Enzymatic mechanisms of biological magnetic sensitivity.
Letuta, Ulyana G; Berdinskiy, Vitaly L; Udagawa, Chikako; Tanimoto, Yoshifumi
2017-10-01
Primary biological magnetoreceptors in living organisms is one of the main research problems in magnetobiology. Intracellular enzymatic reactions accompanied by electron transfer have been shown to be receptors of magnetic fields, and spin-dependent ion-radical processes can be a universal mechanism of biological magnetosensitivity. Magnetic interactions in intermediate ion-radical pairs, such as Zeeman and hyperfine (HFI) interactions, in accordance with proposed strict quantum mechanical theory, can determine magnetic-field dependencies of reactions that produce biologically important molecules needed for cell growth. Hyperfine interactions of electrons with nuclear magnetic moments of magnetic isotopes can explain the most important part of biomagnetic sensitivities in a weak magnetic field comparable to the Earth's magnetic field. The theoretical results mean that magnetic-field dependencies of enzymatic reaction rates in a weak magnetic field that can be independent of HFI constant a, if H < a, and are determined by the rate constant of chemical transformations in the enzyme active site. Both Zeeman and HFI interactions predict strong magnetic-field dependence in weak magnetic fields and magnetic-field independence of enzymatic reaction rate constants in strong magnetic fields. The theoretical results can explain the magnetic sensitivity of E. coli cell and demonstrate that intracellular enzymatic reactions are primary magnetoreceptors in living organisms. Bioelectromagnetics. 38:511-521, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Liu, Zhaosen; Ian, Hou
2016-01-01
We give a theoretical study on the magnetic properties of monolayer nanodisks with both Heisenberg exchange and Dzyaloshinsky-Moriya (DM) interactions. In particular, we survey the magnetic effects caused by anisotropy, external magnetic field, and disk size when DM interaction is present by means of a new quantum simulation method facilitated by a self-consistent algorithm based on mean field theory. This computational approach finds that uniaxial anisotropy and transversal magnetic field enhance the net magnetization as well as increase the transition temperature of the vortical phase while preserving the chiralities of the swirly magnetic structures, whereas when the strength of DM interaction is sufficiently strong for a given disk size, magnetic domains appear within the circularly bounded region, which vanish and give in to a single vortex when a transversal magnetic field is applied. The latter confirms the magnetic skyrmions induced by the magnetic field as observed in the experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenforde, T.S.
1992-05-01
Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result ofmore » recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.« less
The mechanisms of the effects of magnetic fields on cells
NASA Astrophysics Data System (ADS)
Kondrachuk, A.
The evolution of organisms in conditions of the Earth magnetism results in close dependence of their functioning on the properties of the Earth magnetic field. The magnetic conditions in space flight differ from those on the Earth (e.g. much smaller values of magnetic filed) that effect various processes in living organisms. Meanwhile the mechanisms of interaction of magnetic fields with cell structures are poorly understood and systemized. The goal of the present work is to analyze and estimate the main established mechanisms of "magnetic fields - cell" interaction. Due to variety and complexity of the effects the analysis is mainly restricted to biological effects of the static magnetic field at a cellular level. 1) Magnetic induction. Static magnetic fields exert forces on moving ions in solution (e.g., electrolytes), giving rise to induced electric fields and currents. This effect may be especially important when the currents changed due to the magnetic field application are participating in some receptor functions of cells (e.g. plant cells). 2) Magneto-mechanical effect of reorientation. Uniform static magnetic fields produce torques on certain molecules with anisotropic magnetic properties, which results in their reorientation and spatial ordering. Since the structures of biological cells are magnetically and mechanically inhomogeneous, the application of a homogeneous magnetic field may cause redistribution of stresses within cells, deformation of intracellular structures, change of membrane permeability, etc. 3) Ponderomotive effects. Spatially non-uniform magnetic field exerts ponderomotive force on magnetically non-uniform cell structures. This force is proportional to the gradient of the square of magnetic field and the difference of magnetic susceptibilities of the component of the cell and its environment. 4) Biomagnetic effects. Magnetic fields can exert torques and translational forces on ferromagnetic structures, such as magnetite and ferritins presented in the cells. 5) Electronic interactions. Static magnetic fields can alter energy levels and spin orientation of electrons. Similar interactions can also occur with nuclear spins, but these are very weak compared to electron interactions. 6) Free radicals. Magnetic fields alter the spin states of the radicals, which, in turn, changes the relative probabilities of recombination and other interactions, possibly with biological consequences. 7) Non-linear effects. A number of non-linear mechanisms of magnetic effects on cells were recently proposed to explain how the cell could extract a weak magnetic signal from noise (e.g. stochastic non-linear resonance, self-tuned Hopf bifurcations). These new models need further experimental testing.
Investigation of the interaction of ferromagnetic fluids with proteins by dynamic light scattering
NASA Astrophysics Data System (ADS)
Velichko, Elena; Nepomnyashchaya, Elina; Dudina, Alina; Pleshakov, Ivan; Aksenov, Evgenii
2018-04-01
In this article the interaction between ionically stabilized magnetic nanoparticles and blood serum albumin proteins in liquid medium are discussed. Some distributions of nanoparticles' agglomerate sizes in solutions of albumin molecules, magnetic nanoparticles and their mixtures both under the influence of magnetic field and free from it are presented. It is shown that magnetic nanoparticles interact with albumin molecules, forming agglomerates. It is also shown that at the influence of magnetic field sizes of agglomerates increase proportionally to the magnetic field density.
Interaction mechanisms and biological effects of static magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenforde, T.S.
1994-06-01
Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals,more » there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.« less
NASA Astrophysics Data System (ADS)
Zhang, Chao; Yao, Hui; Nie, Yi-Hang; Liang, Jiu-Qing; Niu, Peng-Bin
2018-04-01
In this work, we study the generation of spin-current in a single-molecule magnet (SMM) tunnel junction with Coulomb interaction of transport electrons and external magnetic field. In the absence of field the spin-up and -down currents are symmetric with respect to the initial polarizations of molecule. The existence of magnetic field breaks the time-reversal symmetry, which leads to unsymmetrical spin currents of parallel and antiparallel polarizations. Both the amplitude and polarization direction of spin current can be controlled by the applied magnetic field. Particularly when the magnetic field increases to a certain value the spin-current with antiparallel polarization is reversed along with the magnetization reversal of the SMM. The two-electron occupation indeed enhances the transport current compared with the single-electron process. However the increase of Coulomb interaction results in the suppression of spin-current amplitude at the electron-hole symmetry point. We propose a scheme to compensate the suppression with the magnetic field.
Magnetic sponge prepared with an alkanedithiol-bridged network of nanomagnets.
Ito, Yoshikazu; Miyazaki, Akira; Takai, Kazuyuki; Sivamurugan, Vajiravelu; Maeno, Takashi; Kadono, Takeshi; Kitano, Masaaki; Ogawa, Yoshihiro; Nakamura, Naotake; Hara, Michikazu; Valiyaveettil, Suresh; Enoki, Toshiaki
2011-08-03
The magnetic dipole-dipole interaction between nanomagnets having huge magnetic moments can have a strength comparable to that of the van der Waals interaction between them, and it can be manipulated by applying an external magnetic field of conventional strength. Therefore, the cooperation between the dipole-dipole interaction and the applied magnetic field allows the magnetic moments of nanomagnets to be aligned and organized in an ordered manner. In this work, a network of magnetic nanoparticles connected with flexible long-alkyl-chain linkers was designed to develop a "magnetic sponge" capable of absorbing and desorbing guest molecules with changes in the applied magnetic field. The magnetization of the sponge with long-alkyl-chain bridges (30 C atoms) exhibited a 500% increase after cooling in the presence of an applied field of 7 T relative to that in the absence of a magnetic field. Cooling in a magnetic field leads to anisotropic stretching in the sponge due to reorganization of the nanomagnets along the applied field, in contrast to the isotropic organization under zero-field conditions. Such magnetic-responsive organization and reorganization of the magnetic particle network significantly influences the gas absorption capacity of the nanopores inside the material. The absorption and desorption of guests in an applied magnetic field at low temperature can be regarded as a fascinating "breathing feature" of our magnetic sponge.
Magnetoelectric effects in the spin-1/2 XXZ model with Dzyaloshinskii-Moriya interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Pradeep; Durganandini, P., E-mail: pdn@physics.unipune.ac.in
2015-06-24
We study the 1D spin-1/2 XXZ chain in the presence of the Dzyaloshinskii-Moriya (D-M) interaction and with longitudinal and transverse magnetic fields. We assume the spin-current mechanism of Katsura-Nagaosa-Balatsky at play and interpret the D-M interaction as a coupling between the local electric polarization and an external electric field. We study the interplay of electric and magnetic order in the ground state using the numerical density matrix renormalization group(DMRG) method. Specifically, we investigate the dependences of the magnetization and electric polarization on the external electric and magnetic fields. We find that for transverse magnetic fields, there are two different regimesmore » of polarization while for longitudinal magnetic fields, there are three different regimes of polarization. The different regimes can be tuned by the external magnetic fields.« less
A kinetic approach to magnetospheric modeling
NASA Technical Reports Server (NTRS)
Whipple, E. C., Jr.
1979-01-01
The earth's magnetosphere is caused by the interaction between the flowing solar wind and the earth's magnetic dipole, with the distorted magnetic field in the outer parts of the magnetosphere due to the current systems resulting from this interaction. It is surprising that even the conceptually simple problem of the collisionless interaction of a flowing plasma with a dipole magnetic field has not been solved. A kinetic approach is essential if one is to take into account the dispersion of particles with different energies and pitch angles and the fact that particles on different trajectories have different histories and may come from different sources. Solving the interaction problem involves finding the various types of possible trajectories, populating them with particles appropriately, and then treating the electric and magnetic fields self-consistently with the resulting particle densities and currents. This approach is illustrated by formulating a procedure for solving the collisionless interaction problem on open field lines in the case of a slowly flowing magnetized plasma interacting with a magnetic dipole.
Internal split field generator
Thundat,; George, Thomas [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN
2012-01-03
A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.
Magnetic Field of a Dipole and the Dipole-Dipole Interaction
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2007-01-01
With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…
NASA Astrophysics Data System (ADS)
Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.
2015-12-01
Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.
ERIC Educational Resources Information Center
Riveros, Hector G.; Betancourt, Julian
2009-01-01
The use of multiple compasses to map and visualize magnetic fields is well-known. The magnetic field exerts a torque on the compasses aligning them along the lines of force. Some science museums show the field of a magnet using a table with many compasses in a closely packed arrangement. However, the very interesting interactions that occur…
Interaction of Individual Skyrmions in a Nanostructured Cubic Chiral Magnet
NASA Astrophysics Data System (ADS)
Du, Haifeng; Zhao, Xuebing; Rybakov, Filipp N.; Borisov, Aleksandr B.; Wang, Shasha; Tang, Jin; Jin, Chiming; Wang, Chao; Wei, Wensheng; Kiselev, Nikolai S.; Zhang, Yuheng; Che, Renchao; Blügel, Stefan; Tian, Mingliang
2018-05-01
We report direct evidence of the field-dependent character of the interaction between individual magnetic skyrmions as well as between skyrmions and edges in B 20 -type FeGe nanostripes observed by means of high-resolution Lorentz transmission electron microscopy. It is shown that above certain critical values of an external magnetic field the character of such long-range skyrmion interactions changes from attraction to repulsion. Experimentally measured equilibrium inter-skyrmion and skyrmion-edge distances as a function of the applied magnetic field shows quantitative agreement with the results of micromagnetic simulations. The important role of demagnetizing fields and the internal symmetry of three-dimensional magnetic skyrmions are discussed in detail.
A novel platform to study magnetized high-velocity collisionless shocks
Higginson, D. P.; Korneev, Ph; Béard, J.; ...
2014-12-13
An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less
A novel platform to study magnetized high-velocity collisionless shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higginson, D. P.; Korneev, Ph; Béard, J.
An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less
Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers
Min, Kyoung Ah; Shin, Meong Cheol; Yu, Faquan; Yang, Meizhu; David, Allan E.; Yang, Victor C.; Rosania, Gus R.
2013-01-01
Understanding how a magnetic field affects the interaction of magnetic nanoparticles (MNPs) with cells is fundamental to any potential downstream applications of MNPs as gene and drug delivery vehicles. Here, we present a quantitative analysis of how a pulsed magnetic field influences the manner in which MNPs interact with, and penetrate across a cell monolayer. Relative to a constant magnetic field, the rate of MNP uptake and transport across cell monolayers was enhanced by a pulsed magnetic field. MNP transport across cells was significantly inhibited at low temperature under both constant and pulsed magnetic field conditions, consistent with an active mechanism (i.e. endocytosis) mediating MNP transport. Microscopic observations and biochemical analysis indicated that, in a constant magnetic field, transport of MNPs across the cells was inhibited due to the formation of large (>2 μm) magnetically-induced MNP aggregates, which exceeded the size of endocytic vesicles. Thus, a pulsed magnetic field enhances the cellular uptake and transport of MNPs across cell barriers relative to a constant magnetic field by promoting accumulation while minimizing magnetically-induced MNP aggregates at the cell surface. PMID:23373613
Orbital effect of the magnetic field in dynamical mean-field theory
NASA Astrophysics Data System (ADS)
Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.
2017-12-01
The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.
Core Problem: Does the CV Parent Body Magnetization require differentiation?
NASA Astrophysics Data System (ADS)
O'Brien, T.; Tarduno, J. A.; Smirnov, A. V.
2016-12-01
Evidence for the presence of past dynamos from magnetic studies of meteorites can provide key information on the nature and evolution of parent bodies. However, the suggestion of a past core dynamo for the CV parent body based on the study of the Allende meteorite has led to a paradox: a core dynamo requires differentiation, evidence for which is missing in the meteorite record. The key parameter used to distinguish core dynamo versus external field mechanisms is absolute field paleointensity, with high values (>>1 μT) favoring the former. Here we explore the fundamental requirements for absolute field intensity measurement in the Allende meteorite: single domain grains that are non-interacting. Magnetic hysteresis and directional data define strong magnetic interactions, negating a standard interpretation of paleointensity measurements in terms of absolute paleofield values. The Allende low field magnetic susceptibility is dominated by magnetite and FeNi grains, whereas the magnetic remanence is carried by an iron sulfide whose remanence-carrying capacity increases with laboratory cycling at constant field values, indicating reordering. The iron sulfide and FeNi grains are in close proximity, providing mineralogical context for interactions. We interpret the magnetization of Allende to record the intense early solar wind with metal-sulfide interactions amplifying the field, giving the false impression of a higher field value in some prior studies. An undifferentiated CV parent body is thus compatible with Allende's magnetization. Early solar wind magnetization should be the null hypothesis for evaluating the source of magnetization for chondrites and other meteorites.
NASA Astrophysics Data System (ADS)
Kim, June-Seo; Lee, Hyeon-Jun; Hong, Jung-Il; You, Chun-Yeol
2018-06-01
The in-plane magnetic field pulse driven domain wall motion on a perpendicularly magnetized nanowire is numerically investigated by performing micromagnetic simulations and magnetic domain wall dynamics are evaluated analytically with one-dimensional collective coordinate models including the interfacial Dzyaloshinskii-Moriya interaction. With the action of the precession torque, the chirality and the magnetic field direction dependent displacements of the magnetic domain walls are clearly observed. In order to move Bloch type and Neel type domain walls, a longitudinal and a transverse in-plane magnetic field pulse are required, respectively. The domain wall type (Bloch or Neel) can easily be determined by the dynamic motion of the domain walls under the applied pulse fields. By applying a temporally asymmetric in-plane field pulse and successive notches in the perpendicularly magnetized nanowire strip line with a proper interval, the concept of racetrack memory based on the synchronous displacements of the chirality dependent multiple domain walls is verified to be feasible. Requirement of multiple domain walls with homogeneous chirality is achieved with the help of Dzyaloshinskii-Moriya interaction.
NASA Technical Reports Server (NTRS)
Dahlburg, Russell B.; Antiochos,, Spiro K.; Norton, D.
1996-01-01
We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.
NASA Technical Reports Server (NTRS)
Ness, N. F.; Acuna, M. H.; Connerney, J. E. P.; Cloutier, P.; Kliore, A. J.; Breus, T. K.; Krymskii, A. M.; Bauer, S. J.
1999-01-01
The electron density distribution in the ionosphere of nonmagnetic (or weakly magnetized) planet depends not only on the solar ultraviolet intensity, but also on the nature of the SW interaction with this planet. Two scenarios previously have been developed based on the observations of the bow shock crossings and on the electron density distribution within the ionosphere. According to one of them Mars has an intrinsic magnetosphere produced by a dipole magnetic field and the Martian ionosphere is protected from the SW flow except during "overpressure conditions, when the planetary magnetic field can not balance the SW dynamic pressure. In the second scenario the Martian intrinsic magnetic dipole field is so weak that Mars has mainly an induced magnetosphere and a Venus-like SW/ionosphere interaction. Today the possible existence of a sufficiently strong global magnetic field that participates in the SW/Mars interaction can no longer be supported. The results obtained by the Mars-Global-Surveyor (MGS) space-craft show the existence of highly variable, but also very localized magnetic fields of crustal origin at Mars as high as 400-1500 nT. The absence of the large-scale global magnetic field at Mars makes it similar to Venus, except for possible effects of the magnetic anomalies associated with the remnant crustal magnetization. However the previous results on the Martian ionosphere obtained mainly by the radio occultation methods show that there appears to be a permanent existence of a global horizontal magnetic field in the Martian ionosphere. Moreover the global induced magnetic field in the Venus ionosphere is not typical at the solar zenith angles explored by the radio occultation methods. Additional information is contained in the original extended abstract.
Interaction of the geomagnetic field with northward interplanetary magnetic field
NASA Astrophysics Data System (ADS)
Bhattarai, Shree Krishna
The interaction of the solar wind with Earth's magnetic field causes the transfer of momentum and energy from the solar wind to geospace. The study of this interaction is gaining significance as our society is becoming more and more space based, due to which, predicting space weather has become more important. The solar wind interacts with the geomagnetic field primarily via two processes: viscous interaction and the magnetic reconnection. Both of these interactions result in the generation of an electric field in Earth's ionosphere. The overall topology and dynamics of the magnetosphere, as well as the electric field imposed on the ionosphere, vary with speed, density, and magnetic field orientation of the solar wind as well as the conductivity of the ionosphere. In this dissertation, I will examine the role of northward interplanetary magnetic field (IMF) and discuss the global topology of the magnetosphere and the interaction with the ionosphere using results obtained from the Lyon-Fedder-Mobarry (LFM) simulation. The electric potentials imposed on the ionosphere due to viscous interaction and magnetic reconnection are called the viscous and the reconnection potentials, respectively. A proxy to measure the overall effect of these potentials is to measure the cross polar potential (CPP). The CPP is defined as the difference between the maximum and the minimum of the potential in a given polar ionosphere. I will show results from the LFM simulation showing saturation of the CPP during periods with purely northward IMF of sufficiently large magnitude. I will further show that the viscous potential, which was assumed to be independent of IMF orientation until this work, is reduced during periods of northward IMF. Furthermore, I will also discuss the implications of these results for a simulation of an entire solar rotation.
The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere
NASA Astrophysics Data System (ADS)
Neubauer, Fritz M.
1998-09-01
Recent observations by the Galileo spacecraft and Earth-based techniques have motivated us to reconsider the sub-Alfvénic interaction between the Galilean satellites of Jupiter and the magnetosphere. (1) We show that the atomic processes causing the interaction between the magnetoplasma and a neutral atmosphere can be described by generalized collision frequencies with contributions from elastic collisions, ion pickup, etc. Thus there is no fundamental difference in the effect of these processes on the plasma dynamics claimed in the recent literature. For a magnetic field configuration including possible internal fields, we show that the sub-Alfvénic, low-beta interaction can be described by an anisotropically conducting atmosphere joined to an Alfvén wing as one extreme case and the Jovian ionosphere as the other extreme case. (2) The addition of a small magnetic field of internal origin does not modify the general Alfvén wing model qualitatively but only quantitatively. All magnetic moments discussed in the literature for Io are small in this sense. For an aligned internal dipole and ambient Jovian magnetic field the interaction will be enhanced by focusing of the electric field. (3) A qualitative change occurs by the additional occurrence of closed magnetic field lines for larger internal magnetic fields as in the case of Ganymede. Here the focusing is even enhanced. (4) The first discussion of nonstationary plasma flows at the satellites shows that electromagnetically induced magnetic fields may play an important role if the satellite interiors are highly conducting. From the point of view of the external excitation, induction effects may be strong for Callisto, Io, Europa, and Ganymede in order of decreasing importance. The magnetic field observations at the first Callisto encounter can be explained by these effects.
Kinetic Interactions Between the Solar Wind and Lunar Magnetic Fields
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Poppe, A. R.; Fatemi, S.; Turner, D. L.; Holmstrom, M.
2016-12-01
Despite their relatively weak strength, small scale, and incoherence, lunar magnetic anomalies can affect the incoming solar wind flow. The plasma interaction with lunar magnetic fields drives significant compressions of the solar wind plasma and magnetic field, deflections of the incoming flow, and a host of plasma waves ranging from the ULF to the electrostatic range. Recent work suggests that the large-scale features of the solar wind-magnetic anomaly interactions may be driven by ion-ion instabilities excited by reflected ions, raising the possibility that they are analogous to ion foreshock phenomena. Indeed, despite their small scale, many of the phenomena observed near lunar magnetic anomalies appear to have analogues in the foreshock regions of terrestrial planets. We discuss the charged particle distributions, fields, and waves observed near lunar magnetic anomalies, and place them in a context with the foreshocks of the Earth, Mars, and other solar system objects.
High-field magnetization and magnetic phase diagram of α -Cu2V2O7
NASA Astrophysics Data System (ADS)
Gitgeatpong, G.; Suewattana, M.; Zhang, Shiwei; Miyake, A.; Tokunaga, M.; Chanlert, P.; Kurita, N.; Tanaka, H.; Sato, T. J.; Zhao, Y.; Matan, K.
2017-06-01
High-field magnetization of the spin-1 /2 antiferromagnet α -Cu2V2O7 was measured in pulsed magnetic fields of up to 56 T in order to study its magnetic phase diagram. When the field was applied along the easy axis (the a axis), two distinct transitions were observed at Hc 1=6.5 T and Hc 2=18.0 T. The former is a spin-flop transition typical for a collinear antiferromagnet and the latter is believed to be a spin-flip transition of canted moments. The canted moments, which are induced by the Dzyaloshinskii-Moriya interactions, anti-align for Hc 1
Meson properties in magnetized quark matter
NASA Astrophysics Data System (ADS)
Wang, Ziyue; Zhuang, Pengfei
2018-02-01
We study neutral and charged meson properties in the magnetic field. Taking the bosonization method in a two-flavor Nambu-Jona-Lasinio model, we derive effective meson Lagrangian density with minimal coupling to the magnetic field, by employing derivative expansion for both the meson fields and Schwinger phases. We extract from the effective Lagrangian density the meson curvature, pole and screening masses. As the only Goldstone mode, the neutral pion controls the thermodynamics of the system and propagates the long range quark interaction. The magnetic field breaks down the space symmetry, and the quark interaction region changes from a sphere in vacuum to a ellipsoid in magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asoudeh, M.; Karimipour, V.
We determine thermal entanglement in mean-field clusters of N spin one-half particles interacting via the anisotropic Heisenberg interaction, with and without external magnetic field. For the xxx cluster in the absence of magnetic field we prove that only the N=2 ferromagnetic cluster shows entanglement. An external magnetic field B can only entangle xxx antiferromagnetic clusters in certain regions of the B-T plane. On the other hand, the xxz clusters of size N>2 are entangled only when the interaction is ferromagnetic. Detailed dependence of the entanglement on various parameters is investigated in each case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, S.; Horioka, K.; Okamura, M.
Here, the guiding of laser ablation plasmas with axial magnetic fields has been used for many applications, since its effectiveness has been proven empirically. For more sophisticated and complicated manipulations of the plasma flow, the behavior of the magnetic field during the interaction and the induced diamagnetic current in the plasma plume needs to be clearly understood. To achieve the first milestone for establishing magnetic plasma manipulation, we measured the spatial and temporal fluctuations of the magnetic field caused by the diamagnetic current. We showed that the small fluctuations of the magnetic field can be detected by using a simplemore » magnetic probe. We observed that the field penetrates to the core of the plasma plume. The diamagnetic current estimated from the magnetic field had temporal and spatial distributions which were confirmed to be correlated with the transformation of the plasma plume. Our results show that the measurement by the magnetic probe is an effective method to observe the temporal and spatial distributions of the magnetic field and diamagnetic current. The systematic measurement of the magnetic field variations is a valuable method to establish the magnetic field manipulation of the laser ablation plasma.« less
Ikeda, S.; Horioka, K.; Okamura, M.
2017-10-10
Here, the guiding of laser ablation plasmas with axial magnetic fields has been used for many applications, since its effectiveness has been proven empirically. For more sophisticated and complicated manipulations of the plasma flow, the behavior of the magnetic field during the interaction and the induced diamagnetic current in the plasma plume needs to be clearly understood. To achieve the first milestone for establishing magnetic plasma manipulation, we measured the spatial and temporal fluctuations of the magnetic field caused by the diamagnetic current. We showed that the small fluctuations of the magnetic field can be detected by using a simplemore » magnetic probe. We observed that the field penetrates to the core of the plasma plume. The diamagnetic current estimated from the magnetic field had temporal and spatial distributions which were confirmed to be correlated with the transformation of the plasma plume. Our results show that the measurement by the magnetic probe is an effective method to observe the temporal and spatial distributions of the magnetic field and diamagnetic current. The systematic measurement of the magnetic field variations is a valuable method to establish the magnetic field manipulation of the laser ablation plasma.« less
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.
2012-01-01
As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.
On a neutral particle with permanent magnetic dipole moment in a magnetic medium
NASA Astrophysics Data System (ADS)
Bakke, K.; Salvador, C.
2018-03-01
We investigate quantum effects that stem from the interaction of a permanent magnetic dipole moment of a neutral particle with an electric field in a magnetic medium. We consider a long non-conductor cylinder that possesses a uniform distribution of electric charges and a non-uniform magnetization. We discuss the possibility of achieving this non-uniform magnetization from the experimental point of view. Besides, due to this non-uniform magnetization, the permanent magnetic dipole moment of the neutral particle also interacts with a non-uniform magnetic field. This interaction gives rise to a linear scalar potential. Then, we show that bound states solutions to the Schrödinger-Pauli equation can be achieved.
Europa's induced magnetic field: How much of the signal is from the ocean?
NASA Astrophysics Data System (ADS)
Crary, F. J.; Dols, V. J.; Jia, X.; Paty, C. S.; Hale, J. M.
2017-12-01
The existence of a sub-surface ocean within Europa was demonstrated by the Galileo spacecraft's measurements of an induced dipole magnetic field. This field, produced by the time variable background magnetic field from Jupiter, is a result of currents flowing within an electrically conductive layer inside Europa, believed to be a liquid ocean. Unfortunately, interpretation of the Galileo results is complicated by the interaction between Jupiter's magnetosphere and Europa and its ionosphere. This interaction also produces magnetic field perturbations which add uncertainty and systematic errors to the determination of the induced field.Here, we estimate the contribution of the plasma interaction to the observed magnetic dipole, and discuss the implications for the properties of Europa's subsurface ocean. The Galileo data have primarily been analyzed by fitting a dipole to the observed magnetic field, without correcting for plasma effects. The data were fit to a dipole magnetic field, and the resulting magnetic moment is the sum of the induced moment from the ocean and a contribution from the plasma interaction. To estimate this contribution, we analyze the results of numerical simulations using exactly the same approach which has been used to analyze the real data. Since we know what ocean dipole was inserted in the models' boundary conditions, we therefore calculate the contribution from the plasma interaction. We have previously used this approach to estimate the sensitivity of the results to upstream plasma conditions. However, there is no assurance that one particular model is correct. In this work, we apply this approach to several different types of simulations, shedding light on the uncertainties in the ocean-induced signature.
NASA Astrophysics Data System (ADS)
Kacem, I.; Jacquey, C.; Génot, V.; Lavraud, B.; Vernisse, Y.; Marchaudon, A.; Le Contel, O.; Breuillard, H.; Phan, T. D.; Hasegawa, H.; Oka, M.; Trattner, K. J.; Farrugia, C. J.; Paulson, K.; Eastwood, J. P.; Fuselier, S. A.; Turner, D.; Eriksson, S.; Wilder, F.; Russell, C. T.; Øieroset, M.; Burch, J.; Graham, D. B.; Sauvaud, J.-A.; Avanov, L.; Chandler, M.; Coffey, V.; Dorelli, J.; Gershman, D. J.; Giles, B. L.; Moore, T. E.; Saito, Y.; Chen, L.-J.; Penou, E.
2018-03-01
The occurrence of spatially and temporally variable reconnection at the Earth's magnetopause leads to the complex interaction of magnetic fields from the magnetosphere and magnetosheath. Flux transfer events (FTEs) constitute one such type of interaction. Their main characteristics are (1) an enhanced core magnetic field magnitude and (2) a bipolar magnetic field signature in the component normal to the magnetopause, reminiscent of a large-scale helicoidal flux tube magnetic configuration. However, other geometrical configurations which do not fit this classical picture have also been observed. Using high-resolution measurements from the Magnetospheric Multiscale mission, we investigate an event in the vicinity of the Earth's magnetopause on 7 November 2015. Despite signatures that, at first glance, appear consistent with a classic FTE, based on detailed geometrical and dynamical analyses as well as on topological signatures revealed by suprathermal electron properties, we demonstrate that this event is not consistent with a single, homogenous helicoidal structure. Our analysis rather suggests that it consists of the interaction of two separate sets of magnetic field lines with different connectivities. This complex three-dimensional interaction constructively conspires to produce signatures partially consistent with that of an FTE. We also show that, at the interface between the two sets of field lines, where the observed magnetic pileup occurs, a thin and strong current sheet forms with a large ion jet, which may be consistent with magnetic flux dissipation through magnetic reconnection in the interaction region.
NASA Astrophysics Data System (ADS)
Deviren, Seyma Akkaya
2017-02-01
In this research, we have investigated the magnetic properties of the spin-1 Ising model on the Shastry Sutherland lattice with the crystal field interaction by using the effective-field theory with correlations. The effects of the applied field on the magnetization are examined in detail in order to obtain the magnetization plateaus, thus different types of magnetization plateaus, such as 1/4, 1/3, 1/2, 3/5, 2/3 and 7/9 of the saturation, are obtained for strong enough magnetic fields (h). Magnetization plateaus exhibit single, triple, quintuplet and sextuple forms according to the interaction parameters, hence the magnetization plateaus originate from the competition between the crystal field (D) and exchange interaction parameters (J, J‧). The ground-state phase diagrams of the system are presented in three varied planes, namely (h/J, J‧/J), (h/J, D/J) and (D/J, J‧/J) planes. These phase diagrams display the Néel (N), collinear (C) and ferromagnetic (F) phases for certain values of the model parameters. The obtained results are in good agreement with some theoretical and experimental studies.
Dynamic cross correlation studies of wave particle interactions in ULF phenomena
NASA Technical Reports Server (NTRS)
Mcpherron, R. L.
1979-01-01
Magnetic field observations made by satellites in the earth's magnetic field reveal a wide variety of ULF waves. These waves interact with the ambient particle populations in complex ways, causing modulation of the observed particle fluxes. This modulation is found to be a function of species, pitch angle, energy and time. The characteristics of this modulation provide information concerning the wave mode and interaction process. One important characteristic of wave-particle interactions is the phase of the particle flux modulation relative to the magnetic field variations. To display this phase as a function of time a dynamic cross spectrum program has been developed. The program produces contour maps in the frequency time plane of the cross correlation coefficient between any particle flux time series and the magnetic field vector. This program has been utilized in several studies of ULF wave-particle interactions at synchronous orbit.
Magnetic micro/nanoparticle flocculation-based signal amplification for biosensing
Mzava, Omary; Taş, Zehra; İçöz, Kutay
2016-01-01
We report a time and cost efficient signal amplification method for biosensors employing magnetic particles. In this method, magnetic particles in an applied external magnetic field form magnetic dipoles, interact with each other, and accumulate along the magnetic field lines. This magnetic interaction does not need any biomolecular coating for binding and can be controlled with the strength of the applied magnetic field. The accumulation can be used to amplify the corresponding pixel area that is obtained from an image of a single magnetic particle. An application of the method to the Escherichia coli 0157:H7 bacteria samples is demonstrated in order to show the potential of the approach. A minimum of threefold to a maximum of 60-fold amplification is reached from a single bacteria cell under a magnetic field of 20 mT. PMID:27354793
Dynamics and morphology of chiral magnetic bubbles in perpendicularly magnetized ultra-thin films
NASA Astrophysics Data System (ADS)
Sarma, Bhaskarjyoti; Garcia-Sanchez, Felipe; Nasseri, S. Ali; Casiraghi, Arianna; Durin, Gianfranco
2018-06-01
We study bubble domain wall dynamics using micromagnetic simulations in perpendicularly magnetized ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction. Disorder is incorporated into the material as grains with randomly distributed sizes and varying exchange constant at the edges. As expected, magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous application of out-of-plane and in-plane fields. Remarkably, the shape of the bubble has a ripple-like part which causes a kink-like (steep decrease) feature in the velocity versus in-plane field curve. We show that these ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, we show that the Dzyaloshinskii-Moriya interaction field is not constant but rather depends on the in-plane field. We also extend the collective coordinate model for domain wall motion to a magnetic bubble and compare it with the results of micromagnetic simulations.
External split field generator
Thundat, Thomas George [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN
2012-02-21
A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.
Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot
NASA Astrophysics Data System (ADS)
Kalpana, P.; Merwyn, A.; Reuben, Jasper D.; Nithiananthi, P.; Jayakumar, K.
2015-06-01
The Coulomb interaction of holes in a Semimagnetic Cd1-xMnxTe / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.
Coupling Influences SMM Properties for Pure 4 f Systems.
Zhang, Xuejing; Liu, Shuang; Vieru, Veacheslav; Xu, Na; Gao, Chen; Wang, Bing-Wu; Shi, Wei; Chibotaru, Liviu F; Gao, Song; Cheng, Peng; Powell, Annie K
2018-04-20
Increasing both the energy barrier for magnetization reversal and the coercive field of the hysteresis loop are significant challenges in the field of single-molecule magnets (SMMs). Coordination geometries of lanthanide ions and magnetic interactions between lanthanide ions are both important for guiding the magnetic behavior of SMMs. We report a high energy barrier of 657 K (457 cm -1 ) in a diamagnetic-ion-diluted lanthanide chain compound with a constrained bisphenoid symmetry (D 2d ); this energy barrier is substantially higher than the barrier of 567 K (394 cm -1 ) of the non-diluted chain compound with intrachain ferromagnetic interactions. Although intrachain magnetic interaction lowers the energy barrier for magnetization reversal, it can greatly enhance the coercive fields and zero-field remanence of the hysteresis loops, which is crucial for the rational design of high-performance SMMs. Factors related to the coordination sphere of the lanthanide center, which govern the high magnetic relaxation barriers through the second excited Kramer's doublets and the magnetic interactions that affect the hysteresis loops, were revealed through ab initio calculations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jia, E-mail: lijia@wipm.ac.cn
2014-10-07
We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current ismore » present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.« less
Interactions of Twisted Ω-loops in a Model Solar Convection Zone
NASA Astrophysics Data System (ADS)
Jouve, L.; Brun, A. S.; Aulanier, G.
2018-04-01
This study aims at investigating the ability of strong interactions between magnetic field concentrations during their rise through the convection zone to produce complex active regions at the solar surface. To do so, we perform numerical simulations of buoyant magnetic structures evolving and interacting in a model solar convection zone. We first produce a 3D model of rotating convection and then introduce idealized magnetic structures close to the bottom of the computational domain. These structures possess a certain degree of field line twist and they are made buoyant on a particular extension in longitude. The resulting twisted Ω-loops will thus evolve inside a spherical convective shell possessing large-scale mean flows. We present results on the interaction between two such loops with various initial parameters (mainly buoyancy and twist) and on the complexity of the emerging magnetic field. In agreement with analytical predictions, we find that if the loops are introduced with opposite handedness and same axial field direction or the same handedness but opposite axial field, they bounce against each other. The emerging region is then constituted of two separated bipolar structures. On the contrary, if the loops are introduced with the same direction of axial and peripheral magnetic fields and are sufficiently close, they merge while rising. This more interesting case produces complex magnetic structures with a high degree of non-neutralized currents, especially when the convective motions act significantly on the magnetic field. This indicates that those interactions could be good candidates to produce eruptive events like flares or CMEs.
Numerical simulation of magnetic interactions in polycrystalline YFeO 3
NASA Astrophysics Data System (ADS)
Lima, E.; Martins, T. B.; Rechenberg, H. R.; Goya, G. F.; Cavelius, C.; Rapalaviciute, R.; Hao, S.; Mathur, S.
The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO 3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M( H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field ( HE=5590 kOe), anisotropy field ( HA=0.5 kOe) and Dzyaloshinsky-Moriya antisymmetric field ( HD=149 kOe) are in good agreement with previous reports on this system.
Reversible control of magnetic interactions by electric field in a single-phase material.
Ryan, P J; Kim, J-W; Birol, T; Thompson, P; Lee, J-H; Ke, X; Normile, P S; Karapetrova, E; Schiffer, P; Brown, S D; Fennie, C J; Schlom, D G
2013-01-01
Intrinsic magnetoelectric coupling describes the interaction between magnetic and electric polarization through an inherent microscopic mechanism in a single-phase material. This phenomenon has the potential to control the magnetic state of a material with an electric field, an enticing prospect for device engineering. Here, we demonstrate 'giant' magnetoelectric cross-field control in a tetravalent titanate film. In bulk form, EuTiO(3), is antiferromagnetic. However, both anti and ferromagnetic interactions coexist between different nearest europium neighbours. In thin epitaxial films, strain was used to alter the relative strength of the magnetic exchange constants. We not only show that moderate biaxial compression precipitates local magnetic competition, but also demonstrate that the application of an electric field at this strain condition switches the magnetic ground state. Using first-principles density functional theory, we resolve the underlying microscopic mechanism resulting in G-type magnetic order and illustrate how it is responsible for the 'giant' magnetoelectric effect.
Modeling the Radiation Belts During a Geomagnetic Storm
NASA Astrophysics Data System (ADS)
Glocer, A.; Fok, M.; Toth, G.
2009-05-01
We utilize the Radiation Belt Environment (RBE) model to simulate the radiation belt electrons during a geomagnetic storm. Particularly, we focus on the relative contribution of whistler mode wave-particle interactions and radial diffusion associated with rapid changes in the magnetospheric magnetic field. In our study, the RBE model obtains a realistic magnetic field from the BATS-R-US magnetosphere model at a regular, but adjustable, cadence. We simulate the storm with and without wave particle interactions, and with different frequencies for updating the magnetic field. The impacts of the wave-particle interactions, and the rapid variations in the magnetospheric magnetic field, can then be studied. Simulation results are also extracted along various satellite trajectories for direct comparison where appropriate.
Long-range interactions in magnetic bilayer above the critical temperature
NASA Astrophysics Data System (ADS)
de Souza, R. M. V.; Pereira, T. A. S.; Godoy, M.; de Arruda, A. S.
2018-01-01
In this paper we have studied the stabilization of the long-range order in (z ; x) -plane of two isotropic Heisenberg ferromagnetic monolayers coupled by a short-range exchange interaction (J⊥), by a long range dipole-dipole interactions and a magnetic field. We have applied a magnetic field along of the z-direction to study the thermodynamic properties above the critical temperature. The dispersion relation ω and the magnetization are given as function of dipolar anisotropy parameter defined as Ed =(gμ) 2 S /a3J∥ and for other Hamiltonian parameters, and they are calculated by the double-time Zubarev-Tyablikov Green's functions in the random-phase approximation (RPA). The results show that the system is unstable for values of Ed ≥ 0.012 with external magnetic field ranging between H /J∥ = 0 and 10-3. The instability appears for Ed larger then Edc = 0.0158 with H /J∥ = 10-5, Edc = 0.02885 with H /J∥ = 10-4, and Edc = 0.115 with H /J∥ = 10-3, i.e., a small magnetic field is sufficient to maintain the magnetic order in a greater range of the dipolar interaction.
Quantum model of a hysteresis in a single-domain magnetically soft ferromagnetic
NASA Astrophysics Data System (ADS)
Ignatiev, V. K.; Lebedev, N. G.; Orlov, A. A.
2018-01-01
A quantum model of a single-domain magnetically soft ferromagnetic is proposed. The α-Fe crystal in a state of the saturation magnetization and a variable magnetic field is considered as a sample. The method of an effective Hamiltonian, including the operators of the Zeeman energy, the spin-orbit interaction and the interaction with the crystal field, is used in the model. An expansion of trial single-electron wave function in a series in small parameter of the spin-orbit interaction is suggested to account for the magnetic anisotropy. Within the framework of the Heisenberg representation, the nonlinear equations of motion for the magnetization and the orbital moment of single domain are obtained. Parameters of the modelling Hamiltonian are found from a comparison with experimental data on the magnetic anisotropy of iron. A phenomenological term of the magnetic friction is introduced into equation of the magnetization motion. Nonlinear equations are solved numerically by the Runge-Kutta method. A dependence of the single domain magnetization on magnetic field intensity has a characteristic form of a hysteresis loop which parameters are quantitatively coordinated with experimental data of researches of magnetic properties of nanoparticles of iron and iron oxide. The method is extended for modelling the magnetization dynamics of multi-domain ferromagnetic in the approximation of a strong crystal field.
Ultrafast optical modification of exchange interactions in iron oxides
NASA Astrophysics Data System (ADS)
Mikhaylovskiy, R. V.; Hendry, E.; Secchi, A.; Mentink, J. H.; Eckstein, M.; Wu, A.; Pisarev, R. V.; Kruglyak, V. V.; Katsnelson, M. I.; Rasing, Th.; Kimel, A. V.
2015-09-01
Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 103 Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm-2 acts as a pulsed effective magnetic field of 0.01 Tesla.
NASA Astrophysics Data System (ADS)
Kalpana, Panneer Selvam; Jayakumar, Kalyanasundaram
2017-11-01
We study the effect of magnetic field on the Coulomb interaction between the two electrons confined inside a CdTe/Cd1-xMnxTe Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD) for the composition of Mn2+ ion, x = 0.3. The two particle Schrodinger equation has been solved using variational technique in the effective mass approximation. The results show that the applied magnetic field tremendously alters the Coulomb interaction of the electrons and their binding to the donor impurity by shrinking the spatial extension of the two particle wavefunction and leads to tunnelling through the barrier. The qualitative phenomenon involved in such variation of electron - electron interaction with the magnetic field has also been explained through the 3D - plot of the probability density function.
Interactions and reversal-field memory in complex magnetic nanowire arrays
NASA Astrophysics Data System (ADS)
Rotaru, Aurelian; Lim, Jin-Hee; Lenormand, Denny; Diaconu, Andrei; Wiley, John. B.; Postolache, Petronel; Stancu, Alexandru; Spinu, Leonard
2011-10-01
Interactions and magnetization reversal of Ni nanowire arrays have been investigated by the first-order reversal curve (FORC) method. Several series of samples with controlled spatial distribution were considered including simple wires of different lengths and diameters (70 and 110 nm) and complex wires with a single modulated diameter along their length. Subtle features of magnetic interactions are revealed through a quantitative analysis of the local interaction field profile distributions obtained from the FORC method. In addition, the FORC analysis indicates that the nanowire systems with a mean diameter of 70 nm appear to be organized in symmetric clusters indicative of a reversal-field memory effect.
NASA Astrophysics Data System (ADS)
Ishikawa, Rui; Tsunakawa, Hitoshi; Oinuma, Kohsuke; Michimura, Shinji; Taniguchi, Hiromi; Satoh, Kazuhiko; Ishii, Yasuyuki; Okamoto, Hiroyuki
2018-06-01
Detailed magnetization measurements enabled us to claim that the layered organic insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl [BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene] with the Dzyaloshinskii-Moriya interaction has an antiferromagnetic spin structure with the easy axis being the crystallographic c-axis and the net canting moment parallel to the a-axis at zero magnetic field. This zero-field spin structure is significantly different from that proposed in the past studies. The assignment was achieved by arguments including a correction of the direction of the weak ferromagnetism, reinterpretations of magnetization behaviors, and reasoning based on known high-field spin structures. We suggest that only the contributions of the strong intralayer antiferromagnetic interaction, the moderately weak Dzyaloshinskii-Moriya interaction, and the very weak interlayer ferromagnetic interaction can realize this spin structure. On the basis of this model, characteristic magnetic-field dependences of the magnetization can be interpreted as consequences of intriguing spin reorientations. The first reorientation is an unusual spin-flop transition under a magnetic field parallel to the b-axis. Although the existence of this transition is already known, the interpretation of what happens at this transition has been significantly revised. We suggest that this transition can be regarded as a spin-flop phenomenon of the local canting moment. We also claim that half of the spins rotate by 180° at this transition, in contrast to the conventional spin flop transition. The second reorientation is the gradual rotation of the spins during the variation of the magnetic field parallel to the c-axis. In this process, all the spins rotate around the Dzyaloshinskii-Moriya vectors by 90°. The results of our simulation based on the classical spin model well reproduce these spin reorientation behaviors, which strongly support our claimed zero-field spin structure. The present study highlights the intriguing low-field magnetic properties of this material and may evoke further research on the low-field magnetism in this class of materials.
Binary stellar winds. [flow and magnetic field interactions
NASA Technical Reports Server (NTRS)
Siscoe, G. L.; Heinemann, M. A.
1974-01-01
Stellar winds from a binary star will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters are discussed.
Coherent Magnetic Response at Optical Frequencies Using Atomic Transitions
NASA Astrophysics Data System (ADS)
Brewer, Nicholas R.; Buckholtz, Zachary N.; Simmons, Zachary J.; Mueller, Eli A.; Yavuz, Deniz D.
2017-01-01
In optics, the interaction of atoms with the magnetic field of light is almost always ignored since its strength is many orders of magnitude weaker compared to the interaction with the electric field. In this article, by using a magnetic-dipole transition within the 4 f shell of europium ions, we show a strong interaction between a green laser and an ensemble of atomic ions. The electrons move coherently between the ground and excited ionic levels (Rabi flopping) by interacting with the magnetic field of the laser. By measuring the Rabi flopping frequency as the laser intensity is varied, we report the first direct measurement of a magnetic-dipole matrix element in the optical region of the spectrum. Using density-matrix simulations of the ensemble, we infer the generation of coherent magnetization with magnitude 5.5 ×10-3 A /m , which is capable of generating left-handed electromagnetic waves of intensity 1 nW /cm2 . These results open up the prospect of constructing left-handed materials using sharp transitions of atoms.
Observations of interactions between interplanetary and geomagnetic fields
NASA Technical Reports Server (NTRS)
Burch, J. L.
1973-01-01
Magnetospheric effects associated with variations of the north-south component of the interplanetary magnetic field are examined in light of recent recent experimental and theoretical results. Although the occurrence of magnetospheric substorms is statistically related to periods of southward interplanetary magnetic field, the details of the interaction are not understood. In particular, attempts to separate effects resulting directly from the interaction between the interplanetary and geomagnetic fields from those associated with substorms have produced conflicting results. The transfer of magnetic flux from the dayside to the nightside magnetosphere is evidenced by equatorward motion of the polar cusp and increases of the magnetic energy density in the lobes of the geomagnetic tail. The formation of a macroscopic X-type neutral line at tail distances less than 35 R sub E appears to be a substorm phenomenon.
NASA Astrophysics Data System (ADS)
Bera, Anindita; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2017-06-01
We investigate equilibrium statistical properties of the isotropic quantum XY spin-1/2 model in an external magnetic field when the interaction and field parts are subjected to quenched or annealed disorder or both. The randomness present in the system are termed annealed or quenched depending on the relation between two different time scales—the time scale associated with the equilibration of the randomness and the time of observation. Within a mean-field framework, we study the effects of disorders on spontaneous magnetization, both by perturbative and numerical techniques. Our primary interest is to understand the differences between quenched and annealed cases, and also to investigate the interplay when both of them are present in a system. We find that the magnetization survives in the presence of a unidirectional random field, irrespective of its nature, i.e., whether it is quenched or annealed. However, the field breaks the circular symmetry of the magnetization, and the system magnetizes in specific directions, parallel or transverse to the applied magnetic field. Interestingly, while the transverse magnetization is affected by the annealed disordered field, the parallel one remains unfazed by the same. Moreover, the annealed disorder present in the interaction term does not affect the system's spontaneous magnetization and the corresponding critical temperature, irrespective of the presence or absence of quenched or annealed disorder in the field term. We carry out a comparative study of these and all other different combinations of the disorders in the interaction and field terms, and point out their generic features.
Optical magnetic mirrors without metals
Liu, Sheng; Sinclair, Michael B.; Mahony, Thomas S.; ...
2014-01-01
The reflection of an optical wave from metal, arising from strong interactions between the optical electric field and the free carriers of the metal, is accompanied by a phase reversal of the reflected electric field. A far less common route to achieving high reflectivity exploits strong interactions between the material and the optical magnetic field to produce a “magnetic mirror” that does not reverse the phase of the reflected electric field. At optical frequencies, the magnetic properties required for strong interaction can be achieved only by using artificially tailored materials. Here, we experimentally demonstrate, for the first time to themore » best of our knowledge, the magnetic mirror behavior of a low-loss all-dielectric metasurface at infrared optical frequencies through direct measurements of the phase and amplitude of the reflected optical wave. The enhanced absorption and emission of transverse-electric dipoles placed close to magnetic mirrors can lead to exciting new advances in sensors, photodetectors, and light sources.« less
Magnetic interactions in anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer magnets
NASA Astrophysics Data System (ADS)
Dai, Z. M.; Liu, W.; Zhao, X. T.; Han, Z.; Kim, D.; Choi, C. J.; Zhang, Z. D.
2016-10-01
The magnetic properties and the possible interaction mechanisms of anisotropic soft- and hard-magnetic multilayers have been investigated by altering the thickness of different kinds of spacer layers. The metal Ta and the insulating oxides MgO, Cr2O3 have been chosen as spacer layers to investigate the characteristics of the interactions between soft- and hard-magnetic layers in the anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer system. The dipolar and exchange interaction between hard and soft phases are evaluated with the help of the first order reversal curve method. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the first-order-reversal-curve measurements. Reversible/irreversible distributions reveal the natures of the soft- and hard-magnetic components. Incoherent switching fields are observed and the calculations show the semiquantitative contributions of hard and soft components to the system. An antiferromagnetic spacer layer will weaken the interaction between ferromagnetic layers and the effective interaction length decreases. As a consequence, the dipolar magnetostatic interaction may play an important role in the long-range interaction in anisotropic multilayer magnets.
Heisenberg spin-1/2 XXZ chain in the presence of electric and magnetic fields
NASA Astrophysics Data System (ADS)
Thakur, Pradeep; Durganandini, P.
2018-02-01
We study the interplay of electric and magnetic order in the one-dimensional Heisenberg spin-1/2 XXZ chain with large Ising anisotropy in the presence of the Dzyaloshinskii-Moriya (DM) interaction and with longitudinal and transverse magnetic fields, interpreting the DM interaction as a coupling between the local electric polarization and an external electric field. We obtain the ground state phase diagram using the density matrix renormalization group method and compute various ground state quantities like the magnetization, staggered magnetization, electric polarization and spin correlation functions, etc. In the presence of both longitudinal and transverse magnetic fields, there are three different phases corresponding to a gapped Néel phase with antiferromagnetic (AF) order, gapped saturated phase, and a critical incommensurate gapless phase. The external electric field modifies the phase boundaries but does not lead to any new phases. Both external magnetic fields and electric fields can be used to tune between the phases. We also show that the transverse magnetic field induces a vector chiral order in the Néel phase (even in the absence of an electric field) which can be interpreted as an electric polarization in a direction parallel to the AF order.
Laser-plasma interactions in magnetized environment
NASA Astrophysics Data System (ADS)
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.
2018-05-01
Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interaction enters a relativistic-quantum regime. Using quantum electrodynamics, we compute a modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.
NASA Astrophysics Data System (ADS)
Fukuoka, Shuhei; Yamashita, Satoshi; Nakazawa, Yasuhiro; Yamamoto, Takashi; Fujiwara, Hideki; Shirahata, Takashi; Takahashi, Kazuko
2016-06-01
The results are presented for systematic heat capacity measurements of π-d interacting systems of κ -(BETS) 2Fe Br4 and κ -(BETS) 2FeC l4 [BETS = bis(ethylenedithio)tetraselenafulvalene] performed under in-plane magnetic fields. We observed sharp thermal anomalies at 2.47 K for κ -(BETS) 2FeB r4 and at 0.47 K for κ -(BETS) 2FeC l4 at 0 T that are associated with antiferromagnetic transitions of the 3 d electrons in the anion layers. From analyses of the magnetic heat capacity data, we indicate that the two compounds show unconventional thermodynamic behaviors inherent in the π-d interacting layered system. In the case of κ -(BETS) 2FeB r4 , a small hump structure was observed in the magnetic heat capacity below the transition temperature when a magnetic field was applied parallel to the a axis. In the case of κ -(BETS) 2FeC l4 , a similar hump structure was observed at 0 T that remained in the data with magnetic fields applied parallel to the a axis. We demonstrate that the temperature dependencies of the magnetic heat capacities scale well by normalizing the temperatures with dominant one-dimensional direct interactions (Jdd/kB) of each compound. The field dependencies of the transition temperatures and the hump structures are elucidated in one simple magnetic field vs temperature (H -T ) phase diagram. These results indicate that the thermodynamic features of both κ-type BETS salts are essentially equivalent, and the observed hump structures are derived from the one-dimensional Jdd interaction characters, which are still influential for magnetic features even in the long-range magnetic ordered states.
NASA Astrophysics Data System (ADS)
Wu, D.; Luan, S. X.; Wang, J. W.; Yu, W.; Gong, J. X.; Cao, L. H.; Zheng, C. Y.; He, X. T.
2017-06-01
The two-stage electron acceleration/heating model (Wu et al 2017 Nucl. Fusion 57 016007 and Wu et al 2016 Phys. Plasmas 23 123116) is extended to the study of laser magnetized-plasmas interactions at relativistic intensities and in the presence of large-scale preformed plasmas. It is shown that the electron-heating efficiency is a controllable value by the external magnetic fields. Detailed studies indicate that for a right-hand circularly polarized laser, the electron heating efficiency depends on both strength and directions of external magnetic fields. The electron-heating is dramatically enhanced when the external magnetic field is of B\\equiv {ω }c/{ω }0> 1. When magnetic field is of negative direction, i.e. B< 0, it trends to suppress the electron heating. The underlining physics—the dependences of electron-heating on both the strength and directions of the external magnetic fields—is uncovered. With -∞ < B< 1, the electron-heating is explained by the synergetic effects by longitudinal charge separation electric field and the reflected ‘envelop-modulated’ CP laser. It is indicated that the ‘modulation depth’ of reflected CP laser is significantly determined by the external magnetic fields, which will in turn influence the efficiency of the electron-heating. While with B> 1, a laser front sharpening mechanism is identified at relativistic laser magnetized-plasmas interactions, which is responsible for the dramatical enhancement of electron-heating.
NASA Technical Reports Server (NTRS)
Calvert, M. E.; Baker, J.; Saito, K.; VanderWal, R. L.
