Science.gov

Sample records for magnetic field drag

  1. Wave associated anomalous drag during magnetic field reconnection

    SciTech Connect

    Mozer, F. S.; Wilber, M.; Drake, J. F.

    2011-10-15

    The anomalous drag, D, due to large amplitude plasma waves is used for the first time, in place of {eta}*j, to estimate dissipation at the sub-solar magnetopause and to determine the extent to which this drag accounts for the reconnection electric field. This anomalous drag is determined by measuring correlations of the fluctuations in the electric field and plasma density. Large amplitude electric fields occurred more than 60% of the time in the more than 100 sub-solar, low latitude magnetopause crossings of the THEMIS satellite. They occurred mainly near the magnetospheric separatrix in the form of electrostatic lower hybrid and whistler waves. The anomalous drag at the separatrix was generally <10% of the average reconnection electric field, and it was <1% of the field in the current sheet. Thus, anomalous drag due to waves is not a significant driver of reconnection or of the required dissipation at the sub-solar magnetopause.

  2. Frame-dragging effects on magnetic fields near a rotating black hole

    NASA Astrophysics Data System (ADS)

    Karas, V.; Kopáček, O.; Kunneriath, D.

    2012-07-01

    We discuss the role of general relativity frame dragging acting on magnetic field lines near a rotating (Kerr) black hole. Near ergosphere the magnetic structure becomes strongly influenced and magnetic null points can develop. We consider aligned magnetic fields as well as fields inclined with respect to the rotation axis, and the two cases are shown to behave in profoundly different ways. Further, we construct surfaces of equal values of local electric and magnetic intensities, which have not yet been discussed in the full generality of a boosted rotating black hole.

  3. Coulomb drag upturn in an undoped electron-hole bilayer in perpendicular and parallel magnetic fields.

    SciTech Connect

    Seamons, John Andrew; Lilly, Michael Patrick; Morath, Christian Paul; Reno, John Louis

    2010-03-01

    A low-temperature upturn of the Coulomb drag resistivity {rho}{sub D} measured in undoped electron-hole bilayer devices, possibly manifesting from formation of a superfluid condensate or density modulated state, was recently observed. Here the effects of perpendicular and parallel magnetic fields on the drag upturn are examined. Measurements of {rho}{sub D} and drive layer resistivity {rho}{sub xx-e} as a function of temperature and magnetic field in two uEHBL devices are presented. In B{sub {perpendicular}}, the drag upturn was enhanced as the field increased up to roughly .2 T, beyond which oscillations in {rho}{sub D} and {rho}{sub xx-e}, reflecting Landau level formation, begin appearing. A small phase offset between those oscillations, which decreased at higher fields and temperatures, was also observed. In B{sub {parallel}}, the drag upturn magnitude diminished as the field increased. Above the upturn regime, both {rho}{sub D} and {rho}{sub xx-e} were enhanced by B{sub {parallel}}, the latter via decreased screening of the uniform background impurities.

  4. Axisymmetric Two-Dimensional Computation of Magnetic Field Dragging in Accretion Disks

    NASA Technical Reports Server (NTRS)

    Reyes-Ruiz, Mauricio; Stepinski, Tomasz F.

    1996-01-01

    In this paper we model a geometrically thin accretion disk interacting with an externally imposed, uniform, vertical magnetic field. The accretion flow in the disk drags and distorts field lines, amplifying the magnetic field in the process. Inside the disk the radial component of the field is sheared into a toroidal component. The aim of this work is to establish the character of the resultant magnetic field and its dependence on the disk's parameters. We concentrate on alpha-disks driven by turbulent viscosity. Axisymmetric, two-dimensional solutions are obtained without taking into account the back-reaction of the magnetic field on the structure of the disk. The character of the magnetic field depends strongly on the magnitude of the magnetic Prandtl number, P . We present two illustrative examples of viscous disks: a so-called 'standard' steady state model of a disk around a compact star (e.g., cataclysmic variable), and a steady state model of a proto-planetary disk. In both cases, P = 1, P = 10(sup -1), and P = 10(sup -2) scenarios are calculated. Significant bending and magnification of the magnetic field is possible only for disks characterized by P of the order of 10(sup -2). In such a case, the field lines are bent sufficiently to allow the development of a centrifugally driven wind. Inside the disk the field is dominated by its toroidal component. We also investigate the dragging of the magnetic field by a nonviscous protoplanetary disk described by a phenomenological model. This scenario leads to large distortion and magnification of the magnetic field.

  5. Oblique Magnetic Fields and the Role of Frame Dragging near Rotating Black Hole

    NASA Astrophysics Data System (ADS)

    Karas, V.; Kopacek, O.; Kunneriath, D.; Hamersky, J.

    2014-12-01

    Magnetic null points can develop near the ergosphere boundary of a rotating black hole by the combined effects of strong gravitational field and the frame-dragging mechanism. The induced electric component does not vanish in the magnetic null and an efficient process of particle acceleration can occur in its immediate vicinity. Furthermore, the effect of imposed (weak) magnetic field can trigger an onset of chaos in the motion of electrically charged particles. The model set-up appears to be relevant for low-accretion-rate nuclei of some galaxies which exhibit episodic accretion events (such as the Milky Way's supermassive black hole) embedded in a large-scale magnetic field of external origin with respect to the central black hole. In this contribution we summarise recent results and we give an outlook for future work with the focus on the role of gravito-magnetic effects caused by rotation of the black hole.

  6. MAGNETIC DRAG ON HOT JUPITER ATMOSPHERIC WINDS

    SciTech Connect

    Perna, Rosalba; Menou, Kristen; Rauscher, Emily

    2010-08-20

    Hot Jupiters, with atmospheric temperatures T {approx}> 1000 K, have residual thermal ionization levels sufficient for the interaction of ions with the planetary magnetic field to result in a sizable magnetic drag on the (neutral) atmospheric winds. We evaluate the magnitude of magnetic drag in a representative three-dimensional atmospheric model of the hot Jupiter HD 209458b and find that it is a plausible mechanism to limit wind speeds in this class of atmospheres. Magnetic drag has a strong geometrical dependence, both meridionally and from the dayside to the nightside (in the upper atmosphere), which could have interesting consequences for the atmospheric flow pattern. By extension, close-in eccentric planets with transiently heated atmospheres will experience time-variable levels of magnetic drag. A robust treatment of magnetic drag in circulation models for hot atmospheres may require iterated solutions to the magnetic induction and Saha equations as the hydrodynamic flow is evolved.

  7. Stable motions of charged dust grains subject to solar wind, Poynting-Robertson drag, and the mean interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito

    2016-10-01

    We investigate the combined effect of solar wind, Poynting-Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting-Robertson drag) lead to a decrease in semi-major axis on secular time scales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semi-major axis.

  8. Charged Dust Grain Dynamics Subject to Solar Wind, Poynting–Robertson Drag, and the Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito

    2016-09-01

    We investigate the combined effect of solar wind, Poynting–Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z-component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting–Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.

  9. Charged Dust Grain Dynamics Subject to Solar Wind, Poynting-Robertson Drag, and the Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito

    2016-09-01

    We investigate the combined effect of solar wind, Poynting-Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z-component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting-Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.

  10. Ion drag as a mechanism of plasma dust structure rotation in a strata in a magnetic field

    NASA Astrophysics Data System (ADS)

    Dzlieva, E. S.; Karasev, V. Yu.; Mashek, I. Ch.; Pavlov, S. I.

    2016-06-01

    In experiments on complex plasmas, afixed strata region in which the levitation of dust structures is observed is investigated using the method of probing by calibrated dust particles of different sizes in an applied magnetic field under elevated pressures. The measured azimuthal velocity of the probing particles corresponds to the action of the ion drag force for 4 μm-size particles and to the entrainment by the rotating gas owing to the electron vortex flow inside the strata for 1 μm-size particles. Extrapolation to pressures and magnetic fields in which the rotation inversion of dust structures is observed in experiments shows that the ion drag is the dominating force causing rotation with a negative projection of the angular velocity onto the magnetic induction.

  11. Computational analysis of magnetic field induced deposition of magnetic particles in lung alveolus in comparison to deposition produced with viscous drag and gravitational force

    NASA Astrophysics Data System (ADS)

    Krafcik, Andrej; Babinec, Peter; Frollo, Ivan

    2015-04-01

    Magnetic targeting of drugs attached to magnetic nanoparticles with diameter ≈ 100 nm after their intravenous administration is an interesting method of drug delivery widely investigated both theoretically as well as experimentally. Our aim in this study is theoretical analysis of a magnetic aerosol targeting to the lung. Due to lung anatomy magnetic particles up to 5 μm can be safely used, therefore the magnetic force would be stronger, moreover drag force exerted on the particle is according to Stokes law linearly dependent on the viscosity, would be weaker, because the viscosity of the air in the lung is approximately 200 fold smaller than viscosity of the blood. Lung therefore represents unique opportunity for magnetic drug targeting, as we have shown in this study by the analysis of magnetic particle dynamics in a rhythmically expanding and contracting distal and proximal alveolus subjected to high-gradient magnetic field generated by quadrupolar permanent Halbach magnet array.

  12. The influence of the magnetic field on the effect of drag of electrons by phonons in n-Cd{sub x}Hg{sub 1-x}Te

    SciTech Connect

    Aliyev, S. A.; Zulfigarov, E. I.; Selim-Zade, R. I.; Agayev, Z. F.

    2009-09-15

    Thermopower in n-Cd{sub 0.2}Hg{sub 0.8}Te (6-100 K) is studied. A large effect of drag of the charge carriers by phonons {alpha}{sub ph} is found. The influence of the magnetic field H on the drag thermopower is considered. It is established that the magnetic field exerts the effect mainly on the electron component of {alpha}{sub ph}. The data are interpreted in the context of the theory taking into account the effect of H on thermopower {alpha}{sub ph}, in which parameter A({epsilon}) proportional to the static force of the drag effect is introduced. By the experimental data {alpha}{sub ph}(T, H), T, and H dependences A({epsilon}) are determined. It is shown that, as H increases, A({epsilon}) sharply decreases. This explains a decrease in {alpha}{sub ph} in the magnetic field, power index k in dependence {alpha}{sub ph} {proportional_to} T{sup -}{kappa}, and narrowing the region of manifestation of the drag effect. It is established that at classically high fields, the drag effect in n-Cd{sub 0.2}Hg{sub 0.8}Te does not vanish.

  13. The Wrapping of Magnetic Field Lines due to Frame Dragging around a Neutron Star

    NASA Astrophysics Data System (ADS)

    Herbst, Rhameez S.; Qadir, Asghar; Momoniat, Ebrahim

    2015-01-01

    In this short paper we report on the results found in modeling of a relativistically rotating neutron star. The star is modeled as a rotating magnetic dipole in a static spherical mass. It is found that the radiation for these relativistically rotating stars is severely reduced due to general relativistic effects. It is also found that in the limit, as the mass of the neutron star approaches 3.2M⊙, no radiation is emitted; this essentially signifies a black hole.

  14. Dragging human mesenchymal stem cells with the aid of supramolecular assemblies of single-walled carbon nanotubes, molecular magnets, and peptides in a magnetic field.

    PubMed

    de Paula, Ana Cláudia C; Sáfar, Gustavo A M; Góes, Alfredo M; Bemquerer, Marcelo P; Ribeiro, Marcos A; Stumpf, Humberto O

    2015-01-01

    Human adipose-derived stem cells (hASCs) are an attractive cell source for therapeutic applicability in diverse fields for the repair and regeneration of damaged or malfunctioning tissues and organs. There is a growing number of cell therapies using stem cells due to their characteristics of modulation of immune system and reduction of acute rejection. So a challenge in stem cells therapy is the delivery of cells to the organ of interest, a specific site. The aim of this paper was to investigate the effects of a supramolecular assembly composed of single-walled carbon nanotubes (SWCNT), molecular magnets (lawsone-Co-phenanthroline), and a synthetic peptide (FWYANHYWFHNAFWYANHYWFHNA) in the hASCs cultures. The hASCs were isolated, characterized, expanded, and cultured with the SWCNT supramolecular assembly (SWCNT-MA). The assembly developed did not impair the cell characteristics, viability, or proliferation. During growth, the cells were strongly attached to the assembly and they could be dragged by an applied magnetic field of less than 0.3 T. These assemblies were narrower than their related allotropic forms, that is, multiwalled carbon nanotubes, and they could therefore be used to guide cells through thin blood capillaries within the human body. This strategy seems to be useful as noninvasive and nontoxic stem cells delivery/guidance and tracking during cell therapy. PMID:25688350

  15. Dragging human mesenchymal stem cells with the aid of supramolecular assemblies of single-walled carbon nanotubes, molecular magnets, and peptides in a magnetic field.

    PubMed

    de Paula, Ana Cláudia C; Sáfar, Gustavo A M; Góes, Alfredo M; Bemquerer, Marcelo P; Ribeiro, Marcos A; Stumpf, Humberto O

    2015-01-01

    Human adipose-derived stem cells (hASCs) are an attractive cell source for therapeutic applicability in diverse fields for the repair and regeneration of damaged or malfunctioning tissues and organs. There is a growing number of cell therapies using stem cells due to their characteristics of modulation of immune system and reduction of acute rejection. So a challenge in stem cells therapy is the delivery of cells to the organ of interest, a specific site. The aim of this paper was to investigate the effects of a supramolecular assembly composed of single-walled carbon nanotubes (SWCNT), molecular magnets (lawsone-Co-phenanthroline), and a synthetic peptide (FWYANHYWFHNAFWYANHYWFHNA) in the hASCs cultures. The hASCs were isolated, characterized, expanded, and cultured with the SWCNT supramolecular assembly (SWCNT-MA). The assembly developed did not impair the cell characteristics, viability, or proliferation. During growth, the cells were strongly attached to the assembly and they could be dragged by an applied magnetic field of less than 0.3 T. These assemblies were narrower than their related allotropic forms, that is, multiwalled carbon nanotubes, and they could therefore be used to guide cells through thin blood capillaries within the human body. This strategy seems to be useful as noninvasive and nontoxic stem cells delivery/guidance and tracking during cell therapy.

  16. The plasma drag and dust motion inside the magnetized sheath

    SciTech Connect

    Pandey, B. P.; Vladimirov, S. V.; Samarian, A.

    2011-05-15

    The motion of micron size dust inside the sheath in the presence of an oblique magnetic field is investigated by self-consistently calculating the charge and various forces acting on the dust. It is shown that the dust trajectory inside the sheath, which is like an Archimedean spiral swinging back and forth between the wall and the plasma-sheath boundary, depends only indirectly on the orientation of the magnetic field. When the Lorentz force is smaller than the collisional momentum exchange, the dust dynamics is insensitive to the obliqueness of the magnetic field. Only when the magnetic field is strong enough, the sheath structure and, thus, the dust dynamics are significantly affected by the field orientation. Balance between the plasma drag, sheath electrostatic field, and gravity plays an important role in determining how far the dust can travel inside the sheath. The dust equilibrium point shifts closer to the wall in the presence of gravity and plasma drag. However, in the absence of plasma drag, dust can sneak back into the plasma if acted only by gravity. The implication of our results to the usability of dust as a sheath probe is discussed.

  17. Magnetic Viscous Drag for Friction Labs

    NASA Astrophysics Data System (ADS)

    Gaffney, Chris; Catching, Adam

    2016-09-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet sliding down a conducting ramp, e.g., an aluminum ramp (Fig. 1). The measurements are simple and quite reproducible, and it appears to readily catch the interest of students.

  18. Magnetic Viscous Drag for Friction Labs

    ERIC Educational Resources Information Center

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  19. Superconductor-Magnet Bearings With Inherent Stability and Velocity-Independent Drag Torque

    NASA Technical Reports Server (NTRS)

    Lee, Eun-Jeong; Ma, Ki Bui; Wilson, Thomas L.; Chu, Wei-Kan

    1999-01-01

    A hybrid superconductor magnet bearing system has been developed based on passive magnetic levitation and the flux pinning effect of high-temperature superconductivity. The rationale lies in the unique capability of a high-temperature superconductor (HTS) to enhance system stability passively without power consumption. Characterization experiments have been conducted to understand its dynamic behavior and to estimate the required motor torque for its driving system design. These experiments show that the hybrid HTS-magnet bearing system has a periodic oscillation of drag torque due mainly to the nonuniform magnetic field density of permanent magnets. Furthermore, such a system also suffers from a small superimposed periodic oscillation introduced by the use of multiple HTS disks rather than a uniform annulus of HTS material. The magnitude of drag torque is velocity independent and very small. These results make this bearing system appealing for high-speed application. Finally, design guidelines for superconducting bearing systems are suggested based on these experimental results.

  20. Field measurements of drag coefficients for model large woody debris

    NASA Astrophysics Data System (ADS)

    Hygelund, Bretagne; Manga, Michael

    2003-03-01

    Woody debris in rivers can be a significant source of roughness and consequently influences flow at both the local and reach scale. In order to develop a better quantitative understanding of the interaction between wood in rivers and stream flow, we thus performed a set of field measurements of the drag on model woody debris for conditions that prevail in typical natural streams. Our model debris consisted of PVC "logs" with diameters between 4 and 30 cm. The field setting allowed us to consider the hydrodynamic influence of a rough stream bottom, and our measurements thus complement previously published flume-based measurements. We found that, owing to the variation of velocity with water depth, some of our results differed appreciably from measurements made in smooth flumes. We determined the effects of (i) the orientation of the log, (ii) the size of the log relative to the water depth, (iii) the depth of the log in the water column, and (iv) leafless branches on the log. We found that the orientation of the log had no significant effect on the apparent drag coefficient. By contrast, because the water velocity varies with depth, the position of the log in the water column influenced the apparent drag for small logs. For large logs (diameter >30% of the water depth), however, the position of the log had little effect on drag. The ratio of the diameter of the log to the water depth, a quantity called "blockage," also affected drag. As blockage increased, drag increases. For blockages greater than about 0.3, however, the drag becomes independent of blockage. Finally, we found that the presence of leafless branches does not increase the drag (within measurement sensitivity).

  1. Lift to Drag Ratio Analysis in Magnetic Levitation with an Electrodynamic Wheel

    NASA Astrophysics Data System (ADS)

    Gutarra-Leon, Angel; Cordrey, Vincent; Majewski, Walerian

    Our experiments explored inductive magnetic levitation (MagLev) using simple permanent magnets and conductive tracks. Our investigations used a circular Halbach array with a 1 Tesla variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above or below a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields, which interact with the magnets of the EDW. We constructed a four-inch diameter Electrodynamic Wheel using twelve Neodymium permanent magnets and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW. These forces can be used for levitation and propulsion of the EDW to produce magnetic levitation without coils and complex control circuitry. We achieved full levitation of the non-magnetic aluminum and copper plates. Our results confirm the expected behavior of lift to drag ratio as proportional to (L/R) ω, with L and R being the inductance and resistance of the track plate, and ω being the angular velocity of the magnetic flux. Supported by grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  2. Influence of frame-dragging on magnetic null points near rotating black holes

    NASA Astrophysics Data System (ADS)

    Karas, V.; Kopáček, O.; Kunneriath, D.

    2012-02-01

    Understanding the mechanisms of particle acceleration from the vicinity of black holes poses a challenge. Electromagnetic effects are thought to be a prime suspect, but details still need an explanation. To this end, we study a three-dimensional structure of oblique magnetic fields near a rotating black hole in vacuum. It has been proposed that such a setup can lead to efficient acceleration when plasma is injected near a magnetic null point. We focus our attention especially on the magnetic field in the immediate neighborhood of the magnetic null point, which was previously shown to occur in the equatorial plane. By employing the line integral convolution method, we visualize the magnetic field lines and explore the electric lines rising out of the equatorial plane. We show the magnetic field structure near the boundary of ergosphere, depending on the spin of the black hole. Electric field develops a non-vanishing component passing through the magnetic null point and ensuring efficient acceleration of charged particles from this particular location near the horizon. We also examine the effect of translatory boost on the field lines. Similarly to the frame-dragging by rotation, the linear motion carries field lines along with the black hole. The position of the magnetic null point recedes from the black hole horizon as the spin parameter increases. For the extreme value of a = 1, the null point can occur outside the ergosphere.

  3. Drag measurements on a body of revolution in Langley's 13-inch Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1988-01-01

    NASA Langley's 13-inch Magnetic Suspension and Balance System (MSBS) has been used to conduct low-speed wind tunnel drag force measurements on a laminar-flow body-of-revolution free of support system interference, in order to verify the drag force measurement capabilities of the MSBS. The drag force calibrations and wind-on repeatability data obtained have verified the design capabilities for this system. A drag-prediction code has been used to assess the MSBS's usefulness in body drag estimation.

  4. Drag-driven instability of a dust layer in a magnetized protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Shadmehri, Mohsen; Oudi, Razieh; Rastegarzade, Gohar

    2016-09-01

    We study drag-driven instability in a protoplanetary disc consisting of a layer of single-sized dust particles which are coupled to the magnetized gas aerodynamically and the particle-to-gas feedback is included. We find a dispersion relation for axisymmetric linear disturbances and growth rate of the unstable modes are calculated numerically. While the secular gravitational instability in the absence of particle-togas feedback predicts the dust layer is unstable, magnetic fields significantly amplify the instability if the Toomre parameter for the gas component is fixed. We also show that even a weak magnetic field is able to amplify the instability more or less irrespective of the dust-gas coupling.

  5. Drag measurements on a modified prolate spheroid using a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1989-01-01

    Low-speed wind tunnel drag force measurements were taken on a modified prolate spheroid free of support interference. This body was tested at zero incidence in the NASA Langley 13 inch Magnetic Suspension and Balance System. This shape was one of two bodies tested to determine the drag force measuring capabilities of the 13 inch MSBS. In addition, support interference on this shape at zero incidence was quantified by using a dummy sting. The drag force calibrations and wind-on repeatability data make it possible to assess the drag force measuring capabilities of the 13 inch MSBS. Comparisons with and without the sting showed differences in the drag coefficients with the dummy sting case resulting in lower drag coefficients.

  6. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  7. The dust motion inside the magnetized sheath - The effect of drag forces

    SciTech Connect

    Pandey, B. P.; Samarian, A.; Vladimirov, S. V.

    2010-08-15

    The isolated charged dust inside the magnetized plasma sheath moves under the influence of the electron and ion drag force and the sheath electrostatic field. The charge on the dust is a function of its radius as well as the value of the ambient sheath potential. It is shown that the charge on the dust determines its trajectory and dust performs the spiraling motion inside the sheath. The location of the turning spiral is determined by the number of negative charge on the dust, which in turn is a function of the dust radius. The back and forth spiraling motion finally causes the dust to move in a small, narrow region of the sheath. For a bigger dust particle, the dust moves closer to the sheath presheath boundary suggesting that the bigger grains, owing to the strong repulsion between the wall and dust, will be unable to travel inside the sheath. Only small, micron-sized grains can travel closer to the wall before repulsion pushes it back toward the plasma-sheath boundary. The temporal behavior of the spiraling dust motion appears like a damped harmonic oscillation, suggesting that the plasma drag force causes dissipation of the electrostatic energy. However, after initial damping, the grain keeps oscillating although with much smaller amplitude. The possible application of the present results to the ongoing sheath experiments is discussed.

  8. Facility Measures Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

    1991-01-01

    Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

  9. Magnetic field mapper

    NASA Technical Reports Server (NTRS)

    Masters, R. M.; Stenger, F. J.

    1969-01-01

    Magnetic field mapper locates imperfections in cadmium sulphide solar cells by detecting and displaying the variations of the normal component of the magnetic field resulting from current density variations. It can also inspect for nonuniformities in other electrically conductive materials.

  10. The prevalence and severity of injuries in field hockey drag flickers: a retrospective cross-sectional study.

    PubMed

    Ng, Leo; Sherry, Dorianne; Loh, Wei Bing; Sjurseth, Andreas Myhre; Iyengar, Shrikant; Wild, Catherine; Rosalie, Simon

    2016-09-01

    The drag flick is the preferred method of scoring during a penalty corner in field hockey. Performing the drag flick requires a combination of strength, coordination and timing, which may increase susceptibility to injuries. However, injury prevalence in drag flickers has not previously been investigated. Therefore, this study compared the injury prevalence and severity of lower limb and lower back injuries between drag flickers and non-drag flickers in field hockey. A total of 432 local, national and international adult field hockey players (242 males, 188 females) completed an online questionnaire to retrospectively determine the 3-month prevalence and severity of ankle, knee, hip and lower back injuries. Of this group, 140 self-identified as drag flickers and 292 as non-drag flickers. The results showed that drag flickers had significantly higher prevalence of hip (OR: 1.541; 95% CI: 1.014, 2.343) and lower back injury (OR: 1.564; 95% CI: 1.034, 2.365) compared to non-drag flickers. No significant differences were observed between drag flickers and non-drag flickers in injury prevalence at the ankle and knee. There were no significant between-group differences in injury severity scores. Overall, the prevalence of hip and lower back injuries was significantly higher in drag flickers compared to non-drag flickers.

  11. Resonances of an Oscillating Conductive Pipe Driven by an Alternating Magnetic Field in the Presence of a Static Magnetic Field

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo

    2011-01-01

    A short conducting pipe that hangs from a weak spring is forced to oscillate by the magnetic field of a surrounding coaxial coil that has been excited by a low-frequency current source in the presence of an additional static magnetic field. Induced oscillating currents appear in the pipe. The pipe motion becomes damped by the dragging forces…

  12. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  13. Design of a cusped field thruster for drag-free flight

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chen, P. B.; Sun, Q. Q.; Hu, P.; Meng, Y. C.; Mao, W.; Yu, D. R.

    2016-09-01

    Drag-free flight has played a more and more important role in many space missions. The thrust control system is the key unit to achieve drag-free flight by providing a precise compensation for the disturbing force except gravity. The cusped field thruster has shown a significant potential to be capable of the function due to its long life, high efficiency, and simplicity. This paper demonstrates a cusped field thruster's feasibility in drag-free flight based on its instinctive characteristics and describes a detailed design of a cusped field thruster made by Harbin Institute of Technology (HIT). Furthermore, the performance test is conducted, which shows that the cusped field thruster can achieve a continuously variable thrust from 1 to 20 mN with a low noise and high resolution below 650 W, and the specific impulse can achieve 1800 s under a thrust of 18 mN and discharge voltage of 1000 V. The thruster's overall performance indicates that the cusped field thruster is quite capable of achieving drag-free flight. With the further optimization, the cusped field thruster will exhibit a more extensive application value.

  14. Exploiting Size-Dependent Drag and Magnetic Forces for Size-Specific Separation of Magnetic Nanoparticles

    PubMed Central

    Rogers, Hunter B.; Anani, Tareq; Choi, Young Suk; Beyers, Ronald J.; David, Allan E.

    2015-01-01

    Realizing the full potential of magnetic nanoparticles (MNPs) in nanomedicine requires the optimization of their physical and chemical properties. Elucidation of the effects of these properties on clinical diagnostic or therapeutic properties, however, requires the synthesis or purification of homogenous samples, which has proved to be difficult. While initial simulations indicated that size-selective separation could be achieved by flowing magnetic nanoparticles through a magnetic field, subsequent in vitro experiments were unable to reproduce the predicted results. Magnetic field-flow fractionation, however, was found to be an effective method for the separation of polydisperse suspensions of iron oxide nanoparticles with diameters greater than 20 nm. While similar methods have been used to separate magnetic nanoparticles before, no previous work has been done with magnetic nanoparticles between 20 and 200 nm. Both transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis were used to confirm the size of the MNPs. Further development of this work could lead to MNPs with the narrow size distributions necessary for their in vitro and in vivo optimization. PMID:26307980

  15. Measurement of dragging of inertial frames and gravitomagnetic field using laser-ranged satellites.

    NASA Astrophysics Data System (ADS)

    Ciufolini, I.; Lucchesi, D.; Vespe, F.; Mandiello, A.

    1996-05-01

    By analysing the observations of the orbits of the laser-ranged satellites LAGEOS and LAGEOS II, using the program GEODYN, the authors have obtained the first direct measurement of the Lense-Thirring effect, or dragging of inertial frames and the first direct experimental evidence for the gravitomagnetic field. The accuracy of their measurement is of about 30%.

  16. Drag measurements on a laminar-flow body of revolution in the 13-inch magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1989-01-01

    Low speed wind tunnel drag force measurements were taken on a laminar flow body of revolution free of support interference. This body was tested at zero incidence in the NASA Langley 13 in. Magnetic Suspension and Balance System (MSBS). The primary objective of these tests was to substantiate the drag force measuring capabilities of the 13 in. MSBS. The drag force calibrations and wind-on repeatability data provide a means of assessing these capabilities. Additional investigations include: (1) the effects of fixing transition; (2) the effects of fins installed in the tail; and (3) surface flow visualization using both liquid crystals and oil flow. Also two simple drag prediction codes were used to assess their usefulness in estimating overall body drag.

  17. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  18. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  19. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  20. Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Lin, Haosheng

    2007-05-01

    Centuries after the birth of modern solar astronomy, the Sun's corona still keeps many of its secrets: How is it heated to a million-degree temperature? How does it harbor the cool and dense prominence gas amid the tenuous and hot atmosphere? How does it drive the energetic events that eject particles into interplanetary space with speed exceeding 1% of the speed of light? We have greatly improved our knowledge of the solar corona with decades of space X-ray and EUV coronal observations, and many theories and models were put forward to address these problems. In our current understanding, magnetic fields are undoubtedly the most important fields in the corona, shaping its structure and driving its dynamics. It is clear that the resolution of these important questions all hinge on a better understanding of the organization, evolution, and interaction of the coronal magnetic field. However, as the direct measurement of coronal magnetic field is a very challenging observational problem, most of our theories and models were not experimentally verified. Nevertheless, we have finally overcome the experimental difficulties and can now directly measure the coronal magnetic field with great accuracy. This new capability can now be used to study the static magnetic structure of the corona, and offers hope that we will, in the near future, be able to directly observe the evolution of the coronal magnetic field of energetic solar events. More importantly, it finally allows us to conduct vigorous observational tests of our theories and models. In this lecture, I will review current research activities related to the observation, interpretation, and modeling of the coronal magnetic field, and discuss how they can help us resolve some of the long standing mysteries of the solar corona.

  1. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  2. Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field

    SciTech Connect

    Leonid E. Zakharov

    2002-03-13

    The paper gives the theory of magnetic propulsion of liquid lithium streams and their stability in tokamaks. In the approximation of a thin flowing layer the MHD equations are reduced to one integro-differential equation which takes into account the propulsion effect, viscosity and the drag force due to magnetic pumping and other interactions with the magnetic field. A criterion is obtained for the stabilization of the ''sausage'' instability of the streams by centrifugal force.

  3. Magnetic fields at uranus.

    PubMed

    Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1986-07-01

    The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.

  4. Concurrent field measurements of turbulent velocities, plant reconfiguration and drag forces on Ranunculus penicillatus

    NASA Astrophysics Data System (ADS)

    Paul, Maike; Thomas, Robert E.; Keevil, Gareth M.

    2013-04-01

    In lowland rivers, seasonal patterns of in-stream macrophyte growth and decay have significant implications for flood risk. For a given discharge, flood risk is increased when dense macrophyte canopies reduce flow areas, increase blockage ratios and alter reach-scale roughness values. These factors combine and can increase the flow depth. Conversely, submerged vegetation is exposed to drag forces exerted by the flow, which may be sufficient to damage limbs or dislodge plants. The classical drag equation suggests that the force exerted by fluid flows upon submerged vegetation is a function of the fluid properties, the projected area of the vegetation, and the square of the flow velocity. However, very few studies have simultaneously monitored all of these parameters, resulting in significant uncertainty in the estimation of the coefficient that relates these parameters to the drag force and also the related roughness parameters that control the flow depth for a given discharge. To our knowledge, this study presents the first concurrent field measurements of turbulent velocities, plant reconfigurations and drag forces acting on Ranunculus penicillatus ssp. pseudofluitans (Syme) S.D.Webster. Measurements were undertaken in an artificially straightened reach of the chalk-bed River Wylye, near Longbridge Deverill, Wiltshire, UK. The reach is 5.7 m wide and during measurements there was a mean flow depth of 0.28 m and an average discharge of 0.28 m³s-1. The reach is cleared of vegetation up to three times a year for flood defence purposes, but Ranunculus p. grows back within several weeks. Measurements were carried out after re-growth, when plants were fully developed with a mean length of 0.75 m and on average 6 nodes along the stem. The distances between the nodes increased from the base towards the tip and each node produced a capillary leaf, sometimes in conjunction with a branch. Floating leaves and flowers were not present. Plants were attached to a custom

  5. Electrically silent magnetic fields.

    PubMed Central

    Roth, B J; Wikswo, J P

    1986-01-01

    There has been a significant controversy over the past decade regarding the relative information content of bioelectric and biomagnetic signals. In this paper we present a new, theoretical example of an electrically-silent magnetic field, based on a bidomain model of a cylindrical strand of tissue generalized to include off-diagonal components in the conductivity tensors. The physical interpretation of the off-diagonal components is explained, and analytic expressions for the electrical potential and the magnetic field are found. These expressions show that information not obtainable from electrical potential measurements can be obtained from measurements of the magnetic field in systems with conductivity tensors more complicated than those previously examined. PMID:3779008

  6. TRAINING-INDUCED CHANGES IN DRAG-FLICK TECHNIQUE IN FEMALE FIELD HOCKEY PLAYERS

    PubMed Central

    Gómez, M.; Martín-Casado, L.; Navarro, E.

    2012-01-01

    The penalty corner is one of the most important goal plays in field hockey. The drag-flick is used less by women than men in a penalty corner. The aim of this study was to describe training-induced changes in the drag-flick technique in female field hockey players. Four female players participated in the study. The VICON optoelectronic system (Oxford Metrics, Oxford, UK) measured the kinematic parameters of the drag-flick with six cameras sampling at 250 Hz, prior to and after training. Fifteen shots were captured for each subject. A Wilcoxon test assessed the differences between pre-training and post-training parameters. Two players received specific training twice a week for 8 weeks; the other two players did not train. The proposed drills improved the position of the stick at the beginning of the shot (p < 0.05), the total distance of the shot (p < 0.05) and the rotation radius at ball release (p < 0.01). It was noted that all players had lost speed of the previous run. Further studies should include a larger sample, in order to provide more information on field hockey performance. PMID:24868116

  7. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    The origin and evolution of cosmic magnetic fields, their strength and structure in intergalactic space, their first occurrence in young galaxies, and their dynamical importance for galaxy evolution remain widely unknown. Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized radio synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 μG) and in central starburst regions (50-100 μG). Such fields are dynamically important; they can affect gas flows and drive gas inflows in central regions. Polarized radio emission traces ordered fields which can be regular or anisotropic turbulent, generated from isotropic turbulent fields by compression or shear. The strongest ordered fields of 10-15 μG strength are generally found in interarm regions and follow the orientation of adjacent gas spiral arms. In galaxies with strong density waves, ordered (anisotropic turbulent) fields are also observed at the inner edges of the spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Irregular galaxies host isotropic turbulent fields often of similar strength as in spiral galaxies, but only weak ordered fields. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several galaxies reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by a mean-field α -Ω dynamo. So far no indications were found in external galaxies of large-scale field reversals, like the one in the Milky Way. Ordered magnetic fields are also observed in radio halos

  8. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  9. Magnetization dynamics using ultrashort magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Tudosa, Ioan

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic

  10. Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Ravat, D.; Frawley, James J.

    1999-01-01

    Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.

