compared to the SEMPA data.

  9. Engineered magnetic domain textures in exchange bias bilayer systems

    NASA Astrophysics Data System (ADS)

    Gaul, Alexander; Hankemeier, Sebastian; Holzinger, Dennis; Müglich, Nicolas David; Staeck, Philipp; Frömter, Robert; Oepen, Hans Peter; Ehresmann, Arno

    2016-07-01

    A magnetic domain texture has been deterministically engineered in a topographically flat exchange-biased (EB) thin film system. The texture consists of long-range periodically arranged unit cells of four individual domains, characterized by individual anisotropies, individual geometry, and with non-collinear remanent magnetizations. The texture has been engineered by a sequence of light-ion bombardment induced magnetic patterning of the EB layer system. The magnetic texture's in-plane spatial magnetization distribution and the corresponding domain walls have been characterized by scanning electron microscopy with polarization analysis (SEMPA). The influence of magnetic stray fields emerging from neighboring domain walls and the influence of the different anisotropies of the adjacent domains on the Néel type domain wall core's magnetization rotation sense and widths were investigated. It is shown that the usual energy degeneracy of clockwise and counterclockwise rotating magnetization through the walls is revoked, suppressing Bloch lines along the domain wall. Estimates of the domain wall widths for different domain configurations based on material parameters determined by vibrating sample magnetometry were quantitatively compared to the SEMPA data.

  10. Visualizing ferromagnetic domains in magnetic topological insulators

    DOE PAGES

    Wang, Wenbo; Gu, G. D.; Yang, Fang; ...

    2015-05-13

    We report a systematic study of ferromagnetic domains in both single-crystal and thin-film specimens of magnetic topological insulators Cr doped (Bi0.1Sb0.9)2Te3 using magnetic force microscopy (MFM). The temperature and field dependences of MFM and in situ resistance data are consistent with previous bulk transport and magnetic characterization. Bubble-like ferromagnetic domains were observed in both single crystals and thin films. Significantly, smaller domain size (~500 nm) with narrower domain wall (~150 – 300 nm) was observed in thin films of magnetic topological insulators, likely due to vertical confinement effect. As a result, these results suggest that thin films are more promisingmore » for visualization of chiral edge states.« less

  11. Light wave propagation through a dilaton-Maxwell domain wall

    NASA Astrophysics Data System (ADS)

    Morris, J. R.; Schulze-Halberg, A.

    2015-10-01

    We consider the propagation of electromagnetic waves through a dilaton-Maxwell domain wall of the type introduced by Gibbons and Wells [G. W. Gibbons and C. G. Wells, Classical and Quantum Gravity 11, 2499 (1994)]. It is found that if such a wall exists within our observable Universe, it would be absurdly thick, or else have a magnetic field in its core which is much stronger than observed intergalactic fields. We conclude that it is highly improbable that any such wall is physically realized.

  12. Domain wall assisted GMR head with spin-Hall effect

    SciTech Connect

    Arun, R.; Sabareesan, P.; Daniel, M.

    2016-05-06

    We theoretically study the dynamics of a field induced domain wall in the Py/Pt bi-layer structure in the presence of spin-Hall effect (SHE) by solving the Landau-Lifshitz-Gilbert (LLG) equation along with the adiabatic, nonadiabatic and SHE spin-transfer torques (STTs). It is observed that a weak magnetic field moves the domain wall with high velocity in the presence of SHE and the direction of the velocity is changed by changing the direction of the weak field. The numerical results show that the magnetization of the ferromagnetic layer can be reversed quickly through domain wall motion by changing the direction of a weak external field in the presence of SHE while the direction of current is fixed. The SHE reduces the magnetization reversal time of 1000 nm length strip by 14.7 ns. This study is extended to model a domain wall based GMR (Giant Magnetoresistance) read head with SHE.

  13. Domain Wall Motion in Synthetic Co2Si Nanowires

    PubMed Central

    Liu, Gang; Lin, Yung-Chen; Liao, Lei; Liu, Lixin; Chen, Yu; Liu, Yuan; Weiss, Nathan O.; Zhou, Hailong; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    We report the synthesis of single crystalline Co2Si nanowires, and electrical transport studies of single Co2Si nanowire devices at low temperature. The butterfly-shaped magnetoresistance shows interesting ferromagnetic features including negative magnetoresistance, hysteretic switch fields and step-wise drops in magnetoresistance. The non-smooth step-wise magnetoresistance response is attributed to magnetic domain wall pinning and de-pinning motion in the Co2Si nanowires probably at crystal defects or morphology defects. The temperature dependence of the domain wall de-pinning field is observed and is described by a model based on thermally assisted domain wall de-pinning over a single energy barrier. PMID:22469009

  14. Current-driven periodic domain wall creation in ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Sitte, Matthias; Everschor-Sitte, Karin; Valet, Thierry; Rodrigues, Davi R.; Sinova, Jairo; Abanov, Ar.

    2016-08-01

    We predict the electrical generation and injection of domain walls into a ferromagnetic nanowire without the need of an assisting magnetic field. Our analytical and numerical results show that above a critical current jc domain walls are injected into the nanowire with a period T ˜(j-jc) -1 /2 . Importantly, domain walls can be produced periodically even in a simple exchange ferromagnet with uniaxial anisotropy, without requiring any standard "twisting" interaction such as Dzyaloshinskii-Moriya or dipole-dipole interactions. We show analytically that this process and the period exponents are universal and do not depend on the peculiarities of the microscopic Hamiltonian. Finally we give a specific proposal for an experimental realization.

  15. Domain wall pinning in FeCoCu bamboo-like nanowires

    PubMed Central

    Berganza, Eider; Bran, Cristina; Jaafar, Miriam; Vázquez, Manuel; Asenjo, Agustina

    2016-01-01

    The three dimensional nature of cylindrical magnetic nanowires has opened a new way to control the domain configuration as well as the magnetization reversal process. The pinning effect of the periodic diameter modulations on the domain wall propagation in FeCoCu individual nanowires is determined by Magnetic Force Microscopy, MFM. A main bistable magnetic configuration is firstly concluded from MFM images characterized by the spin reversal between two nearly single domain states with opposite axial magnetization. Complementary micromagnetic simulations confirm a vortex mediated magnetization reversal process. A non-standard variable field MFM imaging procedure allows us to observe metastable magnetic states where the propagating domain wall is pinned at certain positions with enlarged diameter. Moreover, it is demonstrated that it is possible to control the position of the pinned domain walls by an external magnetic field. PMID:27406891

  16. Domain wall pinning in FeCoCu bamboo-like nanowires

    NASA Astrophysics Data System (ADS)

    Berganza, Eider; Bran, Cristina; Jaafar, Miriam; Vázquez, Manuel; Asenjo, Agustina

    2016-07-01

    The three dimensional nature of cylindrical magnetic nanowires has opened a new way to control the domain configuration as well as the magnetization reversal process. The pinning effect of the periodic diameter modulations on the domain wall propagation in FeCoCu individual nanowires is determined by Magnetic Force Microscopy, MFM. A main bistable magnetic configuration is firstly concluded from MFM images characterized by the spin reversal between two nearly single domain states with opposite axial magnetization. Complementary micromagnetic simulations confirm a vortex mediated magnetization reversal process. A non-standard variable field MFM imaging procedure allows us to observe metastable magnetic states where the propagating domain wall is pinned at certain positions with enlarged diameter. Moreover, it is demonstrated that it is possible to control the position of the pinned domain walls by an external magnetic field.

  17. Complex oxide ferroelectrics: Electrostatic doping by domain walls

    DOE PAGES

    Maksymovych, Petro

    2015-06-19

    Electrically conducting interfaces can form, rather unexpectedly, by breaking the translational symmetry of electrically insulating complex oxides. For example, a nanometre-thick heteroepitaxial interface between electronically insulating LaAlO3 and SrTiO3 supports a 2D electron gas1 with high mobility of >1,000 cm2 V-1 s-1 (ref. 2). Such interfaces can exhibit magnetism, superconductivity and phase transitions that may form the functional basis of future electronic devices2. A peculiar conducting interface can be created within a polar ferroelectric oxide by breaking the translational symmetry of the ferroelectric order parameter and creating a so-called ferroelectric domain wall (Fig. 1a,b). If the direction of atomic displacementsmore » changes at the wall in such a way as to create a discontinuity in the polarization component normal to the wall (Fig. 1a), the domain wall becomes electrostatically charged. It may then attract compensating mobile charges of opposite sign produced by dopant ionization, photoexcitation or other effects, thereby locally, electrostatically doping the host ferroelectric film. In contrast to conductive interfaces between epitaxially grown oxides, domain walls can be reversibly created, positioned and shaped by electric fields, enabling reconfigurable circuitry within the same volume of the material. Now, writing in Nature Nanotechnology, Arnaud Crassous and colleagues at EPFL and University of Geneva demonstrate control and stability of charged conducting domain walls in ferroelectric thin films of BiFeO3 down to the nanoscale.« less

  18. Synchronous precessional motion of multiple domain walls in a ferromagnetic nanowire by perpendicular field pulses.

    PubMed

    Kim, June-Seo; Mawass, Mohamad-Assaad; Bisig, André; Krüger, Benjamin; Reeve, Robert M; Schulz, Tomek; Büttner, Felix; Yoon, Jungbum; You, Chun-Yeol; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Swagten, Henk J M; Koopmans, Bert; Eisebitt, Stefan; Kläui, Mathias

    2014-03-24

    Magnetic storage and logic devices based on magnetic domain wall motion rely on the precise and synchronous displacement of multiple domain walls. The conventional approach using magnetic fields does not allow for the synchronous motion of multiple domains. As an alternative method, synchronous current-induced domain wall motion was studied, but the required high-current densities prevent widespread use in devices. Here we demonstrate a radically different approach: we use out-of-plane magnetic field pulses to move in-plane domains, thus combining field-induced magnetization dynamics with the ability to move neighbouring domain walls in the same direction. Micromagnetic simulations suggest that synchronous permanent displacement of multiple magnetic walls can be achieved by using transverse domain walls with identical chirality combined with regular pinning sites and an asymmetric pulse. By performing scanning transmission X-ray microscopy, we are able to experimentally demonstrate in-plane magnetized domain wall motion due to out-of-plane magnetic field pulses.

  19. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles.

    PubMed

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena; Schiøtz, Jakob; Kasama, Takeshi; Puntes, Victor F; Frandsen, Cathrine

    2015-09-29

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100-400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling.

  20. Standing gravitational waves from domain walls

    SciTech Connect

    Gogberashvili, Merab; Myrzakul, Shynaray; Singleton, Douglas

    2009-07-15

    We construct a plane symmetric, standing gravitational wave for a domain wall plus a massless scalar field. The scalar field can be associated with a fluid which has the properties of 'stiff' matter, i.e., matter in which the speed of sound equals the speed of light. Although domain walls are observationally ruled out in the present era, the solution has interesting features which might shed light on the character of exact nonlinear wave solutions to Einstein's equations. Additionally this solution may act as a template for higher dimensional 'brane-world' model standing waves.

  1. Models for Gapped Boundaries and Domain Walls

    NASA Astrophysics Data System (ADS)

    Kitaev, Alexei; Kong, Liang

    2012-07-01

    We define a class of lattice models for two-dimensional topological phases with boundary such that both the bulk and the boundary excitations are gapped. The bulk part is constructed using a unitary tensor category {C} as in the Levin-Wen model, whereas the boundary is associated with a module category over {C} . We also consider domain walls (or defect lines) between different bulk phases. A domain wall is transparent to bulk excitations if the corresponding unitary tensor categories are Morita equivalent. Defects of higher codimension will also be studied. In summary, we give a dictionary between physical ingredients of lattice models and tensor-categorical notions.

  2. Domain walls and ferroelectric reversal in corundum derivatives

    NASA Astrophysics Data System (ADS)

    Ye, Meng; Vanderbilt, David

    2017-01-01

    Domain walls are the topological defects that mediate polarization reversal in ferroelectrics, and they may exhibit quite different geometric and electronic structures compared to the bulk. Therefore, a detailed atomic-scale understanding of the static and dynamic properties of domain walls is of pressing interest. In this work, we use first-principles methods to study the structures of 180∘ domain walls, both in their relaxed state and along the ferroelectric reversal pathway, in ferroelectrics belonging to the family of corundum derivatives. Our calculations predict their orientation, formation energy, and migration energy and also identify important couplings between polarization, magnetization, and chirality at the domain walls. Finally, we point out a strong empirical correlation between the height of the domain-wall-mediated polarization reversal barrier and the local bonding environment of the mobile A cations as measured by bond-valence sums. Our results thus provide both theoretical and empirical guidance for future searches for ferroelectric candidates in materials of the corundum derivative family.

  3. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.

    2017-08-01

    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO3 by means of conductive—atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.

  4. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy.

    PubMed

    Domingo, N; Farokhipoor, S; Santiso, J; Noheda, B; Catalan, G

    2017-08-23

    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.

  5. Domain-wall oscillations studies by time-resolved soft x-ray mircorscopy

    SciTech Connect

    Bocklage, L.; Kruger, B.; Eiselt, R.; Bolte, M.; Fischer, P.; Meier, G.

    2009-03-25

    Fast magnetization dynamics in the micro- and nanometer regime are an interesting field of research. On these length scales magnetic structures can be designed to contain a single vortex or a single domain wall. Both size and speed of these patterns are of great interest in todays research for prospective non-volatile data storage devices. Especially the possibility to move domain-walls by spin-polarized current gained a lot of interest. Magnetic configurations can be imaged by soft X-ray magnetic microscopy with a spatial resolution down to 15 nm. By a stroboscopic pump and probe measurement scheme a temporal resolution below 100 ps is achieved. This provides the opportunity to directly image changes in magnetic domains and domain-wall motion. We image oscillations of a single domain wall in a confining potential in time steps of 200 ps by time resolved X-ray microscopy at the full-field soft X-ray transmission microscope at the Advanced Light Source in Berkeley (beamline 6.1.2). Domain walls are prepared in permalloy nanostructures with a restoring potential. The oscillation of a 180{sup o} domain wall is triggered by nanosecond current pulses. The spin-polarized current and the accompanying Oersted field can contribute to the motion of the wall. By analysis of the distinct domain-wall dynamics the dominant contribution is determined. In our geometry the motion of the wall is determined by the Oersted field although the spin-polarized current directly flows through the ferromagnetic structure. An analytical model of a rigid particle precisely describes the domain-wall motion. Oscillations are studied for different pulse length and amplitudes. From the observed oscillations we extract the driving force, the confining potential, and the domain-wall mass. Nonharmonic terms determine the motion of the wall. The influence of the nonharmonic potential is studied by looking at various phase spaces of the domain-wall motion.

  6. Current-driven vortex domain wall motion in wire-tube nanostructures

    SciTech Connect

    Espejo, A. P.; Vidal-Silva, N.; López-López, J. A.; Goerlitz, D.; Nielsch, K.; Escrig, J.

    2015-03-30

    We have investigated the current-driven domain wall motion in nanostructures comprised of a pair of nanotube and nanowire segments. Under certain values of external magnetic fields, it is possible to pin a vortex domain wall in the transition zone between the wire and tube segments. We explored the behavior of this domain wall under the action of an electron flow applied in the opposite direction to the magnetic field. Thus, for a fixed magnetic field, it is possible to release a domain wall pinned simply by increasing the intensity of the current density, or conversely, for a fixed current density, it is possible to release the domain wall simply decreasing the magnetic external field. When the domain wall remains pinned due to the competition between the current density and the magnetic external field, it exhibits a oscillation frequency close to 8 GHz. The amplitude of the oscillations increases with the current density and decreases over time. On the other hand, when the domain wall is released and propagated through the tube segment, this shows the standard separation between a steady and a precessional regime. The ability to pin and release a domain wall by varying the geometric parameters, the current density, or the magnetic field transforms these wire-tube nanostructures in an interesting alternative as an on/off switch nano-transistor.

  7. Domain walls and their experimental signatures in s+is superconductors.

    PubMed

    Garaud, Julien; Babaev, Egor

    2014-01-10

    Arguments were recently advanced that hole-doped Ba(1-x)K(x)Fe2As2 exhibits the s+is state at certain doping. Spontaneous breaking of time-reversal symmetry in the s+is state dictates that it possess domain wall excitations. Here, we discuss what are the experimentally detectable signatures of domain walls in the s+is state. We find that in this state the domain walls can have a dipolelike magnetic signature (in contrast to the uniform magnetic signature of domain walls p+ip superconductors). We propose experiments where quench-induced domain walls can be stabilized by geometric barriers and observed via their magnetic signature or their influence on the magnetization process, thereby providing an experimental tool to confirm the s+is state.

  8. Textural domain walls in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Mizushima, Takeshi

    Owing to the richness of symmetry, the superfluid 3He serves as a rich repository of topological quantum phenomena. This includes the emergence of surface Majorana fermions and their quantum mass acquisition at the topological critical point. Furthermore, the marriage of the prototype topological superfluid with nanofabrication techniques brings about a rich variety of spontaneous symmetry breaking, such as the formation of the stripe order and nontrivial domain walls. In this work, we examine the possible formation of textural domain walls in the superfluid 3He-B confined to a thin slab with a sub-micron thickness. When an applied magnetic field is much higher than the dipolar field, two nearly degenerate ground states appear, which are characterized by the Ising order associated with the spontaneous breaking of a magnetic order-two symmetry, lcirc;z = + 1 and - 1 . We here discuss the structure of the textural domain wall formed by the spatial modulation of the Ising order, such as low-lying quasiparticle excitations and spontaneous spin current. We also report bosonic modes bound to the textural domain wall.