2001-01-01
In 1846, Michael Faraday found that permanent magnets could cause candle flames to deform into equatorial disks. He believed that the change in flame shape was caused by the presence of charged particles within the flames interacting with the magnetic fields. Later researchers found that the interaction between the flame ions and the magnetic fields were much too small to cause the flame deflection. Through a force analysis, von Engel and Cozens showed that the change in the flame shape could be attributed to the diamagnetic flame gases in the paramagnetic atmosphere. Paramagnetism occurs in materials composed of atoms with permanent magnetic dipole moments. In the presence of magnetic field gradients, the atoms align with the magnetic field and are drawn into the direction of increasing magnetic field. Diamagnetism occurs when atoms have no net magnetic dipole moment. In the presence of magnetic gradient fields, diamagnetic substances are repelled towards areas of decreasing magnetism. Oxygen is an example of a paramagnetic substance. Nitrogen, carbon monoxide and dioxide, and most hydrocarbon fuels are examples of diamagnetic substances. In order to evaluate the usefulness of these magnets in altering flame behavior, a study has been undertaken to develop an analytical model to describe the change in the flame length of a laminar diffusion jet in the presence of a nonuniform magnetic field.
Energy released by the interaction of coronal magnetic fields
NASA Technical Reports Server (NTRS)
Sheeley, N. R., Jr.
1976-01-01
Comparisons between coronal spectroheliograms and photospheric magnetograms are presented to support the idea that as coronal magnetic fields interact, a process of field-line reconnection usually takes place as a natural way of preventing magnetic stresses from building up in the lower corona. This suggests that the energy which would have been stored in stressed fields is continuously released as kinetic energy of material being driven aside to make way for the reconnecting fields. However, this kinetic energy is negligible compared with the thermal energy of the coronal plasma. Therefore, it appears that these slow adjustments of coronal magnetic fields cannot account for even the normal heating of the corona, much less the energetic events associated with solar flares.
Antiferromagnetic nano-oscillator in external magnetic fields
NASA Astrophysics Data System (ADS)
Checiński, Jakub; Frankowski, Marek; Stobiecki, Tomasz
2017-11-01
We describe the dynamics of an antiferromagnetic nano-oscillator in an external magnetic field of any given time distribution. The oscillator is powered by a spin current originating from spin-orbit effects in a neighboring heavy metal layer and is capable of emitting a THz signal in the presence of an additional easy-plane anisotropy. We derive an analytical formula describing the interaction between such a system and an external field, which can affect the output signal character. Interactions with magnetic pulses of different shapes, with a sinusoidal magnetic field and with a sequence of rapidly changing magnetic fields are discussed. We also perform numerical simulations based on the Landau-Lifshitz-Gilbert equation with spin-transfer torque effects to verify the obtained results and find a very good quantitative agreement between analytical and numerical predictions.
NASA Astrophysics Data System (ADS)
Xu, Ai-Hua; Liu, Juan; Luo, Bo
2016-10-01
Using the quantum master equation, we studied the thermally driven magnonic spin current in a single-molecule magnet (SMM) dimer with the Dzyaloshinskii-Moriya interaction (DMI). Due to the asymmetric DMI, one can observe the thermal rectifying effect in the case of the spatial symmetry coupling with the thermal reservoirs. The properties of the thermal rectification can be controlled by tuning the angle and intensity of the magnetic field. Specially, when the DM vector and magnetic field point at the specific angles, the thermal rectifying effect disappears. And this phenomenon does not depend on the intensities of DMI and magnetic field, the temperature bias and the magnetic anisotropies of the SMM.
Vibration converter with magnetic levitation
NASA Astrophysics Data System (ADS)
Gladilin, A. V.; Pirogov, V. A.; Golyamina, I. P.; Kulaev, U. V.; Kurbatov, P. A.; Kurbatova, E. P.
2015-05-01
The paper presents a mathematical model, the results of computational and theoretical research, and the feasibility of creating a vibration converter with full magnetic levitation in the suspension of a high-temperature superconductor (HTSC). The axial and radial stability of the active part of the converter is provided by the interaction of the magnetic field of ring-shaped permanent magnets and a hollow cylinder made of the ceramic HTSC material. The force is created by a system of current-carrying coils whose magnetic field is polarized by permanent magnets and interacts with induced currents in the superconducting cylinder. The case of transition to the superconducting state of HTSC material in the field of the permanent magnets (FC mode) is considered. The data confirm the outlook for the proposed technical solutions.
Jacobson, J I; Yamanashi, W S
1995-04-01
The recent clinical studies describing the treatment of some neurological disorders with an externally applied pico Tesla (10(-12) Tesla, or 10(-8) gauss) magnetic field are considered from a physical view point. An equation relating the intrinsic (or rest) energy of a charged particle of mass m with its energy of interaction in an externally applied magnetic field B is presented. The equation represents an initial basic physical interaction as a part of a more complex biological mechanism to explain the therapeutic effects of externally applied magnetic fields in these and other neurologic disorders.
Jacobson, J I; Yamanashi, W S
1995-06-01
The clinical studies describing the treatment of some neurological disorders with an externally applied pico Tesla (10R Tesla, or 10(-8) gauss) magnetic field are considered from a physical view point. An equation relating the intrinsic or "rest" energy of a charged particle of mass with its energy of interaction in an externally applied magnetic field B is presented. The equation is proposed to represent an initial basic physical interaction as a part of a more complex biological mechanism to explain the therapeutic effects of externally applied magnetic fields in these and other neurologic disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Gourab, E-mail: gourab@tifr.res.in; Singh, Prashant Kumar; Adak, Amitava
A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally incident time-delayed probe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is typically of the order of the pulsewidth, limited by the laser intensity contrast, whereas a spatial resolution of a few μm is achieved by this optical technique. High-harmonics of themore » probe can be employed to penetrate deeper into the plasma to even near-solid densities. The spatial and temporal evolution of the megagauss magnetic fields at the target front as well as at the target rear are presented. The μm-scale resolution of the magnetic field mapping provides valuable information on the filamentary instabilities at the target front, whereas probing the target rear mirrors the highly complex fast electron transport in intense laser-plasma interactions.« less
Study of the magnetic interaction in nanocrystalline Pr-Fe-Co-Nb-B permanent magnets
NASA Astrophysics Data System (ADS)
Dospial, M.; Plusa, D.; Ślusarek, B.
2012-03-01
The magnetic properties of an isotropic, epoxy resin bonded magnets made from Pr-Fe-Co-Nb-B powder were investigated. The magnetization reversal process and magnetic parameters were examined by measurements of the initial magnetization curve, major and minor hysteresis loops and sets of recoil curves. From the initial magnetization curve and the field dependencies of the reversible and irreversible magnetization components derived from the recoil loops it was found that the magnetization reversal process is the combination of the nucleation of reversed domains and pinning of domain walls at the grain boundaries and the reversible rotation of magnetization vector in single domain grains. The interactions between grains were studied by means of δM plots. The nonlinear behavior of δM curve approve that the short range intergrain exchange coupling interactions are dominant in a field up to the sample coercivity. The interaction domains and fine magnetic structure were revealed as the evidence of exchange coupling between soft α-Fe and hard magnetic Nd2Fe14B grains.
Anisotropy and shape of hysteresis loop of frozen suspensions of iron oxide nanoparticles in water
NASA Astrophysics Data System (ADS)
Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi
2014-03-01
Colloidal suspensions of nanoparticles in liquids have many uses in biomedical applications. We studied approximately 50 nm diameter iron oxide particles dispersed in H2O for magnetic nanoparticle hyperthermia cancer treatment. Interactions between nanoparticles have been indicated for increasing the heat output under application of an alternating magnetic field, as in hyperthermia. Interactions vary dynamically with an applied field as the nanoparticles reorient and rearrange within the liquid. Therefore, we studied the samples below the liquid freezing point in a range of magnetic field strengths to literally freeze in the effects of interactions. We found that the shape of the magnetic hysteresis loop is squarer (higher anisotropy) when the sample was cooled in a high field, and less square (lower anisotropy) when the sample was cooled in a low or zero field. The cause is most likely the formation of long chains of nanoparticles up to 500 μm, which we observe optically. This increase in anisotropy may indicate improved heating ability for these nanoparticles under an alternating magnetic field.
Europa Scene: Plume, Galileo, Magnetic Field (Artist's Concept)
2018-05-14
Artist's illustration of Jupiter and Europa (in the foreground) with the Galileo spacecraft after its pass through a plume erupting from Europa's surface. A new computer simulation gives us an idea of how the magnetic field interacted with a plume. The magnetic field lines (depicted in blue) show how the plume interacts with the ambient flow of Jovian plasma. The red colors on the lines show more dense areas of plasma. https://photojournal.jpl.nasa.gov/catalog/PIA21922
Interaction Forces Between Multiple Bodies in a Magnetic Field
NASA Technical Reports Server (NTRS)
Joffe, Benjamin
1996-01-01
Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.
Lin; Mitchell; Curtis; Anderson; Carlson; McFadden; Acuna; Hood; Binder
1998-09-04
The magnetometer and electron reflectometer experiment on the Lunar Prospector spacecraft has obtained maps of lunar crustal magnetic fields and observed the interaction between the solar wind and regions of strong crustal magnetic fields at high selenographic latitude (30 degreesS to 80 degreesS) and low ( approximately 100 kilometers) altitude. Electron reflection maps of the regions antipodal to the Imbrium and Serenitatis impact basins, extending to 80 degreesS latitude, show that crustal magnetic fields fill most of the antipodal zones of those basins. This finding provides further evidence for the hypothesis that basin-forming impacts result in magnetization of the lunar crust at their antipodes. The crustal magnetic fields of the Imbrium antipode region are strong enough to deflect the solar wind and form a miniature (100 to several hundred kilometers across) magnetosphere, magnetosheath, and bow shock system.
Unusual Enhancement of Magnetization by Pressure in the Antiferro-Quadrupole-Ordered Phase in CeB6
NASA Astrophysics Data System (ADS)
Ikeda, Suguru; Sera, Masafumi; Hane, Shingo; Uwatoko, Yoshiya; Kosaka, Masashi; Kunii, Satoru
2007-06-01
The effect of pressure on CeB6 was investigated by the measurement of the magnetization (M) under pressure, and we obtained the following results. The effect of pressure on M in phase I is very small. By applying pressure, TQ is enhanced, but TN and the critical field from the antiferromagnetic (AFM) phase III to the antiferro-quadrupole (AFQ) phase II (HcIII--II) are suppressed, as previously reported. The magnetization curve in phase III shows the characteristic shoulder at H˜ HcIII--II/2 at ambient pressure. This shoulder becomes much more pronounced by applying pressure. Both HcIII--II and the magnetic field, where a shoulder is seen in the magnetization curve in phase III, are largely suppressed by pressure. In phase II, the M-T curve at a low magnetic field exhibits an unusual concave temperature dependence below TQ down to TN. Thus, we found that the lower the magnetic field, the larger the enhancement of M in both phases III and II. To clarify the origin of the unusual pressure effect of M, we performed a mean-field calculation for the 4-sublattice model using the experimental results of dTQ/dP>0 and dTN/dP<0 and assuming the positive pressure dependence of the Txyz-antiferro-octupole (AFO) interaction. The characteristic features of the pressure effect of M obtained by the experiments could be reproduced well by the mean-field calculation. We found that the origin of the characteristic effect of pressure on CeB6 is the change in the subtle balance between the AFM interaction and the magnetic field-induced-effective FM interaction induced by the coexistence of the Oxy-AFQ and Txyz-AFO interactions under pressure.
NASA Astrophysics Data System (ADS)
Shepley, Philippa M.; Tunnicliffe, Harry; Shahbazi, Kowsar; Burnell, Gavin; Moore, Thomas A.
2018-04-01
We study the magnetic properties of perpendicularly magnetized Pt/Co/Ir thin films and investigate the domain-wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultrathin films. Measurements of the Co layer thickness dependence of saturation magnetization, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e., DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain-wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain-wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter α , we find that both α and the velocity scaling parameter v0 change as a function of in-plane bias field.
Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.
Udalov, O G; Beloborodov, I S
2017-05-04
We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.
Pulsating Magnetic Reconnection Driven by Three-Dimensional Flux-Rope Interactions.
Gekelman, W; De Haas, T; Daughton, W; Van Compernolle, B; Intrator, T; Vincena, S
2016-06-10
The dynamics of magnetic reconnection is investigated in a laboratory experiment consisting of two magnetic flux ropes, with currents slightly above the threshold for the kink instability. The evolution features periodic bursts of magnetic reconnection. To diagnose this complex evolution, volumetric three-dimensional data were acquired for both the magnetic and electric fields, allowing key field-line mapping quantities to be directly evaluated for the first time with experimental data. The ropes interact by rotating about each other and periodically bouncing at the kink frequency. During each reconnection event, the formation of a quasiseparatrix layer (QSL) is observed in the magnetic field between the flux ropes. Furthermore, a clear correlation is demonstrated between the quasiseparatrix layer and enhanced values of the quasipotential computed by integrating the parallel electric field along magnetic field lines. These results provide clear evidence that field lines passing through the quasiseparatrix layer are undergoing reconnection and give a direct measure of the nonlinear reconnection rate. The measurements suggest that the parallel electric field within the QSL is supported predominantly by electron pressure; however, resistivity may play a role.
Heredia, Alejandro; Colín-García, María; Puig, Teresa Pi I; Alba-Aldave, Leticia; Meléndez, Adriana; Cruz-Castañeda, Jorge A; Basiuk, Vladimir A; Ramos-Bernal, Sergio; Mendoza, Alicia Negrón
2017-12-01
Ionizing radiation may have played a relevant role in chemical reactions for prebiotic biomolecule formation on ancient Earth. Environmental conditions such as the presence of water and magnetic fields were possibly relevant in the formation of organic compounds such as amino acids. ATR-FTIR, Raman, EPR and X-ray spectroscopies provide valuable information about molecular organization of different glycine polymorphs under static magnetic fields. γ-glycine polymorph formation increases in irradiated samples interacting with static magnetic fields. The increase in γ-glycine polymorph agrees with the computer simulations. The AM1 semi-empirical simulations show a change in the catalyst behavior and dipole moment values in α and γ-glycine interaction with the static magnetic field. The simulated crystal lattice energy in α-glycine is also affected by the free radicals under the magnetic field, which decreases its stability. Therefore, solid α and γ-glycine containing free radicals under static magnetic fields might have affected the prebiotic scenario on ancient Earth by causing the oligomerization of glycine in prebiotic reactions. Copyright © 2017 Elsevier B.V. All rights reserved.
A broadband gyrotron backward-wave oscillator with tapered interaction structure and magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G. D.; Chang, P. C.; Chiang, W. Y.
2015-11-15
The gyro-monotron and gyrotron backward-wave oscillator (gyro-BWO) are the two oscillator versions of gyrotrons. While serving different functions, they are also radically different in the RF field formation mechanisms. The gyro-monotron RF field profile is essentially fixed by the resonant interaction structure, while the gyro-BWO possesses an extra degree of freedom in that the axial RF field profile is self-determined by the beam-wave interaction in a waveguide structure. The present study examines ways to utilize the latter feature for bandwidth broadening with a tapered magnetic field, while also employing a tapered waveguide to enhance the interaction efficiency. We begin withmore » a mode competition analysis, which suggests the theoretical feasibility of broadband frequency tuning in single-mode operation. It is then shown in theory that, by controlling the RF field profile with an up- or down-tapered magnetic field, the gyro-BWO is capable of efficient operation with a much improved tunable bandwidth.« less
Magnetic-field control of electric polarization in coupled spin chains with three-site interactions
NASA Astrophysics Data System (ADS)
Sznajd, Jozef
2018-06-01
The linear perturbation renormalization group (LPRG) is used to study coupled X Y chains with Dzyaloshinskii-Moriya (DM) and three-spin interactions in a magnetic field. Starting with a minimal model exhibiting the magnetoelectric effect, a spin-1/2 X Y chain with nearest, next-nearest (J2x) , and DM (D1y) interactions in a magnetic field, the recursion relations for all effective interactions generated by the LPRG transformation are found. The evaluation of these relations allows us to analyze, among others, the influence of J2x,D1y , three-spin (SixSi+1 ySi+2 z-SiySi+1 xSi+2 z ), and interchain interactions on the thermodynamic properties. The field and temperature dependences of the polarization, specific heat, and correlation functions are found. It is shown that an interchain coupling triggers a phase transition indicated by the divergence of the renormalized coupling parameters.
NASA Astrophysics Data System (ADS)
Singh, Y. P.; Badruddin
2007-02-01
Interplanetary manifestations of coronal mass ejections (CMEs) with specific plasma and field properties, called ``interplanetary magnetic clouds,'' have been observed in the heliosphere since the mid-1960s. Depending on their associated features, a set of observed magnetic clouds identified at 1 AU were grouped in four different classes using data over 4 decades: (1) interplanetary magnetic clouds moving with the ambient solar wind (MC structure), (2) magnetic clouds moving faster than the ambient solar wind and forming a shock/sheath structure of compressed plasma and field ahead of it (SMC structure), (3) magnetic clouds ``pushed'' by the high-speed streams from behind, forming an interaction region between the two (MIH structure), and (4) shock-associated magnetic clouds followed by high-speed streams (SMH structure). This classification into different groups led us to study the role, effect, and the relative importance of (1) closed field magnetic cloud structure with low field variance, (2) interplanetary shock and magnetically turbulent sheath region, (3) interaction region with large field variance, and (4) the high-speed solar wind stream coming from the open field regions, in modulating the galactic cosmic rays (GCRs). MC structures are responsible for transient decrease with fast recovery. SMC structures are responsible for fast decrease and slow recovery, MIH structures produce depression with slow decrease and slow recovery, and SMH structures are responsible for fast decrease with very slow recovery. Simultaneous variations of GCR intensity, solar plasma velocity, interplanetary magnetic field strength, and its variance led us to study the relative effectiveness of different structures as well as interplanetary plasma/field parameters. Possible role of the magnetic field, its topology, field turbulence, and the high-speed streams in influencing the amplitude and time profile of resulting decreases in GCR intensity have also been discussed.
First results from the Giotto magnetometer experiment during the P/Grigg-Skjellerup encounter
NASA Technical Reports Server (NTRS)
Neubauer, F. M.; Marschall, H.; Pohl, M.; Glassmeier, K.-H.; Musmann, G.; Mariani, F.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Wallis, M. K.
1993-01-01
The Giotto magnetic field experiment has provided the first magnetic field data on the interaction between the solar wind and a low gas production comet, P/Grigg-Skjellerup. Waves produced by ion pick-up instabilities have been observed throughout the interaction region with particularly simple waveforms at large distances and a rich phenomenology. A bow shock has been observed outbound only, whereas inbound a change in the character of the wave fields occurred without a jump in the magnetic field vector. The inbound and outbound crossings of the bow wave and shock at 19,900 km and 25,400 km from the nucleus, respectively, imply a neutral gas production rate of (6.7 +/- 1.6) x 10 exp 27/sec. A magnetic field cavity of the comet was not crossed. The pile-up region of 2500 km width along the trajectory showed a magnetic field peak of 88.7 nT.
Magnetic Field Observations near Mercury: Preliminary Results from Mariner 10.
Ness, N F; Behannon, K W; Lepping, R P; Whang, Y C; Schatten, K H
1974-07-12
Results are presented from a preliminary analysis of data obtained near Mercury on 29 March 1974 by the NASA-GSFC magnetic field experiment on Mariner 10. Rather unexpectedly, a very well-developed, detached bow shock wave, which develops as the super-Alfvénic solar wind interacts with the planet, has been observed. In addition, a magnetosphere-like region, with maximum field strength of 98 gammas at closest approach (704 kilometers altitude), has been observed, contained within boundaries similar to the terrestrial magnetopause. The obstacle deflecting the solar wind flow is global in size, but the origin of the enhanced magnetic field has not yet been uniquely established. The field may be intrinsic to the planet and distorted by interaction with the solar wind. It may also be associated with a complex induction process whereby the planetary interior-atmosphere-ionosphere interacts with the solar wind flow to generate the observed field by a dynamo action. The complete body of data favors the preliminary conclusion that Mercury has an intrinsic magnetic field. If this is correct, it represents a major scientific discovery in planetary magnetism and will have considerable impact on studies of the origin of the solar system.
Selective and directional actuation of elastomer films using chained magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Mishra, Sumeet R.; Dickey, Michael D.; Velev, Orlin D.; Tracy, Joseph B.
2016-01-01
We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model.We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model. Electronic supplementary information (ESI) available: Two videos for actuation while rotating the sample, experimental details of nanoparticle synthesis, polymer composite preparation, and alignment and bending studies, details of the theoretical model of actuation, and supplemental figures for understanding the behavior of rotating samples and results from modelling. See DOI: 10.1039/c5nr07410j
Chiral magnetic effect in the presence of electroweak interactions as a quasiclassical phenomenon
NASA Astrophysics Data System (ADS)
Dvornikov, Maxim; Semikoz, Victor B.
2018-03-01
We elaborate the quasiclassical approach to obtain the modified chiral magnetic effect (CME) in the case when the massless charged fermions interact with electromagnetic fields and the background matter by the electroweak forces. The derivation of the anomalous current along the external magnetic field involves the study of the energy density evolution of chiral particles in parallel electric and magnetic fields. We consider both the particle acceleration by the external electric field and the contribution of the Adler anomaly. The condition of the validity of this method for the derivation of the CME is formulated. We obtain the expression for the electric current along the external magnetic field, which appears to coincide with our previous results based on the purely quantum approach. Our results are compared with the findings of other authors.
Magnetic Fields in Interacting Binaries
NASA Astrophysics Data System (ADS)
Briggs, G.; Ferrario, L.; Tout, C. A.; Wickramasinghe, D. T.
2018-01-01
Wickramasinghe et al. (2014) and Briggs et al. (2015) have proposed that the strong magnetic fields observed in some single white dwarfs (MWDs) are formed by an α—Ω dynamo driven by differential rotation when two stars, the more massive one with a degenerate core, merge during common envelope (CE) evolution (Ferrario et al., 2015b). We synthesise a population of binaries to investigate if fields in the magnetic cataclysmic variables (MCVs) may also originate during stellar interaction in the CE phase.
Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; ...
2015-04-01
Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca
Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less
Interplanetary magnetic field control of the Mars bow shock: Evidence for Venuslike interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, T.L.; Schwingenschuh, K.; Lichtenegger, H.
1991-07-01
The Mars bow shock location and shape have been determined by examining the PHOBOS spacecraft magnetometer data. Observations show that the position of the terminator bow shock varies with interplanetary magnetic field orientation in the same way as at Venus. The shock is farthest from Mars in the direction of the interplanetary electric field, consistent with the idea that mass loading plays an important role in the solar wind interaction with Mars. The authors also find that the shock cross section at the terminator plane is asymmetric and is controlled by the interplanetary magnetic field as expected from the asymmetricmore » propagation velocity of the fast magnetosonic wave. Comparing with earlier mission data, they show that the Mars shock location varies with solar activity. The shock is farther from Mars during solar maximum. Thus the solar wind interaction with Mars appears to be Venuslike, with a magnetic moment too small to affect significantly the solar wind interaction.« less
NASA Astrophysics Data System (ADS)
Vernisse, Y.; Riousset, J. A.; Motschmann, U.; Glassmeier, K.-H.
2018-03-01
This study addresses the issue of the electromagnetic interactions between a stellar wind and planetary magnetospheres with various dipole field strengths by means of hybrid simulations. Focus is placed on the configuration where the upstream plasma magnetic field is parallel to the planetary magnetic moment (also called "Southward-IMF" configuration), leading to anti-parallel magnetic fields in the dayside interaction region. Each type of plasma interaction is characterized by means of currents flowing in the interaction region. Reconnection triggered in the tail in such configuration is shown to affect significantly the structure of the magnetotail at early stages. On the dayside, only the magnetopause current is observable for moderate planetary dipole field amplitude, while both bow-shock and magnetotail currents are identifiable downtail from the terminator. Strong differences in term of temperature for ions are particularly noticeable in the magnetosheath and in the magnetotail, when the present results are compared with our previous study, which focused on "Northward-IMF" configuration.
Ultrafast optical modification of exchange interactions in iron oxides
Mikhaylovskiy, R.V.; Hendry, E.; Secchi, A.; Mentink, J.H.; Eckstein, M.; Wu, A.; Pisarev, R.V.; Kruglyak, V.V.; Katsnelson, M.I.; Rasing, Th.; Kimel, A.V.
2015-01-01
Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 103 Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm−2 acts as a pulsed effective magnetic field of 0.01 Tesla. PMID:26373688
Ultrafast optical modification of exchange interactions in iron oxides.
Mikhaylovskiy, R V; Hendry, E; Secchi, A; Mentink, J H; Eckstein, M; Wu, A; Pisarev, R V; Kruglyak, V V; Katsnelson, M I; Rasing, Th; Kimel, A V
2015-09-16
Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 10(3) Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm(-2) acts as a pulsed effective magnetic field of 0.01 Tesla.
Strain-induced intervortex interaction and vortex lattices in tetragonal superconductors
Lin, Shi -Zeng; Kogan, Vladimir G.
2017-02-22
In superconductors with strong coupling between superconductivity and elasticity manifested in a strong dependence of transition temperature on pressure, there is an additional contribution to intervortex interactions due to the strain field generated by vortices. When vortex lines are along the c axis of a tetragonal crystal, a square vortex lattice (VL) is favored at low vortex densities, because the vortex-induced strains contribution to the intervortex interactions is long range. At intermediate magnetic fields, the triangular lattice is stabilized. Furthermore, the triangular lattice evolves to the square lattice upon increasing magnetic field, and eventually the system locks to the squaremore » structure. We argue, however, that as magnetic field approaches the upper critical field H c2 the elastic intervortex interactions disappear faster than the standard London interactions, so that VL should return to the triangular structure. Our results are compared to VLs observed in the heavy fermion superconductor CeCoIn 5.« less
NASA Astrophysics Data System (ADS)
Kivotides, Demosthenes
2018-03-01
The interactions between vortex tubes and magnetic-flux rings in incompressible magnetohydrodynamics are investigated at high kinetic and magnetic Reynolds numbers, and over a wide range of the interaction parameter. The latter is a measure of the turnover time of the large-scale fluid motions in units of the magnetic damping time, or of the strength of the Lorentz force in units of the inertial force. The small interaction parameter results, which are related to kinematic turbulent dynamo studies, indicate the evolution of magnetic rings into flattened spirals wrapped around the vortex tubes. This process is also observed at intermediate interaction parameter values, only now the Lorentz force creates new vortical structures at the magnetic spiral edges, which have a striking solenoid vortex-line structure, and endow the flattened magnetic-spiral surfaces with a curvature. At high interaction parameter values, the decisive physical factor is Lorentz force effects. The latter create two (adjacent to the magnetic ring) vortex rings that reconnect with the vortex tube by forming an intriguing, serpentinelike, vortex-line structure, and generate, in turn, two new magnetic rings, adjacent to the initial one. In this regime, the morphologies of the vorticity and magnetic field structures are similar. The effects of these structures on kinetic and magnetic energy spectra, as well as on the direction of energy transfer between flow and magnetic fields, are also indicated.
Propulsion and Levitation with a Large Electrodynamic Wheel
NASA Astrophysics Data System (ADS)
Gaul, Nathan; Lane, Hannah
We constructed an electrodynamic wheel using a motorized bicycle wheel with a radius of 12 inches and 36 one-inch cube magnets attached to the rim of the wheel. The radial magnetic field on the outside of the wheel was maximized by arranging the magnets into a series of Halbach arrays which amplify the field on one side of the array and reduce it on the other side. Rotating the wheel produces a rapidly oscillating magnetic field. When a conductive metal ``track'' is placed in this area of strong magnetic flux, eddy currents are produced in the track. These eddy currents create magnetic fields that interact with the magnetic fields from the electrodynamic wheel. The interaction of the magnetic fields produces lift and drag forces on the track which were measured with force gauges. Measurements were taken at a variety of wheel speeds, and the results were compared to the theoretical prediction that there should be a linear relationship between the lift and drag forces with increasing wheel speed. Partial levitation was achieved with the current electrodynamic wheel. In the future, the wheel will be upgraded to include 72 magnets rather than 36 magnets. This will double the frequency at which the magnetic field oscillates, increasing the magnetic flux. Electrodynamic wheels have applications to the transportation industry, since multiple electrodynamic wheels could be used on a vehicle to produce a lift and propulsion force over a conductive track.
Performance of high power S-band klystrons focused with permanent magnet
NASA Astrophysics Data System (ADS)
Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.
1987-02-01
Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 percent of the longitudinal field in the entire RF interaction region of the klystron.
Magnetic properties of magnetic bilayer Kekulene structure: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Jabar, A.; Masrour, R.
2018-06-01
In the present work, we have studied the magnetic properties of magnetic bilayer Kekulene structure with mixed spin-5/2 and spin-2 Ising model using Monte Carlo study. The magnetic phase diagrams of mixed spins Ising model have been given. The thermal total, partial magnetization and magnetic susceptibilities of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure are obtained. The transition temperature has been deduced. The effect of crystal field and exchange interactions on the this bilayers has been studied. The partial and total magnetic hysteresis cycles of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure have been given. The superparamagnetism behavior is observed in magnetic bilayer Kekulene structure. The magnetic coercive field decreases with increasing the exchange interactions between σ-σ and temperatures values and increases with increasing the absolute value of exchange interactions between σ-S. The multiple hysteresis behavior appears.
Dynamic control of spin states in interacting magnetic elements
Jain, Shikha; Novosad, Valentyn
2014-10-07
A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.
Laser-induced polarization of a quantum spin system in the steady-state regime
NASA Astrophysics Data System (ADS)
Zvyagin, A. A.
2016-05-01
The effect of the circularly polarized laser field on quantum spin systems in the steady-state regime, in which relaxation plays the central role, has been studied. The dynamical mean-field-like theory predicts several general results for the behavior of the time-average magnetization caused by the laser field. The induced magnetization oscillates with the frequency of the laser field (while Rabi-like oscillations, which modulate the latter in the dynamical regime, are damped by the relaxation in the steady-state regime). At high frequencies, that magnetization is determined by the value to which the relaxation process is directed. At low frequencies the slope of that magnetization as a function of the frequency is determined by the strength of the laser field. The anisotropy determines the resonance behavior of the time-averaged magnetization in both the ferromagnetic and antiferromagnetic cases with nonzero magnetic anisotropy. Nonlinear effects (in the magnitude of the laser field) have been considered. The effect of the laser field on quantum spin systems is maximal in resonance, where the time-averaged magnetization, caused by the laser field, is changed essentially. Out of resonance the changes in the magnetization are relatively small. The resonance effect is caused by the nonzero magnetic anisotropy. The resonance frequency is small (proportional to the anisotropy value) for spin systems with ferromagnetic interactions and enhanced by exchange interactions in the spin systems with antiferromagnetic couplings. We show that it is worthwhile to study the laser-field-induced magnetization of quantum spin systems caused by the high-frequency laser field in the steady-state regime in "easy-axis" antiferromagnetic spin systems (e.g., in Ising-like antiferromagnetic spin-chain materials). The effects of the Dzyaloshinskii-Moriya interaction and the spin-frustration couplings (in the case of the zigzag spin chain) have been analyzed.
NASA Astrophysics Data System (ADS)
Ishida, Takekazu; Yoshida, Masaaki; Nakata, Shin'ichiro; Koyama, Tomio
2002-10-01
It is considerably exciting to explore the novel vortex physics in multiply connected superconductors. We prepare triangular microhole lattice on Pb film (TriMHoLP) by evaporation of a type-I superconductor Pb upon a capillary plate (6-μm hole and 7.5-μm pitch) in vacuum. We measure the magnetization of TriMHoLP in the RSO mode under low fields (| H|⩽4.7 G). The polarity of magnetization peaks is identical against the field reversal. The magnetization curves as a function of temperature taken in a field-cooling mode of RSO are always positive irrelevant to the field polarity. We show that a vortex-vortex interaction is not always repulsive in a low- κ superconductor. We consider that a spontaneous magnetization and an anomalous matching effect near Tc are relevant to the attractive interaction between vortices.
Models And Experiments Of Laminar Diffusion Flames In Non-Uniform Magnetic Fields
NASA Technical Reports Server (NTRS)
Baker, J.; Varagani, R.; Saito, K.
2003-01-01
Non-uniform magnetic fields affect laminar diffusion flames as a result of the paramagnetic and diamagnetic properties of the products and reactants. Paramagnetism is the weak attraction to a magnetic field a material exhibits as a result of permanent magnetic dipole moments in the atoms of the material. Diamagnetism is the weak repulsion to a magnetic field exhibited by a material due to the lack of permanent magnetic dipole moments in the atoms of a material. The forces associated with paramagnetic and diamagnetism are several orders of magnitude less than the forces associated with the more familiar ferromagnetism. A typical example of a paramagnetic gas is oxygen while hydrocarbon fuels and products of combustion are almost always diamagnetic. The fact that magnets can affect flame behavior has been recognized for more than one hundred years. Early speculation was that such behavior was due to the magnetic interaction with the ionized gases associated with a flame. Using a scaling analysis, it was later shown that for laminar diffusion flames the magnetic field/ionized gas interaction was insignificant to the paramagnetic and diamagnetic influences. In this effort, the focus has been on examining laminar diffusion slot flames in the presence of non-uniform upward decreasing magnetic fields produced using permanent magnets. The principal reason for choosing slot flames was mathematical models of such flames show an explicit dependence on gravitational body forces, in the buoyancy-controlled regime, and an applied magnetic field would also impose a body force. In addition, the behavior of such flames was more easily visualized while maintaining the symmetry of the two-dimensional problem whereas it would have been impossible to obtain a symmetric magnetic field around a circular flame and still visually record the flame height and shape along the burner axis. The motivation for choosing permanent magnets to produce the magnetic fields was the assumption that space-related technologies based on the knowledge gained during this investigation would more likely involve permanent magnets as opposed to electromagnets. While no analysis has been done here to quantify the impact that an electric field, associated with an electromagnetic, would have relative to the paramagnetic and diamagnetic interactions, by using permanent magnets this potential effect was completely eliminated and thus paramagnetic and diamagnetic effects were isolated.
Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum
NASA Astrophysics Data System (ADS)
Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun
2018-04-01
The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 104 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10-9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10-14 for a pendulum dipole less than 10-9 A m2. The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ˜ 10-14.
Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum.
Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun
2018-04-01
The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 10 4 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10 -9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10 -14 for a pendulum dipole less than 10 -9 A m 2 . The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ∼ 10 -14 .
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Burlaga, L. F.; Osherovich, V. A.; Richardson, I. G.; Freeman, M. P.; Lepping, R. P.; Lazarus, A. J.
1993-01-01
High time resolution interplanetary magnetic field and plasma measurements of an interplanetary magnetic cloud and its interaction with the earth's magnetosphere on January 14/15, 1988 are interpreted and discussed. It is argued that the data are consistent with the theoretical model of magnetic clouds as flux ropes of local straight cylindrical geometry. The data also suggest that this cloud is aligned with its axis in the ecliptic plane and pointing in the east-west direction. Evidence consisting of the intensity and directional distribution of energetic particle in the magnetic cloud argues in favor of the connectedness of the magnetic field lines to the sun's surface. The intensities of about 0.5 MeV ions is rapidly enhanced and the particles stream in a collimated beam along the magnetic field preferentially from the west of the sun. The particles travel form a flare site along the cloud magnetic field lines, which are thus presumably still attached to the sun.
Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions.
Schumaker, W; Nakanii, N; McGuffey, C; Zulick, C; Chyvkov, V; Dollar, F; Habara, H; Kalintchenko, G; Maksimchuk, A; Tanaka, K A; Thomas, A G R; Yanovsky, V; Krushelnick, K
2013-01-04
Using electron bunches generated by laser wakefield acceleration as a probe, the temporal evolution of magnetic fields generated by a 4 × 10(19) W/cm(2) ultrashort (30 fs) laser pulse focused on solid density targets is studied experimentally. Magnetic field strengths of order B(0) ~ 10(4) T are observed expanding at close to the speed of light from the interaction point of a high-contrast laser pulse with a 10-μm-thick aluminum foil to a maximum diameter of ~1 mm. The field dynamics are shown to agree with particle-in-cell simulations.
Okamoto, Naoya; Yoshimatsu, Katsunori; Schneider, Kai; Farge, Marie
2014-03-01
Small-scale anisotropic intermittency is examined in three-dimensional incompressible magnetohydrodynamic turbulence subjected to a uniformly imposed magnetic field. Orthonormal wavelet analyses are applied to direct numerical simulation data at moderate Reynolds number and for different interaction parameters. The magnetic Reynolds number is sufficiently low such that the quasistatic approximation can be applied. Scale-dependent statistical measures are introduced to quantify anisotropy in terms of the flow components, either parallel or perpendicular to the imposed magnetic field, and in terms of the different directions. Moreover, the flow intermittency is shown to increase with increasing values of the interaction parameter, which is reflected in strongly growing flatness values when the scale decreases. The scale-dependent anisotropy of energy is found to be independent of scale for all considered values of the interaction parameter. The strength of the imposed magnetic field does amplify the anisotropy of the flow.
Chen, Jun-Ru; Ke, Shyue-Chu
2018-05-09
The environmental magnetic field is beneficial to migratory bird navigation through the radical-pair mechanism. One of the continuing challenges in understanding how magnetic fields may perturb biological processes is that only a very few field-sensitive examples have been explored despite the prevalence of radical pairs in enzymatic reactions. We show that the reaction of adenosylcobalamin- and pyridoxal-5'-phosphate-dependent lysine 5,6-aminomutase proceeds via radical-pair intermediates and is magnetic field dependent. The 5'-deoxyadenosyl radical from adenosylcobalamin abstracts a C5(H) from the substrate to yield a {cob(ii)alamin - substrate} radical pair wherein the large spin-spin interaction (2J = 8000 gauss) locks the radical pair in a triplet state, as evidenced by electron paramagnetic resonance spectroscopy. Application of an external magnetic field in the range of 6500 to 8500 gauss triggers intersystem crossing to the singlet {cob(ii)alamin - substrate} radical-pair state. Spin-conserved H back-transfer from deoxyadenosine to the substrate radical yields a singlet {cob(ii)alamin-5'-deoxyadenosyl} radical pair. Spin-selective recombination to adenosylcobalamin decreased the enzyme catalytic efficiency kcat/Km by 16% at 7600 gauss. As a mechanistic probe, observation of magnetic field effects successfully demonstrates the presence of a kinetically significant radical pair in this enzyme. The study of a pronounced high-field level-crossing characteristic through an immobilized radical pair with a constant exchange interaction deepens our understanding of how a magnetic field may interact with an enzyme.
Calculation of exchange interaction for modified Gaussian coupled quantum dots
NASA Astrophysics Data System (ADS)
Khordad, R.
2017-08-01
A system of two laterally coupled quantum dots with modified Gaussian potential has been considered. Each quantum dot has an electron under electric and magnetic field. The quantum dots have been considered as hydrogen-like atoms. The physical picture has translated into the Heisenberg spin Hamiltonian. The Schrödinger equation using finite element method has been numerically solved. The exchange energy factor has been calculated as a functions of electric field, magnetic field, and the separation distance between the centers of the dots ( d). According to the results, it is found that there is the transition from anti-ferromagnetic to ferromagnetic for constant electric field. Also, the transition occurs from ferromagnetic to anti-ferromagnetic for constant magnetic field (B>1 T). With decreasing the distance between the centers of the dots and increasing magnetic field, the transition occurs from anti-ferromagnetic to ferromagnetic. It is found that a switching of exchange energy factor is presented without canceling the interactions of the electric and magnetic fields on the system.
Emptying Dirac valleys in bismuth using high magnetic fields
Zhu, Zengwei; Wang, Jinhua; Zuo, Huakun; ...
2017-05-19
The Fermi surface of elemental bismuth consists of three small rotationally equivalent electron pockets, offering a valley degree of freedom to charge carriers. A relatively small magnetic field can confine electrons to their lowest Landau level. This is the quantum limit attained in other dilute metals upon application of sufficiently strong magnetic field. Here in this paper we report on the observation of another threshold magnetic field never encountered before in any other solid. Above this field, B empty, one or two valleys become totally empty. Drying up a Fermi sea by magnetic field in the Brillouin zone leads tomore » a manyfold enhancement in electric conductance. We trace the origin of the large drop in magnetoresistance across B empty to transfer of carriers between valleys with highly anisotropic mobilities. The non-interacting picture of electrons with field-dependent mobility explains most results but the Coulomb interaction may play a role in shaping the fine details.« less
INTERACTION OF TWO FILAMENT CHANNELS OF DIFFERENT CHIRALITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Navin Chandra; Magara, Tetsuya; Moon, Yong-Jae
2016-07-10
We present observations of the interactions between the two filament channels of different chiralities and associated dynamics that occurred during 2014 April 18–20. While two flux ropes of different helicity with parallel axial magnetic fields can only undergo a bounce interaction when they are brought together, the observations at first glance show that the heated plasma is moving from one filament channel to the other. The SDO /AIA 171 Å observations and the potential-field source-surface magnetic field extrapolation reveal the presence of a fan-spine magnetic configuration over the filament channels with a null point located above them. Three different eventsmore » of filament activations, partial eruptions, and associated filament channel interactions have been observed. The activation initiated in one filament channel seems to propagate along the neighboring filament channel. We believe that the activation and partial eruption of the filaments brings the field lines of flux ropes containing them closer to the null point and triggers the magnetic reconnection between them and the fan-spine magnetic configuration. As a result, the hot plasma moves along the outer spine line toward the remote point. Utilizing the present observations, for the first time we have discussed how two different-chirality filament channels can interact and show interrelation.« less
Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli.
Gartzke, Joachim; Lange, Klaus
2002-11-01
The interaction of weak electromagnetic fields (EMF) with living cells is a most important but still unresolved biophysical problem. For this interaction, thermal and other types of noise appear to cause severe restrictions in the action of weak signals on relevant components of the cell. A recently presented general concept of regulation of ion and substrate pathways through microvilli provides a possible theoretical basis for the comprehension of physiological effects of even extremely low magnetic fields. The actin-based core of microfilaments in microvilli is proposed to represent a cellular interaction site for magnetic fields. Both the central role of F-actin in Ca2+ signaling and its polyelectrolyte nature eliciting specific ion conduction properties render the microvillar actin filament bundle an ideal interaction site for magnetic and electric fields. Ion channels at the tip of microvilli are connected with the cytoplasm by a bundle of microfilaments forming a diffusion barrier system. Because of its polyelectrolyte nature, the microfilament core of microvilli allows Ca2+ entry into the cytoplasm via nonlinear cable-like cation conduction through arrays of condensed ion clouds. The interaction of ion clouds with periodically applied EMFs and field-induced cation pumping through the cascade of potential barriers on the F-actin polyelectrolyte follows well-known physical principles of ion-magnetic field (MF) interaction and signal discrimination as described by the stochastic resonance and Brownian motor hypotheses. The proposed interaction mechanism is in accord with our present knowledge about Ca2+ signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energies within specific amplitude and frequency windows. Microvillar F-actin bundles shielded by a lipid membrane appear to function like electronic integration devices for signal-to-noise enhancement; the influence of coherent signals on cation transduction is amplified, whereas that of random noise is reduced.
Drag and Lift Forces Between a Rotating Conductive Sphere and a Cylindrical Magnet
NASA Technical Reports Server (NTRS)
Nurge, Mark A.; Youngquist, Robert C.
2017-01-01
Modeling the interaction between a non-uniform magnetic field and a rotating conductive object allows study of the drag force which is used in applications such as eddy current braking and linear induction motors as well as the transition to a repulsive force that is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two step mathematics process is developed to find a closed form solution in terms of only two eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.
Drag and lift forces between a rotating conductive sphere and a cylindrical magnet
NASA Astrophysics Data System (ADS)
Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.
2018-06-01
Modeling the interaction between a non-uniform magnetic field and a rotating conductive object provides insight into the drag force, which is used in applications such as eddy current braking and linear induction motors, as well as the transition to a repulsive force, which is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two-step mathematical process is developed to find a closed-form solution in terms of only three eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate-level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.
Crystal-field effects in the kagome antiferromagnet Ho3Ru4Al12
NASA Astrophysics Data System (ADS)
Gorbunov, D. I.; Nomura, T.; Ishii, I.; Henriques, M. S.; Andreev, A. V.; Doerr, M.; Stöter, T.; Suzuki, T.; Zherlitsyn, S.; Wosnitza, J.
2018-05-01
In Ho3Ru4Al12 , the Ho atoms form a distorted kagome lattice. We performed magnetization, magnetic-susceptibility, specific-heat, and ultrasound measurements on a single crystal. We find that the magnetic and magnetoelastic properties of Ho3Ru4Al12 result from an interplay between geometric frustration and crystal-electric-field (CEF) effects. The Ho atoms order antiferromagnetically at TN=4.5 K with reduced magnetic moments. In applied field, the magnetization shows anomalies that can be explained by CEF level crossings. We propose a CEF level scheme for which the ground-state doublet and the first two excited singlets at about 2.7 K form a quasiquartet. Indirect interlevel transitions allow for a quadrupolar interaction. This interaction explains well changes in the elastic shear modulus C44 as a function of temperature and magnetic field.
Spin-controlled negative magnetoresistance resulting from exchange interactions
NASA Astrophysics Data System (ADS)
Agrinskaya, N. V.; Kozub, V. I.; Mikhailin, N. Yu.; Shamshur, D. V.
2017-04-01
We studied conductivity of AlGaAs-GaAs quantum well structures (where centers of the wells were doped by Be) at temperatures higher than 4 K in magnetic fields up 10 T. Throughout all the temperature region considered the conductivity demonstrated activated behavior. At moderate magnetic fields 0.1 T < H < 1 T, we observed negative isotropic magnetoresistance, which was linear in magnetic field while for magnetic field normal with respect to the plane of the wells the magnetoresistance was positive at H > 2T. To the best of our knowledge, it was the first observation of linear negative magnetoresistance, which would be isotropic with respect to the direction of magnetic field. While the isotropic character of magnetoresistance apparently evidences role of spins, the existing theoretical considerations concerning spin effects in conductance fail to explain our experimental results. We believe that such a behavior can be attributed to spin effects supported by exchange interactions between localized states.
Fractal structure of the interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Klein, L. W.
1985-01-01
Under some conditions, time series of the interplanetary magnetic field strength and components have the properties of fractal curves. Magnetic field measurements made near 8.5 AU by Voyager 2 from June 5 to August 24, 1981 were self-similar over time scales from approximately 20 sec to approximately 3 x 100,000 sec, and the fractal dimension of the time series of the strength and components of the magnetic field was D = 5/3, corresponding to a power spectrum P(f) approximately f sup -5/3. Since the Kolmogorov spectrum for homogeneous, isotropic, stationary turbulence is also f sup -5/3, the Voyager 2 measurements are consistent with the observation of an inertial range of turbulence extending over approximately four decades in frequency. Interaction regions probably contributed most of the power in this interval. As an example, one interaction region is discussed in which the magnetic field had a fractal dimension D = 5/3.
Colloidal layers in magnetic fields and under shear flow
NASA Astrophysics Data System (ADS)
Löwen, H.; Messina, R.; Hoffmann, N.; Likos, C. N.; Eisenmann, C.; Keim, P.; Gasser, U.; Maret, G.; Goldberg, R.; Palberg, T.
2005-11-01
The behaviour of colloidal mono- and bilayers in external magnetic fields and under shear is discussed and recent progress is summarized. Superparamagnetic colloidal particles form monolayers when they are confined to a air-water interface in a hanging water droplet. An external magnetic field allows us to tune the strength of the mutual dipole-dipole interaction between the colloids and the anisotropy of the interaction can be controlled by the tilt angle of the magnetic field relative to the surface normal of the air-water interface. For sufficiently large magnetic field strength crystalline monolayers are found. The role of fluctuations in these two-dimensional crystals is discussed. Furthermore, clustering phenomena in binary mixtures of superparamagnetic particles forming fluid monolayers are predicted. Finally, we address sheared colloidal bilayers and find that the orientation of confined colloidal crystals can be tailored by a previously applied shear direction.
Questions Students Ask: Why Not Bend Light with an Electric Field?
ERIC Educational Resources Information Center
Van Heuvelen, Alan
1983-01-01
In response to a question, "Why not use a magnetic or electric field to deflect light?," reviews the relation between electric charge and electric/magnetic fields. Discusses the Faraday effect, (describing matter as an intermediary in the rotation of the place of polarization) and other apparent interactions of light with electric/magnetic fields.…
Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang
2017-01-01
Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.
NASA Astrophysics Data System (ADS)
Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd
2015-01-01
The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.
Magnetic flux ropes at the high-latitude magnetopause
NASA Technical Reports Server (NTRS)
Berchem, Jean; Raeder, Joachim; Ashour-Abdalla, Maha
1995-01-01
We examine the consequences of magnetic reconnection at the high-latitude magnetopause using a three-dimensional global magnetohydrodynamic simulation of the solar wind interaction with the Earth's magnetosphere. Magnetic field lines from the simulation reveal the formation of magnetic flux ropes during periods with northward interplanetary magnetic field. These flux ropes result from multiple reconnection processes between the lobes field lines and draped magnetosheath field lines that are convected around the flank of the magnetosphere. The flux ropes identified in the simulation are consistent with features observed in the magnetic field measured by Hawkeye-1 during some high-latitude magnetopause crossings.
Label-Free Alignment of Nonmagnetic Particles in a Small Uniform Magnetic Field.
Wang, Zhaomeng; Wang, Ying; Wu, Rui Ge; Wang, Z P; Ramanujan, R V
2018-01-01
Label-free manipulation of biological entities can minimize damage, increase viability and improve efficiency of subsequent analysis. Understanding the mechanism of interaction between magnetic and nonmagnetic particles in an inverse ferrofluid can provide a mechanism of label-free manipulation of such entities in a uniform magnetic field. The magnetic force, induced by relative magnetic susceptibility difference between nonmagnetic particles and surrounding magnetic particles as well as particle-particle interaction were studied. Label-free alignment of nonmagnetic particles can be achieved by higher magnetic field strength (Ba), smaller particle spacing (R), larger particle size (rp1), and higher relative magnetic permeability difference between particle and the surrounding fluid (Rμr). Rμr can be used to predict the direction of the magnetic force between both magnetic and nonmagnetic particles. A sandwich structure, containing alternate layers of magnetic and nonmagnetic particle chains, was studied. This work can be used for manipulation of nonmagnetic particles in lab-on-a-chip applications.
Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques
NASA Astrophysics Data System (ADS)
Büttner, Felix; Lemesh, Ivan; Schneider, Michael; Pfau, Bastian; Günther, Christian M.; Hessing, Piet; Geilhufe, Jan; Caretta, Lucas; Engel, Dieter; Krüger, Benjamin; Viefhaus, Jens; Eisebitt, Stefan; Beach, Geoffrey S. D.
2017-11-01
Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii-Moriya interaction (DMI). The last favours homochiral skyrmions, whose motion is driven by spin-orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin-orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect. This leads to torques that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field. Although spin-orbit torques led to domain nucleation in continuous films and to stochastic nucleation of skyrmions in magnetic tracks, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs.
On the He-McKellar-Wilkens phase of an electric dipole
NASA Astrophysics Data System (ADS)
Rai, Yam P.; Rai, Dhurba
2017-08-01
The He-McKellar-Wilkens (HMW) phase of an electric dipole moving in a static magnetic field is derived by explicitly considering the interaction between the currents associated with the moving dipole and the magnetic vector potential. Conditions for the observation of the HMW phase in different field configurations are investigated. A practical setup is proposed that provides essentially a radial magnetic field with inverse radial dependence for the observation of the HMW phase with magnetic field alone. Possible magnetic field control of exciton current in an open ring setup is discussed.
NASA Astrophysics Data System (ADS)
Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander
2016-04-01
Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm-3 to 1015 cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the cyclotron mechanism of generation by non-equilibrium energetic electrons in dense plasma. The reported study was funded by RFBR, according to the research project No. 16-32-60056 mol_a_dk.
Koga, D; Chian, A C-L; Miranda, R A; Rempel, E L
2007-04-01
The link between phase coherence and non-Gaussian statistics is investigated using magnetic field data observed in the solar wind turbulence near the Earth's bow shock. The phase coherence index Cphi, which characterizes the degree of phase correlation (i.e., nonlinear wave-wave interactions) among scales, displays a behavior similar to kurtosis and reflects a departure from Gaussianity in the probability density functions of magnetic field fluctuations. This demonstrates that nonlinear interactions among scales are the origin of intermittency in the magnetic field turbulence.
Evidence for the interaction of large scale magnetic structures in solar flares
NASA Technical Reports Server (NTRS)
Mandrini, C. H.; Demoulin, P.; Henoux, J. C.; Machado, M. E.
1991-01-01
By modeling the observed vertical magnetic field of an active region AR 2372 by the potential field of an ensemble of magnetic dipoles, the likely location of the separatrices, surfaces that separates cells of different field line connectivities, and of the separator which is the intersection of the separatrices, is derived. Four of the five off-band H-alpha kernels of a flare that occurred less than 20 minutes before obtaining the magnetogram are shown to have taken place near or at the separatrices. These H-alpha kernels are connected by field lines that pass near the separator. This indicates that the flare may have resulted from the interaction in the separator region of large scale magnetic structures.
Magnetic Light-Matter Interactions in a Photonic Crystal Nanocavity
NASA Astrophysics Data System (ADS)
Burresi, M.; Kampfrath, T.; van Oosten, D.; Prangsma, J. C.; Song, B. S.; Noda, S.; Kuipers, L.
2010-09-01
We study the magnetic coupling between a metal-coated near-field probe and a photonic crystal nanocavity. The resonance of the nanocavity shifts to shorter wavelengths when the ringlike apex of the probe is above an antinode of the magnetic field of the cavity. We show that this can be attributed to a magnetic light-matter interaction and is in fact a manifestation of Lenz’s law at optical frequencies. We use these measurements to determine the magnetic polarizability of the apex of the probe and find good agreement with theory. We discuss how this method could be applied to study the electric and magnetic polarizibilities of nano-objects.
NASA Astrophysics Data System (ADS)
Shahzad, Munir; Sengupta, Pinaki
2017-12-01
We investigate the necessary conditions for the emergence of complex, noncoplanar magnetic configurations in a Kondo lattice model with classical local moments on the geometrically frustrated Shastry-Sutherland lattice and their evolution in an external magnetic field. We demonstrate that topologically nontrivial spin textures, including a new canted flux state, with nonzero scalar chirality arise dynamically from realistic short-range interactions. Our results establish that a finite Dzyaloshinskii-Moriya (DM) interaction is necessary for the emergence of these novel magnetic states when the system is at half filling, for which the ground state is insulating. We identify the minimal set of DM vectors that are necessary for the stabilization of chiral magnetic phases. The noncoplanarity of such structures can be tuned continually by applying an external magnetic field. This is the first part in a series of two papers; in the following paper the effects of frustration, thermal fluctuations, and magnetic field on the emergence of novel noncollinear states at metallic filling of itinerant electrons are discussed. Our results are crucial in understanding the magnetic and electronic properties of the rare-earth tetraboride family of frustrated magnets with separate spin and charge degrees of freedom.