  11. A Topology for the Penumbral Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.

    We describe a scenario for the topology of the magnetic field in penumbrae that accounts for recent observations showing upflows, downflows, and reverse magnetic polarities. According to our conjecture, short narrow magnetic loops fill the penumbral photosphere. Flows along these arched field lines are responsible for both the Evershed effect and the convective transport. This scenario seems to be qualitatively consistent with most existing observations, including the dark cores in penumbral filaments reported by Scharmer et al. Each bright filament with dark core would be a system of two paired convective rolls with the dark core tracing the common lane where the plasma sinks down. The magnetic loops would have a hot footpoint in one of the bright filament and a cold footpoint in the dark core. The scenario fits in most of our theoretical prejudices (siphon flows along field lines, presence of overturning convection, drag of field lines by downdrafts, etc). If the conjecture turns out to be correct, the mild upward and downward velocities observed in penumbrae must increase upon improving the resolution. This and other observational tests to support or disprove the scenario are put forward.

  12. Radiation drag in the field of a non-spherical source

    NASA Astrophysics Data System (ADS)

    Bini, D.; Geralico, A.; Passamonti, A.

    2015-01-01

    The motion of a test particle in the gravitational field of a non-spherical source endowed with both mass and mass quadrupole moment is investigated when a test radiation field is also present. The background is described by the Erez-Rosen solution, which is a static space-time belonging to the Weyl class of solutions to the vacuum Einstein's field equations, and reduces to the familiar Schwarzschild solution when the quadrupole parameter vanishes. The radiation flux has a fixed but arbitrary (non-zero) angular momentum. The interaction with the radiation field is assumed to be Thomson-like, i.e. the particles absorb and re-emit radiation, thus suffering for a friction-like drag force. Such an additional force is responsible for the Poynting-Robertson effect, which is well established in the framework of Newtonian gravity and has been recently extended to the general theory of relativity. The balance between gravitational attraction, centrifugal force and radiation drag leads to the occurrence of equilibrium circular orbits which are attractors for the surrounding matter for every fixed value of the interaction strength. The presence of the quadrupolar structure of the source introduces a further degree of freedom: there exists a whole family of equilibrium orbits parametrized by the quadrupole parameter, generalizing previous works. This scenario is expected to play a role in the context of accretion matter around compact objects.

  13. Evolution of primordial magnetic fields in mean-field approximation

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2014-01-01

    We study the evolution of phase-transition-generated cosmic magnetic fields coupled to the primeval cosmic plasma in the turbulent and viscous free-streaming regimes. The evolution laws for the magnetic energy density and the correlation length, both in the helical and the non-helical cases, are found by solving the autoinduction and Navier-Stokes equations in the mean-field approximation. Analytical results are derived in Minkowski spacetime and then extended to the case of a Friedmann universe with zero spatial curvature, both in the radiation- and the matter-dominated era. The three possible viscous free-streaming phases are characterized by a drag term in the Navier-Stokes equation which depends on the free-streaming properties of neutrinos, photons, or hydrogen atoms, respectively. In the case of non-helical magnetic fields, the magnetic intensity and the magnetic correlation length evolve asymptotically with the temperature, , as and . Here, , , and are, respectively, the temperature, the number of magnetic domains per horizon length, and the bulk velocity at the onset of the particular regime. The coefficients , , , , , and , depend on the index of the assumed initial power-law magnetic spectrum, , and on the particular regime, with the order-one constants and depending also on the cutoff adopted for the initial magnetic spectrum. In the helical case, the quasi-conservation of the magnetic helicity implies, apart from logarithmic corrections and a factor proportional to the initial fractional helicity, power-like evolution laws equal to those in the non-helical case, but with equal to zero.

  14. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  15. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  16. THE GALACTIC MAGNETIC FIELD

    SciTech Connect

    Jansson, Ronnie; Farrar, Glennys R.

    2012-12-10

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  17. The Martian magnetic field

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1979-01-01

    The paper presents an overview of the Martian magnetic field measurements and the criticisms made of them. The measurements of the Mars 2, 3, and 5 spacecraft were interpreted by Dolginov et al. (1976, 1978) to be consistent with an intrinsic planetary magnetic moment of 2.5 times 10 to the 22nd power gauss cu cm, basing this result on the apparent size of the obstacle responsible for deflecting the solar wind and an apparent encounter of the spacecraft with the planetary field. It is shown that if the dependence of the Martian magnetic moment on the rotation rate was linear, the estimate of the moment would be far larger than reported by Dolginov et al. An upper limit of 250 km is calculated for the dynamo radius using the similarity law, compared with 500 km obtained by Dolginov et al. It is concluded that the possible strength of a Martian dynamo is below expectations, and it is likely that the Mars dynamo is not presently operative.

  18. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  19. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  20. Generation of a North/South Magnetic Field Component from Variations in the Photospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ulrich, Roger K.; Tran, Tham

    2016-04-01

    We address the problem of calculating the transverse magnetic field in the solar wind outside of the hypothetical sphere that is called the source surface where the solar wind originates. This calculation must overcome a widely used fundamental assumption about the source surface - the field is normally required to be purely radial at the source surface. Our model rests on the fact that a change in the radial field strength at the source surface is a change in the field line density. Surrounding field lines must move laterally to accommodate this field line density change. As the outward wind velocity drags field lines past the source surface, this lateral component of motion produces a tilt, implying there is a transverse component to the field. An analytic method of calculating the lateral translation speed of the field lines is developed. We apply the technique to an interval of approximately two Carrington rotations at the beginning of 2011 using 2-h averages of data from the Helioseismic Magnetic Imager instrument onboard the Solar Dynamics Observatory spacecraft. We find that the value of the transverse magnetic field is dominated on a global scale by the effects of high-latitude concentrations of field lines that are buffeted by supergranular motions.

  1. Fast superconducting magnetic field switch

    SciTech Connect

    Goren, Y.; Mahale, N.K.

    1995-12-31

    The superconducting magnetic switch or fast kicker magnet is employed with an electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater than the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. Magnetic switches and particularly fast kicker magnets are used in the accelerator industry to quickly deflect particle beams into and out of various transport lines, storage rings, dumps, and specifically to differentially route individual bunches of particles from a train of bunches which are injected or ejected from a given ring.

  2. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  3. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  4. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  5. Magnetic field therapy: a review.

    PubMed

    Markov, Marko S

    2007-01-01

    There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation. PMID:17454079

  6. Chiral drag force

    NASA Astrophysics Data System (ADS)

    Rajagopal, Krishna; Sadofyev, Andrey V.

    2015-10-01

    We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and

  7. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  8. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  9. Precise numerical estimation of the magnetic field generated around recombination

    NASA Astrophysics Data System (ADS)

    Fidler, Christian; Pettinari, Guido; Pitrou, Cyril

    2016-05-01

    We investigate the generation of magnetic fields from nonlinear effects around recombination. As tight-coupling is gradually lost when approaching z ≃1100 , the velocity difference between photons and baryons starts to increase, leading to an increasing Compton drag of the photons on the electrons. The protons are then forced to follow the electrons due to the electric field created by the charge displacement; the same field, following Maxwell's laws, eventually induces a magnetic field on cosmological scales. Since scalar perturbations do not generate any magnetic field as they are curl-free, one has to resort to second-order perturbation theory to compute the magnetic field generated by this effect. We reinvestigate this problem numerically using the powerful second-order Boltzmann code SONG. We show that: (i) all previous studies do not have a high enough angular resolution to reach a precise and consistent estimation of the magnetic field spectrum; (ii) the magnetic field is generated up to z ≃10 ; (iii) it is in practice impossible to compute the magnetic field with a Boltzmann code for scales smaller than 1 Mpc. Finally we confirm that for scales of a few Mpc, this magnetic field is of order 2 ×10-29 G , many orders of magnitude smaller than what is currently observed on intergalactic scales.

  10. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  11. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  12. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  13. Drag measurements on a laminar flow body of revolution in Langley's 13 inch magnetic suspension and balance system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dress, David A.

    1988-01-01

    Low-speed wind tunnel drag force measurements were taken on a laminar flow body of revolution free of support interference. This body was tested at zero incidence in the NASA Langley 13 inch Magnetic Suspension and Balance System (MSBS). The primary objective of these tests was to substantiate the drag force measuring capabilities of the 13 inch MSBS. A secondary objective was to obtain support interference free drag measurements on an axisymmetric body of interest. Both objectives were met. The drag force calibrations and wind-on repeatability data provide a means of assessing the drag force measuring capabilities of the 13 inch MSBS. The measured drag coefficients for this body are of interest to researchers actively involved in designing minimum drag fuselage shapes. Additional investigations included: the effects of fixing transition; the effects of fins installed in the tail; surface flow visualizations using both liquid crystals and oil flow; and base pressure measurements using a one-channel telemetry system. Two drag prediction codes were used to assess their usefulness in estimating overall body drag. These theoretical results did not compare well with the measured values because of the following: incorrect or non-existent modeling of a laminar separation bubble on the body and incorrect of non-existent estimates of base pressure drag.

  14. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  15. [Magnetic fields and fish behavior].

    PubMed

    Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior.

  16. [Magnetic fields and fish behavior].

    PubMed

    Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25438567

  17. [Magnetic fields and fish behavior].

    PubMed

    2013-01-01

    In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25508098

  18. Magnetic fields in the cosmos

    NASA Astrophysics Data System (ADS)

    Parker, E. N.

    1983-08-01

    Descriptive models for the dynamo processes that generate magnetic fields around celestial objects are reviewed. Magnetic fields are produced, along with an electric current, when a conductor is moved perpendicularly through a magnetic field, so long as the resulting current is fed back into the conductor to amplify the current and field. In MHD theory, the lines of force of the magnetic field travel with the conducting fluid. A weak current or field must be present initially to generate the field. Planets have molten cores and stars have ionized gases to act as the conductors, and all space has sufficient gas with free electrons. The rotations of the planets, stars, and galaxy enhance the magnetic fields. Convective patterns have been characterized in the earth's molten core because of anomalies observed in the magnetic field at the surface. It has been shown that the faster a planet rotates, the more powerful its magnetic field is. However, fluid motions will produce fields only if the fluid motion is helical. The exact mechanism in stars could be primordial magnetism trapped during formation. However, in galaxies, the Biermann battery effect, wherein free electrons move along the surfaces of stars, could create enough of a field for the amplification process to proceed.

  19. Magnetic-field-dosimetry system

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  20. Mars Observer magnetic fields investigation

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Connerney, J. E. P.; Wasilewski, P.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Mcfadden, J.; Curtis, D. W.; Reme, H.; Cros, A.

    1992-01-01

    The magnetic fields experiment designed for the Mars Observer mission will provide definitive measurements of the Martian magnetic field from the transition and mapping orbits planned for the Mars Observer. The paper describes the instruments (which include a classical magnetometer and an electron reflection magnetometer) and techniques designed to investigate the nature of the Martian magnetic field and the Mars-solar wind interaction, the mapping of crustal magnetic fields, and studies of the Martian ionosphere, which are activities included in the Mars Observer mission objectives. Attention is also given to the flight software incorporated in the on-board data processor, and the procedures of data processing and analysis.

  1. DYNAMICAL FRICTION IN A GASEOUS MEDIUM WITH A LARGE-SCALE MAGNETIC FIELD

    SciTech Connect

    Sanchez-Salcedo, F. J.

    2012-02-01

    The dynamical friction force experienced by a massive gravitating body moving through a gaseous medium is modified by sufficiently strong large-scale magnetic fields. Using linear perturbation theory, we calculate the structure of the wake generated by, and the gravitational drag force on, a body traveling in a straight-line trajectory in a uniformly magnetized medium. The functional form of the drag force as a function of the Mach number ({identical_to} V{sub 0}/c{sub s} , where V{sub 0} is the velocity of the body and c{sub s} is the sound speed) depends on the strength of the magnetic field and on the angle between the velocity of the perturber and the direction of the magnetic field. In particular, the peak value of the drag force is not near Mach number {approx}1 for a perturber moving in a sufficiently magnetized medium. As a rule of thumb, we may state that for supersonic motion, magnetic fields act to suppress dynamical friction; for subsonic motion, they tend to enhance dynamical friction. For perturbers moving along the magnetic field lines, the drag force at some subsonic Mach numbers may be stronger than at supersonic velocities. We also mention the relevance of our findings to black hole coalescence in galactic nuclei.

  2. Magnetic Field of Mars

    NASA Astrophysics Data System (ADS)

    Cain, J. C.; Ferguson, B.; Mozzoni, D.; Hood, L.

    2000-07-01

    bodies combined with later absolute dating of Martian geologic units could lead to a quantitative constraint on the thermal history of the planet, i.e. the time when convective dynamo generation ceased in the core. Determination of directions of magnetization of anomaly sources as a function of age combined with the expectation that the Martian dynamo field was roughly aligned with the rotation axis would lead to a means of investigating polar wandering for Mars. Preliminary analysis of two magnetic anomalies in the northern polar region has yielded paleomagnetic pole positions near 50 N, 135 W, about 30 degrees north of Olympus Mons. This location is roughly consistent with the orientation of the planet expected theoretically prior to the formation of the Tharsis region. In the future, more accurate observations of the vector field at the lowest possible altitudes would significantly improve our understanding of Martian thermal history, polar wandering, and upper crustal evolution. Mapping potential resources (e.g., iron-rich source bodies) for future practical use would also be a side benefit. Additional information is contained in the original abstract.

  3. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  4. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  5. Can We Predict CME Deflections Based on Solar Magnetic Field Configuration Alone?

    NASA Astrophysics Data System (ADS)

    Kay, C.; Opher, M.; Evans, R. M.

    2013-12-01

    Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including predicting CME deflections close to the Sun and through interplanetary space. Deflections of CMEs occur due to variations in the background magnetic field or solar wind speed, magnetic reconnection, and interactions with other CMEs. Using our newly developed model of CME deflections due to gradients in the background solar magnetic field, ForeCAT (Kay et al. 2013), we explore the questions: (a) do all simulated CMEs ultimately deflect to the minimum in the background solar magnetic field? (b) does the majority of the deflection occur in the lower corona below 4 Rs? ForeCAT does not include temporal variations in the magnetic field of active regions (ARs), spatial variations in the background solar wind speed, magnetic reconnection, or interactions with other CMEs. Therefore we focus on the effects of the steady state solar magnetic field. We explore two different Carrington Rotations (CRs): CR 2029 (April-May 2005) and CR 2077 (November-December 2008). Little is known about how the density and magnetic field fall with distance in the lower corona. We consider four density models derived from observations (Chen 1996, Mann et al. 2003, Guhathakurta et al. 2006, Leblanc et al. 1996) and two magnetic field models (PFSS and a scaled model). ForeCAT includes drag resulting from both CME propagation and deflection through the background solar wind. We vary the drag coefficient to explore the effect of drag on the deflection at 1 AU.

  6. Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity

    SciTech Connect

    Huang, H. B.; Hu, J. M.; Yang, T. N.; Chen, L. Q.; Ma, X. Q.

    2014-09-22

    Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.

  7. Origin of cosmic magnetic fields.

    PubMed

    Campanelli, Leonardo

    2013-08-01

    We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)  G if the energy scale of inflation is few×10(16)  GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

  8. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  9. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  10. Structure of magnetic field lines

    NASA Astrophysics Data System (ADS)

    Golmankhaneh, Ali Khalili; Golmankhaneh, Alireza Khalili; Jazayeri, Seyed Masud; Baleanu, Dumitru

    2012-02-01

    In this paper the Hamiltonian structure of magnetic lines is studied in many ways. First it is used vector analysis for defining the Poisson bracket and Casimir variable for this system. Second it is derived Pfaffian equations for magnetic field lines. Third, Lie derivative and derivative of Poisson bracket is used to show structure of this system. Finally, it is shown Nambu structure of the magnetic field lines.

  11. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  12. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  13. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  14. Field-measured drag area is a key correlate of level cycling time trial performance.

    PubMed

    Peterman, James E; Lim, Allen C; Ignatz, Ryan I; Edwards, Andrew G; Byrnes, William C

    2015-01-01

    Drag area (Ad ) is a primary factor determining aerodynamic resistance during level cycling and is therefore a key determinant of level time trial performance. However, Ad has traditionally been difficult to measure. Our purpose was to determine the value of adding field-measured Ad as a correlate of level cycling time trial performance. In the field, 19 male cyclists performed a level (22.1 km) time trial. Separately, field-determined Ad and rolling resistance were calculated for subjects along with projected frontal area assessed directly (AP ) and indirectly (Est AP ). Also, a graded exercise test was performed to determine [Formula: see text] peak, lactate threshold (LT), and economy. [Formula: see text] peak ([Formula: see text]) and power at LT were significantly correlated to power measured during the time trial (r = 0.83 and 0.69, respectively) but were not significantly correlated to performance time (r = - 0.42 and -0.45). The correlation with performance time improved significantly (p < 0.05) when these variables were normalized to Ad . Of note, Ad alone was better correlated to performance time (r = 0.85, p < 0.001) than any combination of non-normalized physiological measure. The best correlate with performance time was field-measured power output during the time trial normalized to Ad (r = - 0.92). AP only accounted for 54% of the variability in Ad . Accordingly, the correlation to performance time was significantly lower using power normalized to AP (r = - 0.75) or Est AP (r = - 0.71). In conclusion, unless normalized to Ad , level time trial performance in the field was not highly correlated to common laboratory measures. Furthermore, our field-measured Ad is easy to determine and was the single best predictor of level time trial performance.

  15. Magnetic field synthesis for microwave magnetics

    NASA Astrophysics Data System (ADS)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  16. Magnetic field structure evolution in rotating magnetic field plasmas

    SciTech Connect

    Petrov, Yuri; Yang Xiaokang; Huang, T.-S.

    2008-07-15

    A study of magnetic field structure evolution during 40-ms plasma discharge has been performed in a new device with 80 cm long/40 cm diameter cylindrical chamber, in which a plasma current I{sub p}{approx_equal}2 kA was driven and sustained by a rotating magnetic field. The main focus of the experiments is on how the changes in externally applied magnetic field affect the current profile and magnetic field in plasma. During plasma discharge, a pulse current was briefly fed to a magnetic coil located at the midplane (middle coil). The magnetic field in cross section of plasma was scanned with pickup probes. Two regimes were studied: without and with an external toroidal field (TF) produced by axial I{sub z} current. With a relatively small current (I{sub m} {<=} 600 A) in the middle coil, the plasma current is boosted up to 5 kA. The magnetic flux surfaces become extended along the axial Z direction, sometimes with the formation of doublet shape plasma. The regime without TF appears to be less stable, presumably due to the reversal of plasma current in central area of plasma column.

  17. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  18. PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS

    SciTech Connect

    Yamamoto, Tetsuya T.; Kusano, K.

    2012-06-20

    Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

  19. Resonant magnetic fields from inflation

    NASA Astrophysics Data System (ADS)

    Byrnes, Christian T.; Hollenstein, Lukas; Jain, Rajeev Kumar; Urban, Federico R.

    2012-03-01

    We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of Script O(10-15 Gauss) today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

  20. The magnetic field of Neptune

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.

    1992-01-01

    A model is given of the planetary magnetic field of Neptune based on a spherical harmonic analysis of the observations obtained by the Voyager 2. Generalized inverse techniques are used to partially solve a severely underdetermined inverse problem, and the resulting model is nonunique since the observations are limited in spatial distribution. Dipole, quadrupole, and octupole coefficients are estimated independently of other terms, and the parameters are shown to be well constrained by the measurement data. The large-scale features of the magnetic field including dipole tilt, offset, and harmonic content are found to characterize a magnetic field that is similar to that of Uranus. The traits of Neptune's magnetic field are theorized to relate to the 'ice' interior of the planet, and the dynamo-field generation reflects this poorly conducting planet.

  1. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  2. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  3. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  4. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  5. Magnetic fields during galaxy mergers

    NASA Astrophysics Data System (ADS)

    Rodenbeck, Kai; Schleicher, Dominik R. G.

    2016-09-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies and may have a strong effect on their magnetic fields. We present the first grid-based 3D magnetohydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employed a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc, and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength previously reported in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is most likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, the magnetic field within the central ~5 kpc is physically enhanced, which reflects the enhancement in density that is due to efficient angular momentum transport. We conclude that high-resolution observations of the central regions will be particularly relevant for probing the evolution of magnetic field structures during merger events.

  6. Bioluminescence under static magnetic fields

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Ueno, S.

    1998-06-01

    In the present study, the effect of magnetic fields on the emission of light by a living system was studied. The fireflies Hotaria parvula and Luciola cruciata were used as the bioluminescence systems. The firefly light organ was fixed at the edge of an optical fiber. The emitted light was introduced into a single-channel photon-counting system using an optical fiber. We measured both the spectrum of a constant light emission and, the time course of bioluminescence pulses. Two horizontal-type superconducting magnets, which produced 8 and 14 T magnetic fields at their center, were used as the magnetic-field generators. We also carried out an in vitro study of bioluminescence. The enzymatic activity of luciferase was measured under a 14 T magnetic field. We measured emission spectra of bioluminescence over the interval 500-600 nm at 25 °C in a stable emission state. It was observed that the peak wavelength around 550 nm shifted to 560 nm under a 14 T magnetic field. However, the effects of magnetic fields were not significant. Also, we measured the time course of emissions at 550 nm in a transient emission state. The rate in the light intensity under a 14 T magnetic field increased compared to the control. There is a possibility that the change in the emission intensities under a magnetic field is related to a change in the biochemical systems of the firefly, such as the enzymatic process of luciferase and the excited singlet state with subsequent light emission.

  7. Magnetic field structure of Mercury

    NASA Astrophysics Data System (ADS)

    Hiremath, K. M.

    2012-04-01

    Recently planet Mercury - an unexplored territory in our solar system - has been of much interest to the scientific community due to recent flybys of the spacecraft MESSENGER that discovered its intrinsic stationary and large-scale dipole like magnetic field structure with an intensity of ˜300nT confirming Mariner 10 observations. In the present study, with the observed constraint of Mercury's atmospheric magnetic field structure, internal magnetic field structure is modeled as a solution of magnetic diffusion equation. In this study, Mercury's internal structure mainly consists of a stable stratified fluid core and the convective mantle. For simplicity, magnetic diffusivity in both parts of the structure is considered to be uniform and constant with a value represented by a suitable averages. It is further assumed that vigorous convection in the mantle disposes of the electric currents leading to a very high diffusivity in that region. Thus, in order to satisfy observed atmospheric magnetic field structure, Mercury's most likely magnetic field structure consists of a solution of MHD diffusion equation in the core and a combined multipolar (dipole and quadrupole like magnetic field structures embedded in the uniform field) solution of a current free like magnetic field structure in the mantle and in the atmosphere. With imposition of appropriate boundary conditions at the core-mantle boundary for the first two diffusion eigen modes, in order to satisfy the observed field structure, present study puts the constraint on Mercury's core radius to be ˜2000km. From the estimated magnetic diffusivity and the core radius, it is also possible to estimate the two diffusion eigen modes with their diffusion time scales of ˜8.6 and 3.7 billion years respectively suggesting that the planet inherits its present-day magnetic field structure from the solar Nebula. It is proposed that permanency of such a large-scale magnetic field structure of the planet is attained during

  8. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  9. The effect of sting interference at low speeds on the drag coefficient of an ellipsoidal body using a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Newcomb, A. W.

    1988-01-01

    A Boltz body of revolution (fineness ratio 7.5:1) was tested in the Southampton University Magnetic Suspension and Balance System. The effects of sting interference on the drag coefficient of the model at zero angle of attack were noted as well as the effects on drag coefficient values at boundary layer trips. The drag coefficient values were compared with other sources and seemed to show agreement. The pressure distribution over the rear of the model with no sting interference was investigated including the use of boundary layer trips.

  10. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  11. Field-measured drag area is a key correlate of level cycling time trial performance

    PubMed Central

    Peterman, James E.; Lim, Allen C.; Ignatz, Ryan I.; Edwards, Andrew G.

    2015-01-01

    Drag area (Ad) is a primary factor determining aerodynamic resistance during level cycling and is therefore a key determinant of level time trial performance. However, Ad has traditionally been difficult to measure. Our purpose was to determine the value of adding field-measured Ad as a correlate of level cycling time trial performance. In the field, 19 male cyclists performed a level (22.1 km) time trial. Separately, field-determined Ad and rolling resistance were calculated for subjects along with projected frontal area assessed directly (AP) and indirectly (Est AP). Also, a graded exercise test was performed to determine \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\dot {V}{O}_{2}$\\end{document}V˙O2 peak, lactate threshold (LT), and economy. \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\dot {V}{O}_{2}$\\end{document}V˙O2 peak (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\mathrm{l}~\\min ^{-1}$\\end{document}lmin−1) and power at LT were significantly correlated to power measured during the time trial (r = 0.83 and 0.69, respectively) but were not significantly correlated to performance time (r = − 0.42 and −0.45). The correlation with performance time improved significantly (p < 0.05) when these variables were normalized to Ad. Of note, Ad alone was better correlated to performance time (r = 0.85, p < 0.001) than any combination of non-normalized physiological

  12. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION MODELS OF HD 189733b AND HD 209458b WITH CONSISTENT MAGNETIC DRAG AND OHMIC DISSIPATION

    SciTech Connect

    Rauscher, Emily; Menou, Kristen

    2013-02-10

    We present the first three-dimensional circulation models for extrasolar gas giant atmospheres with geometrically and energetically consistent treatments of magnetic drag and ohmic dissipation. Atmospheric resistivities are continuously updated and calculated directly from the flow structure, strongly coupling the magnetic effects with the circulation pattern. We model the hot Jupiters HD 189733b (T {sub eq} Almost-Equal-To 1200 K) and HD 209458b (T {sub eq} Almost-Equal-To 1500 K) and test planetary magnetic field strengths from 0 to 30 G. We find that even at B = 3 G the atmospheric structure and circulation of HD 209458b are strongly influenced by magnetic effects, while the cooler HD 189733b remains largely unaffected, even in the case of B = 30 G and super-solar metallicities. Our models of HD 209458b indicate that magnetic effects can substantially slow down atmospheric winds, change circulation and temperature patterns, and alter observable properties. These models establish that longitudinal and latitudinal hot spot offsets, day-night flux contrasts, and planetary radius inflation are interrelated diagnostics of the magnetic induction process occurring in the atmospheres of hot Jupiters and other similarly forced exoplanets. Most of the ohmic heating occurs high in the atmosphere and on the dayside of the planet, while the heating at depth is strongly dependent on the internal heat flux assumed for the planet, with more heating when the deep atmosphere is hot. We compare the ohmic power at depth in our models, and estimates of the ohmic dissipation in the bulk interior (from general scaling laws), to evolutionary models that constrain the amount of heating necessary to explain the inflated radius of HD 209458b. Our results suggest that deep ohmic heating can successfully inflate the radius of HD 209458b for planetary magnetic field strengths of B {>=} 3-10 G.

  13. Dynamos and cosmic magnetic fields.

    NASA Astrophysics Data System (ADS)

    Kulsrud, R.; Cowley, S. C.; Gruzinov, A. V.; Sudan, R. N.

    1997-04-01

    This paper discusses the origin of the galactic magnetic field. The theory of the mean field dynamo in the interstellar medium is reviewed and shown to be flawed because it ignores the strong amplification of small-scale magnetic fields. An alternative origin is offered. It is proposed that the galactic fields are created in the protogalaxy by protogalactic turbulence. It is shown that they are first created from zero by the turbulence through the Biermann battery mechanism. The resulting weak seed fields are then amplified by the dynamo action of the protogalactic turbulence up to a field strength adequate for a primordial field origin of the galactic magnetic field. It is suggested that the amplification of the small-scale fields, that are a problem for the interstellar origin, are suppressed in the protogalaxy by collisionless processes that act on scales smaller than the mean free path. Since the relative size of the mean free path is quite large in the protogalaxy, the dynamo would generate only large-scale fields. After compression this field could become the galactic field. It is possible that no further amplification of it need occur in the interstellar medium.

  14. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with

  15. Magnetic fields in ring galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  16. Magnetic fields in spiral galaxies

    SciTech Connect

    Beck, R. )

    1990-02-01

    Radio polarization observations have revealed large-scale magnetic fields in spiral galaxies. The average total field strength most probably increases with the rate of star formation. The uniform field generally follows the orientation of the optical spiral arms, but is often strongest {ital outside} the arms. Long magnetic-field filaments are seen, sometimes up to a 30 kpc length. The field seems to be anchored in large gas clouds and is inflated out of the disk; e.g., by a galactic wind. The field in radio halos around galaxies is highly uniform in limited regions, resembling the structure of the solar corona. The detection of Faraday rotation in spiral galaxies excludes the existence of large amounts of antimatter. The distribution of Faraday rotation in the disks shows two different large-scale structures of the interstellar field: Axisymmetric-spiral and bisymmetric-spiral, which are interpreted as two modes of the galactic dynamo driven by differential rotation.

  17. Magnetic fields in quiescent prominences

    NASA Technical Reports Server (NTRS)

    Van Ballegooijen, A. A.; Martens, P. C. H.

    1990-01-01

    The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.

  18. Magnetic fields and coronal heating

    NASA Technical Reports Server (NTRS)

    Golub, L.; Maxson, C.; Rosner, R.; Vaiana, G. S.; Serio, S.

    1980-01-01

    General considerations concerning the scaling properties of magnetic-field-related coronal heating mechanisms are used to build a two-parameter model for the heating of closed coronal regions. The model predicts the way in which coronal temperature and electron density are related to photospheric magnetic field strength and the size of the region, using the additional constraint provided by the scaling law of Rosner, Tucker, and Vaiana. The model duplicates the observed scaling of total thermal energy content with total longitudinal flux; it also predicts a relation between the coronal energy density (or pressure) and the longitudinal field strength modified by the region scale size.

  19. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

    2004-10-03

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

  20. Modeling Earth's magnetic field variation

    NASA Astrophysics Data System (ADS)

    Wardinski, I.

    2012-12-01

    Observations of the Earth's magnetic field taken at the Earth's surface and at satellite altitude have been combined to construct models of the geomagnetic field and its variation. Lesur et al. (2010) developed a kinematic reconstruction of core field changes that satisfied the frozen-flux constraint. By constraining the field evolution to be entirely due to advection of the magnetic field at the core surface it maintained the spatial complexity of the field morphology imposed by a satellite field model backward in time [Wardinski & Lesur,2012]. In this study we attempt a kinematic construction of future variation in Earth's magnetic field variation. Our approach, first seeks to identify typical time scales of the magnetic field and core surface flows present in decadal and millennial field and flow models. Therefore, the individual spherical harmonic coefficients are treated by methods of time series analysis. The second step employs stochastic modelling of the temporal variability of such spherical harmonic coefficients that represent the field and core surface flow. Difficulties arise due to the non-stationary behavior of the field and core surface flow. However, the broad behavior may consist of some homogeneity, which could be captured by a generalized stochastic model that calls for the d'th difference of the time series to be stationary (ARIMA-Model), or by detrending the coefficient time series. By computing stochastic models, we obtain two sets of field-forecasts, the first set is obtained from stochastic models of the Gauss coefficients. Here, first results suggest that secular variation on time scales shorter than 5 years behaves rather randomly and cannot be described sufficiently well by stochastic models. The second set is derived from forward modeling the secular variation using the diffusion-less induction equation (kinematic construction). This approach has not provide consistent results.

  1. Indoor localization using magnetic fields

    NASA Astrophysics Data System (ADS)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  2. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  3. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  4. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  5. Mars Crustal Magnetic Field Remnants

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.

    This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.

    The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.

    These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.

  6. Ion drag forces and magnetomechanical effect

    SciTech Connect

    Nedospasov, A. V. Nenova, N. V.

    2010-11-15

    Ion flows (ion drag forces) acting on macroscopic-size particles play a significant role in a plasma containing macroparticles. It is shown that ion drag forces can explain the magnetomechanical effect. The formula is derived for determining the dependence of the moment of the magnetomechanical effect on the type and pressure of the gas, tube radius, current, and magnetic field. This formula is in satisfactory agreement with experimental data for discharges in argon and neon with a relatively low magnetization of electron motion. For a high magnetization, the measured values of the moment of the magnetomechanical effect exceed the calculated values, which can be due to the effect of magnetic field nonuniformity and inhomogeneity of the plasma near the solenoid ends.

  7. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  8. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  9. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  10. ALIGNMENT BETWEEN FLATTENED PROTOSTELLAR INFALL ENVELOPES AND AMBIENT MAGNETIC FIELDS

    SciTech Connect

    Chapman, Nicholas L.; Matthews, Tristan G.; Novak, Giles; Davidson, Jacqueline A.; Goldsmith, Paul F.; Houde, Martin; Kwon, Woojin; Looney, Leslie W.; Li Zhiyun; Matthews, Brenda; Peng Ruisheng; Vaillancourt, John E.; Volgenau, Nikolaus H.

    2013-06-20

    We present 350 {mu}m polarization observations of four low-mass cores containing Class 0 protostars: L483, L1157, L1448-IRS2, and Serp-FIR1. This is the second paper in a larger survey aimed at testing magnetically regulated models for core-collapse. One key prediction of these models is that the mean magnetic field in a core should be aligned with the symmetry axis (minor axis) of the flattened young stellar object inner envelope (aka pseudodisk). Furthermore, the field should exhibit a pinched or hourglass-shaped morphology as gravity drags the field inward toward the central protostar. We combine our results for the four cores with results for three similar cores that were published in the first paper from our survey. An analysis of the 350 {mu}m polarization data for the seven cores yields evidence of a positive correlation between mean field direction and pseudodisk symmetry axis. Our rough estimate for the probability of obtaining by pure chance a correlation as strong as the one we found is about 5%. In addition, we combine together data for multiple cores to create a source-averaged magnetic field map having improved signal-to-noise ratio, and this map shows good agreement between mean field direction and pseudodisk axis (they are within 15 Degree-Sign ). We also see hints of a magnetic pinch in the source-averaged map. We conclude that core-scale magnetic fields appear to be strong enough to guide gas infall, as predicted by the magnetically regulated models. Finally, we find evidence of a positive correlation between core magnetic field direction and bipolar outflow axis.

  11. Separation of magnetic field lines

    SciTech Connect

    Boozer, Allen H.

    2012-11-15

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

  12. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  13. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  14. A high-field superferric NMR magnet.

    PubMed

    Huson, F R; Bryan, R N; MacKay, W W; Herrick, R C; Colvin, J; Ford, J J; Pissanetzky, S; Plishker, G A; Rocha, R; Schmidt, W

    1993-01-01

    Strong, extensive magnetic fringe fields are a significant problem with magnetic resonance imaging magnets. This is particularly acute with 4-T, whole-body research magnets. To date this problem has been addressed by restricting an extensive zone around the unshielded magnet or by placing external unsaturated iron shielding around the magnet. This paper describes a solution to this problem which uses superconducting coils closely integrated with fully saturated iron elements. A 4-T, 30-cm-bore prototype, based on this design principle, was built and tested. The 5 G fringe field is contained within 1 meter of the magnet bore along the z axis. Homogeneity of the raw magnetic field is 10 ppm over 30% of the magnet's diameter after passive shimming. Compared with an unshielded magnet, 20% less superconductor is required to generate the magnetic field. Images and spectra are presented to demonstrate the magnet's viability for magnetic resonance imaging and spectroscopy.

  15. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  16. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  17. Computer program documentation for a subcritical wing design code using higher order far-field drag minimization

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.; Shu, J. Y.