  9. The dynamics of domain walls and strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth; Haws, David; Garfinkle, David

    1989-01-01

    The leading order finite-width corrections to the equation of motion describing the motion of a domain wall are derived. The regime in which this equation of motion is invalid is discussed. Spherically and cylindrically symmetric solutions to this equation of motion are found. A misconception that has arisen in recent years regarding the rigidity (or otherwise) of cosmic strings is also clarified.

  10. Domain walls in finite-width nanowires with interfacial Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    DeJong, M. D.; Livesey, K. L.

    2017-02-01

    It is widely known that the interfacial Dzyaloshinskii-Moriya interaction (DMI) may stabilize Néel walls rather than Bloch walls in magnetic thin films. When the DMI is weak, it results in a "tilted" Bloch wall. However, for most applications, domain walls are in nanowires rather than thin films. Here we present a semianalytic two-parameter calculation for the static domain wall in a nanowire of finite width and thickness, with DMI. The DMI strength that is needed to force a Néel wall is smaller in nanowires than in films due to demagnetizing energy. Even nanowires that are hundreds of nanometers wide may have different domain wall solutions than thin films and so their finite size must be considered. The impact of this result on current experiments is briefly discussed. We extend the model to show that applying a weak magnetic field allows the domain wall type to be tuned.

  11. Separated matter and antimatter domains with vanishing domain walls

    SciTech Connect

    Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S.; Tkachev, I.I. E-mail: sgodunov@itep.ru E-mail: tkachev@ms2.inr.ac.ru

    2015-10-01

    We present a model of spontaneous (or dynamical) C and CP violation where it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP) violation existed only in the early universe and later it disappeared with the only trace of generated baryonic and/or antibaryonic domains. So the problem of domain walls in this model does not exist. These features are achieved through a postulated form of interaction between inflaton and a new scalar field, realizing short time C(CP) violation.

  12. Domain-wall guided nucleation of superconductivity in hybrid ferromagnet-superconductor-ferromagnet layered structures.

    PubMed

    Gillijns, W; Aladyshkin, A Yu; Lange, M; Van Bael, M J; Moshchalkov, V V

    2005-11-25

    Domain-wall superconductivity is studied in a superconducting Nb film placed between two ferromagnetic Co/Pd multilayers with perpendicular magnetization. The parameters of top and bottom ferromagnetic films are chosen to provide different coercive fields, so that the magnetic domain structure of the ferromagnets can be selectively controlled. From the dependence of the critical temperature Tc on the applied magnetic field H, we have found evidence for domain-wall superconductivity in this three-layered F/S/F structure for different magnetic domain patterns. The phase boundary, calculated numerically for this structure from the linearized Ginzburg-Landau equation, is in good agreement with the experimental data.

  13. Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls

    PubMed Central

    Pfau, B.; Schaffert, S.; Müller, L.; Gutt, C.; Al-Shemmary, A.; Büttner, F.; Delaunay, R.; Düsterer, S.; Flewett, S.; Frömter, R.; Geilhufe, J.; Guehrs, E.; Günther, C.M.; Hawaldar, R.; Hille, M.; Jaouen, N.; Kobs, A.; Li, K.; Mohanty, J.; Redlin, H.; Schlotter, W.F.; Stickler, D.; Treusch, R.; Vodungbo, B.; Kläui, M.; Oepen, H.P.; Lüning, J.; Grübel, G.; Eisebitt, S.

    2012-01-01

    During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use femtosecond X-ray pulses from a free-electron laser to study thin film samples with magnetic domain patterns. We observe an infrared-pump-induced change of the spin structure within the domain walls on the sub-picosecond timescale. This domain-topography-dependent contribution connects the intrinsic demagnetization process in each domain with spin-transport processes across the domain walls, demonstrating the importance of spin-dependent electron transport between differently magnetized regions as an ultrafast demagnetization channel. This pathway exists independent from structural inhomogeneities such as chemical interfaces, and gives rise to an ultrafast spatially varying response to optical pump pulses. PMID:23033076

  14. Improper ferroelectricity at antiferromagnetic domain walls of perovskite oxides

    NASA Astrophysics Data System (ADS)

    Yang, Yali; Xiang, Hongjun; Zhao, Hongjian; Stroppa, Alessandro; Zhang, Jincang; Cao, Shixun; Íñiguez, Jorge; Bellaiche, L.; Ren, Wei

    2017-09-01

    First-principles calculations are performed on magnetic multidomain structures in the SmFe O3 rare-earth orthoferrite compound. We focus on the magnetic symmetry breaking at (001)-oriented antiphase domain walls, treating magnetism in the simplest (collinear) approximation without any relativistic (spin-orbit coupling) effects. We found that the number of Fe O2 layers inside the domains determines the electrical nature of the whole system: multidomains with odd number of layers are paraelectric, while multidomains with even number of layers possess an electric polarization aligned along b axis and a resulting multiferroic P m c 21 ground state. Our ab initio data and model for ferroelectricity induced by spin order reveal that this polarization is of the improper type and originates from an exchange striction mechanism that drives a polar displacement of the oxygen ions located at the magnetic domain walls. Additional calculations ratify that this effect is general among magnetic perovskites with an orthorhombic SmFe O3-like structure.

  15. Analysis of ultra-narrow ferromagnetic domain walls

    SciTech Connect

    Jenkins, Catherine; Paul, David

    2012-01-10

    New materials with high magnetic anisotropy will have domains separated by ultra-narrow ferromagnetic walls with widths on the order of a few unit cells, approaching the limit where the elastic continuum approximation often used in micromagnetic simulations is accurate. The limits of this approximation are explored, and the static and dynamic interactions with intrinsic crystalline defects and external driving elds are modeled. The results developed here will be important when considering the stability of ultra-high-density storage media.

  16. Experimental observation of the interaction of propagating spin waves with Néel domain walls in a Landau domain structure

    NASA Astrophysics Data System (ADS)

    Pirro, P.; Koyama, T.; Brächer, T.; Sebastian, T.; Leven, B.; Hillebrands, B.

    2015-06-01

    The interaction of propagating dipolar spin waves with magnetic domain walls is investigated in square-shaped microstructures patterned from the Heusler compound Co2Mn0.6Fe0.4Si. Using magnetic force microscopy, the reversible preparation of a Landau state with four magnetic domains separated by Néel domain walls is confirmed. A local spin-wave excitation using a microstructured antenna is realized in one of the domains. It is shown by Brillouin light scattering microscopy that the domain structure in the remanence state has a strong influence on the spin-wave excitation and propagation. The domain walls strongly reflect the spin waves and can be used as spin-wave reflectors. A comparison with micromagnetic simulations shows that the strong reflection is due to the long-range dipolar interaction which has important implications for the use of these spin waves for exerting an all-magnonic spin-transfer torque.

  17. Scaling properties of multitension domain wall networks

    NASA Astrophysics Data System (ADS)

    Oliveira, M. F.; Martins, C. J. A. P.

    2015-02-01

    We study the asymptotic scaling properties of domain wall networks with three different tensions in various cosmological epochs. We discuss the conditions under which a scale-invariant evolution of the network (which is well established for simpler walls) still applies and also consider the limiting case where defects are locally planar and the curvature is concentrated in the junctions. We present detailed quantitative predictions for scaling densities in various contexts, which should be testable by means of future high-resolution numerical simulations.

  18. Antiferromagnetic Domain Wall Motion Driven by Spin-Orbit Torques.

    PubMed

    Shiino, Takayuki; Oh, Se-Hyeok; Haney, Paul M; Lee, Seo-Won; Go, Gyungchoon; Park, Byong-Guk; Lee, Kyung-Jin

    2016-08-19

    We theoretically investigate the dynamics of antiferromagnetic domain walls driven by spin-orbit torques in antiferromagnet-heavy-metal bilayers. We show that spin-orbit torques drive antiferromagnetic domain walls much faster than ferromagnetic domain walls. As the domain wall velocity approaches the maximum spin-wave group velocity, the domain wall undergoes Lorentz contraction and emits spin waves in the terahertz frequency range. The interplay between spin-orbit torques and the relativistic dynamics of antiferromagnetic domain walls leads to the efficient manipulation of antiferromagnetic spin textures and paves the way for the generation of high frequency signals from antiferromagnets.

  19. Antiferromagnetic domain wall motion driven by spin-orbit torques

    PubMed Central

    Shiino, Takayuki; Oh, Se-Hyeok; Haney, Paul M.; Lee, Seo-Won; Go, Gyungchoon; Park, Byong-Guk; Lee, Kyung-Jin

    2016-01-01

    We theoretically investigate dynamics of antiferromagnetic domain walls driven by spin-orbit torques in antiferromagnet/heavy metal bilayers. We show that spin-orbit torques drive antiferromagnetic domain walls much faster than ferromagnetic domain walls. As the domain wall velocity approaches the maximum spin-wave group velocity, the domain wall undergoes Lorentz contraction and emits spin-waves in the terahertz frequency range. The interplay between spin-orbit torques and the relativistic dynamics of antiferromagnetic domain walls leads to the efficient manipulation of antiferromagnetic spin textures and paves the way for the generation of high frequency signals from antiferromagnets. PMID:27588878

  20. One-dimensional domain walls in thin ferromagnetic films with fourfold anisotropy

    NASA Astrophysics Data System (ADS)

    Lund, Ross G.; Muratov, Cyrill B.

    2016-06-01

    We study the properties of domain walls and domain patterns in ultrathin epitaxial magnetic films with two orthogonal in-plane easy axes, which we call fourfold materials. In these materials, the magnetization vector is constrained to lie entirely in the film plane and has four preferred directions dictated by the easy axes. We prove the existence of {{90}\\circ} and {{180}\\circ} domain walls in these materials as minimizers of a nonlocal one-dimensional energy functional. Further, we investigate numerically the role of the considered domain wall solutions for pattern formation in a rectangular sample.

  1. Subatomic movements of a domain wall in the Peierls potential

    NASA Astrophysics Data System (ADS)

    Novoselov, K. S.; Geim, A. K.; Dubonos, S. V.; Hill, E. W.; Grigorieva, I. V.

    2003-12-01

    The discrete nature of crystal lattices plays a role in virtually every material property. But it is only when the size of entities hosted by a crystal becomes comparable to the lattice period-as occurs for dislocations, vortices in superconductors and domain walls-that this discreteness is manifest explicitly. The associated phenomena are usually described in terms of a background Peierls `atomic washboard' energy potential, which was first introduced for the case of dislocation motion in the 1940s. This concept has subsequently been invoked in many situations to describe certain features in the bulk behaviour of materials, but has to date eluded direct detection and experimental scrutiny at a microscopic level. Here we report observations of the motion of a single magnetic domain wall at the scale of the individual peaks and troughs of the atomic energy landscape. Our experiments reveal that domain walls can become trapped between crystalline planes, and that they propagate by distinct jumps that match the lattice periodicity. The jumps between valleys are found to involve unusual dynamics that shed light on the microscopic processes underlying domain-wall propagation. Such observations offer a means for probing experimentally the physics of topological defects in discrete lattices-a field rich in phenomena that have been subject to extensive theoretical study.

  2. Subatomic movements of a domain wall in the Peierls potential.

    PubMed

    Novoselov, K S; Geim, A K; Dubonos, S V; Hill, E W; Grigorieva, I V

    2003-12-18

    The discrete nature of crystal lattices plays a role in virtually every material property. But it is only when the size of entities hosted by a crystal becomes comparable to the lattice period--as occurs for dislocations, vortices in superconductors and domain walls--that this discreteness is manifest explicitly. The associated phenomena are usually described in terms of a background Peierls 'atomic washboard' energy potential, which was first introduced for the case of dislocation motion in the 1940s. This concept has subsequently been invoked in many situations to describe certain features in the bulk behaviour of materials, but has to date eluded direct detection and experimental scrutiny at a microscopic level. Here we report observations of the motion of a single magnetic domain wall at the scale of the individual peaks and troughs of the atomic energy landscape. Our experiments reveal that domain walls can become trapped between crystalline planes, and that they propagate by distinct jumps that match the lattice periodicity. The jumps between valleys are found to involve unusual dynamics that shed light on the microscopic processes underlying domain-wall propagation. Such observations offer a means for probing experimentally the physics of topological defects in discrete lattices--a field rich in phenomena that have been subject to extensive theoretical study.

  3. Domain walls in the quantum transverse Ising model

    NASA Astrophysics Data System (ADS)

    Henkel, Malte; Harris, A. Brooks; Cieplak, Marek

    1995-08-01

    We discuss several problems concerning domain walls in the spin-S Ising model at zero temeprature in a magnetic field, H/(2S), applied in the x direction. Some results are also given for the planar (y-z) model in a transverse field. We treat the quantum problem in one dimension by perturbation theory at small H and numerically over a large range of H. We obtain the spin-density profile by fixing the spins at opposite ends of the chain to have opposite signs of Sz. One dimensional is special in that there the quantum width of the wall is proportional to the size L of the system. We also study the quantitative features of the ``particle'' band which extends up to energies of order H above the ground state. Except for the planar limit, this particle band is well separated from excitations having energy J/S involving creation of more walls. At large S this particle band develops energy gaps and the lowest subband has tunnel splittings of order H21-2S. This scale of of energy gives rise to anomalous scaling with respect to (a) finite size, (b) temperature, or (c) random potentials. The intrinsic width of the domain wall and the pinning energy are also defined and calculated in certain limiting cases. The general conclusion is that quantum effects prevent the wall from being sharp and in higher dimension would prevent sudden excursions in the configuration of the wall.

  4. Domain wall motion in ferroelectrics: Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Shur, V.; Rumyantsev, E.; Kozhevnikov, V.; Nikolaeva, E.; Shishkin, E.

    2002-03-01

    The switching current noise has been recorded during polarization reversal in single-crystalline gadolinium molybdate (GMO) and lithium tantalate (LT). Analysis of Barkhausen noise (BN) data allows to classify the noise types by determination of the critical indexes and fractal dimensions. BN is manifested as the short pulses during the polarization reversal. We have analyzed the BN data recorded in GMO and LT with various types of controlled domain structure. The data treatment in terms of probability distribution of duration, area and energy of individual pulses reveals the critical behavior typical for the fractal records in time. We used the Fourier transform and Hurst's rescaled range analysis for obtaining the Hurst factor, fractal dimension and classifying the noise types. We investigated by computer simulation the mechanism of sideways motion of 180O domain wall by nucleation at the wall taking into account the nuclei-nuclei interaction. It was shown that the moving domain walls display the fractal shape and their motion is accompanied by Flicker noise, which is in accord with experimental data. The research was made possible in part by Programs "Basic Research in Russian Universities" and "Priority Research in High School. Electronics", by Grant No. 01-02-17443 of RFBR, by Award No.REC-005 of CRDF.

  5. Domain walls in ω-phase transformations

    NASA Astrophysics Data System (ADS)

    Sanati, Mahdi; Saxena, Avadh

    1998-11-01

    The β-phase (body-centered cubic: b.c.c.) to ω-phase transformation in certain elements (e.g. Zr) and alloys (e.g. ZrNb) is induced either by quenching or application of pressure. The ω-phase is a metastable state and usually coexists with the β-matrix in the form of small particles. To study the formation of domain walls in these materials we have extended the Landau model of Cook for the ω-phase transition by including a spatial gradient (Ginzburg) term of the scalar order parameter. In general, the Landau free energy is an asymmetric double-well potential. From the variational derivative of the total free energy we obtain a static equilibrium condition. By solving this equation for different physical parameters and boundary conditions, we obtained different quasi-one-dimensional soliton-like solutions. These solutions correspond to three different types of domain walls between the ω-phase and the β-matrix. In addition, we obtained soliton lattice (domain wall array) solutions, calculated their formation energy and the asymptotic interaction between the solitons.

  6. Domain wall displacement by remote spin-current injection

    SciTech Connect

    Skirdkov, P. N.; Zvezdin, K. A.; Belanovsky, A. D.; Zvezdin, A. K.; Grollier, J.; Cros, V.

    2014-06-16

    We demonstrate numerically the ability to displace a magnetic domain wall (DW) by remote spin current injection. We consider a long and narrow magnetic nanostripe with a single DW. The spin-polarized current is injected perpendicularly to the film plane through a small nanocontact which is located at certain distance from the DW initial position. We show that the DW motion can be initiated not only by conventional spin-transfer torque but also by indirect spin-torque, created by remote spin-current injection and then transferred to the DW by the exchange-spring mechanism. An analytical description of this effect is proposed.

  7. Domain-Wall Resistance in Ferromagnetic (Ga,Mn)As

    NASA Astrophysics Data System (ADS)

    Chiba, D.; Yamanouchi, M.; Matsukura, F.; Dietl, T.; Ohno, H.

    2006-03-01

    A series of microstructures designed to pin domain walls (DWs) in (Ga,Mn)As with perpendicular magnetic anisotropy has been employed to determine extrinsic and intrinsic contributions to DW resistance. The former is explained quantitatively as resulting from a polarity change in the Hall electric field at DW. The latter is 1 order of magnitude greater than a term brought about by anisotropic magnetoresistance and is shown to be consistent with disorder-induced mistracking of the carrier spins subject to spatially varying magnetization.

  8. Quantum properties of charged ferroelectric domain walls

    NASA Astrophysics Data System (ADS)

    Sturman, B.; Podivilov, E.; Stepanov, M.; Tagantsev, A.; Setter, N.