Phase transition studies of BiMnO3: Mean field theory approximations
NASA Astrophysics Data System (ADS)
Priya K. B, Lakshmi; Natesan, Baskaran
2015-06-01
We studied the phase transition and magneto-electric coupling effect of BiMnO3 by employing mean field theory approximations. To capture the ferromagnetic and ferroelectric transitions of BiMnO3, we construct an extended Ising model in a 2D square lattice, wherein, the magnetic (electric) interactions are described in terms of the direct interactions between the localized magnetic (electric dipole) moments of Mn ions with their nearest neighbors. To evaluate our model, we obtain magnetization, magnetic susceptibility and electric polarization using mean field approximation calculations. Our results reproduce both the ferromagnetic and the ferroelectric transitions, matching very well with the experimental reports. Furthermore, consistent with experimental observations, our mean field results suggest that there is indeed a coupling between the magnetic and electric ordering in BiMnO3.
The effect of external magnetic field on the Raman peaks in manganites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, A. K., E-mail: ajitsahu@seemantaengg.ac.in; Rout, G. C.
2014-04-24
We report here a microscopic theoretical model study exhibiting the effect of external magnetic field on the Raman excitation peaks in the CMR manganite system. The Hamiltonian consists of Jahn-Teller (J-T) distortion in e{sub g} band, the double exchange interaction and the Heisenberg spin-spin interaction. Further the phonons are coupled to e{sub g} band electrons, J-T distorted e{sub g} band and the double exchange interaction. The Raman spectral intensity is calculated from the imaginary part of the phonon Green function. The spectra exhibits three peaks besides a very weak high energy peak. The magnetic field effect on these peaks aremore » reported.« less
Oscillating dynamo in the presence of a fossil magnetic field - The solar cycle
NASA Technical Reports Server (NTRS)
Levy, E. H.; Boyer, D.
1982-01-01
Hydromagnetic dynamo generation of oscillating magnetic fields in the presence of an external, ambient magnetic field introduces a marked polarity asymmetry between the two halves of the magnetic cycle. The principle of oscillating dynamo interaction with external fields is developed, and a tentative application to the sun is described. In the sun a dipole moment associated with the stable fluid beneath the convection zone would produce an asymmetrical solar cycle.
NASA Astrophysics Data System (ADS)
Crooker, S. A.; Kelley, M. R.; Martinez, N.; Nie, W.; Mohite, A. D.; Smith, D. L.; Tretiak, S.; Ruden, P. P.
2014-03-01
Considerable attention in recent years has focused on the effects of applied magnetic fields on the conductance, photocurrent, electroluminescence (EL), and photoluminescence of nominally nonmagnetic organic semiconductor materials and devices. These magnetic field effects have proven useful in revealing the underlying physical mechanisms and relevant spin interactions that influence the electrical and optical properties in these organic systems (e.g., hyperfine coupling, exchange interactions, and spin-orbit coupling). Here we study the field-dependent properties of organic light-emitting diode (OLEDs) based on MTDATA/LiF/Bphen layered structures, in which exciplex recombination at the interface dominates the EL spectra. Small applied magnetic fields (~10 mT) are found to boost the net EL yield by up to 10%, due to a suppression of the mixing between singlet and triplet polaron pairs which, in turn, arises from hyperfine spin coupling of the polarons to the underlying nuclei of the host molecules. We discuss the dependence of these field-induced effects on the LiF barrier thickness, device bias, and on the orientation of the applied magnetic field, as well as the mechanisms responsible.
Magnetic information affects the stellar orientation of young bird migrants
NASA Astrophysics Data System (ADS)
Weindler, Peter; Wiltschko, Roswitha; Wiltschko, Wolfgang
1996-09-01
WHEN young birds leave on their first migration, they are guided by innate information about their direction of migration. It is generally assumed that this direction is represented twice, namely with respect to celestial rotation and with respect to the Earth's magnetic field1,2. The interactions between the two cue systems have been analysed by exposing hand-raised young birds during the premigratory period to cue-conflict situations, in which celestial rotation and the magnetic field provided different information. Celestial rotation altered the course with respect to the magnetic field3-7, whereas conflicting magnetic information did not seem to affect the course with respect to the stars8,9. Celestial information thus seemed to dominate over magnetic information. Here we report that the interaction between the two cue systems is far more complex than this. Celestial rotation alone seems to provide only a tendency to move away from its centre (towards geographical south), which is then modified by information from the magnetic field to establish the distinctive, population-specific migratory direction.
REVIEWS OF TOPICAL PROBLEMS: Magnetospheres of planets with an intrinsic magnetic field
NASA Astrophysics Data System (ADS)
Belenkaya, Elena S.
2009-08-01
This review presents modern views on the physics of magnetospheres of Solar System planets having an intrinsic magnetic field, and on the structure of magnetospheric magnetic fields. Magnetic fields are generated in the interiors of Mercury, Earth, Jupiter, Saturn, Uranus, and Neptune via the dynamo mechanism. These fields are so strong that they serve as obstacles for the plasma stream of the solar wind. A magnetosphere surrounding a planet forms as the result of interaction between the solar wind and the planetary magnetic field. The dynamics of magnetospheres are primary enforced by solar wind variations. Each magnetosphere is unique. The review considers common and individual sources of magnetic fields and the properties of planetary magnetospheres.
Dynamics of aging magnetic clouds. [interacted with solar wind
NASA Technical Reports Server (NTRS)
Osherovich, V. A.; Farrugia, C. J.; Burlaga, L. F.
1993-01-01
The dynamics of radially expanding magnetic clouds is rigorously analyzed within the framework of ideal MHD. The cloud is modelled as a cylindrically symmetric magnetic flux rope. In the force balance we include the gas pressure gradient and the Lorentz force. Interaction with the ambient solar wind due to expansion of the magnetic cloud is represented by a drag force proportional to the bulk velocity. We consider the self-similar expansion of a polytrope, and reduce the problem to an ordinary nonlinear differential equation for the evolution function. Analyzing the asymptotic behavior of the evolution function, we formulate theoretical expectations for the long-term behavior of cloud parameters. We focus on the temporal evolution of (1) the magnetic field strength; (2) the twist of the field lines; (3) the asymmetry of the total field profile; and (4) the bulk flow speed. We present data from two magnetic clouds observed at 1 AU and 2 AU, respectively, and find good agreement with theoretical expectations. For a peak magnetic field strength at 1 AU of 25 nT and a polytropic index of 0.5, we find that a magnetic cloud can be distinguished from the background interplanetary field up to a distance of about 5 AU. Taking larger magnetic fields and bigger polytropic indices this distance can double.
Relaxation of the chiral imbalance and the generation of magnetic fields in magnetars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvornikov, M. S., E-mail: maxdvo@izmiran.ru
2016-12-15
The model for the generation of magnetic fields in a neutron star, based on the magnetic field instability caused by the electroweak interaction between electrons and nucleons, is developed. Using the methods of the quantum field theory, the helicity flip rate of electrons in their scattering off protons in dense matter of a neutron star is calculated. The influence of the electroweak interaction between electrons and background nucleons on the process of the helicity flip is studied. The kinetic equation for the evolution of the chiral imbalance is derived. The obtained results are applied for the description of the magneticmore » fields evolution in magnetars.« less
ERIC Educational Resources Information Center
Saglam, Murat
2010-01-01
This study aimed to investigate the models that co-existed in students' cognitive structure to explain the interactions between electric charges and uniform magnetic fields. The sample consisted of 129 first-year civil engineering, geology and geophysics students from a large state university in western Turkey. The students answered five…
Interaction of Solar Wind and Magnetic Anomalies - Modelling from Moon to Mars
NASA Astrophysics Data System (ADS)
Alho, Markku; Kallio, Esa; Wedlund, Cyril Simon; Wurz, Peter
2015-04-01
The crustal magnetic anomalies on both the Moon and Mars strongly affect the local plasma environment. On the Moon, the impinging solar wind is decelerated or deflected when interacting with the magnetic field anomaly, visible in the lunar surface as energetic neutral atom (ENA) emissions or as reflected protons, and may play a part in the space weathering of the lunar soil. At Mars, the crustal magnetic fields have been shown to be associated with, e.g., enhanced electron scale heights and modified convection of ionospheric plasma, resulting in the plasma environment being dominated by crustal magnetic fields up to altitudes of 400km. Our previous modelling work suggested that Hall currents are a dominant feature in a Moon-like magnetic anomaly interaction at scales at or below the proton inertial length. In this work we study the solar wind interaction with magnetic anomalies and compare the plasma environments of a Moon-like anomaly with a Mars-like anomaly by introducing an ionosphere and an exosphere to probe the transition from an atmosphere-less anomaly interaction to an ionospheric one. We utilize a 3D hybrid plasma model, in which ions are modelled as particles while electrons form a charge-neutralizing massless fluid. The hybrid model gives a full description of ion kinetics and associated plasma phenomena at the simulation region ranging from instabilities to possible reconnection. The model can thus be used to interpret both in-situ particle and field observations and remotely-sensed ENA emissions. A self-consistent ionosphere package for the model is additionally in development.
Nature of magnetization and lateral spin-orbit interaction in gated semiconductor nanowires.
Karlsson, H; Yakimenko, I I; Berggren, K-F
2018-05-31
Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin-orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree-Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.
Nature of magnetization and lateral spin–orbit interaction in gated semiconductor nanowires
NASA Astrophysics Data System (ADS)
Karlsson, H.; Yakimenko, I. I.; Berggren, K.-F.
2018-05-01
Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin–orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree–Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.
Can We Predict CME Deflections Based on Solar Magnetic Field Configuration Alone?
NASA Astrophysics Data System (ADS)
Kay, C.; Opher, M.; Evans, R. M.
2013-12-01
Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including predicting CME deflections close to the Sun and through interplanetary space. Deflections of CMEs occur due to variations in the background magnetic field or solar wind speed, magnetic reconnection, and interactions with other CMEs. Using our newly developed model of CME deflections due to gradients in the background solar magnetic field, ForeCAT (Kay et al. 2013), we explore the questions: (a) do all simulated CMEs ultimately deflect to the minimum in the background solar magnetic field? (b) does the majority of the deflection occur in the lower corona below 4 Rs? ForeCAT does not include temporal variations in the magnetic field of active regions (ARs), spatial variations in the background solar wind speed, magnetic reconnection, or interactions with other CMEs. Therefore we focus on the effects of the steady state solar magnetic field. We explore two different Carrington Rotations (CRs): CR 2029 (April-May 2005) and CR 2077 (November-December 2008). Little is known about how the density and magnetic field fall with distance in the lower corona. We consider four density models derived from observations (Chen 1996, Mann et al. 2003, Guhathakurta et al. 2006, Leblanc et al. 1996) and two magnetic field models (PFSS and a scaled model). ForeCAT includes drag resulting from both CME propagation and deflection through the background solar wind. We vary the drag coefficient to explore the effect of drag on the deflection at 1 AU.
Ring current Atmosphere interactions Model with Self-Consistent Magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania; Jeffery, Christopher; Welling, Daniel
The Ring current Atmosphere interactions Model with Self-Consistent magnetic field (B) is a unique code that combines a kinetic model of ring current plasma with a three dimensional force-balanced model of the terrestrial magnetic field. The kinetic portion, RAM, solves the kinetic equation to yield the bounce-averaged distribution function as a function of azimuth, radial distance, energy and pitch angle for three ion species (H+, He+, and O+) and, optionally, electrons. The domain is a circle in the Solar-Magnetic (SM) equatorial plane with a radial span of 2 to 6.5 RE. It has an energy range of approximately 100 eVmore » to 500 KeV. The 3-D force balanced magnetic field model, SCB, balances the JxB force with the divergence of the general pressure tensor to calculate the magnetic field configuration within its domain. The domain ranges from near the Earth’s surface, where the field is assumed dipolar, to the shell created by field lines passing through the SM equatorial plane at a radial distance of 6.5 RE. The two codes work in tandem, with RAM providing anisotropic pressure to SCB and SCB returning the self-consistent magnetic field through which RAM plasma is advected.« less
Multi-fluid MHD simulations of Europa's interaction with Jupiter's magnetosphere
NASA Astrophysics Data System (ADS)
Harris, C. D. K.; Jia, X.; Slavin, J. A.; Rubin, M.; Toth, G.
2017-12-01
Several distinct physical processes generate the interaction between Europa, the smallest of Jupiter's Galilean moons, and Jupiter's magnetosphere. The 10˚ tilt of Jupiter's dipole causes time varying magnetic fields at Europa's orbit which interact with Europa's subsurface conducting ocean to induce magnetic perturbations around the moon. Jovian plasma interacts with Europa's icy surface to sputter off neutral particles, forming a tenuous exosphere which is then ionized by impact and photo-ionization to form an ionosphere. As jovian plasma flows towards the moon, mass-loading and interaction with the ionosphere slow the flow, producing magnetic perturbations that propagate along the field lines to form an Alfvén wing current system, which connects Europa to its bright footprint in Jupiter's ionosphere. The Galileo mission has shown that the plasma interaction generates significant magnetic perturbations that obscure signatures of the induced field from the subsurface ocean. Modeling the plasma-related perturbations is critical to interpreting the magnetic signatures of Europa's induction field, and therefore to magnetic sounding of its interior, a central goal of the upcoming Europa Clipper mission. Here we model the Europa-Jupiter interaction with multi-fluid magnetohydrodynamic simulations to understand quantitatively how these physical processes affect the plasma and magnetic environment around the moon. Our model separately tracks the bulk motion of three different ion fluids (exospheric O2+, O+, and magnetospheric O+), and includes sources and losses of mass, momentum and energy to each of the ion fluids due to ionization, charge-exchange and recombination. We include calculations of the electron temperature allowing for field-aligned electron heat conduction, and Hall effects due to differential ion-electron motion. Compared to previous simulations, this multi-fluid model allows us to more accurately determine the precipitation flux of jovian plasma to Europa's surface, which has significant implications for space weathering at the moon. Including the Hall effect in our simulations enables us to determine the effects of separate ion-electron bulk motion throughout the interaction, and our simulations reveal noticeable asymmetries and small-scale features in the Alfvén wings.
Influence of dipolar interactions on the angular-dependent coercivity of nickel nanocylinders
NASA Astrophysics Data System (ADS)
Bender, P.; Krämer, F.; Tschöpe, A.; Birringer, R.
2015-04-01
In this study the influence of dipolar interactions on the orientation-dependent magnetization behavior of an ensemble of single-domain nickel nanorods was investigated. The rods were synthesized by electrodeposition of nickel into porous alumina templates. Some of the rods were released from the oxide and embedded in gelatine hydrogels (ferrogel) at a sufficiently large average interparticle distance to suppress dipolar interactions. By comparing the orientation-dependent hystereses of the two ensembles in the template and the gel-matrix it could be shown that the dipolar interactions in the template considerably alter the functional form of the angular-dependent coercivity. Analysis of the magnetization curves for an angle of 60° between the rod-axes and the field revealed a significantly reduced coercivity of the template compared to the ferrogel, which could be directly attributed to a stray field induced magnetization reversal of a steadily increasing number of rods with increasing field strength. The magnetization curve of the template could be approximated by a weighted linear superposition of the hysteresis branches of the ferrogel. The magnetization reversal process of the rods was investigated by analyzing the angular-dependent coercivity of the non-interacting nanorods. Comparison of the functional form with analytical models and micromagnetic simulations emphasized the assumption of a localized magnetization reversal. Additionally, it could be shown that the nucleation field of rods with diameters in the range 18-29 nm tends to increase with increasing diameter.
Binary stellar winds. [flow and magnetic field geometry
NASA Technical Reports Server (NTRS)
Siscoe, G. L.; Heinemann, M. A.
1974-01-01
Stellar winds from a binary star pair will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters is discussed.
Mapping magnetoelastic response of terfenol-D ring structure
NASA Astrophysics Data System (ADS)
Youssef, George; Newacheck, Scott; Lopez, Mario
2017-05-01
The magneto-elastic response of a Terfenol-D (Tb.3Dy.7Fe1.92) ring has been experimentally investigated and analyzed. Ring structures give rise to complex behavior based on the interaction of the magnetic field with the material, which is further compounded with anisotropies associated with mechanical and magnetic properties. Discrete strain measurements were used to construct magnetostriction maps, which are used to elucidate the non-uniformity of the strain distribution due to geometrical factors and magnetic field interactions, namely, magnetic shielding and stable onion state in the ring structure.
Laser-induced extreme magnetic field in nanorod targets
NASA Astrophysics Data System (ADS)
Lécz, Zsolt; Andreev, Alexander
2018-03-01
The application of nano-structured target surfaces in laser-solid interaction has attracted significant attention in the last few years. Their ability to absorb significantly more laser energy promises a possible route for advancing the currently established laser ion acceleration concepts. However, it is crucial to have a better understanding of field evolution and electron dynamics during laser-matter interactions before the employment of such exotic targets. This paper focuses on the magnetic field generation in nano-forest targets consisting of parallel nanorods grown on plane surfaces. A general scaling law for the self-generated quasi-static magnetic field amplitude is given and it is shown that amplitudes up to 1 MT field are achievable with current technology. Analytical results are supported by three-dimensional particle-in-cell simulations. Non-parallel arrangements of nanorods has also been considered which result in the generation of donut-shaped azimuthal magnetic fields in a larger volume.
Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study
NASA Astrophysics Data System (ADS)
Masrour, R.; Jabar, A.
2018-05-01
The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.
Görgülü, S; Ayyıldız, S; Gökçe, S; Ozen, T
2014-01-01
Objectives: To evaluate the heating and magnetic field interactions of fixed orthodontic appliances with different wires and ligaments in a 3-T MRI environment and to estimate the safety of these orthodontic materials. Methods: 40 non-carious extracted human maxillary teeth were embedded in polyvinyl chloride boxes, and orthodontic brackets were bonded. Nickel–titanium and stainless steel arch wires, and elastic and stainless steel ligaments were used to obtain four experimental groups in total. Specimens were evaluated at 3 T for radiofrequency heating and magnetic field interactions. Radiofrequency heating was evaluated by placing specimens in a cylindrical plastic container filled with isotonic solution and measuring changes in temperature after T1 weighted axial sequencing and after completion of all sequences. Translational attraction and torque values of specimens were also evaluated. One-way ANOVA test was used to compare continuous variables of temperature change. Significance was set at p < 0.05. Results: None of the groups exhibited excessive heating (highest temperature change: <3.04 °C), with the maximum increase in temperature observed at the end of the T1 weighted axial sequence. Magnetic field interactions changed depending on the material used. Although the brackets presented minor interactions that would not cause movement in situ, nickel–titanium and stainless steel wires presented great interactions that may pose a risk for the patient. Conclusions: The temperature changes of the specimens were considered to be within acceptable ranges. With regard to magnetic field interactions, brackets can be considered “MR safe”; however, it would be safe to replace the wires before MRI. PMID:24257741
NASA Astrophysics Data System (ADS)
Liu, Jie; Shi, Mengchao; Lu, Jiwu; Anantram, M. P.
2018-02-01
We analyze the impacts of the electric field on the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, and intrinsic ferromagnetism of the recently discovered two-dimensional ferromagnetic chromium tri-iodide (Cr I3 ) monolayer, by combining density functional theory and Monte Carlo simulations. By taking advantage of the counterbalancing effects of anisotropic symmetric exchange energy and antisymmetric exchange energy, it is shown that the intrinsic ferromagnetism can be manipulated by externally applied off-plane electric fields. The results quantitatively reveal the impacts of off-plane electric field on the lattice structure, magnetic anisotropy energy, symmetric and antisymmetric exchange energies, Curie temperature, magnetic hysteresis, and coercive field. The physical mechanism of all-electrical control of magnetism proposed here is useful for creating next-generation magnetic device technologies based on the recently discovered two-dimensional ferromagnetic crystals.
Critical exponents and universal magnetic behavior of noncentrosymmetric Fe0.6Co0.4Si.
Samatham, S Shanmukharao; Suresh, K G
2018-05-31
The critical magnetic properties of a non-centrosymmetric B20 cubic helimagnet Fe 0.6 Co 0.4 Si are investigated using magnetization isotherms. It belongs to the 3D-Heisenberg universality class with short range magnetic coupling as inferred from the self-consistent critical exponents [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] in combination with exchange interaction [Formula: see text]. Itinerant magnetic nature of the compound is realized by the Rhodes-Wholfarth analysis. Field-induced weak first (para[Formula: see text]helical) to second (para[Formula: see text]field-polarized) order transition is reported to occur at low critical field due to the weak spin-orbit coupling arising from the weak Dzyaloshinksii-Moriya interactions. Our study suggests the distinct phenomenological magnetic structures for Fe-based cubic magnets (Fe 1-x Co x Si and FeGe) and MnSi which cause contrasting physical properties.
Interaction of neutrons with layered magnetic media in oscillating magnetic field
NASA Astrophysics Data System (ADS)
Nikitenko, Yu. V.; Ignatovich, V. K.; Radu, F.
2011-06-01
New experimental possibilities of investigating layered magnetic structures in oscillating magnetic fields are discussed. Spin-flip and nonspin-flip neutron reflection and transmission probabilities show a frequency dependency near the magnetic neutron resonance condition. This allows to increase the precision of the static magnetic depth profile measurements of the magnetized matter. Moreover, this opens new possibilities of measuring the induction of the oscillating field inside the matter and determining the magnetic susceptibility of the oscillating magnetic field. Refraction of neutrons as they pass through a magnetic prism in the presence of an oscillating magnetic field is also investigated. A non-polarized neutron beam splits into eight spatially separated neutron beams, whose intensity and polarization depend on the strength and frequency of the oscillating field. Also, it is shown that the oscillating magnetic permeability of an angstrom-thick layer can be measured with a neutron wave resonator.
Why are living things sensitive to weak magnetic fields?
Liboff, Abraham R
2014-09-01
There is evidence for robust interactions of weak ELF magnetic fields with biological systems. Quite apart from the difficulties attending a proper physical basis for such interactions, an equally daunting question asks why these should even occur, given the apparent lack of comparable signals in the long-term electromagnetic environment. We suggest that the biological basis is likely to be found in the weak (∼50 nT) daily swing in the geomagnetic field that results from the solar tidal force on free electrons in the upper atmosphere, a remarkably constant effect exactly in phase with the solar diurnal change. Because this magnetic change is locked into the solar-derived everyday diurnal response in living things, one can argue that it acts as a surrogate for the solar variation, and therefore plays a role in chronobiological processes. This implies that weak magnetic field interactions may have a chronodisruptive basis, homologous to the more familiar effects on the biological clock arising from sleep deprivation, phase-shift employment and light at night. It is conceivable that the widespread sensitivity of biological systems to weak ELF magnetic fields is vestigially derived from this diurnal geomagnetic effect.
Fabrication and Test of an Optical Magnetic Mirror
NASA Technical Reports Server (NTRS)
Hagopian, John G.; Roman, Patrick A.; Shiri, Shahram; Wollack, Edward J.; Roy, Madhumita
2011-01-01
Traditional mirrors at optical wavelengths use thin metalized or dielectric layers of uniform thickness to approximate a perfect electric field boundary condition. The electron gas in such a mirror configuration oscillates in response to the incident photons and subsequently re-emits fields where the propagation and electric field vectors have been inverted and the phase of the incident magnetic field is preserved. We proposed fabrication of sub-wavelength-scale conductive structures that could be used to interact with light at a nano-scale and enable synthesis of the desired perfect magnetic-field boundary condition. In a magnetic mirror, the interaction of light with the nanowires, dielectric layer and ground plate, inverts the magnetic field vector resulting in a zero degree phase shift upon reflection. Geometries such as split ring resonators and sinusoidal conductive strips were shown to demonstrate magnetic mirror behavior in the microwave and then in the visible. Work to design, fabricate and test a magnetic mirror began in 2007 at the NASA Goddard Space Flight Center (GSFC) under an Internal Research and Development (IRAD) award Our initial nanowire geometry was sinusoidal but orthogonally asymmetric in spatial frequency, which allowed clear indications of its behavior by polarization. We report on the fabrication steps and testing of magnetic mirrors using a phase shifting interferometer and the first far-field imaging of an optical magnetic mirror.
A loop-gap resonator for chirality-sensitive nuclear magneto-electric resonance (NMER)
NASA Astrophysics Data System (ADS)
Garbacz, Piotr; Fischer, Peer; Krämer, Steffen
2016-09-01
Direct detection of molecular chirality is practically impossible by methods of standard nuclear magnetic resonance (NMR) that is based on interactions involving magnetic-dipole and magnetic-field operators. However, theoretical studies provide a possible direct probe of chirality by exploiting an enantiomer selective additional coupling involving magnetic-dipole, magnetic-field, and electric field operators. This offers a way for direct experimental detection of chirality by nuclear magneto-electric resonance (NMER). This method uses both resonant magnetic and electric radiofrequency (RF) fields. The weakness of the chiral interaction though requires a large electric RF field and a small transverse RF magnetic field over the sample volume, which is a non-trivial constraint. In this study, we present a detailed study of the NMER concept and a possible experimental realization based on a loop-gap resonator. For this original device, the basic principle and numerical studies as well as fabrication and measurements of the frequency dependence of the scattering parameter are reported. By simulating the NMER spin dynamics for our device and taking the 19F NMER signal of enantiomer-pure 1,1,1-trifluoropropan-2-ol, we predict a chirality induced NMER signal that accounts for 1%-5% of the standard achiral NMR signal.
The Action of a Magnetic Field on Water,
The effect of a low intensity magnetic field on water as a flotation medium with the enrichment of coal and dressing of copper sulfied ore is studied...magnetic field with flotation is expressed. The imposition of an external magnetic field disturbs the energy state of water, which leads to a change in...intermolecular interaction, stability of hydrogen bonds, deterioration in the wettability of rigid surfaces, and a change in the technological indices of flotation enrichment. (Author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korneev, Ph., E-mail: korneev@theor.mephi.ru; National Research Nuclear University “MEPhI”, 115409, Moscow; D'Humières, E.
A theoretical analysis for astrophysics-oriented laser-matter interaction experiments in the presence of a strong ambient magnetic field is presented. It is shown that the plasma collision in the ambient magnetic field implies significant perturbations in the electron density and magnetic field distribution. This transient stage is difficult to observe in astrophysical phenomena, but it could be investigated in laboratory experiments. Analytic models are presented, which are supported by particles-in-cell simulations.
Structural phase transitions in isotropic magnetic elastomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meilikhov, E. Z., E-mail: meilikhov@yandex.ru; Farzetdinova, R. M.
Magnetic elastomers represent a new type of materials that are “soft” matrices with “hard” magnetic granules embedded in them. The elastic forces of the matrix and the magnetic forces acting between granules are comparable in magnitude even under small deformations. As a result, these materials acquire a number of new properties; in particular, their mechanical and/or magnetic characteristics can depend strongly on the polymer matrix filling with magnetic particles and can change under the action of an external magnetic field, pressure, and temperature. To describe the properties of elastomers, we use a model in which the interaction of magnetic granulesmore » randomly arranged in space with one another is described in the dipole approximation by the distribution function of dipole fields, while their interaction with the matrix is described phenomenologically. A multitude of deformation, magnetic-field, and temperature effects that are described in this paper and are quite accessible to experimental observation arise within this model.« less
Neutron diffraction study of antiferromagnetic ErNi3Ga9 in magnetic fields
NASA Astrophysics Data System (ADS)
Ninomiya, Hiroki; Sato, Takaaki; Matsumoto, Yuji; Moyoshi, Taketo; Nakao, Akiko; Ohishi, Kazuki; Kousaka, Yusuke; Akimitsu, Jun; Inoue, Katsuya; Ohara, Shigeo
2018-05-01
We report specific heat, magnetization, magnetoresistance, and neutron diffraction measurements of single crystals of ErNi3Ga9. This compound crystalizes in a chiral structure with space group R 32 . The erbium ions form a two-dimensional honeycomb structure. ErNi3Ga9 displays antiferromagnetic order below 6.4 K. We determined that the magnetic structure is slightly amplitude-modulated as well as antiferromagnetic with q = (0 , 0 , 0.5) . The magnetic properties are described by an Ising-like model in which the magnetic moment is always along the c-axis owing to the large uniaxial anisotropy caused by the crystalline electric field effect in the low temperature region. When the magnetic field is applied along the c-axis, a metamagnetic transition is observed around 12 kOe at 2 K. ErNi3Ga9 possesses crystal chirality, but the antisymmetric magnetic interaction, the so-called Dzyaloshinskii-Moriya (DM) interaction, does not contribute to the magnetic structure, because the magnetic moments are parallel to the DM-vector.
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Poppe, A. R.; Lue, C.; Farrell, W. M.; McFadden, J. P.
2017-06-01
A statistical investigation of 5 years of observations from the two-probe Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission reveals that strong compressional interactions occur infrequently at high altitudes near the ecliptic but can form in a wide range of solar wind conditions and can occur up to two lunar radii downstream from the lunar limb. The compressional events, some of which may represent small-scale collisionless shocks ("limb shocks"), occur in both steady and variable interplanetary magnetic field (IMF) conditions, with those forming in steady IMF well organized by the location of lunar remanent crustal magnetization. The events observed by ARTEMIS have similarities to ion foreshock phenomena, and those observed in variable IMF conditions may result from either local lunar interactions or distant terrestrial foreshock interactions. Observed velocity deflections associated with compressional events are always outward from the lunar wake, regardless of location and solar wind conditions. However, events for which the observed velocity deflection is parallel to the upstream motional electric field form in distinctly different solar wind conditions and locations than events with antiparallel deflections. Consideration of the momentum transfer between incoming and reflected solar wind populations helps explain the observed characteristics of the different groups of events.
Influence of a repulsive vector coupling in magnetized quark matter
NASA Astrophysics Data System (ADS)
Denke, Robson Z.; Pinto, Marcus Benghi
2013-09-01
We consider two flavor magnetized quark matter in the presence of a repulsive vector coupling (GV) devoting special attention to the low temperature region of the phase diagram to show how this type of interaction counterbalances the effects produced by a strong magnetic field. The most important effects occur at intermediate and low temperatures affecting the location of the critical end point as well as the region of first order chiral transitions. When GV=0 the presence of high magnetic fields (eB≥10mπ2) increases the density coexistence region with respect to the case when B and GV are absent while a decrease of this region is observed at high GV values and vanishing magnetic fields. Another interesting aspect observed at the low temperature region is that the usual decrease of the coexistence chemical value (inverse magnetic catalysis) at GV=0 is highly affected by the presence of the vector interaction which acts in the opposite way. Our investigation also shows that the presence of a repulsive vector interaction enhances the de Haas-van Alphen oscillations which, for very low temperatures, take place at eB≲6mπ2. We observe that the presence of a magnetic field, together with a repulsive vector interaction, gives rise to a complex transition pattern since B favors the appearance of multiple solutions to the gap equation whereas GV turns some metastable solutions into stable ones allowing for a cascade of transitions to occur.
Phase transition studies of BiMnO{sub 3}: Mean field theory approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakshmi Priya, K. B.; Natesan, Baskaran, E-mail: nbaski@nitt.edu
We studied the phase transition and magneto-electric coupling effect of BiMnO{sub 3} by employing mean field theory approximations. To capture the ferromagnetic and ferroelectric transitions of BiMnO{sub 3}, we construct an extended Ising model in a 2D square lattice, wherein, the magnetic (electric) interactions are described in terms of the direct interactions between the localized magnetic (electric dipole) moments of Mn ions with their nearest neighbors. To evaluate our model, we obtain magnetization, magnetic susceptibility and electric polarization using mean field approximation calculations. Our results reproduce both the ferromagnetic and the ferroelectric transitions, matching very well with the experimental reports.more » Furthermore, consistent with experimental observations, our mean field results suggest that there is indeed a coupling between the magnetic and electric ordering in BiMnO{sub 3}.« less
Measurements of lunar magnetic field interaction with the solar wind.
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Snyder, C. W.; Clay, D. R.
1972-01-01
Study of the compression of the remanent lunar magnetic field by the solar wind, based on measurements of remanent magnetic fields at four Apollo landing sites and of the solar wind at two of these sites. Available data show that the remanent magnetic field at the lunar surface is compressed as much as 40% above its initial value by the solar wind, but the total remanent magnetic pressure is less than the stagnation pressure by a factor of six, implying that a local shock is not formed.
Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I
2013-03-28
The magnetic field effect on the fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is theoretically explored in the framework of Integral Encounter Theory. It is assumed that the excited fluorophore is equilibrated with the exciplex that reversibly dissociates into the radical-ion pair. The magnetic field sensitive stage is the spin conversion in the resulting geminate radical-ion pair, (1, 3)[D(+)...A(-)] that proceeds due to hyperfine interaction. We confirm our earlier conclusion (obtained with a rate description of spin conversion) that in the model with a single nucleus spin 1/2 the magnitude of the Magnetic Field Effect (MFE) also vanishes in the opposite limits of low and high dielectric permittivity of the solvent. Moreover, it is shown that MFE being positive at small hyperfine interaction A, first increases with A but approaching the maximum starts to decrease and even changes the sign.
Hong, Jongwoo; Kim, Sun-Je; Kim, Inki; Yun, Hansik; Mun, Sang-Eun; Rho, Junsuk; Lee, Byoungho
2018-05-14
It has been hard to achieve simultaneous plasmonic enhancement of nanoscale light-matter interactions in terms of both electric and magnetic manners with easily reproducible fabrication method and systematic theoretical design rule. In this paper, a novel concept of a flat nanofocusing device is proposed for simultaneously squeezing both electric and magnetic fields in deep-subwavelength volume (~λ 3 /538) in a large area. Based on the funneled unit cell structures and surface plasmon-assisted coherent interactions between them, the array of rectangular nanocavity connected to a tapered nanoantenna, plasmonic metasurface cavity, is constructed by periodic arrangement of the unit cell. The average enhancement factors of electric and magnetic field intensities reach about 60 and 22 in nanocavities, respectively. The proposed outstanding performance of the device is verified numerically and experimentally. We expect that this work would expand methodologies involving optical near-field manipulations in large areas and related potential applications including nanophotonic sensors, nonlinear responses, and quantum interactions.
Wave propagation characteristics of a magnetic granular chain
NASA Astrophysics Data System (ADS)
Leng, Dingxin; Liu, Guijie; Sun, Lingyu; Wang, Xiaojie
2017-10-01
We investigate the wave propagation characteristics of a horizontal alignment of magnetic grains under a non-uniform magnetic field. The magnetic force of each grain is obtained using Maxwell's principle. The contact interaction of grains is based on Hertz potential. The effects of magnetic field strength on the dynamic responses of a granular chain under strong, intermediate, and weak amplitudes of incident impulses in comparison with static precompression force are studied. Different wave propagation modes induced by the magnetic field are observed. The applied field strength demonstrably reinforces the granular-position-dependent behaviors of decreasing amplitude and increasing wave propagation velocity. The magnetic field-induced features of a magnetic granular chain have potential applications in adaptive structures for shock attenuation.
Magnetic levitation system for moving objects
Post, R.F.
1998-03-03
Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds. 7 figs.
Magnetic levitation system for moving objects
Post, Richard F.
1998-01-01
Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.
NASA Astrophysics Data System (ADS)
Deca, J.; Lapenta, G.; Divin, A. V.; Lembege, B.; Markidis, S.
2013-12-01
Unlike the Earth and Mercury, our Moon has no global magnetic field and is therefore not shielded from the impinging solar wind by a magnetosphere. However, lunar magnetic field measurements made by the Apollo missions provided direct evidence that the Moon has regions of small-scale crustal magnetic fields, ranging up to a few 100km in scale size with surface magnetic field strengths up to hundreds of nanoTeslas. More recently, the Lunar Prospector spacecraft has provided high-resolution observations allowing to construct magnetic field maps of the entire Moon, confirming the earlier results from Apollo, but also showing that the lunar plasma environment is much richer than earlier believed. Typically the small-scale magnetic fields are non-dipolar and rather tiny compared to the lunar radius and mainly clustered on the far side of the moon. Using iPic3D we present the first 3D fully kinetic and electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies. We study the behaviour of a dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD and hybrid simulations and spacecraft observations. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Second, the ability of iPic3D to resolve all plasma components (heavy ions, protons and electrons) allows to discuss in detail the electron physics leading to the highly non-adiabatic interactions expected as well as the implications for solar wind shielding of the lunar surface, depending on the scale size (solar wind protons typically have gyroradii larger than the magnetic anomaly scale size) and magnetic field strength. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement SWIFF (project 2633430, swiff.eu). Cut along the dipole axis of the lunar anomaly, showing the electron density structure.
Relationships of a growing magnetic flux region to flares
NASA Technical Reports Server (NTRS)
Martin, S. F.; Bentley, R. D.; Schadee, A.; Antalova, A.; Kucera, A.; Dezso, L.; Gesztelyi, L.; Harvey, K. L.; Jones, H.; Livi, S. H. B.
1984-01-01
The evolution of flare sites at the boundaries of major new and growing magnetic flux regions within complexes of active regions has been analyzed using H-alpha images. A spectrum of possible relationships of growing flux regions to flares is described. An 'intimate' interaction between old and new flux and flare sites occurs at the boundaries of their regions. Forced or 'intimidated' interaction involves new flux pushing older, lower flux density fields toward a neighboring old polarity inversion line, followed by the occurrence of a flare. In 'influential' interaction, magnetic lines of force over an old polarity inversion line reconnect to new emerging flux, and a flare occurs when the magnetic field overlying the filament becomes too weak to prevent its eruption. 'Inconsequential' interaction occurs when a new flux region is too small or has the wrong orientation for creating flare conditions. 'Incidental' interaction involves a flare occurring without any significant relationship to new flux regions.
Stream-Field Interactions in the Magnetic Accretor AO Piscium
NASA Astrophysics Data System (ADS)
Hellier, Coel; van Zyl, Liza
2005-06-01
UV spectra of the magnetic accretor AO Psc show absorption features for half the binary orbit. The absorption is unlike the wind-formed features often seen in similar stars. Instead, we attribute it to a fraction of the stream that overflows the impact with the accretion disk. Rapid velocity variations can be explained by changes in the trajectory of the stream depending on the orientation of the white dwarf's magnetic field. Hence, we are directly observing the interaction of an accretion stream with a rotating field. We compare this behavior to that seen in other intermediate polars and in SW Sex stars.
Zhu, Wei; Sheng, D. N.; Zhu, Jian -Xin
2017-08-14
Here, we study the magnetic field-driven metal-to-insulator transition in half-filled Hubbard model on the Bethe lattice, using the dynamical mean-field theory by solving the quantum impurity problem with density-matrix renormalization group algorithm. The method enables us to obtain a high-resolution spectral densities in the presence of a magnetic field. It is found that the Kondo resonance at the Fermi level splits at relatively high magnetic field: the spin-up and -down components move away from the Fermi level and finally form a spin-polarized band insulator. By calculating the magnetization and spin susceptibility, we clarify that an applied magnetic field drives amore » transition from a paramagnetic metallic phase to a band insulating phase. In the weak interaction regime, the nature of the transition is continuous and captured by the Stoner's description, while in the strong interaction regime the transition is very likely to be metamagnetic, evidenced by the hysteresis curve. Furthermore, we determine the phase boundary by tracking the kink in the magnetic susceptibility, and the steplike change of the entanglement entropy and the entanglement gap closing. Interestingly, the phase boundaries determined from these two different ways are largely consistent with each other.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Wei; Sheng, D. N.; Zhu, Jian -Xin
Here, we study the magnetic field-driven metal-to-insulator transition in half-filled Hubbard model on the Bethe lattice, using the dynamical mean-field theory by solving the quantum impurity problem with density-matrix renormalization group algorithm. The method enables us to obtain a high-resolution spectral densities in the presence of a magnetic field. It is found that the Kondo resonance at the Fermi level splits at relatively high magnetic field: the spin-up and -down components move away from the Fermi level and finally form a spin-polarized band insulator. By calculating the magnetization and spin susceptibility, we clarify that an applied magnetic field drives amore » transition from a paramagnetic metallic phase to a band insulating phase. In the weak interaction regime, the nature of the transition is continuous and captured by the Stoner's description, while in the strong interaction regime the transition is very likely to be metamagnetic, evidenced by the hysteresis curve. Furthermore, we determine the phase boundary by tracking the kink in the magnetic susceptibility, and the steplike change of the entanglement entropy and the entanglement gap closing. Interestingly, the phase boundaries determined from these two different ways are largely consistent with each other.« less
NASA Astrophysics Data System (ADS)
Liu, Cheng-Cheng; Xu, Shuai; He, Juan; Ye, Liu
2015-10-01
We analytically investigate the thermal entanglement of three-mixed-spin (1/2, 1, 1/2) XXZ model with the DM interaction under an external magnetic field B. Two different cases are considered: one subsystem (1/2, 1/2) consists of two spin-1/2 fermions and the other subsystem (1/2, 1) contains a spin-1/2 fermion and a spin-1 boson. It is shown that the DM interaction parameter D, the external magnetic field strength B and coupling constant J have different effects on Fermi and mixed Fermi-Bose systems. All of the factors mentioned above can be utilized to control entanglement switch of any two particles in mixed spins model.
Quantum rings in magnetic fields and spin current generation.
Cini, Michele; Bellucci, Stefano
2014-04-09
We propose three different mechanisms for pumping spin-polarized currents in a ballistic circuit using a time-dependent magnetic field acting on an asymmetrically connected quantum ring at half filling. The first mechanism works thanks to a rotating magnetic field and produces an alternating current with a partial spin polarization. The second mechanism works by rotating the ring in a constant field; like the former case, it produces an alternating charge current, but the spin current is dc. Both methods do not require a spin-orbit interaction to achieve the polarized current, but the rotating ring could be used to measure the spin-orbit interaction in the ring using characteristic oscillations. On the other hand, the last mechanism that we propose depends on the spin-orbit interaction in an essential way, and requires a time-dependent magnetic field in the plane of the ring. This arrangement can be designed to pump a purely spin current. The absence of a charge current is demonstrated analytically. Moreover, a simple formula for the current is derived and compared with the numerical results.
Magnetic and magnetocaloric properties in Gd1-yPryNi2 compounds
NASA Astrophysics Data System (ADS)
Alho, B. P.; Lopes, P. H. O.; Ribeiro, P. O.; Alvarenga, T. S. T.; Nóbrega, E. P.; de Sousa, V. S. R.; Carvalho, A. M. G.; Caldas, A.; Tedesco, J. C. G.; Coelho, A. A.; de Oliveira, N. A.; von Ranke, P. J.
2018-03-01
In this work, we report the magnetic and magnetocaloric properties of the Gd1-yPryNi2 compounds from both experimental and theoretical points of view. It is worth noting that this series shows a variety of magnetic arrangements depending on the Pr concentration, including paramagnetism, ferrimagnetism and ferromagnetism. Our experimental work consists of the systematic analysis of the magnetic properties of the compounds with y = 0.0, 0.25, 0.5, 0.75 and 1.0, which includes temperature and magnetic field dependence of the magnetization, heat capacity and isothermal entropy change obtained by isothermal magnetization curves. Also, we developed a model Hamiltonian, which takes into account the exchange interactions among Gd-Gd, Gd-Pr and Pr-Pr ions, the Zeeman interaction for both ions and the crystalline electrical field interaction for the Pr ions. We systematically investigated the magnetic properties of the series and obtained a good agreement when compared with our experimental data.
Integrated Idl Tool For 3d Modeling And Imaging Data Analysis
NASA Astrophysics Data System (ADS)
Nita, Gelu M.; Fleishman, G. D.; Gary, D. E.; Kuznetsov, A. A.; Kontar, E. P.
2012-05-01
Addressing many key problems in solar physics requires detailed analysis of non-simultaneous imaging data obtained in various wavelength domains with different spatial resolution and their comparison with each other supplied by advanced 3D physical models. To facilitate achieving this goal, we have undertaken a major enhancement and improvements of IDL-based simulation tools developed earlier for modeling microwave and X-ray emission. The greatly enhanced object-based architecture provides interactive graphic user interface that allows the user i) to import photospheric magnetic field maps and perform magnetic field extrapolations to almost instantly generate 3D magnetic field models, ii) to investigate the magnetic topology of these models by interactively creating magnetic field lines and associated magnetic field tubes, iii) to populate them with user-defined nonuniform thermal plasma and anisotropic nonuniform nonthermal electron distributions; and iv) to calculate the spatial and spectral properties of radio and X-ray emission. The application integrates DLL and Shared Libraries containing fast gyrosynchrotron emission codes developed in FORTRAN and C++, soft and hard X-ray codes developed in IDL, and a potential field extrapolation DLL produced based on original FORTRAN code developed by V. Abramenko and V. Yurchishin. The interactive interface allows users to add any user-defined IDL or external callable radiation code, as well as user-defined magnetic field extrapolation routines. To illustrate the tool capabilities, we present a step-by-step live computation of microwave and X-ray images from realistic magnetic structures obtained from a magnetic field extrapolation preceding a real event, and compare them with the actual imaging data produced by NORH and RHESSI instruments. This work was supported in part by NSF grants AGS-0961867, AST-0908344, AGS-0969761, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology, by a UK STFC rolling grant, the Leverhulme Trust, UK, and by the European Commission through the Radiosun and HESPE Networks.
The effects of a magnetic field on planetary migration in laminar and turbulent discs
NASA Astrophysics Data System (ADS)
Comins, Megan L.; Romanova, Marina M.; Koldoba, Alexander V.; Ustyugova, Galina V.; Blinova, Alisa A.; Lovelace, Richard V. E.
2016-07-01
We investigate the migration of low-mass planets (1, 5 and 20 M⊕) in accretion discs threaded with a magnetic field using 2D magnetohydrodynamic code in polar coordinates. We observed that, in the case of a strong azimuthal magnetic field where the plasma parameter is β ˜ 2-4, density waves at the magnetic resonances exert a positive torque on the planet and may slow down or reverse its migration. However, when the magnetic field is weaker (I.e. the plasma parameter β is relatively large), then non-axisymmetric density waves excited by the planet lead to growth of the radial component of the field and, subsequently, to development of the magnetorotational instability, such that the disc becomes turbulent. Migration in a turbulent disc is stochastic, and the migration direction may change as such. To understand migration in a turbulent disc, both the interaction between a planet and individual turbulent cells, as well as the interaction between a planet and ordered density waves, have been investigated.
Interaction of rotating helical magnetic field with the HIST spherical torus plasmas
NASA Astrophysics Data System (ADS)
Kikuchi, Yusuke; Sugahara, Masato; Yamada, Satoshi; Yoshikawa, Tatsuya; Fukumoto, Naoyuki; Nagata, Masayoshi
2006-10-01
The physical mechanism of current drive by co-axial helicity injection (CHI) has been experimentally investigated on both spheromak and spherical torus (ST) configurations on the HIST device [1]. It has been observed that the n = 1 kink mode rotates toroidally with a frequency of 10-20 kHz in the ExB direction. It seems that the induced toroidal current by CHI strongly relates with the observed rotating kink mode. On the other hand, it is well known that MHD instabilities can be controlled or even suppressed by an externally applied helical magnetic field in tokamak devices. Therefore, we have started to install two sets of external helical coils in order to produce a rotating helical magnetic field on HIST. Mode structures of the generated rotating helical magnetic field and preliminary experimental results of the interaction of the rotating helical magnetic field with the HIST plasmas will be shown in the conference. [1] M. Nagata, et al., Physics of Plasmas 10, 2932 (2003)
Rashba Interaction and Local Magnetic Moments in a Graphene-BN Heterostructure Intercalated with Au
NASA Astrophysics Data System (ADS)
O'Farrell, E. C. T.; Tan, J. Y.; Yeo, Y.; Koon, G. K. W.; Ã-zyilmaz, B.; Watanabe, K.; Taniguchi, T.
2016-08-01
We intercalate a van der Waals heterostructure of graphene and hexagonal boron nitride with Au, by encapsulation, and show that the Au at the interface is two dimensional. Charge transfer upon current annealing indicates the redistribution of the Au and induces splitting of the graphene band structure. The effect of an in-plane magnetic field confirms that the splitting is due to spin splitting and that the spin polarization is in the plane, characteristic of a Rashba interaction with a magnitude of approximately 25 meV. Consistent with the presence of an intrinsic interfacial electric field we show that the splitting can be enhanced by an applied displacement field in dual gated samples. A giant negative magnetoresistance, up to 75%, and a field induced anomalous Hall effect at magnetic fields <1 T are observed. These demonstrate that the hybridized Au has a magnetic moment and suggests the proximity to the formation of a collective magnetic phase. These effects persist close to room temperature.
NASA Astrophysics Data System (ADS)
Singh Ghotra, Harjit; Kant, Niti
2018-06-01
We examine the electron dynamics during laser-cluster interaction. In addition to the electrostatic field of an individual cluster and laser field, we consider an external transverse wiggler magnetic field, which plays a pivotal role in enhancing the electron acceleration. Single-particle simulation has been presented with a short pulse linearly polarized as well as circularly polarized laser pulses for electron acceleration in a cluster. The persisting Coulomb field allows the electron to absorb energy from the laser field. The stochastically heated electron finds a weak electric field at the edge of the cluster from where it is ejected. The wiggler magnetic field connects the regions of the stochastically heated, ejected electron from the cluster and high energy gain by the electron from the laser field outside the cluster. This increases the field strength and hence supports the electron to meet the phase of the laser field for enhanced acceleration. A long duration resonance appears with an optimized magnetic wiggler field of about 3.4 kG. Hence, the relativistic energy gain by the electron is enhanced up to a few 100 MeV with an intense short pulse laser with an intensity of about 1019 W cm‑2 in the presence of a wiggler magnetic field.
Coherent magnon optics in a ferromagnetic spinor Bose-Einstein condensate.
Marti, G Edward; MacRae, Andrew; Olf, Ryan; Lourette, Sean; Fang, Fang; Stamper-Kurn, Dan M
2014-10-10
We measure the dispersion relation, gap, and magnetic moment of a magnon in the ferromagnetic F = 1 spinor Bose-Einstein condensate of (87)Rb. From the dispersion relation we measure an average effective mass 1.033(2)(stat)(10)(sys) times the atomic mass, as determined by interfering standing and running coherent magnon waves within the dense and trapped condensed gas. The measured mass is higher than theoretical predictions of mean-field and beyond-mean-field Beliaev theory for a bulk spinor Bose gas with s-wave contact interactions. We observe a magnon energy gap of h × 2.5(1)(stat)(2)(sys) Hz, which is consistent with the predicted effect of magnetic dipole-dipole interactions. These dipolar interactions may also account for the high magnon mass. The effective magnetic moment of -1.04(2)(stat)(8)(sys) times the atomic magnetic moment is consistent with mean-field theory.
Computer simulations of equilibrium magnetization and microstructure in magnetic fluids
NASA Astrophysics Data System (ADS)
Rosa, A. P.; Abade, G. C.; Cunha, F. R.
2017-09-01
In this work, Monte Carlo and Brownian Dynamics simulations are developed to compute the equilibrium magnetization of a magnetic fluid under action of a homogeneous applied magnetic field. The particles are free of inertia and modeled as hard spheres with the same diameters. Two different periodic boundary conditions are implemented: the minimum image method and Ewald summation technique by replicating a finite number of particles throughout the suspension volume. A comparison of the equilibrium magnetization resulting from the minimum image approach and Ewald sums is performed by using Monte Carlo simulations. The Monte Carlo simulations with minimum image and lattice sums are used to investigate suspension microstructure by computing the important radial pair-distribution function go(r), which measures the probability density of finding a second particle at a distance r from a reference particle. This function provides relevant information on structure formation and its anisotropy through the suspension. The numerical results of go(r) are compared with theoretical predictions based on quite a different approach in the absence of the field and dipole-dipole interactions. A very good quantitative agreement is found for a particle volume fraction of 0.15, providing a validation of the present simulations. In general, the investigated suspensions are dominated by structures like dimmer and trimmer chains with trimmers having probability to form an order of magnitude lower than dimmers. Using Monte Carlo with lattice sums, the density distribution function g2(r) is also examined. Whenever this function is different from zero, it indicates structure-anisotropy in the suspension. The dependence of the equilibrium magnetization on the applied field, the magnetic particle volume fraction, and the magnitude of the dipole-dipole magnetic interactions for both boundary conditions are explored in this work. Results show that at dilute regimes and with moderate dipole-dipole interactions, the standard method of minimum image is both accurate and computationally efficient. Otherwise, lattice sums of magnetic particle interactions are required to accelerate convergence of the equilibrium magnetization. The accuracy of the numerical code is also quantitatively verified by comparing the magnetization obtained from numerical results with asymptotic predictions of high order in the particle volume fraction, in the presence of dipole-dipole interactions. In addition, Brownian Dynamics simulations are used in order to examine magnetization relaxation of a ferrofluid and to calculate the magnetic relaxation time as a function of the magnetic particle interaction strength for a given particle volume fraction and a non-dimensional applied field. The simulations of magnetization relaxation have shown the existence of a critical value of the dipole-dipole interaction parameter. For strength of the interactions below the critical value at a given particle volume fraction, the magnetic relaxation time is close to the Brownian relaxation time and the suspension has no appreciable memory. On the other hand, for strength of dipole interactions beyond its critical value, the relaxation time increases exponentially with the strength of dipole-dipole interaction. Although we have considered equilibrium conditions, the obtained results have far-reaching implications for the analysis of magnetic suspensions under external flow.
Measurement of the magnetic interaction between two bound electrons of two separate ions.
Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee
2014-06-19
Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two (88)Sr(+) ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons' weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of -0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d(-3.0(4)) distance dependence for the coupling, consistent with the inverse-cube law.
Field-induced cluster spin glass and inverse symmetry breaking enhanced by frustration
NASA Astrophysics Data System (ADS)
Schmidt, M.; Zimmer, F. M.; Magalhaes, S. G.
2018-03-01
We consider a cluster disordered model to study the interplay between short- and long-range interactions in geometrically frustrated spin systems under an external magnetic field (h). In our approach, the intercluster long-range disorder (J) is analytically treated to get an effective cluster model that is computed exactly. The clusters follow a checkerboard lattice with first-neighbor (J1) and second-neighbor (J2) interactions. We find a reentrant transition from the cluster spin-glass (CSG) state to a paramagnetic (PM) phase as the temperature decreases for a certain range of h. This inverse symmetry breaking (ISB) appears as a consequence of both quenched disorder with frustration and h, that introduce a CSG state with higher entropy than the polarized PM phase. The competitive scenario introduced by antiferromagnetic (AF) short-range interactions increases the CSG state entropy, leading to continuous ISB transitions and enhancing the ISB regions, mainly in the geometrically frustrated case (J1 =J2). Remarkably, when strong AF intracluster couplings are present, field-induced CSG phases can be found. These CSG regions are strongly related to the magnetization plateaus observed in this cluster disordered system. In fact, it is found that each field-induced magnetization jump brings a CSG region. We notice that geometrical frustration, as well as cluster size, play an important role in the magnetization plateaus and, therefore, are also relevant in the field-induced glassy states. Our findings suggest that competing interactions support ISB and field-induced CSG phases in disordered cluster systems under an external magnetic field.
Interaction of magnetic resonators studied by the magnetic field enhancement
NASA Astrophysics Data System (ADS)
Hou, Yumin
2013-12-01
It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters-shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.