    1981-01-01

    A subsonic, linearized aerodynamic theory, wing design program for one or two planforms was developed which uses a vortex lattice near field model and a higher order panel method in the far field. The theoretical development of the wake model and its implementation in the vortex lattice design code are summarized and sample results are given. Detailed program usage instructions, sample input and output data, and a program listing are presented in the Appendixes. The far field wake model assumes a wake vortex sheet whose strength varies piecewise linearly in the spanwise direction. From this model analytical expressions for lift coefficient, induced drag coefficient, pitching moment coefficient, and bending moment coefficient were developed. From these relationships a direct optimization scheme is used to determine the optimum wake vorticity distribution for minimum induced drag, subject to constraints on lift, and pitching or bending moment. Integration spanwise yields the bound circulation, which is interpolated in the near field vortex lattice to obtain the design camber surface(s).

  18. Spin Drag in Noncondensed Bose Gases

    SciTech Connect

    Duine, R. A.; Stoof, H. T. C.

    2009-10-23

    We show how time-dependent magnetic fields lead to spin motive forces and spin drag in a spinor Bose gas. We propose to observe these effects in a toroidal trap and analyze this particular proposal in some detail. In the linear-response regime we define a transport coefficient that is analogous to the usual drag resistivity in electron bilayer systems. Because of Bose enhancement of atom-atom scattering, this coefficient strongly increases as temperature is lowered. We also investigate the effects of heating.

  19. Magnetic field of a combined plasma trap

    NASA Astrophysics Data System (ADS)

    Kotenko, V. G.; Moiseenko, V. E.; Ågren, O.

    2012-06-01

    This paper presents numerical simulations performed on the structure of a magnetic field created by the magnetic system of a combined plasma trap. The magnetic system includes the stellarator-type magnetic system and one of the mirror-type. For the stellarator type magnetic system the numeric model contains a magnetic system of an l=2 torsatron with the coils of an additional toroidal magnetic field. The mirror-type magnetic system element is considered as being single current-carrying turn enveloping the region of existence of closed magnetic surfaces of the torsatron. The calculations indicate the existence of a vast area of the values of the additional magnetic field magnitude and magnetic field of the single turn where, in principle, the implementation of the closed magnetic surface configuration is quite feasible.

  20. Quark stars in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Chu, Peng-Cheng; Chen, Lie-Wen; Wang, Xin

    2014-09-01

    Within the confined isospin- and density-dependent mass model, we study the properties of strange quark matter (SQM) and quark stars (QSs) in strong magnetic fields. The equation of state of SQM under a constant magnetic field is obtained self-consistently and the pressure perpendicular to the magnetic field is shown to be larger than that parallel to the magnetic field, implying that the properties of magnetized QSs generally depend on both the strength and the orientation of the magnetic fields distributed inside the stars. Using a density-dependent magnetic field profile which is introduced to mimic the magnetic field strength distribution in a star, we study the properties of static spherical QSs by assuming two extreme cases for the magnetic field orientation in the stars, i.e., the radial orientation in which the local magnetic fields are along the radial direction, and the transverse orientation in which the local magnetic fields are randomly oriented but perpendicular to the radial direction. Our results indicate that including the magnetic fields with radial (transverse) orientation can significantly decrease (increase) the maximum mass of QSs, demonstrating the importance of the magnetic field orientation inside the magnetized compact stars.

  1. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  2. QED in inhomogeneous magnetic fields

    SciTech Connect

    Fry, M.P.

    1996-11-01

    A lower bound is placed on the fermionic determinant of Euclidean quantum electrodynamics in three dimensions in the presence of a smooth, finite-flux, static, unidirectional magnetic field {bold B}({bold r})={bold (}0,0,{ital B}({bold r}){bold )}, where {ital B}({bold r}){ge}0 or {ital B}({bold r}){le}0 and {bold r} is a point in the {ital xy} plane. Bounds are also obtained for the induced spin for (2+1)-dimensional QED in the presence of {bold B}({bold r}). An upper bound is placed on the fermionic determinant of Euclidean QED in four dimensions in the presence of a strong, static, directionally varying, square-integrable magnetic field {bold B}({bold r}) on R{sup 3}. {copyright} {ital 1996 The American Physical Society.}

  3. Negative Coulomb drag in a one-dimensional wire.

    PubMed

    Yamamoto, M; Stopa, M; Tokura, Y; Hirayama, Y; Tarucha, S

    2006-07-14

    We observed negative Coulomb drag for parallel coupled quantum wires, in which electrons flow in the opposite directions between the wires. This only occurred under the conditions of strong correlation in the wires, that is, low density, high magnetic field, and low temperature, and cannot be addressed by a standard theory of momentum transfer. We propose a Coulomb drag model in which formation of a Wigner crystal state in the drag wire and a particle-like state in the drive wire is taken into account.

  4. Relaxation of magnetic systems after sudden magnetic field changes

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2015-09-01

    In magnetic systems where the projection of the total spin moment of the system parallel to an external magnetic field is not conserved, a sudden change in the field produces oscillations in the magnetization. The amplitude and frequency of these oscillations depend nonlinearly on the change in the field. Landau-Lifshitz relaxation in the magnetic system leads to a nonlinear dependence of the amplitude and frequency of the oscillations on the relaxation parameter, as well as to a dependence of the damping rate on the energy parameters of the magnet and on the amplitude of the jump in the external magnetic field.

  5. Deformation of Water by a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Chen, Zijun; Dahlberg, E. Dan

    2011-03-01

    After the discovery that superconducting magnets could levitate diamagnetic objects,1,2 researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields,3-5 which was given the name "The Moses Effect."5 Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary were produced by superconducting magnets.

  6. Magnetic holes in the solar wind. [(interplanetary magnetic fields)

    NASA Technical Reports Server (NTRS)

    Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.

    1976-01-01

    An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.

  7. Comparing Magnetic Fields on Earth and Mars

    NASA Video Gallery

    This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

  8. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  9. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  10. Field measurements of wind speed and reconfiguration in Arundo donax (Poaceae) with estimates of drag forces.

    PubMed

    Speck, Olga

    2003-08-01

    The giant reed (Arundo donax) is well known as a species that can withstand high wind loads without mechanical damage. To examine wind impact, profiles of vertical wind speeds in the plant's natural habitat (southern France) were measured at the edge and within a stand in the main wind direction. Wind speed was recorded simultaneously at five heights. For 75 measurements of within-canopy wind speed profiles, the attenuation coefficient was 4.4 ± 0.5, a value typical for plant stands with very dense canopies. Video recordings proved that A. donax becomes streamlined with increasing wind speed, reducing the projected surface area of leaves and stem. The total projected surface area is a function of wind speed and can be characterized by a second-order polynomial regression curve. For small wind velocities up to 1 m/s, the calculated drag force is proportional to the square of the wind speed. However, when A. donax plants are subjected to higher wind speeds (1.5-10 m/s), the drag force becomes directly proportional to the wind speed. Streamlining is a potentially important adaptation for withstanding high wind loads, especially for individual plants and plants at the edge of stands, whereas in dense stands streamlining probably plays a minor role.

  11. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2015-09-01

    A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  12. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  13. Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field

    SciTech Connect

    Mauel, M; Ryutov, D; Kesner, J

    2003-12-02

    In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.

  14. Bats respond to very weak magnetic fields.

    PubMed

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  15. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  16. Interaction between two magnetic dipoles in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Ku, J. G.; Liu, X. Y.; Chen, H. H.; Deng, R. D.; Yan, Q. X.

    2016-02-01

    A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  17. Saturn's Magnetic Field and Magnetosphere.

    PubMed

    Smith, E J; Davis, L; Jones, D E; Coleman, P J; Colburn, D S; Dyal, P; Sonett, C P

    1980-01-25

    The Pioneer Saturn vector helium magnetometer has detected a bow shock and magnetopause at Saturn and has provided an accurate characterization of the planetary field. The equatorial surface field is 0.20 gauss, a factor of 3 to 5 times smaller than anticipated on the basis of attempted scalings from Earth and Jupiter. The tilt angle between the magnetic dipole axis and Saturn's rotation axis is < 1 degrees , a surprisingly small value. Spherical harmonic analysis of the measurements shows that the ratio of quadrupole to dipole moments is < 10 percent, indicating that the field is more uniform than those of the Earth or Jupiter and consistent with Saturn having a relatively small core. The field in the outer magnetosphere shows systematic departures from the dipole field, principally a compression of the field near noon and an equatorial orientation associated with a current sheet near dawn. A hydromagnetic wake resulting from the interaction of Titan with the rotating magnetosphere appears to have been observed.

  18. The somatosensory evoked magnetic fields.

    PubMed

    Kakigi, R; Hoshiyama, M; Shimojo, M; Naka, D; Yamasaki, H; Watanabe, S; Xiang, J; Maeda, K; Lam, K; Itomi, K; Nakamura, A

    2000-08-01

    Averaged magnetoencephalography (MEG) following somatosensory stimulation, somatosensory evoked magnetic field(s) (SEF), in humans are reviewed. The equivalent current dipole(s) (ECD) of the primary and the following middle-latency components of SEF following electrical stimulation within 80-100 ms are estimated in area 3b of the primary somatosensory cortex (SI), the posterior bank of the central sulcus, in the hemisphere contralateral to the stimulated site. Their sites are generally compatible with the homunculus which was reported by Penfield using direct cortical stimulation during surgery. SEF to passive finger movement is generated in area 3a or 2 of SI, unlike with electrical stimulation. Long-latency components with peaks of approximately 80-120 ms are recorded in the bilateral hemispheres and their ECD are estimated in the secondary somatosensory cortex (SII) in the bilateral hemispheres. We also summarized (1) the gating effects on SEF by interference tactile stimulation or movement applied to the stimulus site, (2) clinical applications of SEF in the fields of neurosurgery and neurology and (3) cortical plasticity (reorganization) of the SI. SEF specific to painful stimulation is also recorded following painful stimulation by CO(2) laser beam. Pain-specific components are recorded over 150 ms after the stimulus and their ECD are estimated in the bilateral SII and the limbic system. We introduced a newly-developed multi (12)-channel gradiometer system with the smallest and highest quality superconducting quantum interference device (micro-SQUID) available to non-invasively detect the magnetic fields of a human peripheral nerve. Clear nerve action fields (NAFs) were consistently recorded from all subjects.

  19. Superparamagnetic particle dynamics and mixing in a rotating capillary tube with a stationary magnetic field.

    PubMed

    Lee, Jun-Tae; Abid, Aamir; Cheung, Ka Ho; Sudheendra, L; Kennedy, Ian M

    2012-09-01

    The dynamics of superparamagnetic particles subject to competing magnetic and viscous drag forces have been examined with a uniform, stationary, external magnetic field. In this approach, competing drag and magnetic forces were created in a fluid suspension of superparamagnetic particles that was confined in a capillary tube; competing viscous drag and magnetic forces were established by rotating the tube. A critical Mason number was determined for conditions under which the rotation of the capillary prevents the formation of chains from individual particles. The statistics of chain length were investigated by image analysis while varying parameters such as the rotation speed and the viscosity of the liquid. The measurements showed that the rate of particle chain formation was decreased with increased viscosity and rotation speed ; the particle dynamics could be quantified by the same dimensionless Mason number that has been demonstrated for rotating magnetic fields. The potential for enhancement of mixing in a bioassay was assessed using a fast chemical reaction that was diffusion-limited. Reducing the Mason below the critical value, so that chains were formed in the fluid, gave rise to a modest improvement in the time to completion of the reaction. PMID:23066382

  20. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  1. Dust particles under the influence of crossed electric and magnetic fields in the sheath of an rf discharge

    SciTech Connect

    Puttscher, M. Melzer, A.

    2014-12-15

    Experimental studies on the interaction of micron-sized dust particles in plasmas with external magnetic fields are presented. The particles are levitated in the sheath region of an rf discharge by gravity and electric field force under the presence of a horizontal magnetic field of up to 50 mT. It is observed that the dust particles are pushed either in the E{sup →}×B{sup →}- or in the opposite direction depending on magnetic field strength, particle properties, and discharge conditions. This transport behavior is described by a competition between horizontal ambipolar electric field force and ion and neutral drag.

  2. Dust particles under the influence of crossed electric and magnetic fields in the sheath of an rf discharge

    NASA Astrophysics Data System (ADS)

    Puttscher, M.; Melzer, A.

    2014-12-01

    Experimental studies on the interaction of micron-sized dust particles in plasmas with external magnetic fields are presented. The particles are levitated in the sheath region of an rf discharge by gravity and electric field force under the presence of a horizontal magnetic field of up to 50 mT. It is observed that the dust particles are pushed either in the E → × B → - or in the opposite direction depending on magnetic field strength, particle properties, and discharge conditions. This transport behavior is described by a competition between horizontal ambipolar electric field force and ion and neutral drag.

  3. Drag with external and pressure drop with internal flows: a new and unifying look at losses in the flow field based on the second law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Herwig, Heinz; Schmandt, Bastian

    2013-10-01

    Internal and external flows are characterized by friction factors and drag coefficients, respectively. Their definitions are based on pressure drop and drag force and thus are very different in character. From a thermodynamics point of view in both cases dissipation occurs which can uniformly be related to the entropy generation in the flow field. Therefore we suggest to account for losses in the flow field by friction factors and drag coefficients that are based on the overall entropy generation due to the dissipation in the internal and external flow fields. This second law analysis (SLA) has been applied to internal flows in many studies already. Examples of this flow category are given together with new cases of external flows, also treated by the general SLA-approach.

  4. Quenching of flames by magnetic fields (abstract)

    NASA Astrophysics Data System (ADS)

    Ueno, S.

    1988-11-01

    The effects of magnetic fields on combustion of alcohol with the aid of platinum catalysis have been studied to simulate in part the oxidation of organic matter in the living body, and it has been found that the combustion reactions are influenced by magnetic fields. It has also been observed that candle flames are pressed down by magnetic fields of higher intensities when flames are exposed to gradient magnetic fields in a range 20-200 T/m under 0.5-1.4 T. Apart from the combustion experiments, flows of carbon dioxide, oxygen, nitrogen, and argon gases were exposed to magnetic fields up to 2.2 T and 300 T/m. The flows of these gases were blocked or disturbed by the magnetic fields. The purpose of the present study is to clarify the mechanisms for the phenomena observed in the experiments of magnetic effects on combustion and gas flow. An electromagnet with a pair of columnar magnetic poles of which inner sidepieces were hollowed out was used. The magnetic fields of 1.5 T at the brim gave a gradient of 50-100 T/m in the direction perpendicular to the pole axis when the distance of the airgap was in a range 5-10 mm. A candle was burned in the hollowed space between magnetic poles, and candle flames were exposed to magnetic fields. The flames were quenched in a few seconds after the onset of field exposures. Oxygen gas as a paramagnetic molecule can be attracted to the magnetic fields of higher intensities. However, under the intensities of magnetic fields concerned, oxygen gases are not concentrated but are aligned so as to make a ``wall of oxygen'' or an ``air curtain.'' The air curtain, which is also called the ``magnetic curtain,'' blocks air flow into and out of the hollowed space. The interception of oxygen by magnetic curtain quenches flames. The magnetic curtain also presses back flames and other gases.

  5. Magnetic fields from the electroweak phase transition

    SciTech Connect

    Tornkvist, O.

    1998-02-01

    I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.

  6. Chiral plasmons without magnetic field

    PubMed Central

    Song, Justin C. W.; Rudner, Mark S.

    2016-01-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  7. Chiral plasmons without magnetic field.

    PubMed

    Song, Justin C W; Rudner, Mark S

    2016-04-26

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  8. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  9. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1994-01-01

    The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

  10. Magnetic field observations in Comet Halley's coma

    NASA Astrophysics Data System (ADS)

    Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

    1986-05-01

    During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

  11. Magnetic Trapping of Bacteria at Low Magnetic Fields.

    PubMed

    Wang, Z M; Wu, R G; Wang, Z P; Ramanujan, R V

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  12. Magnetic Trapping of Bacteria at Low Magnetic Fields

    PubMed Central

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  13. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  14. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  15. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  16. Magnetic field effect on charged Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.

    2016-01-01

    We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.

  17. Magnetic field concentrator for probing optical magnetic metamaterials.

    PubMed

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-01

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials.

  18. Frustrated magnets in high magnetic fields-selected examples.

    PubMed

    Wosnitza, J; Zvyagin, S A; Zherlitsyn, S

    2016-07-01

    An indispensable parameter to study strongly correlated electron systems is the magnetic field. Application of high magnetic fields allows the investigation, modification and control of different states of matter. Specifically for magnetic materials experimental tools applied in such fields are essential for understanding their fundamental properties. Here, we focus on selected high-field studies of frustrated magnetic materials that have been shown to host a broad range of fascinating new and exotic phases. We will give brief insights into the influence of geometrical frustration on the critical behavior of triangular-lattice antiferromagnets, the accurate determination of exchange constants in the high-field saturated state by use of electron spin resonance measurements, and the coupling of magnetic degrees of freedom to the lattice evidenced by ultrasound experiments. The latter technique as well allowed new, partially metastable phases in strong magnetic fields to be revealed. PMID:27310818

  19. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  20. Resonances of an oscillating conductive pipe driven by an alternating magnetic field in the presence of a static magnetic field

    NASA Astrophysics Data System (ADS)

    Ladera, Celso L.; Donoso, Guillermo

    2011-07-01

    A short conducting pipe that hangs from a weak spring is forced to oscillate by the magnetic field of a surrounding coaxial coil that has been excited by a low-frequency current source in the presence of an additional static magnetic field. Induced oscillating currents appear in the pipe. The pipe motion becomes damped by the dragging forces between the induced currents and the static field. This oscillating system presents an interesting set of properties. To start with, it is not a magnet interacting with the oscillating field of a coil. The oscillating pipe is not even a ferromagnet. It is a new and conceptually rich case of a damped forced oscillator whose motion differential equation contains coefficients that depend upon a parameter. Here, we present and analytically explain the case of the small amplitude oscillations of this magneto-mechanical system. The ordinary amplitude and phase resonance curves are theoretically derived and confirmed by the set of experimental results presented. This oscillator is inexpensive and simple to set up, does not require sophisticated instrumentation, and with its interesting analytical model, is recommended either as an undergraduate laboratory experiment, as student project work, or even as a demonstration experiment. In loving memory of our late colleague and friend Professor Darío Moreno

  1. Lift, Drag and Flow-field Measurements around a Single-degree-of-freedom Toy Ornithopter

    NASA Astrophysics Data System (ADS)

    Chavez Alarcon, Ramiro; Balakumar, B. J.; Allen, James

    2010-11-01

    The aerodynamics of a flight-worthy toy ornithopter under laminar inflow conditions are studied using a combination of load cell, flow visualization, high speed camera and PIV experiments. All the experiments were performed in the large wind tunnel facility at New Mexico State University, with the exception of a free flight test of the model. Measurements from a six-axis load cell were used to capture the variation of the lift and drag forces at various angles of attack, flapping frequencies and free-speed velocities. Smoke visualization is used to clearly demonstrate that the momentum flux in the downward direction during downstroke exceeds the upward momentum flux during upstroke due to the flexion of the wing and its angle of attack. This net surplus creates the lift in such ornithopter designs despite the stroke symmetry. PIV measurements are then performed at suitable locations to identify flow structures around the wing at various spanwise locations. A control volume analysis is performed to compare the momentum deficit in the wake to the load cell measurements.

  2. Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields

    SciTech Connect

    Suzuki, Takeru K.; Inutsuka, Shu-ichiro

    2014-04-01

    We report results of three-dimensional magnetohydrodynamical (MHD) simulations of global accretion disks threaded with weak vertical magnetic fields. We perform the simulations in the spherical coordinates with different temperature profiles and accordingly different rotation profiles. In the cases with a spatially constant temperature, because the rotation frequency is vertically constant in the equilibrium condition, general properties of the turbulence excited by magnetorotational instability are quantitatively similar to those obtained in local shearing box simulations. On the other hand, in the cases with a radially variable temperature profile, the vertical differential rotation, which is inevitable in the equilibrium condition, winds up the magnetic field lines in addition to the usual radial differential rotation. As a result, the coherent wound magnetic fields contribute to the Maxwell stress in the surface regions. We obtain nondimensional density and velocity fluctuations ∼0.1-0.2 at the midplane. The azimuthal power spectra of the magnetic fields show shallower slopes, ∼m {sup 0} – m {sup –1}, than those of velocity and density. The Poynting flux associated with the MHD turbulence drives intermittent and structured disk winds as well as sound-like waves toward the midplane. The mass accretion mainly occurs near the surfaces, and the gas near the midplane slowly moves outward in the time domain of the present simulations. The vertical magnetic fields are also dragged inward in the surface regions, while they stochastically move outward and inward around the midplane. We also discuss an observational implication of induced spiral structure in the simulated turbulent disks.

  3. Hall drag and magnetodrag in graphene.

    PubMed

    Song, Justin C W; Levitov, Leonid S

    2013-09-20

    Massless Dirac fermions in graphene at charge neutrality form a strongly interacting system in which both charged and neutral (energy) modes play an important role. These modes are essentially decoupled in the absence of a magnetic field, but become strongly coupled when the field is applied. We show that this regime is characterized by strong magnetodrag and Hall drag, originating from long-range energy currents and spatial temperature gradients. The energy-driven effects arise in a wide temperature range, and feature an unusually strong dependence on field and carrier density. We argue that this mechanism accounts for the recently observed giant magnetodrag and Hall drag occurring at classically weak fields. PMID:24093284

  4. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  5. Application peculiarities of magnetic materials for protection from magnetic fields

    NASA Astrophysics Data System (ADS)

    Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.

    2016-02-01

    In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.

  6. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  7. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S.

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  8. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1991-01-01

    The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

  9. RADIAL TRANSPORT OF LARGE-SCALE MAGNETIC FIELDS IN ACCRETION DISKS. II. RELAXATION TO STEADY STATES

    SciTech Connect

    Takeuchi, Taku; Okuzumi, Satoshi

    2014-12-20

    We study the time evolution of a large-scale magnetic flux threading an accretion disk. The induction equation of the mean poloidal field is solved under the standard viscous disk model. Magnetic flux evolution is controlled by two timescales: one is the timescale of the inward advection of the magnetic flux, τ{sub adv}. This is induced by the dragging of the flux by the accreting gas. The other is the outward diffusion timescale of the magnetic flux τ{sub dif}. We consider diffusion due to the Ohmic resistivity. These timescales can be significantly different from the disk viscous timescale τ{sub disk}. The behaviors of the magnetic flux evolution are quite different depending on the magnitude relationship of the timescales τ{sub adv}, τ{sub dif}, and τ{sub disk}. The most interesting phenomena occur when τ{sub adv} << τ{sub dif}, τ{sub disk}. In such a case, the magnetic flux distribution approaches a quasi-steady profile much faster than the viscous evolution of the gas disk, and the magnetic flux has also been tightly bundled to the inner part of the disk. In the inner part, although the poloidal magnetic field becomes much stronger than the interstellar magnetic field, the field strength is limited to the maximum value that is analytically given by our previous work. We also find a condition for the initial large magnetic flux, which is a fossil of the magnetic field dragging during the early phase of star formation that survives for a duration in which significant gas disk evolution proceeds.

  10. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    NASA Astrophysics Data System (ADS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-06-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  11. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  12. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  13. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  14. Behaviour of ferrocholesterics under external magnetic fields

    NASA Astrophysics Data System (ADS)

    Petrescu, Emil; Motoc, Cornelia

    2001-08-01

    The influence of an external magnetic field on the orientational behaviour of a ferrocholesteric with a positive magnetic anisotropy is investigated. Both the phenomena arising when the field was switched on or switched off are considered. It is found that the field needed for a ferrocholesteric-ferronematic transition BFC↑ is higher when compared to that obtained for the pure cholesteric ( BC↑). A similar result was obtained when estimating the critical field for the homeotropic ferronematic-ferrocholesteric (focal conic) transition, occurring when the magnetic field was decreased or switched off. We found that BFC↓> BC↓. These results are explained when considering that the magnetic moments of the magnetic powder are not oriented parallel to the liquid crystal molecular directors, therefore hindering their orientation under a magnetic field.

  15. Static uniform magnetic fields and amoebae

    SciTech Connect

    Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A.

    1997-03-01

    Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

  16. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Drinkwater, M. R.; Haagmans, R.; Floberghagen, R.; Plank, G.; Menard, Y.

    2011-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently approaching the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products to the Swarm user community. The setup of Swarm ground segment and the contents of the data products will be addressed. More information on the Swarm mission can be found at the mission web site (see URL below).

  17. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2013-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  18. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Plank, Gernot; Haagmans, Roger; Floberghagen, Rune; Menard, Yvon

    2013-04-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

  19. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

    2012-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given.

  20. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  1. Free-solution electrophoretic separations of DNA-drag-tag conjugates on glass microchips with no polymer network and no loss of resolution at increased electric field strength.

    PubMed

    Albrecht, Jennifer Coyne; Kerby, Matthew B; Niedringhaus, Thomas P; Lin, Jennifer S; Wang, Xiaoxiao; Barron, Annelise E

    2011-05-01

    Here, we demonstrate the potential for high-resolution electrophoretic separations of ssDNA-protein conjugates in borosilicate glass microfluidic chips, with no sieving media and excellent repeatability. Using polynucleotides of two different lengths conjugated to moderately cationic protein polymer drag-tags, we measured separation efficiency as a function of applied electric field. In excellent agreement with prior theoretical predictions of Slater et al., resolution is found to remain constant as applied field is increased up to 700 V/cm, the highest field we were able to apply. This remarkable result illustrates the fundamentally different physical limitations of free-solution conjugate electrophoresis (FSCE)-based DNA separations relative to matrix-based DNA electrophoresis. ssDNA separations in "gels" have always shown rapidly declining resolution as the field strength is increased; this is especially true for ssDNA > 400 bases in length. FSCE's ability to decouple DNA peak resolution from applied electric field suggests the future possibility of ultra-rapid FSCE sequencing on chips. We investigated sources of peak broadening for FSCE separations on borosilicate glass microchips, using six different protein polymer drag-tags. For drag-tags with four or more positive charges, electrostatic and adsorptive interactions with poly(N-hydroxyethylacrylamide)-coated microchannel walls led to appreciable band-broadening, while much sharper peaks were seen for bioconjugates with nearly charge-neutral protein drag-tags.

  2. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    NASA Technical Reports Server (NTRS)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  3. Coulomb drag

    NASA Astrophysics Data System (ADS)

    Narozhny, B. N.; Levchenko, A.

    2016-04-01

    Coulomb drag is a transport phenomenon whereby long-range Coulomb interaction between charge carriers in two closely spaced but electrically isolated conductors induces a voltage (or, in a closed circuit, a current) in one of the conductors when an electrical current is passed through the other. The magnitude of the effect depends on the exact nature of the charge carriers and the microscopic, many-body structure of the electronic systems in the two conductors. Drag measurements have become part of the standard toolbox in condensed matter physics that can be used to study fundamental properties of diverse physical systems including semiconductor heterostructures, graphene, quantum wires, quantum dots, and optical cavities.

  4. Minimizing magnetic fields for precision experiments

    SciTech Connect

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  5. Operating a magnetic nozzle helicon thruster with strong magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira

    2016-03-01

    A pulsed axial magnetic field up to ˜2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ˜9.5 mN for magnetic field above ˜2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ˜50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.

  6. Free oscillations of magnetic fluid in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  7. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  8. Numerical analysis of magnetic field in superconducting magnetic energy storage

    SciTech Connect

    Kanamaru, Y. ); Amemiya, Y. )

    1991-09-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.

  9. Magnetic field measurements in tokamak plasmas

    SciTech Connect

    Feldman, U.; Seely, J.F.; Sheeley,Jr., N.R.; Suckewer, S.; Title, A.M.

    1984-11-01

    The measurement of the poloidal magnetic field in a tokamak plasma from the Zeeman splitting and polarization of the magnetic dipole radiation from heavy ions is discussed. When viewed from a direction perpendicular to the toroidal field, the effect of the poloidal field on the circularly polarized radiation is detectable using a photoelectric polarimeter. The Zeeman splittings for a number of magnetic dipole transitions with wavelengths in the range 2300--9300 A are presented. An imaging polarimeter is proposed that can measure the poloidal magnetic field with space and time resolution.

  10. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  11. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  12. Magnetic field spectrum at cosmological recombination revisited

    NASA Astrophysics Data System (ADS)

    Saga, Shohei; Ichiki, Kiyotomo; Takahashi, Keitaro; Sugiyama, Naoshi

    2015-06-01

    If vector type perturbations are present in the primordial plasma before recombination, the generation of magnetic fields is known to be inevitable through the Harrison mechanism. In the context of the standard cosmological perturbation theory, nonlinear couplings of first-order scalar perturbations create second-order vector perturbations, which generate magnetic fields. Here we reinvestigate the generation of magnetic fields at second-order in cosmological perturbations on the basis of our previous study, and extend it by newly taking into account the time evolution of purely second-order vector perturbations with a newly developed second-order Boltzmann code. We confirm that the amplitude of magnetic fields from the product-terms of the first-order scalar modes is consistent with the result in our previous study. However, we find, both numerically and analytically, that the magnetic fields from the purely second-order vector perturbations partially cancel out the magnetic fields from one of the product-terms of the first-order scalar modes, in the tight coupling regime in the radiation dominated era. Therefore, the amplitude of the magnetic fields on small scales, k ≳10 h Mpc-1 , is smaller than the previous estimates. The amplitude of the generated magnetic fields at cosmological recombination is about Brec=5.0 ×10-24 Gauss on k =5.0 ×10-1 h Mpc-1 . Finally, we discuss the reason for the discrepancies that exist in estimates of the amplitude of magnetic fields among other authors.

  13. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  14. Structure of magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kotarba, Hanna; Lesch, H.; Dolag, K.; Naab, T.; Johansson, P. H.; Stasyszyn, F. A.

    2009-04-01

    We present a set of global, self-consistent N-body/SPH simulations of the dynamic evolution of galactic discs with gas and including magnetic fields. We have implemented a description to follow the ideal induction equation in the SPH part of the code Vine. Results from a direct implementation of the field equations are compared to a representation by Euler potentials, which pose a ∇ ċ B-free description, a constraint not fulfilled for the direct implementation. All simulations are compared to an implementation of magnetic fields in the code Gadget. Starting with a homogeneous field we find a tight connection of the magnetic field structure to the density pattern of the galaxy in our simulations, with the magnetic field lines being aligned with the developing spiral pattern of the gas. Our simulations clearly show the importance of non-axisymmetry of the dynamic pattern for the evolution of the magnetic field.

  15. Rydberg EIT in High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  16. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  17. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to

  18. The AGN origin of cluster magnetic fields

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    The origin of magnetic fields in galaxy clusters is one of the most fascinating but challenging problems in astrophysics. In this dissertation, the possibility of an Active Galactic Nucleus (AGN) origin of cluster magnetic fields is studied through state of the art simulations of magnetic field evolution in large scale structure formation using a newly developed cosmological Adaptive Mesh Refinement (AMR) Magnetohydrodynamics (MHD) code -- EnzoMHD. After presenting a complete but concise description and verification of the code, we discuss the creation of magnetic fields through the Biermann Battery effect during first star formation and galaxy cluster formation. We find that magnetic fields are produced as predicted by theory in both cases. For the first star formation, we obtain a lower limit of (~ 10 -9 G) for magnetic fields when the first generation stars form. On the other hand, we find that the magnetic energy is amplified 4 orders of magnitude within ~ 10 Gyr during cluster formation. We then study magnetic field injection from AGN into the Intra- Cluster Medium (ICM) and their impact on the ICM. We reproduce the X-ray cavities as well as weak shocks seen in observations in the simulation, and further confirm the idea that AGN outburst must contain lots of magnetic energy (up to 10 61 ergs) and the magnetic fields play an important part in the formation of jet/lobe system. We present high resolution simulations of cluster formation with magnetic fields injected from high redshift AGN. We find that these local magnetic fields are spread quickly throughout the whole cluster by cluster mergers. The ICM is in a turbulent state with a Kolmogorov-like power spectrum. Magnetic fields are amplified to and maintained at the observational level of a few mG by bulk flows at large scale and the ICM turbulence at small scale. The total magnetic energy increases about 25 times to ~ 1.2 × 10^61 ergs at the present time. We conclude that magnetic fields from AGN at high

  19. Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Finazzo, Stefano Ivo; Critelli, Renato; Rougemont, Romulo; Noronha, Jorge

    2016-09-01

    We present a holographic perspective on momentum transport in strongly coupled, anisotropic non-Abelian plasmas in the presence of strong magnetic fields. We compute the anisotropic heavy quark drag forces and Langevin diffusion coefficients and also the anisotropic shear viscosities for two different holographic models, namely, a top-down deformation of strongly coupled N =4 super-Yang-Mills theory triggered by an external Abelian magnetic field, and a bottom-up Einstein-Maxwell-dilaton (EMD) model which is able to provide a quantitative description of lattice QCD thermodynamics with (2 +1 ) flavors at both zero and nonzero magnetic fields. We find that, in general, energy loss and momentum diffusion through strongly coupled anisotropic plasmas are enhanced by a magnetic field being larger in transverse directions than in the direction parallel to the magnetic field. Moreover, the anisotropic shear viscosity coefficient is smaller in the direction of the magnetic field than in the plane perpendicular to the field, which indicates that strongly coupled anisotropic plasmas become closer to the perfect fluid limit along the magnetic field. We also present, in the context of the EMD model, holographic predictions for the entropy density and the crossover critical temperature in a wider region of the (T , B ) phase diagram that has not yet been covered by lattice simulations. Our results for the transport coefficients in the phenomenologically realistic magnetic EMD model could be readily used as inputs in numerical codes for magnetohydrodynamics.

  20. THE LARGE-SCALE MAGNETIC FIELDS OF ADVECTION-DOMINATED ACCRETION FLOWS

    SciTech Connect

    Cao Xinwu

    2011-08-20

    We calculate the advection/diffusion of the large-scale magnetic field threading an advection-dominated accretion flow (ADAF) and find that the magnetic field can be dragged inward by the accretion flow efficiently if the magnetic Prandtl number P{sub m}={eta}/{nu}{approx}1. This is due to the large radial velocity of the ADAF. It is found that the magnetic pressure can be as high as {approx}50% of the gas pressure in the inner region of the ADAF close to the black hole horizon, even if the external imposed homogeneous vertical field strength is {approx}< 5% of the gas pressure at the outer radius of the ADAF, which is caused by the gas in the ADAF plunging rapidly to the black hole within the marginal stable circular orbit. In the inner region of the ADAF, the accretion flow is significantly pressured in the vertical direction by the magnetic fields, and therefore its gas pressure can be two orders of magnitude higher than that in the ADAF without magnetic fields. This means that the magnetic field strength near the black hole is underestimated by assuming equipartition between magnetic and gas pressure with the conventional ADAF model. Our results show that the magnetic field strength of the flow near the black hole horizon can be more than one order of magnitude higher than that in the ADAF at {approx}3R{sub g} (R{sub g} = 2GM/c{sup 2}), which implies that the Blandford-Znajek mechanism could be more important than the Blandford-Payne mechanism for ADAFs. We find that the accretion flow is decelerated near the black hole by the magnetic field when the external imposed field is strong enough or the gas pressure of the flow is low at the outer radius, or both. This corresponds to a critical accretion rate, below which the accretion flow will be arrested by the magnetic field near the black hole for a given external imposed field. In this case, the gas may accrete as magnetically confined blobs diffusing through field lines in the region very close to the black

  1. MDI Synoptic Charts of Magnetic Field: Interpolation of Polar Fields

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Hoeksema, J. T.; Zhao, X.; Larson, R. M.