    2015-12-01

    We consider the properties of charged domain walls in ferroelectrics as a quantum problem. This includes determination of self-consistent attracting 1D potential for compensating charge carriers, the number and positions of discrete energy levels in this potential, dependencies on the ferroelectric characteristics, as well as the spatial structure and formation energy of the wall. Our description is based on the Hartree and Thomas-Fermi methods and Landau theory for the ferroelectric transitions. Changeover from a few to many quantum levels (with the electron binding energies ˜1 eV) is controlled by a single characteristic parameter. The quantum models well describe the core of the wall, whose width is typically ˜10 nm. Additionally, the walls possess pronounced long-range tails which are due to trap recharging. For the trap concentration Nt=(1017-1018) cm-3 , the tail length ℓ is of the μ m scale. On the distances much larger than ℓ the walls are electrically uncoupled from each other and the crystal faces.

  9. High domain wall velocities via spin transfer torque using vertical current injection.

    PubMed

    Metaxas, Peter J; Sampaio, Joao; Chanthbouala, André; Matsumoto, Rie; Anane, Abdelmadjid; Fert, Albert; Zvezdin, Konstantin A; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2013-01-01

    Domain walls, nanoscale transition regions separating oppositely oriented ferromagnetic domains, have significant promise for use in spintronic devices for data storage and memristive applications. The state of these devices is related to the wall position and thus rapid operation will require a controllable onset of domain wall motion and high speed wall displacement. These processes are traditionally driven by spin transfer torque due to lateral injection of spin polarized current through a ferromagnetic nanostrip. However, this geometry is often hampered by low maximum wall velocities and/or a need for prohibitively high current densities. Here, using time-resolved magnetotransport measurements, we show that vertical injection of spin currents through a magnetic tunnel junction can drive domain walls over hundreds of nanometers at ~500 m/s using current densities on the order of 6 MA/cm(2). Moreover, these measurements provide information about the stochastic and deterministic aspects of current driven domain wall mediated switching.

  10. High domain wall velocities via spin transfer torque using vertical current injection

    PubMed Central

    Metaxas, Peter J.; Sampaio, Joao; Chanthbouala, André; Matsumoto, Rie; Anane, Abdelmadjid; Fert, Albert; Zvezdin, Konstantin A.; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2013-01-01

    Domain walls, nanoscale transition regions separating oppositely oriented ferromagnetic domains, have significant promise for use in spintronic devices for data storage and memristive applications. The state of these devices is related to the wall position and thus rapid operation will require a controllable onset of domain wall motion and high speed wall displacement. These processes are traditionally driven by spin transfer torque due to lateral injection of spin polarized current through a ferromagnetic nanostrip. However, this geometry is often hampered by low maximum wall velocities and/or a need for prohibitively high current densities. Here, using time-resolved magnetotransport measurements, we show that vertical injection of spin currents through a magnetic tunnel junction can drive domain walls over hundreds of nanometers at ~500 m/s using current densities on the order of 6 MA/cm2. Moreover, these measurements provide information about the stochastic and deterministic aspects of current driven domain wall mediated switching. PMID:23670402

  11. Indirect control of antiferromagnetic domain walls with spin current.

    PubMed

    Wieser, R; Vedmedenko, E Y; Wiesendanger, R

    2011-02-11

    The indirect controlled displacement of an antiferromagnetic domain wall by a spin current is studied by Landau-Lifshitz-Gilbert spin dynamics. The antiferromagnetic domain wall can be shifted both by a spin-polarized tunnel current of a scanning tunneling microscope or by a current driven ferromagnetic domain wall in an exchange coupled antiferromagnetic-ferromagnetic layer system. The indirect control of antiferromagnetic domain walls opens up a new and promising direction for future spin device applications based on antiferromagnetic materials.

  12. Complex oxide ferroelectrics: Electrostatic doping by domain walls

    SciTech Connect

    Maksymovych, Petro

    2015-06-19

    Electrically conducting interfaces can form, rather unexpectedly, by breaking the translational symmetry of electrically insulating complex oxides. For example, a nanometre-thick heteroepitaxial interface between electronically insulating LaAlO3 and SrTiO3 supports a 2D electron gas1 with high mobility of >1,000 cm2 V-1 s-1 (ref. 2). Such interfaces can exhibit magnetism, superconductivity and phase transitions that may form the functional basis of future electronic devices2. A peculiar conducting interface can be created within a polar ferroelectric oxide by breaking the translational symmetry of the ferroelectric order parameter and creating a so-called ferroelectric domain wall (Fig. 1a,b). If the direction of atomic displacements changes at the wall in such a way as to create a discontinuity in the polarization component normal to the wall (Fig. 1a), the domain wall becomes electrostatically charged. It may then attract compensating mobile charges of opposite sign produced by dopant ionization, photoexcitation or other effects, thereby locally, electrostatically doping the host ferroelectric film. In contrast to conductive interfaces between epitaxially grown oxides, domain walls can be reversibly created, positioned and shaped by electric fields, enabling reconfigurable circuitry within the same volume of the material. Now, writing in Nature Nanotechnology, Arnaud Crassous and colleagues at EPFL and University of Geneva demonstrate control and stability of charged conducting domain walls in ferroelectric thin films of BiFeO3 down to the nanoscale.

  13. The profile of the domain walls in amorphous glass-covered microwires

    NASA Astrophysics Data System (ADS)

    Beck, F.; Rigue, J. N.; Carara, M.

    2017-08-01

    We have studied the domain wall dynamics in Joule-annealed amorphous glass-covered microwires with positive magnetostriction in the presence of an electric current, in order to evaluate the profile and shape of the moving domain wall. Such microwires are known to present magnetic bi-stability when axially magnetized. The single domain wall dynamics was evaluated under different conditions, under an axially applied stress and an electric current. We have observed the well known increasing of the domain wall damping with the applied stress due to the increase in the magnetoelastic anisotropy and, when the current is applied, depending on the current intensity and direction, a modification on the axial domain wall damping. When the orthogonal motion of the domain wall is considered, we have observed that the associated velocity present a smaller dependence on the applied current intensity. It was observed a modification on both the domain wall shape and length. In a general way, the domain wall evolves from a bell shape to a parabolic shape as the current intensity is increased. The results were explained in terms of the change in the magnetic energy promoted by the additional Oersted field.

  14. Deterministic Domain Wall Motion Orthogonal To Current Flow Due To Spin Orbit Torque

    PubMed Central

    Bhowmik, Debanjan; Nowakowski, Mark E.; You, Long; Lee, OukJae; Keating, David; Wong, Mark; Bokor, Jeffrey; Salahuddin, Sayeef

    2015-01-01

    Spin-polarized electrons can move a ferromagnetic domain wall through the transfer of spin angular momentum when current flows in a magnetic nanowire. Such current induced control of a domain wall is of significant interest due to its potential application for low power ultra high-density data storage. In previous reports, it has been observed that the motion of the domain wall always happens parallel to the current flow – either in the same or opposite direction depending on the specific nature of the interaction. In contrast, here we demonstrate deterministic control of a ferromagnetic domain wall orthogonal to current flow by exploiting the spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO heterostructure in presence of an in-plane magnetic field. Reversing the polarity of either the current flow or the in-plane field is found to reverse the direction of the domain wall motion. Notably, such orthogonal motion with respect to current flow is not possible from traditional spin transfer torque driven domain wall propagation even in presence of an external magnetic field. Therefore the domain wall motion happens purely due to spin orbit torque. These results represent a completely new degree of freedom in current induced control of a ferromagnetic domain wall. PMID:26139349

  15. Electric-field control of domain wall nucleation and pinning in a metallic ferromagnet

    NASA Astrophysics Data System (ADS)

    Bernand-Mantel, A.; Herrera-Diez, L.; Ranno, L.; Pizzini, S.; Vogel, J.; Givord, D.; Auffret, S.; Boulle, O.; Miron, I. M.; Gaudin, G.

    2013-03-01

    The electric (E)-field control of magnetic properties opens the prospects of an alternative to magnetic field or electric current activation to control magnetization. Multilayers with perpendicular magnetic anisotropy have proven to be particularly sensitive to the influence of an E-field due to the interfacial origin of their anisotropy. In these systems, E-field effects have been recently applied to assist magnetization switching and control domain wall (DW) velocity. Here we report on two new applications of the E-field in a similar material: controlling domain wall nucleation and stopping DW propagation at the edge of the electrode.

  16. Antiferromagnetic domain wall as spin wave polarizer and retarder.

    PubMed

    Lan, Jin; Yu, Weichao; Xiao, Jiang

    2017-08-02

    As a collective quasiparticle excitation of the magnetic order in magnetic materials, spin wave, or magnon when quantized, can propagate in both conducting and insulating materials. Like the manipulation of its optical counterpart, the ability to manipulate spin wave polarization is not only important but also fundamental for magnonics. With only one type of magnetic lattice, ferromagnets can only accommodate the right-handed circularly polarized spin wave modes, which leaves no freedom for polarization manipulation. In contrast, antiferromagnets, with two opposite magnetic sublattices, have both left and right-circular polarizations, and all linear and elliptical polarizations. Here we demonstrate theoretically and confirm by micromagnetic simulations that, in the presence of Dzyaloshinskii-Moriya interaction, an antiferromagnetic domain wall acts naturally as a spin wave polarizer or a spin wave retarder (waveplate). Our findings provide extremely simple yet flexible routes toward magnonic information processing by harnessing the polarization degree of freedom of spin wave.Spin waves are promising candidates as carriers for energy-efficient information processing, but they have not yet been fully explored application wise. Here the authors theoretically demonstrate that antiferromagnetic domain walls are naturally spin wave polarizers and retarders, two key components of magnonic devices.

  17. Reproducible domain wall pinning by linear non-topographic features in a ferromagnetic nanowire

    NASA Astrophysics Data System (ADS)

    Basith, M. A.; McVitie, S.; McGrouther, D.; Chapman, J. N.

    2012-06-01

    We demonstrate that for multilayered magnetic nanowires, where the thickness and composition of the individual layers have been carefully chosen, domain walls can be pinned at non-topographic sites created purely by ion irradiation in a focused ion beam system. The pinning results from irradiation induced alloying leading to magnetic property modification only in the affected regions. Using Lorentz transmission electron microscopy, we have studied the pinning behavior of domain walls at the irradiation sites. Depending on the irradiation dose, a single line feature not only pinned the domain walls but also acted to control their structure and the strength of their pinning.

  18. Layer Resolved Imaging of Magnetic Domain Motion in Epitaxial Heterostructures

    NASA Astrophysics Data System (ADS)

    Zohar, Sioan; Choi, Yongseong; Love, David; Mansell, Rhodri; Barnes, Crispin; Keavney, David; Rosenberg, Richard

    We use X-ray Excited Luminescence Microscopy (XELM) to image the elemental and layer resolved magnetic domain structure of an epitaxial Fe/Cr wedge/Co heterostructure in the presence of large magnetic fields. The observed magnetic domains exhibit several unique behaviors that depend on the Cr thickness (tCr) modulated interlayer exchange coupling (IEC) strength. For Cr thickness tCr??1.5?nm, strongly coupled parallel Co-Fe reversal and weakly coupled layer independent reversal are observed, respectively. The transition between these two reversal mechanisms for 0.34?domain wall motion and stationary zig zag domain walls. We observe domain walls nucleated at switching field minima are guided by IEC spatial gradients and collapse at switching field maxima.

  19. Black holes escaping from domain walls

    SciTech Connect

    Flachi, Antonino; Sasaki, Misao; Pujolas, Oriol; Tanaka, Takahiro

    2006-06-15

    Previous studies concerning the interaction of branes and black holes suggested that a small black hole intersecting a brane may escape via a mechanism of reconnection. Here we consider this problem by studying the interaction of a small black hole and a domain wall composed of a scalar field and simulate the evolution of this system when the black hole acquires an initial recoil velocity. We test and confirm previous results, however, unlike the cases previously studied, in the more general set-up considered here, we are able to follow the evolution of the system also during the separation, and completely illustrate how the escape of the black hole takes place.

  20. Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles

    PubMed Central

    Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena; Schiøtz, Jakob; Kasama, Takeshi; Puntes, Victor F.; Frandsen, Cathrine

    2015-01-01

    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100–400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling. PMID:26416297

  1. Faster magnetic walls in rough wires.

    PubMed

    Nakatani, Yoshinobu; Thiaville, André; Miltat, Jacques

    2003-08-01

    In some magnetic devices that have been proposed, the information is transmitted along a magnetic wire of submicrometre width by domain wall (DW) motion. The speed of the device is obviously linked to the DW velocity, and measured values up to 1 km x s(-1) have been reported in moderate fields. Although such velocities were already reached in orthoferrite crystal films with a high anisotropy, the surprise came from their observation in the low-anisotropy permalloy. We have studied, by numerical simulation, the DW propagation in such samples, and observed a very counter-intuitive behaviour. For perfect samples (no edge roughness), the calculated velocity increased with field up to a threshold, beyond which it abruptly decreased--a well-known phenomenon. However, for rough strip edges, the velocity breakdown was found to be suppressed. We explain this phenomenon, and propose that roughness should rather be engineered than avoided when fabricating nanostructures for DW propagation.

  2. Origin of stationary domain wall enhanced ferroelectric susceptibility

    NASA Astrophysics Data System (ADS)

    Liu, Shi; Cohen, R. E.

    2017-03-01

    Ferroelectrics usually adopt a multidomain state with domain walls separating domains with polarization axes oriented differently. It has long been recognized that domain walls can dramatically impact the properties of ferroelectric materials. The enhancement of low-field susceptibility/permittivity under subswitching conditions is usually attributed to reversible domain wall vibration. Recent experiments highlight the stationary domain wall contribution to the dielectric susceptibility irrespective of any lateral displacements or deformations of the wall. We study the effects of domain walls on the low-field permittivity of PbTiO3 with density functional theory and molecular dynamics simulations. The static dielectric constant is calculated as a function of increasing domain wall density and temperature. We find an increase of dielectric permittivity with increasing domain wall density, which is expected to occur at a low driving field where the lateral motion of domain walls is forbidden. Real-space decomposition of the dielectric response reveals that frustrated dipoles within the finite width of the domain walls are responsible for the enhanced low-field permittivity. We explain the 100 % enhancement of the dielectric susceptibility form domain walls, which arises from the softer potential wells within them.

  3. Magnetic bubble domain memories

    NASA Technical Reports Server (NTRS)

    Ypma, J. E.

    1974-01-01

    Some attractive features of Bubble Domain Memory and its relation to existing technologies are discussed. Two promising applications are block access mass memory and tape recorder replacement. The required chip capabilities for these uses are listed, and the specifications for a block access mass memory designed to fit between core and HPT disk are presented. A feasibility model for a tape recorder replacement is introduced.

  4. Dzyaloshinskii-Moriya interaction induced domain wall depinning anomaly in ferromagnetic nanowire

    NASA Astrophysics Data System (ADS)

    Kheng Teoh, Han; Goolaup, Sarjoosing; Siang Lew, Wen

    2017-01-01

    Magnetic domain wall positional manipulation is usually through the introduction of potential trap. In this work, we show that the presence of interfacial Dzyaloshinkii-Moriya interaction leads to a different static depinning field for Néel domain walls with the same handedness in a notched magnetic nanowire. The difference in static depinning field is due to the Néel domain wall spin orientation. The spin orientation leads to different torques being exerted on the localized magnetic moments. This inherently imposes a spin orientation dependent diode-like behavior for domain walls in a notched nanowire. An equation which relates the difference in static depinning field to the notch geometry is derived. Micromagnetic simulation with varying damping constant reveals the influence of damping constant on the strength of depinning anomaly.

  5. Domain-wall superconductivity in superconductor-ferromagnet hybrids.

    PubMed

    Yang, Zhaorong; Lange, Martin; Volodin, Alexander; Szymczak, Ritta; Moshchalkov, Victor V

    2004-11-01

    Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor-ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor-ferromagnet hybrids using a niobium film on a BaFe(12)O(19) single crystal. We found that the critical temperature T(c) of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe(12)O(19). In accordance with the field-shift of the maximum value of T(c), pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor-ferromagnet hybrids.

  6. Domain wall spin structures in mesoscopic Fe rings probed by high resolution SEMPA

    NASA Astrophysics Data System (ADS)

    Krautscheid, Pascal; Reeve, Robert M.; Lauf, Maike; Krüger, Benjamin; Kläui, Mathias

    2016-10-01

    We present a combined theoretical and experimental study of the energetic stability and accessibility of different domain wall spin configurations in mesoscopic magnetic iron rings. The evolution is investigated as a function of the width and thickness in a regime of relevance to devices, while Fe is chosen as a material due to its simple growth in combination with attractive magnetic properties including high saturation magnetization and low intrinsic anisotropy. Micromagnetic simulations are performed to predict the lowest energy states of the domain walls, which can be either the transverse or vortex wall spin structure, in good agreement with analytical models, with further simulations revealing the expected low temperature configurations observable on relaxation of the magnetic structure from saturation in an external field. In the latter case, following the domain wall nucleation process, transverse domain walls are found at larger widths and thicknesses than would be expected by just comparing the competing energy terms demonstrating the importance of metastability of the states. The simulations are compared to high spatial resolution experimental images of the magnetization using scanning electron microscopy with polarization analysis to provide a phase diagram of the various spin configurations. In addition to the vortex and simple symmetric transverse domain wall, a significant range of geometries are found to exhibit highly asymmetric transverse domain walls with properties distinct from the symmetric transverse wall. Simulations of the asymmetric walls reveal an evolution of the domain wall tilting angle with ring thickness which can be understood from the thickness dependencies of the contributing energy terms. Analysis of all the data reveals that in addition to the geometry, the influence of materials properties, defects and thermal activation all need to be taken into account in order to understand and reliably control the experimentally accessible

  7. Observation of ice-rule violation and monopole dynamics via edge nucleation of domain walls in artificial spin ice lattice

    NASA Astrophysics Data System (ADS)

    Krishnia, S.; Purnama, I.; Lew, W. S.