Magnetism of the spin-1 tetramer compound A2Ni2Mo3O12(A =Rb or K)
NASA Astrophysics Data System (ADS)
Hase, Masashi; Matsuo, Akira; Kindo, Koichi; Matsumoto, Masashige
2017-12-01
We measured the temperature dependence of the magnetic susceptibility χ (T ) and the specific heat C (T ) and the magnetic-field dependence of the magnetization M (H ) of A2Ni2Mo3O12 (A = Rb or K) powder. We consider that the probable spin model is an interacting spin-1 antiferromagnetic tetramer model. We evaluated values of the intratetramer interactions as J1=9 K and J2=18 K, and the effective intertetramer interaction as Jeff=4 K for Rb2Ni2Mo3O12 . The susceptibility and magnetization at 1.3 K of K2Ni2Mo3O12 are very close to those of Rb2Ni2Mo3O12 . We observed a phase transition to a magnetically ordered state in C (T )/T in magnetic fields above 3 T. The transition temperature increases with magnetic field. Probably, the ordered state appears around 1.8 K even in 0 T. The ordered state in 0 T, however, is not stable enough like an order in the vicinity of a quantum critical point. Longitudinal-mode magnetic excitations may be observable in single crystalline A2Ni2Mo3O12 (A = Rb or K).
System and method for heating ferrite magnet motors for low temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang
A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly.more » The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.« less
Magnetic fields in turbulent quark matter and magnetar bursts
NASA Astrophysics Data System (ADS)
Dvornikov, Maxim
We analyze the magnetic field evolution in dense quark matter with unbroken chiral symmetry, which can be found inside quark and hybrid stars. The magnetic field evolves owing to the chiral magnetic effect in the presence of the electroweak interaction between quarks. In our study, we also take into account the magnetohydrodynamic turbulence effects in dense quark matter. We derive the kinetic equations for the spectra of the magnetic helicity density and the magnetic energy density as well as for the chiral imbalances. On the basis of the numerical solution of these equations, we find that turbulence effects are important for the behavior of small scale magnetic fields. It is revealed that, under certain initial conditions, these magnetic fields behave similarly to the electromagnetic flashes of some magnetars. We suggest that fluctuations of magnetic fields, described in frames of our model, which are created in the central regions of a magnetized compact star, can initiate magnetar bursts.
System and method for heating ferrite magnet motors for low temperatures
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang
2017-07-04
A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly. The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.
NASA Astrophysics Data System (ADS)
Rezania, Hamed; Azizi, Farshad
2018-02-01
We study the effects of a transverse magnetic field and electron doping on the thermoelectric properties of monolayer graphene in the context of Hubbard model at the antiferromagnetic sector. In particular, the temperature dependence of thermal conductivity and Seebeck coefficient has been investigated. Mean field approximation has been employed in order to obtain the electronic spectrum of the system in the presence of local electron-electron interaction. Our results show the peak in thermal conductivity moves to higher temperatures with increase of both chemical potential and Hubbard parameter. Moreover the increase of magnetic field leads to shift of peak in temperature dependence of thermal conductivity to higher temperatures. Finally the behavior of Seebeck coefficient in terms of temperature has been studied and the effects of magnetic field and Hubbard parameter on this coefficient have been investigated in details.
Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3
Moll, Philip J. W.; Helm, Toni; Zhang, Shang-Shun; ...
2017-08-21
Metals containing cerium exhibit a diverse range of fascinating phenomena including heavy fermion behavior, quantum criticality, and novel states of matter such as unconventional superconductivity. The cubic system CeIn3 has attracted significant attention as a structurally isotropic Kondo lattice material possessing the minimum required complexity to still reveal this rich physics. By using magnetic fields with strengths comparable to the crystal field energy scale, we illustrate a strong field-induced anisotropy as a consequence of non-spherically symmetric spin interactions in the prototypical heavy fermion material CeIn3. We demonstrate the importance of magnetic anisotropy in modeling f-electron materials when the orbital charactermore » of the 4f wavefunction changes (e.g., with pressure or composition). Additionally, magnetic fields are shown to tune the effective hybridization and exchange interactions potentially leading to new exotic field tuned effects in f-based materials.« less
Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moll, Philip J. W.; Helm, Toni; Zhang, Shang-Shun
Metals containing cerium exhibit a diverse range of fascinating phenomena including heavy fermion behavior, quantum criticality, and novel states of matter such as unconventional superconductivity. The cubic system CeIn3 has attracted significant attention as a structurally isotropic Kondo lattice material possessing the minimum required complexity to still reveal this rich physics. By using magnetic fields with strengths comparable to the crystal field energy scale, we illustrate a strong field-induced anisotropy as a consequence of non-spherically symmetric spin interactions in the prototypical heavy fermion material CeIn3. We demonstrate the importance of magnetic anisotropy in modeling f-electron materials when the orbital charactermore » of the 4f wavefunction changes (e.g., with pressure or composition). Additionally, magnetic fields are shown to tune the effective hybridization and exchange interactions potentially leading to new exotic field tuned effects in f-based materials.« less
NASA Astrophysics Data System (ADS)
Kase, Aina; Akagi, Fumiko; Yoshida, Kazuetsu
2018-05-01
Microwave assisted magnetic recording (MAMR) is a promising recording method for achieving high recording densities in hard disk drives. In MAMR, the AC field from a spin-torque oscillator (STO) assists the head field with magnetization reversal in a medium. Therefore, the relationship between the head field and the AC field is very important. In this study, the effects of the head field and the AC field on magnetization reversal were analyzed using a micromagnetic simulator that takes the magnetic interactions between a single-pole type (SPT) write-head, an exchange coupled composite (ECC) medium, and the STO into account. As a result, the magnetization reversal was assisted not just by the y-component of the AC field (Hstoy) but also by the y-component of the head field (Hhy) in the medium. The Hhy over 100 kA/m with a frequency of about 15.5 GHz induced the magnetic resonance. The large Hhy was produced by the field from the STO to the SPT head.
Studies of Magnetic Reconnection in Colliding Laser-Produced Plasmas
NASA Astrophysics Data System (ADS)
Rosenberg, Michael
2013-10-01
Novel images of magnetic fields and measurements of electron and ion temperatures have been obtained in the magnetic reconnection region of high- β, laser-produced plasmas. Experiments using laser-irradiated foils produce expanding, hemispherical plasma plumes carrying MG Biermann-battery magnetic fields, which can be driven to interact and reconnect. Thomson-scattering measurements of electron and ion temperatures in the interaction region of two colliding, magnetized plasmas show no thermal enhancement due to reconnection, as expected for β ~ 8 plasmas. Two different proton radiography techniques used to image the magnetic field structures show deformation, pileup, and annihilation of magnetic flux. High-resolution images reveal unambiguously reconnection-induced jets emerging from the interaction region and show instabilities in the expanding plasma plumes and supersonic, hydrodynamic jets due to the plasma collision. Quantitative magnetic flux data show that reconnection in experiments with asymmetry in the scale size, density, temperature, and plasma flow across the reconnection region occurs less efficiently than in similar, symmetric experiments. This result is attributed to disruption of the Hall mechanism mediating collisionless reconnection. The collision of plasmas carrying parallel magnetic fields has also been probed, illustrating the deformation of magnetic field structures in high-energy-density plasmas in the absence of reconnection. These experiments are particularly relevant to high- β reconnection environments, such as the magnetopause. This work was performed in collaboration with C. Li, F. Séguin, A. Zylstra, H. Rinderknecht, H. Sio, J. Frenje, and R. Petrasso (MIT), I. Igumenshchev, V. Glebov, C. Stoeckl, and D. Froula (LLE), J. Ross and R. Town (LLNL), W. Fox (UNH), and A. Nikroo (GA), and was supported in part by the NLUF, FSC/UR, U.S. DOE, LLNL, and LLE.
Magnetic Field Investigations During ROSETTA's Steins Flyby
NASA Astrophysics Data System (ADS)
Glassmeier, K.; Auster, H.; Richter, I.; Motschmann, U.; RPC/ROMAP Teams
2009-05-01
During the recent Steins flyby of the ROSETTA spacecraft magnetic field measurements have been made with both, the RPC orbiter magnetometer and the ROMAP lander magnetometer. These combined magnetic field measurements allow a detailed examination of any magnetic signatures caused either directly by the asteroid or indirectly by Steins different modes of interaction with the solar wind. Comparing our measurements with simulation results show that Steins does not possess a significant remanent magnetization. The magnetization is estimated at less than 1 mAm2/kg. This is significantly different from results at Braille and Gaspra.
Interparticle interaction effects on magnetic behaviors of hematite (α-Fe2O3) nanoparticles
NASA Astrophysics Data System (ADS)
Can, Musa Mutlu; Fırat, Tezer; Özcan, Şadan
2011-07-01
The interparticle magnetic interactions of hematite (α-Fe2O3) nanoparticles were investigated by temperature and magnetic field dependent magnetization curves. The synthesis were done in two steps; milling metallic iron (Fe) powders in pure water (H2O), known as mechanical milling technique, and annealing at 600 °C. The crystal and molecular structure of prepared samples were determined by X-ray powder diffraction (XRD) spectra and Fourier transform infrared (FTIR) spectra results. The average particle sizes and the size distributions were figured out using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The magnetic behaviors of α-Fe2O3 nanoparticles were analyzed with a vibrating sample magnetometer (VSM). As a result of the analysis, it was observed that the prepared α-Fe2O3 nanoparticles did not perform a sharp Morin transition (the characteristic transition of α-Fe2O3) due to lack of unique particle size distribution. However, the transition can be observed in the wide temperature range as “a continuously transition”. Additionally, the effect of interparticle interaction on magnetic behavior was determined from the magnetization versus applied field (σ(M)) curves for 26±2 nm particles, dispersed in sodium oxalate matrix under ratios of 200:1, 300:1, 500:1 and 1000:1. The interparticle interaction fields, recorded at 5 K to avoid the thermal interactions, were found as ∼1082 Oe for 26±2 nm particles.
Characterization of switching field distributions in Ising-like magnetic arrays
NASA Astrophysics Data System (ADS)
Fraleigh, Robert D.; Kempinger, Susan; Lammert, Paul E.; Zhang, Sheng; Crespi, Vincent H.; Schiffer, Peter; Samarth, Nitin
2017-04-01
The switching field distribution within arrays of single-domain ferromagnetic islands incorporates both island-island interactions and quenched disorder in island geometry. Separating these two contributions is important for disentangling the effects of disorder and interactions in the magnetization dynamics of island arrays. Using submicron, spatially resolved Kerr imaging in an external magnetic field for islands with perpendicular magnetic anisotropy, we map out the evolution of island arrays during hysteresis loops. Resolving and tracking individual islands across four different lattice types and a range of interisland spacings, we can extract the individual switching fields of every island and thereby quantitatively determine the contributions of interactions and quenched disorder in the arrays. The width of the switching field distribution is found to be well fitted by a simple model comprising the sum of an array-independent contribution (interpreted as disorder induced) and a term proportional to the maximum field the entire rest of the array could exert on a single island, i.e., in a fully polarized state. This supports the claim that disorder in these arrays is primarily a single-island property and provides a methodology by which to quantify such disorder.
An analytical computation of magnetic field generated from a cylinder ferromagnet
NASA Astrophysics Data System (ADS)
Taniguchi, Tomohiro
2018-04-01
An analytical formulation to compute a magnetic field generated from an uniformly magnetized cylinder ferromagnet is developed. Exact solutions of the magnetic field generated from the magnetization pointing in an arbitrary direction are derived, which are applicable both inside and outside the ferromagnet. The validities of the present formulas are confirmed by comparing them with demagnetization coefficients estimated in earlier works. The results will be useful for designing practical applications, such as high-density magnetic recording and microwave generators, where nanostructured ferromagnets are coupled to each other through the dipole interactions and show cooperative phenomena such as synchronization. As an example, the magnetic field generated from a spin torque oscillator for magnetic recording based on microwave assisted magnetization reversal is studied.
World's simplest electric train
NASA Astrophysics Data System (ADS)
Criado, C.; Alamo, N.
2016-01-01
We analyze the physics of the "world's simplest electric train." The "train" consists of a AA battery with a strong magnet on each end that moves through a helical coil of copper wire. The motion of the train results from the interaction between the magnetic field created by the current in the wire and the magnetic field of the magnets. We calculate the force of this interaction and the terminal velocity of the train due to eddy currents and friction. Our calculations provide a good illustration of Faraday's and Lenz's laws, as well as of the concepts of the Lorentz force and eddy currents.
2016-04-14
Swanson AEDC Path 1: Magnetized electron transport impeded across magnetic field lines; transport via electron-particle collisions Path 2*: Electron...T&E (higher pressure, metallic walls) → Impacts stability, performance, plume properties, thruster lifetime Magnetic Field Lines Plasma Plume...Development of T&E Methodologies • Current-Voltage- Magnetic Field (I-V-B) Mapping • Facility Interaction Studies • Background Pressure • Plasma Wall
NASA Astrophysics Data System (ADS)
Chen, Zhi-De; Liang, J.-Q.; Shen, Shun-Qing
2002-09-01
Renormalized tunnel splitting with a finite distribution in the biaxial spin model for molecular magnets is obtained by taking into account the dipolar interaction of enviromental spins. Oscillation of the resonant tunnel splitting with a transverse magnetic field along the hard axis is smeared by the finite distribution, which subsequently affects the quantum steps of the hysteresis curve evaluated in terms of the modified Landau-Zener model of spin flipping induced by the sweeping field. We conclude that the dipolar-dipolar interaction drives decoherence of quantum tunneling in the molecular magnet Fe8, which explains why the quenching points of tunnel splitting between odd and even resonant tunneling predicted theoretically were not observed experimentally.
Validating a magnetic reconnection model for the magnetopause
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-01-01
Originating in the Sun's million-degree corona, the solar wind flows at supersonic speeds into interplanetary space, carrying with it the solar magnetic field. As the solar wind reaches Earth's orbit, its interaction with the geomagnetic field forms the magnetosphere, a bubble-like structure within the solar wind flow that shields Earth from direct exposure to the solar wind as well as to the highly energetic charged particles produced during solar storms. Under certain orientations, the magnetic field entrained in the solar wind, known as the interplanetary magnetic field (IMF), merges with the geomagnetic field, transferring mass, momentum, and energy to the magnetosphere. The merging of these two distinct magnetic fields occurs through magnetic reconnection, a fundamental plasma-physical process that converts magnetic energy into kinetic energy and heat.
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ness, N. F.
1976-01-01
A literature review is presented of theoretical models of the interaction of the solar wind and interplanetary magnetic fields. Observations of interplanetary magnetic fields by the IMP and OSO spacecraft are discussed. The causes for cosmic ray variations (Forbush decreases) by the solar wind are examined. The model of Parker is emphasized. This model shows the three dimensional magnetic field lines of the solar wind to have the form of spirals wrapped on cones. It is concluded that an out-of-the-ecliptic solar probe mission would allow the testing and verification of the various theoretical models examined. Diagrams of the various models are shown.
Precessional switching of antiferromagnets by electric field induced Dzyaloshinskii-Moriya torque
NASA Astrophysics Data System (ADS)
Kim, T. H.; Grünberg, P.; Han, S. H.; Cho, B. K.
2018-05-01
Antiferromagnetic insulators (AFIs) have attracted much interest from many researchers as promising candidates for use in ultrafast, ultralow-dissipation spintronic devices. As a fast method of reversing magnetization, precessional switching is realized when antiferromagnetic Néel orders l =(s1+s2 )/2 surmount the magnetic anisotropy or potential barrier in a given magnetic system, which is described well by the antiferromagnetic plane pendulum (APP) model. Here, we report that, as an alternative switching scenario, the direct coupling of an electric field with Dzyaloshinskii-Moriya (DM) interaction, which stems from spin-orbit coupling, is exploited for optimal switching. We derive the pendulum equation of motion of antiferromagnets, where DM torque is induced by a pulsed electric field. The temporal DM interaction is found to not only be in the form of magnetic torques (e.g., spin-orbit torque or magnetic field) but also modifies the magnetic potential that limits l 's activity; as a result, appropriate controls (e.g., direction, magnitude, and pulse shape) of the induced DM vector realize deterministic reversal in APP. The results present an approach for the control of a magnetic storage device by means of an electric field.
Laboratory simulation of energetic flows of magnetospheric planetary plasma
NASA Astrophysics Data System (ADS)
Shaikhislamov, I. F.; Posukh, V. G.; Melekhov, A. V.; Boyarintsev, E. L.; Zakharov, Yu P.; Prokopov, P. A.; Ponomarenko, A. G.
2017-01-01
Dynamic interaction of super-sonic counter-streaming plasmas moving in dipole magnetic dipole is studied in laboratory experiment. First, a quasi-stationary flow is produced by plasma gun which forms a magnetosphere around the magnetic dipole. Second, explosive plasma expanding from inner dipole region outward is launch by laser beams focused at the surface of the dipole cover. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but order of magnitude larger in value than the vacuum dipole field at considered distances. Because no compression of magnetic field at the front of laser plasma was observed, the realized interaction is different from previous experiments and theoretical models of laser plasma expansion into uniform magnetized background. It was deduced based on the obtained data that laser plasma while expanding through inner magnetosphere picks up a magnetized shell formed by background plasma and carries it for large distances beyond previously existing magnetosphere.
Magnetic white dwarfs: Observations, theory and future prospects
NASA Astrophysics Data System (ADS)
García-Berro, Enrique; Kilic, Mukremin; Kepler, Souza Oliveira
2016-01-01
Isolated magnetic white dwarfs have field strengths ranging from 103G to 109G, and constitute an interesting class of objects. The origin of the magnetic field is still the subject of a hot debate. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of the progenitor of white dwarfs, or on the contrary, are the result of binary interactions or, finally, other physical mechanisms that could produce such large magnetic fields during the evolution of the white dwarf itself, remains to be elucidated. In this work, we review the current status and paradigms of magnetic fields in white dwarfs, from both the theoretical and observational points of view.
Numerical investigation of the dynamics of Janus magnetic particles in a rotating magnetic field
NASA Astrophysics Data System (ADS)
Kim, Hui Eun; Kim, Kyoungbeom; Ma, Tae Yeong; Kang, Tae Gon
2017-02-01
We investigated the rotational dynamics of Janus magnetic particles suspended in a viscous liquid, in the presence of an externally applied rotating magnetic field. A previously developed two-dimensional direct simulation method, based on the finite element method and a fictitious domain method, is employed to solve the magnetic particulate flow. As for the magnetic problem, the two Maxwell equations are converted to a differential equation using the magnetic potential. The magnetic forces acting on the particles are treated by a Maxwell stress tensor formulation, enabling us to consider the magnetic interactions among the particles without any approximation. The dynamics of a single particle in the rotating field is studied to elucidate the effect of the Mason number and the magnetic susceptibility on the particle motions. Then, we extended our interest to a two-particle problem, focusing on the effect of the initial configuration of the particles on the particle motions. In three-particle interaction problems, the particle dynamics and the fluid flow induced by the particle motions are significantly affected by the particle configuration and the orientation of each particle.
Monte Carlo simulations of the spin-2 Blume-Emery-Griffiths model with four-spin interactions
NASA Astrophysics Data System (ADS)
Jabar, A.; Masrour, R.; Jetto, K.; Bahmad, L.; Benyoussef, A.; Hamedoun, M.
2016-12-01
The magnetic properties of a spin S = 2 Ising system with bilinear exchange interaction J1, the biquadratic exchange interaction K, four-spin exchange interactions J4 and crystal field Δ are discussed using the Monte Carlo simulation. The lattice is divided into two sublattices: A and B, for which we compute the magnetizations mA and mB. The phase obtained diagrams of this system are deduced in the planes: (T, Δ/J1), (K/J1, Δ/J1), (Δ/J1, J4/J1) and (J4/J1, K/J1). In addition to the usual phases, we found a new phase called nonmagnetic quadratic, for which the magnetizations are mA ≠ mB and the quadrupolar moments are so that are qA = qB. Furthermore, the behavior of the magnetizations as a function of temperature, crystal field, four-spin exchange interactions and biquadratic exchange interaction are deduced.
Tinschert, K; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Komorowski, P; Meyer-Reumers, M; Krischel, D; Fischer, B; Ciavola, G; Gammino, S; Celona, L
2012-02-01
The production of intense beams of heavy ions with electron cyclotron resonance ion sources (ECRIS) is an important request at many accelerators. According to the ECR condition and considering semi-empirical scaling laws, it is essential to increase the microwave frequency together with the magnetic flux density of the ECRIS magnet system. A useful frequency of 28 GHz, therefore, requires magnetic flux densities above 2.2 T implying the use of superconducting magnets. A cooperation of European institutions initiated a project to build a multipurpose superconducting ECRIS (MS-ECRIS) in order to achieve an increase of the performances in the order of a factor of ten. After a first design of the superconducting magnet system for the MS-ECRIS, the respective cold testing of the built magnet system reveals a lack of mechanical performance due to the strong interaction of the magnetic field of the three solenoids with the sextupole field and the magnetization of the magnetic iron collar. Comprehensive structural analysis, magnetic field calculations, and calculations of the force pattern confirm thereafter these strong interactions, especially of the iron collar with the solenoidal fields. The investigations on the structural analysis as well as suggestions for a possible mechanical design solution are given.
Cuong, Giap Van; Su, Luong Van; Tue, Nguyen Anh; Khanh, Hoang Quoc; Tuan, Nguyen Anh
2018-06-01
In this work, an experimental setup to study the dependence of a visible-light transmission through a magnetic granular film on the magnetic field direction was presented. The results measured the transmission (T) of the visible light, with the wavelengths λ were in the range from 560 to 695 nm, by the magnetic nanogranular films Cox-(Al2O3)100-x system, with Co compositions are x = 10 ÷ 45 at.%, as a function of the magnetic field direction were reported. These investigations were carried out under an external magnetic field of H = 400 Oe, which directs to the normal of the sample surface by an angle varied in the range of φ = 0° ÷ 45°, to magnetize the magnetization direction of all the Co particles following this direction. Consequently, the angle φ between the magnetization direction with the incident-light direction, which sets as the optical axis of the system and always keeps fixedly to the normal of the sample surface, is established. The experimental results showed the different dependencies of T on the angle φ, the magnetic field H, the Co composition x, and the wavelength λ. These dependencies attributed to a behavior that relates to so-called photon-magnon interaction.
Anisotropic bulk and planar Heisenberg ferromagnets in uniform, arbitrarily oriented magnetic fields
NASA Astrophysics Data System (ADS)
Vanherck, Joren; Sorée, Bart; Magnus, Wim
2018-07-01
Today, further downscaling of mobile electronic devices poses serious problems, such as energy consumption and local heat dissipation. In this context, spin wave majority gates made of very thin ferromagnetic films may offer a viable alternative. However, similar downscaling of magnetic thin films eventually enforces the latter to operate as quasi-2D magnets, the magnetic properties of which are not yet fully understood, especially those related to anisotropies and external magnetic fields in arbitrary directions. To this end, we have investigated the behaviour of an easy-plane and easy-axis anisotropic ferromagnet—both in two and three dimensions—subjected to a uniform magnetic field, applied along an arbitrary direction. In this paper, a spin- Heisenberg Hamiltonian with anisotropic exchange interactions is solved using double-time temperature-dependent Green’s functions and the Tyablikov decoupling approximation. We determine various magnetic properties such as the Curie temperature and the magnetization as a function of temperature and the applied magnetic field, discussing the impact of the system’s dimensionality and the type of anisotropy. The magnetic reorientation transition taking place in anisotropic Heisenberg ferromagnets is studied in detail. Importantly, spontaneous magnetization is found to be absent for easy-plane 2D spin systems with short range interactions.
Flow produced by a free-moving floating magnet driven electromagnetically
NASA Astrophysics Data System (ADS)
Piedra, Saúl; Román, Joel; Figueroa, Aldo; Cuevas, Sergio
2018-04-01
The flow generated by a free-moving magnet floating in a thin electrolyte layer is studied experimentally and numerically. The magnet is dragged by a traveling vortex dipole produced by a Lorentz force created when a uniform dc current injected in the electrolyte interacts with the magnetic field of the same magnet. The problem represents a typical case of fluid-solid interaction but with a localized electromagnetic force promoting the motion. Classical wake flow structures are observed when the applied current varies in the range of 0.2 to 10 A. Velocity fields at the surface of the electrolyte are obtained for different flow conditions through particle image velocimetry. Quasi-two-dimensional numerical simulations, based on the immersed boundary technique that incorporates the fluid-solid interaction, reproduce satisfactorily the dynamics observed in the experiments.
Crustal evolution inferred from Apollo magnetic measurements
NASA Technical Reports Server (NTRS)
Dyal, P.; Daily, W. D.; Vanian, L. L.
1978-01-01
The topology of lunar remanent fields is investigated by analyzing simultaneous magnetometer and solar wind spectrometer data. The diffusion model proposed by Vanyan (1977) to describe the field-plasma interaction at the lunar surface is extended to describe the interaction with fields characterized by two scale lengths, and the extended model is compared with data from three Apollo landing sites (Apollo 12, 15 and 16) with crustal fields of differing intensity and topology. Local remanent field properties from this analysis are compared with high spatial resolution magnetic maps obtained from the electron reflection experiment. It is concluded that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized early in the evolution of the crust. Smaller scale (5 to 10 km) magnetic sources close to the surface were left by bombardment and subsequent gardening of the upper layers of these magnetized regions. The small scale sized remanent fields of about 100 gammas are measured by surface experiments, whereas the larger scale sized fields of about 0.1 gammas are measured by the orbiting subsatellite experiments.
MAVEN observations of complex magnetic field topology in the Martian magnetotail
NASA Astrophysics Data System (ADS)
DiBraccio, Gina A.; Espley, Jared R.; Luhmann, Janet G.; Curry, Shannon M.; Gruesbeck, Jacob R.; Connerney, John E. P.; Soobiah, Yasir; Xu, Shaosui; Mitchell, David M.; Harada, Yuki; Halekas, Jasper S.; Brain, David A.; Dong, Chuanfei; Hara, Takuya; Jakosky, Bruce M.
2017-04-01
MAVEN observations have revealed an unexpectedly complex magnetic field configuration in the magnetotail of Mars. This planetary magnetotail forms as the solar wind interacts with the Martian upper atmosphere and the interplanetary magnetic field (IMF) drapes around the planet. This interaction is classically defined as an induced magnetosphere similar to the plasma environments of Venus and comets. However, unlike at these induced magnetic environments, Mars is complicated by the existence of crustal magnetic fields, which are able to reconnect with the IMF to produce open magnetic fields. Preliminary magnetohydrodynamic simulation results have suggested that this magnetic reconnection may be responsible for creating a hybrid magnetotail configuration between intrinsic and induced magnetospheres. This hybrid tail is composed of the closed planetary fields, draped IMF, and two distinct lobes of open magnetic fields. More importantly, these open lobes appear to be twisted by roughly 45°, either clockwise or counterclockwise, from the ecliptic plane with a strong dependence on the east-west component of the IMF and negligible influence from crustal field orientation. To explore this unexpected twisted-tail configuration, we analyze MAVEN Magnetometer (MAG) and Solar Wind Ion Analyzer (SWIA) data to examine magnetic field topology in the Martian magnetotail. We compare the average magnetic field orientation, directed toward and away from the planet, for a variety of solar wind parameters at various downtail distances. We conclude that the east-west IMF component strongly affects the magnetotail structure, as predicted by simulations. Furthermore, these data reveal that the tail lobes are indeed twisted, which we infer based on model results, to be regions of open magnetic fields that are likely reconnected crustal fields. These MAVEN observations confirm that the Martian magnetotail has a hybrid configuration between an intrinsic and induced magnetosphere, shifting the paradigm of Mars as we have understood it thus far.
Insulating phase in Sr2IrO4: An investigation using critical analysis and magnetocaloric effect
NASA Astrophysics Data System (ADS)
Bhatti, Imtiaz Noor; Pramanik, A. K.
2017-01-01
The nature of insulating phase in 5d based Sr2IrO4 is quite debated as the theoretical as well as experimental investigations have put forward evidences in favor of both magnetically driven Slater-type and interaction driven Mott-type insulator. To understand this insulating behavior, we have investigated the nature of magnetic state in Sr2IrO4 through studying critical exponents, low temperature thermal demagnetization and magnetocaloric effect. The estimated critical exponents do not exactly match with any universality class, however, the values obey the scaling behavior. The exponent values suggest that spin interaction in present material is close to mean-field model. The analysis of low temperature thermal demagnetization data, however, shows dual presence of localized- and itinerant-type of magnetic interaction. Moreover, field dependent change in magnetic entropy indicates magnetic interaction is close to mean-field type. While this material shows an insulating behavior across the magnetic transition, yet a distinct change in slope in resistivity is observed around Tc. We infer that though the insulating phase in Sr2IrO4 is more close to be Slater-type but the simultaneous presence of both Slater- and Mott-type is the likely scenario for this material.
Response of Helical Luttinger Liquid in InAs/GaSb Edges to a Magnetic Field
NASA Astrophysics Data System (ADS)
Li, Tingxin; Tong, Bingbing; Liu, Xiaoxue; Han, Zhongdong; Zhang, Chi; Sullivan, Gerard; Du, Rui-Rui
Electron-electron interactions have been shown to play an important role in InAs/GaSb quantum spin Hall (QSH) edge states, leading to power-law behaviors of the helical edge conductance as a function of temperature and bias voltage (Li et al., Phys. Rev. Lett. 115 136804). A variety of inelastic and/or multiparticle backscattering processes could occur in helical edges when taking electron-electron interactions into account. On the other hand, in the presence of an external magnetic field, single-particle elastic backscattering is also allowed in QSH edge due to the breaking of time-reversal symmetry (TRS). It would be interesting to pursue experimental investigations for the combined effect of electron-electron interactions and TRS breaking on QSH edge transport. We report work in progress for low temperature conductance measurements of the helical edge in InAs/GaSb under perpendicular or in-plane magnetic fields. We found that the magnetic field responses are generally correlated with the interaction strength in the edge states. The work at Peking University were supported by NBRPC Grants (No. 2012CB921301 and No. 2014CB920901), and by Collaborative Innovation Center of Quantum Matter.
Magnetorheological effect in the magnetic field oriented along the vorticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzhir, P., E-mail: pavel.kuzhir@unice.fr; Magnet, C.; Fezai, H.
2014-11-01
In this work, we have studied the magnetorheological (MR) fluid rheology in the magnetic field parallel to the fluid vorticity. Experimentally, the MR fluid flow was realized in the Couette coaxial cylinder geometry with the magnetic field parallel to the symmetry axis. The rheological measurements were compared to those obtained in the cone-plate geometry with the magnetic field perpendicular to the lower rheometer plate. Experiments revealed a quasi-Bingham behavior in both geometries with the stress level being just a few dozens of percent smaller in the Couette cylindrical geometry at the same internal magnetic field. The unexpectedly high MR responsemore » in the magnetic field parallel to the fluid vorticity is explained by stochastic fluctuations of positions and orientations of the particle aggregates. These fluctuations are induced by magnetic interactions between them. Once misaligned from the vorticity direction, the aggregates generate a high stress independent of the shear rate, and thus assimilated to the suspension apparent (dynamic) yield stress. Quantitatively, the fluctuations of the aggregate orientation are modeled as a rotary diffusion process with a diffusion constant proportional to the mean square interaction torque. The model gives a satisfactory agreement with the experimental field dependency of the apparent yield stress and confirms the nearly quadratic concentration dependency σ{sub Y}∝Φ{sup 2.2}, revealed in experiments. The practical interest of this study lies in the development of MR smart devices with the magnetic field nonperpendicular to the channel walls.« less
NASA Astrophysics Data System (ADS)
Dospial, M.; Plusa, D.
2013-03-01
Isotropic epoxy-resin bonded magnets composed of different amounts of Magnequench MQP-B and strontium ferrite powders have been prepared using a compression molding technique. The magnetic parameters for magnets with different amounts of strontium ferrite and magnetization reversal processes have been studied by the measurement of the initial magnetization curves, the major hysteresis loops measured at a field up to 14 T and sets of recoil loops. The enhancement of μ0MR and μ0HC is observed in comparison with the calculated values. From the recoil loops the field dependences of the reversible, irreversible and total magnetization components and the differential susceptibilities were derived. From the dependence of the irreversible magnetization component versus an applied field it was deduced that the main mechanism of magnetization reversal process is the pinning of domain walls in MQP-B and strontium ferrite grains. The interactions between the magnetic particles and grains have been examined by the analysis of the δM plot. The δM behavior of magnets with ferrite has been interpreted as being composed of magnetizing exchange coupling and demagnetizing dipolar interactions.
Dynamical properties of magnetized two-dimensional one-component plasma
NASA Astrophysics Data System (ADS)
Dubey, Girija S.; Gumbs, Godfrey; Fessatidis, Vassilios
2018-05-01
Molecular dynamics simulation are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional interacting electron system. In this simulation we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb and the magnetic forces are included directly in the electron dynamics to study their combined effect on the dynamical properties of the 2D system. Results are presented for the velocity autocorrelation function and the diffusion constants in the presence and absence of an external magnetic field. Our simulation results clearly show that the external magnetic field has an effect on the dynamical properties of the system.
Extended use of superconducting magnets for bio-medical development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoynev, Stoyan E.
Magnetic fields interact with biological cells affecting them in variety of ways which are usually hard to predict. Among them, it was observed that strong fields can align dividing cells in a preferred direction. It was also demonstrated that dividing cancer cells are effectively destroyed by applying electric fields in vivo with a success rate dependent on the cell-to-field orientation. Based on these facts, the present note aims to suggest the use of magnetic and electric fields for improved cancer treatment. Several possibilities of generating the electric fields inside the magnetic field volume are reviewed, main tentative approaches are describedmore » and discussed. Most if not all of them require special magnet configuration research which can be based on existing magnet systems in operation or in development.« less
Coronal magnetic fields and the solar wind
NASA Technical Reports Server (NTRS)
Newkirk, G., Jr.
1972-01-01
Current information is presented on coronal magnetic fields as they bear on problems of the solar wind. Both steady state fields and coronal transient events are considered. A brief critique is given of the methods of calculating coronal magnetic fields including the potential (current free) models, exact solutions for the solar wind and field interaction, and source surface models. These solutions are compared with the meager quantitative observations which are available at this time. Qualitative comparisons between the shapes of calculated magnetic field lines and the forms visible in the solar corona at several recent eclipses are displayed. These suggest that: (1) coronal streamers develop above extended magnetic arcades which connect unipolar regions of opposite polarity; and (2) loops, arches, and rays in the corona correspond to preferentially filled magnetic tubes in the approximately potential field.
Strong fields and neutral particle magnetic moment dynamics
NASA Astrophysics Data System (ADS)
Formanek, Martin; Evans, Stefan; Rafelski, Johann; Steinmetz, Andrew; Yang, Cheng-Tao
2018-07-01
Interaction of magnetic moment of point particles with external electromagnetic fields experiences unresolved theoretical and experimental discrepancies. In this work we point out several issues within relativistic quantum mechanics and QED and we describe effects related to a new covariant classical model of magnetic moment dynamics. Using this framework we explore the invariant acceleration experienced by neutral particles coupled to an external plane wave field through the magnetic moment: we study the case of ultrarelativistic Dirac neutrinos with magnetic moment in the range of 10‑11 to 10‑20 μ B; and we address the case of slowly moving neutrons. We explore how critical accelerations for neutrinos can be experimentally achieved in laser pulse interactions. The radiation of accelerated neutrinos can serve as an important test distinguishing between Majorana and Dirac nature of neutrinos.
NASA Astrophysics Data System (ADS)
Amaya-Jaramillo, Carlos David; Pérez-Portilla, Adriana Patricia; Serrano-Olmedo, José Javier; Ramos-Gómez, Milagros
2017-10-01
A new instrument based on a magnetic force produced by an alternating magnetic field gradient, which is obtained through Maxwell coils, inside a constant field magnet has been designed and used to produce cell death. We have determined the interaction of microparticles and cells under different conditions such as incubation time with microparticles, particle size, magnetic field exposition time, and different current waveforms at different frequencies to produce a magnetic field gradient. We determined that the highest rate of cell death occurs at a frequency of 1 Hz with a square waveform and 1 h of irradiation. This method could be of great interest to remove cancer cells due mainly to the alterations in stiffness observed in the membranes of the tumor cells. Cancer cells can be eliminated in response to the forces caused by the movement of magnetic nanoparticles of the appropriate size under the application of a specific magnetic field. [Figure not available: see fulltext.
The influence of crustal magnetic sources on the topology of the Martian magnetic environment
NASA Astrophysics Data System (ADS)
Brain, David Andrew
2002-09-01
In this thesis I use magnetometer data and magnetic field models to explore the morphology of magnetic fields close to Mars, with emphasis on the manner and extent to which crustal magnetic sources affect the magnetic field configuration. I analyze Mars Global Surveyor (MGS) Magnetometer (MAG) data to determine the relative importance of the solar wind and of crustal magnetic sources in the observations. Crustal sources locally modify the solar wind interaction, adding variability to the Martian magnetic environment that depends on planetary rotation. I identify trends in the vector magnetic field with respect to altitude, solar zenith angle, and geographic location. The influence of the strongest crustal source extends to 1300 1400 km. I then use MAG data to evaluate models for the magnetic field associated with Mars' crust and for the solar wind interaction with the Martian ionosphere. A linear superposition of a spherical harmonic crustal model and a gasdynamic solar wind model improves the fit to MAG data over that from either model individually. I use simple pressure balance to calculate the shape and size of the Martian solar wind obstacle under a variety of different conditions. The obstacle is irregularly shaped (“lumpy”) and varies over the course of a Martian rotation, over a Martian year, and with changes in the upstream pressure. The obstacle above strong crustal sources can exceed 1000 km and is always higher than the altitude of the MGS spacecraft in its mapping orbit. I use a superposition model to explore the magnetic field topology at Mars under a variety of conditions. The model field topology is sensitive to changes in the interplanetary magnetic field (IMF) strength and orientation, as well as to Mars' orientation with respect to the solar wind flow. Regions of open magnetic field are located above strong crustal sources in the models, where the magnetic field is radially oriented with respect to the Martian surface. An examination of MAG and electron reflectometer (ER) data above one of these regions reveals a sharp change in the electron energy spectrum coinciding with perturbations in the orientation of the magnetic field.
Magnetic nanotubes for drug delivery
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Kumar, Prashanth S.; Varadan, Vijay K.
2017-04-01
Magnetic nanotubes hold the potential for neuroscience applications because of their capability to deliver chemicals or biomolecules and the feasibility of controlling the orientation or movement of these magnetic nanotubes by an external magnetic field thus facilitating directed growth of neurites. Therefore, we sought to investigate the effects of laminin treated magnetic nanotubes and external alternating magnetic fields on the growth of dorsal root ganglion (DRG) neurons in cell culture. Magnetic nanotubes were synthesized by a hydrothermal method and characterized to confirm their hollow structure, the hematite and maghemite phases, and the magnetic properties. DRG neurons were cultured in the presence of magnetic nanotubes under alternating magnetic fields. Electron microscopy showed a close interaction between magnetic nanotubes and the growing neurites Phase contrast microscopy revealed live growing neurons suggesting that the combination of the presence of magnetic nanotubes and the alternating magnetic field were tolerated by DRG neurons. The synergistic effect, from both laminin treated magnetic nanotubes and the applied magnetic fields on survival, growth and electrical activity of the DRG neurons are currently being investigated.
The ground state magnetic moment and susceptibility of a two electron Gaussian quantum dot
NASA Astrophysics Data System (ADS)
Boda, Aalu; Chatterjee, Ashok
2018-04-01
The problem of two interacting electrons moving in a two-dimensional semiconductor quantum dot with Gaussian confinement under the influence of an external magnetic field is studied by using a method of numerical diagonalization of the Hamiltonian matrix with in the effective-mass approximation. The energy spectrum is calculated as a function of the magnetic field. We find the ground state magnetic moment and the magnetic susceptibility show zero temperature diamagnetic peaks due to exchange induced singlet-triplet oscillations. The position and the number of these peaks depend on the size of the quantum dot and also strength of the electro-electron interaction. The theory is applied to a GaAs quantum dot.
An on-chip colloidal magneto-optical grating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikockis, M.; Wijesinghe, H.; Chen, A.
2016-04-18
Interacting nano- and micro-particles provide opportunities to create a wide range of useful colloidal and soft matter constructs. In this letter, we examine interacting superparamagnetic polymeric particles residing on designed permalloy (Ni{sub 0.8} Fe{sub 0.2}) shapes that are subject to weak time-orbiting magnetic fields. The precessing field and magnetic barriers that ensue along the outer perimeter of the shapes allow for containment concurrent with independent field-tunable ordering of the dipole-coupled particles. These remotely activated arrays with inter-particle spacing comparable to the wavelength of light yield microscopic on-chip surface gratings for beam steering and magnetically regulated light diffraction applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatara, Gen, E-mail: gen.tatara@riken.jp; Nakabayashi, Noriyuki; Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan
2014-05-07
Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.
NASA Technical Reports Server (NTRS)
Barger, R. L.; Brooks, J. D.; Beasley, W. D.
1961-01-01
A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.
Dzhioev, R I; Korenev, V L
2007-07-20
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.
NASA Astrophysics Data System (ADS)
Dzhioev, R. I.; Korenev, V. L.
2007-07-01
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.
Massive star winds interacting with magnetic fields on various scales
NASA Astrophysics Data System (ADS)
David-Uraz, A.; Petit, V.; Erba, C.; Fullerton, A.; Walborn, N.; MacInnis, R.
2018-01-01
One of the defining processes which govern massive star evolution is their continuous mass loss via dense, supersonic line-driven winds. In the case of those OB stars which also host a surface magnetic field, the interaction between that field and the ionized outflow leads to complex circumstellar structures known as magnetospheres. In this contribution, we review recent developments in the field of massive star magnetospheres, including current efforts to characterize the largest magnetosphere surrounding an O star: that of NGC 1624-2. We also discuss the potential of the "analytic dynamical magnetosphere" (ADM) model to interpret multi-wavelength observations. Finally, we examine the possible effects of — heretofore undetected — small-scale magnetic fields on massive star winds and compare their hypothetical consequences to existing, unexplained observations.
NASA Astrophysics Data System (ADS)
Osaci, M.; Cacciola, M.
2016-02-01
In recent years, the study of magnetic nanoparticles has been intensively developed not only for their fundamental theoretical interest, but also for their many technological applications, especially biomedical applications, ranging from contrast agents for magnetic resonance imaging to the deterioration of cancer cells via hyperthermia treatment. The theoretical and experimental research has shown until now that the magnetic dipolar interactions between nanoparticles can have a significant influence on the magnetic behaviour of the system. But, this influence is not well understood. It is clear that the magnetic dipolar interaction intensity is correlated with the nanoparticle concentration, volume fraction and magnetic moment orientations. In this paper, we try to understand the influence of magnetic dipolar interactions on the behaviour of magnetic nanoparticle systems, for biomedical applications. For the model, we considered spherical nanoparticles with uniaxial anisotropy and lognormal distribution of the sizes. The model involves a simulation stage of the spatial distribution and orientation of the nanoparticles and their easy axes of magnetic anisotropy, and an evaluation stage of the Néel relaxation time. To assess the Néel relaxation time, we are going to discretise and adapt, to the local magnetic field, the Coffey analytical solution for the equation Fokker-Planck describing the dynamics of magnetic moments of nanoparticles in oblique external magnetic field. There are three fundamental aspects of interest in our studies on the magnetic nanoparticles: their spatial & orientational distributions, concentrations and sizes.
NASA Astrophysics Data System (ADS)
Li, Hua-bai
2017-10-01
Tai Chi, a Chinese martial art developed based on the laws of nature, emphasises how 'to conquer the unyielding with the yielding'. The recent observation of star formation shows that stars result from the interaction between gravity, turbulence and magnetic fields. This interaction again follows the nature rules that inspired Tai Chi. For example, if self-gravity is the force that dominates, the molecular cloud will collapse isotropically, which compresses magnetic field lines. The density of the yielding field lines increases until magnetic pressure reaches the critical value to support the cloud against the gravitational force in directions perpendicular to the field lines (Lorentz force). Then gravity gives way to Lorentz force, accumulating gas only along the field lines till the gas density achieves the critical value to again compress the field lines. The Tai Chi goes on in a self-similar way.
Interaction of laser beams with magnetized substance in a strong magnetic field
NASA Astrophysics Data System (ADS)
Kuzenov, V. V.
2018-03-01
Laser-driven magneto-inertial fusion assumed plasma and magnetic flux compression by quasisymmetric laser-driven implosion of magnetized target. We develop a 2D radiation magnetohydrodynamic code and a formulation for the one-fluid two-temperature equations for simulating compressible non-equilibrium magnetized target plasma. Laser system with pulse radiation with 10 ns duration is considered for numerical experiments. A numerical study of a scheme of magnetized laser-driven implosion in the external magnetic field is carried out.
Nonlinear equations of motion for Landau resonance interactions with a whistler mode wave
NASA Technical Reports Server (NTRS)
Inan, U. S.; Tkalcevic, S.
1982-01-01
A simple set of equations is presented for the description of the cyclotron averaged motion of Landau resonant particles in a whistler mode wave propagating at an angle to the static magnetic field. A comparison is conducted of the wave magnetic field and electric field effects for the parameters of the magnetosphere, and the parameter ranges for which the wave magnetic field effects would be negligible are determined. It is shown that the effect of the wave magnetic field can be neglected for low pitch angles, high normal wave angles, and/or high normalized wave frequencies.
NASA Astrophysics Data System (ADS)
Palihawadana-Arachchige, Maheshika; Nemala, Humeshkar; Naik, Vaman M.; Naik, Ratna
2017-01-01
Magnetic hyperthermia (MHT), where localized heating is generated when magnetic nanoparticles (MNPs) are subjected to a radiofrequency magnetic field, has a great potential as a non-invasive cancer therapy treatment. The efficiency of heat generation depends on the magnetic properties of MNPs, such as saturation magnetization (Ms) and magnetic anisotropy (K), as well as the particle size distribution and magnetic dipolar interactions. We have investigated MHT in two Fe3O4 ferrofluids prepared by co-precipitation (CP) and hydrothermal (HT) synthesis methods showing similar physical particle size distribution (14 ± 4 nm) and saturation magnetization (70 ± 2 emu/g of Fe3O4) but very different specific absorption rates (SAR) of ˜110 W/g and ˜40 W/g at room temperature (measured with an ac magnetic field amplitude of 240 Oe and a frequency of 375 kHz). This observed reduction in SAR has been explained by taking into account the dipolar interactions and the distribution of the magnetic core size of MNPs in ferrofluids. The HT ferrofluid shows a higher effective dipolar interaction and a wider distribution of the magnetic core size of MNPs compared to those of the CP ferrofluid. We have fitted the temperature dependent SAR data using the linear response theory, incorporating an effective dipolar interaction, to determine the magnetic anisotropy constant of MNPs prepared by CP (22 ± 2 kJ/m3) and HT (26 ± 2 kJ/m3) synthesis methods. These values are in good agreement with the magnetic anisotropy constant determined using frequency and temperature dependent magnetic susceptibility data obtained on powder samples.
Formation of iron metal and grain coagulation in the solar nebula
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Berg, Otto
1994-01-01
The interstellar grain population in the giant molecular cloud from which the sun formed contained little or no iron metal. However, thermal processing of individual interstellar silicates in the solar nebula is likely to result in the formation of a population of very small iron metal grains. If such grains are exposed to even transient magnetic fields, each will become a tiny dipole magnet capable of interacting with other such dipoles over spatial scale orders of magnitude larger than the radii of individual grains. Such interactions will greatly increase the coagulation cross-section for this grain population. Furthermore, the magnetic attraction between two iron dipoles will significantly increase both the collisional sticking coefficient and the strength of the interparticle binding energy for iron aggregates. Formation of iron metal may therefore be a key step in the aggregation of planetesimals in a protoplanetary nebula. Such aggregates may have already been observed in protoplanetary systems. The enhancement in the effective interaction distance between two magnetic dipoles is directly proportional to the strength of the magnetic dipoles and inversely proportional to the relative velocity. It is less sensitive to the reduced mass of the interacting particles (alpha M(exp -1/2)) and almost insensitive to the initial number density of magnetic dipoles (alpha n(sub o)(exp 1/6)). We are in the process of measuring the degree of coagulation in our condensation flow apparatus as a function of applied magnetic field and correlating these results by means of magnetic remanance acquisition measurements on our iron grains with the strength of the magnetic field to which the grains are exposed. Results of our magnetic remanance acquisition measurements and the magnetic-induced coagulation study will be presented as well as an estimate of the importance of such processes near the nebular midplane.
Formation of collisionless shocks in magnetized plasma interaction with kinetic-scale obstacles
Cruz, F.; Alves, E. P.; Bamford, R. A.; ...
2017-02-06
We investigate the formation of collisionless magnetized shocks triggered by the interaction between magnetized plasma flows and miniature-sized (order of plasma kinetic-scales) magnetic obstacles resorting to massively parallel, full particle-in-cell simulations, including the electron kinetics. The critical obstacle size to generate a compressed plasma region ahead of these objects is determined by independently varying the magnitude of the dipolar magnetic moment and the plasma magnetization. Here we find that the effective size of the obstacle depends on the relative orientation between the dipolar and plasma internal magnetic fields, and we show that this may be critical to form a shockmore » in small-scale structures. We also study the microphysics of the magnetopause in different magnetic field configurations in 2D and compare the results with full 3D simulations. Finally, we evaluate the parameter range where such miniature magnetized shocks can be explored in laboratory experiments.« less
NASA Astrophysics Data System (ADS)
Ma, T.-Z.; Schunk, R. W.
1994-07-01
Experiments involving the interaction of spherical conducting objects biases with hight voltages in the Low-Earth-Orbit (LEO) environment have been conducted and designed. In these experiments, both positive and negative voltages have been applied to the spheres. Previously, there have been theoretical and numerical studies of positive voltage spheres in plasmas with and without magnetic fields. There also have been studies of negative voltage objects in unmagnetized plasmas. Here, we used a fluid model to study the plasma response to a negative voltage sphere immersed in a magnetized plasma. Our main purpose was to investigate the role of the magnetic field during the early-time interaction between the negative voltage sphere and the ambient plasma in the LEO environment. In this study, different applied voltages, magnetic field strengths, and rise-times of the applied voltages were considered. It was found that with the strength of the geomagnetic field the ions are basically not affected by the magnetic field on the time scale of hundreds of plasma periods considered in this study. The ion density distribution around the sphere and the collected ion flux by the sphere are basically the same as in the case without the magnetic field. The electron motion is strongly affected by the magnetic field. One effect is to change the nature of the electron over-shoot oscillation from regular to somewhat turbulent. Although the electrons move along the magnetic field much more easily than across the magnetic field, some redirection effect causes the electron density to distribute as if the magnetic field effect is minimal. The sheath struture and the electric field around the sphere tend to be spherical. A finite rise-time of the applied voltage reduces the oscillatory activities and delays the ion acceleration. However, the effect of the rise-time depends on both the duration of the rise-time and the ion plasma period.
Superalgebras for three interacting particles in an external magnetic field
NASA Astrophysics Data System (ADS)
Sadeghi, J.
2006-04-01
In this paper we discuss interacting particles in an external magnetic field. By comparing the Schrödinger equation of three interacting particles with the associated Laguerre differential equation, we obtain the energy spectrum which corresponds to indices ni and mi. Finally by using the so called factorization method we obtain the raising and lowering operators. These operators are supersymmetric structures related to the Hamiltonian partner. Also these operators lead to the realization of Heisenberg Lie superalgebras with two, four and six supercharges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikov, Yu. N., E-mail: ovc@itp.ac.ru
The equation of state is investigated for a thin superconducting film in a longitudinal magnetic field and with strong spin-orbit interaction at the critical point. As a first step, the state with the maximal value of the magnetic field for a given value of spin–orbit interaction at T = 0 is chosen. This state is investigated in the low-temperature region. The temperature contribution to the equation of state is weakly singular.
Electromagnetic fields and their impacts
NASA Astrophysics Data System (ADS)
Prša, M. A.; Kasaš-Lažetić, K. K.
2018-01-01
The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.
Magnetization of InAs parabolic quantum dot: An exact diagonalization approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aswathy, K. M., E-mail: aswathykm20@gmail.com; Sanjeev Kumar, D.
2016-04-13
The magnetization of two electron InAs quantum dot has been studied as a function of magnetic field. The electron-electron interaction has been taken into account by using exact diagonalization method numerically. The magnetization at zero external magnetic field is zero and increases in the negative direction. There is also a paramagnetic peak where the energy levels cross from singlet state to triplet state. Finally, the magnetization falls again to even negative values and saturates.
Generalized description of few-electron quantum dots at zero and nonzero magnetic fields
NASA Astrophysics Data System (ADS)
Ciftja, Orion
2007-01-01
We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow-Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where a fraction of electrons is spin-reversed) it resembles Halperin's spin-reversed wavefunction for the fractional quantum Hall effect. The properties of this variational wavefunction are illustrated for the case of two-dimensional quantum dot helium (a system of two interacting electrons in a parabolic confinement potential) where we find the description to be an excellent representation of the true ground state for the whole range of magnetic fields.
Determination of perpendicular magnetic anisotropy based on the magnetic droplet nucleation
NASA Astrophysics Data System (ADS)
Nishimura, Tomoe; Kim, Duck-Ho; Okuno, Takaya; Hirata, Yuushou; Futakawa, Yasuhiro; Yoshikawa, Hiroki; Kim, Sanghoon; Tsukamoto, Arata; Shiota, Yoichi; Moriyama, Takahiro; Ono, Teruo
2018-05-01
We propose an alternative method of determining the magnetic anisotropy field μ0 H K in ferro-/ferrimagnets. On the basis of the droplet nucleation model, there exists linearity between domain-wall (DW) energy density and in-plane magnetic field. We find that the slope is simply represented by μ0 H K and Dzyaloshinskii–Moriya interaction (DMI). By measuring the in-plane magnetic field dependence of the coercivity field, closely corresponding to the DW energy density, a robust value for μ0 H K can be quantified. This robust value can be used to determine μ0 H K over a wide range of values, overcoming the limitations caused by the small strength of the external magnetic field typically used in experiments.
On parasupersymmetric oscillators and relativistic vector mesons in constant magnetic fields
NASA Technical Reports Server (NTRS)
Debergh, Nathalie; Beckers, Jules
1995-01-01
Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric oscillator-like system, is characterized by real energies as opposed to previously pointed out relativistic equations corresponding to this interacting context.
NASA Astrophysics Data System (ADS)
Evans, Emrys W.; Kattnig, Daniel R.; Henbest, Kevin B.; Hore, P. J.; Mackenzie, Stuart R.; Timmel, Christiane R.
2016-08-01
Even though the interaction of a <1 mT magnetic field with an electron spin is less than a millionth of the thermal energy at room temperature (kBT), it still can have a profound effect on the quantum yields of radical pair reactions. We present a study of the effects of sub-millitesla magnetic fields on the photoreaction of flavin mononucleotide with ascorbic acid. Direct control of the reaction pathway is achieved by varying the rate of electron transfer from ascorbic acid to the photo-excited flavin. At pH 7.0, we verify the theoretical prediction that, apart from a sign change, the form of the magnetic field effect is independent of the initial spin configuration of the radical pair. The data agree well with model calculations based on a Green's function approach that allows multinuclear spin systems to be treated including the diffusive motion of the radicals, their spin-selective recombination reactions, and the effects of the inter-radical exchange interaction. The protonation states of the radicals are uniquely determined from the form of the magnetic field-dependence. At pH 3.0, the effects of two chemically distinct radical pair complexes combine to produce a pronounced response to ˜500 μT magnetic fields. These findings are relevant to the magnetic responses of cryptochromes (flavin-containing proteins proposed as magnetoreceptors in birds) and may aid the evaluation of effects of weak magnetic fields on other biologically relevant electron transfer processes.