    2007-05-01

    In this poster, we compare various methods for interpolation of polar field for the MDI synoptic charts of magnetic field. By examining the coronal and heliospheric magnetic field computed from the synoptic charts based on a Potential Field Source Surface model (PFSS), and by comparing the heliospheric current sheets and footpoints of open fields with the observations, we conclude that the coronal and heliospheric fields calculated from the synoptic charts are sensitive to the polar field interpolation, and a time-dependent interpolation method using the observed polar fields is the best among the seven methods investigated.

  2. Magnetic Field Investigations During ROSETTA's Steins Flyby

    NASA Astrophysics Data System (ADS)

    Glassmeier, K.; Auster, H.; Richter, I.; Motschmann, U.; RPC/ROMAP Teams

    2009-05-01

    During the recent Steins flyby of the ROSETTA spacecraft magnetic field measurements have been made with both, the RPC orbiter magnetometer and the ROMAP lander magnetometer. These combined magnetic field measurements allow a detailed examination of any magnetic signatures caused either directly by the asteroid or indirectly by Steins different modes of interaction with the solar wind. Comparing our measurements with simulation results show that Steins does not possess a significant remanent magnetization. The magnetization is estimated at less than 1 mAm2/kg. This is significantly different from results at Braille and Gaspra.

  3. The Evolution of the Earth's Magnetic Field.

    ERIC Educational Resources Information Center

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  4. The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Nakotte, Heinz

    2001-11-01

    The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

  5. Magnetic isotope and magnetic field effects on the DNA synthesis

    PubMed Central

    Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.

    2013-01-01

    Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases β with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases β carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases β with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases β with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc). PMID:23851636

  6. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  7. Coronal magnetic fields produced by photospheric shear

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Yang, W.-H.

    1987-01-01

    The magneto-frictional method is used for computing force free fields to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It found that the energy of the sheared field can be arbitrarily large compared with the potential field. It is also found that it is possible to fit the magnetic energy, as a function of shear, by a simple functional form.

  8. Single-layer high field dipole magnets

    SciTech Connect

    Vadim V. Kashikhin and Alexander V. Zlobin

    2001-07-30

    Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good field quality and minimum number of turns.

  9. The magnetic field of ζ Ori A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Bouret, J.-C.; Tkachenko, A.

    2015-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation (Wade et al. 2013) and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of ζ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in ζ Ori A. We identify that it belongs to ζ Ori Aa and characterize it.

  10. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  11. Disruption of coronal magnetic field arcades

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Linker, Jon A.

    1994-01-01

    The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.

  12. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  13. Magnetic resonance imaging: effects of magnetic field strength

    SciTech Connect

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-04-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields.

  14. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  15. Magnetic Fields at the Center of Coils

    ERIC Educational Resources Information Center

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  16. Modeling the evolution of galactic magnetic fields

    SciTech Connect

    Yar-Mukhamedov, D.

    2015-04-15

    An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means.

  17. Couette flow in ferrofluids with magnetic field

    NASA Astrophysics Data System (ADS)

    Singh, Jitender; Bajaj, Renu

    2005-06-01

    Instability of a viscous, incompressible ferrofluid flow in an annular space between two coaxially rotating cylinders in the presence of axial magnetic field has been investigated numerically. The magnetic field perturbations in fluid in the gap between the cylinders have been taken into consideration and these have been observed to stabilize the Couette flow.

  18. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  19. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  20. Levitation of a magnet by an alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Gough, W.; Hunt, M. O.; Summerskill, W. S. H.

    2013-01-01

    An experiment is described in which a small strong cylindrical magnet is levitated by a vertical non-uniform alternating magnetic field. Surprisingly, no superimposed constant field is necessary, but the levitation can be explained when the vertical motion of the magnet is taken into account. The theoretical mean levitation force is (0.26 ± 0.06) N, which is in good agreement with the levitated weight of (0.239 ± 0.001) N. This experiment is suitable for an undergraduate laboratory, particularly as a final year project. Students have found it interesting, and it sharpens up knowledge of basic magnetism.

  1. Magnetic diode for measurement of magnetic-field strength

    SciTech Connect

    Fedotov, S.I.; Zalkind, V.M.

    1988-02-01

    The accuracy of fabrication and assembly of the elements of the magnetic systems of thermonuclear installations of the stellarator type is checked by study of the topography of the confining magnetic field and is determined by the space resolution and accuracy of the measuring apparatus. A magnetometer with a galvanomagnetic sensor is described that is used to adjust the magnetic system of the Uragan-3 stellarator. The magnetometer measure magnetic-field induction in the range of 6 x 10/sup -7/-10/sup -2/ T with high space resolution.

  2. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  3. Tracing magnetic field orientation in starless cores

    NASA Astrophysics Data System (ADS)

    Maheswar, G.; Ramaprakash, A. N.; Lee, C. W.; Dib, S.

    It is now well understood that stars are formed in the interiors of dense, gravitationally bound molecular cloud cores that are both magnetized and turbulent. But the relative role played by the magnetic field and the turbulence in cloud formation and evolution and in the subsequent star formation is a matter of debate. In a magnetically dominated scenario, the magnetic field geometry of the cores is expected to be inherited unchanged from their low-density envelope, even for an hour glass geometry of the field, unless the action of turbulence disturbs it. We carried out polarimetry of stars projected on starless molecular clouds, LDN 183 and LDN 1544, in R-filter. The comparison of these fields with those in the interiors of the cloud cores inferred from the sub-mm polarization shows that both magnetic field and turbulence are important in the cloud formation and evolution of star formation.

  4. Orienting Paramecium with intense static magnetic fields

    NASA Astrophysics Data System (ADS)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  5. Processing of polymers in high magnetic fields

    SciTech Connect

    Douglas, E.P.; Smith, M.E.; Benicewicz, B.C.; Earls, J.D.; Priester, R.D. Jr.

    1996-05-01

    Many organic molecules and polymers have an anisotropic diamagnetic susceptibility, and thus can be aligned in high magnetic fields. The presence of liquid crystallinity allows cooperative motions of the individual molecules, and thus the magnetic energy becomes greater than the thermal energy at experimentally obtainable field strengths. This work has determined the effect of magnetic field alignment on the thermal expansion and mechanical properties of liquid crystalline thermosets in the laboratory. Further advances in magnet design are needed to make magnetic field alignment a commercially viable approach to polymer processing. The liquid crystal thermoset chosen for this study is the diglycidyl ether of dihydroxy-{alpha}-methylstilbene cured with the diamine sulfamilamide. This thermoset has been cured at field strengths up to 18 Tesla.

  6. Magnetic susceptibility of an organosilicon based magnetic fluid in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Dikanskii, Yu. I.; Gladkikh, D. V.; Kunikin, S. A.; Radionov, A. V.

    2015-02-01

    We have studied peculiarities of the behavior of magnetic susceptibility χ' of an organosilicon based magnetic fluid under the action of an electric field and a combination of electric and magnetic fields. It is established that an external electric field affects the temperature dependence of χ'. The obtained results are related to structural changes in the system—the appearance of a labyrinth structure in the electric field and transformation of this structure under the additional action of a magnetic field.

  7. Chaotic magnetic fields: Particle motion and energization

    SciTech Connect

    Dasgupta, Brahmananda; Ram, Abhay K.; Li, Gang; Li, Xiaocan

    2014-02-11

    Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

  8. How do galaxies get their magnetic fields?

    NASA Astrophysics Data System (ADS)

    Beck, Alexander M.

    2016-06-01

    The origin of magnetic fields in high-redshift and present-day galaxies is a long-standing problem. In this talk, we present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions.Our model explains the origin of strong magnetic fields of μG amplitude within the first starforming protogalactic structures shortly after the first stars have formed.We present cosmological simulations with the GADGET code of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr. Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo.Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic structures are magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2. Towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread leading to a widespread distribution of large intrinsic RMs. Our model for the evolution of galactic magnetic fields solves the joint problem of magnetic field seeding and subsequent amplification and distribution. The

  9. Magnetic field amplification in young galaxies

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2013-12-01

    The Universe at present is highly magnetized, with fields of a few 10-5 G and coherence lengths greater than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was already amplified to these values during the formation and the early evolution of galaxies. Turbulence in young galaxies is driven by accretion, as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial seed fields on short timescales. Amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth rate on the smallest nonresistive scale. In the following nonlinear phase the magnetic energy is shifted toward larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively, we modeled the microphysics in the interstellar medium (ISM) of young galaxies and determined the growth rate of the small-scale dynamo. We estimated the resulting saturation field strengths and dynamo timescales for two turbulent forcing mechanisms: accretion-driven turbulence and SN-driven turbulence. We compare them to the field strength that is reached when only stellar magnetic fields are distributed by SN explosions. We find that the small-scale dynamo is much more efficient in magnetizing the ISM of young galaxies. In the case of accretion-driven turbulence, a magnetic field strength on the order of 10-6 G is reached after a time of 24-270 Myr, while in SN-driven turbulence the dynamo saturates at field strengths of typically 10-5 G after only 4-15 Myr. This is considerably shorter than the Hubble time. Our work can help for understanding why present-day galaxies are highly magnetized.

  10. Exoplanet Magnetic Fields and Their Detectability

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tian, B. Y.; Vilim, R.

    2014-12-01

    The investigation of planetary magnetic fields in our solar system provides a wealth of information on planetary interior structure and dynamics. Satellite magnetic data demonstrates that planetary dynamos can produce a range of magnetic field morphologies and intensities. Numerical dynamo simulations are working towards determining relationships between planetary properties and the resulting magnetic field characteristics. However, with only a handful of planetary dynamos in our solar system, it is challenging to determine specific dependence of magnetic field properties on planetary characteristics. Extrasolar planets therefore provide a unique opportunity by significantly increasing the number of planets for study as well as offering a much larger range of planetary properties to investigate. Although detection of exoplanet magnetic fields is challenging at present, the increasing sophistication of observational tools available to astronomers implies these extrasolar planetary magnetic fields may eventually be detectable. This presentation will discuss potential observational trends for magnetic field strength and morphology for exoplanets based on numerical simulations and interior structure modeling. We will focus on the influence of planetary age, environment, composition and structure.

  11. Physics in Very Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    2015-10-01

    This paper provides an introduction to a number of astrophysics problems related to strong magnetic fields. The first part deals with issues related to atoms, condensed matter and high-energy processes in very strong magnetic fields, and how these issues influence various aspects of neutron star astrophysics. The second part deals with classical astrophysical effects of magnetic fields: Even relatively "weak" fields can play a strong role in various astrophysical problems, ranging from stars, accretion disks and outflows, to the formation and merger of compact objects.

  12. The Protogalactic Origin for Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kulsrud, Russell M.; Cen, Renyue; Ostriker, Jeremiah P.; Ryu, Dongsu

    1997-05-01

    It is demonstrated that strong magnetic fields are produced from a zero initial magnetic field during the pregalactic era, when the galaxy is first forming. Their development proceeds in three phases. In the first phase, weak magnetic fields are created by the Biermann battery mechanism. During the second phase, results from a numerical simulation make it appear likely that homogenous isotropic Kolmogorov turbulence develops that is associated with gravitational structure formation of galaxies. Assuming that this turbulence is real, then these weak magnetic fields will be amplified to strong magnetic fields by this Kolmogorov turbulence. During this second phase, the magnetic fields reach saturation with the turbulent power, but they are coherent only on the scale of the smallest eddy. During the third phase, which follows this saturation, it is expected that the magnetic field strength will increase to equipartition with the turbulent energy and that the coherence length of the magnetic fields will increase to the scale of the largest turbulent eddy, comparable to the scale of the entire galaxy. The resulting magnetic field represents a galactic magnetic field of primordial origin. No further dynamo action after the galaxy forms is necessary to explain the origin of magnetic fields. However, the magnetic field will certainly be altered by dynamo action once the galaxy and the galactic disk have formed. It is first shown by direct numerical simulations that thermoelectric currents associated with the Biermann battery build the field up from zero to 10-21 G in the regions about to collapse into galaxies, by z ~ 3. For weak fields, in the absence of dissipation, the cyclotron frequency -&b.omega;cyc = eB/mH c and &b.omega;/(1 + χ), where &b.nabla;Xv is the vorticity and χ is the degree of ionization, satisfy the same equations, and initial conditions &b.omega;cyc = &b.omega; = 0, so that, globally, -&b.omega;cyc(r, t) = &b.omega;(r, t)/(1 + χ). The vorticity grows

  13. The Measurement of Magnetic Fields

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1973-01-01

    Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

  14. Magnetic Field Measurements near Mars.

    PubMed

    Smith, E J; Davis, L; Coleman, P J; Jones, D E

    1965-09-10

    During the encounter between Mariner IV and Mars on 14-15 July, no magnetic effect that could be definitely associated with the planet was evident in the magnetometer data. This observation implies that the Martian magnetic dipole moment is, at most, 3 x 10(-4) times that of the earth.

  15. Neptunium Monochalcogenides: Magnetic Hyperfine Fields

    NASA Astrophysics Data System (ADS)

    Troć, R.

    This document is part of subvolume B6bβ`Actinide Monochalcogenides' of Volume 27 `Magnetic properties of non-metallic inorganic compounds based on transition elements' of Landolt-Börnstein - Group III `Condensed Matter'. The volume presents magnetic and related properties of monochalcogenides based on actinides and their solid solutions.

  16. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

  17. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.

  18. External-field-free magnetic biosensor

    SciTech Connect

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 μl magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  19. Vertical variations of coral reef drag forces

    NASA Astrophysics Data System (ADS)

    Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri

    2016-05-01

    Modeling flow in a coral reef requires a closure model that links the local drag force to the local mean velocity. However, the spatial flow variations make it difficult to predict the distribution of the local drag. Here we report on vertical profiles of measured drag and velocity in a laboratory reef that was made of 81 Pocillopora Meandrina colony skeletons, densely arranged along a tilted flume. Two corals were CT-scanned, sliced horizontally, and printed using a 3-D printer. Drag was measured as a function of height above the bottom by connecting the slices to drag sensors. Profiles of velocity were measured in-between the coral branches and above the reef. Measured drag of whole colonies shows an excellent agreement with previous field and laboratory studies; however, these studies never showed how drag varies vertically. The vertical distribution of drag is reported as a function of flow rate and water level. When the water level is the same as the reef height, Reynolds stresses are negligible and the drag force per unit fluid mass is nearly constant. However, when the water depth is larger, Reynolds stress gradients become significant and drag increases with height. An excellent agreement was found between the drag calculated by a momentum budget and the measured drag of the individual printed slices. Finally, we propose a modified formulation of the drag coefficient that includes the normal dispersive stress term and results in reduced variations of the drag coefficient at the cost of introducing an additional coefficient.

  20. Decay of Resonaces in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2015-08-01

    We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of K±*, K0* vector mesons as well as Λ* (1520) and Ξ0* baryonic states is considered in static fields 1013-1015 T. In particular, n = 0 Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with the field is taken into account. We suggest that enhanced yield of dileptons and photons from ρ0(770) mesons may occur if strong decay channel ρ0 → π+π- is significantly suppressed. CP - violating π+π- decays of pseudoscalar ηc and η(547) mesons in the magnetic field are discussed, and superpositions of quarkonium states ηc,b and χc,b(nP) with Ψ(nS), ϒ(nS) mesons in the external field are considered.

  1. Compact low field magnetic resonance imaging magnet: Design and optimization

    NASA Astrophysics Data System (ADS)

    Sciandrone, M.; Placidi, G.; Testa, L.; Sotgiu, A.

    2000-03-01

    Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter. In clinical analysis of peripheral regions of the body (legs, arms, foot, knee, etc.) it would be better to adopt much less expensive magnets leaving the most expensive instruments to applications that require the insertion of the patient in the magnet (head, thorax, abdomen, etc.). These "dedicated" apparati could be smaller and based on resistive magnets that are manufactured and operated at very low cost, particularly if they utilize an iron yoke to reduce power requirements. In order to obtain good field uniformity without the use of a set of shimming coils, we propose both particular construction of a dedicated magnet, using four independently controlled pairs of coils, and an optimization-based strategy for computing, a posteriori, the optimal current values. The optimization phase could be viewed as a low-cost shimming procedure for obtaining the desired magnetic field configuration. Some experimental measurements, confirming the effectiveness of the proposed approach (construction and optimization), have also been reported. In particular, it has been shown that the adoption of the proposed optimization based strategy has allowed the achievement of good uniformity of the magnetic field in about one fourth of the magnet length and about one half of its bore. On the basis of the good experimental results, the dedicated magnet can be used for MRI of peripheral regions of the body and for animal experimentation at very low cost.

  2. Ohm's law for mean magnetic fields

    SciTech Connect

    Boozer, A.H.

    1984-11-01

    Spatially complicated magnetic fields are frequently treated as the sum of a large, slowly varying, mean field and a small, rapidly varying, field. The primary effect of the small field is to modify the Ohm's law of the mean field. A set of plausible assumptions leads to a form of the mean field Ohm's law which is fundamentally different from the conventional alpha effect of dynamo theory.

  3. An Extraordinary Magnetic Field Map of Mars

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.; Mitchell, D. L.; Lin, R. P.

    2004-01-01

    The Mars Global Surveyor spacecraft has completed two Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriguing in both its global distribution and geometric properties [2,3]. Measurements of the vector magnetic field have been used to map the magnetic field of crustal origin to high accuracy [4]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from > 2 full years of MGS night-side observations, and uses along-track filtering to greatly reduce noise due to external field variations.

  4. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  5. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  6. Ohm's law for mean magnetic fields

    SciTech Connect

    Boozer, A.H.

    1986-05-01

    The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity.

  7. Manipulating Cells with Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Valles, J. M.; Guevorkian, K.

    2005-07-01

    We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.

  8. Surface magnetic fields across the HR Diagram

    NASA Astrophysics Data System (ADS)

    Landstreet, John D.

    2015-10-01

    The past 20 years have seen remarkable advances in spectropolarimetric instrumentation that have allowed us, for the first time, to identify some magnetic stars in most major stages of stellar evolution. We are beginning to see the broad outline of how such fields change during stellar evolution, to confront theoretical hypotheses and models of magnetic field structure and evolution with detailed data, and to understand more of the ways in which the presence of a field in turn affects stellar structure and evolution.

  9. Particle Transport in Therapeutic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Puri, Ishwar K.; Ganguly, Ranjan

    2014-01-01

    Iron oxide magnetic nanoparticles, in ferrofluids or as magnetic microspheres, offer magnetic maneuverability, biochemical surface functionalization, and magnetic relaxation under the influence of an alternating field. The use of these properties for clinical applications requires an understanding of particles, forces, and scalar transport at various length scales. This review explains the behavior of magnetic nano- and microparticles during magnetic drug targeting and magnetic fluid hyperthermia, and the microfluidic transport of these particles in bioMEMS (biomedical microelectromechanical systems) devices for ex vivo therapeutic and diagnostic applications. Magnetic particle transport, the momentum interaction of these particles with a host fluid in a flow, and thermal transport in a particle-infused tissue are characterized through the governing electrodynamic, hydrodynamic, and scalar transport equations.

  10. Magnon drag thermopile

    NASA Astrophysics Data System (ADS)

    Valenzuela, Sergio O.

    2013-03-01

    Thermoelectric effects in spintronics are gathering increasing attention as a means of controlling spin information by using heat flow. Thermal magnons (spin-wave quanta) are expected to play a major role, however, the coupling between electrons and magnons in ferromagnetic metals remains poorly understood. We demonstrate a conceptually new device that enables us to gather information on magnon-electron scattering and magnon-drag effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon drag thermoelectric effects. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. These results demonstrate the feasibility of directly converting magnon dynamics of nanomagnets into an electrical signal and could pave the way to novel thermoelectric devices for energy harvesting. This research was supported by the Spanish Ministerio de Ciencia e Innovación, MICINN (MAT2010-18065) and by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement NANOFUNCTION no 257375.

  11. Magnetic fields near Mars - First results

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Schwingenschuh, K.; Moehlmann, D.; Oraevskii, V. N.; Eroshenko, E.; Slavin, J.

    1989-01-01

    The magnetic fields of Mars have been measured from Phobos 2 with high temporal resolution in the tail and down to an 850-km altitude. During four successive highly elliptical orbits, the position of the bow shock as well as that of a transition layer, the 'planetopause', were identified. Subsequent circular orbits at 6000-km altitude provided the first high-resolution data in the planetary tail and indicate that the interplanetary magnetic field mainly controls the magnetic tail. Magnetic turbulence was also detected when the spacecraft crossed the orbit of Phobos, indicating the possible existence of a torus near the orbit of this moon.

  12. MICE Spectrometer Solenoid Magnetic Field Measurements

    SciTech Connect

    Leonova, M.

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  13. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  14. The sun and interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Smith, Edward J.

    1991-01-01

    The interplanetary magnetic field (IMF) serves as a link between the sun, the response of the earth to solar activity and variations in galactic cosmic radiation. The IMF originates as a solar-coronal magnetic field that is transported into space by the solar wind. The close connection between solar magnetic fields and the origin and structure of the solar wind is described. The solar wind forms the heliosphere, a cavity containing the magnetized solar plasma from which the interstellar plasma and field are excluded. The entry of galactic cosmic rays into the heliosphere and their strong interaction with the IMF are discussed, this topic being of primary importance to the production and temporal variations of radiogenic elements. The profound influence of the IMF on geomagnetic activity and the aurora is discussed within the context of merging or reconnection with the planetary field. The physical connection is thus established between solar magnetic fields, magnetic storms and aurora. The state of the solar wind and IMF during the Maunder minimum is considered and an explanation for the (relative) absence of sunspots and aurora is proposed. The mechanism is an interruption of the oscillatory solar dynamo, a consequent reduction in the heating of the corona, a cessation of the supersonic solar wind and a weakening or absence of southward-directed magnetic fields in the vicinity of the earth.

  15. Magnetic Field Measurement with Ground State Alignment

    NASA Astrophysics Data System (ADS)

    Yan, Huirong; Lazarian, A.

    Observational studies of magnetic fields are crucial. We introduce a process "ground state alignment" as a new way to determine the magnetic field direction in diffuse medium. The alignment is due to anisotropic radiation impinging on the atom/ion. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (1 G ≳ B ≳ 10^{-15} G). In fact, the effects of atomic/ionic alignment were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. A unique feature of the atomic realignment is that they can reveal the 3D orientation of magnetic field. In this chapter, we shall review the basic physical processes involved in atomic realignment. We shall also discuss its applications to interplanetary, circumstellar and interstellar magnetic fields. In addition, our research reveals that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide a unique diagnostics of magnetic fields in the Epoch of Reionization.

  16. Asymmetric drag in oscillatory motion: ratchet effect without an asymmetric potential.

    PubMed

    Fomin, Vladimir M; Smith, Elliot J; Karnaushenko, Dmitriy D; Makarov, Denys; Schmidt, Oliver G

    2013-05-01

    Asymmetry of magnetic objects in a fluid under an oscillating magnetic field leads to a wealth of nonequilibrium dynamics phenomena including a novel ratchet effect without an asymmetric substrate. These nonlinear dynamics are explained in the framework of the Stokes' model by a drag coefficient, which depends on the direction of motion. This approach is general and is independent of the physical mechanism responsible for this directional dependence of the drag coefficient as well as the size of the object. The theoretical model is experimentally verified for two systems, a nonrigid magnetic microcoil and a chiral magnetic macroobject immersed in a bounded fluid. PMID:23767502

  17. Drag reduction in turbulent MHD pipe flows

    NASA Technical Reports Server (NTRS)

    Orlandi, P.

    1996-01-01

    This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.

  18. How are static magnetic fields detected biologically?

    NASA Astrophysics Data System (ADS)

    Finegold, Leonard

    2009-03-01

    There is overwhelming evidence that life, from bacteria to birds to bats, detects magnetic fields, using the fields for orientation or navigation. Indeed there are recent reports (based on Google Earth imagery) that cattle and deer align themselves with the earth's magnetic field. [1]. The development of frog and insect eggs are changed by high magnetic fields, probably through known physical mechanisms. However, the mechanisms for eukaryotic navigation and alignment are not clear. Persuasive published models will be discussed. Evidence, that static magnetic fields might produce therapeutic effects, will be updated [2]. [4pt] [1] S. Begall, et al., Proc Natl Acad Sci USA, 105:13451 (2008). [0pt] [2] L. Finegold and B.L. Flamm, BMJ, 332:4 (2006).

  19. Normal glow discharge in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Surzhikov, S.; Shang, J.

    2014-10-01

    Theory and results of mathematical modeling of a glow discharge in a parallel-plate configuration with axial magnetic field is presented. The model consists of continuity equations for electron and ion fluids, the Poisson equation for the self-consistent electric field. Numerical simulation results are presented for two-dimensional glow discharge at various initial conditions. The results are obtained for molecular nitrogen at pressure 1-5 Torr, emf of power supply 1-2 kV, and magnetic field induction B = 0-0.5 T. It is shown that in the presence of the axial magnetic field the glow discharge is rotated around its axis of symmetry. Nevertheless it is shown that in the investigated range of discharge parameters in an axial magnetic field the law of the normal current density is retained.

  20. Magnetic field induced transition in vanadium spinels.

    PubMed

    Mun, E D; Chern, Gia-Wei; Pardo, V; Rivadulla, F; Sinclair, R; Zhou, H D; Zapf, V S; Batista, C D

    2014-01-10

    We study vanadium spinels AV2O4 (A = Cd,Mg) in pulsed magnetic fields up to 65 T. A jump in magnetization at μ0H≈40  T is observed in the single-crystal MgV2O4, indicating a field induced quantum phase transition between two distinct magnetic orders. In the multiferroic CdV2O4, the field induced transition is accompanied by a suppression of the electric polarization. By modeling the magnetic properties in the presence of strong spin-orbit coupling characteristic of vanadium spinels, we show that both features of the field induced transition can be successfully explained by including the effects of the local trigonal crystal field. PMID:24483929

  1. Magnetic fields from heterotic cosmic strings

    SciTech Connect

    Gwyn, Rhiannon; Alexander, Stephon H.; Brandenberger, Robert H.; Dasgupta, Keshav

    2009-04-15

    Large-scale magnetic fields are observed today to be coherent on galactic scales. While there exists an explanation for their amplification and their specific configuration in spiral galaxies--the dynamo mechanism--a satisfying explanation for the original seed fields required is still lacking. Cosmic strings are compelling candidates because of their scaling properties, which would guarantee the coherence on cosmological scales of any resultant magnetic fields at the time of galaxy formation. We present a mechanism for the production of primordial seed magnetic fields from heterotic cosmic strings arising from M theory. More specifically, we make use of heterotic cosmic strings stemming from M5-branes wrapped around four of the compact internal dimensions. These objects are stable on cosmological time scales and carry charged zero modes. Therefore a scaling solution of such defects will generate seed magnetic fields which are coherent on galactic scales today.

  2. Ultracold atoms in strong synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ketterle, Wolfgang

    2015-03-01

    The Harper Hofstadter Hamiltonian describes charged particles in the lowest band of a lattice at high magnetic fields. This Hamiltonian can be realized with ultracold atoms using laser assisted tunneling which imprints the same phase into the wavefunction of neutral atoms as a magnetic field dose for electrons. I will describe our observation of a bosonic superfluid in a magnetic field with half a flux quantum per lattice unit cell, and discuss new possibilities for implementing spin-orbit coupling. Work done in collaboration with C.J. Kennedy, G.A. Siviloglou, H. Miyake, W.C. Burton, and Woo Chang Chung.

  3. New superconductor stands up to magnetic fields

    SciTech Connect

    Service, R.F.

    1995-05-05

    For high-temperature superconductors (HTS), magnetic fields have been the equivalent of kryptonite. HTS materials are capable of carrying huge electrical currents without resistance, but when they are put in powerful magnetic fields their current-carrying ability plummets. At a Materials Research Society meeting, researchers from Los Alamos National Laboratory reported making a flexible superconducting tape that stands up to high magnetic fields at 77K. However, it is not clear it will stand up to industrial levels. This article discusses this and other research from Oak Ridge, as yet unpublished, in this area of superconductors.

  4. Enhanced Cloud Disruption by Magnetic Field Interaction.

    PubMed

    Gregori; Miniati; Ryu; Jones

    1999-12-20

    We present results from the first three-dimensional numerical simulations of moderately supersonic cloud motion through a tenuous, magnetized medium. We show that the interaction of the cloud with a magnetic field perpendicular to its motion has a great dynamical impact on the development of instabilities at the cloud surface. Even for initially spherical clouds, magnetic field lines become trapped in surface deformations and undergo stretching. The consequent field amplification that occurs there and, in particular, its variation across the cloud face then dramatically enhance the growth rate of Rayleigh-Taylor unstable modes, hastening the cloud disruption.

  5. Environmental magnetic fields: Influences on early embryogenesis

    SciTech Connect

    Cameron, I.L.; Hardman, W.E.; Winters, W.D.; Zimmerman, S.; Zimmerman, A.M. )

    1993-04-01

    A 10-mG, 50 to 60-Hz magnetic field is in the intensity and frequency range that people worldwide are often exposed to in homes and in the workplace. Studies about the effects of 50- to 100-Hz electromagnetic fields on various species of animal embryos (fish, chick, fly, sea urchin, rat, and mouse) indicate that early stages of embryonic development are responsive to fluctuating magnetic fields. Chick, sea urchin, and mouse embryos are responsive to magnetic field intensities of 10-100 mG. Results from studies on sea urchin embryos indicate that exposure to conditions of rotating 60-Hz magnetic fields, e.g., similar to those in our environment, interferes with cell proliferation at the morula stage in a manner dependent on field intensity. The cleavage stages, prior to the 64-cell stage, were not delayed by this rotating 60-Hz magnetic field suggesting that the ionic surges, DNA replication, and translational events essential for early cleavage stages were not significantly altered. Studies of histone synthesis in early sea urchin embryos indicated that the rotating 60-Hz magnetic field decreased zygotic expression of early histone genes at the morula stage and suggests that this decrease in early histone production was limiting to cell proliferation. Whether these comparative observations from animal development studies will be paralleled by results from studies of human embryogenesis, as suggested by some epidemiology studies, has yet to be established. 38 refs.

  6. Magnetic Field Control of Combustion Dynamics

    NASA Astrophysics Data System (ADS)

    Barmina, I.; Valdmanis, R.; Zake, M.; Kalis, H.; Marinaki, M.; Strautins, U.

    2016-08-01

    Experimental studies and mathematical modelling of the effects of magnetic field on combustion dynamics at thermo-chemical conversion of biomass are carried out with the aim of providing control of the processes developing in the reaction zone of swirling flame. The joint research of the magnetic field effect on the combustion dynamics includes the estimation of this effect on the formation of the swirling flame dynamics, flame temperature and composition, providing analysis of the magnetic field effects on the flame characteristics. The results of experiments have shown that the magnetic field exerts the influence on the flow velocity components by enhancing a swirl motion in the flame reaction zone with swirl-enhanced mixing of the axial flow of volatiles with cold air swirl, by cooling the flame reaction zone and by limiting the thermo-chemical conversion of volatiles. Mathematical modelling of magnetic field effect on the formation of the flame dynamics confirms that the electromagnetic force, which is induced by the electric current surrounding the flame, leads to field-enhanced increase of flow vorticity by enhancing mixing of the reactants. The magnetic field effect on the flame temperature and rate of reactions leads to conclusion that field-enhanced increase of the flow vorticity results in flame cooling by limiting the chemical conversion of the reactants.

  7. Space applications of superconductivity - High field magnets

    NASA Technical Reports Server (NTRS)

    Fickett, F. R.

    1979-01-01

    The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

  8. Directed Plasma Flow across Magnetic Field

    NASA Astrophysics Data System (ADS)

    Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.

    2008-04-01

    The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.

  9. Magnetic Field Strengths in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Balser, Dana S.; Anish Roshi, D.; Jeyakumar, S.; Bania, T. M.; Montet, Benjamin T.; Shitanishi, J. A.

    2016-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 {{GHz}} toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B∼ 100{--}300 μ {{G}} in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B∼ 200{--}1000 μ {{G}}. H i and OH Zeeman measurements of the line of sight magnetic field strength ({B}{{los}}), taken from the literature, are between a factor of ∼ 0.5{--}1 of the lower bound of our carbon RRL magnetic field strength estimates. Since | {B}{{los}}| ≤slant B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths.

  10. High Field Pulse Magnets with New Materials

    NASA Astrophysics Data System (ADS)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  11. Magnetic field generated by current filaments

    NASA Astrophysics Data System (ADS)

    Kimura, Y.

    2014-10-01

    We investigate the magnetic field generated by two straight current filaments using the analogy between steady MHD and Euler flows. Using the Biot-Savart law, we present a dynamical system describing the extension of magnetic lines around the current filaments. It is demonstrated that, if two current filaments are non-parallel, a magnetic line starting near one current goes to infinity by the drifting effect of the other.

  12. Magnetic monopoles in field theory and cosmology.

    PubMed

    Rajantie, Arttu

    2012-12-28

    The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.

  13. Recent biophysical studies in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Maret, Georg

    1990-06-01

    A brief overview of biophysical effects of steady magnetic fields is given. The need of high field strength is illustrated by several recent diamagnetic orientation experiments. They include rod-like viruses, purple membranes and chromosomes. Results of various studies on bees, quails, rats and pigeons exposed to fields above 7 T are also resumed.

  14. The topological description of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Berger, Mitchell A.

    1986-01-01

    Determining the structure and behavior of solar coronal magnetic fields is a central problem in solar physics. At the photosphere, the field is believed to be strongly localized into discrete flux tubes. After providing a rigorous definition of field topology, how the topology of a finite collection of flux tubes may be classified is discussed.

  15. Dragged metrics

    NASA Astrophysics Data System (ADS)

    Novello, M.; Bittencourt, E.

    2013-05-01

    We show that the path of any accelerated body in an arbitrary spacetime geometry g_{μ ν } can be described as a geodesic in a dragged metric hat{q}_{μ ν } that depends only on the background metric and on the motion of the body. Such procedure allows the interpretation of all kinds of non-gravitational force as modifications of the spacetime metric. This method of effective elimination of the forces by changing the metric of the substratum can be understood as a generalization of the d'Alembert principle applied to all relativistic processes.

  16. Tracing Magnetic Fields by Atomic Alignment in Extended Radiation Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong; Dong, Le

    2015-05-01

    Tracing magnetic field is crucial as magnetic field plays an important role in many astrophysical processes. Earlier studies have demonstrated that ground state alignment (GSA) is an effective way to detect a weak magnetic field (1G≳ B≳ {{10}-15} G) in a diffuse medium. We explore the atomic alignment in the presence of an extended radiation field for both absorption lines and emission lines. The alignment in the circumstellar medium, binary systems, disks, and the local interstellar medium are considered in order to study the alignment in the radiation field where the pumping source has a clear geometric structure. Furthermore, the multipole expansion method is adopted to study GSA induced in the radiation field with unidentified pumping sources. We study the alignment in the dominant radiation components of the general radiation field: the dipole and quadrupole radiation field. We discuss the approximation of GSA in a general radiation field by summing the contribution from the dipole and quadrupole radiation field. We conclude that GSA is a powerful tool for detecting weak magnetic fields in the diffuse medium in general radiation fields.

  17. Juno and Jupiter's Magnetic Field (Invited)

    NASA Astrophysics Data System (ADS)

    Bloxham, J.; Connerney, J. E.; Jorgensen, J. L.