    2016-12-01

    In a patterned Co honeycomb spin ice structure, we show that violation in the ice-rule or magnetic monopoles, can be observed during a magnetization reversal process in 430 Oe≤H≤760 Oe magnetic field (H) range. The monopoles are shown to originate from the nucleation of domain walls at the edges, and they hop towards the other edge via the propagation of magnetic domain walls. The paths that the domain walls traveled or the Dirac strings, are shown to increase in length with magnetic fields increment and no random flipping of the bars are observed in the structure.

  8. Switching by Domain-Wall Automotion in Asymmetric Ferromagnetic Rings

    NASA Astrophysics Data System (ADS)

    Mawass, Mohamad-Assaad; Richter, Kornel; Bisig, Andre; Reeve, Robert M.; Krüger, Benjamin; Weigand, Markus; Stoll, Hermann; Krone, Andrea; Kronast, Florian; Schütz, Gisela; Kläui, Mathias

    2017-04-01

    Spintronic applications based on magnetic domain-wall (DW) motion, such as magnetic data storage, sensors, and logic devices, require approaches to reliably manipulate the magnetization in nanowires. In this paper, we report the direct dynamic experimental visualization of reliable switching from the onion to the vortex state by DW automotion at zero field in asymmetric ferromagnetic rings using a uniaxial field pulse. Employing time-resolved x-ray microscopy, we demonstrate that depending on the detailed spin structure of the DWs and the size and geometry of the rings, the automotive propagation can be tailored during the DW relaxation from the higher-energy onion state to the energetically favored vortex state, where both DWs annihilate. Our measurements show DW automotion with an average velocity of about 60 m /s , which is a significant speed for spintronic devices. Such motion is mostly governed by local forces resulting from the geometry variations in the device. A closer study of the annihilation process via micromagnetic simulations reveals that a new vortex is nucleated in between the two initial walls. We demonstrate that the annihilation of DWs through automotion in our scheme always occurs with the detailed topological nature of the walls influencing only the DW dynamics on a local scale. The simulations show good quantitative agreement with our experimental results. These findings shed light on a robust and reliable switching process of the onion state in ferromagnetic rings, which paves the way for further optimization of these devices.

  9. Propulsion of a domain wall in an antiferromagnet by magnons

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Tserkovnyak, Yaroslav; Tchernyshyov, Oleg

    2014-09-01

    We analyze the dynamics of a domain wall in an easy-axis antiferromagnet driven by circularly polarized magnons. Magnons pass through a stationary domain wall without reflection and thus exert no force on it. However, they reverse their spin upon transmission, thereby transferring two quanta of angular momentum to the domain wall and causing it to precess. A precessing domain wall partially reflects magnons back to the source. The reflection of spin waves creates a previously identified reactive force. We point out a second mechanism of propulsion, which we term redshift: magnons passing through a precessing domain wall lower their frequency by twice the angular velocity of the domain wall; the concomitant reduction of the magnons' linear momentum indicates momentum transfer to the domain wall. We solve the equations of motion for spin waves in the background of a uniformly precessing domain wall with the aid of supersymmetric quantum mechanics and compute the net force and torque applied by magnons to the domain wall. Redshift is the dominant mechanism of propulsion at low spin-wave intensities; reflection dominates at higher intensities. We derive a set of coupled algebraic equations to determine the linear velocity and angular frequency of the domain wall in a steady state. The theory agrees well with numerical micromagnetic simulations.

  10. Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques.

    PubMed

    De Ranieri, E; Roy, P E; Fang, D; Vehsthedt, E K; Irvine, A C; Heiss, D; Casiraghi, A; Campion, R P; Gallagher, B L; Jungwirth, T; Wunderlich, J

    2013-09-01

    The rich internal degrees of freedom of magnetic domain walls make them an attractive complement to electron charge for exploring new concepts of storage, transport and processing of information. Here we use the tunable internal structure of a domain wall in a perpendicularly magnetized GaMnAsP/GaAs ferromagnetic semiconductor and demonstrate devices in which piezoelectrically controlled magnetic anisotropy yields up to 500% mobility variations for an electrical-current-driven domain wall. We observe current-induced domain wall motion over a wide range of current-pulse amplitudes and report a direct observation and the piezoelectric control of the Walker breakdown separating two regimes with different mobilities. Our work demonstrates that in spin-orbit-coupled ferromagnets with weak extrinsic domain wall pinning, the piezoelectric control allows one to experimentally assess the upper and lower boundaries of the characteristic ratio of adiabatic and non-adiabatic spin-transfer torques in the current-driven domain wall motion.

  11. Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Janda, T.; Roy, P. E.; Otxoa, R. M.; Šobáň, Z.; Ramsay, A.; Irvine, A. C.; Trojanek, F.; Surýnek, M.; Campion, R. P.; Gallagher, B. L.; Němec, P.; Jungwirth, T.; Wunderlich, J.

    2017-05-01

    Domain wall motion driven by ultra-short laser pulses is a pre-requisite for envisaged low-power spintronics combining storage of information in magnetoelectronic devices with high speed and long distance transmission of information encoded in circularly polarized light. Here we demonstrate the conversion of the circular polarization of incident femtosecond laser pulses into inertial displacement of a domain wall in a ferromagnetic semiconductor. In our study, we combine electrical measurements and magneto-optical imaging of the domain wall displacement with micromagnetic simulations. The optical spin-transfer torque acts over a picosecond recombination time of the spin-polarized photo-carriers that only leads to a deformation of the initial domain wall structure. We show that subsequent depinning and micrometre-distance displacement without an applied magnetic field or any other external stimuli can only occur due to the inertia of the domain wall.

  12. Dynamic conductivity of ferroelectric domain walls in BiFeO₃.

    PubMed

    Maksymovych, Peter; Seidel, Jan; Chu, Ying Hao; Wu, Pingping; Baddorf, Arthur P; Chen, Long-Qing; Kalinin, Sergei V; Ramesh, Ramamoorthy

    2011-05-11

    Topological walls separating domains of continuous polarization, magnetization, and strain in ferroic materials hold promise of novel electronic properties, that are intrinsically localized on the nanoscale and that can be patterned on demand without change of material volume or elemental composition. We have revealed that ferroelectric domain walls in multiferroic BiFeO(3) are inherently dynamic electronic conductors, closely mimicking memristive behavior and contrary to the usual assumption of rigid conductivity. Applied electric field can cause a localized transition between insulating and conducting domain walls, tune domain wall conductance by over an order of magnitude, and create a quasicontinuous spectrum of metastable conductance states. Our measurements identified that subtle and microscopically reversible distortion of the polarization structure at the domain wall is at the origin of the dynamic conductivity. The latter is therefore likely to be a universal property of topological defects in ferroelectric semiconductors.

  13. Domain wall conductivity in KTiOPO4 crystals

    NASA Astrophysics Data System (ADS)

    Lindgren, G.; Canalias, C.

    2017-07-01

    We study the local ionic conductivity of ferroelectric domain walls and domains in KTiOPO4 single-crystals. We show a fourfold increase in conductivity at the domain walls, compared to that of the domains, attributed to an increased concentration of defects. Our current-voltage measurements reveal memristive-like behavior associated with topographic changes and permanent charge displacement. This behavior is observed for all the voltage sweep-rates at the domain walls, while it only occurs for low frequencies at the domains. We attribute these findings to the redistribution of ions due to the applied bias and their effect on the tip-sample barrier.

  14. Direct observation of domain walls in NiFe films using high-resolution Lorentz microscopy

    NASA Astrophysics Data System (ADS)

    Wong, Bunsen Y.; Laughlin, David E.

    1996-04-01

    A novel approach to observe the interaction between magnetic domain wall and nanoscale microstructural features is demonstrated. The method is based on Focault mode Lorentz microscopy and utilizes a Gatan energy image filter to provide additional magnification. A postexperimental image processing technique was applied to separate lattice diffraction from that induced by magnetic domains. The effect of NiFe thickness on the width of a 180° Néel wall has been studied. It was found that the thickness dependence has a similar profile to the theoretically predicted trend but the actual wall thickness is smaller than the calculated values.

  15. Localized NMR Mediated by Electrical-Field-Induced Domain Wall Oscillation in Quantum-Hall-Ferromagnet Nanowire.

    PubMed

    Miyamoto, S; Miura, T; Watanabe, S; Nagase, K; Hirayama, Y

    2016-03-09

    We present fractional quantum Hall domain walls confined in a gate-defined wire structure. Our experiments utilize spatial oscillation of domain walls driven by radio frequency electric fields to cause nuclear magnetic resonance. The resulting spectra are discussed in terms of both large quadrupole fields created around the wire and hyperfine fields associated with the oscillating domain walls. This provides the experimental fact that the domain walls survive near the confined geometry despite of potential deformation, by which a localized magnetic resonance is allowed in electrical means.

  16. Domain Wall Architecture in Tetragonal Ferroelectric Thin Films.

    PubMed

    De Luca, Gabriele; Rossell, Marta D; Schaab, Jakob; Viart, Nathalie; Fiebig, Manfred; Trassin, Morgan

    2017-02-01

    Non-Ising-like 180° ferroelectric domain wall architecture and domain distribution in tetragonal PbZrx Ti1-x O3 thin films are probed using a combination of optical second harmonic generation and scanning transmission electron microscopy. In the remnant state, a specific nonlinear optical signature of tilted 180° domain walls corresponding to a mixed Ising-Néel-type rotation of polarization across the wall is shown.

  17. Proposal for a Domain Wall Nano-Oscillator driven by Non-uniform Spin Currents

    NASA Astrophysics Data System (ADS)

    Sharma, Sanchar; Muralidharan, Bhaskaran; Tulapurkar, Ashwin

    2015-09-01

    We propose a new mechanism and a related device concept for a robust, magnetic field tunable radio-frequency (rf) oscillator using the self oscillation of a magnetic domain wall subject to a uniform static magnetic field and a spatially non-uniform vertical dc spin current. The self oscillation of the domain wall is created as it translates periodically between two unstable positions, one being in the region where both the dc spin current and the magnetic field are present, and the other, being where only the magnetic field is present. The vertical dc spin current pushes it away from one unstable position while the magnetic field pushes it away from the other. We show that such oscillations are stable under noise and can exhibit a quality factor of over 1000. A domain wall under dynamic translation, not only being a source for rich physics, is also a promising candidate for advancements in nanoelectronics with the actively researched racetrack memory architecture, digital and analog switching paradigms as candidate examples. Devising a stable rf oscillator using a domain wall is hence another step towards the realization of an all domain wall logic scheme.

  18. Proposal for a Domain Wall Nano-Oscillator driven by Non-uniform Spin Currents

    PubMed Central

    Sharma, Sanchar; Muralidharan, Bhaskaran; Tulapurkar, Ashwin

    2015-01-01

    We propose a new mechanism and a related device concept for a robust, magnetic field tunable radio-frequency (rf) oscillator using the self oscillation of a magnetic domain wall subject to a uniform static magnetic field and a spatially non-uniform vertical dc spin current. The self oscillation of the domain wall is created as it translates periodically between two unstable positions, one being in the region where both the dc spin current and the magnetic field are present, and the other, being where only the magnetic field is present. The vertical dc spin current pushes it away from one unstable position while the magnetic field pushes it away from the other. We show that such oscillations are stable under noise and can exhibit a quality factor of over 1000. A domain wall under dynamic translation, not only being a source for rich physics, is also a promising candidate for advancements in nanoelectronics with the actively researched racetrack memory architecture, digital and analog switching paradigms as candidate examples. Devising a stable rf oscillator using a domain wall is hence another step towards the realization of an all domain wall logic scheme. PMID:26420544

  19. Domain wall orientation and domain shape in KTiOPO4 crystals

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Vaskina, E. M.; Pelegova, E. V.; Chuvakova, M. A.; Akhmatkhanov, A. R.; Kizko, O. V.; Ivanov, M.; Kholkin, A. L.

    2016-09-01

    Domain shape evolution and domain wall motion have been studied in KTiOPO4 (KTP) ferroelectric single crystals using complementary experimental methods. The in situ visualization of domain kinetics has allowed revealing: (1) qualitative change of the domain shape, (2) dependence of the domain wall velocity on its orientation, (3) jump-like domain wall motion caused by domain merging, (4) effect of domain shape stability. The model of domain wall motion driven by generation of elementary steps (kink-pair nucleation) and subsequent kink motion is presented. The decrease in the relative velocity of the approaching parallel domain walls is attributed to electrostatic interaction. The effect of polarization reversal induced by chemical etching is observed. The obtained results are important for the development of domain engineering in the crystals of KTP family.

  20. Anisotropies of the cosmic background radiation by domain wall networks

    SciTech Connect

    Nambu, Yasusada; Ishihara, Hideki; Gouda, Naoteru; Sugiyama, Naoshi )

    1991-06-01

    This paper discusses cosmological effects by domain wall formation associated with a late time phase transition after decoupling. Assuming the existence of rigid domain wall networks, a simple one-dimensional model is constructed and the quadrupole anisotropy of the cosmic background radiation (CBR) is calculated. Contrary to expectation, the gravitational potential of a domain wall itself does not disturb the isotropy of CBR. Estimating the quadrupole anisotropy of CBR induced by the wall-driven growth of matter density perturbations, a 100/h Mpc periodic wall structure is found to be consistent with the observed upper bound. 12 refs.

  1. Power optimization for domain wall motion in ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Tretiakov, O. A.; Liu, Y.; Abanov, Ar.

    2011-04-01

    The current mediated domain-wall dynamics in a thin ferromagnetic wire is investigated. We derive the effective equations of motion of the domain wall. They are used to study the possibility to optimize the power supplied by electric current for the motion of domain walls in a nanowire. We show that a certain resonant time-dependent current moving a domain wall can significantly reduce the Joule heating in the wire, and thus it can lead to a novel proposal for the most energy efficient memory devices. We discuss how Gilbert damping, nonadiabatic spin transfer torque, and the presence of Dzyaloshinskii-Moriya interaction can effect this power optimization.

  2. Hamilton-Jacobi method for curved domain walls and cosmologies

    NASA Astrophysics Data System (ADS)

    Skenderis, Kostas; Townsend, Paul K.

    2006-12-01

    We use Hamiltonian methods to study curved domain walls and cosmologies. This leads naturally to first-order equations for all domain walls and cosmologies foliated by slices of maximal symmetry. For Minkowski and AdS-sliced domain walls (flat and closed FLRW cosmologies) we recover a recent result concerning their (pseudo)supersymmetry. We show how domain-wall stability is consistent with the instability of AdS vacua that violate the Breitenlohner-Freedman bound. We also explore the relationship to Hamilton-Jacobi theory and compute the wave-function of a 3-dimensional closed universe evolving towards de Sitter spacetime.

  3. Ferroelectric control of magnetic domains in ultra-thin cobalt layers

    SciTech Connect

    Huang, Z.; Stolichnov, I.; Setter, N.; Bernand-Mantel, A.; Borrel, J.; Pizzini, S.; Ranno, L.; Herrera Diez, L.; Auffret, S.; Gaudin, G.; Boulle, O.

    2013-11-25

    Non-volatile ferroelectric control of magnetic domains has been demonstrated in ultra-thin cobalt layers at room temperature. The sensitivity of magnetic anisotropy energy to the electronic structure in a few atomic layers adjacent to the interface allows for ferroelectric control of coercivity and magnetic domain dynamics. These effects have been monitored and quantified using magneto-optical Kerr effect. In particular, the regimes, where the ferroelectric domains enhance/inhibit the magnetic domain nucleation or increase/reduce domain wall velocity, have been explored. Thus, non-destructive and reversible ferroelectric domain writing provides a tool to define the magnetic domain paths, create nucleation sites, or control domain movement.

  4. Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Tserkovnyak, Yaroslav

    2016-07-01

    We theoretically study the magnetoelectric coupling in a quantum anomalous Hall insulator state induced by interfacing a dynamic magnetization texture to a topological insulator. In particular, we propose that the quantum anomalous Hall insulator with a magnetic configuration of a domain wall, when contacted by electrical reservoirs, acts as a magnetoelectric piston. A moving domain wall pumps charge current between electrical leads in a closed circuit, while applying an electrical bias induces reciprocal domain-wall motion. This pistonlike action is enabled by a finite reflection of charge carriers via chiral modes imprinted by the domain wall. Moreover, we find that, when compared with the recently discovered spin-orbit torque-induced domain-wall motion in heavy metals, the reflection coefficient plays the role of an effective spin-Hall angle governing the efficiency of the proposed electrical control of domain walls. Quantitatively, this effective spin-Hall angle is found to approach a universal value of 2, providing an efficient scheme to reconfigure the domain-wall chiral interconnects for possible memory and logic applications.

  5. Current-induced domain wall motion in Rashba spin-orbit system

    NASA Astrophysics Data System (ADS)

    Obata, Katsunori; Tatara, Gen

    2008-06-01

    Current-induced magnetic domain wall motion, induced by transfer of spin transfer effect due to exchange interaction, is expected to be useful for next generation high-density storages. Here we showed that efficient domain wall manipulation can be achieved by the introduction of Rashba spin-orbit interaction, which induces spin precession of conduction electron and acts as an effective magnetic field. Its effect on domain wall motion depends on the wall configuration. We found that the effect is significant for Bloch wall with the hard axis along the current, since the effective field works as β or fieldlike term and removes the threshold current if in extrinsic pinning is absent. For Néel wall and Bloch wall with easy axis perpendicular to Rashba plane, the effective field induces a step motion of wall corresponding to a rotation of wall plane by the angle of approximately π at current lower than intrinsic threshold. Rashba interaction would therefore be useful to assist efficient motion of domain walls at low current.