A new ring-shape high-temperature superconducting trapped-field magnet
NASA Astrophysics Data System (ADS)
Sheng, Jie; Zhang, Min; Wang, Yawei; Li, Xiaojian; Patel, Jay; Yuan, Weijia
2017-09-01
This paper presents a new trapped-field magnet made of second-generation high-temperature superconducting (2G HTS) rings. This so-called ring-shape 2G HTS magnet has the potential to provide much stronger magnetic fields relative to existing permanent magnets. Compared to existing 2G HTS trapped- field magnets, e.g. 2G HTS bulks and stacks, this new ring-shape 2G HTS magnet is more flexible in size and can be made into magnets with large dimensions for industrial applications. Effective magnetization is the key to being able to use trapped-field magnets. Therefore, this paper focuses on the magnetization mechanism of this new magnet using both experimental and numerical methods. Unique features have been identified and quantified for this new type of HTS magnet in the field cooling and zero field cooling process. The magnetization mechanism can be understood by the interaction between shielding currents and the penetration of external magnetic fields. An accumulation in the trapped field was observed by using multiple pulse field cooling. Three types of demagnetization were studied to measure the trapped-field decay for practical applications. Our results show that this new ring-shape HTS magnet is very promising in the trapping of a high magnetic field. As a super-permanent magnet, it will have a significant impact on large-scale industrial applications, e.g. the development of HTS machines with a very high power density and HTS magnetic resonance imaging devices.
Probing α -RuCl3 Beyond Magnetic Order: Effects of Temperature and Magnetic Field
NASA Astrophysics Data System (ADS)
Winter, Stephen M.; Riedl, Kira; Kaib, David; Coldea, Radu; Valentí, Roser
2018-02-01
Recent studies have brought α -RuCl3 to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4 d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α -RuCl3 . These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.
Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid.
Dennis, C L; Jackson, A J; Borchers, J A; Gruettner, C; Ivkov, R
2018-05-25
We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.
Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid
NASA Astrophysics Data System (ADS)
Dennis, C. L.; Jackson, A. J.; Borchers, J. A.; Gruettner, C.; Ivkov, R.
2018-05-01
We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.
Diffusion of external magnetic fields into the cone-in-shell target in the fast ignition
NASA Astrophysics Data System (ADS)
Sunahara, Atsushi; Morita, Hiroki; Johzaki, Tomoyuki; Nagatomo, Hideo; Fujioka, Shinsuke; Hassanein, Ahmed; Firex Project Team
2017-10-01
We simulated the diffusion of externally applied magnetic fields into cone-in-shell target in the fast ignition. Recently, in the fast ignition scheme, the externally magnetic fields up to kilo-Tesla is used to guide fast electrons to the high-dense imploded core. In order to study the profile of the magnetic field, we have developed 2D cylindrical Maxwell equation solver with Ohm's law, and carried out simulations of diffusion of externally applied magnetic fields into a cone-in-shell target. We estimated the conductivity of the cone and shell target based on the assumption of Saha-ionization equilibrium. Also, we calculated the temporal evolution of the target temperature heated by the eddy current driven by temporal variation of magnetic fields, based on the accurate equation of state. Both, the diffusion of magnetic field and the increase of target temperature interact with each other. We present our results of temporal evolution of the magnetic field and its diffusion into the cone and shell target.
NASA Astrophysics Data System (ADS)
Banda-Barragán, W. E.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.
2018-01-01
We present a set of numerical experiments designed to systematically investigate how turbulence and magnetic fields influence the morphology, energetics, and dynamics of filaments produced in wind-cloud interactions. We cover 3D, magnetohydrodynamic systems of supersonic winds impacting clouds with turbulent density, velocity, and magnetic fields. We find that lognormal density distributions aid shock propagation through clouds, increasing their velocity dispersion and producing filaments with expanded cross-sections and highly magnetized knots and subfilaments. In self-consistently turbulent scenarios, the ratio of filament to initial cloud magnetic energy densities is ∼1. The effect of Gaussian velocity fields is bound to the turbulence Mach number: Supersonic velocities trigger a rapid cloud expansion; subsonic velocities only have a minor impact. The role of turbulent magnetic fields depends on their tension and is similar to the effect of radiative losses: the stronger the magnetic field or the softer the gas equation of state, the greater the magnetic shielding at wind-filament interfaces and the suppression of Kelvin-Helmholtz instabilities. Overall, we show that including turbulence and magnetic fields is crucial to understanding cold gas entrainment in multiphase winds. While cloud porosity and supersonic turbulence enhance the acceleration of clouds, magnetic shielding protects them from ablation and causes Rayleigh-Taylor-driven subfilamentation. Wind-swept clouds in turbulent models reach distances ∼15-20 times their core radius and acquire bulk speeds ∼0.3-0.4 of the wind speed in one cloud-crushing time, which are three times larger than in non-turbulent models. In all simulations, the ratio of turbulent magnetic to kinetic energy densities asymptotes at ∼0.1-0.4, and convergence of all relevant dynamical properties requires at least 64 cells per cloud radius.
NASA Astrophysics Data System (ADS)
Liu, Zhaosen; Ian, Hou
2016-04-01
We employed a quantum simulation approach to investigate the magnetic properties of monolayer square nanodisks with Dzyaloshinsky-Moriya (DM) interaction. The computational program converged very quickly, and generated chiral spin structures on the disk planes with good symmetry. When the DM interaction is sufficiently strong, multi-domain structures appears, their sizes or average distance between each pair of domains can be approximately described by a modified grid theory. We further found that the external magnetic field and uniaxial magnetic anisotropy both normal to the disk plane lead to reductions of the total free energy and total energy of the nanosystems, thus are able to stabilize and/or induce the vortical structures, however, the chirality of the vortex is still determined by the sign of the DM interaction parameter. Moreover, the geometric shape of the nanodisk affects the spin configuration on the disk plane as well.
Magnetic field of jupiter and its interaction with the solar wind.
Smith, E J; Davis, L; Jones, D E; Colburn, D S; Coleman, P J; Dyal, P; Sonett, C P
1974-01-25
Jupiter's magnetic field and its interaction with the magnetized solar wind were observed with the Pioneer 10 vector helium magnetometer. The magnetic dipole is directed opposite to that of the earth with a moment of 4.0 gauss R(J)(3) (R(J), Jupiter radius), and an inclination of 15 degrees lying in a system III meridian of 230 degrees . The dipole is offset about 0.1 R(J) north of the equatorial plane and about 0.2 R(J) toward longitude 170 degrees . There is severe stretching of the planetary field parallel to the equator throughout the outer magnetosphere, accompanied by a systematic departure from meridian planes. The field configuration implies substantial plasma effects inside the magnetosphere, such as thermal pressure, centrifugal forces, and differential rotation. As at the earth, the outer boundary is thin, nor diffuse, and there is a detached bow shock.
Fluid structure interaction model for biological systems in the presence of magnetic field
NASA Astrophysics Data System (ADS)
Aziz, Asim; Shoaib, Muhammad
2016-06-01
In the present paper a one-dimensional mathematical model of a cerebral aneurysm is considered. The model combines the interaction between the arterial wall structure, blood pressure and the cerebral spinal fluid (CSF) that is around the aneurysm. CSF is considered electrically conducting in the presence of a uniform magnetic field. Therefore, it may be possible to control pressure and its flow behavior by using an appropriate magnetic field. Hence, such studies have potential for the treatment of Cerebral aneurysms, diseases of heart and blood vessels. The modeled mathematical equations are solved algebraically and the displacement of the arterial wall is plotted to visualize the wall movement. It is evident from the graphs the inclusion of magnetic field reduce the movement of the arterial wall and in turn prevent the rupture of the cerebral aneurysm. The solution is also investigated using computational tools for various other parameters involve in the model.
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Salewski, M.; Kalitukha, I. V.; Poltavtsev, S. V.; Debus, J.; Kudlacik, D.; Sapega, V. F.; Kopteva, N. E.; Kirstein, E.; Zhukov, E. A.; Yakovlev, D. R.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Korenev, V. L.; Kusrayev, Yu. G.; Bayer, M.
2017-11-01
The exchange interaction between magnetic ions and charge carriers in semiconductors is considered to be a prime tool for spin control. Here, we solve a long-standing problem by uniquely determining the magnitude of the long-range p -d exchange interaction in a ferromagnet-semiconductor (FM-SC) hybrid structure where a 10-nm-thick CdTe quantum well is separated from the FM Co layer by a CdMgTe barrier with a thickness on the order of 10 nm. The exchange interaction is manifested by the spin splitting of acceptor bound holes in the effective magnetic field induced by the FM. The exchange splitting is directly evaluated using spin-flip Raman scattering by analyzing the dependence of the Stokes shift ΔS on the external magnetic field B . We show that in a strong magnetic field, ΔS is a linear function of B with an offset of Δp d=50 -100 μ eV at zero field from the FM induced effective exchange field. On the other hand, the s -d exchange interaction between conduction band electrons and FM, as well as the p -d contribution for free valence band holes, are negligible. The results are well described by the model of indirect exchange interaction between acceptor bound holes in the CdTe quantum well and the FM layer mediated by elliptically polarized phonons in the hybrid structure.
Small-scale turbulence detected in Mercury's magnetic field
NASA Astrophysics Data System (ADS)
Schultz, Colin
2011-11-01
With its closest approach a mere 46 million kilometers from the Sun, the blast of the solar wind was supposed to wash away any chance that Mercury could hold on to a magnetic field—an idea rejected by the observations of the Mariner 10 spacecraft in 1974. Though Mercury was shown to harbor a weak magnetic field (one-hundredth the strength of Earth's), its structure, behavior, and interactions with the solar wind remained heavily debated, yet untested, until the 14 January 2008 approach of NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) orbiter. Using a continuous scalogram analysis—a novel statistical technique in space research—Uritsky et al. analyzed the high-resolution magnetic field strength observations taken by MESSENGER as it flew within a few hundred kilometers of the planet's surface. The authors found turbulence in Mercury's magnetosphere, which they attributed to small-scale interactions between the solar wind plasma and the magnetic field. At large spatial and temporal scales the solar wind can be thought of as a fluid with some magnetic properties—a domain well explained by the theories of magnetohydrodynamics.
NASA Astrophysics Data System (ADS)
Dung, Nguyen Thi; Linh, Dinh Chi; Huyen Yen, Pham Duc; Yu, Seong Cho; Van Dang, Nguyen; Dang Thanh, Tran
2018-06-01
Influence of the crystallite size on the magnetic and critical properties of nanocrystals has been investigated. The results show that Curie temperature and magnetization slightly decrease with decreasing average crystallite size . Based on the mean-field theory and the magnetic-field dependences of magnetization at different temperatures , we pointed out that the ferromagnetic-paramagnetic phase transition in the samples undergoes the second-order phase transition with the critical exponents (, , and ) close to those of the mean-field theory. However, there is a small deviation from those expected for the mean-field theory of the values of , and obtained for the samples. It means that short-range ferromagnetic interactions appear in the smaller particles. In other words, nanocrystals become more magnetically inhomogeneous with smaller crystallite sizes that could be explained by the presence of surface-related effects, lattice strain and distortions, which lead the strength of ferromagnetic interaction is decreased in the small crystallite sizes.
Magnetoacoustic Sensing of Magnetic Nanoparticles.
Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis
2016-03-11
The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.
Atomic-scale sensing of the magnetic dipolar field from single atoms
NASA Astrophysics Data System (ADS)
Choi, Taeyoung; Paul, William; Rolf-Pissarczyk, Steffen; MacDonald, Andrew J.; Natterer, Fabian D.; Yang, Kai; Willke, Philip; Lutz, Christopher P.; Heinrich, Andreas J.
2017-05-01
Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions. In recent years, there have been notable achievements in detecting and coherently controlling individual atomic-scale spin centres for sensitive local magnetometry. However, positioning the spin sensor and characterizing spin-spin interactions with sub-nanometre precision have remained outstanding challenges. Here, we use individual Fe atoms as an electron spin resonance (ESR) sensor in a scanning tunnelling microscope to measure the magnetic field emanating from nearby spins with atomic-scale precision. On artificially built assemblies of magnetic atoms (Fe and Co) on a magnesium oxide surface, we measure that the interaction energy between the ESR sensor and an adatom shows an inverse-cube distance dependence (r-3.01±0.04). This demonstrates that the atoms are predominantly coupled by the magnetic dipole-dipole interaction, which, according to our observations, dominates for atom separations greater than 1 nm. This dipolar sensor can determine the magnetic moments of individual adatoms with high accuracy. The achieved atomic-scale spatial resolution in remote sensing of spins may ultimately allow the structural imaging of individual magnetic molecules, nanostructures and spin-labelled biomolecules.
Correlated states in β-Li 2IrO 3 driven by applied magnetic fields
Ruiz, Alejandro; Frano, Alex; Breznay, Nicholas P.; ...
2017-10-16
Magnetic honeycomb iridates are thought to show strongly spin-anisotropic exchange interactions which, when highly frustrated, lead to an exotic state of matter known as the Kitaev quantum spin liquid. However, in all known examples these materials magnetically order at finite temperatures, the scale of which may imply weak frustration. Here we show that the application of a relatively small magnetic field drives the three-dimensional magnet β-Li 2IrO 3 from its incommensurate ground state into a quantum correlated paramagnet. Interestingly, this paramagnetic state admixes a zig-zag spin mode analogous to the zig-zag order seen in other Mott-Kitaev compounds. The rapid onsetmore » of the field-induced correlated state implies the exchange interactions are delicately balanced, leading to strong frustration and a near degeneracy of different ground states.« less
Exchange bias in multiferroic Ca3Mn2O7 effected by Dzyaloshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Sahlot, Pooja; Jana, Anupam; Awasthi, A. M.
2018-04-01
Ruddlesden-Popper manganite Ca3Mn2O7 has been synthesized in single phase orthorhombic structure with Cmcm space group. Temperature dependent magnetization M(T) shows that Ca3Mn2O7 undergoes long range antiferromagnetic (AFM) transition below 123 K, with weak ferromagnetism (WFM) at lower temperatures. Field dependent magnetization M(H) confirms WFM character below ˜110 K in the AFM-base magnetic structure. Detailed analysis of the zero field cooled magnetic hysteresis loops reveals a measurable exchange bias (EB) effect in the sample. EB is attributed to the high anisotropy in the sample and the presence of Dzyaloshinskii-Moriya (D-M) interaction, responsible for the canted interfacial-spins that couple "FM-clusters" with the "AFM-matrix". Temperature dependence of horizontal shifts of the M(H) loops in terms of the coercive fields (Hc±) and vertical shifts in terms of the remnant magnetizations (Mr±) is presented.
The interaction of the near-field plasma with antennas used in magnetic fusion research
NASA Astrophysics Data System (ADS)
Caughman, John
2015-09-01
Plasma heating and current drive using antennas in the Ion Cyclotron Range of Frequencies (ICRF) are important elements for the success of magnetic fusion. The antennas must operate in a harsh environment, where local plasma densities can be >1018/m3, magnetic fields can range from 0.2-5 Tesla, and antenna operating voltages can be >40 kV. This environment creates operational issues due to the interaction of the near-field of the antenna with the local plasma. In addition to parasitic losses in this plasma region, voltage and current distributions on the antenna structure lead to the formation of high electric fields and RF plasma sheaths, which can lead to enhanced particle and energy fluxes on the antenna and on surfaces intersected by magnetic field lines connected to or passing near the antenna. These issues are being studied using a simple electrode structure and a single-strap antenna on the Prototype Materials Plasma EXperiment (Proto-MPEX) at ORNL, which is a linear plasma device that uses an electron Bernstein wave heated helicon plasma source to create a high-density plasma suitable for use in a plasma-material interaction test stand. Several diagnostics are being used to characterize the near-field interactions, including double-Langmuir probes, a retarding field energy analyzer, and optical emission spectroscopy. The RF electric field is being studied utilizing Dynamic Stark Effect spectroscopy and Doppler-Free Saturation Spectroscopy. Recent experimental results and future plans will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.
Magnetic field modification of optical magnetic dipoles.
Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David
2015-03-11
Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.
Life on magnets: stem cell networking on micro-magnet arrays.
Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M; Syková, Eva
2013-01-01
Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine.
Critical exponents and universal magnetic behavior of noncentrosymmetric Fe0.6Co0.4Si
NASA Astrophysics Data System (ADS)
Shanmukharao Samatham, S.; Suresh, K. G.
2018-05-01
The critical magnetic properties of a non-centrosymmetric B20 cubic helimagnet Fe0.6Co0.4Si are investigated using magnetization isotherms. It belongs to the 3D-Heisenberg universality class with short range magnetic coupling as inferred from the self-consistent critical exponents , , and in combination with exchange interaction . Itinerant magnetic nature of the compound is realized by the Rhodes–Wholfarth analysis. Field-induced weak first (parahelical) to second (parafield-polarized) order transition is reported to occur at low critical field due to the weak spin–orbit coupling arising from the weak Dzyaloshinksii–Moriya interactions. Our study suggests the distinct phenomenological magnetic structures for Fe-based cubic magnets (Fe1‑x Co x Si and FeGe) and MnSi which cause contrasting physical properties.
Induction signals from Callisto's ionosphere and their implications on a possible subsurface ocean
NASA Astrophysics Data System (ADS)
Hartkorn, Oliver; Saur, Joachim
2017-11-01
We investigate whether induction within Callisto's electrically conductive ionosphere can explain observed magnetic fields which have previously been interpreted as evidence of induction in a saline, electrically conductive subsurface ocean. Callisto's ionosphere is subject to the flow of time-periodic magnetized plasma of Jupiter's magnetosphere, which induces electric fields and electric currents in Callisto's electrically conductive ionosphere. We develop a simple analytic model for a first quantitative understanding of the effects of induction in Callisto's ionosphere caused by the interaction with a time-variable magnetic field environment. With this model, we also investigate how the associated ionospheric currents close in the ambient magnetospheric plasma. Based on our model, we find that the anisotropic nature of Callisto's ionospheric conductivity generates an enhancement effect on ionospheric loop currents which are driven by the time-variable magnetic field. This effect is similar to the Cowling channel effect known from Earth's ionosphere. Subsequently, we numerically calculate the expected induced magnetic fields due to Jupiter's time-variable magnetic field in an anisotropic conductive ionosphere and compare our results with the Galileo C-3 and C-9 flybys. We find that induction within Callisto's ionosphere is responsible for a significant part of the observed magnetic fields. Ionospheric induction creates induced magnetic fields to some extent similar as expected from a subsurface water ocean. Depending on currently unknown properties such as Callisto's nightside ionosphere, the existence of layers of "dirty ice" and the details of the plasma interaction, a water ocean might be located much deeper than previously thought or might not exist at all.
Experimental observation of spatially localized dynamo magnetic fields.
Gallet, B; Aumaître, S; Boisson, J; Daviaud, F; Dubrulle, B; Bonnefoy, N; Bourgoin, M; Odier, Ph; Pinton, J-F; Plihon, N; Verhille, G; Fauve, S; Pétrélis, F
2012-04-06
We report the first experimental observation of a spatially localized dynamo magnetic field, a common feature of astrophysical dynamos and convective dynamo simulations. When the two propellers of the von Kármán sodium experiment are driven at frequencies that differ by 15%, the mean magnetic field's energy measured close to the slower disk is nearly 10 times larger than the one close to the faster one. This strong localization of the magnetic field when a symmetry of the forcing is broken is in good agreement with a prediction based on the interaction between a dipolar and a quadrupolar magnetic mode. © 2012 American Physical Society
NASA Astrophysics Data System (ADS)
Ulusen, D.; Luhmann, J. G.; Ma, Y. J.; Mandt, K. E.; Waite, J. H.; Dougherty, M. K.; Wahlund, J. E.; Russell, C. T.; Cravens, T. E.; Edberg, N. J. T.; Agren, K.
2012-01-01
Recent papers suggest the significant variability of conditions in Saturn's magnetosphere at the orbit of Titan. Because of this variability, it was expected that models would generally have a difficult time regularly comparing to data from the Titan flybys. However, we find that in contrast to this expectation, it appears that there is underlying organization of the interaction features roughly above ˜1800 km (1.7 Rt) altitude by the average external field due to Saturn's dipole moment. In this study, we analyze Cassini's plasma and magnetic field data collected at 9 Titan encounters during which the external field is close to the ideal southward direction and compare these observations to the results from a 2-fluid (1 ion, 1 electron) 7-species MHD model simulations obtained under noon SLT conditions. Our comparative analysis shows that under noon SLT conditions the Titan plasma interaction can be viewed in two layers: an outer layer between 6400 and 1800 km where interaction features observed in the magnetic field are in basic agreement with a purely southward external field interaction and an inner layer below 1800 km where the magnetic field measurements show strong variations and deviate from the model predictions. Thus the basic features inferred from the Voyager 1 flyby seem to be generally present above ˜1800 km in spite of the ongoing external variations from SLT excursions, time variability and magnetospheric current systems as long as a significant southward external field component is present. At around ˜1800 km kinetic effects (such as mass loading and heavy ion pickup) and below 1800 km ionospheric effects (such as drag of ionospheric plasma due to coupling with neutral winds and/or magnetic memory of Titan's ionosphere) complicate what is observed.
Monte Carlo Study of Magnetic Properties of Mixed Spins in a Fullerene X 30 Y 30-Like Structure
NASA Astrophysics Data System (ADS)
Mhirech, A.; Aouini, S.; Alaoui-Ismaili, A.; Bahmad, L.
2018-03-01
In this work, inspiring form of the fullerene-C60 structures, we study the mixed X_{30} Y_{30} fullerene-like structure and investigate its magnetic properties. In a such a structure, the carbons are assumed to be replaced by magnetic atoms having spin moments σ = 1/2 and S = 1. Firstly, we elaborate the ground-state phase diagrams in different physical parameter planes. In a second stage, we investigate the exchange coupling interaction effects in the absence or presence of both external magnetic and crystal fields. Using the Monte Carlo method, we carried out a study of the system magnetic properties and the thermal behavior of such a system for the ferromagnetic case. It is found that the critical temperature increases when increasing the coupling exchange interactions. On the other hand, the coercive magnetic field increases also when increasing the coupling exchange interactions. However, this physical parameter decreases when increasing the reduced temperature.
MAVEN Observations of the Effects of Crustal Magnetic Fields on the Mars Ionosphere
NASA Astrophysics Data System (ADS)
Vogt, M. F.; Flynn, C. L.; Withers, P.; Andersson, L.; Girazian, Z.; Mitchell, D. L.; Xu, S.; Connerney, J. E. P.; Espley, J. R.
2017-12-01
Mars lacks a global intrinsic magnetic field but possesses regions of strong crustal magnetic field that influence the planetary interaction with the solar wind and affect the structure and dynamics of the ionosphere. Since entering Mars orbit in 2014, the MAVEN spacecraft has collected comprehensive measurements of the local plasma and magnetic field properties in the Martian dayside ionosphere. Here we discuss how crustal magnetic fields affect the structure, composition, and electrodynamics of the Martian ionosphere as seen by MAVEN. We present a survey of 17 months of MAVEN LPW measurements of the electron density and temperature in the dayside ionosphere and show that, above 200 km altitude, regions of strong crustal magnetic fields feature cooler electron temperatures and enhanced electron densities compared to regions with little or no crustal magnetic field. We also report on the influence of the magnetic field direction and topology on MAVEN electron density measurements in the southern crustal field areas, particularly in magnetic cusp regions. Finally, we discuss the effects of crustal magnetic fields on plasma boundaries like the ionopause, located at the top of the ionosphere and marked by a sharp and substantial gradient in the electron density.
Magnetically Damped Furnace Bitter Magnet Coil 1
NASA Technical Reports Server (NTRS)
Bird, M. D.
1997-01-01
A magnet has been built by the National High Magnetic Field Laboratory for NASA on a cost reimbursement contract. The magnet is intended to demonstrate the technology and feasibility of building a magnet for space based crystal growth. A Bitter magnet (named after Francis Bitter, its inventor) was built consisting of four split coils electrically in series and hydraulically in parallel. The coils are housed in a steel vessel to reduce the fringe field and provide some on-axis field enhancement. The steel was nickel plated and Teflon coated to minimize interaction with the water cooling system. The magnet provides 0.14 T in a 184 mm bore with 3 kW of power.
Computational Simulation of Explosively Generated Pulsed Power Devices
2013-03-21
to practical applications. These are the magnetic flux compression generators (FCG), ferromagnetic generators (FMG) and ferroelectric generators (FEG...The first device works on the concept of field interaction between a conducting medium and a magnetic field. The last two devices make use of either... magnetic or electric fields stored in a prepared material (4). This research will focus on the ferroelectric generator as a high voltage source for
Switching dynamics of doped CoFeB trilayers and a comparison to the quasistatic approximation
NASA Astrophysics Data System (ADS)
Forrester, Michael; Kusmartsev, Feodor; Kovács, Endre
2013-05-01
The investigation of the switching times of the magnetization reversal of two interacting CoFeB nanomagnets, with dimensions small enough to maintain a single-domain structure, has been carried out. A quasistatic approximation is shown to give valid results and to compare well to the damped dynamical solutions of the Landau-Lifshitz-Gilbert equations. The characteristics of the switching are shown in the associated hysteresis loops and we build a complete phase diagram of the various parallel, antiparallel, and scissoring states of the magnetization in terms of the coupling energy between the nanomagnets, magnetic anisotropy, and the interaction with an applied magnetic field. The phase diagram summarizes the different kinds of hysteresis associated with the magnetization reversal phenomena. The switching fields and times are estimated and the vulnerabilities of the magnetic phases to thermally induced magnetic field variations are examined. The stability of the phases is a fine balance between intrinsic and extrinsic magnetism and we examine its precarious nature. Our work identifies the structures that have the most robust magnetization states and hence a design ethic for creating nanomagnetic heterostructures with outstanding magnetoresistance properties based upon the two magnetic elements.
In-plane magnetic anisotropy in strontium iridate S r2Ir O4
NASA Astrophysics Data System (ADS)
Nauman, Muhammad; Hong, Yunjeong; Hussain, Tayyaba; Seo, M. S.; Park, S. Y.; Lee, N.; Choi, Y. J.; Kang, Woun; Jo, Younjung
2017-10-01
Magnetic anisotropy in strontium iridate (S r2Ir O4 ) is found to be large because of the strong spin-orbit interactions. In our work, we studied the in-plane magnetic anisotropy of S r2Ir O4 and traced the anisotropic exchange interactions between the isospins in the crystal. The magnetic-field-dependent torque τ(H ) showed a prominent transition from the canted antiferromagnetic state to the weak ferromagnetic (WFM) state. A comprehensive analysis was conducted to examine the isotropic and anisotropic regimes and probe the easy magnetization axis along the a b plane. The angle-dependent torque τ(θ) revealed a deviation from the sinusoidal behavior, and small differences in hysteresis were observed around 0° and 90° in the low-magnetic-field regime. This indicates that the orientation of the easy axis of the FM component is along the b axis, where the antiferromagnetic to WFM spin-flop transition occurs. We compared the coefficients of the magnetic susceptibility tensors and captured the anisotropy of the material. The in-plane τ(θ) revealed a tendency toward isotropic behavior for fields with values above the field value of the WFM transition.
NASA Technical Reports Server (NTRS)
Freeman, M. P.; Farrugia, C. J.; Burlaga, L. F.; Hairston, M. R.; Greenspan, M. E.; Ruohoniemi, J. M.; Lepping, R. P.
1993-01-01
Observations are presented of the ionospheric convection in cross sections of the polar cap and auroral zone as part of the study of the interaction of the Earth's magnetosphere with the magnetic cloud of January 13-15, 1988. For strongly northward IMF, the convection in the Southern Hemisphere is characterized by a two-cell convection pattern comfined to high latitudes with sunward flow over the pole. The strength of the flows is comparable to that later seen under southward IMF. Superimposed on this convection pattern there are clear dawn-dusk asymmetries associated with a one-cell convection component whose sense depends on the polarity of the magnetic cloud's large east-west magnetic field component. When the cloud's magnetic field turns southward, the convection is characterized by a two-cell pattern extending to lower latitude with antisunward flow over the pole. There is no evident interhemispheric difference in the structure and strength of the convection. Superimposed dawn-dusk asymmetries in the flow patterns are observed which are only in part attributable to the east-west component of the magnetic field.
Levitation in the field of a nonsuperconducting coil with magnetic flux stabilization
NASA Astrophysics Data System (ADS)
Koshurnikov, E. K.
2013-09-01
A method providing the "frozen flux" conditions in a nonsuperconducting coil is suggested and demonstrated with a model. The feasibility of permanent magnet stable levitation in the field of the coil with magnetic flux stabilization and mean current control is shown. The method allows researchers to exploit permanent magnet-superconducting body interaction in physical devices, for example, to reproduce, using nonsuperconducting coils, the frozen magnetic flux conditions required for the stable levitation of the magnet over a superconducting body.
Magnetic phase diagram of a frustrated spin ladder
NASA Astrophysics Data System (ADS)
Sugimoto, Takanori; Mori, Michiyasu; Tohyama, Takami; Maekawa, Sadamichi
2018-04-01
Frustrated spin ladders show magnetization plateaux depending on the rung-exchange interaction and frustration defined by the ratio of first and second neighbor exchange interactions in each chain. This paper reports on its magnetic phase diagram. Using the variational matrix-product state method, we accurately determine phase boundaries. Several kinds of magnetization plateaux are induced by the frustration and the strong correlation among quasiparticles on a lattice. The appropriate description of quasiparticles and their relevant interactions are changed by a magnetic field. We find that the frustration differentiates the triplet quasiparticle from the singlet one in kinetic energy.
Biological effects of exposure to magnetic resonance imaging: an overview
Formica, Domenico; Silvestri, Sergio
2004-01-01
The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited. PMID:15104797
NASA Astrophysics Data System (ADS)
Hardiyanto, M.; Ermawaty, I. R.
2018-01-01
We present an experimental of muan-hadron tunneling chain investigation with new methods of Thx DUO2 nano structure based on Josephson’s tunneling and Abrikosov-Balseiro-Russel (ABR) formulation with quantum quadrupole interacting with a strongly localized high gyro-magnetic optical field as encountered in high-resolution near-field optical microscopy for 1.2 nano meter lambda-function. The strong gradients of these localized gyro-magnetic fields suggest that higher-order multipolar interactions will affect the standard magnetic quadrupole transition rates in 1.8 x 103 currie/mm fuel energy in nuclear moderator pool and selection rules with quatum dot. For muan-hadron absorption in Josephson’s tunnelling quantum quadrupole in the strong confinement limit we calculated the inter band of gyro-magnetic quadrupole absorption rate and the associated selection rules. Founded that the magnetic quadrupole absorption rate is comparable with the absorption rate calculated in the gyro-magneticdipole approximation of ThxDUO2 nano material structure. This implies that near-field optical techniques can extend the range of spectroscopic measurements for 545 MHz at quantum gyro-magnetic field until 561 MHz deployment quantum field at B around 455-485 tesla beyond the standard dipole approximation. However, we also show that spatial resolution could be improved by the selective excitation of ABR formulation in quantum quadrupole transitions.
NASA Technical Reports Server (NTRS)
Barnes, Aaron; DeVincenzi, Donald (Technical Monitor)
2000-01-01
A complete model of the global interaction between the solar wind and the local interstellar medium must take account of interstellar neutral atoms, interstellar ionized gas, solar and galactic magnetic fields, galactic and anomalous cosmic rays. For now, however, in view of the many uncertainties about conditions in the interstellar medium, etc., all models must be regarded as highly idealized and incomplete. In the present review I concentrate on the role of magnetic fields of solar and interstellar origin. The former, the interior field, has negligible influence on the unshocked solar wind; the immediate post-shock solar wind is probably low-beta, so that the interior magnetic field is still unimportant, but this situation changes as the plasma flows through the heliosheath, and a ridge of strong magnetic field may form to separate materials of polar and equatorial origin. The exterior (interstellar) field is likely to play an important role in determining the global morphology of the system outside the termination shock. If the exterior field is strong enough, it can compress the heliosphere (although exterior neutral and/or ionized hydrogen may play the dominant role). Even if the interstellar magnetic field does not provide the dominant pressure, its orientation can substantially affect the configuration of the heliosphere, especially the location and orientation of the heliospheric discontinuities. The configurations can be quite different for the situations in which the field and flow are (a) aligned or (b) transverse. Obliquity of the field produces asymmetry in the geometry of the system; in particular the noses of heliopause and interstellar bow shock are shifted away from the interstellar flow direction, and in opposite directions, due to the asymmetric draping of the magnetic field.
NASA Astrophysics Data System (ADS)
Vaknin, D.; Garlea, V. O.; Demmel, F.; Mamontov, E.; Nojiri, H.; Martin, C.; Chiorescu, I.; Qiu, Y.; Kögerler, P.; Fielden, J.; Engelhardt, L.; Rainey, C.; Luban, M.
2010-11-01
Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaknin, D.; Garlea, Vasile O; Demmel, F.
Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It ismore » noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.« less
Magnetic flux pile-up and ion heating in a current sheet formed by colliding magnetized plasma flows
NASA Astrophysics Data System (ADS)
Suttle, L.; Hare, J.; Lebedev, S.; Ciardi, A.; Loureiro, N.; Niasse, N.; Burdiak, G.; Clayson, T.; Lane, T.; Robinson, T.; Smith, R.; Stuart, N.; Suzuki-Vidal, F.
2017-10-01
We present data from experiments carried out at the Magpie pulsed power facility, which show the detailed structure of the interaction of counter-streaming magnetized plasma flows. In our quasi-2D setup, continuous supersonic flows are produced with strong embedded magnetic fields of opposing directions. Their interaction leads to the formation of a dense and long-lasting current sheet, where we observe the pile-up of the magnetic flux at the sheet boundary, as well as the annihilation of field inside, accompanied by an increase in plasma temperature. Spatially resolved measurements with Faraday rotation polarimetry, B-dot probes, XUV imaging, Thomson scattering and laser interferometry diagnostics show the detailed distribution of the magnetic field and other plasma parameters throughout the system. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/G001324/1, and by the U.S. Department of Energy (DOE) Awards No. DE-F03-02NA00057 and No. DE-SC-0001063.
Weyl magnons in pyrochlore antiferromagnets with an all-in-all-out order
NASA Astrophysics Data System (ADS)
Jian, Shao-Kai; Nie, Wenxing
2018-03-01
We investigate topological magnon band crossings of pyrochlore antiferromagnets with all-in-all-out (AIAO) magnetic order. By general symmetry analysis and spin-wave theory, we show that pyrochlore materials with AIAO orders can host Weyl magnons under external magnetic fields or uniaxial strains. Under a small magnetic field, the magnon bands of the pyrochlore with AIAO background can feature two opposite-charged Weyl points, which is the minimal number of Weyl points realizable in quantum materials, and has not been experimentally observed so far. We further show that breathing pyrochlores with AIAO orders can exhibit Weyl magnons upon uniaxial strains. These findings apply to any pyrochlore material supporting AIAO orders, irrespective of the forms of interactions. Specifically, we show that the Weyl magnons are robust against direct (positive) Dzyaloshinskii-Moriya interactions. Because of the ubiquitous AIAO orders in pyrochlore magnets including R2Ir2O7 , and experimentally achievable external strain and magnetic field, our predictions provide a promising arena to witness the Weyl magnons in quantum magnets.
Enhancement of the coercivity in Co-Ni layered double hydroxides by increasing basal spacing.
Zhang, Cuijuan; Tsuboi, Tomoya; Namba, Hiroaki; Einaga, Yasuaki; Yamamoto, Takashi
2016-09-14
The magnetic properties of layered double hydroxides (LDH) containing transition metal ions can still develop, compared with layered metal hydroxide salts which exhibit structure-dependent magnetism. In this article, we report the preparation of a hybrid magnet composed of Co-Ni LDH and n-alkylsulfonate anions (Co-Ni-CnSO3 LDH). As Co-Ni LDH is anion-exchangeable, we can systematically control the interlayer spacing by intercalating n-alkylsulfonates with different carbon numbers. The magnetic properties were examined with temperature- and field-dependent magnetization measurements. As a result, we have revealed that the coercive field depends on the basal spacing. It is suggested that increasing the basal spacing varies the competition between the in-plane superexchange interactions and long-range out-of-plane dipolar interactions. Moreover, a jump in the coercive field at around 20 Å of the basal spacing is assumed to be the modification of the magnetic ordering in Co-Ni-CnSO3 LDH.
Non-equilibrium magnetic interactions in strongly correlated systems
NASA Astrophysics Data System (ADS)
Secchi, A.; Brener, S.; Lichtenstein, A. I.; Katsnelson, M. I.
2013-06-01
We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii-Moriya coupling, but is not due to spin-orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well.
Polarized light modulates light-dependent magnetic compass orientation in birds
Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus
2016-01-01
Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473
Polarized light modulates light-dependent magnetic compass orientation in birds.
Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus
2016-02-09
Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm "plus" maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth's magnetic field.
MRI issues for ballistic objects: information obtained at 1.5-, 3- and 7-Tesla.
Dedini, Russell D; Karacozoff, Alexandra M; Shellock, Frank G; Xu, Duan; McClellan, R Trigg; Pekmezci, Murat
2013-07-01
Few studies exist for magnetic resonance imaging (MRI) issues and ballistics, and there are no studies addressing movement, heating, and artifacts associated with ballistics at 3-tesla (T). Movement because of magnetic field interactions and radiofrequency (RF)-induced heating of retained bullets may injure nearby critical structures. Artifacts may also interfere with the diagnostic use of MRI. To investigate these potential hazards of MRI on a sample of bullets and shotgun pellets. Laboratory investigation, ex vivo. Thirty-two different bullets and seven different shotgun pellets, commonly encountered in criminal trauma, were assessed relative to 1.5-, 3-, and 7-T magnetic resonance systems. Magnetic field interactions, including translational attraction and torque, were measured. A representative sample of five bullets were then tested for magnetic field interactions, RF-induced heating, and the generation of artifacts at 3-T. At all static magnetic field strengths, non-steel-containing bullets and pellets exhibited no movement, whereas one steel core bullet and two steel pellets exhibited movement in excess of what might be considered safe for patients in MRI at 1.5-, 3- and 7-Tesla. At 3-T, the maximum temperature increase of five bullets tested was 1.7°C versus background heating of 1.5°C. Of five bullets tested for artifacts, those without a steel core exhibited small signal voids, whereas a single steel core bullet exhibited a very large signal void. Ballistics made of lead with copper or alloy jackets appear to be safe with respect to MRI-related movement at 1.5-, 3-, and 7-T static magnetic fields, whereas ballistics containing steel may pose a danger if near critical body structures because of strong magnetic field interactions. Temperature increases of selected ballistics during 3-T MRI was not clinically significant, even for the ferromagnetic projectiles. Finally, ballistics containing steel generated larger artifacts when compared with ballistics made of lead with copper and alloy jackets and may impair the diagnostic use of MRI. Copyright © 2013 Elsevier Inc. All rights reserved.
Artificial ferroic systems: novel functionality from structure, interactions and dynamics.
Heyderman, L J; Stamps, R L
2013-09-11
Lithographic processing and film growth technologies are continuing to advance, so that it is now possible to create patterned ferroic materials consisting of arrays of sub-1 μm elements with high definition. Some of the most fascinating behaviour of these arrays can be realised by exploiting interactions between the individual elements to create new functionality. The properties of these artificial ferroic systems differ strikingly from those of their constituent components, with novel emergent behaviour arising from the collective dynamics of the interacting elements, which are arranged in specific designs and can be activated by applying magnetic or electric fields. We first focus on artificial spin systems consisting of arrays of dipolar-coupled nanomagnets and, in particular, review the field of artificial spin ice, which demonstrates a wide range of fascinating phenomena arising from the frustration inherent in particular arrangements of nanomagnets, including emergent magnetic monopoles, domains of ordered macrospins, and novel avalanche behaviour. We outline how demagnetisation protocols have been employed as an effective thermal anneal in an attempt to reach the ground state, comment on phenomena that arise in thermally activated systems and discuss strategies for selectively generating specific configurations using applied magnetic fields. We then move on from slow field and temperature driven dynamics to high frequency phenomena, discussing spinwave excitations in the context of magnonic crystals constructed from arrays of patterned magnetic elements. At high frequencies, these arrays are studied in terms of potential applications including magnetic logic, linear and non-linear microwave optics, and fast, efficient switching, and we consider the possibility to create tunable magnonic crystals with artificial spin ice. Finally, we discuss how functional ferroic composites can be incorporated to realise magnetoelectric effects. Specifically, we discuss artificial multiferroics (or multiferroic composites), which hold promise for new applications that involve electric field control of magnetism, or electric and magnetic field responsive devices for high frequency integrated circuit design in microwave and terahertz signal processing. We close with comments on how enhanced functionality can be realised through engineering of nanostructures with interacting ferroic components, creating opportunities for novel spin electronic devices that, for example, make use of the transport of magnetic charges, thermally activated elements, and reprogrammable nanomagnet systems.
Nandy, Ashis Kumar; Kiselev, Nikolai S; Blügel, Stefan
2016-04-29
We report on a general principle using interlayer exchange coupling to extend the regime of chiral magnetic films in which stable or metastable magnetic Skyrmions can appear at a zero magnetic field. We verify this concept on the basis of a first-principles model for a Mn monolayer on a W(001) substrate, a prototype chiral magnet for which the atomic-scale magnetic texture is determined by the frustration of exchange interactions, impossible to unwind by laboratory magnetic fields. By means of ab initio calculations for the Mn/W_{m}/Co_{n}/Pt/W(001) multilayer system we show that for certain thicknesses m of the W spacer and n of the Co reference layer, the effective field of the reference layer fully substitutes the required magnetic field for Skyrmion formation.
Magnetic-field-modulated resonant tunneling in ferromagnetic-insulator-nonmagnetic junctions.
Song, Yang; Dery, Hanan
2014-07-25
We present a theory for resonance-tunneling magnetoresistance (MR) in ferromagnetic-insulator-nonmagnetic junctions. The theory sheds light on many of the recent electrical spin injection experiments, suggesting that this MR effect rather than spin accumulation in the nonmagnetic channel corresponds to the electrically detected signal. We quantify the dependence of the tunnel current on the magnetic field by quantum rate equations derived from the Anderson impurity model, with the important addition of impurity spin interactions. Considering the on-site Coulomb correlation, the MR effect is caused by competition between the field, spin interactions, and coupling to the magnetic lead. By extending the theory, we present a basis for operation of novel nanometer-size memories.
NASA Astrophysics Data System (ADS)
Gray, William J.; McKee, Christopher F.; Klein, Richard I.
2018-01-01
Star-forming molecular clouds are observed to be both highly magnetized and turbulent. Consequently, the formation of protostellar discs is largely dependent on the complex interaction between gravity, magnetic fields, and turbulence. Studies of non-turbulent protostellar disc formation with realistic magnetic fields have shown that these fields are efficient in removing angular momentum from the forming discs, preventing their formation. However, once turbulence is included, discs can form in even highly magnetized clouds, although the precise mechanism remains uncertain. Here, we present several high-resolution simulations of turbulent, realistically magnetized, high-mass molecular clouds with both aligned and random turbulence to study the role that turbulence, misalignment, and magnetic fields have on the formation of protostellar discs. We find that when the turbulence is artificially aligned so that the angular momentum is parallel to the initial uniform field, no rotationally supported discs are formed, regardless of the initial turbulent energy. We conclude that turbulence and the associated misalignment between the angular momentum and the magnetic field are crucial in the formation of protostellar discs in the presence of realistic magnetic fields.
Exploring Earth's Magnetism and Northern lights in High School Classroom
NASA Astrophysics Data System (ADS)
Prakash, M.; Peticolas, L.
2008-05-01
Present studies are being conducted as a part of the outreach project entitled Geomagnetic Event Observation Network by Students (GEONS) to share excitement of the THEMIS (Time History of Events and Macro scale Interactions during Substorm) mission launched during February, 2007. The goal of this mission is to investigate the causality of events that lead to the explosive release of energy (derived from the Sun) stored in the Earth's magnetic field. The visible manifestation of the energy release is Aurora Borealis observed in the Northern hemisphere of the Earth. Inherent to understanding the root-cause of formation of spectacular aurora is the interaction between the Earth's magnetic field and the solar wind charged particles. To achieve this ambitious objective in a high school classroom, students conducted activities using the magnetic field of bar magnets, electromagnets, electromagnetic induction, and Lenz's Law. Following the fundamental understanding of these concepts, students acquired the necessary vocabulary and explored the various components of the interaction between the Earth's magnetic field and the solar wind charged particles. They were also familiarized with the general format in which THEMIS spacecraft data is displayed. In this presentation, we will address student's misconceptions, their struggle to make connections before they can appreciate "Big Idea" in terms of its components. Discussion will highlight the relationship between student understanding of new ideas and how these ideas connect with their prior knowledge.
Chatterjee, Gourab; Singh, Prashant Kumar; Robinson, A P L; Blackman, D; Booth, N; Culfa, O; Dance, R J; Gizzi, L A; Gray, R J; Green, J S; Koester, P; Kumar, G Ravindra; Labate, L; Lad, Amit D; Lancaster, K L; Pasley, J; Woolsey, N C; Rajeev, P P
2017-08-21
The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-μm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~10 20 W/cm 2 . The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear.
NASA Astrophysics Data System (ADS)
Corsini, Eric P.
The quest to expand the limited sensorial domain, in particular to bridge the inability to gauge magnetic fields near and far, has driven the fabrication of remedial tools. The interaction of ferromagnetic material with a magnetic field had been the only available technique to gauge that field for several millennium. The advent of electricity and associated classical phenomena captured in the four Maxwell equations, were a step forward. In the early 1900s, the model of quantum mechanics provided a two-way leap forward. One came from the newly understood interaction of light and matter, and more specifically the three-way coupling of photons, atoms' angular momenta, and magnetic field, which are the foundations of atomic magnetometry. The other came from magnetically sensitive quantum effects in a fabricated energy-ladder form of matter cooled to a temperature below that of the energy steps; these quantum effects gave rise to the superconducting quantum interference device (SQUID). Research using atomic magnetometers and SQUIDs has resulted in thousands of publications, text books, and conferences. The current status in each field is well described in Refs. [48,49,38,42] and all references therein. In this work we develop and investigate techniques and applications pertaining to atomic magnetometry. [Full text: eric.corsini gmail.com].
Zhang, Jitao; Zhang, Ru; Popov, Maksym
2017-01-01
Ferromagnetic–ferroelectric nanocomposites are of interest for realizing strong strain-mediated coupling between electric and magnetic subsystems due to a high surface area-to-volume ratio. This report is on the synthesis of nickel ferrite (NFO)–barium titanate (BTO) core–shell nanofibers, magnetic field assisted assembly into superstructures, and studies on magneto-electric (ME) interactions. Electrospinning techniques were used to prepare coaxial fibers of 0.5–1.5 micron in diameter. The core–shell structure of annealed fibers was confirmed by electron microscopy and scanning probe microscopy. The fibers were assembled into discs and films in a uniform magnetic field or in a field gradient. Studies on ME coupling in the assembled films and discs were done by magnetic field (H)-induced polarization, magneto–dielectric effects at low frequencies and at 16–24 GHz, and low-frequency ME voltage coefficients (MEVC). We measured ~2–7% change in remnant polarization and in the permittivity for H = 7 kOe, and a MEVC of 0.4 mV/cm Oe at 30 Hz. A model has been developed for low-frequency ME effects in an assembly of fibers and takes into account dipole–dipole interactions between the fibers and fiber discontinuity. Theoretical estimates for the low-frequency MEVC have been compared with the data. These results indicate strong ME coupling in superstructures of the core–shell fibers. PMID:29295512
Effect of magnetic field on seed germination and seedling growth of sunflower
NASA Astrophysics Data System (ADS)
Matwijczuk, A.; Kornarzyński, K.; Pietruszewski, S.
2012-07-01
The impact of a variable magnetic field, magnetically treated water and a combination of both these factors on the germination of seeds and the final mass at the initial stage of growth sunflower plants was presented. Investigations were carried out in pots filled with sand, tin an air-conditioned plant house with no access to daylight using fluorescent light as illumination. A statistical significance positive impact was achieved for the samples subjected to the interaction of both stimulating factors simultaneously, the magnetic field and the impact of treated water several times on the speed of seed germination and final plant mass. Negative impacts were obtained for the majority of the test cases, for the magnetically treated water, the short duration of activity of the magnetic field and for the connection of the magnetic field and low-flow times.
Espisodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brain, D A; Baker, A H; Briggs, J
2009-06-02
We present an analysis of magnetic field and suprathermal electron measurements from the Mars Global Surveyor (MGS) spacecraft that reveals isolated magnetic structures filled with Martian atmospheric plasma located downstream from strong crustal magnetic fields with respect to the flowing solar wind. The structures are characterized by magnetic field enhancements and rotations characteristic of magnetic flux ropes, and characteristic ionospheric electron energy distributions with angular distributions distinct from surrounding regions. These observations indicate that significant amounts of atmosphere are intermittently being carried away from Mars by a bulk removal process: the top portions of crustal field loops are stretched throughmore » interaction with the solar wind and detach via magnetic reconnection. This process occurs frequently and may account for as much as 10% of the total present-day ion escape from Mars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, M.; Hong, Tao; Peng, J.
Bilayer ruthenate Ca 3(Ru 1-xFe x) 2O 7 (x = 0.05) exhibits an incommensurate magnetic soliton lattice driven by the Dzyaloshinskii–Moriya interaction. Here, in this work, we report complex field-induced magnetic phase transitions and memory effect in this system via single-crystal neutron diffraction and magnetotransport measurements. We observe first-order incommensurate-to-commensurate magnetic transitions upon applying the magnetic field both along and perpendicular to the propagation axis of the incommensurate spin structure. Furthermore, we find that the metastable states formed upon decreasing the magnetic field depend on the temperature and the applied field orientation. Lastly, we suggest that the observed field-induced metastabilitymore » may be ascribable to the quenched kinetics at low temperature.« less
Zhu, M.; Hong, Tao; Peng, J.; ...
2018-01-09
Bilayer ruthenate Ca 3(Ru 1-xFe x) 2O 7 (x = 0.05) exhibits an incommensurate magnetic soliton lattice driven by the Dzyaloshinskii–Moriya interaction. Here, in this work, we report complex field-induced magnetic phase transitions and memory effect in this system via single-crystal neutron diffraction and magnetotransport measurements. We observe first-order incommensurate-to-commensurate magnetic transitions upon applying the magnetic field both along and perpendicular to the propagation axis of the incommensurate spin structure. Furthermore, we find that the metastable states formed upon decreasing the magnetic field depend on the temperature and the applied field orientation. Lastly, we suggest that the observed field-induced metastabilitymore » may be ascribable to the quenched kinetics at low temperature.« less
Halbach Effect at the Nanoscale from Chiral Spin Textures.
Marioni, Miguel A; Penedo, Marcos; Baćani, Mirko; Schwenk, Johannes; Hug, Hans J
2018-04-11
Mallinson's idea that some spin textures in planar magnetic structures could produce an enhancement of the magnetic flux on one side of the plane at the expense of the other gave rise to permanent magnet configurations known as Halbach magnet arrays. Applications range from wiggler magnets in particle accelerators and free electron lasers to motors and magnetic levitation trains, but exploiting Halbach arrays in micro- or nanoscale spintronics devices requires solving the problem of fabrication and field metrology below a 100 μm size. In this work, we show that a Halbach configuration of moments can be obtained over areas as small as 1 μm × 1 μm in sputtered thin films with Néel-type domain walls of unique domain wall chirality, and we measure their stray field at a controlled probe-sample distance of 12.0 ± 0.5 nm. Because here chirality is determined by the interfacial Dyzaloshinkii-Moriya interaction, the field attenuation and amplification is an intrinsic property of this film, allowing for flexibility of design based on an appropriate definition of magnetic domains. Skyrmions (<100 nm wide) illustrate the smallest kind of such structures, for which our measurement of stray magnetic fields and mapping of the spin structure shows they funnel the field toward one specific side of the film given by the sign of the Dyzaloshinkii-Moriya interaction parameter D.
NASA Astrophysics Data System (ADS)
Ribeiro, P. O.; Alho, B. P.; Alvarenga, T. S. T.; Nóbrega, E. P.; de Sousa, V. S. R.; Carvalho, A. Magnus G.; Caldas, A.; Lopes, P. H. O.; von Ranke, P. J.
2017-11-01
We report the anisotropy of magnetic field-induced entropy change in rare earth Er1-yTbyAl2 compounds (y = 0.00, 0.25, 0.50, 0.75 and 1.00). In the present work, we use a model Hamiltonian that includes the crystalline electrical field anisotropy in both Er and Tb magnetic sublattices, chemical disorder in exchange interactions among Er-Er, Tb-Tb and Er-Tb magnetic ions and the Zeeman effect. We investigated the isothermal magnetic entropy change ΔST for a magnetic field of 1 T rotating from a hard 〈0 0 1〉 to the easy 〈1 1 1〉 direction. We also performed a systematic analysis of the reorientation temperature as a function of the magnetic field intensity. The anisotropic magnetocaloric effect highlights the applicability of this effect on the rotating magnetic refrigeration.
Pumping Liquid Oxygen by Use of Pulsed Magnetic Fields
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Lane, John; Immer, Christopher; Simpson, James
2004-01-01
An effort is underway to develop a method of pumping small amounts of liquid oxygen by use of pulsed magnetic fields. This development is motivated by a desire to reduce corrosion and hazards of explosion and combustion by eliminating all moving pump parts in contact with the pumped oxygen. The method exploits the known paramagnetism of liquid oxygen. Since they both behave similarly, the existing theory of ferrofluids (liquids with colloidally suspended magnetic particles) is directly applicable to paramagnetic liquid oxygen. In general, the force density of the paramagnetic interaction is proportional to the magnetic susceptibility multiplied by the gradient of the square of the magnitude of the magnetic field. The local force is in the direction of intensifying magnetic field. In the case of liquid oxygen, the magnetic susceptibility is large enough that a strong magnetic-field gradient can lift the liquid in normal Earth gravitation.
NASA Astrophysics Data System (ADS)
Mancusi, D.; Polichetti, M.; Cimberle, M. R.; Pace, S.
2015-09-01
The temperature-dependent fundamental ac susceptibility of a granular superconductor in the absence of dc fields has been analyzed by developing a phenomenological model for effective magnetic fields, taking into account the influence of the magnetic interaction between the intergranular and the intragranular magnetizations due to demagnetizing effects. For this purpose a policrystal Fe-based superconductor FeSe0.5Te0.5 sample has been studied. By the frequency dependence of the peaks of the temperature-dependent imaginary part of the fundamental complex susceptibility, the dependence on temperature of the characteristic times both for intergranular and intragranular relaxations of magnetic flux are derived, and the corresponding relaxation processes due to combinations of the flux creep, the flux flow and the thermally activated flux flow regimes are identified on the basis of the effective magnetic fields both at the sample surface and at the grains’ surfaces. Such characteristic times, through the Havriliak-Negami function, determine the temperature and the frequency dependences of the complex susceptibility. The comparison of the numerically obtained curves with the experimental ones confirms the relevance, for identifying the intergranular and intragranular contributions to the ac magnetic response and the corresponding flux dynamical regimes, of the interaction between the intergranular and intragranular magnetizations due to demagnetizing effects.
Hyperfine Fields of 181Ta in UFe4Al8
NASA Astrophysics Data System (ADS)
Marques, J. G.; Barradas, N. P.; Alves, E.; Ramos, A. R.; Gonçalves, A. P.; da Silva, M. F.; Soares, J. C.