    2013-12-01

    The Juno spacecraft, launched in August 2011, will reach Jupiter in early July 2016, where it will enter a polar orbit, with an 11 day period and a perijove altitude of approximately 5000 km. The baseline mission will last for one year during which Juno will complete 32 orbits, evenly spaced in longitude. The baseline mission presents an unparalleled opportunity for investigating Jupiter's magnetic field. In many ways Jupiter is a better planet for studying dynamo-generated magnetic fields than the Earth: there are no crustal fields, of course, which otherwise mask the dynamo-generated field at high degree; and an orbiting spacecraft can get proportionately much closer to the dynamo region. Assuming Jupiter's dynamo extends to 0.8 Rj, Juno at closet approach is only 0.3 Rc above the dynamo, while Earth orbiting magnetic field missions sample the field at least 1 Rc above the dynamo (where Rc is the respective outer core or dynamo region radius). Juno's MAG Investigation delivers magnetic measurements with exceptional vector accuracy (100 ppm) via two FGM sensors, each co-located with a dedicated pair of non-magnetic star cameras for attitude determination at the sensor. We expect to image Jupiter's dynamo with unsurpassed resolution. Accordingly, we anticipate that the Juno magnetic field investigation may place important constraints on Jupiter's interior structure, and hence on the formation and evolution of Jupiter.

  18. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  19. MRS photodiode in strong magnetic field

    SciTech Connect

    Beznosko, D.; Blazey, G.; Dyshkant, A.; Francis, K.; Kubik, D.; Rykalin, V.; Tartaglia, M.A.; Zutshi, v.; /Northern Illinois U.

    2004-12-01

    The experimental results on the performance of the MRS (Metal/Resistor/Semiconductor) photodiode in the strong magnetic field of 4.4T, and the possible impact of the quench of the magnet at 4.5T on sensor's operation are reported.

  20. the Origin of Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kulsrud, Russell

    1996-05-01

    It is proposed that the origin of our galactic magnetic field occurred during the protogalactic formation phase of our galaxy. It is assumed that prior to the formation there was no cosmic field at all. It is shown that as the protogalaxy formed the thermoelectric currents in cosmic plasma increased the magnetic field from zero by the Biermann battery mechanism up to a value of order 10-20 gauss. From numerical simulations, it is found that there there is very strong Kolmogoroff turbulence present in the protogalaxy. This turbulence acts on the magnetic field resulting from the Biermann battery and amplifies it at a rate γ = (k_max/k_min )^2/3 × 10-16 sec-1 where k_min and k_max are the minimum and maximum wave numbers for the turbulence. The value of k_min is found to be of order 1 megaparsec-1 , but the value of k_max lies below the grid resolution of the numerical simulation and must be determined by the physics of the cosmic plasma on small scales. During a Hubble time there is plenty of time to amplify the magnetic field from 10-20 gauss to a value that would serve as a seed field for the galactic field. The question that arises is will this field be coherent on large scales or will all the energy be concentrated in small scales. This question is addressed in this talk. the important consideration is that the cosmic plasma at this stage is very hot and has a very low density. As a result, the mean free path is extremely long of order a sizable fraction of the entire size of the protogalaxy. Therefore, it is necessary to treat the effect of the turbulent motions of the cosmic magnetic field by a semicollionless theory on scales shorter than the mean free path. It turns out that as long as the ion gyroradius is small the magnetic field controls the motion of ions through the magnetic mirror effect. this is true even if the magnetic energy is tiny compared to the thermal or kinetic energy of the plasma. As a result of this process the magnetic energy is

  1. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R.

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  2. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  3. Evolution of magnetic fields at high redshift

    NASA Astrophysics Data System (ADS)

    Zweibel, E. G.

    2006-06-01

    The origin of magnetic fields in the Universe is a cosmology problem. The evolution of the field is a plasma physics problem. I review these problems and focus on magnetogenesis in accretion disks, specifically, the transition from the Biermann battery, which creates seed fields, to amplification by turbulence driven by magnetorotational instability. In collisional disks, there is a gap between the fieldstrength characteristic of the battery and the fieldstrength necessary to sustain magnetorotational instability, but in collisionless disks the transition occurs at low fieldstrength. Because collisionless disks are generally hot, and have short dynamical times, they are likely to be small. Thus, in the battery scenario, magnetic fields on large scales were built from fields created in many small sources. Simple estimates based on turbulent diffusion suggest that galaxies and the cores of galaxy clusters can be magnetized in this way, but not the intergalactic medium at large. The problem of creating a large-scale field remains unsolved.

  4. Magnetic space-based field measurements

    NASA Technical Reports Server (NTRS)

    Langel, R. A.

    1981-01-01

    Satellite measurements of the geomagnetic field began with the launch of Sputnik 3 in May 1958 and have continued sporadically in the intervening years. A list of spacecraft that have made significant contributions to an understanding of the near-earth geomagnetic field is presented. A new era in near-earth magnetic field measurements began with NASA's launch of Magsat in October 1979. Attention is given to geomagnetic field modeling, crustal magnetic anomaly studies, and investigations of the inner earth. It is concluded that satellite-based magnetic field measurements make global surveys practical for both field modeling and for the mapping of large-scale crustal anomalies. They are the only practical method of accurately modeling the global secular variation. Magsat is providing a significant contribution, both because of the timeliness of the survey and because its vector measurement capability represents an advance in the technology of such measurements.

  5. Wire codes, magnetic fields, and childhood cancer

    SciTech Connect

    Kheifets, L.I.; Kavet, R.; Sussman, S.S.

    1997-05-01

    Childhood cancer has been modestly associated with wire codes, an exposure surrogate for power frequency magnetic fields, but less consistently with measured fields. The authors analyzed data on the population distribution of wire codes and their relationship with several measured magnetic field metrics. In a given geographic area, there is a marked trend for decreased prevalence from low to high wire code categories, but there are differences between areas. For average measured fields, there is a positive relationship between the mean of the distributions and wire codes but a large overlap among the categories. Better discrimination is obtained for the extremes of the measurement values when comparing the highest and the lowest wire code categories. Instability of measurements, intermittent fields, or other exposure conditions do not appear to provide a viable explanation for the differences between wire codes and magnetic fields with respect to the strength and consistency of their respective association with childhood cancer.

  6. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  7. Effect of a magnetic field on sonoluminescence.

    PubMed

    Yasui, K

    1999-08-01

    The effect of a magnetic field on single-bubble sonoluminescence in water reported experimentally by Young, Schmiedel, and Kang [Phys. Rev. Lett. 77, 4816 (1996)] is studied theoretically. It is suggested that bubble dynamics is affected by the magnetic field because moving water molecules of the liquid suffer torque due to the Lorentz force acting on their electrical dipole moment, which results in the transformation of some of the kinetic energy into heat. It is shown that the magnetic field acts as if the ambient pressure of the liquid were increased. It is suggested that the effect increases as the amount of the liquid water increases. It is predicted that nonpolar liquid such as dodecane exhibits no effect of the magnetic field. PMID:11969959

  8. The Magnetic Field of Helmholtz Coils

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1975-01-01

    Describes the magnetic field of Helmholtz coils qualitatively and then provides the basis for a quantitative expression. Since the mathematical calculations are very involved, a computer program for solving the mathematical expression is presented and explained. (GS)

  9. Fractal structure of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Klein, L. W.

    1985-01-01

    Under some conditions, time series of the interplanetary magnetic field strength and components have the properties of fractal curves. Magnetic field measurements made near 8.5 AU by Voyager 2 from June 5 to August 24, 1981 were self-similar over time scales from approximately 20 sec to approximately 3 x 100,000 sec, and the fractal dimension of the time series of the strength and components of the magnetic field was D = 5/3, corresponding to a power spectrum P(f) approximately f sup -5/3. Since the Kolmogorov spectrum for homogeneous, isotropic, stationary turbulence is also f sup -5/3, the Voyager 2 measurements are consistent with the observation of an inertial range of turbulence extending over approximately four decades in frequency. Interaction regions probably contributed most of the power in this interval. As an example, one interaction region is discussed in which the magnetic field had a fractal dimension D = 5/3.

  10. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  11. Magnetic Fields in Limb Solar Flares

    NASA Astrophysics Data System (ADS)

    Lozitsky, V. G.; Lozitska, N. I.; Botygina, O. A.

    2013-02-01

    Two limb solar flares, of 14 July 2005 and 19 July 2012, of importance X1.2 and M7.7, are analyzed at present work. Magnetic field strength in named flares are investigated by Stokes I±V profiles of Hα and D3 HeI lines. There are direct evidences to the magnetic field inhomogeneity in flares, in particular, non-paralelism of bisectors in I+V and I-V profiles. In some flare places, the local maximums of bisectors splitting were found in both lines. If these bisector splittings are interpreted as Zeeman effect manifestation, the following magnetic field strengths reach up to 2200 G in Hα and 1300 G in D3. According to calculations, the observed peculiarities of line profiles may indicate the existence of optically thick emissive small-scale elements with strong magnetic fields and lowered temperature.

  12. High-Field Superconducting Magnets Supporting PTOLEMY

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  13. Magnetic fields and massive star formation

    SciTech Connect

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan; Qiu, Keping; Girart, Josep M.; Juárez, Carmen; Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping; Li, Zhi-Yun; Frau, Pau; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  14. Carbon nanotube superlattices in a magnetic field

    NASA Astrophysics Data System (ADS)

    Jaskólski, W.; Pelc, M.

    The influence of magnetic field on the band structure of carbon nanotube superlattices is investigated. In particular, we study superlattices built of finite sections of (6,6) and (12,0) tubes connected by pentagon/heptagon topological defects. Magnetic field is parallel to the axis of the superlattice. We demonstrate that the superlattice band structure does not show periodicity with the flux quantum, which is typical for pure carbon nanotubes.

  15. The magnetic field investigation on Cluster

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.

    1988-01-01

    The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.

  16. Magnetic fields in Proto Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Sabin, L.; Zhang, Q.; Zijlstra, A. A.; Patel, N. A.; Vázquez, R.; Zauderer, B. A.; Contreras, M. E.; Guillén, P. F.

    2014-08-01

    The role of magnetic field in late type stars such as proto-planetary and planetary nebulae (PPNe/PNe), is poorly known from an observational point of view. We present submillimetric observations realized with the Submillimeter Array (SMA) which unveil the dust continuum polarization in the envelopes of two well known PPNe: CRL 618 and OH 231.8+4.2. Assuming the current grain alignment theory, we were then able to trace the geometry of the magnetic field.

  17. Untwisting magnetic fields in the solar corona

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Ramit; Smolarkiewicz, Piotr; Chye Low, Boon

    2012-07-01

    The solar corona is the tenuous atmosphere of the Sun characterized by a temperature of the order of million degrees Kelvin, an ambient magnetic field of 10 to 15 Gauss and a very high magnetic Reynolds number because of which it qualifies as a near-ideal magnetofluid system. It is well known that for such a system, the magnetic flux across every fluid surface remains effectively constant to a good approximation. Under this so called ``frozen-in'' condition then, it is possible to partition this magnetofluid into contiguous magnetic subvolumes each entrapping its own subsystem of magnetic flux. Thin magnetic flux tubes are an elementary example of such magnetic subvolumes evolving in time with no exchange of fluid among them. The internal twists and interweaving of these flux tubes, collectively referred as the magnetic topology, remains conserved under the frozen-in condition. Because of the dynamical evolution of the magnetofluid, two such subvolumes can come into direct contact with each other by expelling a third interstitial subvolume. In this process, the magnetic field may become discontinuous across the surface of contact by forming a current sheet there. Because of the small spatial scales generated by steepening of magnetic field gradient, the otherwise negligible resistivity becomes dominant and allows for reconnection of field lines which converts magnetic energy into heat. This phenomenon of spontaneous current sheet formation and its subsequent resistive decay is believed to be a possible mechanism for heating the solar corona to its million degree Kelvin temperature. In this work the dynamics of spontaneous current sheet formation is explored through numerical simulations and the results are presented.

  18. Planetary Magnetic Fields and Climate Evolution

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Leblanc, F.; Luhmann, J. G.; Moore, T. E.; Tian, F.

    We explore the possible connections between magnetic fields and climate at the terrestrial bodies Venus, Earth, Mars, and Titan. Magnetic fields are thought to have negligible effects on the processes that change a planet's climate, except for processes that alter the abundance of atmospheric gases. Particles can be added or removed at the top of an atmosphere, where collisions are infrequent and a more substantial fraction of particles are ionized (and therefore subject to magnetic forces) than at lower altitudes. The absence of a global magnetic field at Mars for much of its history may have contributed to the removal of a substantial fraction of its atmosphere to space. The persistence of a global magnetic field should have decreased both ionization and removal of atmospheric ions by several processes, and may have indirectly decreased the loss rate of neutral particles as well. While it is convenient to think of magnetic fields as shields for planetary atmospheres from impinging plasma (such as the solar wind), observations of ions escaping from Earth's polar cusp regions suggest that magnetic shielding effects may not be as effective as previously thought. One explanation that requires further testing is that magnetic fields transfer momentum and energy from incident plasma to localized regions of the atmosphere, resulting in similar (or possibly greater) escape rates than if the momentum and energy were imparted more globally to the atmosphere in the absence of a magnetic field. Trace gases can be important for climate despite their low relative abundance in planetary atmospheres. At Venus, removal of O+ over the history of the planet has likely contributed to the loss of water from the atmosphere, leading to a runaway greenhouse situation and having implications for the chemistry of atmosphere-surface interactions. Conversely, Titan's robust atmospheric chemistry may result from the addition of trace amounts of oxygen from Saturn's magnetosphere, which then

  19. Nuclear magnetic resonance in magnets with a helicoidal magnetic structure in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Tankeyev, A. P.; Borich, M. A.; Smagin, V. V.

    2014-11-01

    In this review, the static and dynamic properties of a magnet with a helicoidal magnetic structure placed in an external magnetic field are discussed. The results of the investigation of its ground state and spectra, as well as the amplitudes of the spin excitations are presented. The temperature and field dependences of the basic thermodynamic characteristics (heat capacity, magnetization, and magnetic susceptibility) have been calculated in the spin-wave approximation. The results of calculating the local and integral dynamic magnetic susceptibility are given. This set of data represents a methodical basis for constructing a consistent (in the framework of unified approximations) picture of the NMR absorption in the magnet under consideration. Both local NMR characteristics (resonance frequency, line broadening, enhancement coefficient) and integral characteristics (resultant shape of the absorption line with its specific features) have been calculated. The effective Hamiltonian of the Suhl-Nakamura interaction of nuclear spins through spin waves has been constructed. The second moment and the local broadening of the line of the NMR absorption caused by this interaction have been calculated. The role of the basic local inhomogeneities in the formation of the integral line of the NMR absorption has been analyzed. The opportunities for the experimental NMR investigations in magnets with a chiral spin structure are discussed.

  20. The magnetic field of a permanent hollow cylindrical magnet

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.

    2016-09-01

    Based on the rational version of M AXWELL's equations according to T RUESDELL and T OUPIN or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider M AXWELL's equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.

  1. Driving magnetic skyrmions with microwave fields

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Beg, Marijan; Zhang, Bin; Kuch, Wolfgang; Fangohr, Hans

    2015-07-01

    We show theoretically by numerically solving the Landau-Lifshitz-Gilbert equation with a classical spin model on a two-dimensional system that both magnetic skyrmions and skyrmion lattices can be moved with microwave magnetic fields. The mechanism is enabled by breaking the axial symmetry of the skyrmion, for example, through application of a static in-plane external field. The net velocity of the skyrmion depends on the frequency and amplitude of the microwave fields as well as the strength of the in-plane field. The maximum velocity is found where the frequency of the microwave coincides with the resonance frequency of the breathing mode of the skyrmions.

  2. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L.

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  3. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  4. Research of weak pulsed magnetic field system derived from the time, displacement, and static magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Dong; Qian, Zheng

    2015-10-01

    The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus.

  5. Magnetic buoyancy and the escape of magnetic fields from stars

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1984-01-01

    A loss of magnetic flux through the free surface of a star into the surrounding space has important implications for the generation of the field within the star. The present investigation is concerned with the physics of the escape of net azimuthal flux from a star. The obtained results are used as a basis for the interpretation of some recent observations of the detailed behavior of magnetic fields emerging through the surface of the sun. The buoyancy of an isolated horizontal magnetic flux tube beneath the surface of a star causes the tube to rise at a rate comparable to the Alfven speed. The necessary conditions for escape of the flux are considered along with aspects of magnetic buoyancy, and the conditions on the sun. It appears that the observed retraction of bipolar magnetic fields at the end of their life at the surface is the one phenomenon which requires dynamical intervention. Attention is given to known dynamical effects which suppress the buoyant rise of an azimuthal magnetic field.

  6. Hanle Effect Diagnostics of the Coronal Magnetic Field: A Test Using Realistic Magnetic Field Configurations

    NASA Astrophysics Data System (ADS)

    Raouafi, N.-E.; Solanki, S. K.; Wiegelmann, T.

    2009-06-01

    Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H I Lyα and β lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H I Lyβ, are useful for such measurements.

  7. Magnetic Field Apparatus (MFA) Hardware Test

    NASA Technical Reports Server (NTRS)

    Anderson, Ken; Boody, April; Reed, Dave; Wang, Chung; Stuckey, Bob; Cox, Dave

    1999-01-01

    The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.

  8. Magnetic Fields in the Solar Convection Zone

    NASA Astrophysics Data System (ADS)

    Fan, Yuhong

    2009-12-01

    Active regions on the solar surface are generally thought to originate from a strong toroidal magnetic field generated by a deep seated solar dynamo mechanism operating at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. Understanding this process of active region flux emergence is therefore a crucial component for the study of the solar cycle dynamo. This article reviews studies with regard to the formation and rise of active region scale magnetic flux tubes in the solar convection zone and their emergence into the solar atmosphere as active regions.

  9. Magnetic reconnection in collisionless plasmas - Prescribed fields

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Drake, J. F.; Chen, J.

    1990-01-01

    The structure of the dissipation region during magnetic reconnection in collisionless plasma is investigated by examining a prescribed two-dimensional magnetic x line configuration with an imposed inductive electric field E(y). The calculations represent an extension of recent MHD simulations of steady state reconnection (Biskamp, 1986; Lee and Fu, 1986) to the collisionless kinetic regime. It is shown that the structure of the x line reconnection configuration depends on only two parameters: a normalized inductive field and a parameter R which represents the opening angle of the magnetic x lines.

  10. Investigations of Magnetically Enhanced RIE Reactors with Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Kushner, Mark J.

    2008-10-01

    In Magnetically Enhanced Reactive Ion Etching (MERIE) reactors, a magnetic field parallel to the substrate enables higher plasma densities and control of ion energy distributions. Since it is difficult to make the B-field uniform across the wafer, the B-field is often azimuthally rotated at a few Hz to average out non-uniformities. The rotation is slow enough that the plasma is in quasi-equilibrium with the instantaneous B-field. For the pressures (10's mTorr or less) and B-fields (10's - 100's G) of interest, electrons are magnetized whereas ions are usually not. The orientation and intersection of the B-field with the wafer are important, as intersecting field lines provide a low resistance path for electron current to the substrate. We report on a modeling study of plasma properties in MERIE reactors having rotating B-fields by investigating a series of quasi-steady states of B-field profiles. To resolve side-to-side variations, computations are performed in Cartesian coordinates. The model, nonPDPSIM, was improved with full tensor conductivities in the fluid portions of the code and v x B forces in the kinetic portions. Results are discussed while varying the orientation and strength of the B-field for electropositive (argon) and electronegative (Ar/CxFy, Ar/Cl2) gas mixtures.

  11. Influence of magnetic domain walls and magnetic field on the thermal conductivity of magnetic nanowires.

    PubMed

    Huang, Hao-Ting; Lai, Mei-Feng; Hou, Yun-Fang; Wei, Zung-Hang

    2015-05-13

    We investigated the influence of magnetic domain walls and magnetic fields on the thermal conductivity of suspended magnetic nanowires. The thermal conductivity of the nanowires was obtained using steady-state Joule heating to measure the change in resistance caused by spontaneous heating. The results showed that the thermal conductivity coefficients of straight and wavy magnetic nanowires decreased with an increase in the magnetic domain wall number, implying that the scattering between magnons and domain walls hindered the heat transport process. In addition, we proved that the magnetic field considerably reduced the thermal conductivity of a magnetic nanowire. The influence of magnetic domain walls and magnetic fields on the thermal conductivity of polycrystalline magnetic nanowires can be attributed to the scattering of long-wavelength spin waves mediated by intergrain exchange coupling.

  12. Magnetic field structure evolution in RMF plasmas

    NASA Astrophysics Data System (ADS)

    Petrov, Yuri; Yang, Xiaokang; Huang, Tian-Sen

    2007-11-01

    A study of magnetic field structure evolution during 40-ms plasma discharge had been performed in 80 cm long / 40 cm OD cylindrical chamber. Plasma current Ip˜2--3 kA is produced by applied 500 kHz rotating magnetic field. In experiments, the 2D profile of plasma current is changed by feeding a 10-ms pulse current to additional magnetic coil located at the midplane. Using newly developed magnetic field pick-up coils system, we scanned the magnetic field in cross-section of plasma. Two experimental regimes were studied: without external toroidal field (TF), and with TF produced by applied axial current. When a relatively small current (<0.5 kA) is applied to the midplane coil, in both cases the total plasma current measured with Rogowski coil experiences a jump (up to 100%), but the profile of current remains almost unchanged. When a larger current (1--2 kA) is applied to the midplane coil, the total plasma current drops; the magnetic structure changes differently in two regimes. In regime without TF, the magnetic field of plasma current is reversed at Rmagnetic field evolves during initial 1--3 ms transitional period of plasma formation.

  13. Effects of static magnetic fields on plants.

    NASA Astrophysics Data System (ADS)

    Kuznetsov, O.

    In our recent experiment on STS-107 (MFA-Biotube) we took advantage of the magnetic heterogeneity of the gravity receptor cells of flax roots, namely stronger diamagnetism of starch-filled amyloplasts compared to cytoplasm (Δ ≊ < 0). High gradient magnetic fields (HGMF, grad(H2/2) up to 109-1010 Oe2/cm) of the experimental chambers (MFCs) repelled amyloplasts from the zones of stronger field thus providing a directional stimulus for plant gravisensing system in microgravity, and causing the roots to react. Such reaction was observed in the video downlink pictures. Unfortunately, the ``Columbia'' tragedy caused loss of the plant material and most of the images, thus preventing us from detailed studies of the results. Currently we are looking for a possibility to repeat this experiment. Therefore, it is very important to understand, what other effects (besides displacing amyloplasts) static magnetic fields with intensities 0 to 2.5104 Oe, and with the size of the area of non-uniformity 10-3 to 1 cm. These effects were estimated theoretically and tested experimentally. No statistically significant differences in growth rates or rates of gravicurvature were observed in experiments with Linum, Arabidopsis, Hordeum, Avena, Ceratodon and Chara between the plants grown in uniform magnetic fields of various intensities (102 to 2.5104 Oe) and those grown in the Earth's magnetic field. Microscopic studies also did not detect any structural differences between test and control plants. The magnitudes of possible effects of static magnetic fields on plant cells and organs (including effects on ion currents, magneto-hydrodynamic effects in moving cytoplasm, ponderomotive forces on other cellular structures, effects on some biochemical reactions and biomolecules) were estimated theoretically. The estimations have shown, that these effects are small compared to the thermodynamic noise and thus are insignificant. Both theoretical estimations and control experiments confirm, that

  14. ARTEMIS Low Altitude Magnetic Field Measurements

    NASA Astrophysics Data System (ADS)

    Glassmeier, Karl-Heinz; Constantinescu, Dragos; Auster, Hans-Ulrich

    2016-10-01

    Since 2011, two spacecraft of the five THEMIS mission spacecraft are in orbit around the Moon. These two ARTEMIS probes provide for very interesting observations of plasma physical properties of the lunar environment. In particular, the very low periselene of the ARTEMIS probes allows for the detection of crustal magnetic features of our terrestrial companion. Repeated low passes over the same region are used to confirm the crustal origin of the measured magnetic field variations. Using a model for the decay of the magnetic field intensity and measurements at several altitudes, we estimate the magnetic moment and the depth of the equivalent dipole. Some of these magnetic anomalies are strong enough to produce upstream waves due to the interaction with the solar wind with the anomaly driven mini-magnetospheres.

  15. Magnetic field fluctuations of THEMIS substorm events

    NASA Astrophysics Data System (ADS)

    Cheng, C. Z.; Chang, T.

    2009-12-01

    We investigate the origin of waves leading to current disruption and dipolarization observed by THEMIS satellites in the near-Earth plasma sheet near substorm expansion onset events on 29 January 2008. Based on the Hilbert-Huang Transform (HHT) technique we analyze the magnetic activity associated with current disruption which shows clearly low frequency fluctuations in the Pi 2 range growing exponentially before the time of magnetic field depolarization and continuing well into the expansion phase. Higher frequency waves are excited at or after the depolarization process starts. These features of magnetic activities are present in almost all three substorm events on January 29, 2008. We identify the low frequency instability as the kinetic ballooning modes destabilized by the free energy associated with the plasma pressure gradient in the bad magnetic field curvature via the wave-particle magnetic drift resonance effect.

  16. Fast Reconnection of Weak Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.

    1998-01-01

    Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids.

  17. Critical Magnetic Field Determination of Superconducting Materials

    SciTech Connect

    Canabal, A.; Tajima, T.; Dolgashev, V.A.; Tantawi, S.G.; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  18. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields

    NASA Astrophysics Data System (ADS)

    Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.

  19. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    SciTech Connect

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  20. Magnetic Field Analysis of a Permanent-Magnet Induction Generator

    NASA Astrophysics Data System (ADS)

    Tsuda, Toshihiro; Fukami, Tadashi; Kanamaru, Yasunori; Miyamoto, Toshio

    The permanent-magnet induction generator (PMIG) is a new type of induction machine that has a permanent-magnet rotor inside a squirrel-cage rotor. In this paper, a new technique for the magnetic field analysis of the PMIG is proposed. The proposed technique is based on the PMIG's equivalent circuit and the two-dimensional finite-element analysis (2D-FEA). To execute the 2D-FEA, the phasors of primary and secondary currents are calculated from the equivalent circuit, and the input data for the 2D-FEA is found by converting these phasors into the space vectors. As a result, the internal magnetic fields of the PMIG can be easily analyzed without complicated calculations.

  1. Plasma separation from magnetic field lines in a magnetic nozzle

    NASA Technical Reports Server (NTRS)

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

  2. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2007-01-01

    Magnetic field response sensors designed as passive inductor- capacit or circuits produce magnetic field responses whose harmonic frequenci es correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induc tion. A radio frequency antenna produces the time varying magnetic fi eld used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for disce rning changes in sensor's response frequency, resistance and amplitud e is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminat ing the need to have a data acquisition channel dedicated to each se nsor. The method does not require the sensors to be in proximity to a ny form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  3. Variable-field permanent magnet dipole

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Meyer, R.E.

    1993-10-01

    A new concept for a variable-field permanent-magnet dipole (VFPMD) has been designed, fabricated, and tested at Los Alamos. The VFPMD is a C-shaped sector magnet with iron poles separated by a large block of magnet material (SmCo). The central field can be continuously varied from 0.07 T to 0.3 T by moving an iron shunt closer or further away from the back of the magnet. The shunt is specially shaped to make the dependence of the dipole field strength on the shunt position as linear as possible. The dipole has a 2.8 cm high by 8 cm wide aperture with {approximately}10 cm long poles.

  4. Magnetic fields of Jupiter and Saturn

    SciTech Connect

    Ness, N.F.

    1981-01-01

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected.

  5. The magnetic fields of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Ness, N. F.

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected.

  6. Measurements of Photospheric and Chromospheric Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-12-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.

  7. Magnetic nanoparticles for applications in oscillating magnetic field

    SciTech Connect

    Peeraphatdit, Chorthip

    2009-01-01

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific

  8. Variability in Martian magnetic field topology

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Halekas, J. S.; Eastwood, J. P.; Ulusen, D.; Lillis, R. J.

    2013-12-01

    Martian crustal magnetic fields form localized mini-magnetosphere structures that extend in some regions well above the Martian ionosphere, interacting directly with the draped external interplanetary magnetic field (IMF). In some regions the crustal magnetic field lines are closed, locally shielding the ionosphere from external plasma. In other locations the crustal field lines are open, allowing exchange of plasma between the ionosphere and the surrounding plasma interaction region. The average magnetic topology as a function of geographic location has been mapped previously, using ~7 years of Mars Global Surveyor electron observations recorded at constant altitude and local time. In this previous work, pitch angle distributions of suprathermal electrons were examined for the presence of loss cones to determine whether field lines were open or closed. Here we apply the same technique to describe how magnetic topology varies with four external drivers: solar wind pressure, IMF orientation, solar EUV flux, and Martian season. We see that some locations on Mars change topology frequently depending upon external conditions, while others have a relatively static field topology.

  9. Ionospheric magnetic fields at Venus and Mars

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Zhang, T. L.; Woch, J.; Wei, Y.

    2014-04-01

    Mars Global Surveyor (MGS) and Venus Express(VEX) spacecraft have provided us a wealth of insitu observations of characteristics of induced magnetospheres of Mars and Venus at low altitudes during the periods of solar minimum. At such conditions the interplanetary magnetic field (IMF) penetrates deeply inside the ionosphere while the solar wind is terminated at higher altitudes. We present the measurements made by MGS and VEX in the ionospheres of both planets which reveal similar features of the magnetization. The arising magnetic field pattern occurs strongly asymmetrical with respect to the direction of the cross-flow component of the IMF revealing either a sudden straightening of the field lines with a release of the magnetic field stresses or a sudden rotation of the magnetic field vector with a reversal of the sign of the cross-flow component. Such an asymmetrical response is observed at altitudes where the motion of ions and electrons is decoupled and collisional effects become important for generation of the electric currents Asymmetry in the field topology significantly modifies a plasma transport to the night side.

  10. DC-magnetic field vector measurement

    NASA Technical Reports Server (NTRS)

    Schmidt, R.

    1981-01-01

    A magnetometer experiment was designed to determine the local magnetic field by measuring the total of the Earth's magnetic field and that of an unknown spacecraft. The measured field vector components are available to all onboard experiments via the Spacelab command and data management system. The experiment consists of two parts, an electronic box and the magnetic field sensor. The sensor includes three independent measuring flux-gate magnetometers, each measuring one component. The physical background is the nonlinearity of the B-H curve of a ferrite material. Two coils wound around a ferrite rod are necessary. One of them, a tank coil, pumps the ferrite rod at approximately 20 kilohertz. As a consequence of the nonlinearity, many harmonics can be produced. The second coil (i.e., the detection coil) resonates to the first harmonic. If an unknown dc or low-frequency magnetic field exists, the amplitude of the first harmonic is a measure for the unknown magnetic field. The voltages detected by the sensors are to be digitized and transferred to the command and data management system.

  11. Primordial magnetic fields from the string network

    NASA Astrophysics Data System (ADS)

    Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2016-08-01

    Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar-, vector-, and tensor-type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as aB(k,z)~4×10Gμ/1k)3.5 gauss on super-horizon scales, and aB(k,z)~2.4×10Gμ/1k)2.5 gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, and has a final amplitude of approximately B~10Gμ gauss at the k~1 Mpc scale today. This field might serve as a seed for cosmological magnetic fields.

  12. Passive magnetic shielding in static gradient fields

    NASA Astrophysics Data System (ADS)

    Bidinosti, C. P.; Martin, J. W.

    2014-04-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied for two idealized shield models: concentric spherical and infinitely-long cylindrical shells of linear material. It is found that higher-order multipoles of an externally applied magnetic field are always shielded progressively better for either geometry by a factor related to the order of the multipole. In regard to the design of internal coil systems, we determine reaction factors for the general multipole field and provide examples of how one can take advantage of the coupling of the coils to the innermost shell to optimize the uniformity of the field. Furthermore, we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields close to the outermost shell. Overall this work provides a comprehensive framework that is useful for the analysis and optimization of dc magnetic shields, serving as a theoretical and conceptual design guide as well as a starting point and benchmark for finite-element analysis.

  13. UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS

    SciTech Connect

    Broderick, Avery E.; Blandford, Roger D.

    2010-08-01

    Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m{sup -2}){sup 1/4}(B/1 G){sup 1/2} MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, {nu}{sub SA}, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of {nu}{sub SA} range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, {nu}{sub SA} ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.

  14. Electric/magnetic field sensor

    DOEpatents

    Schill, Jr., Robert A.; Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  15. A deep dynamo generating Mercury's magnetic field.

    PubMed

    Christensen, Ulrich R

    2006-12-21

    Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned. PMID:17183319

  16. Magnetic Field Sensor Using Polymer MEMS Structures for Detection of Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Oldham, Bradley E.

    This thesis covers the development of a magnetic sensor for application with brain computer interfacing for the detection of motor imagery evoked potentials. For this application, the feasibility of a resonance magnetic cantilever based sensor is investigated via: numerical analysis for feasibility, multilayer structure for layer integration verification, and finally flexible magnetic material characterization for sensing element consideration. The flexible magnetic material that is considered in this thesis is made by the embedding of hard rare earth magnetic (Nd2Fe14B) particles into polydimethylsiloxane (PDMS) and provides a micro-mouldable material with hard magnetic properties. This material provides a couple advantages for design of a small magnetic sensor as it is scalable while being made of a rugged polymer. Additionally, this magnetic material exhibits magnetic rheological properties when exposed to a static magnetic field. While there is additional work needed to complete the sensor design, this thesis shows the feasibility of this design.

  17. Parametric excitation of magnetization by electric field

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan; Tiberkevich, Vasil; Slavin, Andrei; Barsukov, Igor; Krivorotov, Ilya

    Manipulation of magnetization by electric field is of primary importance for development of low-power spintronic devices. We present the first experimental demonstration of parametric generation of magnetic oscillations by electric field. We realize the parametric generation in CoFeB/MgO/SAF nanoscale magnetic tunnel junctions (MTJs). The magnetization of the free layer is perpendicular to the sample plane while the magnetizations of the synthetic antiferromagnet (SAF) lie in the plane. We apply microwave voltage to the MTJ at 2 f, where f is the ferromagnetic resonance frequency of the free layer. In this configuration, the oscillations can only be driven parametrically via voltage-controlled magnetic anisotropy (VCMA) whereby electric field across the MgO barrier modulates the free layer anisotropy. The parametrically driven oscillations are detected via microwave voltage from the MTJ near f and show resonant character, observed only in a narrow range of drive frequencies near 2 f. The excitation also exhibits a well-pronounced threshold drive voltage of approximately 0.1 Volts. Our work demonstrates a low threshold for parametric excitation of magnetization by VCMA that holds promise for the development of energy-efficient nanoscale spin wave devices.

  18. Measurements accounting for the impediment of ion spin-up in rotating magnetic field driven field reversed configurations

    SciTech Connect

    Deards, C. L.; Hoffman, A. L.; Steinhauer, L. C.

    2011-11-15

    Improved vacuum hygiene, wall conditioning, and reduced recycling in the rotating magnetic field (RMF) driven translation, confinement, and sustainment-upgrade (TCSU) field reversed configuration experiment have made possible a more accurate assessment of the forces affecting ion spin-up. This issue is critical in plasmas sustained by RMFs, such as TCSU since ion spin-up can substantially reduce or cancel the RMF current drive effect. Several diagnostics are brought to bear, including a 3-axis translatable magnetic probe allowing the first experimental measurement of the end shorting effect. These results show that the ion rotation is determined by a balance between electron-ion friction, the end shorting effect, and ion drag against neutrals.