  6. Role of entropy in domain wall motion in thermal gradients.

    PubMed

    Schlickeiser, F; Ritzmann, U; Hinzke, D; Nowak, U

    2014-08-29

    Thermally driven domain wall (DW) motion caused solely by magnonic spin currents was forecast theoretically and has been measured recently in a magnetic insulator using magneto-optical Kerr effect microscopy. We present an analytical calculation of the DW velocity as well as the Walker breakdown within the framework of the Landau Lifshitz Bloch equation of motion. The temperature gradient leads to a torque term acting on the magnetization where the DW is mainly driven by the temperature dependence of the exchange stiffness, or--in a more general picture--by the maximization of entropy. The existence of this entropic torque term does not rest on the angular momentum transfer from the magnonic spin current. Hence, even DWs in antiferromagnets or compensated ferrimagnets should move accordingly. We further argue that the entropic torque exceeds that of the magnonic spin current.

  7. Current-driven domain wall depinning from an anisotropy boundary in nanowires.

    PubMed

    Gerhardt, T; Drews, A; Meier, G

    2014-05-21

    The interaction of a current-driven domain wall with an anisotropy boundary in nanowires with perpendicular magnetic anisotropy is investigated. A local reduction of the anisotropy constant is used to create an artificial boundary where the domain wall gets pinned. Micromagnetic simulations and analytical calculations, based on a one-dimensional model, are employed to describe the interaction of the domain wall and the anisotropy boundary and to determine the depinning current densities. Two different pinning regimes-an intrinsic and an extrinsic-can be identified in dependence with the characteristic of the boundary. A very good agreement between simulated and analytically obtained data is achieved.

  8. Controlled motion of domain walls in submicron amorphous wires

    SciTech Connect

    Ţibu, Mihai; Lostun, Mihaela; Rotărescu, Cristian; Atiţoaie, Alexandru; Lupu, Nicoleta; Óvári, Tibor-Adrian Chiriac, Horia; Allwood, Dan A.

    2016-05-15

    Results on the control of the domain wall displacement in cylindrical Fe{sub 77.5}Si{sub 7.5}B{sub 15} amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB) system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the first time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.

  9. Effects of sub-domain structure on initial magnetization curve and domain size distribution of stacked media

    NASA Astrophysics Data System (ADS)

    Sato, S.; Kumagai, S.; Sugita, R.

    2015-03-01

    In this paper, in order to confirm the sub-domain structure in stacked media demagnetized with in-plane field, initial magnetization curves and magnetic domain size distribution were investigated. Both experimental and simulation results showed that an initial magnetization curve for the medium demagnetized with in-plane field (MDI) initially rose faster than that for the medium demagnetized with perpendicular field (MDP). It is inferred that this is because the MDI has a larger number of domain walls than the MDP due to the existence of the sub-domains, resulting in an increase in the probability of domain wall motion. Dispersion of domain size for the MDI was larger than that for the MDP. This is because sub-domains are formed not only inside the domain but also at the domain boundary region, and they change the position of the domain boundary to affect the domain size.

  10. Enhanced electromechanical response of ferroelectrics due to charged domain walls

    PubMed Central

    Sluka, Tomas; Tagantsev, Alexander K.; Damjanovic, Dragan; Gureev, Maxim; Setter, Nava

    2012-01-01

    While commonly used piezoelectric materials contain lead, non-hazardous, high-performance piezoelectrics are yet to be discovered. Charged domain walls in ferroelectrics are considered inactive with regards to the piezoelectric response and, therefore, are largely ignored in this search. Here we demonstrate a mechanism that leads to a strong enhancement of the dielectric and piezoelectric properties in ferroelectrics with increasing density of charged domain walls. We show that an incomplete compensation of bound polarization charge at these walls creates a stable built-in depolarizing field across each domain leading to increased electromechanical response. Our model clarifies a long-standing unexplained effect of domain wall density on macroscopic properties of domain-engineered ferroelectrics. We show that non-toxic ferroelectrics like BaTiO3 with dense patterns of charged domain walls are expected to have strongly enhanced piezoelectric properties, thus suggesting a new route to high-performance, lead-free ferroelectrics. PMID:22434191

  11. Enhanced electromechanical response of ferroelectrics due to charged domain walls.

    PubMed

    Sluka, Tomas; Tagantsev, Alexander K; Damjanovic, Dragan; Gureev, Maxim; Setter, Nava

    2012-03-20

    While commonly used piezoelectric materials contain lead, non-hazardous, high-performance piezoelectrics are yet to be discovered. Charged domain walls in ferroelectrics are considered inactive with regards to the piezoelectric response and, therefore, are largely ignored in this search. Here we demonstrate a mechanism that leads to a strong enhancement of the dielectric and piezoelectric properties in ferroelectrics with increasing density of charged domain walls. We show that an incomplete compensation of bound polarization charge at these walls creates a stable built-in depolarizing field across each domain leading to increased electromechanical response. Our model clarifies a long-standing unexplained effect of domain wall density on macroscopic properties of domain-engineered ferroelectrics. We show that non-toxic ferroelectrics like BaTiO(3) with dense patterns of charged domain walls are expected to have strongly enhanced piezoelectric properties, thus suggesting a new route to high-performance, lead-free ferroelectrics.

  12. Enhanced magnetoresistance and pinning-depinning processes of vortex domain walls in ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Soledade, P. R.; Brandão, J.; Mello, A.; Sampaio, L. C.

    2017-02-01

    We have investigated the pinning-depinning processes of vortex domain walls (VDW) in Permalloy nanowires with asymmetric triangular notches by means of magnetoresistance measurements and micromagnetic simulations. Through a model based on the anisotropic magnetoresistance (AMR) and the magnetization structure obtained from simulations, the magnetoresistance when the VDW passes stretched through the notch was calculated. Besides the depinning field, as it is known, also the magnetoresistance drop depends on the domain wall chirality. Measurements show that the resistance drop for clockwise (CW) chirality is  ≈180 m Ω (38%) larger than for the counterclockwise (CCW) chirality. From the VDW resistance calculations it becomes clear which domain wall parameters, like domain wall structure, chirality and wall width, play a role on the magnetoresistance. These results offer an additional route to better controlling the VDW motion, which can be beneficial to applications.

  13. Micromagnetic modeling of domain wall motion in sub-100-nm-wide wires with individual and periodic edge defects

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Siddiqui, S. A.; Currivan-Incorvia, J. A.; Ross, C. A.; Baldo, M. A.

    2015-12-01

    Reducing the switching energy of devices that rely on magnetic domain wall motion requires scaling the devices to widths well below 100 nm, where the nanowire line edge roughness (LER) is an inherent source of domain wall pinning. We investigate the effects of periodic and isolated rectangular notches, triangular notches, changes in anisotropy, and roughness measured from images of fabricated wires, in sub-100-nm-wide nanowires with in-plane and perpendicular magnetic anisotropy using micromagnetic modeling. Pinning fields calculated for a model based on discretized images of physical wires are compared to experimental measurements. When the width of the domain wall is smaller than the notch period, the domain wall velocity is modulated as the domain wall propagates along the wire. We find that in sub-30-nm-wide wires, edge defects determine the operating threshold and domain wall dynamics.

  14. Orientation Relationship Between Magnetic Domains and Twins in Ni52Fe17Ga27Co4 Magnetic Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Hu, Qiaodan; Yang, Liang; Zhou, Zhenni; Huang, Yujin; Li, Jun; Li, Jianguo

    2017-06-01

    The orientation relationship between magnetic domain and twins in the directional solidified Ni52Fe17Ga27Co4 magnetic shape memory alloy was analyzed by electron backscatter diffraction and magnetic force microscopy. The twin interface plane was determined to be { \\bar{1}10} plates. The magnetic domains walls with a misorientation about 5 deg belong to low angle boundaries. According to the orientation relationship between twins and magnetic domains, the intersection angle on the observed surface can be estimated.

  15. Evidence of domain wall pinning in aluminum substituted cobalt ferrites

    NASA Astrophysics Data System (ADS)

    Maurya, J. C.; Janrao, P. S.; Datar, A. A.; Kanhe, N. S.; Bhoraskar, S. V.; Mathe, V. L.

    2016-08-01

    In the present work spinel structured cobalt ferrites with aluminum substitution having composition CoAlxFe2-xO4 (x=0.0, 0.1, 0.2 and 0.3) have been synthesized using chemical co-precipitation method. Their microstructural, magnetic, magnetostriction and magnetoimpedance properties have been investigated. The piezomagnetic coefficient (dλ/dH) obtained from magnetostriction data is found to enhance with 0.1 Al substitutions in place of iron which decreases with further increase of Al content. It is noticed that 0.3 Al substitutions in place of Fe introduces domain wall pinning as evidenced from magnetostriction, magnetoimpedance and dc magnetization data. It is noted that ferrites so prepared using a simple procedure are magnetostrictive in good measure and with the addition of very small amount of non-magnetic aluminum their magnetostriction has shown saturation at relatively low magnetic fields. Such magnetostrictive ferrites find their applications in magnetic sensors and actuators.

  16. Domain wall QCD with physical quark masses

    NASA Astrophysics Data System (ADS)

    Blum, T.; Boyle, P. A.; Christ, N. H.; Frison, J.; Garron, N.; Hudspith, R. J.; Izubuchi, T.; Janowski, T.; Jung, C.; Jüttner, A.; Kelly, C.; Kenway, R. D.; Lehner, C.; Marinkovic, M.; Mawhinney, R. D.; McGlynn, G.; Murphy, D. J.; Ohta, S.; Portelli, A.; Sachrajda, C. T.; Soni, A.; Rbc; Ukqcd Collaborations

    2016-04-01

    We present results for several light hadronic quantities (fπ , fK, BK, mu d, ms, t01 /2, w0) obtained from simulations of 2 +1 flavor domain wall lattice QCD with large physical volumes and nearly physical pion masses at two lattice spacings. We perform a short, O (3 )%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum "global fit" with a number of other ensembles with heavier pion masses. We use the physical values of mπ, mK and mΩ to determine the two quark masses and the scale—all other quantities are outputs from our simulations. We obtain results with subpercent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including fπ=130.2 (9 ) MeV ; fK=155.5 (8 ) MeV ; the average up/down quark mass and strange quark mass in the MS ¯ scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, BK, in the renormalization group invariant scheme, 0.750(15) and the MS ¯ scheme at 3 GeV, 0.530(11).

  17. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin

    2017-02-01

    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors.

  18. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3.

    PubMed

    Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin

    2017-02-20

    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors.

  19. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3

    PubMed Central

    Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin

    2017-01-01

    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors. PMID:28216672

  20. Superconducting magnetoresistance effect observed in Co/Nb/Co trilayers under a parallel magnetic field: The importance of matching the width of magnetic domain walls of the Co layers with the thickness of the Nb interlayer

    NASA Astrophysics Data System (ADS)

    Aristomenopoulou, E.; Stamopoulos, D.

    2015-08-01

    Magnetoresistance effects observed in ferromagnet/superconductor (FM/SC) hybrids, FM/SC bilayers (BLs) and FM/SC/FM trilayers (TLs), have attracted much interest. Here, we focus on the stray-fields-based superconducting magnetoresistance effect (sMRE) observed in Co(dCo)/Nb(dNb)/Co(dCo) TLs with sufficiently thick Co outer layers so that out-of-plane magnetic domains (MDs) and MDs walls (MDWs) emerge all over their surface when subjected to a parallel external magnetic field, Hex, equal to the coercive field, Hc. To explore the conditions necessary for maximization of the sMRE, we focus on the different kinds of the stray dipolar fields, Hdip, that emerge at the interior of the out-of-plane MDs and at the boundaries of MDWs; these have a different inherent tendency to create straight and semi-loop vortices, respectively. In the recent literature, the creation of straight and semi-loop vortices has been addressed at some extent both theoretically [Laiho et al., Phys. Rev. B 67, 144522 (2003)] and experimentally [Bobba et al., Phys. Rev. B 89, 214502 (2014)] for the case of FM/SC BLs. Here, we address these issues in FM/SC/FM TLs in connection to the sMRE. Specifically, we focus on an experimental finding reported recently [D. Stamopoulos and E. Aristomenopoulou, J. Appl. Phys. 116, 233908 (2014)]; strong magnetostatic coupling of the FM outer layers is accompanied by an intense sMRE in TLs in which the thickness of the SC interlayer, dSC, matches the width of MDWs, DMDWs. To investigate this finding, we employ simulations-modeling and energy-considerations and propose two quantitative criteria that facilitate the creation of straight vortices over semi-loop ones. The first focuses on the maximization of the stray Hdip that occur at the interior of the out-of-plane MDs. The second enables the estimation of a crossover between the preferable creation of one kind of vortices over the other. Both criteria respond well, when tested against experimental results. These

  1. AC driven magnetic domain quantification with 5 nm resolution

    NASA Astrophysics Data System (ADS)

    Li, Zhenghua; Li, Xiang; Dong, Dapeng; Liu, Dongping; Saito, H.; Ishio, S.

    2014-07-01

    As the magnetic storage density increases in commercial products, e.g. the hard disc drives, a full understanding of dynamic magnetism in nanometer resolution underpins the development of next-generation products. Magnetic force microscopy (MFM) is well suited to exploring ferromagnetic domain structures. However, atomic resolution cannot be achieved because data acquisition involves the sensing of long-range magnetostatic forces between tip and sample. Moreover, the dynamic magnetism cannot be characterized because MFM is only sensitive to the static magnetic fields. Here, we develop a side-band magnetic force microscopy (MFM) to locally observe the alternating magnetic fields in nanometer length scales at an operating distance of 1 nm. Variations in alternating magnetic fields and their relating time-variable magnetic domain reversals have been demonstrated by the side-band MFM. The magnetic domain wall motions, relating to the periodical rotation of sample magnetization, are quantified via micromagnetics. Based on the side-band MFM, the magnetic moment can be determined locally in a volume as small as 5 nanometers. The present technique can be applied to investigate the microscopic magnetic domain structures in a variety of magnetic materials, and allows a wide range of future applications, for example, in data storage and biomedicine.

  2. Cellular Domain Patterns in Magnetic Garnet Films.

    NASA Astrophysics Data System (ADS)

    Babcock, Kenneth Lawrence

    This thesis presents the first experimental study of two-dimensional cellular patterns of magnetic domains in garnet films. Room-temperature observations focused on a Bismuth-substituted film designed for magneto-optic device applications. Measurements of energies and statistical quantities were aided by computer analysis of digitized pattern images. An external bias field H_ B induces pattern evolution that is shown to be governed by three elemental domain structures: (i) Stripe segments that form the cell boundaries. Magnetic field and domain wall energies produce effective tension in the stripe segments that drives the domain motion. (ii) 3 -fold vertices that join the stripe segments. Cellular patterns saturate when the vertices are destroyed at the bias value H_{V} (= 0.79 times 4pi M = 150 Oe), the largest saturation field of all domain pattern topologies. (iii) Pentagonal bubble traps, 5-fold symmetric structures containing trapped magnetic bubble domains. Isolated bubble traps collapse at a critical bias field H_5 (= 0.54 times 4pi M = 103 Oe). A simple geometric model illustrates the energetic mechanism of bubble trap collapse. An analytic pattern model accounts for domain interactions so as to elucidate the bias and configuration dependence of the stripe tension and outline the energetic bias regimes. All stripe segments are under tension in the nonequilibrium regime H _{RI}domains. Cellular patterns in this regime are supported by the robust pentagonal bubble traps acting as 5-fold vertices, an unusual topology among experimental cellular systems. An ac field component is shown to mitigate coercive effects that can hinder the pattern evolution, and criteria are developed for the ac amplitude. Characterized for the first time are several collective phenomena relevant to condense matter systems, including: (i) Coarsening of the cellular patterns in an increasing bias

  3. Small Amplitude Dynamics of Nonhomogeneous Magnetization Distributions: The Excitation Spectrum of Stripe Domains

    NASA Astrophysics Data System (ADS)

    Ebels, Ursula; Buda, Liliana D.; Ounadjela, Kamel; Wigen, Phillip E.

    The general purpose of this review is to introduce to the dynamics of small amplitude excitations of nonhomogeneous magnetization distributions. This is in contrast to the dynamics of the magnetization reversal process, which corresponds to large amplitude perturbations, discussed in other contributions of this book. Small amplitude oscillations can be studied by ferromagnetic resonance or Brillouin light scattering. The latter technique isused to investigate the excitation spectrum in laterally constrained structures.This review introduces ferromagnetic resonance and focuses on the role of the pumping field orientation. Upon varying the pumping field orientation, fundamental modes can be selectively excited, giving, in particular, access to regions of varying magnetic orientation. This is demonstrated for the excitation spectrum of magnetic domains and domain walls of the stripe domain structure in metallic thin films. These stripe domains can be considered laterally constrained magnetic units 40-100 nm wide, separated by domain walls.Such experiments provide information on the domain and domain wall structure and in principle yield the internal fields and the coupling fields of the domains, as well as the wall mass and the stabilizing forces of the domain walls. The wall mass itself is a dynamic parameter which intervenes upon wall acceleration but is of less importance when considering steady-state wall propagation in the magnetization reversal process. However, the wall mass depends sensitively on the spin configuration inside the wall, and therefore resonance experiments can provide insight into the structure of the domain wall. The wall structure, on the other hand, plays an important role in spin-polarized transport experiments, investigating the contribution of a domain wall to the resistance [1] or the transfer of momentum from the conduction electrons to the wall [2,3].