2001-11-01
The γ γ Perturbed Angular Correlation technique was used to study the hyperfine interaction of 181Ta at the Hf site(s) in UFe4Al8 at room temperature and 12 K. The data at room temperature are well described by two electric field gradients, while at low temperature two combined hyperfine interactions have to be considered, one with the magnetic hyperfine field collinear with the c-axis and another with the magnetic hyperfine field in the basal plane. The results are compared with previous Mössbauer and neutron diffraction experiments and the lattice site of Hf is discussed.
Initial Results from Lunar Electromagnetic Sounding with ARTEMIS
NASA Astrophysics Data System (ADS)
Fuqua, H.; Fatemi, S.; Poppe, A. R.; Delory, G. T.; Grimm, R. E.; De Pater, I.
2016-12-01
Electromagnetic Sounding constrains conducting layers of the lunar interior by observing variations in the Interplanetary Magnetic Field. Here, we focus our analysis on the time domain transfer function method locating transient events observed by two magnetometers near the Moon. We analyze ARTEMIS and Apollo magnetometer data. This analysis assumes the induced field responds undisturbed in a vacuum. In actuality, the dynamic plasma environment interacts with the induced field. Our models indicate distortion but not confinement occurs in the nightside wake cavity. Moreover, within the deep wake, near-vacuum region, distortion of the induced dipole fields due to the interaction with the wake is minimal depending on the magnitude of the induced field, the geometry of the upstream fields, and the upstream plasma parameters such as particle densities, solar wind velocity, and temperatures. Our results indicate the assumption of a vacuum dipolar response is reasonable within this minimally disturbed zone. We then interpret the ATEMIS magnetic field signal through a geophysical forward model capturing the induced response based on prescribed electrical conductivity models. We demonstrate our forward model passes benchmarking analyses and solves the magnetic induction response for any input signal as well as any 2 or 3 dimensional conductivity profile. We locate data windows according to the following criteria: (1) probe locations such that the wake probe is within 500km altitude within the wake cavity and minimally disturbed zone, and the second probe is in the free streaming solar wind; (2) a transient event consisting of an abrupt change in the magnetic field occurs enabling the observation of induction; (3) cross correlation analysis reveals the magnetic field signals are well correlated between the two probes and distances observed. Here we present initial ARTEMIS results providing further insight into the lunar interior structure. This method and modeling results are applicable to any airless body with a conducting interior, interacting directly with the solar wind in the absence of a parent body magnetic field as well as any two point magnetometer constellation.
Recombination era magnetic fields from axion dark matter
Banik, Nilanjan; Christopherson, Adam J.
2016-02-04
We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ~10 kpc and have a magnitude of the order of B~10 –23G today. Lastly, the field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.
Self-induced quasistationary magnetic fields.
Kamenetskii, E O
2006-01-01
The interaction of electromagnetic radiation with temporally dispersive magnetic solids of small dimensions may show very special resonant behaviors. The internal fields of such samples are characterized by magnetostatic-potential scalar wave functions. The oscillating modes have the energy orthogonality properties and unusual pseudoelectric (gauge) fields. Because of a phase factor, that makes the states single valued, a persistent magnetic current exists. This leads to appearance of an eigenelectric moment of a small disk sample. One of the intriguing features of the mode fields is dynamical symmetry breaking.
The complex magnetic field configuration of the Martian magnetotail as observed by MAVEN
NASA Astrophysics Data System (ADS)
DiBraccio, Gina A.; Luhmann, Janet; Curry, Shannon; Espley, Jared R.; Gruesbeck, Jacob; Xu, Shaosui; Mitchell, David; Soobiah, Yasir; Connerney, John E. P.; Dong, Chuanfei; Harada, Yuki; Ruhunusiri, Suranga; Halekas, Jasper; Hara, Takuya; Ma, Yingjuan; Brain, David; Jakosky, Bruce
2017-10-01
The Martian magnetosphere forms as the solar wind directly interacts with the planet’s upper atmosphere. During this interaction, the Sun’s interplanetary magnetic field (IMF) drapes around the planet and local crustal magnetic fields, creating a magnetosphere configuration that has attributes of both an induced magnetosphere like that of Venus, and a complex, small-scale magnetosphere like the Moon. In addition to the closed crustal fields and draped IMF at Mars, open magnetic fields are created when magnetic reconnection occurs between the planetary fields and the IMF. These various field topologies present a complex magnetotail structure that we are now able to explore using a combination of MAVEN observations and magnetohydrodynamic (MHD) simulations. Preliminary MHD results have suggested that the Martian magnetotail includes a dual-lobe component, composed of open crustal fields, enveloped by an induced comet-like tail. These simulated open-field lobes are twisted by roughly 45°, either clockwise or counterclockwise, from the ecliptic plane. This rotation depends on the east-west component of the IMF. We utilize MAVEN Magnetometer and Solar Wind Ion Analyzer (SWIA) measurements collected over two Earth years to analyze the tail magnetic field configuration as a function of IMF direction. Cross-tail views of the average measured magnetic field components directed toward and away from the planet are compared for a variety of solar wind parameters. We find that, in agreement with simulation results, the east-west IMF component strongly affects the magnetotail structure, twisting its sunward-antisunward polarity patterns in response to changing IMF orientation. Through a data-model comparison we are able to infer that regions of open magnetic fields in the tail are likely reconnected crustal fields. Futhermore, these open fields in the tail may contribute to atmospheric escape to space. From this investigation we are able to confirm that the Martian magnetotail is a hybrid configuration between intrinsic and induced magnetospheres, shifting the paradigm of Mars’ magnetosphere as we have understood it thus far.
Phase diagram of Ba 2 NaOsO 6, a Mott insulator with strong spin orbit interactions
NASA Astrophysics Data System (ADS)
Liu, W.; Cong, R.; Garcia, E.; Reyes, A. P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.
2018-05-01
We report 23Na nuclear magnetic resonance (NMR) measurements of the Mott insulator with strong spin-orbit interaction Ba2NaOsO6 as a function of temperature in different magnetic fields ranging from 7 T to 29 T. The measurements, intended to concurrently probe spin and orbital/lattice degrees of freedom, are an extension of our work at lower fields reported in Lu et al. (2017) [1]. We have identified clear quantitative NMR signatures that display the appearance of a canted ferromagnetic phase, which is preceded by local point symmetry breaking. We have compiled the field temperature phase diagram extending up to 29 T. We find that the broken local point symmetry phase extends over a wider temperature range as magnetic field increases.
Nonlinear wave interaction in a plasma column
NASA Technical Reports Server (NTRS)
Larsen, J.
1972-01-01
Two particular cases of nonlinear wave interaction in a plasma column were investigated. The frequencies of the waves were on the order of magnitude of the electron plasma frequency, and ion motion was neglected. The nonlinear coupling of slow waves on a plasma column was studied by means of cold plasma theory, and the case of a plasma column surrounded by an infinite dielectric in the absence of a magnetic field was also examined. Nonlinear scattering from a plasma column in an electromagnetic field having it's magnetic field parallel to the axis of the column was investigated. Some experimental results on mode conversion in the presence of loss are presented along with some observations of nonlinear scattering, The effect of the earth's magnetic field and of discharge symmetry on the radiation pattern are discussed.
Forced three-dimensional magnetic reconnection due to linkage of magnetic flux tubes
NASA Technical Reports Server (NTRS)
Otto, A.
1995-01-01
During periods of southward interplanetary magnetic field (IMF) orientation the magnetic field geometry at the dayside magnetopause is susceptible to magnetic reconnection. It has been suggested that reconnection may occur in a localized manner at several patches on the magnetopause. A major problem with this picture is the interaction of magnetic flux ropes which are generated by different reconnection processes. An individual flux rope is bent elbowlike where it intersects the magnetopause and the magnetic field changes from magnetospheric to interplanetary magnetic field orientation. Multiple patches of reconnection can lead to the formation of interlinked magnetic flux tubes. Although the corresponding flux is connected to the IMF the northward and southward connected branches are hooked into each other and cannot develop independently. We have studied this problem in the framework of three-dimensional magnetohydrodynamic simulations. The results indicate that a singular current sheet forms at the interface of two interlinked flux tubes if no resistivity is present in the simulation. This current sheet is strongly tilted compared to the original current sheet. In the presence of resistivity the interaction of the two flux tubes forces a fast reconnection process which generates helically twisted closed magnetospheric flux. This linkage induced reconnection generates a boundary layer with layers of open and closed magnetospheric flux and may account for the brightening of auroral arcs poleward of the boundary between open and closed magnetic flux.
Magnetically leviated superconducting bearing
Weinberger, Bernard R.; Lynds, Jr., Lahmer
1993-01-01
A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.
Magnetic Yoking and Tunable Interactions in FePt-Based Hard/Soft Bilayers
Gilbert, Dustin A.; Liao, Jung-Wei; Kirby, Brian J.; Winklhofer, Michael; Lai, Chih-Huang; Liu, Kai
2016-01-01
Magnetic interactions in magnetic nanostructures are critical to nanomagnetic and spintronic explorations. Here we demonstrate an extremely sensitive magnetic yoking effect and tunable interactions in FePt based hard/soft bilayers mediated by the soft layer. Below the exchange length, a thin soft layer strongly exchange couples to the perpendicular moments of the hard layer; above the exchange length, just a few nanometers thicker, the soft layer moments turn in-plane and act to yoke the dipolar fields from the adjacent hard layer perpendicular domains. The evolution from exchange to dipolar-dominated interactions is experimentally captured by first-order reversal curves, the ΔM method, and polarized neutron reflectometry, and confirmed by micromagnetic simulations. These findings demonstrate an effective yoking approach to design and control magnetic interactions in wide varieties of magnetic nanostructures and devices. PMID:27604428
Park, Tae Jung; Park, Jong Pil; Lee, Seok Jae; Jung, Dae-Hwan; Ko, Young Koan; Jung, Hee-Tae; Lee, Sang Yup
2011-05-01
Carbon nanotubes (CNTs) have attracted considerable attention for applications using their superior mechanical, thermal and electrical properties. A simple method to controllably align single-walled CNTs (SWNTs) by using magnetic particles embedded with superparamagnetic iron oxide as an accelerator under the magnetic field was developed. The functionalization of SWNTs using biotin, interacted with streptavidin-coupled magnetic particles (micro-to-nano in diameter), and layer-by-layer assembly were performed for the alignment of a particular direction onto the clean silicon and the gold substrate at very low magnetic forces (0.02-0.89 T) at room temperature. The successful alignment of the SWNTs with multi-layer film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By changing the orientation and location of the substrates, crossed-networks of SWNTs-magnetic particle complex could easily be fabricated. We suggest that this approach, which consists of a combination of biological interaction among streptavidin-biotin and magnetite particles, should be useful for lateral orientation of individual SWNTs with controllable direction.
Rippled beam free electron laser amplifier
Carlsten, Bruce E.
1999-01-01
A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.
Cascade of Magnetic Field Induced Spin Transitions in LaCoO3
NASA Astrophysics Data System (ADS)
Altarawneh, M. M.; Chern, G.-W.; Harrison, N.; Batista, C. D.; Uchida, A.; Jaime, M.; Rickel, D. G.; Crooker, S. A.; Mielke, C. H.; Betts, J. B.; Mitchell, J. F.; Hoch, M. J. R.
2012-07-01
We present magnetization and magnetostriction studies of LaCoO3 in magnetic fields approaching 100 T. In contrast with expectations from single-ion models, the data reveal two distinct first-order transitions and well-defined magnetization plateaus. The magnetization at the higher plateau is only about half the saturation value expected for spin-1 Co3+ ions. These findings strongly suggest collective behavior induced by interactions between different electronic configurations of Co3+ ions. We propose a model that predicts crystalline spin textures and a cascade of four magnetic phase transitions at high fields, of which the first two account for the experimental data.
Magnetic field investigations during ROSETTA's 2867 Šteins flyby
NASA Astrophysics Data System (ADS)
Auster, H. U.; Richter, I.; Glassmeier, K. H.; Berghofer, G.; Carr, C. M.; Motschmann, U.
2010-07-01
During the 2867 Šteins flyby of the ROSETTA spacecraft on September 5, 2008 magnetic field measurements have been made with both the RPC orbiter magnetometer and the ROMAP lander magnetometer. These combined magnetic field measurements allow a detailed examination of any magnetic signatures caused either directly by the asteroid or indirectly by Šteins' different modes of interaction with the solar wind. Comparing measurements with simulation results show that Šteins does not posses a significant remanent magnetization. The magnetization is estimated at less than 10 -3 A m 2/kg. This is significantly different from results at 9969 Braille and 951 Gaspra.
NASA Astrophysics Data System (ADS)
Tan, R. P.; Carrey, J.; Respaud, M.
2014-12-01
Understanding the influence of dipolar interactions in magnetic hyperthermia experiments is of crucial importance for fine optimization of nanoparticle (NP) heating power. In this study we use a kinetic Monte Carlo algorithm to calculate hysteresis loops that correctly account for both time and temperature. This algorithm is shown to correctly reproduce the high-frequency hysteresis loop of both superparamagnetic and ferromagnetic NPs without any ad hoc or artificial parameters. The algorithm is easily parallelizable with a good speed-up behavior, which considerably decreases the calculation time on several processors and enables the study of assemblies of several thousands of NPs. The specific absorption rate (SAR) of magnetic NPs dispersed inside spherical lysosomes is studied as a function of several key parameters: volume concentration, applied magnetic field, lysosome size, NP diameter, and anisotropy. The influence of these parameters is illustrated and comprehensively explained. In summary, magnetic interactions increase the coercive field, saturation field, and hysteresis area of major loops. However, for small amplitude magnetic fields such as those used in magnetic hyperthermia, the heating power as a function of concentration can increase, decrease, or display a bell shape, depending on the relationship between the applied magnetic field and the coercive/saturation fields of the NPs. The hysteresis area is found to be well correlated with the parallel or antiparallel nature of the dipolar field acting on each particle. The heating power of a given NP is strongly influenced by a local concentration involving approximately 20 neighbors. Because this local concentration strongly decreases upon approaching the surface, the heating power increases or decreases in the vicinity of the lysosome membrane. The amplitude of variation reaches more than one order of magnitude in certain conditions. This transition occurs on a thickness corresponding to approximately 1.3 times the mean distance between two neighbors. The amplitude and sign of this variation is explained. Finally, implications of these various findings are discussed in the framework of magnetic hyperthermia optimization. It is concluded that feedback on two specific points from biology experiments is required for further advancement of the optimization of magnetic NPs for magnetic hyperthermia. The present simulations will be an advantageous tool to optimize magnetic NPs heating power and interpret experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Emrys W.; Henbest, Kevin B.; Timmel, Christiane R., E-mail: christiane.timmel@chem.ox.ac.uk, E-mail: stuart.mackenzie@chem.ox.ac.uk
Even though the interaction of a <1 mT magnetic field with an electron spin is less than a millionth of the thermal energy at room temperature (k{sub B}T), it still can have a profound effect on the quantum yields of radical pair reactions. We present a study of the effects of sub-millitesla magnetic fields on the photoreaction of flavin mononucleotide with ascorbic acid. Direct control of the reaction pathway is achieved by varying the rate of electron transfer from ascorbic acid to the photo-excited flavin. At pH 7.0, we verify the theoretical prediction that, apart from a sign change, themore » form of the magnetic field effect is independent of the initial spin configuration of the radical pair. The data agree well with model calculations based on a Green’s function approach that allows multinuclear spin systems to be treated including the diffusive motion of the radicals, their spin-selective recombination reactions, and the effects of the inter-radical exchange interaction. The protonation states of the radicals are uniquely determined from the form of the magnetic field-dependence. At pH 3.0, the effects of two chemically distinct radical pair complexes combine to produce a pronounced response to ∼500 μT magnetic fields. These findings are relevant to the magnetic responses of cryptochromes (flavin-containing proteins proposed as magnetoreceptors in birds) and may aid the evaluation of effects of weak magnetic fields on other biologically relevant electron transfer processes.« less
Macroscopic Lagrangian description of warm plasmas. II Nonlinear wave interactions
NASA Technical Reports Server (NTRS)
Kim, H.; Crawford, F. W.
1983-01-01
A macroscopic Lagrangian is simplified to the adiabatic limit and expanded about equilibrium, to third order in perturbation, for three illustrative cases: one-dimensional compression parallel to the static magnetic field, two-dimensional compression perpendicular to the static magnetic field, and three-dimensional compression. As examples of the averaged-Lagrangian method applied to nonlinear wave interactions, coupling coefficients are derived for interactions between two electron plasma waves and an ion acoustic wave, and between an ordinary wave, an electron plasma wave, and an ion acoustic wave.
Modeling Laser-Plasma Interactions in a Magnetized Plasma
NASA Astrophysics Data System (ADS)
Los, Eva; Strozzi, D. J.; Chapman, T.; Farmer, W. A.; Cohen, B. I.
2017-10-01
We consider how laser-plasma interactions, namely stimulated Raman and Brillouin scattering, develop in the presence of a background magnetic field. Externally-launched waves in magnetized plasma have been studied in magnetic fusion devices for several decades, with relatively little work on their parametric decay. The topic has received scant attention in the laser-plasma and high-energy-density fields, but is becoming timely. The MagLIF pulsed-power scheme relies on an imposed axial field and laser-preheat [S. Slutz et al., Phys. Rev. Lett. 2012]. Imposing a field on a hohlraum to reduce hotspot losses has also been proposed [L. J. Perkins et al., Phys. Plasmas 2013]. We consider how the field affects the linear light waves in a plasma, e.g. by decoupling the left- and right- circular polarizations (Faraday rotation). Parametric instability growth rates are presented, as functions of plasma conditions, field strength, and geometry. The scattered-light spectrum, which is routinely measured, is also found. Work performed under auspices of US DoE by LLNL under Contract DE-AC52-07NA27344.
Electrodynamics of the Martian Ionosphere
NASA Astrophysics Data System (ADS)
Ledvina, S. A.; Brecht, S. H.
2017-12-01
The presence of the Martian crustal magnetic fields makes a significant modification to the interaction between the solar wind/IMF and the ionosphere of the planet. This paper presents the results of 3-D hybrid simulations of Martian solar wind interaction containing the Martian crustal fields., self-consistent ionospheric chemistry and planetary rotation. It has already been reported that the addition of the crustal fields and planetary rotation makes a significant modification of the ionospheric loss from Mars, Brecht et al., 2016. This paper focuses on two other aspects of the interaction, the electric fields and the current systems created by the solar wind interaction. The results of several simulations will be analyzed and compared. The electric fields around Mars due to its interaction with the solar wind will be examined. Special attention will be paid to the electric field constituents (∇ X B, ∇Pe, ηJ). Regions where the electric field is parallel to the magnetic field will be found and the implications of these regions will be discussed. Current systems for each ion species will be shown. Finally the effects on the electric fields and the current systems due to the rotation of Mars will be examined.
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.
2016-01-01
Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field. PMID:26817823
Study of multi-level atomic systems with the application of magnetic field
NASA Astrophysics Data System (ADS)
Hu, Jianping; Roy, Subhankar; Ummal Momeen, M.
2018-04-01
The complexity of multiple energy levels associated with each atomic system determines the various processes related to light- matter interactions. It is necessary to understand the influence of different levels in a given atomic system. In this work we focus on multi- level atomic schemes with the application of magnetic field. We analyze the different EIT windows which appears in the presence of moderately high magnetic field (∼ 10 G) strength.
Lin, Shi-Zeng; Saxena, Avadh
2015-11-03
Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response ofmore » the non-circular skyrmions depends on the direction of external currents.« less
Spin resonance and spin fluctuations in a quantum wire
NASA Astrophysics Data System (ADS)
Pokrovsky, V. L.
2017-02-01
This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the measurement of spin correlations is a diagnostic tool to distinguish between the two states of electronic liquid in the quantum wire.
Laser-pulse shape effects on magnetic field generation in underdense plasmas
NASA Astrophysics Data System (ADS)
Gopal, Krishna; Raja, Md. Ali; Gupta, Devki Nandan; Avinash, K.; Sharma, Suresh C.
2018-07-01
Laser pulse shape effect has been considered to estimate the self-generated magnetic field in laser-plasma interaction. A ponderomotive force based physical mechanism has been proposed to investigate the self-generated magnetic field for different spatial profiles of the laser pulse in inhomogeneous plasmas. The spatially inhomogeneous electric field of a laser pulse imparts a stronger ponderomotive force on plasma electrons. Thus, the stronger ponderomotive force associated with the asymmetric laser pulse generates a stronger magnetic field in comparison to the case of a symmetric laser pulse. Scaling laws for magnetic field strength with the laser and plasma parameters for different shape of the pulse have been suggested. Present study might be helpful to understand the plasma dynamics relevant to the particle trapping and injection in laser-plasma accelerators.
Non-Fermi-liquid magic angle effects in high magnetic fields
NASA Astrophysics Data System (ADS)
Lebed, A. G.
2016-07-01
We investigate a theoretical problem of electron-electron interactions in an inclined magnetic field in a quasi-one-dimensional (Q1D) conductor. We show that they result in strong non-Fermi-liquid corrections to a specific heat, provided that the direction of the magnetic field is far from the so-called Lebed's magic angles (LMAs). If magnetic field is directed close to one of the LMAs, the specific heat corrections become small and the Fermi-liquid picture restores. As a result, we predict Fermi-liquid-non-Fermi-liquid angular crossovers in the vicinities of the LMA directions of the field. We suggest to perform the corresponding experiment in the Q1D conductor (Per) 2Au (mnt) 2 under pressure in magnetic fields of the order of H ≃25 T .
Evolution of the magnetic field generated by the Kelvin-Helmholtz instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modestov, M.; Bychkov, V.; Brodin, G.
2014-07-15
The Kelvin-Helmholtz instability in an ionized plasma is studied with a focus on the magnetic field generation via the Biermann battery (baroclinic) mechanism. The problem is solved by using direct numerical simulations of two counter-directed flows in 2D geometry. The simulations demonstrate the formation of eddies and their further interaction and merging resulting in a large single vortex. In contrast to general belief, it is found that the instability generated magnetic field may exhibit significantly different structures from the vorticity field, despite the mathematically identical equations controlling the magnetic field and vorticity evolution. At later stages of the nonlinear instabilitymore » development, the magnetic field may keep growing even after the hydrodynamic vortex strength has reached its maximum and started decaying due to dissipation.« less
Maeda, Kiminori; Storey, Jonathan G; Liddell, Paul A; Gust, Devens; Hore, P J; Wedge, C J; Timmel, Christiane R
2015-02-07
We present a study of a carotenoid-porphyrin-fullerene triad previously shown to function as a chemical compass: the photogenerated carotenoid-fullerene radical pair recombines at a rate sensitive to the orientation of an applied magnetic field. To characterize the system we develop a time-resolved Low-Frequency Reaction Yield Detected Magnetic Resonance (tr-LF-RYDMR) technique; the effect of varying the relative orientation of applied static and 36 MHz oscillating magnetic fields is shown to be strongly dependent on the strength of the oscillating magnetic field. RYDMR is a diagnostic test for involvement of the radical pair mechanism in the magnetic field sensitivity of reaction rates or yields, and has previously been applied in animal behavioural experiments to verify the involvement of radical-pair-based intermediates in the magnetic compass sense of migratory birds. The spectroscopic selection rules governing RYDMR are well understood at microwave frequencies for which the so-called 'high-field approximation' is valid, but at lower frequencies different models are required. For example, the breakdown of the rotating frame approximation has recently been investigated, but less attention has so far been given to orientation effects. Here we gain physical insights into the interplay of the different magnetic interactions affecting low-frequency RYDMR experiments performed in the challenging regime in which static and oscillating applied magnetic fields as well as internal electron-nuclear hyperfine interactions are of comparable magnitude. Our observations aid the interpretation of existing RYDMR-based animal behavioural studies and will inform future applications of the technique to verify and characterize further the biological receptors involved in avian magnetoreception.
Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5
Liu, Yanwen; Yuan, Xiang; Zhang, Cheng; Jin, Zhao; Narayan, Awadhesh; Luo, Chen; Chen, Zhigang; Yang, Lei; Zou, Jin; Wu, Xing; Sanvito, Stefano; Xia, Zhengcai; Li, Liang; Wang, Zhong; Xiu, Faxian
2016-01-01
Dirac semimetals have attracted extensive attentions in recent years. It has been theoretically suggested that many-body interactions may drive exotic phase transitions, spontaneously generating a Dirac mass for the nominally massless Dirac electrons. So far, signature of interaction-driven transition has been lacking. In this work, we report high-magnetic-field transport measurements of the Dirac semimetal candidate ZrTe5. Owing to the large g factor in ZrTe5, the Zeeman splitting can be observed at magnetic field as low as 3 T. Most prominently, high pulsed magnetic field up to 60 T drives the system into the ultra-quantum limit, where we observe abrupt changes in the magnetoresistance, indicating field-induced phase transitions. This is interpreted as an interaction-induced spontaneous mass generation of the Dirac fermions, which bears resemblance to the dynamical mass generation of nucleons in high-energy physics. Our work establishes Dirac semimetals as ideal platforms for investigating emerging correlation effects in topological matters. PMID:27515493
Emergent Electromagnetism in Bilayer Graphene
NASA Astrophysics Data System (ADS)
Winkler, Roland; Zülicke, Ulrich
2013-03-01
Recently atomically flat layers of carbon known as graphene have become the rising star in spintronics as their electrons carry not only the ordinary spin degree of freedom, but they also have a pseudospin degree of freedom tied to the electrons' orbital motion which could enable new routes for spintronics. Here we focus on bilayer graphene (BLG). Using group theory we have established a complete description of how electrons in BLG interact with electric and magnetic fields. We show that electrons in BLG experience an unusual type of matter-field interactions where magnetic and electric fields are virtually equivalent: every coupling of an electron's degrees of freedom to a magnetic field is matched by an analogous coupling of the same degrees of freedom to an electric field. This counter-intuitive duality of matter-field interactions allows novel ways to create and manipulate spin and pseudo-spin polarizations via external fields that are not available in other materials. See arXiv:1206.4761. This work was supported by Marsden Fund contract no. VUW0719, administered by the Royal Society of New Zealand. Work at Argonne was supported by DOE BES under Contract No. DE-AC02-06CH11357.
Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7.
Morris, D J P; Tennant, D A; Grigera, S A; Klemke, B; Castelnovo, C; Moessner, R; Czternasty, C; Meissner, M; Rule, K C; Hoffmann, J-U; Kiefer, K; Gerischer, S; Slobinsky, D; Perry, R S
2009-10-16
Sources of magnetic fields-magnetic monopoles-have so far proven elusive as elementary particles. Condensed-matter physicists have recently proposed several scenarios of emergent quasiparticles resembling monopoles. A particularly simple proposition pertains to spin ice on the highly frustrated pyrochlore lattice. The spin-ice state is argued to be well described by networks of aligned dipoles resembling solenoidal tubes-classical, and observable, versions of a Dirac string. Where these tubes end, the resulting defects look like magnetic monopoles. We demonstrated, by diffuse neutron scattering, the presence of such strings in the spin ice dysprosium titanate (Dy2Ti2O7). This is achieved by applying a symmetry-breaking magnetic field with which we can manipulate the density and orientation of the strings. In turn, heat capacity is described by a gas of magnetic monopoles interacting via a magnetic Coulomb interaction.
Magnetic small-angle neutron scattering of bulk ferromagnets.
Michels, Andreas
2014-09-24
We summarize recent theoretical and experimental work in the field of magnetic small-angle neutron scattering (SANS) of bulk ferromagnets. The response of the magnetization to spatially inhomogeneous magnetic anisotropy and magnetostatic stray fields is computed using linearized micromagnetic theory, and the ensuing spin-misalignment SANS is deduced. Analysis of experimental magnetic-field-dependent SANS data of various nanocrystalline ferromagnets corroborates the usefulness of the approach, which provides important quantitative information on the magnetic-interaction parameters such as the exchange-stiffness constant, the mean magnetic anisotropy field, and the mean magnetostatic field due to jumps ΔM of the magnetization at internal interfaces. Besides the value of the applied magnetic field, it turns out to be the ratio of the magnetic anisotropy field Hp to ΔM, which determines the properties of the magnetic SANS cross-section of bulk ferromagnets; specifically, the angular anisotropy on a two-dimensional detector, the asymptotic power-law exponent, and the characteristic decay length of spin-misalignment fluctuations. For the two most often employed scattering geometries where the externally applied magnetic field H0 is either perpendicular or parallel to the wave vector k0 of the incoming neutron beam, we provide a compilation of the various unpolarized, half-polarized (SANSPOL), and uniaxial fully-polarized (POLARIS) SANS cross-sections of magnetic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranke, P. J. von, E-mail: von.ranke@uol.com.br; Ribeiro, P. O.; Alho, B. P.
2016-05-14
We report the strong correlations between the magnetoresistivity and the magnetic entropy change in the cubic antiferromagnetic TbSb compound. The theoretical investigation was performed through a microscopic model which takes into account the crystalline electrical field anisotropy, exchange coupling interactions between the up and down magnetic sublattices, and the Zeeman interaction. The easy magnetization directions changes from 〈001〉 to 〈110〉 and then to 〈111〉 observed experimentally was successfully theoretically described. Also, the calculation of the temperature dependence of electric resistivity showed good agreement with the experimental data. Theoretical predictions were calculated for the temperature dependence of the magnetic entropy andmore » resistivity changes upon magnetic field variation. Besides, the difference in the spin up and down sublattices resistivity was investigated.« less
Spin-dependent polarizabilities of hydrogenic atoms in magnetic fields of arbitrary strength
NASA Astrophysics Data System (ADS)
Castner, T. G.; Dexter, D. L.; Druger, S. D.
1981-12-01
Utilizing the magnetic field-dependent spin-orbit interaction, the relativistic correction to the Zeeman energy, and the usual diamagnetic interaction, we have calculated spin-dependent electrical polarizabilities of hydrogenic atoms using the Hassé variational approach. The polarizabilities α(↑) and α(↓) for the two spin directions have been obtained for the electric field both parallel and perpendicular to the magnetic field Hz in the weak-field (γ<<1), intermediate-field (γ~1), and strong-field (γ>>1) limits, where γ=(ɛ2ℏ3Hzm*2e3c), with ɛ a static dielectric constant and m* an isotropic effective mass. The results for hydrogen atoms (ɛ=1 and m*=m) in the weak-field limit yield [α(↓)-α(↑)]α(0)~2.31α2fsγ (αfs=1137) with a negligible anisotropy. In the strong-field limit [α⊥(↓)-α⊥(↑)] falls precipitously while [α∥(↓)-α∥(↑)] continues to increase up to at least γ=104, but more slowly than linearly with γ. The spin-independent quantities [α∥(↓)+α∥(↑)] and [α⊥(↓)+α⊥(↑)] are discussed in the intermediate- and high-field limits and represent an extension of the earlier low-field results obtained by Dexter. The implications of these results for shallow-donor impurity atoms in semiconductors and for hydrogen-atom atmospheres of magnetic white dwarfs and neutron stars are briefly considered. The effects of the dramatic shrinkage of the electron's wave function on the spin Zeeman energy and the electron-proton hyperfine interaction are also discussed.
3D Hybrid Simulations of Interactions of High-Velocity Plasmoids with Obstacles
NASA Astrophysics Data System (ADS)
Omelchenko, Y. A.; Weber, T. E.; Smith, R. J.
2015-11-01
Interactions of fast plasma streams and objects with magnetic obstacles (dipoles, mirrors, etc) lie at the core of many space and laboratory plasma phenomena ranging from magnetoshells and solar wind interactions with planetary magnetospheres to compact fusion plasmas (spheromaks and FRCs) to astrophysics-in-lab experiments. Properly modeling ion kinetic, finite-Larmor radius and Hall effects is essential for describing large-scale plasma dynamics, turbulence and heating in complex magnetic field geometries. Using an asynchronous parallel hybrid code, HYPERS, we conduct 3D hybrid (particle-in-cell ion, fluid electron) simulations of such interactions under realistic conditions that include magnetic flux coils, ion-ion collisions and the Chodura resistivity. HYPERS does not step simulation variables synchronously in time but instead performs time integration by executing asynchronous discrete events: updates of particles and fields carried out as frequently as dictated by local physical time scales. Simulations are compared with data from the MSX experiment which studies the physics of magnetized collisionless shocks through the acceleration and subsequent stagnation of FRC plasmoids against a strong magnetic mirror and flux-conserving boundary.
High field ESR study of the pi-d interaction effect in beta-(BDA-TTP)2MCl4 (M=Fe, Ga)
NASA Astrophysics Data System (ADS)
Tokumoto, Takahisa; Vantol, J.; Brunel, L.-C.; Choi, E. S.; Brooks, J. S.; Kaihatsu, T.; Akutsu, H.; Yamada, J.
2007-03-01
Novel magnetic organic conductors with pi-d interaction have commanded attention since the discovery of field induced superconductivity. One of them, beta-(BDA-TTP)2FeCl4, has alternating donor molecules and quasi 2D electrical properties. Previous studies of electrical and magnetic properties show an M-I transition at 120K and an AF transition at TN=8.5K, suggesting an exchange interaction between the conduction electrons and the Fe^3+ d-electrons. The properties of beta-(BDA-TTP)2GaCl4 are similar with exception of the absence of the AF transition, which is apparently due to the absence of pi-d exchange interaction. We report angular/temperature dependent 240GHz quasi optical ESR measurements on both compounds to probe the magnetic properties. The Ga compound signals follow the donor molecule structure, and show no magnetic order at any temperature. The Fe compound signals are quite different from the Ga compound, and exhibit AF behavior below TN. The difference of Fe and Ga compounds will be discussed in terms of the interaction between localized and itinerant magnetic moments.
Atomistic modelling of magnetic nano-granular thin films
NASA Astrophysics Data System (ADS)
Agudelo-Giraldo, J. D.; Arbeláez-Echeverry, O. D.; Restrepo-Parra, E.
2018-03-01
In this work, a complete model for studying the magnetic behaviour of polycrystalline thin films at nanoscale was processed. This model includes terms as exchange interaction, dipolar interaction and various types of anisotropies. For the first term, exchange interaction dependence of the distance n was used with purpose of quantify the interaction, mainly in grain boundaries. The third term includes crystalline, surface and boundary anisotropies. Special attention was paid to the disorder vector that determines the loss of cubic symmetry in the crystalline structure. For the case of the dipolar interaction, a similar implementation of the fast multiple method (FMM) was performed. Using these tools, modelling and simulations were developed varying the number of grains, and the results obtained presented a great dependence of the magnetic properties on this parameter. Comparisons between critical temperature and magnetization of saturation depending on the number of grains were performed for samples with and without factors as the surface and boundary anisotropies, and the dipolar interaction. It was observed that the inclusion of these parameters produced a decrease in the critical temperature and the magnetization of saturation; furthermore, in both cases, including and not including the disorder parameters, not only the critical temperature, but also the magnetization of saturation exhibited a range of values that also depend on the number of grains. This presence of a critical interval is due to each grain can transit toward the ferromagnetic state at different values of critical temperature. The processes of Zero field cooling (ZFC), Field cooling (FCC) and field cooling in warming mode (FCW) were necessary for understanding the mono-domain regime around of transition temperature, due to the high probabilities of a Super-paramagnetic (SPM) state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Jiangwei, E-mail: caojw@lzu.edu.cn; Zheng, Yuqiang; Su, Xianpeng
2016-04-25
Spin-orbit torque (SOT)-induced magnetization switching under small in-plane magnetic fields in as-deposited and annealed Ta/CoFeB/MgO structures is studied. For the as-deposited samples, partial SOT-induced switching behavior is observed under an in-plane field of less than 100 Oe. Conversely, for the annealed samples, an in-plane field of 10 Oe is large enough to achieve full deterministic magnetization switching. The Dzyaloshinskii-Moriya interaction at the Ta/CoFeB interface is believed to be the main reason for the discrepancy of the requisite in-plane magnetic fields for switching in the as-deposited and annealed samples. In addition, asymmetric field dependence behavior of SOT-induced magnetization switching is observed in themore » annealed samples. Deterministic magnetization switching in the absence of an external magnetic field is obtained in the annealed samples, which is extremely important to develop SOT-based magnetoresistive random access memory.« less
First experiments probing the collision of parallel magnetic fields using laser-produced plasmas
Rosenberg, M. J.; Li, C. K.; Fox, W.; ...
2015-04-08
Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore » and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less
Cosmic Ray Anisotropies and Magnetic Turbulence Beyond the Heliopause
NASA Astrophysics Data System (ADS)
Florinski, V. A.
2016-12-01
The very local interstellar medium (VLISM), including the outer heliosheath, represents a quiet, almost laminar environment for cosmic-ray propagation. The dominant scale of magnetic-field fluctuations in the VLISM is about a million astronomical units - three orders of magnitude larger than the size of the heliosphere. Under these conditions the transport of cosmic rays is governed mainly by three effects: (a) draping of the magnetic field around the heliopause, (b) bending of magnetic field lines representing VLISM turbulence at large scales, and (c) local deformation of magnetic field lines by disturbances injected into VLISM as a result of solar-wind merged interaction regions impinging on the heliopause. Using analytic and computer-based models of the outer heliosheath magnetic field and phase space trajectory integration techniques to simulate charged particle transport, the relationship between the magnetic field properties and hundred MeV galactic cosmic ray ion anisotropies is investigated. It is demonstrated that anisotropy measurements can be used to deduce the amplitude and spatial scale of interstellar magnetic turbulence.
Life on Magnets: Stem Cell Networking on Micro-Magnet Arrays
Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M.; Syková, Eva
2013-01-01
Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field’s value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine. PMID:23936425
Magnetic reconnection in terms of catastrophe theory
NASA Astrophysics Data System (ADS)
Echkina, E. Y.; Inovenkov, I. N.; Nefedov, V. V.
2017-12-01
Magnetic field line reconnection (magnetic reconnection) is a phenomenon that occurs in space and laboratory plasma. Magnetic reconnection allows both the change the magnetic topology and the conversion of the magnetic energy into energy of fast particles. The critical point (critical line or plane in higher dimensional cases) of the magnetic field play an important role in process of magnetic reconnection, as in its neighborhood occurs a change of its topology of a magnetic field and redistribution of magnetic field energy. A lot of literature is devoted to the analytical and numerical investigation of the reconnection process. The main result of these investigations as the result of magnetic reconnection the current sheet is formed and the magnetic topology is changed. While the studies of magnetic reconnection in 2D and 3D configurations have a led to several important results, many questions remain open, including the behavior of a magnetic field in the neighborhood of a critical point of high order. The magnetic reconnection problem is closely related to the problem of the structural stability of vector fields. Since the magnetic field topology changes during both spontaneous and induced magnetic reconnection, it is natural to expect that the magnetic field should evolve from a structurally unstable into a structurally stable configuration. Note that, in this case, the phenomenon under analysis is more complicated since, during magnetic reconnection in a highly conducting plasma, we deal with the non-linear interaction between two vector fields: the magnetic field and the field of the plasma velocities. The aim of our article is to consider the process of magnetic reconnection and transformation of the magnetic topology from the viewpoint of catastrophe theory. Bifurcations in similar configurations (2D magnetic configuration with null high order point) with varying parameters were thoroughly discussed in a monograph by Poston and Stewart.
Structural, magnetic, and magnetocaloric properties of bilayer manganite La1.38Sr1.62Mn2O7
NASA Astrophysics Data System (ADS)
Yang, Yu-E.; Xie, Yunfei; Xu, Lisha; Hu, Dazhi; Ma, Chunlan; Ling, Langsheng; Tong, Wei; Pi, Li; Zhang, Yuheng; Fan, Jiyu
2018-04-01
In this study, we investigated the structural, magnetic phase transition, and magnetocaloric properties of bilayer perovskite manganite La1.38Sr1.62Mn2O7 based on X-ray diffraction, electron paramagnetic resonance, and temperature-/magnetic field-dependent magnetization measurements. The structural characterization results showed the prepared sample had a tetragonal structure with the space group I4/mmm. The Curie temperature was determined as 114 K in the magnetization studies and a second-order paramagnetic-ferromagnetic transition was confirmed by the Arrott plot, which showed that the slopes were positive for all the curves. According to the variation in the electron paramagnetic resonance spectrum, we detected obvious electronic phase separation across a broad temperature range from 220 to 80 K in this magnetic material, thereby indicating that the paramagnetic and ferromagnetic phases coexist above as well as below the Curie temperature. Based on a plot of the isothermal magnetization versus the magnetic applied field, we deduced the maximum magnetic entropy change, which only reached 1.89 J/kg.K under an applied magnetic field of 7.0 T. These theoretical investigations indicated that in addition to the magnetoelastic couplings and electron interaction, electronic phase separation and anisotropic exchange interactions also affect the magnetic entropy changes in this bilayer manganite.
Magnetic field effects on the energy deposition spectra of MV photon radiation.
Kirkby, C; Stanescu, T; Fallone, B G
2009-01-21
Several groups worldwide have proposed various concepts for improving megavoltage (MV) radiotherapy that involve irradiating patients in the presence of a magnetic field-either for image guidance in the case of hybrid radiotherapy-MRI machines or for purposes of introducing tighter control over dose distributions. The presence of a magnetic field alters the trajectory of charged particles between interactions with the medium and thus has the potential to alter energy deposition patterns within a sub-cellular target volume. In this work, we use the MC radiation transport code PENELOPE with appropriate algorithms invoked to incorporate magnetic field deflections to investigate electron energy fluence in the presence of a uniform magnetic field and the energy deposition spectra within a 10 microm water sphere as a function of magnetic field strength. The simulations suggest only very minor changes to the electron fluence even for extremely strong magnetic fields. Further, calculations of the dose-averaged lineal energy indicate that a magnetic field strength of at least 70 T is required before beam quality will change by more than 2%.
Little or no solar wind enters Venus' atmosphere at solar minimum.
Zhang, T L; Delva, M; Baumjohann, W; Auster, H-U; Carr, C; Russell, C T; Barabash, S; Balikhin, M; Kudela, K; Berghofer, G; Biernat, H K; Lammer, H; Lichtenegger, H; Magnes, W; Nakamura, R; Schwingenschuh, K; Volwerk, M; Vörös, Z; Zambelli, W; Fornacon, K-H; Glassmeier, K-H; Richter, I; Balogh, A; Schwarzl, H; Pope, S A; Shi, J K; Wang, C; Motschmann, U; Lebreton, J-P
2007-11-29
Venus has no significant internal magnetic field, which allows the solar wind to interact directly with its atmosphere. A field is induced in this interaction, which partially shields the atmosphere, but we have no knowledge of how effective that shield is at solar minimum. (Our current knowledge of the solar wind interaction with Venus is derived from measurements at solar maximum.) The bow shock is close to the planet, meaning that it is possible that some solar wind could be absorbed by the atmosphere and contribute to the evolution of the atmosphere. Here we report magnetic field measurements from the Venus Express spacecraft in the plasma environment surrounding Venus. The bow shock under low solar activity conditions seems to be in the position that would be expected from a complete deflection by a magnetized ionosphere. Therefore little solar wind enters the Venus ionosphere even at solar minimum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez, A. M., E-mail: amgomezl-1@uqvirtual.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co
The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.
Synthesis and magnetic properties of nickel nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Jaiveer, E-mail: jaiveer24singh@gmail.com, E-mail: netramkaurav@yahoo.co.uk; Patel, Tarachand; Okram, Gunadhor S.
2016-05-23
Monodisperse nickel nanoparticles (Ni-NPs) were synthesized via a thermal decomposition process. The NPs were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). They were spherical with mean diameter of 4 nm. Zero field cooled (ZFC) and field cooled (FC) magnetization versus temperature data displayed interesting magnetic interactions. ZFC showed a peak at 4.49 K, indicating the super paramagnetic behavior. Magnetic anisotropic constant was estimated to be 4.62×10{sup 5} erg/cm{sup 3} and coercive field was 168 Oe at 3 K.
Model of Anisotropic Magnetization of In(1-x)Mn(x)S: Comparison to Experiment
NASA Astrophysics Data System (ADS)
Garner, J.; Franzese, G.; Byrd, Ashlee; Pekarek, T. M.; Miotkowski, I.; Ramdas, A. K.
2004-03-01
Calculations of and experimental results for the anisotropic magnetization of the new III-VI dilute magnetic semiconductor, In(1-x)Mn(x)S, are presented. The model Hamiltonian incorporates the interaction of the incomplete shell of Mn 3d-electrons with the crystal lattice within the point-ion approximation. Other terms in the Hamiltonian include the Zeeman interaction, the spin-orbit and the spin-spin terms. It is assumed the Mn atoms do not interact with each other (this is the singlet model, which is appropriate when x is small, here 2%). The temperature- and field- dependent magnetization is found from the energy eigenvalues of the Hamiltonian matrix, which was expressed in terms of an uncoupled angular momentum basis set. Magnetization versus temperature results are found for several field values, B, pointing along various directions relative to the underlying dilute magnetic semiconductor crystal lattice. In addition, the magnetization versus field is computed for several fixed temperatures and for various B-field directions and magnitudes. Overall, the agreement of this simple model with the experimental data is very good except at low temperatures (< 20 K) and high fields (> a few Tesla). It would be useful for quantitative comparison purposes to have optical absorption data in order to better fix the crystal potential parameters that are input parameters in the theory. In addition, the model could be improved by going beyond the point-ion approximation to better model the covalent bonds in the crystal.* Supported by UNF Research Grants, Research Corporation Award, CC4845, NSF Grant Nos. DMR-03-05653, DMR-01-02699, and ECS-01-29853 and Donors of the American Chemical Society Petroleum Research Fund PRF#40209-B5M, and a Purdue Univ. Academic Reimbursement Grant.
Merging magnetic droplets by a magnetic field pulse
NASA Astrophysics Data System (ADS)
Wang, Chengjie; Xiao, Dun; Liu, Yaowen
2018-05-01
Reliable manipulation of magnetic droplets is of immense importance for their applications in spin torque oscillators. Using micromagnetic simulations, we find that the antiphase precession state, which originates in the dynamic dipolar interaction effect, is a favorable stable state for two magnetic droplets nucleated at two identical nano-contacts. A magnetic field pulse can be used to destroy their stability and merge them into a big droplet. The merging process strongly depends on the pulse width as well as the pulse strength.
Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence
NASA Astrophysics Data System (ADS)
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-03-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.
NASA Astrophysics Data System (ADS)
Udalov, O. G.; Beloborodov, I. S.
2018-05-01
We study magneto-electric effect in two systems: i) multiferroic tunnel junction (MFTJ) - magnetic tunnel junction with ferroelectric barrier and ii) granular multiferroic (GMF) in which ferromagnetic (FM) metallic grains embedded into ferroelectric matrix. We show that the Coulomb interaction influences the magnetic state of the system in several ways: i) through the spin-dependent part of the Coulomb interaction; ii) due to the Coulomb blockade effect suppressing electron hopping and therefore reducing magnetic coupling; and iii) through image forces and polarization screening that modify the barrier for electrons in MFTJ and GMF. We show that in the absence of spin-orbit or strain-mediated coupling magneto-electric effect appears in GMF and MFTJ. The Coulomb interaction depends on the dielectric properties of the system. For GMF it depends on the dielectric constant of FE matrix and for MFTJ on the dielectric constant of the FE barrier. Applying external electric field one can tune the dielectric constant and the Coulomb interaction. Thus, one can control magnetic state with electric field.
Effects of magnetic field on the interaction between terahertz wave and non-uniform plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yuan; Han, YiPing; Guo, LiXin
2015-10-15
In this paper, the interaction between terahertz electromagnetic wave and a non-uniform magnetized plasma slab is investigated. Different from most of the published literatures, the plasma employed in this work is inhomogeneous in both collision frequency and electron density. Profiles are introduced to describe the non-uniformity of the plasma slab. At the same time, magnetic field is applied to the background of the plasma slab. It came out with an interesting phenomenon that there would be a valley in the absorption band as the plasma's electromagnetic characteristic is affected by the magnetic field. In addition, the valley located just nearmore » the middle of the absorption peak. The cause of the valley's appearance is inferred in this paper. And the influences of the variables, such as magnetic field strength, electron density, and collision frequency, are discussed in detail. The objective of this work is also pointed out, such as the applications in flight communication, stealth, emissivity, plasma diagnose, and other areas of plasma.« less
Colliding Laser-Produced Plasmas on LaPD
NASA Astrophysics Data System (ADS)
Collette, Andrew; Gekelman, Walter
2008-11-01
The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes. We describe a series of experiments which involve the collision of two dense (initially n > 10^15cm-3) laser-produced plasmas within an ambient, highly magnetized background plasma at the UCLA Large Plasma Device facility. These plasmas form diamagnetic cavities in which a large fraction of the background field (600G) has been expelled. Fast (3ns) camera observations of this experiment recorded complicated structures, including coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. In order to directly investigate the evolution of the magnetic field, we developed a novel diagnostic system composed of small (1-mm) 3-axis differential magnetic field probes, in conjunction with a vacuum ceramic motor system capable of sub-micron positioning accuracy. Using an ensemble of magnetic field data from fixed and movable probes, we calculate the cross-spectral function, from which the dominant modes and ultimately the dispersion relation of waves in this region may be deduced.
Evaluation of the exchange interaction and crystal fields in a prototype Dy2 SMM
NASA Astrophysics Data System (ADS)
Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Pineda, Eufemio; McInnes, Eric
In order to gain an understanding of the INS and magnetization data obtained for Dy2, the simplest member of a newly synthesized family of dysprosium-based molecular magnets, we report on calculations of the magnetic behavior of a Dy2 cluster with the formula [hqH2][Dy2(hq)4(NO3)3].MeOH. The molecular complex contains one high symmetry Dy(III) ion and one low symmetry Dy(III) ion. Our calculations suggest that exchange coupling between the two ions controls the behavior of the magnetization at low temperature, while the crystal field of the low symmetry Dy(III) ion controls the behavior at higher temperature. A point charge electrostatic model, based on crystallographic coordinates, provides a starting point for the determination of the crystal field. Parameters in these calculations are adjusted to provide best fits to inelastic neutron scattering data (INS) and low temperature magnetometry: the INS measurements access crystal field energies and low temperature magnetization probes the Dy-Dy exchange interaction. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, Ashish, E-mail: ashishvyas.optics@gmail.com; Singh, Ram Kishor, E-mail: ram007kishor@gmail.com; Sharma, R. P., E-mail: rpsharma@ces.iitd.ernet.in
2016-01-15
This paper presents a model to study the interplay between the stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) in the presence of background magnetic field. This formalism is applicable to laser produced plasma as well as to heating mechanism in toroidal system by an extraordinary electromagnetic wave. In the former case, the magnetic field is self-generated, while in the latter case (toroidal plasmas) magnetic field is applied externally. The behavior of one scattering process is explicitly dependent on the coexisting scattering process as well as on the magnetic field. Explicit expressions for the back-reflectivity of scattered beams (SRSmore » and SBS) are presented. It has been demonstrated that due to the magnetic field and coexistence of the scattering processes (SRS and SBS) the back-reflectivity gets modified significantly. Results are also compared with the three wave interaction case (isolated SRS or SBS case)« less
Analysis of recurrent patterns in toroidal magnetic fields.
Sanderson, Allen R; Chen, Guoning; Tricoche, Xavier; Pugmire, David; Kruger, Scott; Breslau, Joshua
2010-01-01
In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincaré map of the sampled fieldlines in a Poincaré section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.
A Laboratory Astrophysical Jet to Study Canonical Flux Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Setthivoine
Understanding the interaction between plasma flows and magnetic fields remains a fundamental problem in plasma physics, with important applications to astrophysics, fusion energy, and advanced space propulsion. For example, flows are of primary importance in astrophysical jets even if it is not fully understood how jets become so long without becoming unstable. Theories for the origin of magnetic fields in the cosmos rely on flowing charged fluids that should generate magnetic fields, yet this remains to be demonstrated experimentally. Fusion energy reactors can be made smaller with flows that improve stability and confinement. Advanced space propulsion could be more efficientmore » with collimated and stable plasma flows through magnetic nozzles but must eventually detach from the nozzle. In all these cases, there appears to be a spontaneous emergence of flowing and/or magnetic structures, suggesting a form of self-organization in plasmas. Beyond satisfying simple intellectual curiosity, understanding plasma self-organization could enable the development of methods to control plasma structures for fusion energy, space propulsion, and other applications. The research project has therefore built a theory and an experiment to investigate the interaction between magnetic fields and plasma flows. The theory is called canonical field theory for short, and the experiment is called Mochi after a rice cake filled with surprising, yet delicious fillings.« less
Plasma Interaction and Energetic Particle Dynamics near Callisto
NASA Astrophysics Data System (ADS)
Liuzzo, L.; Simon, S.; Feyerabend, M.; Motschmann, U. M.
2017-12-01
Callisto's magnetic environment is characterized by a complex admixture of induction signals from its conducting subsurface ocean, the interaction of corotating Jovian magnetospheric plasma with the moon's ionosphere and induced dipole, and the non-linear coupling between the effects. In contrast to other Galilean moons, ion gyroradii near Callisto are comparable to its size, requiring a kinetic treatment of the interaction region near the moon. Thus, we apply the hybrid simulation code AIKEF to constrain the competing effects of plasma interaction and induction. We determine their influence on the magnetic field signatures measured by Galileo during various Callisto flybys. We use the magnetic field calculated by the model to investigate energetic particle dynamics and their effect on Callisto's environment. From this, we provide a map of global energetic particle precipitation onto Callisto's surface, which may contribute to the generation of its atmosphere.
NASA Astrophysics Data System (ADS)
Munsat, Tobin; Deca, Jan; Han, Jia; Horanyi, Mihaly; Wang, Xu; Werner, Greg; Yeo, Li Hsia; Fuentes, Dominic
2017-10-01
Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection of the charged particles and thus localized surface charging. This interaction is studied in the Colorado Solar Wind Experiment with large-cross-section ( 300 cm2) high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole embedded under various insulating surfaces. Measured 2D plasma potential profiles indicate that in the dipole lobe regions, the surfaces are charged to high positive potentials due to the collection of unmagnetized ions, while the electrons are magnetically shielded. At low ion beam energies, the surface potential follows the beam energy in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of studies indicate that secondary electrons are likely to play a dominant role in determining the surface potential. Early results will also be presented from a second experiment, in which a strong permanent magnet with large dipole moment (0.55 T, 275 A*m2) is inserted into the flowing plasma beam to replicate aspects of the solar wind interaction with the earth's magnetic field. This work is supported by the NASA SSERVI program.
NASA Astrophysics Data System (ADS)
Ulusen, D.; Luhmann, J. G.; Ma, Y.; Brain, D. A.
2013-12-01
Strong crustal magnetic sources on the surface of Mars directly interact with the solar magnetic field and plasma, resulting a very dynamic environment near the planet. Effects of the orientation of these remnant magnetic sources with respect to the sun and variation of the solar conditions on the Martian plasma interaction have been investigated in a previous paper. In this previous study, magnetic topology maps obtained from ~7 years of Mars Global Surveyor (MGS) directional electron observations (obtained by Dave Brain) were compared with the topology maps obtained from a set of BATS-R-US MHD simulations for Mars. One conclusion from this study was that although the MHD model is consistent with the data and provides insight about the global magnetic field topology variation with changing crustal field orientation and solar parameters, detailed investigation of local effects is difficult due to MGS orbital bias. Moreover, proper comparison of the observations with the model requires more careful data selection rather than using 7 years time averages. In this paper, we readdress the study to tackle the problems of our previous work by performing more detailed data analysis and present the results of the updated model-data comparison.