  19. Constructing the Coronal Magnetic Field: by Correlating Parameterized Magnetic Field Lines with Observed Coronal Plasma Structures

    NASA Technical Reports Server (NTRS)

    Gary, G. A.

    1998-01-01

    The reconstruction of the coronal magnetic field is carried out using a perturbation procedure. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal fluxtubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures (1) that the normal component of the photospheric field remains unchanged, (2) that the field is given in the entire corona, (3) that the field remains divergence free, and (4) that electrical currents are introduced into the field. It is demonstrated that a simple radial parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 Nov 26. At a coronal height of 30 km, the resulting magnetic field is a non-force free magnetic field with the maximum Lorentz force being on the order of 2.6 x 10(exp -9) dyn resulting from an electric current density of $0.13 mu A/ sq m. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.

  20. Opening the cusp. [using magnetic field topology

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.

    1991-01-01

    This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.

  1. Primordial magnetic fields and nonlinear electrodynamics

    SciTech Connect

    Kunze, Kerstin E.

    2008-01-15

    The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by Lagrangians having a power-law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which primordial magnetic fields of cosmologically interesting strengths can be created.

  2. Magnetic fields of young solar twins

    NASA Astrophysics Data System (ADS)

    Rosén, L.; Kochukhov, O.; Hackman, T.; Lehtinen, J.

    2016-09-01

    Aims: The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and to understand the past of the Sun and the solar system. This is also important for the atmospheric evolution of the inner planets, Earth in particular. Methods: We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Results: Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100 Myr to 250 Myr, while there is no significant age dependence of the mean magnetic field strength for stars with ages 250-650 Myr. The spread in the mean field strength between different stars is comparable to the scatter between different observations of individual stars. The meridional field component is weaker than the radial and azimuthal field components in 15 of the 16 magnetic maps. It turns out that 89-97% of the magnetic field energy is contained in l = 1 - 3. There is also no clear trend with age and distribution of field energy into poloidal/toroidal and axisymmetric/non-axisymmetric components within the sample. The two oldest stars in this study show an octupole component that is twice as strong as the quadrupole component. This is only seen in 1 of the 13 maps of the younger stars. One star, χ1 Ori, displays two field polarity switches during almost 5 yr of observations suggesting a magnetic cycle length of 2, 6, or 8 yr. Based on observations made with the HARPSpol instrument on the ESO 3.6 m

  3. Strong CP violation in external magnetic fields

    SciTech Connect

    Millo, R.; Faccioli, P.

    2008-03-15

    We study the response of the QCD vacuum to an external magnetic field, in the presence of strong CP violation. Using chiral perturbation theory and large N{sub c} expansion, we show that the external field would polarize quantum fluctuations and induce an electric dipole moment of the vacuum along the direction of the magnetic field. We estimate the magnitude of this effect in different physical scenarios. In particular, we find that the polarization induced by the magnetic field of a magnetar could accelerate electric charges up to energies of the order {approx}{theta}10{sup 3} TeV. We also suggest a connection with the possible existence of ''hot-spots'' on the surface of neutron stars.

  4. Transient and quasisteady behavior with rotating magnetic field current drive

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren C.

    2001-07-01

    The time-dependent behavior of rotating magnetic field (RMF) current drive is investigated using a two-fluid model. The important new factor is the addition of transverse ion mobility in contrast to rigid-ion models of the past. The equations simplify conveniently, allowing the behavior on each surface (r=const) to be isolated, which permits a quadrature solution for the ion fluid rotation. A rapid transient phase leads to quasisteady behavior that evolves on the relatively slow diffusion timescale. The fast transient timescale is set by the ion inertia. Unless there is an ion momentum source to balance the electron drag on the ion fluid, there is no quasisteady current drive effect. Collisions with neutrals offer such a momentum source in some experiments, notably rotamaks and the Star Thrust Experiment. Other sources of ion momentum are essential for RMF current drive in hotter, fusion-relevant plasmas. The properties of the quasisteady state are found, including the self-consistent ion fluid rotation rate and radial electric field, and RMF corrections on the pressure balance.

  5. Near-Zero-Field Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Theis, T.; Blanchard, J. W.; Ring, H.; Ganssle, P.; Appelt, S.; Blümich, B.; Pines, A.; Budker, D.

    2011-09-01

    We investigate nuclear magnetic resonance (NMR) in near zero field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J coupling). This is in stark contrast to the high-field case, where heteronuclear J couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectra. Experimental results are in good agreement with first-order perturbation theory and with full numerical simulation when perturbation theory breaks down. We present simple rules for understanding the splitting patterns in near-zero-field NMR, which can be applied to molecules with nontrivial spectra.

  6. Magnetic buoyancy and the escape of magnetic fields from stars

    NASA Astrophysics Data System (ADS)

    Parker, E. N.

    1984-06-01

    Magnetic buoyancy causes the azimuthal magnetic fields of stars to rise rapidly to the surface, from where they are generally assumed to escape freely into space. However, a closer look at the problem reveals the simple fact that disengagement of the field from the gas, and escape into space, require a convoluted field configuration, producing neutral point reconnection of the flux in the tenuous gas above the surface of the star. Only that flux which reconnects can escape. Recent observations of the magnetic fields emerging through the surface of the Sun show that even at sunspot maximum the gaps in longitude between bipolar magnetic regions are so wide as to limit severely the reconnection between regions. We suggest from the observations that no more than perhaps 3% of the flux that is observed to emerge through the surface is able to reconnect and escape. Hence the surface of the Sun approximates to an impenetrable barrier rather than an open surface, with quantitative consequences for theoretical dynamo models. Recent observations of the retraction of bipolar fields at the end of their appearance at the surface suggest active dynamical control by the convection beneath the surface.

  7. Dissipation function in a magnetic field (Review)

    NASA Astrophysics Data System (ADS)

    Gurevich, V. L.

    2015-07-01

    The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.

  8. The Magnetic Field in Tapia's Globule 2

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Carretti, Ettore; Bhat, Ramesh; Robishaw, Timothy; Crutcher, Richard; Vaillancourt, John

    2014-04-01

    We propose to measure the magnetic field in the Southern Coalsack using the Zeeman effect in OH at 1665 and 1667 MHz. This is motivated by (1) the measurement of a large magnetic field (B~90 uG) in the Coalsack region from optical and near infrared polarimetry and (2) a very low magnetic field (B~1 uG) measured ~30' from the cloud edge using pulsar Faraday rotation measurements. While the derived field strength in the cloud is significantly larger than usually seen in the interstellar medium, the existence of an X-ray emitting envelope around the cloud that contains significant amounts of O VI ions puts the magnetic pressure at approximate equipartition with the thermal pressure of such gas. A chain of observational results indicate that the Coalsack might be a unique, nearby example of externally triggered star formation. This chain starts with the passage of the Upper Centaurus-Lupus super bubble over the cloud, eventually causing triggered star formation. Probing the high magnetic field strength and providing accurate constraints for the interpretation of the observations of the cloud is therefore of great importance for testing this hypothesis.

  9. Magnetic fields in primordial accretion disks

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  10. Reionization constraints on primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Pandey, Kanhaiya L.; Choudhury, T. Roy; Sethi, Shiv K.; Ferrara, Andrea

    2015-08-01

    We study the impact of the extra density fluctuations induced by primordial magnetic fields on the reionization history in the redshift range: 6 < z < 10. We perform a comprehensive Markov chain Monte Carlo (MCMC) physical analysis allowing the variation of parameters related to primordial magnetic fields (strength, B0, and power-spectrum index n_{B}), reionization and Λ cold dark matter cosmological model. We find that magnetic field strengths in the range: B0 ≃ 0.05-0.3 nG (for nearly scale-free power spectra) can significantly alter the reionization history in the above redshift range and can relieve the tension between the Wilkinson Microwave Anisotropy Probe and quasar absorption spectra data. Our analysis puts upper limits on the magnetic field strength B0 < 0.358, 0.120 and 0.059 nG (95 per cent c.l.) for n_{B} = -2.95, -2.9 and -2.85, respectively. These represent the strongest magnetic field constraints among those available from other cosmological observables.

  11. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  12. Reducing blood viscosity with magnetic fields

    NASA Astrophysics Data System (ADS)

    Tao, R.; Huang, K.

    2011-07-01

    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ˜1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells’ normal function. This technology has much potential for physical therapy.

  13. Whistler modes with wave magnetic fields exceeding the ambient field.

    PubMed

    Stenzel, R L; Urrutia, J M; Strohmaier, K D

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  14. Refocusing properties of periodic magnetic fields

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1976-01-01

    The use of depressed collectors for the efficient collection of spent beams from linear-beam microwave tubes depends on a refocusing procedure in which the space charge forces and transverse velocity components are reduced. The refocusing properties are evaluated of permanent magnet configurations whose axial fields are approximated by constant plateaus or linearly varying fields. The results provide design criteria and show that the refocusing properties can be determined from the plateau fields alone.

  15. Exploring Magnetic Fields with a Compass

    NASA Astrophysics Data System (ADS)

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this paper, we present a series of simple activities adapted from the Matter & Interactions textbook for doing just this. Interestingly, these simple measurements are comparable to predictions made by the Bohr model of the atom. Although antiquated, Bohr's atom can lead the way to a deeper analysis of the atomic properties of magnets. Although originally developed for an introductory calculus-based course, these activities can easily be adapted for use in an algebra-based class or even at the high school level.

  16. Use of magnetic field aids oil search

    SciTech Connect

    Not Available

    1992-05-04

    Efficient oil and gas exploration requires the measurement of the earth's magnetic field with the ability to determine and remove with high accuracy that part of the signal caused by changes in the magnetic basement, and measurement of rock drill cuttings when possible, only to add confidence that the magnetic mineral body is authigenic in origin (created in place), and not detrital. This paper reports that results show that anomalous areas developed from aeromagnetic data and drill holes shown to have anomalous authigenic altered drill cuttings are both 80-85% probable of oil and natural gas discovery, and similarly those areas not anomalous in either are 10-15% probable of oil and gas discovery. The method involves the gathering of low terrain clearance high resolution data of the earth's magnetic field using the cesium vapor magnetometer or equivalent.

  17. MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS

    SciTech Connect

    Tevzadze, Alexander G.; Kisslinger, Leonard; Kahniashvili, Tina; Brandenburg, Axel

    2012-11-01

    We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.

  18. Magnetic Field Effects on Plasma Plumes

    NASA Technical Reports Server (NTRS)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  19. Magnetic Fields in Early Protostellar Disk Formation

    NASA Astrophysics Data System (ADS)

    González-Casanova, Diego F.; Lazarian, Alexander; Santos-Lima, Reinaldo

    2016-03-01

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called “magnetic braking catastrophe.” In particular, we provide a detailed study of the dynamics of a 0.5 M⊙ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, “reconnection diffusion,” removes the magnetic flux from the disk; the other involves the change of the magnetic field's topology, but does not change the absolute value of the magnetic flux through the disk. We demonstrate that for the first mechanism, turbulence causes a magnetic flux transport outward from the inner disk to the ambient medium, thus decreasing the coupling of the disk to the ambient material. A similar effect is achieved through the change of the magnetic field's topology from a split monopole configuration to a dipole configuration. We explore how both mechanisms prevent the catastrophic loss of disk angular momentum and compare both above turbulent reconnection mechanisms with alternative mechanisms from the literature.

  20. Behavior of a Single Langmuir Probe in a Magnetic Field.

    ERIC Educational Resources Information Center

    Pytlinski, J. T.; And Others

    1978-01-01

    Describes an experiment to demonstrate the influence of a magnetic field on the behavior of a single Langmuir probe. The experiment introduces the student to magnetically supported plasma and particle behavior in a magnetic field. (GA)

  1. Topology of induced lunar magnetic fields

    NASA Technical Reports Server (NTRS)

    Schwartz, K.; Schubert, G.

    1973-01-01

    Using the asymmetric theory of lunar induction the total and induced magnetic field line structure within the Moon and the diamagnetic cavity were obtained. Total field distributions are shown for orientations of the oscillating interplanetary field parallel, perpendicular and at 45 deg to the cavity axis. Induced field lines are shown only for the orientations of the interplanetary field parallel and orthogonal to the cavity axis. When compared with the field lines derived using the long wavelength limit of spherically symmetric vacuum induction theory, the configurations obtained using the asymmetric theory exhibit significant distortion. For all orientations of the interplanetary field, the field lines are strongly compressed on the sunlit hemisphere because of the confining solar wind pressure at the lunar surface and the exclusion of the field by the lunar core.

  2. Simulation of GRM drag compensation system. [Geopotential Research Mission

    NASA Technical Reports Server (NTRS)

    Antreasian, Peter G.; Lundberg, John B.; Schutz, Bob E.

    1991-01-01

    NASA's Geopotential Research Mission (GRM) was proposed in 1986 for globally determining the earth's gravitational and magnetic fields with high precision via full earth coverage polar-orbit satellites. In the GRM system, at least one of the two satellites was required to be stationed in a low-altitude, 160-km orbit subject to atmospheric drag effects that could both corrupt gravity measurements and reduce the satellite's lifetime. The Disturbance Compensation System, 'DISCOS', was incorporated to select a drag-free orbit during the active portion of GRM satellite operations by firing thrusters that offset the effects of disturbances. A drag-free thruster algorithm has been created to simulate the DISCOS system; simulation results are presented.

  3. ``Perfect'' Coulomb Drag in a Bilayer Quantum Hall System

    NASA Astrophysics Data System (ADS)

    Nandi, D.; Finck, A. D. K.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    2012-02-01

    We report Coulomb drag measurements in Corbino geometry which reveal that equal but oppositely directed electrical currents can freely propagate across the insulating bulk of the bilayer quantized Hall state at νT=1 even when the two 2D layers are electrically isolated and interlayer tunneling has been heavily suppressed by an in-plane magnetic field. This effect, which we dub ``perfect'' Coulomb drag, reflects the transport of charge neutral excitons across the bulk of the 2D system. The equal magnitude of the drive and drag currents is lost at high current and when either the temperature or effective separation between the two 2D layers is increased. In each of these cases, ordinary quasiparticle charge transport across the annulus has grown to dominate over exciton transport.

  4. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  5. Effect of magnetic field in malaria diagnosis using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Yuen, Clement

    2011-07-01

    The current gold standard method of Malaria diagnosis relies on the blood smears examination. The method is laborintensive, time consuming and requires the expertise for data interpretation. In contrast, Raman scattering from a metabolic byproduct of the malaria parasite (Hemozoin) shows the possibility of rapid and objective diagnosis of malaria. However, hemozoin concentration is usually extremely low especially at the early stage of malaria infection, rendering weak Raman signal. In this work, we propose the sensitive detection of enriched β-hematin, whose spectroscopic properties are equivalent to hemozoin, based on surface enhanced Raman spectroscopy (SERS) by using magnetic nanoparticles. A few orders of magnitude enhancement in the Raman signal of β-hematin can be achieved using magnetic nanoparticles. Furthermore, the effect of magnetic field on SERS enhancement is investigated. Our result demonstrates the potential of SERS using magnetic nanoparticles in the effective detection of hemozoin for malaria diagnosis.

  6. Magnetic resonance signal moment determination using the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  7. Magnetic resonance signal moment determination using the Earth's magnetic field.

    PubMed

    Fridjonsson, E O; Creber, S A; Vrouwenvelder, J S; Johns, M L

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system. PMID:25700116

  8. Static magnetic field therapy: dosimetry considerations.

    PubMed

    Colbert, Agatha P; Markov, Marko S; Souder, James S

    2008-06-01

    The widespread use of static magnetic field (SMF) therapy as a self-care physical intervention has led to the conduct of numerous randomized controlled trials (RCTs). A recent systematic review of SMF trials for pain reduction concluded that the evidence does not support the use of permanent magnets for pain relief. We argue that this conclusion is unwarranted if the SMF dosage was inadequate or inappropriate for the clinical condition treated. The purpose of this communication is to (1) provide a rationale and an explanation for each of 10 essential SMF dosing parameters that should be considered when conducting trials of SMF therapy, and (2) advocate for the conduct of Phase I studies to optimize SMF dosimetry for each condition prior to implementing a large-scale RCT. A previous critical review of SMF dosimetry in 56 clinical studies found that reporting SMF dosages in a majority of those studies was of such poor quality that the magnetic field exposure at the target tissue could not be characterized. Without knowing what magnetic field actually reached the target, it is impossible to judge dosage adequacy. In order to quantify SMF exposure at the site of pathology (target tissue/s), that site must be clearly named; the distance of the permanent magnet surface from the target must be delineated; the physical parameters of the applied permanent magnet must be described; and the dosing regimen must be precisely reported. If the SMF dosimetry is inadequate, any inferences drawn from reported negative findings are questionable.

  9. Mechanical Response of Elastomers to Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Munoz, B. C.; Jolly, M. R.

    1996-01-01

    Elastomeric materials represent an important class of engineering materials, which are widely used to make components of structures, machinery, and devices for vibration and noise control. Elastomeric material possessing conductive or magnetic properties have been widely used in applications such as conductive and magnetic tapes, sensors, flexible permanent magnets, etc. Our interest in these materials has focussed on understanding and controlling the magnitude and directionality of their response to applied magnetic fields. The effect of magnetic fields on the mechanical properties of these materials has not been the subject of many published studies. Our interest and expertise in controllable fluids have given us the foundation to make a transition to controllable elastomers. Controllable elastomers are materials that exhibit a change in mechanical properties upon application of an external stimuli, in this case a magnetic field. Controllable elastomers promise to have more functionality than conventional elastomers and therefore could share the broad industrial application base with conventional elastomers. As such, these materials represent an attractive class of smart materials, and may well be a link that brings the applications of modern control technologies, intelligent structures and smart materials to a very broad industrial area. This presentation will cover our research work in the area of controllable elastomers at the Thomas Lord Research Center. More specifically, the presentation will discuss the control of mechanical properties and mathematical modeling of the new materials prepared in our laboratories along with experiments to achieve adaptive vibration control using the new materials.

  10. Magnetic Fields and Outflows from AGN Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, Richard V. E.; Bisnovatyi-Kogan, Gennady S.; Rothstein, D. M.

    2010-11-01

    Activity of the nuclei of galaxies involving disk accretion to black holes is thought to be due to (1) a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI) which gives a large viscosity enhancing accretion, and (2) a large-scale magnetic field which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (Z) profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr (Z) which depends mainly on the midplane thermal to magnetic pressure ratio ˜>1 and the Prandtl number of the turbulence P = viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (˜>1) large-scale field does not di use away as suggested by earlier work.

  11. Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2010-01-01

    The Spiral Magnetic Motor, which can accelerate a magnetized rotor through 90% of its cycle with only permanent magnets, was an energy milestone for the 20th century patents by Kure Tekkosho in the 1970's. However, the Japanese company used old ferrite magnets which are relatively weak and an electrically-powered coil to jump start every cycle, which defeated the primary benefit of the permanent magnet motor design. The principle of applying an inhomogeneous, anisotropic magnetic field gradient force Fz = μ cos φ dB/dz, with permanent magnets is well-known in physics, e.g., Stern-Gerlach experiment, which exploits the interaction of a magnetic moment with the aligned electron spins of magnetic domains. In this case, it is applied to dB/dθ in polar coordinates, where the force Fθ depends equally on the magnetic moment, the cosine of the angle between the magnetic moment and the field gradient. The radial magnetic field increases in strength (in the attractive mode) or decreases in strength (in the repulsive mode) as the rotor turns through one complete cycle. An electromagnetic pulsed switching has been historically used to help the rotor traverse the gap (detent) between the end of the magnetic stator arc and the beginning (Kure Tekko, 1980). However, alternative magnetic pulse and switching designs have been developed, as well as strategic eddy current creation. This work focuses on the switching mechanism, novel magnetic pulse methods and advantageous angular momentum improvements. For example, a collaborative effort has begun with Toshiyuki Ueno (University of Tokyo) who has invented an extremely low power, combination magnetostrictive-piezoelectric (MS-PZT) device for generating low frequency magnetic fields and consumes "zero power" for static magnetic field production (Ueno, 2004 and 2007a). Utilizing a pickup coil such as an ultra-miniature millihenry inductor with a piezoelectric actuator or simply Wiegand wire geometry, it is shown that the necessary

  12. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Jin, K.; Kumar, P.; Vanka, S. P.; Thomas, B. G.

    2016-09-01

    The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong ["Deformation and oscillations of a single gas bubble rising in a narrow vertical tube," Int. J. Therm. Sci. 47, 221-228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.

  13. The effect of external magnetic field on plasma acceleration in electromagnetic railgun channel

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.

    2016-03-01

    We have studied the effect of an external magnetic field on the dynamics of a free plasma piston (PP) accelerated without solid striker armature in an electromagnetic railgun channel filled with various gases (argon or helium). It is established that, as the applied magnetic field grows, the velocity of a shock wave generated by PP in the channel increases. The experimental results are compared to a theoretical model that takes into account the gas pressure force behind the shock wave and the drag force that arises when erosion mass entering the channel is partly entrained by the accelerated plasma. The results of model calculations are in satisfactory agreement with experimental data. The discrepancy somewhat increases with the applied field, but the maximum deviation still does not exceed 20%.

  14. Simulation of interplanetary magnetic field B{sub y} penetration into the magnetotail

    SciTech Connect

    Guo, Jiuling; Shen, Chao; Liu, Zhenxing

    2014-07-15

    Based on our global 3D magnetospheric MHD simulation model, we investigate the phenomena and physical mechanism of the B{sub y} component of the interplanetary magnetic field (IMF) penetrating into the magnetotail. We find that the dayside reconnected magnetic field lines move to the magnetotail, get added to the lobe fields, and are dragged in the IMF direction. However, the B{sub y} component in the plasma sheet mainly originates from the tilt and relative slippage of the south and north lobes caused by plasma convection, which results in the original B{sub z} component in the plasma sheet rotating into a B{sub y} component. Our research also shows that the penetration effect of plasma sheet B{sub y} from the IMF B{sub y} during periods of northward IMF is larger than that during periods of southward IMF.

  15. Modeling Solar Magnetic Fields Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Lee, G.; Malanushenko, A. V.; DeRosa, M. L.

    2014-12-01

    Previous research reconstructed a three-dimensional model of the magnetic field of an active region on the Sun from using solar coronal loops as guides for modeling(Malanushenko et al., ApJ,2009, 707:1044). In this study, we test the consistency of such reconstructions with data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) by applying the aformentioned method to additional active regions with varying amounts of solar activity. To create an initial model of a magnetic field surrounding an active region, we first manually trace the coronal loops on the coronal images in the following wavelengths: 171Å, 193Å, 211Å, 94Å, 131Å, and 335Å. The manually traced loops are then used as a guide for a computer reconstruction of the individual three-dimensional field lines with differing heights and degrees of local twist. The reconstructed field lines are then adjusted by a partially automated algorithm, so that the constructed field line would correspond to a coronal loop on the Sun. These fitted loops serve as a skeleton to create a model of the magnetic field of the active region. We expect that our modeling can be used in future works to predict future solar events. Implications of this ability include being able to prepare a response for a solar event before it happens.

  16. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.

    1978-01-01

    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  17. Consistency relation for cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Jain, Rajeev Kumar; Sloth, Martin S.

    2012-12-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields.

  18. Human melatonin during continuous magnetic field exposure

    SciTech Connect

    Graham, C.; Cook, M.R.; Riffle, D.W.

    1997-05-01

    This report describes the third in a series of double-blind, laboratory-based studies that were aimed at determining the effects of nocturnal exposure to power frequency magnetic fields on blood levels of melatonin in human volunteers. The two earlier studies evaluated effects on melatonin of intermittent exposure to 60 Hz circularly polarized magnetic fields at 10 and 200 mG. No overall effects on melatonin levels were found. In the present study, men were exposed continuously rather than intermittently through the night to the same 200 mG magnetic field condition that was used previously; again, no overall effects on melatonin levels were found. The authors conclude that the intermittent and continuous exposure conditions used in the laboratory to date are not effective in altering nocturnal blood levels of melatonin in human volunteers.

  19. Bound states in a strong magnetic field

    SciTech Connect

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G.; Ferreira Filho, L. G.

    2013-03-25

    We expect a strong magnetic field to be produced in the perpendicular direction to the reaction plane, in a noncentral heavy-ion collision . The strength of the magnetic field is estimated to be eB{approx}m{sup 2}{sub {pi}}{approx} 0.02 GeV{sup 2} at the RHIC and eB{approx} 15m{sup 2}{sub {pi}}{approx} 0.3 GeV{sup 2} at the LHC. We investigate the effects of the magnetic field on B{sup 0} and D{sup 0} mesons, focusing on the changes of the energy levels and of the mass of the bound states.

  20. Reconnection rates of magnetic fields

    SciTech Connect

    Park, W.; Monticello, D.A.; White, R.B.

    1983-05-01

    The Sweet-Parker and Petschek scalings of magnetic reconnection rate are modified to include the effect of the viscosity. The modified scalings show that the viscous effect can be important in high-..beta.. plasmas. The theoretical reconnection scalings are compared with numerical simulation results in a tokamak geometry for three different cases: a forced reconnection driven by external coils, the nonlinear m = 1 resistive internal kink, and the nonlinear m = 2 tearing mode. In the first two cases, the numerical reconnection rate agrees well with the modified Sweet-Parker scaling, when the viscosity is sufficiently large. When the viscosity is negligible, a steady state which was assumed in the derivation of the reconnection scalings is not reached and the current sheet in the reconnection layer either remains stable through sloshing motions of the plasma or breaks up to higher m modes. When the current sheet remains stable, a rough comparison with the Sweet-Parker scaling is obtained. In the nonlinear m = 2 tearing mode case where the instability is purely resistive, the reconnection occurs on the slower dissipation time scale (Psi/sub s/ approx. eta). In addition, experimental data of the nonlinear m = 1 resistive internal kink in tokamak discharges are analyzed and are found to give reasonable agreement with the modified Sweet-Parker scaling.

  1. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  2. Nondissipative drag of superflow in a two-component Bose gas

    SciTech Connect

    Fil, D.V.; Shevchenko, S.I.

    2005-07-15

    A microscopic theory of a nondissipative drag in a two-component superfluid Bose gas is developed. The expression for the drag current in the system with the components of different atomic masses, densities, and scattering lengths is derived. It is shown that the drag current is proportional to the square root of the gas parameter. The temperature dependence of the drag current is studied and it is shown that at temperature of order or smaller than the interaction energy the temperature reduction of the drag current is rather small. A possible way of measuring the drag factor is proposed. A toroidal system with the drag component confined in two half-ring wells separated by two Josephson barriers is considered. Under certain condition such a system can be treated as a Bose-Einstein counterpart of the Josephson charge qubit in an external magnetic field. It is shown that the measurement of the difference of number of atoms in two wells under a controlled evolution of the state of the qubit allows one to determine the drag factor.

  3. The symmetry properties of planetary magnetic fields

    NASA Technical Reports Server (NTRS)

    Raedler, Karl-Heinz; Ness, Norman F.

    1990-01-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For earth, Jupiter, and Saturn, the centered dipole, quadrupole, and octupole contributions are included, while at Uranus only the dipole and quadrupole contributions are considered. It is found that there are a number of common features of the magnetic fields of earth and Jupiter. Compared to earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets.

  4. Neutrino dispersion in external magnetic fields

    SciTech Connect

    Kuznetsov, A. V.; Mikheev, N. V.; Vassilevskaya, L. A.; Raffelt, G. G.

    2006-01-15

    We calculate the neutrino self-energy operator {sigma}(p) in the presence of a magnetic field B. In particular, we consider the weak-field limit eB<field' m{sub l}{sup 2}<field, we show that it is crucial to include the contributions from all Landau levels of the intermediate charged lepton, not just the ground state. For the conditions of the early universe where the background medium consists of a charge-symmetric plasma, the pure B-field contribution to the neutrino dispersion relation is proportional to (eB){sup 2} and thus comparable to the contribution of the magnetized plasma.

  5. Magnetic field line lengths inside interplanetary magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Hu, Qiang; Qiu, Jiong; Krucker, Sam

    2015-07-01

    We report on the detailed and systematic study of field line twist and length distributions within magnetic flux ropes embedded in interplanetary coronal mass ejections (ICMEs). The Grad-Shafranov reconstruction method is utilized together with a constant-twist nonlinear force-free (Gold-Hoyle) flux rope model to reveal the close relation between the field line twist and length in cylindrical flux ropes, based on in situ Wind spacecraft measurements. We show that the field line twist distributions within interplanetary flux ropes are inconsistent with the Lundquist model. In particular, we utilize the unique measurements of magnetic field line lengths within selected ICME events as provided by Kahler et al. () based on energetic electron burst observations at 1 AU and the associated type III radio emissions detected by the Wind spacecraft. These direct measurements are compared with our model calculations to help assess the flux rope interpretation of the embedded magnetic structures. By using the different flux rope models, we show that the in situ direct measurements of field line lengths are consistent with a flux rope structure with spiral field lines of constant and low twist, largely different from that of the Lundquist model, especially for relatively large-scale flux ropes.

  6. Ultralow field magnetization reversal of two-body magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Fei; Lu, Jincheng; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.

    2016-08-01

    Field induced magnetization reversal was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value (on nanometer scale) in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The ultralow field switching phenomenon was missed in the parallel configuration where both the anisotropic axes are aligned along the separation line of the two particles. The micromagnetic results are consistent with the previous theoretical prediction [J. Appl. Phys. 109, 104303 (2011)] where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles might be implemented as a composite information bit.

  7. Equivalent source mapping of lunar magnetic field

    NASA Astrophysics Data System (ADS)

    Toyoshima, M.; Shibuya, H.

    2007-12-01

    JAXA (Japan Aerospace Exploration Agency) shall launch the SELENE (SELenological and ENgineering Explorer) spacecraft this autumn. Amongst many instruments, it has a magnetometer (LMAG: Lunar MAGnetomter) which will measure the magnetic field on the orbit around the Moon. The nominal orbit of the SELENE is about 100km in altitudes for 1 year observation. Although the extended mission is still not determined, LMAG team is requesting a low altitude (less than 50km) observation, if the remaining fuel allows. We are preparing data processing software for the mission. Here, we report an objective scheme for mapping the lunar crustal magnetic field from the orbital measurement data of unequal altitudes. In this study, the magnetic field is restored by solving a linear inverse-problem determining the sources distributed on the lunar surface to satisfy the observational data, which is known as the equivalent source method. Our scheme has three features improving the method: First, the source calculation is performed simultaneously with detrending. Second, magnetic charges (magnetic monopoles) are used as the equivalent sources. It reduces the density of the sources for the same smoothness in produced field, comparing to the dipole sauces. Third, the number of sources is taken large enough to avoid the problem of configuration of the sources, instead the damped least square assuming the strength of each charge is similar to the next one, and the smoothness factor is determined by minimizing Akaike's Bayesian Information Criterion (ABIC). It guarantees the objectivity of the calculation, in other words, there is no adjustable parameter which may depend of the researcher dealing the data analyses. For testing the scheme, we apply this method to the Lunar Prospector magnetometer data, and provide magnetic field map in the region centered at several regions of strong crustal field including the Reiner Gamma anomaly. The stability of the method and the resolution of the anomaly

  8. The symmetry properties of planetary magnetic fields

    SciTech Connect

    Raedler, K.H. ); Ness, N.F. )

    1990-03-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of Earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For Earth, Jupiter, and Saturn the centered dipole, quadrupole, and octupole contributions are included, while at Uranus, only the dipole and quadrupole contributoins are considered. The magnetic fields are analyzed by decomposing them into those parts which have simple symmetry properties with respect to the rotation axis and the equatorial plane. It is found that there are a number of common features of the magnetic fields of Earth and Jupiter. Compared to Earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis, by now rather well known, but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets. The implications of these results for dynamo models are discussed. With a vgiew to Cowling's theorem the symmetry of the fields is investigated with respect to not only the rotation axis but also to other axes intersecting the plaentary center. Surprisingly, the high degree of asymmetry of the Uranian field that is observed with respect to the rotation axis reduces considerably to being compare to that for Earth or Jupiter when the appropriate axis is employed.

  9. Characteristics of a magnetic fluid under an orthogonal alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Hu, J. H.; Zou, J. B.; Zhao, B.; Li, Y.

    2016-07-01

    Nonlinearity is a primary characteristic of a magnetic fluid. Under an orthogonal alternating magnetic field, the magnetization characteristics change, which produce a variable magnetic field in the magnetic fluid region. A mathematical model of a magnetic fluid under an orthogonal alternating magnetic field is here proposed. The model is solved by an analytic method, and the validity of the solution is verified using the finite element method in addition to experimental results. It is shown that the frequency of the magnetic field in a magnetic fluid is twice that of the orthogonal alternating magnetic field.

  10. On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J

    1958-01-01

    The use of a magnetic field to control the motion of electrically conducting fluids is studied. The incompressible boundary-layer solutions are found for flow over a flat plate when the magnetic field is fixed relative to the plate or to the fluid. The equations are integrated numerically for the effect of the transverse magnetic field on the velocity and temperature profiles, and hence, the skin friction and rate of heat transfer. It is concluded that the skin friction and the heat-transfer rate are reduced when the transverse magnetic field is fixed relative to the plate and increased when fixed relative to the fluid. The total drag is increased in all of the areas.

  11. Measurements of magnetic fields in solar prominences

    NASA Technical Reports Server (NTRS)

    Deglinnocenti, Egidio Landi

    1986-01-01

    Magnetic fields can be measured, in solar prominences, by means of two different basic mechanisms that are responsible for the introduction (or the reduction) of a given amount of polarization in spectral lines: these are the Zeeman effect and the Hanle effect. Through the splitting of the magnetic components of a spectral line, the Zeeman effect is capable of introducing a certain amount of circular polarization across the line profile. The Hanle effect consist of a modification of the linear polarization that is induced in spectral lines by the anisotropic illumination of the prominence plasma by the photospheric radiation field. These two effects are briefly discussed.

  12. Magnetic field processing of inorganic polymers

    SciTech Connect

    Kunerth, D.C.; Peterson, E.S.

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  13. Homopolar artificial gravity generator based on frame-dragging

    NASA Astrophysics Data System (ADS)

    Tajmar, M.

    2010-05-01

    Space exploration is linked in many ways to the generation and challenges of artificial gravity. Space stations and drag-free satellite platforms are used to provide microgravity environments for scientific experiments. On the other hand, microgravity or reduced gravity environments such as on Moon and Mars are known to put limits for long-term human presence. Large centrifuges in space may provide Earth-like gravity environments during long-term travels, however, such technology certainly has its limits to provide similar environments for human outposts on other moons and planets. One can imagine a different technology using a prediction out of Einstein's general relativity theory which is called frame-dragging. In principle, frame-dragging might be used to generate artificial gravitational fields similar to electric fields generated by time-varying or moving magnetic fields. We will show that it is also possible to generate constant artificial gravitational fields that could provide microgravity or artificial gravity environments. Although such technology is possible in principle, the field strengths calculated from Einstein's theory are too small to be useful so far. However, recently detected anomalies around low-temperature spinning matter as well as fly-by anomalies point to possible enhancement mechanisms that might make an artificial gravity generator based on frame-dragging a reality in the future.

  14. DYNAMICAL FIELD LINE CONNECTIVITY IN MAGNETIC TURBULENCE

    SciTech Connect

    Ruffolo, D.; Matthaeus, W. H.