  4. Ferroelectric domain wall motion induced by polarized light.

    PubMed

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F

    2015-03-17

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO₃ single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO₃ at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light.

  5. Ferroelectric domain wall motion induced by polarized light

    PubMed Central

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F.

    2015-01-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO3 single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO3 at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918

  6. Domain walls in Einstein-Gauss-Bonnet bulk

    SciTech Connect

    Mazharimousavi, S. Habib; Halilsoy, M.

    2010-10-15

    We investigate the dynamics of a n-dimensional domain wall in a n+1-dimensional Einstein-Gauss-Bonnet bulk. Exact effective potential induced by the Gauss-Bonnet (GB) term on the wall is derived. In the absence of the GB term we recover the familiar gravitational and antiharmonic oscillator potentials. Inclusion of the GB correction gives rise to a minimum radius of bounce for the Friedmann-Robertson-Walker universe expanding with a negative pressure on the domain wall.

  7. Nanoscale probing and photonic applications of ferroelectric domain walls

    NASA Astrophysics Data System (ADS)

    Tian, Lili

    Ferroelectrics are a versatile solid-state platform for a new generation of micro- and nanophotonic applications. Conventional integrated optics has often treated the phenomenon of ferroelectric domains and domain walls more as a nuisance rather than an asset. Ironically, domain walls can be immensely valuable in realizing a wide variety of new functionalities such as laser scanning, dynamic focusing, frequency conversion, beam shaping, waveguiding, high-speed modulation, and photonic crystal structures. All of these functions can be realized by shaping ferroelectric domain walls into arbitrary shapes on micro to nanoscale dimensions. Domain walls, however, have a mind of their own when it comes to shaping them. This thesis will focus on the fundamental domain switching characteristics under the uniform electrical fields, and local electromechanical response across the single ferroelectric domain wall in ferroelectric crystals lithium niobate, lithium tantalate and strontium barium niobate. The local electromechanical response across the single was modeled using finite element method to better understand the fundamentals of piezoelectric force microscopy in order to quantitatively interpret the measured material properties. The influence of stoichiometry on domain dynamics on macroscale and on local electromechanical properties on nanoscale was studied. The challenges in shaping ferroelectric domain are discussed and the examples of optical devices such as optical switch and optical beam deflector based on ferroelectric domain walls are presented.

  8. Formation of charged ferroelectric domain walls with controlled periodicity

    PubMed Central

    Bednyakov, Petr S.; Sluka, Tomas; Tagantsev, Alexander K.; Damjanovic, Dragan; Setter, Nava

    2015-01-01

    Charged domain walls in proper ferroelectrics were shown recently to possess metallic-like conductivity. Unlike conventional heterointerfaces, these walls can be displaced inside a dielectric by an electric field, which is of interest for future electronic circuitry. In addition, theory predicts that charged domain walls may influence the electromechanical response of ferroelectrics, with strong enhancement upon increased charged domain wall density. The existence of charged domain walls in proper ferroelectrics is disfavoured by their high formation energy and methods of their preparation in predefined patterns are unknown. Here we develop the theoretical background for the formation of charged domain walls in proper ferroelectrics using energy considerations and outline favourable conditions for their engineering. We experimentally demonstrate, in BaTiO3 single crystals the controlled build-up of high density charged domain wall patterns, down to a spacing of 7 μm with a predominant mixed electronic and ionic screening scenario, hinting to a possible exploitation of charged domain walls in agile electronics and sensing devices. PMID:26516026

  9. Bistability of ferroelectric domain walls: Morphotropic boundary and strain effects

    NASA Astrophysics Data System (ADS)

    Yudin, P. V.; Tagantsev, A. K.; Setter, N.

    2013-07-01

    The internal structure of neutral 180∘ domain walls in perovskite-type ferroelectrics is studied in terms of Landau theory taking into account electromechanical coupling. The study is focused on the wall bistability, a factor of potential interest for information storage. A strong impact of elastic effects on the wall structure is demonstrated. It is shown that the conclusion derived earlier by Houchmandzadeh [J. Phys.: Condens. MatterJCOMEL0953-898410.1088/0953-8984/3/27/009 3, 5163 (1991)], neglecting the electrostictive coupling, that all the domain walls near the boundary between two ordered phases become bistable may not hold due to the elastic effects. Criteria for domain-wall bistability are formulated in terms of the materials thermodynamic properties and the wall orientation. The obtained general results are applied to the analysis of bistability of 180∘ domain walls in Pb(Zrc,Ti1-c)O3 near the tetragonal-rhombohedral morphotropic boundary. It is shown that, on the tetragonal side, the electrostrictive interaction suppresses the wall bistability that was predicted in terms of the theory neglecting the elastic effects. On the rhombohedral side, the domain walls are found bistable or not depending on the anisotropy of the correlation energy, the information on which is not presently available. It is also shown that, in the rhombohedral phase, the anisotropy of the correlation energy results in appearance of additional polarization component in the plane of the wall.

  10. Dynamical evolution of domain walls in an expanding universe

    NASA Technical Reports Server (NTRS)

    Press, William H.; Ryden, Barbara S.; Spergel, David N.

    1989-01-01

    Whenever the potential of a scalar field has two or more separated, degenerate minima, domain walls form as the universe cools. The evolution of the resulting network of domain walls is calculated for the case of two potential minima in two and three dimensions, including wall annihilation, crossing, and reconnection effects. The nature of the evolution is found to be largely independent of the rate at which the universe expands. Wall annihilation and reconnection occur almost as fast as causality allows, so that the horizon volume is 'swept clean' and contains, at any time, only about one, fairly smooth, wall. Quantitative statistics are given. The total area of wall per volume decreases as the first power of time. The relative slowness of the decrease and the smoothness of the wall on the horizon scale make it impossible for walls to both generate large-scale structure and be consistent with quadrupole microwave background anisotropy limits.

  11. Dynamical evolution of domain walls in an expanding universe

    NASA Technical Reports Server (NTRS)

    Press, William H.; Ryden, Barbara S.; Spergel, David N.

    1989-01-01

    Whenever the potential of a scalar field has two or more separated, degenerate minima, domain walls form as the universe cools. The evolution of the resulting network of domain walls is calculated for the case of two potential minima in two and three dimensions, including wall annihilation, crossing, and reconnection effects. The nature of the evolution is found to be largely independent of the rate at which the universe expands. Wall annihilation and reconnection occur almost as fast as causality allows, so that the horizon volume is 'swept clean' and contains, at any time, only about one, fairly smooth, wall. Quantitative statistics are given. The total area of wall per volume decreases as the first power of time. The relative slowness of the decrease and the smoothness of the wall on the horizon scale make it impossible for walls to both generate large-scale structure and be consistent with quadrupole microwave background anisotropy limits.

  12. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry.

    PubMed

    Tetienne, J-P; Hingant, T; Martínez, L J; Rohart, S; Thiaville, A; Diez, L Herrera; Garcia, K; Adam, J-P; Kim, J-V; Roch, J-F; Miron, I M; Gaudin, G; Vila, L; Ocker, B; Ravelosona, D; Jacques, V

    2015-04-01

    The capacity to propagate magnetic domain walls with spin-polarized currents underpins several schemes for information storage and processing using spintronic devices. A key question involves the internal structure of the domain walls, which governs their response to certain current-driven torques such as the spin Hall effect. Here we show that magnetic microscopy based on a single nitrogen-vacancy defect in diamond can provide a direct determination of the internal wall structure in ultrathin ferromagnetic films under ambient conditions. We find pure Bloch walls in Ta/CoFeB(1 nm)/MgO, while left-handed Néel walls are observed in Pt/Co(0.6 nm)/AlOx. The latter indicates the presence of a sizable interfacial Dzyaloshinskii-Moriya interaction, which has strong bearing on the feasibility of exploiting novel chiral states such as skyrmions for information technologies.

  13. Trajectory and chirality of vortex domain walls in ferromagnetic nanowires with an asymmetric Y-branch

    NASA Astrophysics Data System (ADS)

    Brandão, J.; Mello, A.; Garcia, F.; Sampaio, L. C.

    2017-03-01

    The motion and trajectory of vortex domain walls (VDWs) driven by magnetic field were investigated in Fe80Ni20 nanowires with an asymmetric Y-shape branch. By using the focused magneto-optical Kerr effect, we have probed the injection, pinning, and propagation of VDWs in the branch and in the wire beyond the branch entrance. Hysteresis cycles measured at these points show 3 and 4 jumps in the magnetization reversal, respectively. Micromagnetic simulations were carried out to obtain the number of jumps in the hysteresis cycles, and the magnetization process involved in each jump. Based on simulations and from the size of the jumps in the measured hysteresis cycles, one obtains the histogram of the domain wall type probability. While in the branch domain walls of different types are equiprobable, in the nanowire vortex domain walls with counter clockwise and clockwise chiralities and transverse-down domain walls are measured with probabilities of 65%, 25%, and 10%, respectively. These results provide an additional route to select the trajectory and chirality of VDWs in magnetic nanostructures.

  14. Stress-mediated magnetoelectric control of ferromagnetic domain wall position in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Mathurin, Théo; Giordano, Stefano; Dusch, Yannick; Tiercelin, Nicolas; Pernod, Philippe; Preobrazhensky, Vladimir

    2016-02-01

    The motion of a ferromagnetic domain wall in nanodevices is usually induced by means of external magnetic fields or polarized currents. Here, we demonstrate the possibility to reversibly control the position of a Néel domain wall in a ferromagnetic nanostripe through a uniform mechanical stress. The latter is generated by an electro-active substrate combined with the nanostripe in a multiferroic heterostructure. We develop a model describing the magnetization distribution in the ferromagnetic material, properly taking into account the magnetoelectric coupling. Through its numerical implementation, we obtain the relationship between the electric field applied to the piezoelectric substrate and the position of the magnetic domain wall in the nanostripe. As an example, we analyze a structure composed of a PMN-PT substrate and a TbCo2/FeCo composite nanostripe.

  15. An all-metallic logic gate based on current-driven domain wall motion.

    PubMed

    Xu, Peng; Xia, Ke; Gu, Changzhi; Tang, Ling; Yang, Haifang; Li, Junjie

    2008-02-01

    The walls of magnetic domains can become trapped in a ferromagnetic metallic point contact when the thickness of the film and the width of the contact are less than their critical values. The discovery that domain walls can be moved from such constrictions by a sufficiently large current has attracted considerable attention from researchers working on both fundamental research and potential applications. Here we show that Invar nanocontacts fabricated on silica substrates exhibit a sharp drop in resistance with increasing bias voltage at room temperature in the absence of an applied magnetic field. Moreover, when two nanocontacts are combined in an all-metallic comparison circuit, it is possible to perform logical NOT operations. The use of electrical currents rather than applied magnetic fields to control the domain walls also reduces energy consumption and the risk of crosstalk in devices.

  16. Layer resolved magnetic domain imaging of epitaxial heterostructures in large applied magnetic fields

    SciTech Connect

    Zohar, S.; Choi, Y.; Love, D. M.; Mansell, R.; Barnes, C. H. W.; Keavney, DJ.; Rosenberg, R. A.

    2015-02-16

    We use X-ray Excited Luminescence Microscopy to investigate the elemental and layer resolved magnetic reversal in an interlayer exchange coupled (IEC) epitaxial Fe/Cr wedge/Co heterostructure. The transition from strongly coupled parallel Co-Fe reversal for Cr thickness t(Cr) < 0.34 nm to weakly coupled layer independent reversal for t(Cr) > 1.5 nm is punctuated at 0.34 < t(Cr) < 1.5 nm by a combination of IEC guided domain wall motion and stationary zig zag domain walls. Domain walls nucleated at switching field minima are guided by IEC spatial gradients and collapse at switching field maxima.

  17. Layer resolved magnetic domain imaging of epitaxial heterostructures in large applied magnetic fields

    NASA Astrophysics Data System (ADS)

    Zohar, S.; Choi, Y.; Love, D. M.; Mansell, R.; Barnes, C. H. W.; Keavney, D. J.; Rosenberg, R. A.

    2015-02-01

    We use X-ray Excited Luminescence Microscopy to investigate the elemental and layer resolved magnetic reversal in an interlayer exchange coupled (IEC) epitaxial Fe/Cr wedge/Co heterostructure. The transition from strongly coupled parallel Co-Fe reversal for Cr thickness tCr < 0.34 nm to weakly coupled layer independent reversal for tCr > 1.5 nm is punctuated at 0.34 < tCr < 1.5 nm by a combination of IEC guided domain wall motion and stationary zig zag domain walls. Domain walls nucleated at switching field minima are guided by IEC spatial gradients and collapse at switching field maxima.

  18. Velocity asymmetry of Dzyaloshinskii domain walls in the creep and flow regimes.

    PubMed

    Vaňatka, M; Rojas-Sánchez, J-C; Vogel, J; Bonfim, M; Belmeguenai, M; Roussigné, Y; Stashkevich, A; Thiaville, A; Pizzini, S

    2015-08-19

    We have carried out measurements of domain wall dynamics in a Pt/Co/GdOx(t) wedge sample with perpendicular magnetic anisotropy. When driven by an easy-axis field Hz in the presence of an in-plane field Hx, the domain wall propagation is different along [Formula: see text]x, as expected for samples presenting Dzyaloshinskii-Moriya (DMI) interaction. In the creep regime, the sign and the value of the domain wall velocity asymmetry changes along the wedge. We show that in our samples the domain wall speed versus Hx curves in the creep regime cannot be explained simply in terms of the variation of the domain wall energy with Hx, as suggested by previous works. For this reason the strength and the sign of the DMI cannot be extracted from these measurements. To obtain reliable information on the DMI strength using magnetic field-induced domain wall dynamics, measurements have been performed with high fields, bringing the DW close to the flow regime of propagation. In this case we find large values of the DMI, consistent in magnitude and sign with those obtained from Brillouin light scattering measurements.

  19. Polarization domain walls in optical fibres as topological bits for data transmission

    PubMed Central

    Gilles, M.; Bony, P-Y.; Garnier, J.; Picozzi, A.; Guasoni, M.; Fatome, J.

    2016-01-01

    Domain walls are topological defects which occur at symmetry-breaking phase transitions. While domain walls have been intensively studied in ferromagnetic materials, where they nucleate at the boundary of neighbouring regions of oppositely aligned magnetic dipoles, their equivalent in optics have not been fully explored so far. Here, we experimentally demonstrate the existence of a universal class of polarization domain walls in the form of localized polarization knots in conventional optical fibres. We exploit their binding properties for optical data transmission beyond the Kerr limits of normally dispersive fibres. In particular, we demonstrate how trapping energy in well-defined train of polarization domain walls allows undistorted propagation of polarization knots at a rate of 28 GHz along a 10 km length of normally dispersive optical fibre. These results constitute the first experimental observation of kink-antikink solitary wave propagation in nonlinear fibre optics. PMID:28168000

  20. Annealing effect on current-driven domain wall motion in Pt/[Co/Ni] wire

    NASA Astrophysics Data System (ADS)

    Furuta, Masaki; Liu, Yang; Sepehri-Amin, Hossein; Hono, Kazuhiro; Zhu, Jian-Gang Jimmy

    2017-09-01

    The annealing effect on the efficiency of current-driven domain wall motion governed by the spin Hall effect in perpendicularly magnetized Pt/[Co/Ni] wires is investigated experimentally. Important physical parameters, such as the Dzyaloshinskii-Moriya Interaction (DMI), spin Hall angle, and perpendicular anisotropy field strength, for the domain wall motion are all characterized at each annealing temperature. It is found that annealing of wires at temperatures over 120 °C causes significant reduction of the domain wall velocity. Energy dispersive X-ray spectroscopy analysis shows pronounced Co diffusion across the Pt/Co interface resulted from annealing at relatively high temperatures. The combined modeling study shows that the reduction of DMI caused by annealing is mostly responsible for the domain wall velocity reduction due to annealing.

  1. Direct imaging of topological edge states at a bilayer graphene domain wall.

    PubMed

    Yin, Long-Jing; Jiang, Hua; Qiao, Jia-Bin; He, Lin

    2016-06-17

    The AB-BA domain wall in gapped graphene bilayers is a rare naked structure hosting topological electronic states. Although it has been extensively studied in theory, a direct imaging of its topological edge states is still missing. Here we image the topological edge states at the graphene bilayer domain wall by using scanning tunnelling microscope. The simultaneously obtained atomic-resolution images of the domain wall provide us unprecedented opportunities to measure the spatially varying edge states within it. The one-dimensional conducting channels are observed to be mainly located around the two edges of the domain wall, which is reproduced quite well by our theoretical calculations. Our experiment further demonstrates that the one-dimensional topological states are quite robust even in the presence of high magnetic fields. The result reported here may raise hopes of graphene-based electronics with ultra-low dissipation.

  2. Polarization domain walls in optical fibres as topological bits for data transmission

    NASA Astrophysics Data System (ADS)

    Gilles, M.; Bony, P.-Y.; Garnier, J.; Picozzi, A.; Guasoni, M.; Fatome, J.

    2017-01-01

    Domain walls are topological defects that occur at symmetry-breaking phase transitions. Although domain walls have been intensively studied in ferromagnetic materials, where they nucleate at the boundary of neighbouring regions of oppositely aligned magnetic dipoles, their equivalents in optics have not been fully explored so far. Here, we experimentally demonstrate the existence of a universal class of polarization domain walls in the form of localized polarization knots in conventional optical fibres. We exploit their binding properties for optical data transmission beyond the Kerr limits of normally dispersive fibres. In particular, we demonstrate how trapping energy in a well-defined train of polarization domain walls allows undistorted propagation of polarization knots at a rate of 28 GHz along a 10 km length of normally dispersive optical fibre. These results constitute the first experimental observation of kink-antikink solitary wave propagation in nonlinear fibre optics.