Colliding Laser-Produced Plasmas on LaPD
NASA Astrophysics Data System (ADS)
Collette, Andrew; Gekelman, Walter
2007-11-01
The expansion and interaction of dense plasmas in the presence of a magnetized background plasma is important in many astrophysical processes, among them coronal mass ejections and the many examples of plasma jets from astrophotography. Turbulence is expected to be present in many such configurations. We describe a series of experiments which involve the collision of two dense (initially, n > 10^15cm-3) laser-produced plasmas within an ambient, highly magnetized plasma. The laser-produced plasmas form diamagnetic cavities in which a large percentage of the background magnetic field (600G) has been expelled. First-stage observations using a fast (3ns exposure) camera indicate complicated structure at late times, in addition to coherent corrugated structures on the bubble surfaces. The data hint at the presence of turbulence in the interaction. The second stage of observation consists of direct investigation of the magnetic field using probes. A novel diagnostic system composed of small (300-500 micron) 3-axis differential magnetic field probes in conjunction with a ceramic motor system capable of extremely fine (sub-micron) positioning accuracy is currently under development. An ensemble of magnetic field data from fixed and movable probes makes possible the calculation of the cross-spectral function.
Quasilinear diffusion operator for wave-particle interactions in inhomogeneous magnetic fields
NASA Astrophysics Data System (ADS)
Catto, P. J.; Lee, J.; Ram, A. K.
2017-10-01
The Kennel-Engelmann quasilinear diffusion operator for wave-particle interactions is for plasmas in a uniform magnetic field. The operator is not suitable for fusion devices with inhomogeneous magnetic fields. Using drift kinetic and high frequency gyrokinetic equations for the particle distribution function, we have derived a quasilinear operator which includes magnetic drifts. The operator applies to RF waves in any frequency range and is particularly relevant for minority ion heating. In order to obtain a physically meaningful operator, the first order correction to the particle's magnetic moment has to be retained. Consequently, the gyrokinetic change of variables has to be retained to a higher order than usual. We then determine the perturbed distribution function from the gyrokinetic equation using a novel technique that solves the kinetic equation explicitly for certain parts of the function. The final form of the diffusion operator is compact and completely expressed in terms of the drift kinetic variables. It is not transit averaged and retains the full poloidal angle variation without any Fourier decomposition. The quasilinear diffusion operator reduces to the Kennel-Engelmann operator for uniform magnetic fields. Supported by DoE Grant DE-FG02-91ER-54109.
NASA Astrophysics Data System (ADS)
Nishikawa, Ken-Ichi; Hartmann, Dieter; Mizuno, Yosuke; Niemiec, Jacek; Dutan, Ioana; Kobzar, Oleh; Gomez, Jose; Meli, Athina; POHL, Martin
2018-01-01
In the study of relativistic jets one of the key open questions is their interaction with theenvironment on the microscopic level. Here, we study the initial evolution of both electron–proton and electron–positron relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI) using a larger jet radius. In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the electron-proton jet simulation a recollimation-like instability occurs near the center of jet. In the electron-positron jet simulation mixed kinetic instabilities grow and the jet electrons are accelerated. The evolution of electron-ion jets will be investigated with different mass ratios. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields. We will investigate mechanisms of flares possibly due to reconnection.
21cm Absorption Line Zeeman Observations And Modeling Of Physical Conditions In M16
NASA Astrophysics Data System (ADS)
Kiuchi, Furea; Brogan, C.; Troland, T.
2011-01-01
We present detailed 21 cm HI absorption line observations of M16 using the Very Large Array. The M16 "pillars of creation" are classic examples of the interaction of ISM with radiation from young, hot stars. Magnetic fields can affect these interactions, the 21 cm Zeeman effect reveals magnetic field strengths in the Photodissociation regions associated with the pillars. The present results yield a 3-sigma upper limit upon the line-of-sight magnetic field of about 300 microgauss. This limit is consistent with a total field strength of 500 microgauss, required in the molecular gas if magnetic energies and turbulent energies in the pillars are in equipartition. Most likely, magnetic fields do not play a dominant role in the dynamics of the M16 pillars. Another goal of this study is to determine the distribution of cold HI in the M16 region and to model the physical conditions in the neutral gas in the pillars. We used the spectral synthesis code Cloudy 08.00 for this purpose. We adopted the results of a published Cloudy HII region model and extended this model into the neutral gas to derive physical conditions therein.
Anisotropic magnetic switching along hard [1 1 0]-type axes in Er-doped DyFe2/YFe2 thin films
NASA Astrophysics Data System (ADS)
Stenning, G. B. G.; Bowden, G. J.; van der Laan, G.; Figueroa, A. I.; Bencok, P.; Steadman, P.; Hesjedal, T.
2017-10-01
Epitaxial-grown DyFe2/YFe2 multilayer thin films form an ideal model system for the study of magnetic exchange springs. Here the DyFe2 (YFe2) layers are magnetically hard (soft). In the presence of a magnetic field, exchange springs form in the YFe2 layers. Recently, it has been demonstrated that placing small amounts of Er into the centre of the YFe2 springs generates substantial changes in magnetic behavior. In particular, (i) the number of exchange-spring states is increased dramatically, (ii) the resulting domain-wall states cannot simply be described as either Néel or Bloch walls, (iii) the Er and Dy magnetic loops are strikingly different, and (iv) it is possible to engineer Er-induced magnetic exchange-spring collapse. Here, results are presented for Er-doped (1 1 0)-oriented DyFe2 (60 Å/YFe2(240 Å)15 multilayer films, at 100 K in fields of up to 12 T. In particular, we contrast magnetic loops for fields applied along seemingly equivalent hard-magnetic [1 1 0]-type axes. MBE-grown cubic Laves thin films offer the unique feature of allowing to apply the magnetic field along (i) a hard out-of-plane [1 1 0]-axis (the growth axis) and (ii) a similar hard in-plane [ 1 bar 10 ] -axis. Differences are found and attributed to the competition between the crystal-field interaction at the Er site and the long-range dipole-dipole interaction. In particular, the out-of-plane [1 1 0] Er results show the existence of a new magnetic exchange spring state, which would be very difficult to identify without the aid of element-specific technique of X-ray magnetic circular dichroism (XMCD).
NASA Astrophysics Data System (ADS)
Chung, Chung-Hou; Marston, Brad
2002-03-01
We study the Sp(N) generalization of the physical Sp(1) \\cong SU(2) Heisenberg antiferromagnet on the anisotropic triangular lattice( C. H. Chung, J. B. Marston and R. H. McKenzie, Journal of Physics: Condensed Matter 13), 5159 (2001). in a magnetic field. The model is relevant for describing recent experiments on the magnetic phases of the quasi-2D system Cs_2CuCl4 in a magnetic field(R. Coldea, D. A. Tennant, A. M. Tsvelik, and Z. Tylczynski, Phys. Rev. Lett. 86), 1335 (2001).. We solve the model in the large-N limit and study the effect of a magnetic field on the incommensurate magnetic order. Below a critical field the spins form a ``cone'' of polarization, in apparent agreement with neutron scattering experiments when the magnetic field is oriented perpendicular to the lattice. The incommensuration increases with increasing field strength. Above the critical field the spins are fully polarized. We have difficulty treating Dzyaloshinskii-Moriya interactions which are believed to be important for in-plane fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedaghat, M.; Ettehadi-Abari, M.; Shokri, B., E-mail: b-shokri@sbu.ac.ir
2015-03-15
Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range Iλ{sup 2}≃10{sup 14}−10{sup 16}Wcm{sup −2}μm{sup 2}. The collisional effect is found to be significant when the incident laser intensity is less than 10{sup 16}Wcm{sup −2}μm{sup 2}. In the current work, the propagation of a high frequency electromagnetic wave, for underdense collisional plasma in the presence of an external magnetic field is investigated. It is shown that, by considering the effect of the ponderomotive force in collisional magnetized plasmas, the increase of laser pulse intensity leads to steepening of themore » electron density profile and the electron bunches of plasma makes narrower. Moreover, it is found that the wavelength of electric and magnetic fields oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison with the unmagnetized collisional plasma. Furthermore, the spatial damping rate of laser energy and the nonlinear bremsstrahlung absorption coefficient are obtained in the collisional regime of magnetized plasma. The other remarkable result is that by increasing the external magnetic field in this case, the absorption coefficient increases strongly.« less
Missing magnetism in Sr 4Ru 3O 10: Indication for Antisymmetric Exchange Interaction
Weickert, Franziska; Civale, Leonardo; Maiorov, Boris; ...
2017-06-20
Metamagnetism occuring inside a ferromagnetic phase is peculiar. Therefore, Sr 4Ru 3O 10, a T C = 105 K ferromagnet, has attracted much attention in recent years, because it develops a pronounced metamagnetic anomaly below T C for magnetic fields applied in the crystallographic ab-plane. The metamagnetic transition moves to higher fields for lower temperatures and splits into a double anomaly at critical fields H c1 = 2.3 T and H c2 = 2.8 T, respectively. Here, we report a detailed study of the different components of the magnetization vector as a function of temperature, applied magnetic field, and varyingmore » angle in Sr 4Ru 3O 10. We discover for the first time a reduction of the magnetic moment in the plane of rotation at the metamagnetic transition. The anomaly shifts to higher fields by rotating the field from H ⊥ c to H || c. We compare our experimental findings with numerical simulations based on spin reorientation models taking into account magnetocrystalline anisotropy, Zeeman effect and antisymmetric exchange interactions. While Magnetocrystalline anisotropy combined with a Zeeman term are sufficient to explain a metamagnetic transition in Sr 4Ru 3O 10, a Dzyaloshinskii-Moriya term is crucial to account for the reduction of the magnetic moment as observed in the experiments.« less
Missing magnetism in Sr 4Ru 3O 10: Indication for Antisymmetric Exchange Interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weickert, Franziska; Civale, Leonardo; Maiorov, Boris
Metamagnetism occuring inside a ferromagnetic phase is peculiar. Therefore, Sr 4Ru 3O 10, a T C = 105 K ferromagnet, has attracted much attention in recent years, because it develops a pronounced metamagnetic anomaly below T C for magnetic fields applied in the crystallographic ab-plane. The metamagnetic transition moves to higher fields for lower temperatures and splits into a double anomaly at critical fields H c1 = 2.3 T and H c2 = 2.8 T, respectively. Here, we report a detailed study of the different components of the magnetization vector as a function of temperature, applied magnetic field, and varyingmore » angle in Sr 4Ru 3O 10. We discover for the first time a reduction of the magnetic moment in the plane of rotation at the metamagnetic transition. The anomaly shifts to higher fields by rotating the field from H ⊥ c to H || c. We compare our experimental findings with numerical simulations based on spin reorientation models taking into account magnetocrystalline anisotropy, Zeeman effect and antisymmetric exchange interactions. While Magnetocrystalline anisotropy combined with a Zeeman term are sufficient to explain a metamagnetic transition in Sr 4Ru 3O 10, a Dzyaloshinskii-Moriya term is crucial to account for the reduction of the magnetic moment as observed in the experiments.« less
Magnetic field observations near Mercury: Preliminary results from Mariner 10
NASA Technical Reports Server (NTRS)
Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.; Schatten, K. H.
1974-01-01
Results are presented from a preliminary analysis of data obtained near Mercury by the NASA/GSFC Magnetic Field Experiment on Mariner 10. A very well developed, detached bow shock wave, which developed as the super-Alfvenic solar wind interacted with the planet Mercury was observed. A magnetosphere-like region, with maximum field strength of 98 gamma at closest approach (704 km altitude) was also observed, and was contained within boundaries similar to the terrestrial magnetopause. The obstacle deflecting the solar wind flow was global in size, but the origin of the enhanced magnetic field was not established. The most plausible explanation, considering the complete body of data, favored the conclusion that Mercury has an intrinsic magnetic field.
Magnetic behaviour of multisegmented FeCoCu/Cu electrodeposited nanowires
NASA Astrophysics Data System (ADS)
Núñez, A.; Pérez, L.; Abuín, M.; Araujo, J. P.; Proenca, M. P.
2017-04-01
Understanding the magnetic behaviour of multisegmented nanowires (NWs) is a major key for the application of such structures in future devices. In this work, magnetic/non-magnetic arrays of FeCoCu/Cu multilayered NWs electrodeposited in nanoporous alumina templates are studied. Contrarily to most reports on multilayered NWs, the magnetic layer thickness was kept constant (30 nm) and only the non-magnetic layer thickness was changed (0 to 80 nm). This allowed us to tune the interwire and intrawire interactions between the magnetic layers in the NW array creating a three-dimensional (3D) magnetic system without the need to change the template characteristics. Magnetic hysteresis loops, measured with the applied field parallel and perpendicular to the NWs’ long axis, showed the effect of the non-magnetic Cu layer on the overall magnetic properties of the NW arrays. In particular, introducing Cu layers along the magnetic NW axis creates domain wall nucleation sites that facilitate the magnetization reversal of the wires, as seen by the decrease in the parallel coercivity and the reduction of the perpendicular saturation field. By further increasing the Cu layer thickness, the interactions between the magnetic segments, both along the NW axis and of neighbouring NWs, decrease, thus rising again the parallel coercivity and the perpendicular saturation field. This work shows how one can easily tune the parallel and perpendicular magnetic properties of a 3D magnetic layer system by adjusting the non-magnetic layer thickness.
Effects of Resonant Helical Field on Toroidal Field Ripple in IR-T1 Tokamak
NASA Astrophysics Data System (ADS)
Mahdavipour, B.; Salar Elahi, A.; Ghoranneviss, M.
2018-02-01
The toroidal magnetic field which is created by toroidal coils has the ripple in torus space. This magnetic field ripple has an importance in plasma equilibrium and stability studies in tokamak. In this paper, we present the investigation of the interaction between the toroidal magnetic field ripple and resonant helical field (RHF). We have estimated the amplitude of toroidal field ripples without and with RHF (with different q = m/n) ( m = 2, m = 3, m = 4, m = 5, m = 2 & 3, n = 1) using “Comsol Multiphysics” software. The simulations show that RHF has effects on the toroidal ripples.
Straube, Arthur V; Tierno, Pietro
2014-06-14
We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.
NASA Astrophysics Data System (ADS)
Mokhtari, P.; Rezaei, G.; Zamani, A.
2017-06-01
In this paper, electronic structure of a two dimensional elliptic quantum dot under the influence of external electric and magnetic fields are studied in the presence of Rashba and Dresselhaus spin-orbit interactions. This investigation is done computationally and to do this, at first, the effective Hamiltonian of the system by considering the spin-orbit coupling is demonstrated in the presence of applied electric and magnetic fields and afterwards the Schrödinger equation is solved using the finite difference approach. Utilizing finite element method, eigenvalues and eigenstates of the system are calculated and the effect of the external fields, the size of the dot as well as the strength of Rashba spin-orbit interaction are studied. Our results indicate that, Spin-orbit interactions, external fields and the dot size have a great influence on the electronic structure of the system.
NASA Astrophysics Data System (ADS)
Goswami, Partha
2018-03-01
We calculate the electronic band dispersion of graphene monolayer on a two-dimensional transition metal dichalcogenide substrate (GrTMD) around K and K^' } points by taking into account the interplay of the ferromagnetic impurities and the substrate-induced interactions. The latter are (strongly enhanced) intrinsic spin-orbit interaction (SOI), the extrinsic Rashba spin-orbit interaction (RSOI) and the one related to the transfer of the electronic charge from graphene to substrate. We introduce exchange field ( M) in the Hamiltonian to take into account the deposition of magnetic impurities on the graphene surface. The cavalcade of the perturbations yield particle-hole symmetric band dispersion with an effective Zeeman field due to the interplay of the substrate-induced interactions with RSOI as the prime player. Our graphical analysis with extremely low-lying states strongly suggests the following: The GrTMDs, such as graphene on WY2, exhibit (direct) band-gap narrowing / widening (Moss-Burstein (MB) gap shift) including the increase in spin polarisation ( P) at low temperature due to the increase in the exchange field ( M) at the Dirac points. The polarisation is found to be electric field tunable as well. Finally, there is anticrossing of non-parabolic bands with opposite spins, the gap closing with same spins, etc. around the Dirac points. A direct electric field control of magnetism at the nanoscale is needed here. The magnetic multiferroics, like BiFeO3 (BFO), are useful for this purpose due to the coupling between the magnetic and electric order parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zobov, V. E., E-mail: rsa@iph.krasn.ru; Kucherov, M. M.
2017-01-15
The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components aremore » described by different equations. Second, the long-range type of the dipole–dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different {sup 29}Si concentrations in magnetic fields directed along three crystallographic axes is considered.« less
Velocity Enhancement by Synchronization of Magnetic Domain Walls
NASA Astrophysics Data System (ADS)
Hrabec, Aleš; Křižáková, Viola; Pizzini, Stefania; Sampaio, João; Thiaville, André; Rohart, Stanislas; Vogel, Jan
2018-06-01
Magnetic domain walls are objects whose dynamics is inseparably connected to their structure. In this Letter, we investigate magnetic bilayers, which are engineered such that a coupled pair of domain walls, one in each layer, is stabilized by a cooperation of Dzyaloshinskii-Moriya interaction and flux-closing mechanism. The dipolar field mediating the interaction between the two domain walls links not only their position but also their structure. We show that this link has a direct impact on their magnetic-field-induced dynamics. We demonstrate that in such a system the coupling leads to an increased domain wall velocity with respect to single domain walls. Since the domain wall dynamics is observed in a precessional regime, the dynamics involves the synchronization between the two walls to preserve the flux closure during motion. Properties of these coupled oscillating walls can be tuned by an additional in-plane magnetic field enabling a rich variety of states, from perfect synchronization to complete detuning.
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
Shuai, M.; Klittnick, A.; Shen, Y.; ...
2016-01-28
Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. We find Its zero-field magnetization produces distinctive magnetic self-interaction effects, includingmore » liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth’s magnetic field.« less
Electric field effect on exchange interaction in ultrathin Co films with ionic liquids
NASA Astrophysics Data System (ADS)
Ishibashi, Mio; Yamada, Kihiro T.; Shiota, Yoichi; Ando, Fuyuki; Koyama, Tomohiro; Kakizakai, Haruka; Mizuno, Hayato; Miwa, Kazumoto; Ono, Shimpei; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo
2018-06-01
Electric-field modulations of magnetic properties have been extensively studied not only for practical applications but also for fundamental interest. In this study, we investigated the electric field effect on the exchange interaction in ultrathin Co films with ionic liquids. The exchange coupling J was characterized from the direct magnetization measurement as a function of temperature using Pt/ultrathin Co/MgO structures. The trend of the electric field effect on J is in good agreement with that of the theoretical prediction, and a large change in J by applying a gate voltage was observed by forming an electric double layer using ionic liquids.
Characterization of switching field distributions in Ising-like magnetic arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraleigh, Robert D.; Kempinger, Susan; Lammert, Paul E.
The switching field distribution within arrays of single-domain ferromagnetic islands incorporates both island-island interactions and quenched disorder in island geometry. Separating these two contributions is important for disentangling the effects of disorder and interactions in themagnetization dynamics of island arrays. Using submicron, spatially resolved Kerr imaging in an external magnetic field for islands with perpendicular magnetic anisotropy, we map out the evolution of island arrays during hysteresis loops. Resolving and tracking individual islands across four different lattice types and a range of interisland spacings, we can extract the individual switching fields of every island and thereby quantitatively determine the contributionsmore » of interactions and quenched disorder in the arrays. The width of the switching field distribution is found to be well fitted by a simple model comprising the sum of an array-independent contribution (interpreted as disorder induced) and a term proportional to the maximum field the entire rest of the array could exert on a single island, i.e., in a fully polarized state. This supports the claim that disorder in these arrays is primarily a single-island property and provides a methodology by which to quantify such disorder.« less
NASA Astrophysics Data System (ADS)
Bercik, David John
2002-11-01
Three-dimensional numerical simulations are used to study the dynamic interaction between magnetic fields and convective motions near the solar surface. The magnetic field is found to be transported by convective motions from granules to the intergranular lanes, where it collects and is compressed. A convective instability causes the upper levels of magnetic regions to be evacuated, compressing the field beyond equipartition values, and forming “flux tubes” or “flux sheets”. The degree to which the field is compressed controls how much convective transport is suppressed within the flux structure, and ultimately determines whether the magnetic feature appears brighter or darker than its surroundings. For this reason, the continuum intensity is not a good tracer of the lifetimes of magnetic features, since their bright/dark signature is transient in nature. Larger magnetic structures form at sites where a granule submerges and the surrounding field is pushed into the resulting dark hole. These micropores are devoid of flow in their interior and cool by radiating radially. The convective downflows that collar the micropore heat its edges by lateral radiation, but fail to penetrate far enough into the interior to prevent an overall cooling, and therefore darkening, of the micropore. Magnetic features undergo numerous mergers or splittings during their lifetimes as a result of being pushed and squeezed by the expansion of adjacent granules. Larger structures survive for several convective turnover times, but smaller structures are too weak to resist convective motions, and are destroyed on a convective time scale.
Solar Filament Longitudinal Oscillations along a Magnetic Field Tube with Two Dips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Yu-Hao; Zhang Li-Yue; Ouyang, Y.
Large-amplitude longitudinal oscillations of solar filaments have been observed and explored for more than ten years. Previous studies are mainly based on the one-dimensional rigid flux tube model with a single magnetic dip. However, it has been noted that there might be two magnetic dips, and hence two threads, along one magnetic field line. Following previous work, we intend to investigate the kinematics of the filament longitudinal oscillations when two threads are magnetically connected, which is done by solving one-dimensional radiative hydrodynamic equations with the numerical code MPI-AMRVAC. Two different types of perturbations are considered, and the difference from previousmore » works resulting from the interaction of the two filament threads is investigated. We find that even with the inclusion of the thread–thread interaction, the oscillation period is modified weakly, by at most 20% compared to the traditional pendulum model with one thread. However, the damping timescale is significantly affected by the thread–thread interaction. Hence, we should take it into account when applying the consistent seismology to the filaments where two threads are magnetically connected.« less
Gómez-Coca, Silvia; Ruiz, Eliseo
2012-03-07
The magnetic properties of a new family of single-molecule magnet Ni(3)Mn(2) complexes were studied using theoretical methods based on Density Functional Theory (DFT). The first part of this study is devoted to analysing the exchange coupling constants, focusing on the intramolecular as well as the intermolecular interactions. The calculated intramolecular J values were in excellent agreement with the experimental data, which show that all the couplings are ferromagnetic, leading to an S = 7 ground state. The intermolecular interactions were investigated because the two complexes studied do not show tunnelling at zero magnetic field. Usually, this exchange-biased quantum tunnelling is attributed to the presence of intermolecular interactions calculated with the help of theoretical methods. The results indicate the presence of weak intermolecular antiferromagnetic couplings that cannot explain the ferromagnetic value found experimentally for one of the systems. In the second part, the goal is to analyse magnetic anisotropy through the calculation of the zero-field splitting parameters (D and E), using DFT methods including the spin-orbit effect.
NASA Astrophysics Data System (ADS)
Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi
Bionized nano-ferrite (iron oxide/dextran) nanoparticles have been shown to have a large heating response in an alternating magnetic field, making them very promising for applications in magnetic nanoparticle hyperthermia cancer treatment. Magnetic hysteresis loop measurements of these particles provide insight into the magnetic reversal behavior of these particles, and thus their heating response. Measurements have been performed on frozen suspensions of nanoparticles dispersed in H2O, which have been frozen in a range of applied fields in order to tune the interparticle dipolar interactions through formation of linear chains. These experimental results are compared with micromagnetic models of both monolithic (single-domain) and internally structured (multi-grain) particles. It is found that the internal structure of the nanoparticles, which are made up of parallelepiped-shaped grains, is important for describing the magnetic reversal behavior of the particles and the resulting shape of the hysteresis loops. In addition to this, interparticle interactions between particles in a linear chain modify the reversal behavior and thus the shape of the hysteresis loop.
NASA Astrophysics Data System (ADS)
Filatov, Alexei Vladimirovich
2002-09-01
Using electromagnetic forces to suspend rotating objects (rotors) without mechanical contact is often an appealing technical solution. Magnetic suspensions are typically required to have adequate load capacity and stiffness, and low rotational loss. Other desired features include low price, high reliability and manufacturability. With recent advances in permanent-magnet materials, the required forces can often be obtained by simply using the interaction between permanent magnets. While a magnetic bearing based entirely on permanent magnets could be expected to be inexpensive, reliable and easy to manufacture, a fundamental physical principle known as Earnshaw's theorem maintains that this type of suspension cannot be statically stable. Therefore, some other physical mechanisms must be included. One such mechanism employs the interaction between a conductor and a nonuniform magnetic field in relative motion. Its advantages include simplicity, reliability, wide range of operating temperature and system autonomy (no external wiring and power supplies are required). The disadvantages of the earlier embodiments were high rotational loss, low stiffness and load capacity. This dissertation proposes a novel type of magnetic bearing stabilized by the field-conductor interaction. One of the advantages of this bearing is that no electric field, E, develops in the conductor during the rotor rotation when the system is in no-load equilibrium. Because of this we refer to it as the Null-E Bearing. Null-E Bearings have potential for lower rotational loss and higher load capacity and stiffness than other bearings utilizing the field-conductor interaction. Their performance is highly insensitive to manufacturing inaccuracies. The Null-E Bearing in its basic form can be augmented with supplementary electronics to improve its performance. Depending on the degree of the electronics involvement, a variety of magnetic bearings can be developed ranging from a completely passive to an active magnetic bearing of a novel type. This dissertation contains theoretical analysis of the Null-E Bearing operation, including derivation of the stability conditions and estimation of some of the rotational losses. The validity of the theoretical conclusions has been demonstrated by building and testing a prototype in which non-contact suspension of a 3.2-kg rotor is achieved at spin speeds above 18 Hz.
Mirroring of fast solar flare electrons on a downstream corotating interaction region
NASA Technical Reports Server (NTRS)
Anderson, K. A.; Sommers, J.; Lin, R. P.; Pick, M.; Chaizy, P.; Murphy, N.; Smith, E. J.; Phillips, J. L.
1995-01-01
We discuss an example of confinement of fast solar electrons by a discrete solar wind-interplanetary magnetic field structure on February 22, 1991. The structure is about 190,000 km in width and is clearly defined by changes in the direction of the magnetic field at the Ulysses spacecraft. This structure carries electrons moving toward the Sun as well as away from the Sun. A loss cone in the angular distribution of the fast electrons shows that mirroring, presumably magnetic, takes place downstream from the spacecraft. Following passage of this narrow structure, the return flux vanishes for 21 min after which time the mirroring resumes and persists for several hours. We identify the enhanced magnetic field region lying downstream from the Ulysses spacecraft that is responsible for the mirroring to be a corotating stream interaction region. Backstreaming suprathermal electron measurements by the Los Alamos National Laboratory plasma experiment on the Ulysses spacecraft support this interpretation.
Studying Electromagnetic Beam Instabilities in Laser Plasmas for Alfvénic Parallel Shock Formation
NASA Astrophysics Data System (ADS)
Dorst, R. S.; Heuer, P. V.; Weidl, M. S.; Schaeffer, D. B.; Constantin, C. G.; Vincena, S.; Tripathi, S.; Gekelman, W.; Winske, D.; Niemann, C.
2017-10-01
We present measurements of the collisionless interaction between an exploding laser-produced plasma (LPP) and a large, magnetized ambient plasma. The LPP is created by focusing a high energy laser on a target embedded in the ambient Large Plasma Device (LAPD) plasma at the University of California, Los Angeles. The resulting super-Alfvénic (MA = 5) ablated material moves parallel to the background magnetic field (300 G) through 12m (80 δ i) of the LAPD, interacting with the ambient Helium plasma (ni = 9 ×1012 cm-3) through electromagnetic beam instabilities. The debris is characterized by Langmuir probes and a time-resolved fluorescence monochromator. Waves in the magnetic field produced by the instabilities are diagnosed by an array of 3-axis `bdot' magnetic field probes. Measurements are compared to hybrid simulations of both the experiment and of parallel shocks.
Metrologically useful states of spin-1 Bose condensates with macroscopic magnetization
NASA Astrophysics Data System (ADS)
Kajtoch, Dariusz; Pawłowski, Krzysztof; Witkowska, Emilia
2018-02-01
We study theoretically the usefulness of spin-1 Bose condensates with macroscopic magnetization in a homogeneous magnetic field for quantum metrology. We demonstrate Heisenberg scaling of the quantum Fisher information for states in thermal equilibrium. The scaling applies to both antiferromagnetic and ferromagnetic interactions. The effect preserves as long as fluctuations of magnetization are sufficiently small. Scaling of the quantum Fisher information with the total particle number is derived within the mean-field approach in the zero-temperature limit and exactly in the high-magnetic-field limit for any temperature. The precision gain is intuitively explained owing to subtle features of the quasidistribution function in the phase space.
H-T Magnetic Phase Diagram of a Frustrated Triangular Lattice Antiferromagnet CuFeO 2
NASA Astrophysics Data System (ADS)
Mitsuda, Setsuo; Mase, Motoshi; Uno, Takahiro; Kitazawa, Hideaki; Katori, Hiroko
2000-01-01
By magnetization and specific heat measurements in an applied magnetic field up to 12 T, we obtained the magnetic field (H) versus temperature (T) phase diagram of a frustrated triangular lattice antiferromagnet (TLA), CuFeO2, where a partially disordered phase typical to Ising TLA exists as a thermally induced state for the 4-sublattice ground state as well as for the first-field-induced 5-sublattice-like state. The experimentally obtained H-T magnetic phase diagram is compared with that from Monte-Carlo simulation of a 2D Ising TLA model with competing exchange interactions up to 3rd neighbors.
Magnetic field effects on the crust structure of neutron stars
NASA Astrophysics Data System (ADS)
Franzon, B.; Negreiros, R.; Schramm, S.
2017-12-01
We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.
Downward pumping of magnetic flux as the cause of filamentary structures in sunspot penumbrae.
Thomas, John H; Weiss, Nigel O; Tobias, Steven M; Brummell, Nicholas H
2002-11-28
The structure of a sunspot is determined by the local interaction between magnetic fields and convection near the Sun's surface. The dark central umbra is surrounded by a filamentary penumbra, whose complicated fine structure has only recently been revealed by high-resolution observations. The penumbral magnetic field has an intricate and unexpected interlocking-comb structure and some field lines, with associated outflows of gas, dive back down below the solar surface at the outer edge of the spot. These field lines might be expected to float quickly back to the surface because of magnetic buoyancy, but they remain submerged. Here we show that the field lines are kept submerged outside the spot by turbulent, compressible convection, which is dominated by strong, coherent, descending plumes. Moreover, this downward pumping of magnetic flux explains the origin of the interlocking-comb structure of the penumbral magnetic field, and the behaviour of other magnetic features near the sunspot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun
2015-06-15
In O-type high power microwave (HPM) devices, the annular relativistic electron beam is constrained by a strong guiding magnetic field and propagates through an interaction region to generate HPM. Some papers believe that the E × B drift of electrons may lead to beam breakup. This paper simplifies the interaction region with a smooth cylindrical waveguide to research the radial motion of electrons under conditions of strong guiding magnetic field and TM{sub 01} mode HPM. The single-particle trajectory shows that the radial electron motion presents the characteristic of radial guiding-center drift carrying cyclotron motion. The radial guiding-center drift is spatiallymore » periodic and is dominated by the polarization drift, not the E × B drift. Furthermore, the self fields of the beam space charge can provide a radial force which may pull electrons outward to some extent but will not affect the radial polarization drift. Despite the radial drift, the strong guiding magnetic field limits the drift amplitude to a small value and prevents beam breakup from happening due to this cause.« less
Studies of Plasma Flow Past Jupiters Satellite Io
NASA Technical Reports Server (NTRS)
Linker, Jon A.
1997-01-01
We have investigated the interaction of Io, Jupiter's innermost Galilean satellite, with the Io plasma torus, and the interaction of Ganymede with the corotating Jovian plasma. With the successful insertion of the Galileo spacecraft into orbit around Jupiter, many new observations have been made of the Jovian magnetosphere. Some of the most exciting results thus far have been in regards to Jupiter's satellites, Io and Ganymede. In both cases the large perturbations to the background (Jovian) magnetic field have been consistent with the satellites' possession of an intrinsic magnetic field. The gravity measurements implying a differentiated core at both Io and Ganymede makes internal generation of a magnetic field by dynamo action in these satellites plausible, and, in the case of Ganymede, the identification of an intrinsic field is apparently unambiguous. For Io the situation is less clear, and further analysis is necessary to answer this important question. During the past year, we have used time-dependent three-dimensional magnetohydrodynamic (MHD) simulations to study these plasma-moon interactions. The results from these simulations have been used directly in the analysis of the Galileo magnetometer data. Our primary emphasis has been on the Io interaction, but we recently presented results on the Ganymede interaction as well. In this progress summary we describe our efforts on these problems to date.
Electronic structures and magnetic/optical properties of metal phthalocyanine complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo
2016-02-01
Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electricmore » field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.« less
Pressure-dependent ground states and fermiology in β- ( BDA-TTP ) 2 M Cl4 ( M=Fe,Ga )
NASA Astrophysics Data System (ADS)
Choi, E. S.; Graf, D.; Brooks, J. S.; Yamada, J.; Akutsu, H.; Kikuchi, K.; Tokumoto, M.
2004-07-01
We have investigated pressure- and magnetic-field-dependent electrical transport properties in the charge transfer salts β-(BDA-TTP)2MCl4(M=Fe,Ga) , both of which show a metal-insulator (MI) transition around 120K at ambient pressure. The zero field temperature-pressure phase diagrams of the two compounds are quite similar; the MI transition temperature decreases with pressure, and superconductivity is observed in both the magnetic and non-magnetic compounds above ˜4.5kbar . Likewise, Shubnikov-de Haas effect measurements show nearly identical Fermi surfaces. These similarities suggest that the magnetic interaction J between the conduction electrons and the magnetic moments in β-(BDA-TTP)2FeCl4 is small. Nevertheless, magnetoresistance measurements show remarkable differences and reveal that magnetic interactions with the conduction electrons are still effective in M=Fe compounds.
Crustal evolution inferred from Apollo magnetic measurements
NASA Technical Reports Server (NTRS)
Dyal, P.; Daily, W. D.; Vanyan, L. L.
1978-01-01
Magnetic field and solar wind plasma density measurements were analyzed to determine the scale size characteristics of remanent fields at the Apollo 12, 15, and 16 landing sites. Theoretical model calculations of the field-plasma interaction, involving diffusion of the remanent field into the solar plasma, were compared to the data. The information provided by all these experiments shows that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized during early crustal evolution. Bombardment and subsequent gardening of the upper layers of these magnetized regions left randomly oriented, smaller scale (5 to 10 km) magnetic sources close to the surface. The larger scale size fields of magnitude approximately 0.1 gammas are measured by the orbiting subsatellite experiments and the small scale sized remanent fields of magnitude approximately 100 gammas are measured by the surface experiments.
Magnetic Barkhausen Noise Measurements Using Tetrapole Probe Designs
NASA Astrophysics Data System (ADS)
McNairnay, Paul
A magnetic Barkhausen noise (MBN) testing system was developed for Defence Research and Development Canada (DRDC) to perform MBN measurements on the Royal Canadian Navy's Victoria class submarine hulls that can be correlated with material properties, including residual stress. The DRDC system was based on the design of a MBN system developed by Steven White at Queen's University, which was capable of performing rapid angular dependent measurements through the implementation of a flux controlled tetrapole probe. In tetrapole probe designs, the magnetic excitation field is rotated in the surface plane of the sample under the assumption of linear superposition of two orthogonal magnetic fields. During the course of this work, however, the validity of flux superposition in ferromagnetic materials, for the purpose of measuring MBN, was brought into question. Consequently, a study of MBN anisotropy using tetrapole probes was performed. Results indicate that MBN anisotropy measured under flux superposition does not simulate MBN anisotropy data obtained through manual rotation of a single dipole excitation field. It is inferred that MBN anisotropy data obtained with tetrapole probes is the result of the magnetic domain structure's response to an orthogonal magnetization condition and not necessarily to any bulk superposition magnetization in the sample. A qualitative model for the domain configuration under two orthogonal magnetic fields is proposed to describe the results. An empirically derived fitting equation, that describes tetrapole MBN anisotropy data, is presented. The equation describes results in terms of two largely independent orthogonal fields, and includes interaction terms arising due to competing orthogonally magnetized domain structures and interactions with the sample's magnetic easy axis. The equation is used to fit results obtained from a number of samples and tetrapole orientations and in each case correctly identifies the samples' magnetic easy axis.
Interaction-induced partitioning and magnetization jumps in the mixed-spin oxide FeTiO3-Fe2O3.
Charilaou, M; Sahu, K K; Zhao, S; Löffler, J F; Gehring, A U
2011-07-29
In this study we report on jumps in the magnetic moment of the hemo-ilmenite solid solution (x)FeTiO(3)-(1-x)Fe(2)O(3) above Fe(III) percolation at low temperature (T<3 K). The first jumps appear at 2.5 K, one at each side of the magnetization loop, and their number increases with decreasing temperature and reaches 5 at T=0.5 K. The jumps occur after field reversal from a saturated state and are symmetrical in the trigger field and intensity with respect to the field axis. Moreover, an increase of the sample temperature by 2.8% at T=2.0 K indicates the energy released after the ignition of the magnetization jump, as the spin-currents generated by the event are dissipated in the lattice. The magnetization jumps are further investigated by Monte Carlo simulations, which show that these effects are a result of magnetic interaction-induced partitioning on a sublattice level. © 2011 American Physical Society
Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field
NASA Astrophysics Data System (ADS)
Hummel, Frederic; Fey, Christian; Schmelcher, Peter
2018-04-01
We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.
Magnetic Field Interactions of Military and Law Enforcement Bullets at 1.5 and 3 Tesla.
Diallo, Idris; Auffret, Mathieu; Attar, Lakdar; Bouvard, Elise; Rousset, Jean; Ben Salem, Douraied
2016-07-01
There are significant numbers of military and law enforcement bullets containing ferromagnetic materials. This study aimed to assess the magnetic field interactions for a representative sample of military and law enforcement ballistic objects at 1.5 and 3 tesla (T) to create a magnetic resonance imaging (MRI) compatibility database. Twenty-nine different bullets underwent MRI evaluation. The deflection angle method and a qualitative torque scale were used. The samples were representative of those commonly used in the North Atlantic Treaty Organization (NATO) military forces (e.g., 5.56 mm NATO), law enforcement agencies (e.g., 9 mm Parabellum), and encountered in war injuries and crime-related trauma (e.g., 7.62 mm Kalashnikov). At all static magnetic field strengths, all non-nickel- and nonsteel-containing bullets exhibited no movement (deflection angle = 0°; torque = 0), whereas eight bullets containing steel core, steel jacket, or nickel jacket exhibited substantial magnetic field interactions over and above what might be regarded as safe in vivo (deflection angle = 90°; torque = 4+). Military and law enforcement non-nickel- or nonsteel-containing bullets appear to be safe for patients in MRI system at 1.5 and 3 T. On the other hand, nickel- and steel-containing bullets exhibit movements that are considered potentially unsafe for patients in an MRI environment. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
The role of magnetic fields in the structure and interaction of supershells
NASA Astrophysics Data System (ADS)
Ntormousi, Evangelia; Dawson, Joanne R.; Hennebelle, Patrick; Fierlinger, Katharina
2017-03-01
Context. Large-scale shocks formed by clustered feedback of young OB stars are considered an important source of mechanical energy for the interstellar medium (ISM) and a trigger of molecular cloud formation. Their interaction sites are locations where kinetic energy and magnetic fields are redistributed between ISM phases. Aims: In this work we address two questions, both involving the role of galactic magnetic fields in the dynamics of supershells and their interactions. On the one hand, we study the effect of the magnetic field on the expansion and fragmentation of supershells and, on the other hand, we look for the signatures of supershell collisions on dense structures and on the kinetic and magnetic energy distribution of the ISM. Methods: We performed a series of high-resolution, three-dimensional simulations of colliding supershells. The shocks are created by time-dependent feedback and evolve in a diffuse turbulent environment that is either unmagnetized or has different initial magnetic field configurations. Results: In the hydrodynamical situation, the expansion law of the superbubbles is consistent with the radius-time relation R ∝ t3/5 that is theoretically predicted for wind-blown bubbles. The supershells fragment over their entire surface into small dense clumps that carry more than half of the total kinetic energy in the volume. However, this is not the case when a magnetic field is introduced, either in the direction of the collision or perpendicular to the collision. In both situations, the shell surfaces are more stable to dynamical instabilities. When the magnetic field opposes the collision, the expansion law of the supershells also becomes significantly flatter than in the hydrodynamical case. Although a two-phase medium arises in all cases, in the magnetohydrodynamical (MHD) simulations the cold phase is limited to lower densities and the cold clumps are located further away from the shocks with respect to the hydrodynamical simulations. Conclusions: For the parameters we explored, self-gravity has no effect on either the superbubble expansion or the shock fragmentation. In contrast, a magnetic field, whether mostly parallel or mostly perpendicular to the collision axis, causes a deceleration of the shocks, deforms them significantly, and largely suppresses the formation of the dense gas on their surface. The result is a multi-phase medium in which the cold clumps are not spatially correlated with the supershells.
Magnetic Assisted Colloidal Pattern Formation
NASA Astrophysics Data System (ADS)
Yang, Ye
Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of phase transitions in condensed matter systems that can be tracked with single particle resolution. Compared with other research on colloidal crystal formation, my research has focused on multi-component colloidal systems of magnetic and non-magnetic colloids immersed in a ferrofluid. Initially, I studied the types of patterns that form as a function of the concentrations of the different particles and ferrofluid, and I discovered a wide variety of chains, rings and crystals forming in bi-component and tri-component systems. Based on these results, I narrowed my focus to one specific crystal structure (checkerboard lattice) as a model of phase transformations in alloy. Liquid/solid phase transitions were studied by slowly adjusting the magnetic field strength, which serves to control particle-particle interactions in a manner similar to controlling the physical temperature of the fluid. These studies were used to determine the optimal conditions for forming large single crystal structures, and paved the way for my later work on solid/solid phase transitions when the angle of the external field was shifted away from the normal direction. The magnetostriction coefficient of these crystals was measured in low tilt angle of the applied field. At high tilt angles, I observed a variety of martensitic transformations, which followed different pathways depending on the crystal direction relative to the in-plane field. In the last part of my doctoral studies, I investigated colloidal patterns formed in a superimposed acoustic and magnetic field. In this approach, the magnetic field mimics "temperature", while the acoustic field mimics "pressure". The ability to simultaneously tune both temperature and pressure allows for more efficient exploration of phase space. With this technique I demonstrated a large class of particle structures ranging from discrete molecule-like clusters to well ordered crystal phases. Additionally, I demonstrated a crosslinking strategy based on photoacids, which stabilized the structures after the external field was removed. This approach has potential applications in the fabrication of advanced materials. My thesis is arranged as follows. In Chapter 1, I present a brief background of general pattern formation and why I chose to investigate patterns formed in colloidal systems. I also provide a brief review of field-assisted manipulation techniques in order to motivate why I selected magnetic and acoustic field to study colloidal patterns. In chapter 2, I present the theoretical background of magnetic manipulation, which is the main technique used in my research. In this chapter, I will introduce the basic knowledge on magnetic materials and theories behind magnetic manipulation. The underlining thermodynamic mechanisms and theoretical/computational approaches in colloidal pattern formation are also briefly reviewed. In Chapter 3, I focus on using these concepts to study adhesion forces between particle and surfaces. In Chapter 4, I focus on exploring the ground states of colloidal patterns formed from the anti-ferromagnetic interactions of mixtures of particles, as a function of the particle volume fractions. In Chapter 5, I discuss my research on phase transformations of the well-ordered checkerboard phase formed from the equimolar mixture of magnetic and non-magnetic beads in ferrofluid, and I focus mainly on phase transformations in a slowly varying magnetic field. In Chapter 6, I discuss my work on the superimposed magnetic and acoustic field to study patterns formed from monocomponent colloidal suspensions under vertical confinement. Finally, I conclude my thesis in Chapter 7 and discuss future directions and open questions that can be explored in magnetic field directed self-organization in colloidal systems.
NASA Astrophysics Data System (ADS)
Mitsuda, Setsuo; Mase, Motoshi; Prokes, K.; Kitazawa, Hideaki; Katori, H.
2000-11-01
Neutron diffraction studies on a frustrated triangular lattice antiferromagnet (TLA) CuFeO2 have been performed under an applied magnetic field up to 14.5 T. The first-field-induced state was found to be not the commensurate 5-sublattice (↑↑↑↓↓) magnetic state but rather an incommensurate complex helical state reflecting the Heisenberg spin character of orbital singlet Fe3+ magnetic ions. In contrast, the second-field-induced state was found to be the 5-sublattice (↑↑↑↓↓) magnetic state predicted by the two-dimensional (2D) Ising spin TLA model with competing exchange interactions up to the 3rd neighbors.
NASA Astrophysics Data System (ADS)
Allia, P.; Barrera, G.; Tiberto, P.; Nardi, T.; Leterrier, Y.; Sangermano, M.
2014-09-01
Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnetic properties of the two nanopowders and the corresponding nanocomposites were measured in the 10 K-300 K temperature range. Magnetic measurements are shown here to be able to give unambiguous information on single-particle properties such as particle size and magnetic anisotropy as well as on nanoparticle aggregation and interparticle interaction. A comparison between the size distribution functions obtained from magnetic measurements and from TEM images shows that figures estimated from properly analyzed magnetic measurements are very close to the actual values. In addition, the present analysis allows us to determine the value of the effective magnetic anisotropy and to estimate the anisotropy contribution from the surface. The Field-cooled/zero field cooled curves reveal a high degree of particle aggregation in the Fe3O4 nanopowder, which is partially reduced by silica coating and strongly decreased by dissolution in the host polymer. In all considered materials, the nanoparticles are magnetically interacting, the interaction strength being a function of nanoparticle environment and being the lowest in the nanocomposite containing bare, well-separate Fe3O4 particles. All samples behave as interacting superparamagnetic materials instead of ideal superparamagnets and follow the corresponding scaling law.
Micromechanics-based magneto-elastic constitutive modeling of particulate composites
NASA Astrophysics Data System (ADS)
Yin, Huiming
Modified Green's functions are derived for three situations: a magnetic field caused by a local magnetization, a displacement field caused by a local body force and a displacement field caused by a local prescribed eigenstrain. Based on these functions, an explicit solution is derived for two magnetic particles embedded in the infinite medium under external magnetic and mechanical loading. A general solution for numerable magnetic particles embedded in an infinite domain is then provided in integral form. Two-phase composites containing spherical magnetic particles of the same size are considered for three kinds of microstructures. With chain-structured composites, particle interactions in the same chain are considered and a transversely isotropic effective elasticity is obtained. For periodic composites, an eight-particle interaction model is developed and provides a cubic symmetric effective elasticity. In the random composite, pair-wise particle interactions are integrated from all possible positions and an isotropic effective property is reached. This method is further extended to functionally graded composites. Magneto-mechanical behavior is studied for the chain-structured composite and the random composite. Effective magnetic permeability, effective magnetostriction and field-dependent effective elasticity are investigated. It is seen that the chain-structured composite is more sensitive to the magnetic field than the random composite; a composite consisting of only 5% of chain-structured particles can provide a larger magnetostriction and a larger change of effective elasticity than an equivalent composite consisting of 30% of random dispersed particles. Moreover, the effective shear modulus of the chain-structured composite rapidly increases with the magnetic field, while that for the random composite decreases. An effective hyperelastic constitutive model is further developed for a magnetostrictive particle-filled elastomer, which is sampled by using a network of body-centered cubic lattices of particles connected by macromolecular chains. The proposed hyperelastic model is able to characterize overall nonlinear elastic stress-stretch relations of the composites under general three-dimensional loading. It is seen that the effective strain energy density is proportional to the length of stretched chains in unit volume and volume fraction of particles.
NASA Astrophysics Data System (ADS)
Okada, Kazuya; Satoh, Akira
2017-09-01
In the present study, we address a suspension composed ferromagnetic rod-like particles to elucidate a regime change in the aggregate structures and the magneto-rheological characteristics. Monte Carlo simulations have been employed for investigating the aggregate structures in thermodynamic equilibrium, and Brownian dynamics simulations for magneto-rheological features in a simple shear flow. The main results obtained here are summarized as follows. For the case of thermodynamic equilibrium, the rod-like particles aggregate to form thick chain-like clusters and the neighboring clusters incline in opposite directions. If the external magnetic field is increased, the thick chain-like clusters in the magnetic field direction grow thicker by adsorbing the neighboring clusters that incline in the opposite direction. Hence, a significant phase change in the particle aggregates is not induced by an increase in the magnetic field strength. For the case of a simple shear flow, even a weak shear flow induces a significant regime change from the thick chain-like clusters of thermodynamic equilibrium into wall-like aggregates composed of short raft-like clusters. A strong external magnetic field drastically changes these aggregates into wall-like aggregates composed of thick chain-like clusters rather than the short raft-like clusters. The internal structure of these aggregates is not strongly influenced by a shear flow, and the formation of the short raft-like clusters is maintained inside the aggregates. The main contribution to the net viscosity is the viscosity component due to magnetic particle-particle interaction forces in relation to the present volumetric fraction. Hence, a larger magnetic interaction strength and also a stronger external magnetic field give rise to a larger magneto-rheological effect. However, the dependence of the viscosity on these factors is governed in a complex manner by whether or not the wall-like aggregates are composed mainly of short raft-like clusters. An increase in the shear rate functions to simply decrease the effect of the magnetic particle-particle and the particle-field interactions.
Planetary Magnetic Fields and Climate Evolution
NASA Astrophysics Data System (ADS)
Brain, D. A.; Leblanc, F.; Luhmann, J. G.; Moore, T. E.; Tian, F.
We explore the possible connections between magnetic fields and climate at the terrestrial bodies Venus, Earth, Mars, and Titan. Magnetic fields are thought to have negligible effects on the processes that change a planet's climate, except for processes that alter the abundance of atmospheric gases. Particles can be added or removed at the top of an atmosphere, where collisions are infrequent and a more substantial fraction of particles are ionized (and therefore subject to magnetic forces) than at lower altitudes. The absence of a global magnetic field at Mars for much of its history may have contributed to the removal of a substantial fraction of its atmosphere to space. The persistence of a global magnetic field should have decreased both ionization and removal of atmospheric ions by several processes, and may have indirectly decreased the loss rate of neutral particles as well. While it is convenient to think of magnetic fields as shields for planetary atmospheres from impinging plasma (such as the solar wind), observations of ions escaping from Earth's polar cusp regions suggest that magnetic shielding effects may not be as effective as previously thought. One explanation that requires further testing is that magnetic fields transfer momentum and energy from incident plasma to localized regions of the atmosphere, resulting in similar (or possibly greater) escape rates than if the momentum and energy were imparted more globally to the atmosphere in the absence of a magnetic field. Trace gases can be important for climate despite their low relative abundance in planetary atmospheres. At Venus, removal of O+ over the history of the planet has likely contributed to the loss of water from the atmosphere, leading to a runaway greenhouse situation and having implications for the chemistry of atmosphere-surface interactions. Conversely, Titan's robust atmospheric chemistry may result from the addition of trace amounts of oxygen from Saturn's magnetosphere, which then participate in chemical reactions that produce carbon monoxide (CO) and carbon dioxide (CO2). Models of the entire atmosphere system (including planetary plasma interactions) should continue to shed light on the connections between magnetic fields and climate, as well as models that consider a single planetary body in both magnetized and unmagnetized states. Future measurements, such as those that will be made by the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft to Mars, will provide better constraints on the importance of magnetic fields in the evolution of atmospheres.
Formation of high-field magnetic white dwarfs from common envelopes
Nordhaus, Jason; Wellons, Sarah; Spiegel, David S.; Metzger, Brian D.; Blackman, Eric G.
2011-01-01
The origin of highly magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star, is engulfed by a post-main-sequence giant, gravitational torques in the envelope of the giant lead to a reduction of the companion’s orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields. PMID:21300910
Boyd, Richard N.; Kajino, Toshitaka; Onaka, Takashi
2018-01-01
Abstract Previous work has suggested that the chirality of the amino acids could be established in the magnetic field of a nascent neutron star from a core-collapse supernova or massive collapsar. The magnetic field would orient the 14N nuclei, and the alignment of its nuclear spin with respect to those of the electron antineutrinos emitted from the collapsing star would determine the probability of destruction of the 14N nuclei by interactions with the antineutrinos. Subsequent work estimated the bulk polarization of the 14N nuclei in large rotating meteoroids in such an environment. The present work adds a crucial piece of this model by describing the details by which the selective 14N nuclear destruction would produce molecular chiral selectivity. The effects of the neutrino-induced interactions on the 14N nuclei bound in amino acids polarized in strong magnetic fields are studied. It is shown that electric fields in the reference frame of the nuclei modify the magnetic field at the nucleus, creating nuclear magnetizations that are asymmetric in chirality. The antineutrino cross sections depend on this magnetization, creating a selective destructive effect. The environmental conditions and sites in which such a selection mechanism could occur are discussed. Selective destruction of D-enantiomers results in enantiomeric excesses which may be sufficient to drive subsequent autocatalysis necessary to produce the few-percent enantiomeric excesses found in meteorites and subsequent homochirality. Molecular quantum chemical calculations were performed for alanine, and the chirality-dependent effects studied were included. A preference for left-handed molecules was found, and enantiomeric excesses as high as 0.02% were estimated for molecules in the electromagnetic conditions expected from a core-collapse supernova. Key Words: Amino acids—Supernovae—Antineutrinos—Enantiomeric excess—Chirality. Astrobiology 18, 190–206. PMID:29160728
Magnetic Ground State Stabilized by Three-Site Interactions: Fe /Rh (111 )
NASA Astrophysics Data System (ADS)
Krönlein, Andreas; Schmitt, Martin; Hoffmann, Markus; Kemmer, Jeannette; Seubert, Nicolai; Vogt, Matthias; Küspert, Julia; Böhme, Markus; Alonazi, Bandar; Kügel, Jens; Albrithen, Hamad A.; Bode, Matthias; Bihlmayer, Gustav; Blügel, Stefan
2018-05-01
We report the direct observation of a theoretically predicted magnetic ground state in a monolayer Fe on Rh(111), which is referred to as an up-up-down-down (↑↑↓↓) double-row-wise antiferromagnetic spin structure, using spin-polarized scanning tunneling microscopy. This exotic phase, which exists in three orientational domains, is revealed by experiments with magnetic probe tips performed in external magnetic fields. It is shown that a hitherto unconsidered four-spin-three-site beyond-Heisenberg interaction distinctly contributes to the spin coupling of atoms with S ≥1 spins. The observation of the ↑↑↓↓ order substantiates the presence of higher-order, in particular, three-site interactions, in thin magnetic films of itinerant magnets.
Electromagnetic Gun With Commutated Coils
NASA Technical Reports Server (NTRS)
Elliott, David G.
1991-01-01
Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.