    2015-06-20

    Point-to-point magnetic connectivity has a stochastic character whenever magnetic fluctuations cause a field line random walk, but this can also change due to dynamical activity. Comparing the instantaneous magnetic connectivity from the same point at two different times, we provide a nonperturbative analytic theory for the ensemble average perpendicular displacement of the magnetic field line, given the power spectrum of magnetic fluctuations. For simplicity, the theory is developed in the context of transverse turbulence, and is numerically evaluated for the noisy reduced MHD model. Our formalism accounts for the dynamical decorrelation of magnetic fluctuations due to wave propagation, local nonlinear distortion, random sweeping, and convection by a bulk wind flow relative to the observer. The diffusion coefficient D{sub X} of the time-differenced displacement becomes twice the usual field line diffusion coefficient D{sub x} at large time displacement t or large distance z along the mean field (corresponding to a pair of uncorrelated random walks), though for a low Kubo number (in the quasilinear regime) it can oscillate at intermediate values of t and z. At high Kubo number the dynamical decorrelation decays mainly from the nonlinear term and D{sub X} tends monotonically toward 2D{sub x} with increasing t and z. The formalism and results presented here are relevant to a variety of astrophysical processes, such as electron transport and heating patterns in coronal loops and the solar transition region, changing magnetic connection to particle sources near the Sun or at a planetary bow shock, and thickening of coronal hole boundaries.

  15. Magnetic clouds and force-free fields with constant alpha

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1988-01-01

    Magnetic clouds observed at 1 AU are modeled as cylindrically symmetric, constant alpha force-free magnetic fields. The model satisfactorily explains the types of variations of the magnetic field direction that are observed as a magnetic cloud moves past a spacecraft in terms of the possible orientations of the axis of a magnetic cloud. The model also explains why the magnetic field strength is observed to be higher inside a magnetic cloud than near its boundaries. However, the model predicts that the magnetic field strength profile should be symmetric with respect to the axis of the magnetic cloud, whereas observations show that this is not generally the case.

  16. Skyrmion motion driven by oscillating magnetic field

    PubMed Central

    Moon, Kyoung-Woong; Kim, Duck-Ho; Je, Soong-Geun; Chun, Byong Sun; Kim, Wondong; Qiu, Z.Q.; Choe, Sug-Bong; Hwang, Chanyong

    2016-01-01

    The one-dimensional magnetic skyrmion motion induced by an electric current has attracted much interest because of its application potential in next-generation magnetic memory devices. Recently, the unidirectional motion of large (20 μm in diameter) magnetic bubbles with two-dimensional skyrmion topology, driven by an oscillating magnetic field, has also been demonstrated. For application in high-density memory devices, it is preferable to reduce the size of skyrmion. Here we show by numerical simulation that a skyrmion of a few tens of nanometres can also be driven by high-frequency field oscillations, but with a different direction of motion from the in-plane component of the tilted oscillating field. We found that a high-frequency field for small skyrmions can excite skyrmion resonant modes and that a combination of different modes results in a final skyrmion motion with a helical trajectory. Because this helical motion depends on the frequency of the field, we can control both the speed and the direction of the skyrmion motion, which is a distinguishable characteristic compared with other methods. PMID:26847334

  17. Skyrmion motion driven by oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Moon, Kyoung-Woong; Kim, Duck-Ho; Je, Soong-Geun; Chun, Byong Sun; Kim, Wondong; Qiu, Z. Q.; Choe, Sug-Bong; Hwang, Chanyong

    2016-02-01

    The one-dimensional magnetic skyrmion motion induced by an electric current has attracted much interest because of its application potential in next-generation magnetic memory devices. Recently, the unidirectional motion of large (20 μm in diameter) magnetic bubbles with two-dimensional skyrmion topology, driven by an oscillating magnetic field, has also been demonstrated. For application in high-density memory devices, it is preferable to reduce the size of skyrmion. Here we show by numerical simulation that a skyrmion of a few tens of nanometres can also be driven by high-frequency field oscillations, but with a different direction of motion from the in-plane component of the tilted oscillating field. We found that a high-frequency field for small skyrmions can excite skyrmion resonant modes and that a combination of different modes results in a final skyrmion motion with a helical trajectory. Because this helical motion depends on the frequency of the field, we can control both the speed and the direction of the skyrmion motion, which is a distinguishable characteristic compared with other methods.

  18. High magnetic fields in the USA

    NASA Astrophysics Data System (ADS)

    Campbell, Laurence J.; Parkin, Don E.; Crow, Jack E.; Schneider-Muntau, Hans J.; Sullivan, Neil S.

    During the past thirty years research using high magnetic fields has technically evolved in the manner, but not the magnitude, of the so-called big science areas of particle physics, plasma physics, neutron scattering, synchrotron light scattering, and astronomy. Starting from the laboratories of individual researchers it moved to a few larger universities, then to centralized national facilities with research and maintenance staffs, and, finally, to joint international ventures to build unique facilities, as illustrated by the subject of this conference. To better understand the nature of this type of research and its societal justification it is helpful to compare it, in general terms, with the aforementioned big-science fields. High magnetic field research differs from particle physics, plasma physics, and astronomy in three respects: (1) it is generic research that cuts across a wide range of scientific disciplines in physics, chemistry, biology, medicine, and engineering; (2) it studies materials and processes that are relevant for a variety of technological applications and it gives insight into biological processes; (3) it has produced, at least, comparably significant results with incomparably smaller resources. Unlike neutron and synchrotron light scattering, which probe matter, high magnetic fields change the thermodynamic state of matter. This change of state is fundamental and independent of other state variables, such as pressure and temperature. After the magnetic field is applied, various techniques are then used to study the new state.

  19. Magnetic fields and galactic star formation rates

    SciTech Connect

    Loo, Sven Van; Tan, Jonathan C.; Falle, Sam A. E. G.

    2015-02-10

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ≃0.5 pc. Including an empirically motivated prescription for star formation from dense gas (n{sub H}>10{sup 5} cm{sup −3}) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 μG. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

  20. Tracing the Magnetic Field in Orion A

    NASA Technical Reports Server (NTRS)

    Dowell, C. Darren; Hildebrand, Roger H.; Dotson, Jessie L.; Vaillancourt, John E.; Phillips, Thomas G.; Peng, Rui-Sheng; Bastien, Pierre

    2003-01-01

    We use extensive 350 micron polarimetry and continuum maps obtained with Hertz and SHARC II along with HCN and HCO(sup +) spectroscopic data to trace the orientation of the magnetic field in the Orion A star-forming region. Using the polarimetry data, we find that the direction of the projection of the magnetic field in the plane of the sky relative to the orientation of the integral-shaped filament varies considerably as one moves from north to south. While in IRAS 05327-0457 and OMC-3 MMS 1-6 the projection of the field is primarily perpendicular to the filament it becomes better aligned with it at OMC-3 MMS 8-9 and well aligned with it at OMC-2 FIR 6. The OMC-2 FIR 4 cloud, located between the last two, is a peculiar object where we find almost no polarization. There is a relatively sharp boundary within its core where two adjacent regions exhibiting differing polarization angles merge. The projected angle of the field is more complicated in OMC-1 where it exhibits smooth variations in its orientation across the face of this massive complex. We also note that while the relative orientation of the projected angle of the magnetic field to the filament varies significantly in the OMC-3 and OMC-2 regions, its orientation relative to a fixed position on the sky shows much more stability. This suggests that, perhaps, the orientation of the field is relatively unaffected by the mass condensations present in these parts of the molecular cloud. By combining the polarimetry and spectroscopic data we were able to measure a set of average d u e s for the inclination angle of the magnetic field relative to the line of sight. We find that the field is oriented quite close to the plane of the sky in most places. More precisely, the inclination of the magnetic field is approx. = 73 deg around OMC-3 MMS 6, approx. = 74 deg at OMC-3 MMS 8-9, approx. = 80 deg at OMC-2 FIR 4, approx. = 65 deg in the northeastern part of OMC-1, and approx. = 49 deg in the Bas. The small difference

  1. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-01

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  2. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    SciTech Connect

    Lee, Seong-Joo Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-09

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  3. Biomaterials and Magnetic fields for Cancer Therapy

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Mazuruk, Konstanty

    2003-01-01

    The field of biomaterials has emerged as an important topic in the purview of NASA s new vision of research activities in the Microgravity Research Division. Although this area has an extensive track record in the medical field as borne out by the routine use of polymeric sutures, implant devices, and prosthetics, novel applications such as tissue engineering, artificial heart valves and controlled drug delivery are beginning to be developed. Besides the medical field, biomaterials and bio-inspired technologies are finding use in a host of emerging interdisciplinary fields such as self-healing and self-assembling structures, biosensors, fuel systems etc. The field of magnetic fluid technology has several potential applications in medicine. One of the emerging fields is the area of controlled drug delivery, which has seen its evolution from the basic oral delivery system to pulmonary to transdermal to direct inoculations. In cancer treatment by chemotherapy for example, targeted and controlled drug delivery has received vast scrutiny and substantial research and development effort, due to the high potency of the drugs involved and the resulting requirement to keep the exposure of the drugs to surrounding healthy tissue to a minimum. The use of magnetic particles in conjunction with a static magnetic field allows smart targeting and retention of the particles at a desired site within the body with the material transport provided by blood perfusion. Once so located, the therapeutical aspect (radiation, chemotherapy, hyperthermia, etc.) of the treatment, now highly localized, can be implemented.

  4. Magnetic fields of spherical compact stars in a braneworld

    SciTech Connect

    Ahmedov, B. J.; Fattoyev, F. J.

    2008-08-15

    We study the stellar magnetic field configuration in dependence on brane tension and present solutions of Maxwell equations in the external background space-time of a magnetized spherical star in a Randall-Sundrum II type braneworld. The star is modeled as a sphere consisting of perfect highly magnetized fluid with infinite conductivity and a frozen-in magnetic field. With respect to solutions for magnetic fields found in the Schwarzschild space-time, brane tension introduces enhancing corrections to the exterior magnetic field which could be relevant for the magnetic fields of magnetized compact objects as pulsars and magnetars and may provide observational evidence for the brane tension.

  5. World Record Magnetic Field 100T

    SciTech Connect

    McDonald, Ross; Mielke, Chuck; Rickel, Dwight

    2012-03-22

    Scientists at the Los Alamos National Laboratory campus of the National High Magnetic Field Laboratory have successfully produced the world's first 100 Tesla non-destructive magnetic field. The achievement was decades in the making, involving a diverse team of scientists and engineers. The 100 Tesla mark was reached at approximately 3:30 p.m. on March 22, 2012. A note about the sound you'll hear when the magnet is energized: The sound that the 100 T multi-shot magnet makes is due to the electrical current modulation from the 3 phase power converters (known as 12 pulse converters) and the harmonics associated with the chopping of the sinusoidal input power. The magnet vibrates at the electrical current frequencies multiplied by 12 (i.e. ~ 55 Hz x 12 = 660 Hz) hence making an audible sound. The generator is not run at full speed (1650 RPM instead of 1800 RPM) so the frequency is slightly lower than US Line frequency (i.e. 55 Hz instead of 60 Hz). A spectrograph of the sound from the magnet pulse shows the multiple harmonics as reddish horizontal bands as a function of time.

  6. Sensor for detecting changes in magnetic fields

    DOEpatents

    Praeg, W.F.

    1980-02-26

    A sensor is described for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device that comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  7. Sensor for detecting changes in magnetic fields

    DOEpatents

    Praeg, Walter F.

    1981-01-01

    A sensor for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  8. Magnetic-field-compensation optical vector magnetometer.

    PubMed

    Papoyan, Aram; Shmavonyan, Svetlana; Khanbekyan, Alen; Khanbekyan, Karen; Marinelli, Carmela; Mariotti, Emilio

    2016-02-01

    A concept for an optical magnetometer used for the measurement of magnitude and direction of a magnetic field (B-field) in two orthogonal directions is developed based on double scanning of a B-field to compensate the measured field to zero value, which is monitored by a resonant magneto-optical process in an unshielded atomic vapor cell. Implementation of the technique using the nonlinear Hanle effect on the D2 line of rubidium demonstrates viability and efficiency of the proposed concept. The ways to enhance characteristics of the suggested technique and optimize its performance, as well as the possible extension to three-axis magnetometry, are discussed.

  9. Impact-generated magnetic fields on the Moon : a magnetohydrodynamic numerical investigation

    NASA Astrophysics Data System (ADS)

    Oran, Rona; Shprits, Yuri; Weiss, Benjamin; Gombosi, Tamas

    2015-04-01

    derive a simplified picture of what the effects would be on an ambient magnetized plasma using general magnetohydrodynamic (MHD) arguments. The solar wind drag acting on the cloud, as well as MHD effects such as field lines stretching and magnetic reconnection were not taken into ac-count. With the advances made in computational MHD models in recent years, we can now revisit these ear-lier important models. Our goal is to perform the first MHD simulations of an impact-generated vapor cloud expanding in the solar wind around the Moon, using BATSRUS, a 3D highly-parallelized versatile MHD code developed at the University of Michigan, in order to self-consistently test the previous estima-tions of the strength and duration of the magnetic field enhancement at the antipodal points. We will con-sider different MHD processes, such as: 1) the finite resistivity of the lunar mantle 2) magnetic diffusion between the solar wind and the initially non-magnetized cloud, 3) magnetic reconnection at the antipode, and 4) viscous drag and the transport of magnetic flux due to solar wind motion, and 4) MHD instabili-ties. This will allow us to systematically examine whether impact-generated fields can indeed be respon-sible for the formation of crustal field enhancements on the Moon.

  10. The field lines of an axisymmetric magnetic field

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1988-01-01

    The equations of Willis and Young (1987) for the field lines of an arbitrary axisymmetric multipole are generalized to an arbitrary linear combination of multipoles, i.e., to an arbitrary axisymmetric magnetic field B outside a sphere of radius a, S(a), centered on the origin, and containing all the sources of B. For this field, axisymmetric Stokes stream function is expressed in terms of the Gauss coefficients. It is shown that if only one Gauss coefficient is nonzero, the field line equations are identical to those obtained by Willis and Young.

  11. Dynamics of photoelectrons in a magnetic field

    NASA Astrophysics Data System (ADS)

    Bracher, Christian; Kramer, Tobias; Delos, John B.

    2006-05-01

    Near-threshold photodetachment from negative atomic ions provides a virtually pointlike source of electrons, and is ideally suited to study electron dynamics in externally applied electric and magnetic fields. These fields govern the motion of the emitted electron wave, and lead to characteristic modulations both in the total photocurrent and in the spatial electron distribution. These changes have been predicted and observed in an electric field environment (photodetachment microscopy). Here, we examine the effects of a purely magnetic field on the photodetachment cross sections. Theoretical predictions for the electron distribution reveal a surprising wealth of structure that is currently only partly understood. We present numerical and analytical results, and give a semiclassical interpretation of the observed features where possible.

  12. Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump

    NASA Astrophysics Data System (ADS)

    Furuya, Akinori; Shimokawa, Fusao; Matsuura, Tohru; Sawada, Renshi

    1996-09-01

    Magnetically controlled reactive ion etching (MC-RIE) of a fluorinated polyimide substrate achieved etching selectivity of up to 2600, resulting in a smoothly etched surface and structures hundreds of micrometers high having good perpendicularity. This technique is useful for three-dimensional microfabrication. As an example of a typical application, we fabricated an ion drag integrated micropump with microgrid sets consisting of 0960-1317/6/3/003/img1 high pole-shaped counter-electrode elements arranged like a pair of interleaved combs by using a fluorinated polyimide as the structural material, metallization, and lift-off using a ZnO sacrificial layer. This micropump moved ethanol with a flow rate of about 0960-1317/6/3/003/img2 when 200 V was applied to the counter electrodes.

  13. A Compact Disk Type Plasma Propulsion System with Modulated Magnetic Field for Nanoscale Space Vehicles

    SciTech Connect

    Fukuda, Takeshi; Ueda, Satoshi; Ohnishi, Yukihiro; Inomoto, Michiaki

    2008-12-31

    A compact 5 mm disk type plasma thruster simply composed of only a set of antenna windings and bias field coil which produces significant thrust of 0.74 mN with rotating magnetic field has been proposed and successfully developed for future applications to low altitude nanosatellites. The key technology issue is that the rotating speed is set above the ion plasma frequency but far below the electron plasma frequency, in order to produce the electron drag current and axial electric field as a consequence of the interaction with the bias field. The formation of axial electric field was confirmed and the produced plasma density was >6x10{sup 18} m{sup -3}, whereas the power consumption is 500 W in the inductively coupled mode of operation. The anticipated thrust density and specific thrust could potentially be extended to 7.64 Nm{sup -2} and 850 s, respectively, which is comparable to conventional Hall effect thrusters.

  14. Magnetic-field considerations in superferric dipole

    NASA Astrophysics Data System (ADS)

    Snowdon, S. C.

    1983-03-01

    Iron dominated magnets are characterized in the limit of infinite permeability by a pole shape that is a magnetic equipotential. Deviations from this ideal because of finite permeability are associated with differences in path length, local saturation, flux concentration in slotted pole if crenellation is used, and sub surface voids. For moderate field levels the variation in flux path length throughout the iron lowers the magnetic potential on the iron surface more for the longer paths. As the excitation increases, the permeability is lowered in regions of high flux density. Crenellation in this region offers some degree of control over the permeability by concentrating the flux. To a lesser degree sub surface voids can be used to control the reluctance of a flux path. The net result suggests that the shape of the effective air gap can be adjusted to be a magnetic equipotential sensibly equivalent to the ideal pole shape for infinite permeability.

  15. Magnetic Field Twisting by Intergranular Downdrafts

    NASA Astrophysics Data System (ADS)

    Taroyan, Youra; Williams, Thomas

    2016-10-01

    The interaction of an intergranular downdraft with an embedded vertical magnetic field is examined. It is demonstrated that the downdraft may couple to small magnetic twists leading to an instability. The descending plasma exponentially amplifies the magnetic twists when it decelerates with depth due to increasing density. Most efficient amplification is found in the vicinity of the level, where the kinetic energy density of the downdraft reaches equipartition with the magnetic energy density. Continual extraction of energy from the decelerating plasma and growth in the total azimuthal energy occurs as a consequence of the wave-flow coupling along the downdraft. The presented mechanism may drive vortices and torsional motions that have been detected between granules and in simulations of magnetoconvection.

  16. Pulsed-field magnetometry for rock magnetism

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto

    2015-07-01

    An improved method is proposed for measuring dynamic magnetizations of bulk volcanic rock samples induced by a pulsed-field of 0.7 T and a duration of 10 ms. The transient magnetization is measured by a sensing system that consists of a pair of inductive differential coils, an analog preamplifier and integrator, and a high-speed digital storage scope. The system was calibrated using a paramagnetic salt (Gd2O3) and was tested to different kinds of volcanic rocks with their magnetic properties well-documented previously. The results were comparable with those measured by a quasi-static method using a vibrating sample magnetometer, although there were small discrepancies in hysteresis parameters suggesting the time-dependence of the magnetic properties. The proposed system provides not only the magnetization over the short interval of a pulse but also the rapid (~3 ms) exponential decay after a pulse. The decay time constant was different among the samples under study, indicating the variations of their magnetic relaxation time. Although the present system is not sensitive enough to characterize varieties of natural samples including sediments, it has the potential as a versatile and convenient tool for rock magnetism.

  17. Structural alloys for high field superconducting magnets

    SciTech Connect

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4/sup 0/K and by rate effects associated with adiabatic heating during the tests. 46 refs.

  18. High magnetic field facilities in Latin America

    NASA Astrophysics Data System (ADS)

    Sato, R.; Grössinger, R.; Bertorello, H.; Broto, J. M.; Davies, H. A.; Estevez-Rams, E.; Gonzalez, J.; Matutes, J.; Sinnecker, J. P.; Sagredo, V.

    2006-11-01

    The EC supported a network (under the Framework 5 ALFA Programme) designated HIFIELD (Project number II0147FI) and entitled: "Measurement methods involving high magnetic fields for advanced and novel materials". As a result, high field facilities were initiated, constructed or extended at the following laboratories in Latin America: University Cordoba (Argentina), CES, Merida (Venezuela), CIMAV, Chihuahua (Mexico), University Federal de Rio de Janeiro (Brazil).

  19. Magnetic field influence on paramecium motility

    SciTech Connect

    Rosen, M.F.; Rosen, A.D. )

    1990-01-01

    The influence of a moderately intense static magnetic field on movement patterns of free swimming Paramecium was studied. When exposed to fields of 0.126 T, these ciliated protozoa exhibited significant reduction in velocity as well as a disorganization of movement pattern. It is suggested that these findings may be explained on the basis of alteration in function of ion specific channels within the cell membrane.

  20. Magnetic fields and density functional theory

    SciTech Connect

    Salsbury Jr., Freddie

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  1. Laboratory Measurements of Astrophysical Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Murphy, C. D.; Miniati, F.; Edwards, M.; Mithen, J.; Bell, A. R.; Constantin, C.; Everson, E.; Schaeffer, D.; Niemann, C.; Ravasio, A.; Brambrink, E.; Benuzzi-Mounaix, A.; Koenig, M.; Gregory, C.; Woolsey, N.; Park, H.-S.; Remington, B.; Ryutov, D.; Bingham, R.; Gargate, L.; Spitkovsky, A.; Gregori, G.

    2010-11-01

    It has been proposed that high Mach number collisionless shocks propagating in an initially unmagnetized plasma play a major role in the magnetization of large scale structures in the Universe. A detailed study of the experimental configuration necessary to scale such environments down to laboratory dimensions will be presented. We will show initial results from preliminary experiments conducted at the Phoenix laser (UCLA) and the LULI laser (Ecole Polytechnique) where collisionless shocks are generated by the expansion of exploding foils driven by energetic laser beams. The time evolution of the magnetic field is probed with induction coils placed at 10 cm from the laser focus. We will discuss various mechanisms of magnetic field generation and compare them with the experimental results.

  2. Magnetic fields in the ionosphere of Venus

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Cravens, T. E.

    1991-02-01

    Pioneer Venus Orbiter measurements of magnetic fields in the Venusian ionosphere are reviewed, and theoretical models developed to explain them are discussed. Data on the large- and small-scale magnetic-field structures in the dayside and nightside ionosphere, for both low and high solar-wind dynamic pressure, are presented graphically and characterized in detail. For the MHD models, the derivations of the continuity, momentum, one-fluid momentum, and magnetic induction equations and a generalized formulation of Ohm's law are outlined, and model predictions are compared with the measurements in extensive graphs and diagrams. It is shown that one-dimensional multifluid MHD models are successful in reproducing the observed large-scale features of the subsolar region, at least under certain prescribed conditions, whereas the nightside and small-scale features are only poorly predicted.

  3. Dynamical Field Line Connectivity in Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Ruffolo, D. J.; Matthaeus, W. H.

    2014-12-01

    Point-to-point magnetic connectivity has a stochastic character whenever magnetic fluctuations cause a field line random walk, with observable manifestations such as dropouts of solar energetic particles and upstream events at Earth's bow shock. This can also change due to dynamical activity. Comparing the instantaneous magnetic connectivity to the same point at two different times, we provide a nonperturbative analytic theory for the ensemble average perpendicular displacement of the magnetic field line, given the power spectrum of magnetic fluctuations. For simplicity, the theory is developed in the context of transverse turbulence, and is numerically evaluated for two specific models: reduced magnetohydrodynanmics (RMHD), a quasi-two dimensional model of anisotropic turbulence that is applicable to low-beta plasmas, and two-dimensional (2D) plus slab turbulence, which is a good parameterization for solar wind turbulence. We take into account the dynamical decorrelation of magnetic fluctuations due to wave propagation, nonlinear distortion, random sweeping, and convection by a bulk wind flow relative to the observer. The mean squared time-differenced displacement increases with time and with parallel distance, becoming twice the field line random walk displacement at long distances and/or times, corresponding to a pair of uncorrelated random walks. These results are relevant to a variety of astrophysical processes, such as electron transport and heating patterns in coronal loops and the solar transition region, changing magnetic connection to particle sources near the Sun or at a planetary bow shock, and thickening of coronal hole boundaries. Partially supported by the Thailand Research Fund, the US NSF (AGS-1063439 and SHINE AGS-1156094), NASA (Heliophysics Theory NNX11AJ44G), and by the Solar Probe Plus Project through the ISIS Theory team.

  4. Magnetic field associated with active electrochemical corrosion

    NASA Astrophysics Data System (ADS)

    Abedi, Afshin

    The purpose of this work is to provide a better understanding of the underlying sources of the magnetic field associated with ongoing electrochemical corrosion, to investigate the spatio-temporal information content of the corrosion magnetic field, and to evaluate its potential utility in non-invasive quantification of hidden corrosion. The importance of this work lies in the fact that conventional electrochemical instruments and techniques are not well suited for non-invasive measurements of the rate and dynamics of corrosion in occluded regions such as in aircraft lap joints. With the increase in the number of aging engineered systems there is an increasing demand for more accurate corrosion predictive models that can improve the probability of detection of corrosion induced flaws in structures, and hence reduce the risk of catastrophic failures. Therefore, such rate information is of great importance to the corrosion community. At the present time, there are no other techniques capable of providing such information. This work is the first successful attempt at quantification of the rate of corrosion through non- invasive measurements of its associated magnetic field. It includes the development of appropriate experimental techniques and associated models. Herein we have reviewed previous experiments, explored various exposure conditions and sample geometries, and discussed appropriate experimental procedures. We have defined quantitative magnetic parameters and, in conjunction with mass loss calibration measurements, have used them to determine non-invasively the rate and dynamics of ongoing hidden corrosion. We conclude that the corrosion magnetic field contains spatial and temporal information that correlate with the distribution, magnitude, and time course of currents associated with electrochemical corrosion. In conjunction with appropriate calibration experiments, sample geometry, and experimental topology, the magnetic activity of a corroding sample can be

  5. Drag force measurement: A means for determining hysteresis loss

    SciTech Connect

    Garshelis, Ivan J.; Tollens, Stijn P. L.; Kari, Ryan J.; Vandenbossche, Lode P.; Dupre, Luc R.

    2006-04-15

    A method for determining hysteresis losses in thin strips of soft magnetic materials is described. It is based on the measurement of a drag force which arises with the movement of the sample through the strong field existing in the space near a permanent magnet. Not associated with macro eddy currents, the force is shown to originate from the magnetic hysteresis of the material, having, in fact, an amplitude equal to the product of hysteresis loss and the area of the sample cross section. Correlation within 18% with the measurements made by conventional methods is shown for a wide range of experimental materials.

  6. Passive levitation in alternating magnetic fields

    DOEpatents

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2009-06-16

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  7. Passive levitation in alternating magnetic fields

    DOEpatents

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2010-09-14

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  8. Historic Methods for Capturing Magnetic Field Images

    ERIC Educational Resources Information Center

    Kwan, Alistair

    2016-01-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  9. Magnetic Field Reentrant Superconductivity in Aluminum Nanowires

    NASA Astrophysics Data System (ADS)

    Bretz-Sullivan, Terence; Goldman, Allen

    Reentrance to the superconducting state through the application of a magnetic field to quasi-one dimensional superconductors driven resistive by current, is counter to the expected properties of superconductors. It was not until recently that a microscopic mechanism explaining the phenomenon was proposed in which superconductivity and phase slip driven dissipation coexist in a non-equilibrium state. Here we present additional results of magnetic field induced reentrance into the superconducting state in quasi-one-dimensional aluminum nanowires with an in-plane magnetic field both transverse to, and along the wire axis. The reentrant behavior is seen in the magnetic field dependence of the I-V characteristic and resistance vs. temperature, and in the wire's magnetoresistance at 450mK. This work was supported by DOE Basic Energy Sciences Grant DE-FG02-02ER46004. Samples were fabricated at the Minnesota Nanofabrication Center. Parts of this work were carried out in the University of Minnesota Characterization Facility, a member of the Materials Research Facilities Network (www.mrfn.org) funded via the NSF MRSEC program.

  10. Historic Methods for Capturing Magnetic Field Images

    NASA Astrophysics Data System (ADS)

    Kwan, Alistair

    2016-03-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection processes.

  11. Magnetic field affects enzymatic ATP synthesis.

    PubMed

    Buchachenko, Anatoly L; Kuznetsov, Dmitry A

    2008-10-01

    The rate of ATP synthesis by creatine kinase extracted from V. xanthia venom was shown to depend on the magnetic field. The yield of ATP produced by enzymes with 24Mg2+ and 26Mg2+ ions in catalytic sites increases by 7-8% at 55 mT and then decreases at 80 mT. For enzyme with 25Mg2+ ion in a catalytic site, the ATP yield increases by 50% and 70% in the fields 55 and 80 mT, respectively. In the Earth field the rate of ATP synthesis by enzyme, in which Mg2+ ion has magnetic nucleus 25Mg, is 2.5 times higher than that by enzymes, in which Mg2+ ion has nonmagnetic, spinless nuclei 24Mg or 26Mg. Both magnetic field effect and magnetic isotope effect demonstrate that the ATP synthesis is an ion-radical process, affected by Zeeman interaction and hyperfine coupling in the intermediate ion-radical pair. PMID:18774801

  12. Charm production in a strong magnetic field

    SciTech Connect

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G. de; Strickland, M.

    2014-11-11

    We discuss the effects of a strong magnetic field on B and D mesons, focusing on the changes of the energy levels and the masses of the bound states. Using the Color Evaporation Model we discuss the possible changes in the production of J/ψ and Υ. We briefly comment the recent experimental data.

  13. Enzyme Substrate Reactions in High Magnetic Fields

    PubMed Central

    Maling, J. E.; Weissbluth, M.; Jacobs, E. E.

    1965-01-01

    The reaction rates of two enzyme substrate systems, ribonuclease-RNA and succinate-cytochrome c reductase, were followed as a function of magnetic field from zero to 48,000 gauss. The reaction rates remained constant to within 10 per cent. PMID:5884011

  14. Strain sensors for high field pulse magnets

    SciTech Connect

    Martinez, Christian; Zheng, Yan; Easton, Daniel; Farinholt, Kevin M; Park, Gyuhae

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  15. Cylindrical isentropic compression by ultrahigh magnetic field

    NASA Astrophysics Data System (ADS)

    Gu, Zhuowei; Luo, Hao; Zhang, Hengdi; Zhao, Shichao; Tang, Xiaosong; Tong, Yanjin; Song, Zhenfei; Tan, Fuli; Zhao, Jianheng; Sun, Chengwei

    2014-05-01

    The cylindrical isentropic compression by ultrahigh magnetic field (MC-1) is a kind of unique high energy density technique. It has characters like ultrahigh pressure and low temperature rising, and would have widely used in areas like high pressure physics, new material synthesis and ultrahigh magnetic field physics. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) has begun the experiment since 2011 and a primary experimental device had been set-up. In the experiments, a seed magnetic field of 5 Tesla were set-up first and compressed by a stainless steel liner which is driven by high explosive initiated synchronously. The internal diameter of the liner is 97 mm, and its thickness is 1.5 mm. The movement of liner was recorded optically and a typical turnaround phenomenon was observed. From the photography results the liner was compressed smoothly and evenly and its average velocity was about 5-6 km/s. In the experiment a axial magnetic field of over 1400 Tesla has been recorded. The MC-1 process was numerical simulated by 1D MHD code MC11D and the simulations are in accord with the experiments.

  16. Magnetic fields in gaps surrounding giant protoplanets

    NASA Astrophysics Data System (ADS)

    Keith, Sarah L.; Wardle, Mark

    2015-07-01

    Giant protoplanets evacuate a gap in their host protoplanetary disc, which gas must cross before it can be accreted. A magnetic field is likely carried into the gap, potentially influencing the flow. Gap crossing has been simulated with varying degrees of attention to field evolution [pure hydrodynamical, ideal, and resistive magnetohydrodynamical (MHD)], but as yet there has been no detailed assessment of the role of the field accounting for all three key non-ideal MHD effects: Ohmic resistivity, ambipolar diffusion, and Hall drift. We present a detailed investigation of gap magnetic field structure as determined by non-ideal effects. We assess susceptibility to turbulence induced by the magnetorotational instability (MRI) and angular momentum loss from large-scale fields. As full non-ideal simulations are computationally expensive, we take an a posteriori approach, estimating MHD quantities from the pure hydrodynamical gap-crossing simulation by Tanigawa, Ohtsuki & Machida. We calculate the ionization fraction and estimate field strength and geometry to determine the strength of non-ideal effects. We find that the protoplanetary disc field would be easily drawn into the gap and circumplanetary disc. Hall drift dominates, so that much of the gap is conditionally MRI unstable depending on the alignment of the field and disc rotation axes. Field alignment also influences the strong toroidal field component permeating the gap. Large-scale magnetic forces are small in the circumplanetary disc, indicating that they cannot drive accretion there. However, turbulence will be key during satellite growth as it affects critical disc features, such as the location of the ice line.

  17. Lunar Magnetic Fields: Implications for Resource Utilization

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1992-01-01

    It is well known that solar-wind-implanted hydrogen and helium-3 in lunar soils are potentially usable resources for future manned activities. For economical mining of these implanted gases, it is desirable that relative concentrations exceed that of typical soils. It has previously been noted that the monthly variation of solar wind flux on the surface due to lunar immersion in the geomagnetic tail may have measurable consequences for resource utilization. It is pointed out that, for a constant external flux, locally strong lunar crustal magnetic fields will exert the dominant influence on solar wind volatile implantation rates. In particular, the strongest lunar crustal magnetic fields will both deflect and focus incident ions in local regions leading to local enhancements of the incident ion flux. Thus, the most economical sites for extraction of solar-wind-implanted volatiles may be within or adjacent to strong crustal magnetic fields. In addition, solar wind ion deflection by crustal magnetic fields must be considered in evaluating the issue of whether remnant cometary ice or water-bearing minerals have survived in permanently shadowed regions near the lunar poles. This is because sputter erosion of water ice by solar wind ions has been suggested to be an important ice loss mechanism within permanently shadowed regions. Thus, permanently shadowed regions that are also shielded from the solar wind by locally strong crustal fields could be the most promising locations for the survival of cometary ice. Additional numerical simulations are employed to show that solar wind ion deflection by strong lunar magnetic anomalies can produce local increases in the implantation rate of solar wind gases such as hydrogen.

  18. Lunar magnetic fields: Implications for resource utilization

    NASA Astrophysics Data System (ADS)

    Hood, L. L.

    1992-09-01

    It is well known that solar-wind-implanted hydrogen and helium-3 in lunar soils are potentially usable resources for future manned activities. For economical mining of these implanted gases, it is desirable that relative concentrations exceed that of typical soils. It has previously been noted that the monthly variation of solar wind flux on the surface due to lunar immersion in the geomagnetic tail may have measurable consequences for resource utilization. It is pointed out that, for a constant external flux, locally strong lunar crustal magnetic fields will exert the dominant influence on solar wind volatile implantation rates. In particular, the strongest lunar crustal magnetic fields will both deflect and focus incident ions in local regions leading to local enhancements of the incident ion flux. Thus, the most economical sites for extraction of solar-wind-implanted volatiles may be within or adjacent to strong crustal magnetic fields. In addition, solar wind ion deflection by crustal magnetic fields must be considered in evaluating the issue of whether remnant cometary ice or water-bearing minerals have survived in permanently shadowed regions near the lunar poles. This is because sputter erosion of water ice by solar wind ions has been suggested to be an important ice loss mechanism within permanently shadowed regions. Thus, permanently shadowed regions that are also shielded from the solar wind by locally strong crustal fields could be the most promising locations for the survival of cometary ice. Additional numerical simulations are employed to show that solar wind ion deflection by strong lunar magnetic anomalies can produce local increases in the implantation rate of solar wind gases such as hydrogen.