  3. Polarization domain walls in optical fibres as topological bits for data transmission.

    PubMed

    Gilles, M; Bony, P-Y; Garnier, J; Picozzi, A; Guasoni, M; Fatome, J

    2017-02-01

    Domain walls are topological defects which occur at symmetry-breaking phase transitions. While domain walls have been intensively studied in ferromagnetic materials, where they nucleate at the boundary of neighbouring regions of oppositely aligned magnetic dipoles, their equivalent in optics have not been fully explored so far. Here, we experimentally demonstrate the existence of a universal class of polarization domain walls in the form of localized polarization knots in conventional optical fibres. We exploit their binding properties for optical data transmission beyond the Kerr limits of normally dispersive fibres. In particular, we demonstrate how trapping energy in well-defined train of polarization domain walls allows undistorted propagation of polarization knots at a rate of 28 GHz along a 10 km length of normally dispersive optical fibre. These results constitute the first experimental observation of kink-antikink solitary wave propagation in nonlinear fibre optics.

  4. Imaging of domain wall inertia in Permalloy half-ring nanowires by time-resolved photoemission electron microscopy.

    PubMed

    Rhensius, J; Heyne, L; Backes, D; Krzyk, S; Heyderman, L J; Joly, L; Nolting, F; Kläui, M

    2010-02-12

    Using photoemission electron microscopy, we image the dynamics of a field pulse excited domain wall in a Permalloy nanowire. We find a delay in the onset of the wall motion with respect to the excitation and an oscillatory relaxation of the domain wall back to its equilibrium position, defined by an external magnetic field. The origin of both of these inertia effects is the transfer of energy between energy reservoirs. By imaging the distribution of the exchange energy in the wall spin structure, we determine these reservoirs, which are the basis of the domain wall mass concept.

  5. Efficient Photovoltaic Current Generation at Ferroelectric Domain Walls

    NASA Astrophysics Data System (ADS)

    Seidel, Jan; Fu, Deyi; Yang, Seung-Yeul; Alarcón-Lladó, Esther; Wu, Junqiao; Ramesh, Ramamoorthy; Ager, Joel W., III

    2011-09-01

    We elucidate the mechanism of a newly observed photovoltaic effect which occurs in ferroelectrics with periodic domain structures. Under sufficiently strong illumination, domain walls function as nanoscale generators of the photovoltaic current. The steps in the electrostatic potential function to accumulate electrons and holes on opposite sides of the walls while locally reducing the concentration of the oppositely charged carriers. As a result, the recombination rate adjacent to the walls is reduced, leading to a net diffusion current. In open circuit, photovoltages for periodically ordered domain walls are additive and voltages much larger than the band gap can be generated. The internal quantum efficiency for individual domain walls can be surprisingly high, approaching 10% for above band-gap photons. Although we have found the effect in BiFeO3 films, it should occur in any system with a similar periodic potential.

  6. Experimental observation of the interaction of propagating spin waves with Néel domain walls in a Landau domain structure

    SciTech Connect

    Pirro, P.; Sebastian, T.; Leven, B.; Hillebrands, B.; Koyama, T.; Brächer, T.

    2015-06-08

    The interaction of propagating dipolar spin waves with magnetic domain walls is investigated in square-shaped microstructures patterned from the Heusler compound Co{sub 2}Mn{sub 0.6}Fe{sub 0.4}Si. Using magnetic force microscopy, the reversible preparation of a Landau state with four magnetic domains separated by Néel domain walls is confirmed. A local spin-wave excitation using a microstructured antenna is realized in one of the domains. It is shown by Brillouin light scattering microscopy that the domain structure in the remanence state has a strong influence on the spin-wave excitation and propagation. The domain walls strongly reflect the spin waves and can be used as spin-wave reflectors. A comparison with micromagnetic simulations shows that the strong reflection is due to the long-range dipolar interaction which has important implications for the use of these spin waves for exerting an all-magnonic spin-transfer torque.

  7. Domain wall pinning in amorphous CoZrNb films

    NASA Astrophysics Data System (ADS)

    Guyot, M.; Rouabhi, M.; Krishnan, R.; Porte, M.; Niedoba, H.; Cagan, V.

    1993-05-01

    A series of CoZrNb amorphous films, with thickness t ranging from 200 to 630 nm, has been studied by using several techniques: Kerr imaging, dc and audio frequency hysteresis loops, field dependence of the permeability, torque balance, broadband frequency susceptometer (1 kHz≤f≤500 MHz). Only samples with t≤500 nm have simple domain structures typical of an in-plane anisotropy (with a small dispersion of the easy axis). Although domain walls (DW) are visible, they do not contribute to the initial permeability in the observed frequency range (even in the favorable case where the magnetic field is parallel to the easy axis), but they do play a role on the irreversible magnetization processes as shown by the existence of a critical field Hcr, typical of the onset of irreversible DW motion. These observations are consistant with a model which assumes that the DW are pinned at the film surfaces: the calculations give a negligible DW bulging contribution to the initial permeability, and predict the occurence of a DW unpinning field, thickness dependent as observed.

  8. Current-driven dynamics of chiral ferromagnetic domain walls.

    PubMed

    Emori, Satoru; Bauer, Uwe; Ahn, Sung-Min; Martinez, Eduardo; Beach, Geoffrey S D

    2013-07-01

    In most ferromagnets the magnetization rotates from one domain to the next with no preferred handedness. However, broken inversion symmetry can lift the chiral degeneracy, leading to topologically rich spin textures such as spin spirals and skyrmions through the Dzyaloshinskii-Moriya interaction (DMI). Here we show that in ultrathin metallic ferromagnets sandwiched between a heavy metal and an oxide, the DMI stabilizes chiral domain walls (DWs) whose spin texture enables extremely efficient current-driven motion. We show that spin torque from the spin Hall effect drives DWs in opposite directions in Pt/CoFe/MgO and Ta/CoFe/MgO, which can be explained only if the DWs assume a Néel configuration with left-handed chirality. We directly confirm the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral. This work resolves the origin of controversial experimental results and highlights a new path towards interfacial design of spintronic devices.

  9. Functional electronic inversion layers at ferroelectric domain walls

    NASA Astrophysics Data System (ADS)

    Mundy, J. A.; Schaab, J.; Kumagai, Y.; Cano, A.; Stengel, M.; Krug, I. P.; Gottlob, D. M.; Doğanay, H.; Holtz, M. E.; Held, R.; Yan, Z.; Bourret, E.; Schneider, C. M.; Schlom, D. G.; Muller, D. A.; Ramesh, R.; Spaldin, N. A.; Meier, D.

    2017-06-01

    Ferroelectric domain walls hold great promise as functional two-dimensional materials because of their unusual electronic properties. Particularly intriguing are the so-called charged walls where a polarity mismatch causes local, diverging electrostatic potentials requiring charge compensation and hence a change in the electronic structure. These walls can exhibit significantly enhanced conductivity and serve as a circuit path. The development of all-domain-wall devices, however, also requires walls with controllable output to emulate electronic nano-components such as diodes and transistors. Here we demonstrate electric-field control of the electronic transport at ferroelectric domain walls. We reversibly switch from resistive to conductive behaviour at charged walls in semiconducting ErMnO3. We relate the transition to the formation--and eventual activation--of an inversion layer that acts as the channel for the charge transport. The findings provide new insight into the domain-wall physics in ferroelectrics and foreshadow the possibility to design elementary digital devices for all-domain-wall circuitry.

  10. Transverse Domain Wall Profile for Spin Logic Applications

    PubMed Central

    Goolaup, S.; Ramu, M.; Murapaka, C.; Lew, W. S.

    2015-01-01

    Domain wall (DW) based logic and memory devices require precise control and manipulation of DW in nanowire conduits. The topological defects of Transverse DWs (TDW) are of paramount importance as regards to the deterministic pinning and movement of DW within complex networks of conduits. In-situ control of the DW topological defects in nanowire conduits may pave the way for novel DW logic applications. In this work, we present a geometrical modulation along a nanowire conduit, which allows for the topological rectification/inversion of TDW in nanowires. This is achieved by exploiting the controlled relaxation of the TDW within an angled rectangle. Direct evidence of the logical operation is obtained via magnetic force microscopy measurement. PMID:25900455

  11. Depinning transition of a domain wall in ferromagnetic films

    DOE PAGES

    Xi, Bin; Luo, Meng -Bo; Vinokur, Valerii M.; ...

    2015-09-14

    We report first principle numerical study of domain wall (DW) depinning in two-dimensional magnetic film, which is modeled by 2D random-field Ising system with the dipole-dipole interaction. We observe non-conventional activation-type motion of DW and reveal the fractal structure of DW near the depinning transition. We determine scaling functions describing critical dynamics near the transition and obtain universal exponents establishing connection between thermal softening of pinning potential and critical dynamics. In addition, we observe that tuning the strength of the dipole-dipole interaction switches DW dynamics between two different universality classes, corresponding to two distinct dynamic regimes characterized by non-Arrhenius andmore » conventional Arrhenius-type DW motions.« less

  12. Depinning transition of a domain wall in ferromagnetic films

    SciTech Connect

    Xi, Bin; Luo, Meng -Bo; Vinokur, Valerii M.; Hu, Xiao

    2015-09-14

    We report first principle numerical study of domain wall (DW) depinning in two-dimensional magnetic film, which is modeled by 2D random-field Ising system with the dipole-dipole interaction. We observe non-conventional activation-type motion of DW and reveal the fractal structure of DW near the depinning transition. We determine scaling functions describing critical dynamics near the transition and obtain universal exponents establishing connection between thermal softening of pinning potential and critical dynamics. In addition, we observe that tuning the strength of the dipole-dipole interaction switches DW dynamics between two different universality classes, corresponding to two distinct dynamic regimes characterized by non-Arrhenius and conventional Arrhenius-type DW motions.

  13. Depinning Transition of a Domain Wall in Ferromagnetic Films

    PubMed Central

    Xi, Bin; Luo, Meng-Bo; Vinokur, Valerii M.; Hu, Xiao

    2015-01-01

    We report first principle numerical study of domain wall (DW) depinning in two-dimensional magnetic film, which is modeled by 2D random-field Ising system with the dipole-dipole interaction. We observe nonconventional activation-type motion of DW and reveal the fractal structure of DW near the depinning transition. We determine scaling functions describing critical dynamics near the transition and obtain universal exponents establishing connection between thermal softening of pinning potential and critical dynamics. We observe that tuning the strength of the dipole-dipole interaction switches DW dynamics between two different universality classes, corresponding to two distinct dynamic regimes characterized by non-Arrhenius and conventional Arrhenius-type DW motions. PMID:26365753

  14. Surface effect on domain wall width in ferroelectrics

    SciTech Connect

    Eliseev, Eugene A.; Morozovska, Anna N.; Kalinin, Sergei V.; Li, Yulan; Shen, Jie; Glinchuk, Maya D.; Chen , L.Q.; Gopalan, Venkatraman

    2009-10-15

    We study the effect of the depolarization field on a domain wall structure near the surface of a ferroelectric. Since in real situation bound and screening charges form an electric double layer, the breaking of this layer by the domain wall induces stray depolarization field, which in turn changes the domain wall structure. Power law decay of the stray field results in the power law of polarization saturation near the surface, as compared to exponential saturation in the bulk. Obtained results predict that the surface broadening of ferroelectric domain walls appeared near Curie temperature as well as describe domain wall depth profile in weak ferroelectrics. We qualitatively describe extra-broad domain walls near LiNbO3 and LiTaO3 surfaces observed experimentally at room temperature, which probably originate at high temperatures but did not fully relax their width with temperature decrease allowing for lattice pinning and defect centers. Thus results have broad implication for fundamental issues such as maximal information storage density in ferroelectric data storage, domain wall pinning mechanisms at surfaces and interfaces, and nucleation dynamics.

  15. Controlled manipulation of domain walls in ultra-thin CoFeB nanodevices

    NASA Astrophysics Data System (ADS)

    Wells, J.; Lee, J. H.; Mansell, R.; Cowburn, R. P.; Kazakova, O.

    2016-02-01

    We report on studies of magnetic domain wall (DW) movement within nanodevices containing magnetic components formed from perpendicularly magnetised CoFeB (0.6 nm) thin films. Methods for low energy and smooth DW propagation as well as controlled and reproducible pinning of DWs at geometrically defined sites along nanowires are presented. Conventional anomalous Hall effect measurements as well as an indirect method using overlying electrodes are presented and compared. The results obtained from the individual studies of DW injection, propagation, pinning and measurement are assimilated into a prototype device suitable for the controlled pinning and annihilation of a single domain wall within the structure.

  16. Magnetic Domains in Magnetostrictive Fe-Ga Alloys

    SciTech Connect

    Q. Xing; T.A. Lograsso

    2008-11-03

    Lorentz microscopy was applied to the observation of magnetic domains in iron-gallium (Fe-Ga) alloys. Results did not show any link between the magnetic domains and the magnetostriction enhancement by Ga addition, but did reveal that the drastic decrease in magnetostriction for Fe-31.2 at. % Ga was due to the presence of large scale precipitates. Magnetic domain features did not change in the alloys of A2, D0{sub 3}, A2+D0{sub 3}, A2+B2+D0{sub 3}, and A2+fine scale precipitates. Large scale precipitates within the slow-cooled Fe-31.2 at. % Ga affected both the distribution and wall motion of magnetic domains.

  17. Calculation of the strange quark mass using domain wall fermions

    SciTech Connect

    Blum, Tom; Soni, Amarjit; Wingate, Matthew

    1999-12-01

    We present a first calculation of the strange quark mass using domain wall fermions. This paper contains an overview of the domain wall discretization and a pedagogical presentation of the perturbative calculation necessary for computing the mass renormalization. We combine the latter with numerical simulations to estimate the strange quark mass. Our final result in the quenched approximation is 95(26) MeV in the MS scheme at a scale of 2 GeV. We find that domain wall fermions have a small perturbative mass renormalization, similar to Wilson quarks, and exhibit good scaling behavior. (c) 1999 The American Physical Society.

  18. Effect of curvature on domain wall motion in elliptical nanorings

    NASA Astrophysics Data System (ADS)

    Kaya, Fikriye Idil; Bickel, Jessica; Aidala, Katherine

    2014-03-01

    Understanding domain wall (DW) motion in ferromagnetic nanostructures is important to realize proposed magnetic data storage and logic devices. We investigate the effect of curvature on DW pinning and motion by studying elliptical rings using micromagnetic simulations. Elliptical rings with constant width have varying curvature, with the lowest curvature at the minor axis, and the greatest curvature at the major axis. DWs can be created at any angular position within the ellipse by the application of an appropriate uniform magnetic field. However, only some of these positions are stable when the field is removed. We study the stability and depinning of the DWs by applying a slowly increasing elliptical magnetic field to determine the magnitude of the field at which the DWs begin to move. By varying the major to minor axis ratio, we examine the effect of curvature on DW pinning. A larger field is required to move DWs in regions of higher curvature (near the major axis) than lower curvature (near the minor axis). Overall, we see that increasing the major to minor axis ratio of elliptical nanorings requires increasing field strength to depin the DWs along the major axis. Work supported in part by NSF DMR-1207924 and NSF CMMI-1025020. Simulations performed at the CNS computational facilities at Harvard University, a member of the NNIN supported by NSF Award No. ECS-0335765.

  19. Gravitational waves from domain walls and their implications

    NASA Astrophysics Data System (ADS)

    Nakayama, Kazunori; Takahashi, Fuminobu; Yokozaki, Norimi

    2017-07-01

    We evaluate the impact of domain-wall annihilation on the currently ongoing and planned gravitational wave experiments, including a case in which domain walls experience a frictional force due to interactions with the ambient plasma. We show the sensitivity reach in terms of physical parameters, namely, the wall tension and the annihilation temperature. We find that a Higgs portal scalar, which stabilizes the Higgs potential at high energy scales, can form domain walls whose annihilation produces a large amount of gravitational waves within the reach of the advanced LIGO experiment (O5). Domain wall annihilation can also generate baryon asymmetry if the scalar is coupled to either SU(2)L gauge fields or the (B - L) current. This is a variant of spontaneous baryogenesis, but it naturally avoids the isocurvature constraint due to the scaling behavior of the domain-wall evolution. We delineate the parameter space where the domain-wall baryogenesis works successfully and discuss its implications for the gravitational wave experiments.

  20. Microwave conductance of ferroelectric domain walls in lead titanate

    NASA Astrophysics Data System (ADS)

    Tselev, Alexander; Cao, Ye; Yu, Pu; Kalinin, Sergei V.; Maksymovych, Petro

    Numerous theoretical works predicted electronically conducting domain walls in otherwise insulating ferroelectric crystals. A number of recent experiments reported conducting walls, although conductivity itself and a conclusive proof of conductance mechanism remain elusive, largely due to the electrical contact problem. The latter can be overcome using high-frequency AC voltage. Here we will present our successful measurements of microwave conductance at 180o domain walls in lead titanate using microwave microscopy. AC conducting domain walls can be repeatably reconfigured and have extraordinary stability in time and temperature. AC conductivity is detected even when DC is not. Quantitative modeling reveals that the conductance of domain walls is comparable to doped silicon. We will also present a new and robust mechanism to create charged domain walls in any ferroelectric lattice. Overall, this sets the stage for a new generation of local experiments on conducting domain walls, and furthers the prospects of their application in fast electronic devices. AT, YC, SVK, PM supported by Division of Materials Sciences and Engineering, Office of Science, Basic Energy Sciences, U. S. DOE. PY supported by the National Basic Research Program of China (2015CB921700).