  19. Measuring the Earth's Magnetic Field in a Laboratory

    ERIC Educational Resources Information Center

    Cartacci, A.; Straulino, S.

    2008-01-01

    Two methods for measuring the Earth's magnetic field are described. In the former, according to Gauss, the Earth's magnetic field is compared with that of a permanent magnet; in the latter, a well-known method, the comparison is made with the magnetic field generated by a current. As all the used instruments are available off the shelf, both…

  20. A proposed concept for the extraction of energy stored in magnetic or electric fields in space

    NASA Technical Reports Server (NTRS)

    Papailiou, D. D.

    1976-01-01

    It is known that enormous energy resources associated with electric, magnetic, gravitational, and other fields exist in space. It is also known that the major difficulty in 'tapping' this energy arises from the extremely low density level at which this energy exists. An analytical study has been made of a particular scheme that appears promising for an efficient utilization of some of these energy resources in propulsion. The principle involves the exchange of energy between a fluctuating magnetic field and a velocity field of electrically conducting fluid in turbulent motion located onboard a spacecraft. Under certain conditions the total energy of the turbulent flow field onboard the spacecraft can be increased and this increase appears in the form of Joulean heat. The utilization of the fluctuating part of the magnetic field, in the form of Joulean dissipation (because of its random character) does not introduce any drag on the spacecraft. The application appears promising for flights in the vicinity of Jupiter and other planets. The rate at which energy is gained by the conducting fluid is of the order of 100 watts when the rms value of the fluctuating magnetic field strength is about 1 gauss.

  1. Magnetic Field Gradient Waveform Monitoring for Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Han, Hui

    Linear magnetic field gradients have played a central role in Magnetic Resonance Imaging (MRI) since Fourier Transform MRI was proposed three decades ago. Their primary function is to encode spatial information into MR signals. Magnetic field gradients are also used to sensitize the image contrast to coherent and/or incoherent motion, to selectively enhance an MR signal, and to minimize image artifacts. Modern MR imaging techniques increasingly rely on the implementation of complex gradient waveforms for the manipulation of spin dynamics. However, gradient system infidelities caused by eddy currents, gradient amplifier imperfections and group delays, often result in image artifacts and other errors (e.g., phase and intensity errors). This remains a critical problem for a wide range of MRI techniques on modern commercial systems, but is of particular concern for advanced MRI pulse sequences. Measuring the real magnetic field gradients, i.e., characterizing eddy currents, is critical to addressing and remedying this problem. Gradient measurement and eddy current calibration are therefore a general topic of importance to the science of MRI. The Magnetic Field Gradient Monitor (MFGM) idea was proposed and developed specifically to meet these challenges. The MFGM method is the heart of this thesis. MFGM methods permit a variety of magnetic field gradient problems to be investigated and systematically remedied. Eddy current effects associated with MR compatible metallic pressure vessels were analyzed, simulated, measured and corrected. The appropriate correction of eddy currents may enable most MR/MRI applications with metallic pressure vessels. Quantitative imaging (1D/2D) with model pressure vessels was successfully achieved by combining image reconstruction with MFGM determined gradient waveform behaviour. Other categories of MR applications with metallic vessels, including diffusion measurement and spin echo SPI T2 mapping, cannot be realized solely by MFGM guided

  2. Cosmological perturbations: Vorticity, isocurvature and magnetic fields

    NASA Astrophysics Data System (ADS)

    Christopherson, Adam J.

    2014-10-01

    In this paper, I review some recent, interlinked, work undertaken using cosmological perturbation theory — a powerful technique for modeling inhomogeneities in the universe. The common theme which underpins these pieces of work is the presence of nonadiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or nonadiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close this paper with a summary and some potential extensions of this work.

  3. A Linear Magnetic Field Scan Driver

    PubMed Central

    QUINE, RICHARD W.; CZECHOWSKI, TOMASZ; EATON, GARETH R.

    2009-01-01

    A linear magnetic field scan driver was developed to provide a rapidly scanning magnetic field for use in electron paramagnetic resonance (EPR) spectroscopy. The driver consists of two parts: a digitally synthesized ramp waveform generator and a power amplifier to drive the magnetic field coils. Additionally, the driver provides a trigger signal to a data collection digitizer that is synchronized to the ramp waveform. The driver can also drive an arbitrary current waveform supplied from an external source. The waveform generator is computer controlled through a serial data interface. Additional functions are controlled by the user from the driver front panel. The frequency and amplitude of the waveform are each separately controlled with 12-bit resolution (one part in 4,096). Several versions of the driver have been built with different frequency and amplitude ranges. Frequencies range from 500 to 20,000 Hz. Field sweep amplitudes range up to 80 Gpp. This article also gives a brief description of the field coils that are driven by the driver. PMID:19838315

  4. Parahydrogen discriminated PHIP at low magnetic fields

    NASA Astrophysics Data System (ADS)

    Prina, I.; Buljubasich, L.; Acosta, R. H.

    2015-02-01

    Parahydrogen induced polarization (PHIP) is a powerful hyperpolarization technique. However, as the signal created has an anti-phase characteristic, it is subject to signal cancellation when the experiment is carried out in inhomogeneous magnetic fields or in low fields that lack the necessary spectral resolution. The use of benchtop spectrometers and time domain (TD) analyzers has continuously grown in the last years and many applications are found in the food industry, for non-invasive compound detection or as a test bench for new contrast agents among others. In this type of NMR devices the combination of low and inhomogeneous magnetic fields renders the application of PHIP quite challenging. We have recently shown that the acquisition of J-spectra in high magnetic fields not only removes the anti-phase peak cancellation but also produces a separation of thermal from hyperpolarized signals, providing Parahydrogen Discriminated (PhD-PHIP) spectra. In this work we extend the use of PhD-PHIP to low and inhomogeneous fields. In this case the strong coupling found for the protons of the sample renders spin-echo spectra that have a great complexity, however, a central region in the spectrum with only hyperpolarized signal is clearly identified. This experimental approach is ideal for monitoring real time chemical reaction of pure PHIP signals.

  5. Magnetic field regulation control system analysis

    SciTech Connect

    Badelt, Steven W.

    1996-05-01

    This study comprises (1) an analytical characterization of the Cameca ion microscope`s magnetic field regulation circuitry and (2) comparisons between the analytical predictions and the measured performance of the control system. It is the first step in a project to achieve routine field regulation better than 10ppm. The control loop was decomposed into functional subcircuits and simulated in SPICE to determine DC, AC, and transient response. Transfer functions were extracted from SPICE, simplified, and analyzed in MATLAB. Both SPICE and MATLAB simulations were calculated for step inputs, and these results were compared to actual measurements. Magnetic field fluctuations were measured at high mass resolving power. The frequency spectrum of the fluctuations was analyzed by FFT. Difficulties encountered and implications for future work are discussed.

  6. The ESRF Miniature Pulsed Magnetic Field System

    SciTech Connect

    Linden, Peter J. E. M. van der; Strohm, Cornelius; Roth, Thomas; Detlefs, Carsten; Mathon, Olivier

    2010-06-23

    We have developed a portable system to provide pulsed magnetic fields on the ESRF X-ray beamlines. The complete system consists of a power supply, liquid Helium and liquid Nitrogen dewars with a siphon each, control electronics and a double cryostat for separate coil and sample cooling. The liquid nitrogen cooled solenoids reach a maximum field of 30 Tesla for a total pulse duration of one milisecond. They are constructed for optimised cooling rate after the pulse to obtain a high duty cycle, the repetition rate is five pulses per minute at maximum field. The sample is cooled in an independent Helium flow cryostat which is inserted into the bore of the magnet. The flow cryostat has a temperature range from 5 to 250 Kelvin with a direct contact between the sample and Helium flow. This overview gives a general presentation of the system and we will show recent results.

  7. The ESRF Miniature Pulsed Magnetic Field System

    NASA Astrophysics Data System (ADS)

    van der Linden, Peter J. E. M.; Strohm, Cornelius; Roth, Thomas; Detlefs, Carsten; Mathon, Olivier

    2010-06-01

    We have developed a portable system to provide pulsed magnetic fields on the ESRF X-ray beamlines. The complete system consists of a power supply, liquid Helium and liquid Nitrogen dewars with a siphon each, control electronics and a double cryostat for separate coil and sample cooling. The liquid nitrogen cooled solenoids reach a maximum field of 30 Tesla for a total pulse duration of one milisecond. They are constructed for optimised cooling rate after the pulse to obtain a high duty cycle, the repetition rate is five pulses per minute at maximum field. The sample is cooled in an independent Helium flow cryostat which is inserted into the bore of the magnet. The flow cryostat has a temperature range from 5 to 250 Kelvin with a direct contact between the sample and Helium flow. This overview gives a general presentation of the system and we will show recent results.

  8. Magnetic field contribution to the Lorentz model.

    PubMed

    Oughstun, Kurt E; Albanese, Richard A

    2006-07-01

    The classical Lorentz model of dielectric dispersion is based on the microscopic Lorentz force relation and Newton's second law of motion for an ensemble of harmonically bound electrons. The magnetic field contribution in the Lorentz force relation is neglected because it is typically small in comparison with the electric field contribution. Inclusion of this term leads to a microscopic polarization density that contains both perpendicular and parallel components relative to the plane wave propagation vector. The modified parallel and perpendicular polarizabilities are both nonlinear in the local electric field strength.

  9. Magnetic-Field-Tunable Superconducting Rectifier

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  10. Laser plasma in a magnetic field

    SciTech Connect

    Kondo,K.; Kanesue, T.; Tamura, J.; Dabrowski, R.; Okamura, M.

    2009-09-20

    Laser Ion Source (LIS) is a candidate among various heavy ion sources. A high density plasma produced by Nd:YAG laser with drift velocity realizes high current and high charge state ion beams. In order to obtain higher charged particle ions, we had test experiments of LIS with a magnetic field by which a connement effect can make higher charged beams. We measured total current by Faraday Cup (FC) and analyzed charge distribution by Electrostatic Ion Analyzer (EIA). It is shown that the ion beam charge state is higher by a permanent magnet.

  11. Mystery of the magnetic field of Mars

    NASA Astrophysics Data System (ADS)

    Mordovskaya, V.

    Research of interaction of the solar wind with bodies of Solar System is one of methods, which allows us to make the conclusion about substance of the bodies and about its magnetization. The investigation of the solar wind interaction with Mars and Phobos has been carried out using the data of the Soviet expedition "Phobos - 2" and the kinetic approach to study the data. It is shown, that the size of the Martian obstacle to the solar wind is actually the size of Mars, as a physical body. The weak ionosphere and crystal magnetic anomalies at Mars result in inelastic dispersion of particles of the solar wind on the Martian obstacle, which give additional accumulation of the plasma and magnetic field in front of the Martian obstacle. The more the density of the solar wind, the more will the pileup of the plasma in front of Mars. Mars has not magnetospheres, neither own, nor induced to give the additional size for the obstacle like the Earth. The tail inherent in the interaction of magnetized bodies with the solar wind plasma, practically, is absent at Mars. The magnetic topology of the Martian wake is a result of the flow by the warm plasma of the solar wind around Mars. The Phobos interaction with the solar wind has been investigated. Dependence of the pileup of the solar wind plasma ahead of Phobos from the ion skin-depth has been found, which shows the existence of an effective obstacle of Phobos with the sizes about 150-170 km. Source with equivalent magnetic moment as order 1015A m2 in Phobos leads to the development of such obstacle for the solar wind flow around Phobos. Thus the received results: absence of the intrinsic global magnetic field of Mars, the magnetization of the Martian moon of Phobos and so the crystal magnetic anomalies revealed by the MGS satellite on surface of Mars give the primal magnetic mystery of Mars. If we will understand it we may probably approach to the problem of lifelessness of Mars. It is necessary to remind that evidence of

  12. Magnetic field diffusion and dissipation in reversed-field plasmas

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Gladd, N. T.; Huba, J. D.

    1981-01-01

    A diffusion equation is derived which describes the evolution of a magnetic field in a plasma of arbitrary beta and resistivity. The equation is valid for a one-dimensional slab geometry, assumes the plasma remains in quasi-equilibrium throughout its evolution and does not include thermal transport. Scaling laws governing the rate of change of the magnetic energy, particle drift energy, and magnetic flux are calculated. It is found that the magnetic free energy can be substantially larger than the particle drift energy and can be an important energy reservoir in driving plasma instabilities (e.g., the lower-hybrid-drift instability). In addition, the effect of a spatially varying resistivity on the evolution of a reversed-field plasma is studied. The resistivity model used is based upon the anomalous transport properties associated with the nonlocal mode structure of the lower-hybrid-drift instability. The relevance of this research to laboratory plasmas (e.g., theta pinches, reversed-field theta pinches) and space plasmas (e.g., the earth's magnetotail) is discussed.

  13. Orientation and Magnitude of Mars' Magnetic Field

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows the orientation and magnitude of the magnetic field measured by the MGS magnetometer as it sped over the surface of Mars during an early aerobraking pass (Day of the year, 264; 'P6' periapsis pass). At each point along the spacecraft trajectory we've drawn vectors in the direction of the magnetic field measured at that instant; the length of the line is scaled to show the relative magnitude of the field. Imagine traveling along with the MGS spacecraft, holding a string with a magnetized needle on one end: this essentially a compass with a needle that is free to spin in all directions. As you pass over the surface the needle would swing rapidly, first pointing towards the planet and then rotating quickly towards 'up' and back down again. All in a relatively short span of time, say a minute or two, during which time the spacecraft has traveled a couple of hundred miles. You've just passed over one of many 'magnetic anomalies' thus far detected near the surface of Mars. A second major anomaly appears a little later along the spacecraft track, about 1/4 the magnitude of the first - can you find it? The short scale length of the magnetic field signature locates the source near the surface of Mars, perhaps in the crust, a 10 to 75 kilometer thick outer shell of the planet (radius 3397 km).

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).

  14. Primordial magnetic field amplification from turbulent reheating

    SciTech Connect

    Calzetta, Esteban; Kandus, Alejandra E-mail: kandus@uesc.br

    2010-08-01

    We analyze the possibility of primordial magnetic field amplification by a stochastic large scale kinematic dynamo during reheating. We consider a charged scalar field minimally coupled to gravity. During inflation this field is assumed to be in its vacuum state. At the transition to reheating the state of the field changes to a many particle/anti-particle state. We characterize that state as a fluid flow of zero mean velocity but with a stochastic velocity field. We compute the scale-dependent Reynolds number Re(k), and the characteristic times for decay of turbulence, t{sub d} and pair annihilation t{sub a}, finding t{sub a} << t{sub d}. We calculate the rms value of the kinetic helicity of the flow over a scale L and show that it does not vanish. We use this result to estimate the amplification factor of a seed field from the stochastic kinematic dynamo equations. Although this effect is weak, it shows that the evolution of the cosmic magnetic field from reheating to galaxy formation may well be more complex than as dictated by simple flux freezing.

  15. The energy budget of stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Folsom, C. P.; Boro Saikia, S.; Bouvier, J.; Fares, R.; Gregory, S. G.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Moutou, C.; do Nascimento, J. D.; Petit, P.; Rosén, L.; Waite, I. A.

    2015-11-01

    Spectropolarimetric observations have been used to map stellar magnetic fields, many of which display strong bands of azimuthal fields that are toroidal. A number of explanations have been proposed to explain how such fields might be generated though none are definitive. In this paper, we examine the toroidal fields of a sample of 55 stars with magnetic maps, with masses in the range 0.1-1.5 M⊙. We find that the energy contained in toroidal fields has a power-law dependence on the energy contained in poloidal fields. However the power index is not constant across our sample, with stars less and more massive than 0.5 M⊙ having power indices of 0.72 ± 0.08 and 1.25 ± 0.06, respectively. There is some evidence that these two power laws correspond to stars in the saturated and unsaturated regimes of the rotation-activity relation. Additionally, our sample shows that strong toroidal fields must be generated axisymmetrically. The latitudes at which these bands appear depend on the stellar rotation period with fast rotators displaying higher latitude bands than slow rotators. The results in this paper present new constraints for future dynamo studies.

  16. Particle Dynamics Discrimination Between Current Sheet Magnetic Field Reversal and Magnetic Neutral Line Fields

    NASA Astrophysics Data System (ADS)

    Martin, R. F., Jr.; Holland, D. L.; Svetich, J.

    2014-12-01

    We consider dynamical signatures of ion motion that discriminate between a current sheet magnetic field reversal and a magnetic neutral line field. These two related dynamical systems have been studied previously as chaotic scattering systems with application to the Earth's magnetotail. Both systems exhibit chaotic scattering over a wide range of parameter values. The structure and properties of their respective phase spaces have been used to elucidate potential dynamical signatures that affect spacecraft measured ion distributions. In this work we consider the problem of discrimination between these two magnetic structures using charged particle dynamics. For example we show that signatures based on the well known energy resonance in the current sheet field provide good discrimination since the resonance is not present in the neutral line case. While both fields can lead to fractal exit region structuring, their characteristics are different and also may provide some field discrimination. Application to magnetotail field and particle parameters will be presented

  17. Ultrafast time domain demonstration of bulk magnetization precession at zero magnetic field ferromagnetic resonance induced by terahertz magnetic field.

    PubMed

    Nakajima, M; Namai, A; Ohkoshi, S; Suemoto, T

    2010-08-16

    We report the first observation of sub-terahertz bulk-magnetization precession, using terahertz time-domain spectroscopy. The magnetization precession in gallium-substituted epsilon-iron oxide nano-ferromagnets under zero magnetic field is induced by the impulsive magnetic field of the THz wave through the gyromagnetic effect. Just at the resonance frequency, the linear to circular polarized wave conversion is realized. This is understood as the free induction decay signal radiated from a rotating magnetic dipole corresponding to the natural resonance. Furthermore, this demonstration reveals that the series of gallium-substituted epsilon-iron oxide nano-ferromagnets is very prospective for magneto-optic devices, which work at room temperature without external magnetic field, in next-generation wireless communication.

  18. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    NASA Astrophysics Data System (ADS)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  -4.2 kV cm-1  ⩽  E  ⩽  4.2 kV cm-1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  19. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    NASA Astrophysics Data System (ADS)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1‑x)–[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  ‑4.2 kV cm‑1  ⩽  E  ⩽  4.2 kV cm‑1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  20. On the origin of cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Kulsrud, Russell M.; Zweibel, Ellen G.

    2008-04-01

    We review the extensive and controversial literature concerning how the cosmic magnetic fields pervading nearly all galaxies and clusters of galaxies actually got started. Some observational evidence supports a hypothesis that the field is already moderately strong at the beginning of the life of a galaxy and its disc. One argument involves the chemical abundance of the light elements Be and B, while a second one is based on the detection of strong magnetic fields in very young high red shift galaxies. Since this problem of initial amplification of cosmic magnetic fields involves important plasma problems it is obvious that one must know the plasma in which the amplification occurs. Most of this review is devoted to this basic problem and for this it is necessary to devote ourselves to reviewing studies that take place in environments in which the plasma properties are most clearly understood. For this reason the authors have chosen to restrict themselves almost completely to studies of dynamos in our Galaxy. It is true that one can get a much better idea of the grand scope of galactic fields in extragalactic systems. However, most mature galaxies share the same dilemma as ours of overcoming important plasma problems. Since the authors are both trained in plasma physics we may be biased in pursuing this approach, but we feel it is justified by the above argument. In addition we feel we can produce a better review by staying close to that which we know best. In addition we have chosen not to consider the saturation problem of the galactic magnetic field since if the original dynamo amplification fails the saturation question does not arise. It is generally accepted that seed fields, whose strength is of order 10-20 G, easily spring up in the era preceding galaxy formation. Several mechanisms have been proposed to amplify these seed magnetic fields to a coherent structure with the microgauss strengths of the currently observed galactic magnetic fields. The standard

  1. Magnetic field gradients and their uses in the study of the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A.; Southam, J. R.

    1991-01-01

    Magnetic field gradients are discussed from the standpoint of their usefulness in modeling crustal magnetizations. The fact that gradients enhance shorter wavelength features helps reduce both the core signal and the signal from external fields in comparison with the crustal signal. If the gradient device can be oriented, then directions of lineation can be determined from single profiles, and anomalies caused by unlineated sources can be identified.

  2. Magnetic Fields in Population III Star Formation

    SciTech Connect

    Turk, Matthew J.; Oishi, Jeffrey S.; Abel, Tom; Bryan, Greg

    2012-02-22

    We study the buildup of magnetic fields during the formation of Population III star-forming regions, by conducting cosmological simulations from realistic initial conditions and varying the Jeans resolution. To investigate this in detail, we start simulations from identical initial conditions, mandating 16, 32 and 64 zones per Jeans length, and studied the variation in their magnetic field amplification. We find that, while compression results in some amplification, turbulent velocity fluctuations driven by the collapse can further amplify an initially weak seed field via dynamo action, provided there is sufficient numerical resolution to capture vortical motions (we find this requirement to be 64 zones per Jeans length, slightly larger than, but consistent with previous work run with more idealized collapse scenarios). We explore saturation of amplification of the magnetic field, which could potentially become dynamically important in subsequent, fully-resolved calculations. We have also identified a relatively surprising phenomena that is purely hydrodynamic: the higher-resolved simulations possess substantially different characteristics, including higher infall-velocity, increased temperatures inside 1000 AU, and decreased molecular hydrogen content in the innermost region. Furthermore, we find that disk formation is suppressed in higher-resolution calculations, at least at the times that we can follow the calculation. We discuss the effect this may have on the buildup of disks over the accretion history of the first clump to form as well as the potential for gravitational instabilities to develop and induce fragmentation.

  3. A compact high field magnetic force microscope.

    PubMed

    Zhou, Haibiao; Wang, Ze; Hou, Yubin; Lu, Qingyou

    2014-12-01

    We present the design and performance of a simple and compact magnetic force microscope (MFM), whose tip-sample coarse approach is implemented by the piezoelectric tube scanner (PTS) itself. In brief, a square rod shaft is axially spring-clamped on the inner wall of a metal tube which is glued inside the free end of the PTS. The shaft can thus be driven by the PTS to realize image scan and inertial stepping coarse approach. To enhance the inertial force, each of the four outer electrodes of the PTS is driven by an independent port of the controller. The MFM scan head is so compact that it can easily fit into the 52mm low temperature bore of a 20T superconducting magnet. The performance of the MFM is demonstrated by imaging a manganite thin film at low temperature and in magnetic fields up to 15T. PMID:25189114

  4. Fast magnetic reconnection with large guide fields

    SciTech Connect

    Stanier, A.; Simakov, Andrei N.; Chacón, L.; Daughton, W.

    2015-01-09

    Here, we demonstrate using two-fluid simulations that low-βmagnetic reconnection remains fast, regardless of the presence of fast dispersive waves, which have been previously suggested to play a critical role. In order to understand these results, a discrete model is constructed that offers scaling relationships for the reconnection rate and dissipation region (DR) thickness in terms of the upstream magnetic field and DR length. We verify these scalings numerically and show how the DR self-adjusts to process magnetic flux at the same rate that it is supplied to a larger region where two-fluid effects become important. Ultimately, the rate is independent of the DR physics and is in good agreement with kinetic results.

  5. Fast magnetic reconnection with large guide fields

    DOE PAGESBeta

    Stanier, A.; Simakov, Andrei N.; Chacón, L.; Daughton, W.

    2015-01-09

    Here, we demonstrate using two-fluid simulations that low-βmagnetic reconnection remains fast, regardless of the presence of fast dispersive waves, which have been previously suggested to play a critical role. In order to understand these results, a discrete model is constructed that offers scaling relationships for the reconnection rate and dissipation region (DR) thickness in terms of the upstream magnetic field and DR length. We verify these scalings numerically and show how the DR self-adjusts to process magnetic flux at the same rate that it is supplied to a larger region where two-fluid effects become important. Ultimately, the rate is independentmore » of the DR physics and is in good agreement with kinetic results.« less

  6. Modeling of magnetic field driven simultaneous assembly

    NASA Astrophysics Data System (ADS)

    Rivero, Rene David

    The Magnetic Field Driven Simultaneous Assembly (MFDSA) is a method that offers a non-statistical and deterministic solution to the problem of assembly via batch processing; a hybrid of serial and parallel processing. The technique requires the use of electromagnets as well as soft and hard magnetic materials that are applied to devices and recesses respectively. The MFDSA approach offers the ability to check and correct errors in real-time and is capable of scalable, versatile, and high-yield integration. Devices, coated with a layer of soft magnetic material, are moved from initial to final positions along predetermined pathways through the action of an array of electromagnets. Various devices, of arbitrary geometries, with different physical and functional properties, are manipulated simultaneously toward specific desired locations and then dropped onto a template under the influence of gravity by weakening the local applied field. Locations on the template correspond to sites on a substrate that contain recesses. When a number of devices have been dropped onto the template, a substrate is pressed onto it and the soft magnetic layers on the devices adhere to the hard magnetic strips in the recesses, completing integration in a single step. The objectives of this dissertation are the following: to present the MFDSA method; comparing and contrasting it with other extant techniques employed by the semiconductor industry; to discuss key aspects of this solution with respect to the problem of assembly, and to model the calculations involved with determining both device pathways and field interactions that are required to implement the approach. The Fourier Series technique will be used to describe the force of attraction between the device's soft magnetic layer and the recess's hard magnetic strips. Methodology from finite element analysis will be employed to calculate the force exerted on a device by an array of electromagnets. The Swarm Algorithm, which was

  7. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  8. Gyrotron beam generation with helical magnetic fields

    NASA Astrophysics Data System (ADS)

    Jackson, R. H.; Sedlak, C. A.

    1983-08-01

    This report presents the results of an investigation into the basic properties of a new type of electron gun for generating high transverse velocity beams, the bifilar helix - Pierce gun or H-gun. The H-gun differs significantly from presently used magnetron injection guns (MIGs) in that first a laminar, low transverse velocity beam is formed and then transverse velocity is imparted by propagating the beam through the magnetic field of a bifilar helix. In order to evaluate the H-gun, an analytic and computational study was conducted to examine the relationships between the magnetic fields (axial and helical), and the beam properties after existing the helical field. The effects of the helix field entrance profile, the helix-axial field gyroresonance, and helix field gradients have been taken into account in the investigation. Based on the results of this research, conditions have been specified which will produce a high transverse velocity beam with low axial velocity spread. In particular, it has been found that an adiabatic helix entrance profile can provide a flexible means of generating high quality beams for gyro-devices.

  9. Numerical simulation of solar coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Dahlburg, Russell B.; Antiochos, Spiro K.; Zang, T. A.

    1990-01-01

    Many aspects of solar activity are believed to be due to the stressing of the coronal magnetic field by footpoint motions at the photosphere. The results are presented of a fully spectral numerical simulation which is the first 3-D time dependent simulation of footpoint stressing in a geometry appropriate for the corona. An arcade is considered that is initially current-free and impose a smooth footpoint motion that produces a twist in the field of approx 2 pi. The footprints were fixed and the evolution was followed until the field relaxes to another current-free state. No evidence was seen for any instability, either ideal or resistive and no evidence for current sheet formation. The most striking feature of the evolution is that in response to photospheric motions, the field expands rapidly upward to minimize the stress. The expansion has two important effects. First, it suppresses the development of dips in the field that could support dense, cool material. For the motions assumed, the magnetic field does not develop a geometry suitable for prominence formation. Second, the expansion inhibits ideal instabilities such as kinking. The results indicate that simple stearing of a single arcade is unlikely to lead to solar activity such as flares or prominences. Effects are discussed that might possibly lead to such activity.

  10. Magnetically-assisted transport evanescent field fluoroimmunoassay.

    PubMed

    Wellman, Amber D; Sepaniak, Michael J

    2006-07-01

    The immunoassay, based on specific recognition of an antigen by its antibody, has garnered widespread use in clinical analysis as well as application in such areas as food industry and environmental monitoring. Fluoroimmunoassays (FIAs) are especially attractive due to the inherent sensitivity of fluorescence spectroscopy and the availability of a wide range of commercial antibodies and fluorescent labels. In current form, however, FIAs can be cumbersome, multistep procedures and often lack versatility when there is interest in measuring many different target antigens. This report is proof of a concept paper introducing a new FIA approach, Magnetically-Assisted Transport Evanescent Field Fluoroimmunoassays (MATEFFs), which seeks to preserve the advantages of current approaches to FIAs while attempting to address some of the drawbacks. MATEFFs utilize magnetic microspheres as solid supports for the fluoroimmunoassay with direct detection of bound analyte within the sample mixture effected by selectively driving the functionalized beads to a prism surface using an external magnet. An evanescent wave is generated by total internal reflection of a laser beam at the optical interface between the prism and sample and serves to excite the fluorescent species magnetically delivered into the localized field. This technique eliminates wash steps without compromising sensitivity, all the while minimizing interference from fluorescing species present in the sample matrix. Preliminary optimization studies assessing the impact of background interfering agents, incident angle, magnetic field direction, laser power density via focusing, and bead concentration on MATEFFs performance characteristics are discussed herein along with a detailed description of the experimental platform. Utilizing a model sandwich assay system with biotinylated anti-IgG as the capture antibody, rabbit IgG as the antigen, and anti-IgG-R-phycoerythrin as the reporter antibody, we demonstrate a linear

  11. Feynman's Proof and Non-Elastic Displacement Fields: Relationship Between Magnetic Field and Defects Field

    NASA Astrophysics Data System (ADS)

    Nakamura, Nozomu; Yamasaki, Kazuhito

    2016-08-01

    We consider the relationship between the magnetic field and the non-elastic displacement field including defects, from the viewpoints of non-commutativity of the positions and non-commutativity of the derivatives. The former non-commutativity is related to the magnetic field by Feynman's proof (1948), and the latter is related to the defect fields by the continuum theory of defects. We introduce the concept of differential geometry to the non-elastic displacement field and derive an extended relation that includes basic equations, such as Gauss's law for magnetism and the conservation law for dislocation density. The relation derived in this paper also extends the first Bianchi identity in linear approximation to include the effect of magnetism. These findings suggest that Feynman's approach with a non-elastic displacement field is useful for understanding the relationship between magnetism and non-elastic mechanics.

  12. Drag bit construction

    DOEpatents

    Hood, M.

    1986-02-11

    A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face. 4 figs.

  13. Drag reduction in nature

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Moore, K. J.

    1991-01-01

    Recent studies on the drag-reducing shapes, structures, and behaviors of swimming and flying animals are reviewed, with an emphasis on potential analogs in vehicle design. Consideration is given to form drag reduction (turbulent flow, vortex generation, mass transfer, and adaptations for body-intersection regions), skin-friction drag reduction (polymers, surfactants, and bubbles as surface 'additives'), reduction of the drag due to lift, drag-reduction studies on porpoises, and drag-reducing animal behavior (e.g., leaping out of the water by porpoises). The need for further research is stressed.

  14. Drag bit construction

    DOEpatents

    Hood, Michael

    1986-01-01

    A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face.

  15. NMR in rotating magnetic fields: Magic angle field spinning

    SciTech Connect

    Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.

    2004-09-10

    Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.

  16. Constructing the Coronal Magnetic Field by Correlating Parameterized Magnetic Field Lines with Observed Coronal Plasma Structures

    NASA Technical Reports Server (NTRS)

    Allen, Gary G.; Alexander, David

    1999-01-01

    A method is presented for constructing the coronal magnetic field from photospheric magnetograms and observed coronal loops. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal flux tubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures that (1) the normal component of the photospheric field remains unchanged, (2) the field is given in the entire corona over an active region, (3) the field remains divergence-free, and 4electric currents are introduced into the field. It is demonstrated that a parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 November 26. The result is a non-force-free magnetic field with the Lorentz force being of the order of 10(exp -5.5) g per s(exp 2) resulting from an electric current density of 0.79 micro A per m(exp 2). Calculations show that the plasma beta becomes larger than unity at a strong non-radial currents requires low height of about 0.25 solar radii supporting the non-force-free conclusion. The presence of such strong non-radial currents requires large transverse pressure gradients fo maintain a magnetostatic atmosphere, required by the relatively persistent nature of the coronal structures observed in AR 7999. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.

  17. Modified methods of stellar magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Kholtygin, A. F.

    2014-12-01

    The standard methods of the magnetic field measurement, based on an analysis of the relation between the Stokes V-parameter and the first derivative of the total line profile intensity, were modified by applying a linear integral operator \\hat{L} to both sides of this relation. As the operator \\hat{L}, the operator of the wavelet transform with DOG-wavelets is used. The key advantage of the proposed method is an effective suppression of the noise contribution to the line profile and the Stokes parameter V. The efficiency of the method has been studied using model line profiles with various noise contributions. To test the proposed method, the spectropolarimetric observations of the A0 star α2 CVn, the Of?p star HD 148937, and the A0 supergiant HD 92207 were used. The longitudinal magnetic field strengths calculated by our method appeared to be in good agreement with those determined by other methods.

  18. Magnetic field tracking with MCNP5.

    PubMed

    Bul, J S; Hughes, H G; Walstrom, P L; Zumbro, J D; Mokhov, N V

    2005-01-01

    With the introduction of continuous-energy heavy charged particle transport in MCNP5, the need for tracking charged particles in a magnetic field becomes increasingly important. Two methods for including magnetic field effects on charged particles are included in the proton transport version of the code. The first technique utilises transfer maps produced by the beam dynamics simulation and analysis code COSY INFINITY. This method is fast and accurate; however, its use is limited to void cells only and to ensembles of particles with a fairly small energy spread. The second technique, particle ray tracing, is based on an algorithm adopted from the MARS transport code. This method can be applied to both void and material cells and is valid over a very large range of particle energies. Results from tracking particles in a quadrupole 'identity lens' using the two techniques are compared.

  19. Neutrino reactions in strong magnetic field

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chiuderi, C.; Chou, C. K.; Fassio-Canuto, L.

    1974-01-01

    Presentation of the energy losses due to several neutrinos processes: (1) synchrotron neutrinos, (2) pair annihilation neutrinos, (3) plasmon neutrinos, and (4) photoneutrinos in the presence of a superstrong magnetic field. Numerical results are tabulated and illustrated for several values of densities and temperatures. In the low density regime, the presence of a magnetic field decreases the luminosity, whereas the opposite is true at higher densities. This last effect is, however, almost entirely due to the existence of a new process, the synchrotron neutrinos that disappear when H goes to zero. Even though the overall effect can only be quantitatively ascertained after a complete cooling computation is performed, one should however expect a much lower temperature for neutron star surface than the one computed in the case where H is zero.

  20. Radiative instabilities in sheared magnetic field

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Sparks, L.; Van Hoven, G.

    1988-01-01

    The structure and growth rate of the radiative instability in a sheared magnetic field B have been calculated analytically using the Braginskii fluid equations. In a shear layer, temperature and density perturbations are linked by the propagation of sound waves parallel to the local magnetic field. As a consequence, density clumping or condensation plays an important role in driving the instability. Parallel thermal conduction localizes the mode to a narrow layer where K(parallel) is small and stabilizes short wavelengths k larger-than(c) where k(c) depends on the local radiation and conduction rates. Thermal coupling to ions also limits the width of the unstable spectrum. It is shown that a broad spectrum of modes is typically unstable in tokamak edge plasmas and it is argued that this instability is sufficiently robust to drive the large-amplitude density fluctuations often measured there.