  1. Low field domain wall dynamics in artificial spin-ice basis structure

    SciTech Connect

    Kwon, J.; Goolaup, S.; Lim, G. J.; Kerk, I. S.; Lew, W. S.; Chang, C. H.; Roy, K.

    2015-10-28

    Artificial magnetic spin-ice nanostructures provide an ideal platform for the observation of magnetic monopoles. The formation of a magnetic monopole is governed by the motion of a magnetic charge carrier via the propagation of domain walls (DWs) in a lattice. To date, most experiments have been on the static visualization of DW propagation in the lattice. In this paper, we report on the low field dynamics of DW in a unit spin-ice structure measured by magnetoresistance changes. Our results show that reversible DW propagation can be initiated within the spin-ice basis. The initial magnetization configuration of the unit structure strongly influences the direction of DW motion in the branches. Single or multiple domain wall nucleation can be induced in the respective branches of the unit spin ice by the direction of the applied field.

  2. Microscopic and macroscopic signatures of antiferromagnetic domain walls.

    PubMed

    Jaramillo, R; Rosenbaum, T F; Isaacs, E D; Shpyrko, O G; Evans, P G; Aeppli, G; Cai, Z

    2007-03-16

    Magnetotransport measurements on small single crystals of Cr, the elemental antiferromagnet, reveal the hysteretic thermodynamics of the domain structure. The temperature dependence of the transport coefficients is directly correlated with the real-space evolution of the domain configuration as recorded by x-ray microprobe imaging, revealing the effect of antiferromagnetic domain walls on electron transport. A single antiferromagnetic domain wall interface resistance is deduced to be of order 5 x 10(-5) mu Omega cm(2) at a temperature of 100 K.

  3. Scalar triplet on a domain wall: an exact solution

    NASA Astrophysics Data System (ADS)

    Gani, Vakhid A.; Lizunova, Mariya A.; Radomskiy, Roman V.

    2016-04-01

    We study a model with a real scalar Higgs field and a scalar triplet field that allows existence of a topological defect — a domain wall. The wall breaks the global O(3) symmetry of the model, which gives rise to non-Abelian orientational degrees of freedom. We found an exact analytic solution that describes a domain wall with a localized configuration of the triplet field on it. This solution enables one to calculate contributions to the action from the orientational and translational degrees of freedom of the triplet field. We also study the linear stability of the domain wall with the triplet field switched off. We obtain that degrees of freedom localized on the wall can appear or do not appear depending on the parameters of the model.

  4. Domain wall formation in late-time phase transitions

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Wang, Yun

    1992-01-01

    We examine domain wall formulation in late time phase transitions. We find that in the invisible axion domain wall phenomenon, thermal effects alone are insufficient to drive different parts of the disconnected vacuum manifold. This suggests that domain walls do not form unless either there is some supplemental (but perhaps not unreasonable) dynamics to localize the scalar field responsible for the phase transition to the low temperature maximum (to an extraordinary precision) before the onset of the phase transition, or there is some non-thermal mechanism to produce large fluctuations in the scalar field. The fact that domain wall production is not a robust prediction of late time transitions may suggest future directions in model building.

  5. Chirality-Dependent Transmission of Spin Waves through Domain Walls

    NASA Astrophysics Data System (ADS)

    Buijnsters, F. J.; Ferreiros, Y.; Fasolino, A.; Katsnelson, M. I.

    2016-04-01

    Spin-wave technology (magnonics) has the potential to further reduce the size and energy consumption of information-processing devices. In the submicrometer regime (exchange spin waves), topological defects such as domain walls may constitute active elements to manipulate spin waves and perform logic operations. We predict that spin waves that pass through a domain wall in an ultrathin perpendicular-anisotropy film experience a phase shift that depends on the orientation of the domain wall (chirality). The effect, which is absent in bulk materials, originates from the interfacial Dzyaloshinskii-Moriya interaction and can be interpreted as a geometric phase. We demonstrate analytically and by means of micromagnetic simulations that the phase shift is strong enough to switch between constructive and destructive interference. The two chirality states of the domain wall may serve as a memory bit or spin-wave switch in magnonic devices.

  6. Temperature-dependent dynamics of stochastic domain-wall depinning in nanowires.

    PubMed

    Wuth, Clemens; Lendecke, Peter; Meier, Guido

    2012-01-18

    The temperature dependence of domain-wall depinning in permalloy nanowires is investigated by measuring depinning fields and corresponding depinning times as a function of the external magnetic bias field. Domain walls are pinned at triangular notches in the nanowires and detected noninvasively by Hall micromagnetometry. This technique allows one to acquire depinning-field and depinning-time distributions in the temperature range between 5 and 50 K and thus to determine the stochastics of the depinning process. The results are discussed in terms of the Néel-Brown model for thermally activated magnetization reversal, assuming a single energy barrier to overcome. In general, the cases presented deviate from this description and give a clear indication that a more complex term for the energy landscape of domain-wall depinning at constrictions in nanowires is obligatory.

  7. Approximation of fermion resonances on a splitting domain wall

    NASA Astrophysics Data System (ADS)

    Farokhtabar, A.; Tofighi, A.

    2017-08-01

    In this paper the splitting of a domain wall is investigated analytically in flat spacetime. We also study fermion localization and resonances on this domain wall. Masses of Kaluza-Klein modes determined by two methods, numerical method and approximation one. We observe that the agreement between approximated values and numeric ones is good. It is found that the number of fermion resonances on the brane is increased with mass parameter.

  8. Spontaneous layer-pseudospin domain walls in bilayer graphene.

    PubMed

    Li, Xiao; Zhang, Fan; Niu, Qian; MacDonald, A H

    2014-09-12

    Bilayer graphene is susceptible to a family of unusual broken symmetry states with spin and valley dependent layer polarization. We report on a microscopic study of the domain walls in these systems, demonstrating that they have interesting microscopic structure related to the topological character of the ordered states. We use our results to show that the metal-insulator transition temperature in bilayer graphene is reduced from mean-field estimates by thermal excitation of domain walls.

  9. Direct Observation of Current-Induced Motion of a 3D Vortex Domain Wall in Cylindrical Nanowires.

    PubMed

    Ivanov, Yurii P; Chuvilin, Andrey; Lopatin, Sergei; Mohammed, Hanan; Kosel, Jurgen

    2017-05-24

    The current-induced dynamics of 3D magnetic vortex domain walls in cylindrical Co/Ni nanowires are revealed experimentally using Lorentz microscopy and theoretically using micromagnetic simulations. We demonstrate that a spin-polarized electric current can control the reversible motion of 3D vortex domain walls, which travel with a velocity of a few hundred meters per second. This finding is a key step in establishing fast, high-density memory devices based on vertical arrays of cylindrical magnetic nanowires.

  10. Determination of domain wall chirality using in situ Lorentz transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.; McMorran, Benjamin J.

    2017-05-01

    Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. This presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEM setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.

  11. Determination of domain wall chirality using in situ Lorentz transmission electron microscopy

    DOE PAGES

    Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.; ...

    2017-02-23

    Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less

  12. Voltage drop due to longitudinal spin accumulation across the ballistic domain wall

    NASA Astrophysics Data System (ADS)

    Fallahi, V.; Safaei, R.

    2016-08-01

    The ballistic magnetoresistance (MR) of a domain wall constricted in a nanocontact between two p -type semiconducting magnetic nanowires is studied theoretically using the Landauer-Büttiker approach. Our analysis is based on coherent scattering of the carriers by the spin-dependent potential associated with the wall structure. The transmission properties of coherent states are obtained by introducing an algorithm to solve the coupled spin channels Schrödinger equation with mixed Dirichlet-Neumann boundary conditions applied far from the domain wall. Then, the local accumulated spin densities along the nanowire produced by electrical spin injection at the nanocontact are numerically calculated. It is demonstrated that the induced voltage drop due to the longitudinal spin accumulation considerably increases in the case of the narrow domain walls. Furthermore, it is shown that two spin accumulation and mistracking effects give approximately equal contributions to the wall MR ratio in the limit of the sharp domain walls. However, the MR ratio is dominantly determined by the spin accumulation effect as the domain wall width increases.

  13. Nanoscale Origins of Ferroelastic Domain Wall Mobility in Ferroelectric Multilayers

    DOE PAGES

    Huang, Hsin-Hui; Hong, Zijian; Xin, Huolin L.; ...

    2016-10-31

    Here we investigate the nanoscale origins of ferroelastic domain wall motion in ferroelectric multilayer thin films that lead to giant electromechanical responses. We present direct evidence for complex underpinning factors that result in ferroelastic domain wall mobility using a combination of atomic-level aberration corrected scanning transmission electron microscopy and phase-field simulations in model epitaxial (001) tetragonal (T) PbZrxTi1-xO3 (PZT)/rhombohedral (R) PbZrxTi1-xO3 (PZT) bilayer heterostructures. The local electric dipole distribution is imaged on an atomic scale for a ferroelastic domain wall that nucleates in the R-layer and cuts through the composition breaking the T/R interface. Our studies reveal a highly complexmore » polarization rotation domain structure that is nearly on the knife-edge at the vicinity of this wall. Induced phases, namely tetragonal-like and rhombohedral-like monoclinic were observed close to the interface, and exotic domain arrangements, such as a half-four-fold closure structure, are observed. Phase field simulations show this is due to the minimization of the excessive elastic and electrostatic energies driven by the enormous strain gradient present at the location of the ferroelastic domain walls. Thus, in response to an applied stimulus, such as an electric field, any polarization reorientation must minimize the elastic and electrostatic discontinuities due to this strain gradient, which would induce a dramatic rearrangement of the domain structure. This insight into the origins of ferroelastic domain wall motion will allow researchers to better “craft” such multilayered ferroelectric systems with precisely tailored domain wall functionality and enhanced sensitivity, which can be exploited for the next generation of integrated piezoelectric technologies.« less

  14. Nanoscale Origins of Ferroelastic Domain Wall Mobility in Ferroelectric Multilayers

    SciTech Connect

    Huang, Hsin-Hui; Hong, Zijian; Xin, Huolin L.; Su, Dong; Chen, Long-Qing; Huang, Guanzhong; Munroe, Paul R.; Valanoor, Nagarajan

    2016-10-31

    Here we investigate the nanoscale origins of ferroelastic domain wall motion in ferroelectric multilayer thin films that lead to giant electromechanical responses. We present direct evidence for complex underpinning factors that result in ferroelastic domain wall mobility using a combination of atomic-level aberration corrected scanning transmission electron microscopy and phase-field simulations in model epitaxial (001) tetragonal (T) PbZrxTi1-xO3 (PZT)/rhombohedral (R) PbZrxTi1-xO3 (PZT) bilayer heterostructures. The local electric dipole distribution is imaged on an atomic scale for a ferroelastic domain wall that nucleates in the R-layer and cuts through the composition breaking the T/R interface. Our studies reveal a highly complex polarization rotation domain structure that is nearly on the knife-edge at the vicinity of this wall. Induced phases, namely tetragonal-like and rhombohedral-like monoclinic were observed close to the interface, and exotic domain arrangements, such as a half-four-fold closure structure, are observed. Phase field simulations show this is due to the minimization of the excessive elastic and electrostatic energies driven by the enormous strain gradient present at the location of the ferroelastic domain walls. Thus, in response to an applied stimulus, such as an electric field, any polarization reorientation must minimize the elastic and electrostatic discontinuities due to this strain gradient, which would induce a dramatic rearrangement of the domain structure. This insight into the origins of ferroelastic domain wall motion will allow researchers to better “craft” such multilayered ferroelectric systems with precisely tailored domain wall functionality and enhanced sensitivity, which can be exploited for the next generation of integrated piezoelectric technologies.

  15. Theory of Current-Driven Domain Wall Motion: Spin Transfer versus Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Tatara, Gen; Kohno, Hiroshi

    2004-02-01

    A self-contained theory of the domain wall dynamics in ferromagnets under finite electric current is presented. The current has two effects: one is momentum transfer, which is proportional to the charge current and wall resistivity (ρw); the other is spin transfer, proportional to spin current. For thick walls, as in metallic wires, the latter dominates and the threshold current for wall motion is determined by the hard-axis magnetic anisotropy, except for the case of very strong pinning. For thin walls, as in nanocontacts and magnetic semiconductors, the momentum-transfer effect dominates, and the threshold current is proportional to V0/ρw, V0 being the pinning potential.

  16. Characteristic microwave background distortions from collapsing domain wall bubbles

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1990-01-01

    The magnitude and angular pattern of distortions of the microwave background are analyzed by collapsing spherical domain walls. A characteristic pattern of redshift distortions of red or blue spikes surrounded by blue discs was found. The width and height of a spike is related to the diameter and magnitude of the disc. A measurement of the relations between these quantities thus can serve as an unambiguous indicator for a collapsing spherical domain wall. From the redshift distortion in the blue discs an upper bound was found on the surface energy density of the walls sigma is less than or approximately 8 MeV cubed.

  17. Depinning of domain walls in permalloy nanowires with asymmetric notches

    PubMed Central

    Gao, Y.; You, B.; Ruan, X. Z.; Liu, M. Y.; Yang, H. L.; Zhan, Q. F.; Li, Z.; Lei, N.; Zhao, W. S.; Pan, D. F.; Wan, J. G.; Wu, J.; Tu, H. Q.; Wang, J.; Zhang, W.; Xu, Y. B.; Du, J.

    2016-01-01

    Effective control of the domain wall (DW) motion along the magnetic nanowires is of great importance for fundamental research and potential application in spintronic devices. In this work, a series of permalloy nanowires with an asymmetric notch in the middle were fabricated with only varying the width (d) of the right arm from 200 nm to 1000 nm. The detailed pinning and depinning processes of DWs in these nanowires have been studied by using focused magneto-optic Kerr effect (FMOKE) magnetometer, magnetic force microscopy (MFM) and micromagnetic simulation. The experimental results unambiguously exhibit the presence of a DW pinned at the notch in a typical sample with d equal to 500 nm. At a certain range of 200 nm < d < 500 nm, both the experimental and simulated results show that the DW can maintain or change its chirality randomly during passing through the notch, resulting in two DW depinning fields. Those two depinning fields have opposite d dependences, which may be originated from different potential well/barrier generated by the asymmetric notch with varying d. PMID:27600627

  18. Depinning of domain walls in permalloy nanowires with asymmetric notches

    NASA Astrophysics Data System (ADS)

    Gao, Y.; You, B.; Ruan, X. Z.; Liu, M. Y.; Yang, H. L.; Zhan, Q. F.; Li, Z.; Lei, N.; Zhao, W. S.; Pan, D. F.; Wan, J. G.; Wu, J.; Tu, H. Q.; Wang, J.; Zhang, W.; Xu, Y. B.; Du, J.

    2016-09-01

    Effective control of the domain wall (DW) motion along the magnetic nanowires is of great importance for fundamental research and potential application in spintronic devices. In this work, a series of permalloy nanowires with an asymmetric notch in the middle were fabricated with only varying the width (d) of the right arm from 200 nm to 1000 nm. The detailed pinning and depinning processes of DWs in these nanowires have been studied by using focused magneto-optic Kerr effect (FMOKE) magnetometer, magnetic force microscopy (MFM) and micromagnetic simulation. The experimental results unambiguously exhibit the presence of a DW pinned at the notch in a typical sample with d equal to 500 nm. At a certain range of 200 nm < d < 500 nm, both the experimental and simulated results show that the DW can maintain or change its chirality randomly during passing through the notch, resulting in two DW depinning fields. Those two depinning fields have opposite d dependences, which may be originated from different potential well/barrier generated by the asymmetric notch with varying d.

  19. Hybrid normal metal/ferromagnetic nanojunctions for domain wall tracking.

    PubMed

    Corte-León, Héctor; Krzysteczko, Patryk; Manzin, Alessandra; Schumacher, Hans Werner; Antonov, Vladimir; Kazakova, Olga

    2017-07-24

    Hybrid normal metal/ferromagnetic, gold/permalloy (Au/Py), nanojunctions are used to investigate magnetoresistance effects and track magnetization spatial distribution in L-shaped Py nanostructures. Transversal and longitudinal resistances are measured and compared for both straight and 90° corner sections of the Py nanostructure. Our results demonstrate that the absolute change in resistance is larger in the case of longitudinal measurements. However, due to the small background resistance, the relative change in the transversal resistance along the straight section is several orders of magnitude larger than the analogous longitudinal variation. These results prove that hybrid nanojunctions represent a significant improvement with respect to previously studied all-ferromagnetic crosses, as they also reduce the pinning potential at the junction and allow probing the magnetization locally. In addition, unusual metastable states with longitudinal domain walls along Py straight sections are observed. Micromagnetic simulations in combination with a magnetotransport model allow interpretation of the results and identification of the observed transitions.

  20. Scaling Behavior of the First Arrival Time of a Random-Walking Magnetic Domain

    SciTech Connect

    Im, M.-Y.; Lee, S.-H.; Kim, D.-H.; Fischer, P.; Shin, S.-C.

    2008-02-04

    We report a universal scaling behavior of the first arrival time of a traveling magnetic domain wall into a finite space-time observation window of a magneto-optical microscope enabling direct visualization of a Barkhausen avalanche in real time. The first arrival time of the traveling magnetic domain wall exhibits a nontrivial fluctuation and its statistical distribution is described by universal power-law scaling with scaling exponents of 1.34 {+-} 0.07 for CoCr and CoCrPt films, despite their quite different domain evolution patterns. Numerical simulation of the first arrival time with an assumption that the magnetic domain wall traveled as a random walker well matches our experimentally observed scaling behavior, providing an experimental support for the random-walking model of traveling magnetic domain walls.