Iron chalcogenide superconductors at high magnetic fields
Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir
2012-01-01
Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518
NASA Astrophysics Data System (ADS)
Borkar, Hitesh; Choudhary, R. J.; Singh, V. N.; Tomar, M.; Gupta, Vinay; Kumar, Ashok
2015-08-01
Novel magnetic properties and magnetic interactions in composite multiferroic oxides Pb[(Zr0.52Ti0.48)0.60(Fe0.67W0.33).40]O3]0.80-[CoFe2O4]0.20 (PZTFW-CFO) have been studied from 50 to 1000 Oe field cooled (FC) and zero field cooled (ZFC) probing conditions, and over a wide range of temperatures (4-350 K). Crystal structure analysis, surface morphology, and high resolution transmission electron microscopy images revealed the presence of two distinct phases, where micro- and nano-size spinel CFO were embedded in tetragonal PZTFW matrix and applied a significant built-in compressive strain (˜0.4-0.8%). Three distinct magnetic phase transitions were observed with the subtle effect of CFO magnetic phase on PZTFW magnetic phase transitions below the blocking temperature (TB). Temperature dependence magnetic property m(T) shows a clear evidence of spin freezing in magnetic order with lowering in thermal vibration. Chemical inhomogeneity and confinement of nanoscale ferrimagnetic phase in paramagnetic/antiferromagnetic matrix restrict the long range interaction of spin which in turn develop a giant spin frustration. A large divergence in the FC and ZFC data and broad hump in ZFC data near 200 (±10) K were observed which suggests that large magnetic anisotropy and short range order magnetic dipoles lead to the development of superparamagnetic states in composite.
Transformable ferroelectric control of dynamic magnetic permeability
NASA Astrophysics Data System (ADS)
Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng
2018-02-01
Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.
Triggers and Manifestations of Flare Energy Release in the Low Atmosphere
NASA Astrophysics Data System (ADS)
Kosovichev, A. G.; Sharykin, I. N.; Sadykov, V. M.; Vargas, S.; Zimovets, I. V.
2016-12-01
The main goal is to understand triggers and manifestations of the flare energy release in the lower layers of the solar atmosphere (the photosphere and chromosphere) using high-resolution optical observations and magnetic field measurements. As a case study we present results for an M-class flare. We analyze optical images, HMI Dopplergrams and vector magnetograms, and use Non-Linear Force-Free Field (NLFFF) extrapolation for reconstruction of the magnetic topology. The NLFFF modelling reveals interaction of oppositely directed magnetic flux-tubes in the Polarity Inversion Line (PIL). These two interacting magnetic flux tubes are observed as a compact sheared arcade along the PIL in the high-resolution broad-band continuum images from New Solar Telescope (NST). In the vicinity of the PIL, the NST H-alpha observations reveal formation of a thin three-ribbon structure corresponding to the small-scale photospheric magnetic arcade. Magnetic reconnection is triggered by two interacting magnetic flux tubes with forming current sheet extended along the PIL. Presented observational results evidence in favor of location of the primary energy release site in the dense chromosphere where plasma is partially ionized in the region of strong electric currents concentrated near the polarity inversion line.
Deng, Ming; Huang, Can; Liu, Danhui; Jin, Wei; Zhu, Tao
2015-08-10
An ultra-compact optical fiber magnetic field sensor based on a microstructured optical fiber (MOF) modal interference and ferrofluid (FF) has been proposed and experimentally demonstrated. The magnetic field sensor was fabricated by splicing a tapered germanium-doped index guided MOF with six big holes injected with FF to two conventional single-mode fibers. The transmission spectra of the proposed sensor under different magnetic field intensities have been measured and theoretically analyzed. Due to an efficient interaction between the magnetic nanoparticles in FF and the excited cladding mode, the magnetic field sensitivity reaches up to117.9pm/mT with a linear range from 0mT to 30mT. Moreover, the fabrication process of the proposed sensor is simple, easy and cost-effective. Therefore, it will be a promising candidate for military, aviation industry, and biomedical applications, especially, for the applications where the space is limited.
Studies of isolated and interacting ferromagnetic gapped nanorings
NASA Astrophysics Data System (ADS)
Li, Jie; Zhang, Sheng; Bartell, Jason; Grigas, Chris; Nisoli, Cristiano; Lammert, Paul; Crespi, Vincent; Schiffer, Peter
2011-03-01
We have used micromagnetic simulation and magnetic force microscopy (MFM) to study isolated and interacting permalloy nanorings that are lithographically fabricated with gaps that prevent a rotationally symmetric magnetic state. The gapped nanorings have inner and outer radii of 200 and 300 nm respectively, and the gap has a subtended width of ~ 20 degrees. The nanorings generate a strong magnetic field only in the gap, and thus the magnetization states of gapped nanorings are much more accessible to MFM imaging than complete rings. We have investigated the properties of these gapped nanorings, including the anisotropy in their coercive field and the relative alignment of the magnetic polarization in coupled pairs. We acknowledge the financial support from DOE and Army Research Office.We are grateful to Professor Chris Leighton and Mike Erickson for assistance with sample preparation.
NASA Astrophysics Data System (ADS)
Dan, X.; Yang, J. J.
2016-07-01
Self-assembled films with needle-like microarrays were fabricated using a mixture of cobalt and fluorocarbon resin under a magnetic field. The various influences of magnetic powder content, viscosity and size distribution on the structure of the self-assembled films were investigated. The self-assembled film morphologies were characterized by stereomicroscope and scanning electron microscopy. Experimental results indicate that an increase in magnetic powder content results in greater unit height and diameter, and that a reduction in viscosity results in increasing array density and decreasing unit width. Additionally, particles with narrow size distribution were able to attain more regular microarray structures. The structural alterations were closely related to numerous effects such as van der Waals forces, dipole-dipole interactions, and external-dipole interactions. The self-assembled film demonstrated magnetic anisotropy, as identified by vibrating sample magnetometry (VSM).
An interacting loop model of solar flare bursts
NASA Technical Reports Server (NTRS)
Emslie, A. G.
1981-01-01
As a result of the strong heating produced at chromospheric levels during a solar flare burst, the local gas pressure can transiently attain very large values in certain regions. The effectiveness of the surrounding magnetic field at confining this high pressure plasma is therefore reduced and the flaring loop becomes free to expand laterally. In so doing it may drive magnetic field lines into neighboring, nonflaring, loops in the same active region, causing magnetic reconnection to take place and triggering another flare burst. The features of this interacting loop model are found to be in good agreement with the energetics and time structure of flare associated solar hard X-ray bursts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strugarek, A., E-mail: antoine.strugarek@cea.fr, E-mail: strugarek@astro.umontreal.ca
Planets in close-in orbit interact with the magnetized wind of their hosting star. This magnetic interaction was proposed to be a source for enhanced emissions in the chromosphere of the star, and to participate in setting the migration timescale of the close-in planet. The efficiency of the magnetic interaction is known to depend on the magnetic properties of the host star and of the planet, and on the magnetic topology of the interaction. We use a global, three-dimensional numerical model of close-in star–planet systems, based on the magnetohydrodynamics approximation, to compute a grid of simulations for varying properties of the orbitingmore » planet. We propose a simple parametrization of the magnetic torque that applies to the planet, and of the energy flux generated by the interaction. The dependency upon the planet properties and the wind properties is clearly identified in the derived scaling laws, which can be used in secular evolution codes to take into account the effect of magnetic interactions in planet migration. They can also be used to estimate a potential magnetic source of enhanced emissions in observed close-in star–planet systems, in order to constrain observationally possible exoplanetary magnetic fields.« less
Quantum phase transition in dimerised spin-1/2 chains
NASA Astrophysics Data System (ADS)
Das, Aparajita; Bhadra, Sreeparna; Saha, Sonali
2015-11-01
Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.
Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej
2010-01-01
Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological cells, or chemotherapeutic drugs for magnetic drug delivery. Magnetic field-flow fractionation (MgFFF) has the potential for determining the distribution of the magnetic material among the particles in a given sample. MgFFF differs from most other forms of field-flow fractionation in that the magnetic field that brings about particle separation induces magnetic dipole moments in the nanoparticles, and these potentially can interact with one another and perturb the separation. This aspect is examined in the present work. Samples of magnetic nanoparticles were analysed under different experimental conditions to determine the sensitivity of the method to variation of conditions. The results are shown to be consistent and insensitive to conditions, although magnetite content appeared to be somewhat higher than expected. PMID:20732895
Numerical field evaluation of healthcare workers when bending towards high-field MRI magnets.
Wang, H; Trakic, A; Liu, F; Crozier, S
2008-02-01
In MRI, healthcare workers may be exposed to strong static and dynamic magnetic fields outside of the imager. Body motion through the strong, non-uniform static magnetic field generated by the main superconducting magnet and exposure to gradient-pulsed magnetic fields can result in the induction of electric fields and current densities in the tissue. The interaction of these fields and occupational workers has attracted an increasing awareness. To protect occupational workers from overexposure, the member states of the European Union are required to incorporate the Physical Agents Directive (PAD) 2004/40/EC into their legislation. This study presents numerical evaluations of electric fields and current densities in anatomically equivalent male and female human models (healthcare workers) as they lean towards the bores of three superconducting magnet models (1.5, 4, and 7 T) and x-, y-, and z- gradient coils. The combined effect of the 1.5 T superconducting magnet and the three gradient coils on the body models is compared with the contributions of the magnet and gradient coils in separation. The simulation results indicate that it is possible to induce field quantities of physiological significance, especially when the MRI operator is bending close towards the main magnet and all three gradient coils are switched simultaneously. (c) 2008 Wiley-Liss, Inc.
Nuclear magnetic shielding in boronlike ions
NASA Astrophysics Data System (ADS)
Volchkova, A. M.; Varentsova, A. S.; Zubova, N. A.; Agababaev, V. A.; Glazov, D. A.; Volotka, A. V.; Shabaev, V. M.; Plunien, G.
2017-10-01
The relativistic treatment of the nuclear magnetic shielding effect in boronlike ions is presented. The leading-order contribution of the magnetic-dipole hyperfine interaction is calculated. Along with the standard second-order perturbation theory expression, the solutions of the Dirac equation in the presence of magnetic field are employed. All methods are found to be in agreement with each other and with the previous calculations for hydrogenlike and lithiumlike ions. The effective screening potential is used to account approximately for the interelectronic interaction.
Magnetism and high magnetic-field-induced stability of alloy carbides in Fe-based materials.
Hou, T P; Wu, K M; Liu, W M; Peet, M J; Hulme-Smith, C N; Guo, L; Zhuang, L
2018-02-14
Understanding the nature of the magnetic-field-induced precipitation behaviors represents a major step forward towards unravelling the real nature of interesting phenomena in Fe-based alloys and especially towards solving the key materials problem for the development of fusion energy. Experimental results indicate that the applied high magnetic field effectively promotes the precipitation of M 23 C 6 carbides. We build an integrated method, which breaks through the limitations of zero temperature and zero external field, to concentrate on the dependence of the stability induced by the magnetic effect, excluding the thermal effect. We investigate the intimate relationship between the external field and the origins of various magnetics structural characteristics, which are derived from the interactions among the various Wyckoff sites of iron atoms, antiparallel spin of chromium and Fe-C bond distances. The high-magnetic-field-induced exchange coupling increases with the strength of the external field, which then causes an increase in the parallel magnetic moment. The stability of the alloy carbide M 23 C 6 is more dependent on external field effects than thermal effects, whereas that of M 2 C, M 3 C and M 7 C 3 is mainly determined by thermal effects.
MAVEN Observations of Magnetic Reconnection on the Dayside Martian Magnetosphere
NASA Astrophysics Data System (ADS)
DiBraccio, Gina A.; Espley, Jared R.; Connerney, John E. P.; Brain, David A.; Halekas, Jasper S.; Mitchell, David L.; Harada, Yuki; Hara, Takuya
2015-04-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission offers a unique opportunity to investigate the complex solar wind-planetary interaction at Mars. The Martian magnetosphere is formed as the interplanetary magnetic field (IMF) drapes around the planet's ionosphere and localized crustal magnetic fields. As the solar wind interacts with this induced magnetosphere, magnetic reconnection can occur at any location where a magnetic shear is present. Reconnection between the IMF and the induced and crustal fields facilitates a direct plasma exchange between the solar wind and the Martian ionosphere. Here we address the occurrence of magnetic reconnection on the dayside magnetosphere of Mars using MAVEN magnetic field and plasma data. When reconnection occurs on the dayside, a non-zero magnetic field component normal to the obstacle, B_N, will result. Using minimum variance analysis, we measure BN by transforming Magnetometer data into boundary-normal coordinates. Selected events are then further examined to identify plasma heating and energization, in the form of Alfvénic outflow jets, using Solar Wind Ion Analyzer measurements. Additionally, the topology of the crustal fields is validated from electron pitch angle distributions provided by the Solar Wind Electron Analyzer. To understand which parameters are responsible for the onset of reconnection, we test the dependency of the dimensionless reconnection rate, calculated from BN measurements, on magnetic field shear angle and plasma beta (the ratio of plasma pressure to magnetic pressure). We assess the global impact of reconnection on Mars' induced magnetosphere by combining analytical models with MAVEN observations to predict the regions where reconnection may occur. Using this approach we examine how IMF orientation and magnetosheath parameters affect reconnection on a global scale. With the aid of analytical models we are able to assess the role of reconnection on a global scale to better understand which factors drive these dynamics in the space environment of Mars.
Magnetism and the interior of the moon
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Daily, W. D.
1974-01-01
The application of lunar magnetic field measurements to the study of properties of the lunar crust and deep interior is reviewed. Following a brief description of lunar magnetometers and the lunar magnetic environment, measurements of lunar remanent fields and their interaction with the solar plasma are discussed. The magnetization induction mode is considered with reference to lunar magnetic permeability and iron abundance calculations. Finally, electrical conductivity and temperature calculations from analyses of poloidal induction, for data taken in both the solar wind and in the geomagnetic tail, are reviewed.
On the Pressure of a Neutron Gas Interacting with the Non-Uniform Magnetic Field of a Neutron Star
NASA Astrophysics Data System (ADS)
Skobelev, V. V.
2018-04-01
On the basis of simple arguments, practically not going beyond the scope of an undergraduate course in general physics, we estimate the additional pressure (at zero temperature) of degenerate neutron matter due to its interaction with the non-uniform magnetic field of a neutron star. This work has methodological and possibly scientific value as an intuitive application of the content of such a course to a solution of topical problems of astrophysics.
Nonstationary behavior of a high-spin molecule in a bifrequency alternating current magnetic field
NASA Astrophysics Data System (ADS)
Tokman, I. D.; Vugalter, G. A.
2002-07-01
An interaction of a high-spin molecule with a bifrequency ac magnetic field, occurring at times much shorter than the molecule relaxation times, has been considered. The molecule is subjected to a dc magnetic field perpendicular to the easy anisotropy axis of the molecule. The bifrequency ac field is a superposition of two ac fields, one of which is perpendicular to the easy anisotropy axis and causes resonant transitions between the lower states of the fundamental and first excited doublets. The other ac field is parallel to the easy anisotropy axis and has a frequency much smaller than the frequency of the first ac field. It has been shown that, first, the molecule can absorb or emit energy, depending on the frequency of the low-frequency ac field, second, the bifrequency ac magnetic field induces tunneling of the molecule magnetization with the Rabi frequency. The conditions of observation of the effects predicted are discussed.
Magnetic flux-load current interactions in ferrous conductors
NASA Astrophysics Data System (ADS)
Cannell, Michael J.; McConnell, Richard A.
1992-06-01
A modeling technique has been developed to account for interactions between load current and magnetic flux in an iron conductor. Such a conductor would be used in the active region of a normally conducting homopolar machine. This approach has been experimentally verified and its application to a real machine demonstrated. Additionally, measurements of the resistivity of steel under the combined effects of magnetic field and current have been conducted.
Studies of nonlinear interactions between counter-propagating Alfv'en waves in the LAPD
NASA Astrophysics Data System (ADS)
Auerbach, D. W.; Perez, J. C.; Carter, T. A.; Boldyrev, S.
2007-11-01
From a weak turbulence point of view, nonlinear interactions between shear Alfv'en waves are fundamental to the energy cascade in low-frequency magnetic turbulence. We report here on an experimental study of counter-propagating Alfv'en wave interactions in the Large Plasma Device (LAPD) at UCLA. Colliding, orthogonally polarized kinetic Alfv'en waves are generated by two antennae, separated by 5m along the guide magnetic field. Magnetic field and langmuir probes record plasma behavior between the antennae. When each antenna is operated separately, linearly polarized Alfv'en waves propagate in opposite directions along the guide field. When two antennae simultaneously excite counter propagating waves, we observe multiple side bands in the frequency domain, whose amplitude scales quadratically with wave amplitude. In the spatial domain we observe non-linear superposition in the 2D structure of the waves and spectral broadening in the perpendicular wave-number spectrum. This indicates the presence of nonlinear interaction of the counter propagating Alfv'en waves, and opens the possiblity to investigate Alfv'enic plasma turbulence in controlled and reproducible laboratory experiments.
NASA Astrophysics Data System (ADS)
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália
2018-05-01
An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.
Electric-field-induced modification in Curie temperature of Co monolayer on Pt(111)
NASA Astrophysics Data System (ADS)
Nakamura, Kohji; Oba, Mikito; Akiyama, Toru; Ito, Tomonori; Weinert, Michael
2015-03-01
Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Curie temperature for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. An applied E-field modifies the magnon (spin-spiral formation) energies by a few meV, which leads to a modification of the exchange pair interaction parameters within the classical Heisenberg model. With inclusion of the spin-orbit coupling (SOC), the magnetocrystalline anisotropy and the Dzyaloshinskii-Morita interaction are obtained by the second variation SOC method. An E-field-induced modification of the Curie temperature is demonstrated by Monte Carlo simulations, in which a change in the exchange interaction is found to play a key role.
NASA Astrophysics Data System (ADS)
Ertaş, Mehmet; Keskin, Mustafa
2015-06-01
Using the effective-field theory based on the Glauber-type stochastic dynamics (DEFT), we investigate dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model under an oscillating magnetic field. We presented the dynamic phase diagrams in (T/J, h0/J), (D/J, T/J) and (K/J, T/J) planes, where T, h0, D, K and z are the temperature, magnetic field amplitude, crystal-field interaction, biquadratic interaction and the coordination number. The dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and special critical points, as well as re-entrant behavior depending on interaction parameters. We also compare and discuss the results with the results of the same system within the mean-field theory based on the Glauber-type stochastic dynamics and find that some of the dynamic first-order phase lines and special dynamic critical points disappeared in the DEFT calculation.
Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons
NASA Astrophysics Data System (ADS)
Gao, Zhen; Gao, Fei; Zhang, Youming; Zhang, Baile
2016-05-01
Magnetic coupling is generally much weaker than electric Coulomb interaction. This also applies to the well-known magnetic "meta-atoms," or split-ring resonators (SRRs) as originally proposed by Pendry et al. [IEEE Trans. Microwave Theory Tech. 47, 2075 (1999), 10.1109/22.798002], in which the associated electric dipole moments usually dictate their interaction. As a result, stereometamaterials, a stack of identical SRRs, were found with electric coupling so strong that the dispersion from merely magnetic coupling was overturned. Recently, other workers have proposed a new concept of magnetic localized surface plasmons, supported on metallic spiral structures (MSSs) at a deep-subwavelength scale. Here, we experimentally demonstrate that a stack of these magnetic "meta-atoms" can have dominant magnetic coupling in both of its two configurations. This allows magnetic-coupling-dominant energy transport along a one-dimensional stack of MSSs, as demonstrated with near-field transmission measurement. Our work not only applies this type of magnetic "meta-atom" into metamaterial construction, but also provides possibilities of magnetic metamaterial design in which the electric interaction no longer takes precedence.
NASA Astrophysics Data System (ADS)
Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao
2018-05-01
How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.
NASA Astrophysics Data System (ADS)
Shestakov, E. A.; Savrukhin, P. V.
2017-10-01
Experiments in the T-10 tokamak demonstrated possibility of controlling the plasma current during disruption instability using the electron cyclotron resonance heating (ECRH) and the controlled operation of the ohmic current-holding system. Quasistable plasma discharge with repeating sawtooth oscillations can be restored after energy quench using auxiliary ECRH power when PEC / POH > 2-5. The external magnetic field generation system consisted of eight saddle coils that were arranged symmetrically relative to the equatorial plane of the torus outside of the vacuum vessel of the T-10 tokamak to study the possible resonant magnetic field effects on the rotation frequency of magnetic islands. The saddle coils power supply system is based on four thyristor converters with a total power of 300 kW. The power supply control system is based on Siemens S7 controllers. As shown by preliminary experiments, the interaction efficiency of external magnetic fields with plasma depends on the plasma magnetic configuration. Optimal conditions for slowing the rotation of magnetic islands were determined. Additionally, the direction of the error magnetic field in the T-10 tokamak was determined, and the threshold value of the external magnetic field was determined.
NASA Astrophysics Data System (ADS)
Elblbesy, Mohamed A.
2017-12-01
Interacting electromagnetic field with the living organisms and cells became of the great interest in the last decade. Erythrocytes are the most common types of the blood cells and have unique rheological, electrical, and magnetic properties. Aggregation is one of the important characteristics of the erythrocytes which has a great impact in some clinical cases. The present study introduces a simple method to monitor the effect of static magnetic field on erythrocytes aggregation using light transmission. Features were extracted from the time course curve of the light transmission through the whole blood under different intensities of the magnetic field. The findings of this research showed that static magnetic field could influence the size and the rate of erythrocytes aggregation. The strong correlations confirmed these results between the static magnetic field intensity and both the time of aggregation and sedimentation of erythrocytes. From this study, it can be concluded that static magnetic field can be used to modify the mechanisms of erythrocytes aggregation.
Does Magnetic Field Affect Malaria Parasite Replication in Human Red Blood Cells?
NASA Technical Reports Server (NTRS)
Chanturiya, Alexandr N.; Glushakova, Svetlana; Yin, Dan; Zimmerberg, Joshua
2004-01-01
Digestion of red blood cell (RBC) hemoglobin by the malaria parasite results in the formation of paramagnetic hemazoin crystals inside the parasite body. A number of reports suggest that magnetic field interaction with hamazoin crystals significantly reduces the number of infected cells in culture, and thus magnetic field can be used to combat malaria. We studies the effects of magnetic filed on the Plasmodium falciparum asexual life cycle inside RBCs under various experimental conditions. No effect was found during prolonged exposure of infected RBCs to constant magnetic fields up to 6000 Gauss. Infected RBCs were also exposed, under temperature-controlled conditions, to oscillating magnetic fields with frequencies in the range of 500-20000 kHz, and field strength 30-600 Gauss. This exposure often changed the proportion of different parasite stages in treated culture compared to controls. However, no significant effect on parasitemia was observed in treated cultures. This result indicates that the magnetic field effect on Plasmodium falciparum is negligible, or that hypothetical negative and positive effects on different stages within one 48-hour compensate each other.
An electrodynamic model of electric currents and magnetic fields in the dayside ionosphere of Venus
NASA Technical Reports Server (NTRS)
Cloutier, P. A.; Tascione, T. F.; Danieli, R. E., Jr.
1981-01-01
The electric current configuration induced in the ionosphere of Venus by the interaction of the solar wind has been calculated in previous papers (Cloutier and Daniell, 1973; Daniell and Cloutier, 1977; Cloutier and Daniell, 1979) for average steady-state solar wind conditions and interplanetary magnetic field. This model is generalized to include the effects of (1) plasma depletion and magnetic field enhancement near the ionopause, (2) velocity-shear-induced MHD instabilities of the Kelvin-Helmholtz type within the ionosphere, and (3) variations in solar wind parameters and interplanetary magnetic field. It is shown that the magnetic field configuration resulting from the model varies in response to changes in solar wind and interplanetary field conditions, and that these variations produce magnetic field profiles in excellent agreement with those seen by the Pioneer-Venus Orbiter. The formation of flux-ropes by the Kelving-Helmholtz instability is shown to be a natural consequence of the model, with the spatial distribution and size of the flux-ropes determined by the magnetic Reynolds number.
Particle Acceleration, Magnetic Field Generation in Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.
2005-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.
Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.
2004-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.
Topological Evolution of a Fast Magnetic Breakout CME in 3-Dimensions
NASA Technical Reports Server (NTRS)
Lynch, B. J.; Antiochos, S. K.; DeVore, C. R.; Luhmann, J. G.; Zurbuchen, T. H.
2008-01-01
W present the extension of the magnetic breakout model for CME initiation to a fully 3-dimensional, spherical geometry. Given the increased complexity of the dynamic magnetic field interactions in 3-dimensions, we first present a summary of the well known axisymmetric breakout scenario in terms of the topological evolution associated with the various phases of the eruptive process. In this context, we discuss the completely analogous topological evolution during the magnetic breakout CME initiation process in the simplest 3-dimensional multipolar system. We show that an extended bipolar active region embedded in an oppositely directed background dipole field has all the necessary topological features required for magnetic breakout, i.e. a fan separatrix surface between the two distinct flux systems, a pair of spine fieldlines, and a true 3-dimensional coronal null point at their intersection. We then present the results of a numerical MHD simulation of this 3-dimensional system where boundary shearing flows introduce free magnetic energy, eventually leading to a fast magnetic breakout CME. The eruptive flare reconnection facilitates the rapid conversion of this stored free magnetic energy into kinetic energy and the associated acceleration causes the erupting field and plasma structure to reach an asymptotic eruption velocity of greater than or approx. equal to 1100 km/s over an approx.15 minute time period. The simulation results are discussed using the topological insight developed to interpret the various phases of the eruption and the complex, dynamic, and interacting magnetic field structures.
The NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory
NASA Technical Reports Server (NTRS)
Tung, L. S.; Post, R. F.; Cook, E.; Martinez-Frias, J.
2000-01-01
The Inductrack magnetic levitation system, developed at the Lawrence Livermore National Laboratory, is being studied for its possible use for launching rockets. Under NASA sponsorship, a small model system is being constructed at the Laboratory to pursue key technical aspects of this proposed application. The Inductrack is a passive magnetic levitation system employing special arrays of high-field permanent magnets (Halbach arrays) on the levitating carrier, moving above a "track" consisting of a close-packed array of shorted coils with which are interleaved with special drive coils. Halbach arrays produce a strong spatially periodic magnetic field on the front surface of the arrays, while canceling the field on their back surface. Relative motion between the Halbach arrays and the track coils induces currents in those coils. These currents levitate the carrier cart by interacting with the horizontal component of the magnetic field. Pulsed currents in the drive coils, synchronized with the motion of the carrier, interact with the vertical component of the magnetic field to provide acceleration forces. Motional stability, including resistance to both vertical and lateral aerodynamic forces, is provided by having Halbach arrays that interact with both the upper and the lower sides of the track coils. In its completed form the model system that is under construction will have a track approximately 100 meters in length along which the carrier cart will be propelled up to peak speeds of Mach 0.4 to 0.5 before being decelerated. Preliminary studies of the parameters of a full-scale system have also been made. These studies address the problems of scale-up, including means to simplify the track construction and to reduce the cost of the pulsed-power systems needed for propulsion.
A thick-walled sphere rotating in a uniform magnetic field: The next step to de-spin a space object
NASA Astrophysics Data System (ADS)
Nurge, Mark A.; Youngquist, Robert C.; Caracciolo, Ryan A.; Peck, Mason; Leve, Frederick A.
2017-08-01
Modeling the interaction between a moving conductor and a static magnetic field is critical to understanding the operation of induction motors, eddy current braking, and the dynamics of satellites moving through Earth's magnetic field. Here, we develop the case of a thick-walled sphere rotating in a uniform magnetic field, which is the simplest, non-trivial, magneto-statics problem that leads to complete closed-form expressions for the resulting potentials, fields, and currents. This solution requires knowledge of all of Maxwell's time independent equations, scalar and vector potential equations, and the Lorentz force law. The paper presents four cases and their associated experimental results, making this topic appropriate for an advanced student lab project.
Unitary limit of two-nucleon interactions in strong magnetic fields
Detmold, William; Orginos, Kostas; Parreño, Assumpta; ...
2016-03-14
In this study, two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of m π ~ 450 and 806 MeV in uniform, time-independent magnetic fields of strength |B| ~ 10 19 – 10 20 Gauss to determine the response of these hadronic systems to large magnetic fields. Fields of this strength may exist inside magnetars and in peripheral relativistic heavymore » ion collisions, and the unitary behavior at large scattering lengths may have important consequences for these systems.« less
Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits
Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.
1995-01-01
A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.
Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits
Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.
1995-11-07
A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.
NASA Astrophysics Data System (ADS)
Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott
2014-10-01
We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.
Cross Helicity and Turbulent Magnetic Diffusivity in the Solar Convection Zone
NASA Astrophysics Data System (ADS)
Rüdiger, G.; Kitchatinov, L. L.; Brandenburg, A.
2011-03-01
In a density-stratified turbulent medium, the cross helicity < u'ṡ B'> is considered as a result of the interaction of the velocity fluctuations and a large-scale magnetic field. By means of a quasilinear theory and by numerical simulations, we find the cross helicity and the mean vertical magnetic field to be anti-correlated. In the high-conductivity limit the ratio of the helicity and the mean magnetic field equals the ratio of the magnetic eddy diffusivity and the (known) density scale height. The result can be used to predict that the cross helicity at the solar surface will exceed the value of 1 gauss km s-1. Its sign is anti-correlated to that of the radial mean magnetic field. Alternatively, we can use our result to determine the value of the turbulent magnetic diffusivity from observations of the cross helicity.
Fukushima, E.; Roeder, S.B.W.; Assink, R.A.; Gibson, A.A.V.
1984-01-01
An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.
Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.
1986-01-01
An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.
Singleton, John; Kim, Jae Wook; Topping, Craig V.; ...
2016-12-08
Here, we report extraordinarily large magnetic hysteresis loops in the iridates Sr 3NiIrO 5 and Sr 3CoIrO 6. We find coercive magnetic fields of up to 55 T with switched magnetic moments ≈1μ B per formula unit in Sr 3NiIrO 6 and coercive fields of up to 52 T with switched moments ≈3μ B per formula unit in Sr 3CoIrO 6. We propose that the magnetic hysteresis involves the field-induced evolution of quasi-one-dimensional chains in a frustrated triangular configuration. In conclusion, the striking magnetic behavior is likely to be linked to the unusual spin-orbit-entangled local state of the Ir 4+more » ion and its potential for anisotropic exchange interactions.« less
Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice
Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub
2015-01-01
Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635
Quantum droplets of light in the presence of synthetic magnetic fields
NASA Astrophysics Data System (ADS)
Wilson, Kali; Westerberg, Niclas; Valiente, Manuel; Duncan, Callum; Wright, Ewan; Ohberg, Patrik; Faccio, Daniele
2017-04-01
Recently, quantum droplets have been demonstrated in dipolar Bose-Einstein condensates, where the long range (nonlocal) attractive interaction is counterbalanced by a local repulsive interaction. In this work, we investigate the formation of quantum droplets in a two-dimensional nonlocal fluid of light. Fluids of light allow us to control the geometry of the system, and thus introduce vorticity which in turn creates an artificial magnetic field for the quantum droplet. In a quantum fluid of light, the photons comprising the fluid are treated as a gas of interacting Bose-particles, where the nonlocal interaction comes from the nonlinearity inherent in the material, in our case an attractive third-order thermo-optical nonlinearity. In contrast to matter-wave droplets, photon fluid droplets are not stabilised by local particle-particle scattering, but from the quantum pressure itself, i.e., a balance between diffraction and the nonlocal nonlinearity. We will present a numerical and analytical investigation of the ground state of these droplets and of their subsequent dynamics under the influence of a self-induced artificial magnetic field, and discuss experimental work with the possibility to include artificial gauge interactions between droplets.
NASA Astrophysics Data System (ADS)
Belenkaya, Elena S.; Cowley, Stanley W. H.; Alexeev, Igor I.; Kalegaev, Vladimir V.; Pensionerov, Ivan A.; Blokhina, Marina S.; Parunakian, David A.
2017-12-01
A wide variety of interactions take place between the magnetized solar wind plasma outflow from the Sun and celestial bodies within the solar system. Magnetized planets form magnetospheres in the solar wind, with the planetary field creating an obstacle in the flow. The reconnection efficiency of the solar-wind-magnetized planet interaction depends on the conditions in the magnetized plasma flow passing the planet. When the reconnection efficiency is very low, the interplanetary magnetic field (IMF) does not penetrate the magnetosphere, a condition that has been widely discussed in the recent literature for the case of Saturn. In the present paper, we study this issue for Saturn using Cassini magnetometer data, images of Saturn's ultraviolet aurora obtained by the HST, and the paraboloid model of Saturn's magnetospheric magnetic field. Two models are considered: first, an open model in which the IMF penetrates the magnetosphere, and second, a partially closed model in which field lines from the ionosphere go to the distant tail and interact with the solar wind at its end. We conclude that the open model is preferable, which is more obvious for southward IMF. For northward IMF, the model calculations do not allow us to reach definite conclusions. However, analysis of the observations available in the literature provides evidence in favor of the open model in this case too. The difference in magnetospheric structure for these two IMF orientations is due to the fact that the reconnection topology and location depend on the relative orientation of the IMF vector and the planetary dipole magnetic moment. When these vectors are parallel, two-dimensional reconnection occurs at the low-latitude neutral line. When they are antiparallel, three-dimensional reconnection takes place in the cusp regions. Different magnetospheric topologies determine different mapping of the open-closed boundary in the ionosphere, which can be considered as a proxy for the poleward edge of the auroral oval.
Laboratory Plasma Source as an MHD Model for Astrophysical Jets
NASA Technical Reports Server (NTRS)
Mayo, Robert M.
1997-01-01
The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to astrophysical jet observation. There exists overwhelming similarity among these flows that has already produced some fascinating results and is expected to continue a high pay off in future flow similarity studies.
Biomagnetic effects: a consideration in fusion reactor development.
Mahlum, D D
1977-01-01
Fusion reactors will utilize powerful magnetic fields for the confinement and heating of plasma and for the diversion of impurities. Large dipole fields generated by the plasma current and the divertor and transformer coils will radiate outward for several hundred meters, resulting in magnetic fields up to 450 gauss in working areas. Since occupational personnel could be exposed to substantial magnetic fields in a fusion power plant, an attempt has been made to assess the possible biological and health consequences of such exposure, using the existing literature. The available data indicate that magnetic fields can interact with biological material to produce effects, although the reported effects are usually small in magnitude and often unconfirmed. The existing data base is judged to be totally inadequate for assessment of potential health and environmental consequences of magnetic fields and for the establishment of appropriate standards. Requisite studies to provide an adequate data base are outlined. PMID:598345
Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takezaki, Taichi, E-mail: ttakezaki@stn.nagaokaut.ac.jp; Takahashi, Kazumasa; Sasaki, Toru, E-mail: sasakit@vos.nagaokaut.ac.jp
2016-06-15
To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell methodmore » have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.« less
NASA Astrophysics Data System (ADS)
Salinas-Muciño, G.; Torres-García, E.; Hidalgo-Tobon, S.
2012-10-01
The process to produce an MR image includes nuclear alignment, RF excitation, spatial encoding, and image formation. To form an image, it is necessary to perform spatial localization of the MR signals, which is achieved using gradient coils. MRI requires the use of gradient coils that generate magnetic fields, which vary linearly with position over the imaging volume. Safety issues have been a motivation to study deeply the relation between the interaction of gradient magnetic field and the peripheral nerve stimulation. In this work is presented a numerical modeling between the concomitant magnetic fields produced by the gradient coils and the electric field induced in a cube with σ conductivity by the gradient field switching in pulse sequences as Eco planar Imaging (EPI), due to this kind of sequence is the most used in advance applications of magnetic resonance imaging as functional MRI, cardiac imaging or diffusion.
Looking back on a half century of repeat magnetic measurements in France
NASA Astrophysics Data System (ADS)
Alexandrescu, Mioara Mandea; Gilder, Stuart; Courtillot, Vincent; Le Mouël, Jean Louis; Gilbert, Daniel
Birds do it. Bees do it. And with the discovery of lodestone over 2200 years ago, humans too could incorporate the Earth's magnetic field into their daily lives. Some of the oldest applications for tracking the magnetic field were in land and sea navigation. Magnetic field measurements quickly became an important economic factor in world trade, with documented use dating from the 11th century in China.The measurements are important in other applications as well. For example, rapid field variations are generated by solar activity and its interaction with the terrestrial environment. Large magnetic storms can disrupt satellite operation, communication systems, power transmission networks, and so forth [Campbell, 1997].Geomagnetism also provides a unique opportunity to explore the Earth's outer core, which is mostly liquid (molten) iron, where the field is generated. Field measurements can also yield valuable insights into the location of mineral deposits and aid in applications in the petroleum industry.
Effects of low-frequency magnetic fields on embryonic development and pregnancy.
Juutilainen, J
1991-06-01
Experimental and epidemiologic studies on the effects of low-frequency magnetic fields on pregnancy are reviewed. The literature suggests that these fields have adverse effects on chick embryo development. The interaction mechanism is not known. The results of experiments with mammals are inconsistent. There is more evidence of effects on mice than on rats, and the data suggest that fetal loss might be increased rather than malformations. Most of the epidemiologic studies related to pregnancy and low-frequency magnetic fields have concerned operators of a video display terminal (VDT). The results do not provide evidence for an association between adverse pregnancy outcome and use of a VDT. Other (stronger) sources of low-frequency magnetic fields have been addressed in only a few studies. It is not yet possible to conclude whether occupational or residential exposure to low-frequency magnetic fields affects human prenatal development. There is an apparent need for further investigation.
NASA Astrophysics Data System (ADS)
Yamaguchi, Hironori; Tamekuni, Yusuke; Iwasaki, Yoshiki; Otsuka, Rei; Hosokoshi, Yuko; Kida, Takanori; Hagiwara, Masayuki
2017-06-01
We successfully synthesize single crystals of the verdazyl radical α -2 ,3 ,5 -Cl3 -V. Ab initio molecular orbital calculations indicate that the two dominant antiferromagnetic interactions, J1 and J2 (α =J2/J1≃0.56 ), form an S =1 /2 distorted square lattice. We explain the magnetic properties based on the S =1 /2 square lattice Heisenberg antiferromagnet using the quantum Monte Carlo method, and examine the effects of the lattice distortion and the interplane interaction contribution. In the low-temperature regions below 6.4 K, we observe anisotropic magnetic behavior accompanied by a phase transition to a magnetically ordered state. The electron spin resonance signals exhibit anisotropic behavior in the temperature dependence of the resonance field and the linewidth. We explain the frequency dependence of the resonance fields in the ordered phase using a mean-field approximation with out-of-plane easy-axis anisotropy, which causes a spin-flop phase transition at approximately 0.4 T for the field perpendicular to the plane. Furthermore, the anisotropic dipole field provides supporting information regarding the presence of the easy-axis anisotropy. These results demonstrate that the lattice distortion, anisotropy, and interplane interaction of this model are sufficiently small that they do not affect the intrinsic behavior of the S =1 /2 square lattice Heisenberg antiferromagnet.
Magnon Hall effect without Dzyaloshinskii-Moriya interaction.
Owerre, S A
2017-01-25
Topological magnon bands and magnon Hall effect in insulating collinear ferromagnets are induced by the Dzyaloshinskii-Moriya interaction (DMI) even at zero magnetic field. In the geometrically frustrated star lattice, a coplanar/noncollinear [Formula: see text] magnetic ordering may be present due to spin frustration. This magnetic structure, however, does not exhibit topological magnon effects even with DMI in contrast to collinear ferromagnets. We show that a magnetic field applied perpendicular to the star plane induces a non-coplanar spin configuration with nonzero spin scalar chirality, which provides topological effects without the need of DMI. The non-coplanar spin texture originates from the topology of the spin configurations and does not need the presence of DMI or magnetic ordering, which suggests that this phenomenon may be present in the chiral spin liquid phases of frustrated magnetic systems. We propose that these anomalous topological magnon effects can be accessible in polymeric iron (III) acetate-a star-lattice antiferromagnet with both spin frustration and long-range magnetic ordering.
Magnetic and thermoelectric properties of electron doped Ca0.85Pr0.15MnO3
NASA Astrophysics Data System (ADS)
Hossain Khan, Momin; Pal, Sudipta; Bose, Esa
2015-10-01
We have investigated temperature-dependent magnetization (M), magnetic susceptibility (χ) and thermoelectric (S) properties of the electron-doped Ca0.85Pr0.15MnO3. With decrease of temperature, paramagnetic (PM) to antiferromagnetic (AFM) phase transition occurs with a well-defined Néel temperature (TN=122 K). Magnetic susceptibility measurements reveal that the paramagnetic state involves modified Curie-Weiss paramagnetism. Field cooled and zero field cooled magnetization measurements indicate a signature of magnetic frustration. Ferromagnetic (FM) double-exchange interactions associated with doped eg electrons are favored over competing AFM interactions below Tirr=112 K. Magnetization data also shows a second-order phase transition. The sign reversal in S(T) has been interpreted in terms of the change in the electronic structure relating to the orbital degrees of freedom of the doped eg electron. Low temperature (5-140 K) thermoelectric power, S (T) signifies the importance of electron-magnon scattering process.
Particle Transport in Therapeutic Magnetic Fields
NASA Astrophysics Data System (ADS)
Puri, Ishwar K.; Ganguly, Ranjan
2014-01-01
Iron oxide magnetic nanoparticles, in ferrofluids or as magnetic microspheres, offer magnetic maneuverability, biochemical surface functionalization, and magnetic relaxation under the influence of an alternating field. The use of these properties for clinical applications requires an understanding of particles, forces, and scalar transport at various length scales. This review explains the behavior of magnetic nano- and microparticles during magnetic drug targeting and magnetic fluid hyperthermia, and the microfluidic transport of these particles in bioMEMS (biomedical microelectromechanical systems) devices for ex vivo therapeutic and diagnostic applications. Magnetic particle transport, the momentum interaction of these particles with a host fluid in a flow, and thermal transport in a particle-infused tissue are characterized through the governing electrodynamic, hydrodynamic, and scalar transport equations.
NASA Astrophysics Data System (ADS)
Mootha, A.; Takanezawa, Y.; Iwasaka, M.
2018-05-01
The present study focused on the vibration of micro crystal particles of guanine due to Brownian motion. The organic particle has a refractive index of 1.83 and caused a flickering of light. To test the possibility of using magnetic properties under wet conditions, changes in the frequency of particle vibration by applying magnetic fields were investigated. At first, we found that the exposure at 5 T inhibited the flickering light intensities and the particle vibration slightly decreased. Next, we carried out a high speed camera measurement of the Brownian motion of the particle with a time resolution of 100 flame per second (fps) with and without magnetic field exposures. It was revealed that the vibrational speed of synthetic particles was enhanced at 500 mT. Detailed analyses of the particle vibration by changing the direction of magnetic fields versus the light source revealed that the Brownian motion's vibrational frequency was entrained under magnetic fields at 500 mT, and an increase in vibration speed to 20Hz was observed. Additional measurements of light scattering fluctuation using photo-detector and analyses on auto-correlation also confirmed this speculation. The studied Brownian vibration may be influenced by the change in mechanical interactions between the vibration particles and surrounding medium. The discovered phenomena can be applied for molecular and biological interactions in future studies.
Low-β magnetic reconnection driven by the intense lasers with a double-turn capacitor-coil
NASA Astrophysics Data System (ADS)
Yuan, Xiaoxia; Zhong, Jiayong; Zhang, Zhe; Zhou, Weimin; Teng, Jian; Li, Yutong; Han, Bo; Yuan, Dawei; Lin, Jun; Liu, Chang; Li, Yanfei; Zhu, Baojun; Wei, Huigang; Liang, Guiyun; Hong, Wei; He, Shukai; Yang, Siqian; Zhao, Yongqiang; Deng, Zhigang; Lu, Feng; Zhang, Zhimeng; Zhu, Bin; Zhou, Kainan; Su, Jingqin; Zhao, Zongqing; Gu, Yuqiu; Zhao, Gang; Zhang, Jie
2018-06-01
A double-turn capacitor-coil is used to produce a magnetic field (38.5 T) and construct a topology of magnetic reconnection in a low-β (β < 1) plasma environment. The device is constructed with two metallic U-turn coils connecting two parallel metallic disks. High energy lasers are employed to ablate one disk spontaneously driving two currents in the two coils, which produces an interactive magnetic field topology. We demonstrated through experiments and numerical simulations that the reconnection process takes place between two non-uniform magnetic fields created by the coils, and that the plasma state and the associated magnetic topology in the process can be seen via the technology of the optical probe beam and the proton backlight.
Exchange interactions in CdMnTe/CdMgTe quantum wells under high magnetic fields
NASA Astrophysics Data System (ADS)
Yasuhira, T.; Uchida, K.; Matsuda, Y. H.; Miura, N.; Kuroda, S.; Takita, K.
2002-03-01
The sp-d exchange interaction Jsp-d and the exchange interaction between the nearest neighbor Mn ions JNN were studied by magneto-photoluminescence spectra of excitons in CdMnTe/CdMgTe quantum wells in pulsed high magnetic fields up to 45 T. The magnitude of Jsp-d estimated from the observed Zeeman splitting was found to decrease as the quantum well width was decreased. The decrease is partly due to the penetration of the electron and the hole wave functions into the non-magnetic CdMgTe barrier layers, and partly due to the k-dependence of the exchange interaction. It was found that the latter effect is much larger than theoretically predicted. The observed features are well explained by a model assuming the interface disorder within some thickness near the interface. In contrast to Jsp-d, the nearest neighbor interaction JNN estimated from the steps in the photoluminescence peak was found to be independent of the well width.
The formation of magnetic silicide Fe3Si clusters during ion implantation
NASA Astrophysics Data System (ADS)
Balakirev, N.; Zhikharev, V.; Gumarov, G.
2014-05-01
A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.
NASA Technical Reports Server (NTRS)
Halekas, Jasper S.; Poppe, A.; Delory, G. T.; Farrell, W. M.; Horanyi, M.
2012-01-01
Electron distributions measured by Lunar Prospector above the dayside lunar surface in the solar wind often have an energy dependent loss cone, inconsistent with adiabatic magnetic reflection. Energy dependent reflection suggests the presence of downward parallel electric fields below the spacecraft, possibly indicating the presence of a standing electrostatic structure. Many electron distributions contain apparent low energy (<100 eV) upwardgoing conics (58% of the time) and beams (12% of the time), primarily in regions with non-zero crustal magnetic fields, implying the presence of parallel electric fields and/or wave-particle interactions below the spacecraft. Some, but not all, of the observed energy dependence comes from the energy gained during reflection from a moving obstacle; correctly characterizing electron reflection requires the use of the proper reference frame. Nonadiabatic reflection may also play a role, but cannot fully explain observations. In cases with upward-going beams, we observe partial isotropization of incoming solar wind electrons, possibly indicating streaming and/or whistler instabilities. The Moon may therefore influence solar wind plasma well upstream from its surface. Magnetic anomaly interactions and/or non-monotonic near surface potentials provide the most likely candidates to produce the observed precursor effects, which may help ensure quasi-neutrality upstream from the Moon.
Three axis vector atomic magnetometer utilizing polarimetric technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com
2016-09-15
The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity fieldmore » gradient measurement as required for biomedical application.« less
Fetal exposure to low frequency electric and magnetic fields
NASA Astrophysics Data System (ADS)
Cech, R.; Leitgeb, N.; Pediaditis, M.
2007-02-01
To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.
Breakdown of the Frozen-in Condition and Plasma Acceleration: Dynamical Theory
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2007-12-01
The magnetic reconnection hypothesis emphasizes the importance of the breakdown of the frozen-in condition, explains the strong dependence of the geomagnetic activity on the IMF, and approximates an average qualitative description for many IMF controlled effects in magnetospheric physics. However, some important theoretical aspects of reconnection, including its definition, have not been carefully examined. The crucial components of such models, such as the largely-accepted X-line reconnection picture and the broadly-used explanations of the breakdown of the frozen-in condition, lack complete theoretical support. The important irreversible reactive interaction is intrinsically excluded and overlooked in most reconnection models. The generation of parallel electric fields must be the result of a reactive plasma interaction, which is associated with the temporal changes and spatial gradients of magnetic and velocity shears (Song and Lysak, 2006). Unlike previous descriptions of the magnetic reconnection process, which depend on dissipative-type coefficients or some passive terms in the generalized Ohm's law, the reactive interaction is a dynamical process, which favors localized high magnetic and/or mechanical stresses and a low plasma density. The reactive interaction is often closely associated with the radiation of shear Alfvén waves and is independent of any assumed dissipation coefficients. The generated parallel electric field makes an irreversible conversion between magnetic energy and the kinetic energy of the accelerated plasma and the bulk flow. We demonstrate how the reactive interaction, e.g., the nonlinear interaction of MHD mesoscale wave packets at current sheets and in the auroral acceleration region, can create and support parallel electric fields, causing the breakdown of the frozen-in condition and plasma acceleration.
Discovering the nature of the star-planet interaction at WASP-12b
NASA Astrophysics Data System (ADS)
Nichols, Jonathan
2013-10-01
In 2010, COS produced a tantalising hint of a significant discovery: the magnetic field of an exoplanet. The ingress of the transiting 'hot-Jupiter' exoplanet WASP-12b apparently occurred earlier in the NUV than in the optical, and two hypotheses have been put forward as explanations. One is that this manifests dense shocked material in a magnetosheath formed in the supersonic stellar wind upstream of the planet's thus-revealed magnetic field, while the other is that this is caused in the absence of a planetary magnetic field by material overflowing the planet's Roche lobe at the L1 point. However, the previous observation, which was not designed to observe this phenomenon, is beset by scattered, sparse data and we do not yet understand the nature of the star-planet interaction. It is thus crucial that we now observe WASP-12b in a program specifically designed to unambiguously detect the early ingress, significantly improve the NUV lightcurve, and answer the question:* What is the nature of the star-planet interaction at WASP-12?No other observatory is capable of making these observations, and this proposal is highly accordant with the purpose of the Cycle 21 UV initiative. Execution in Cycle 21 is also highly desirable since the results will provide input to the LOFAR exoplanet program, which will focus on planets thought to exhibit star-planet interactions. By following a fortuitously obtained pointer, this proposal presents low risk-high impact observations, since the characterisation of star-exoplanet interactions and possibly the first detection of an exoplanetary magnetic field would be of huge scientific significance.
Electromagnetic coupling of spins and pseudospins in bilayer graphene
NASA Astrophysics Data System (ADS)
Winkler, R.; Zülicke, U.
2015-03-01
We present a theoretical study of bilayer-graphene's electronic properties in the presence of electric and magnetic fields. In contrast to known materials, including single-layer graphene, any possible coupling of physical quantities to components of the electric field has a counterpart where the analogous component of the magnetic field couples to exactly the same quantities. For example, a purely electric spin splitting appears as the magneto-electric analogue of the magnetic Zeeman spin splitting. The measurable thermodynamic response induced by magnetic and electric fields is thus completely symmetric. The Pauli magnetization induced by a magnetic field takes exactly the same functional form as the polarization induced by an electric field. Although they seem counterintuitive, our findings are consistent with fundamental principles such as time reversal symmetry. For example, only a magnetic field can give rise to a macroscopic spin polarization, whereas only a perpendicular electric field can induce a macroscopic polarization of the sublattice-related pseudospin in bilayer graphene. These rules enforced by symmetry for the matter-field interactions clarify the nature of spins versus pseudospins. We have obtained numerical values of prefactors for relevant terms. NSF Grant DMR-1310199 and Marsden Fund Contract No. VUW0719.
Constraints on Io's interior from auroral spot oscillations
NASA Astrophysics Data System (ADS)
Roth, Lorenz; Saur, Joachim; Retherford, Kurt D.; Blöcker, Aljona; Strobel, Darrell F.; Feldman, Paul D.
2017-02-01
The morphology of Io's aurora is dominated by bright spots near the equator that oscillate up and down in approximate correlation with the oscillating orientation of the Jovian magnetospheric field. Analyzing Hubble Space Telescope images, we find that the auroral spots oscillate in phase with the time-variable Jovian magnetic field at Io and that the amplitude of the spot oscillations is reduced by 15% (±5%) with respect to the amplitude of the magnetic field oscillation. We investigate the effects of Io's plasma interaction and magnetic induction in the moon's interior on the magnetic field topology and the aurora oscillations using a magnetohydrodynamic (MHD) simulation and an analytical induction model. The results from the MHD simulation suggest that the plasma interaction has minor effects on the oscillations, while the magnetic induction generally reduces magnetic field oscillations near the surface. However, the analytical model shows that induction in any near-surface layer for which the skin depth is larger than the thickness—like a conductive magma ocean—would induce a phase shift, in conflict with the observations. Under the assumption that the spot oscillations represent the magnetic field oscillation, we constrain the conductance of a near-surface layer to 1 × 103 S or lower. A magma ocean with conductances of 104 S or higher as derived from Galileo magnetometer measurements would cause overly strong attenuation of the amplitude in addition to the irreconcilable phase shift. The observed weakly attenuated, in-phase spot oscillation is consistent with induction in a deep, highly conductive layer like Io's metallic core.
Tunneling magnetic force microscopy
NASA Technical Reports Server (NTRS)
Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.
1993-01-01
We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.
Slow spin relaxation induced by magnetic field in [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O.
Vrábel, P; Orendáč, M; Orendáčová, A; Čižmár, E; Tarasenko, R; Zvyagin, S; Wosnitza, J; Prokleška, J; Sechovský, V; Pavlík, V; Gao, S
2013-05-08
We report on a comprehensive investigation of the magnetic properties of [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O (bpdo=4, 4'-bipyridine-N,N'-dioxide) by use of electron paramagnetic resonance, magnetization, specific heat and susceptibility measurements. The studied material was identified as a magnet with an effective spin S = 1/2 and a weak exchange interaction J/kB = 25 mK. The ac susceptibility studies conducted at audio frequencies and at temperatures from 1.8 to 9 K revealed that the application of a static magnetic field induces a slow spin relaxation. It is suggested that the relaxation in the magnetic field appears due to an Orbach-like process between the two lowest doublet energy states of the magnetic Nd(3+) ion. The appearance of the slow relaxation in a magnetic field cannot be associated with a resonant phonon trapping. The obtained results suggest that the relaxation is influenced by nuclear spin driven quantum tunnelling which is suppressed by external magnetic field.
NASA Astrophysics Data System (ADS)
Kuz'min, M. D.; Zvezdin, A. K.
1998-03-01
The prospects of using the free-powder high-field magnetization method for a quantitative study of inter-sublattice exchange interaction in 3d-4f hard magnetic materials are analyzed. Such analysis is stimulated by the availability of pulsed magnetic fields ˜103 T generated by implosion. Particular attention is paid to effects due to magnetic anisotropy, essential for these materials. The 3d-4f ferrimagnets where both sublattices contribute positively to the easy-axis anisotropy are shown to be suitable objects of study by the free-powder method, because (i) anomalies in their low-temperature magnetizatization curves are sharp and (ii) anisotropic effects can be allowed for without quantitative knowledge of the anisotropy constants. Moreover, these "good" hard magnetic materials can be brought into metamagnetic regime by diluting the rare earth sublattice with nonmagnetic yttrium; then, regardless of the anisotropy constants, the magnetization curve at low temperatures has just one steplike anomaly, the threshold field being equal exactly to the molecular field acting on the rare earth.
Tereshina, I S; Kostyuchenko, N V; Tereshina-Chitrova, E A; Skourski, Y; Doerr, M; Pelevin, I A; Zvezdin, A K; Paukov, M; Havela, L; Drulis, H
2018-02-26
Rare-earth (R)-iron alloys are a backbone of permanent magnets. Recent increase in price of rare earths has pushed the industry to seek ways to reduce the R-content in the hard magnetic materials. For this reason strong magnets with the ThMn 12 type of structure came into focus. Functional properties of R(Fe,T) 12 (T-element stabilizes the structure) compounds or their interstitially modified derivatives, R(Fe,T) 12 -X (X is an atom of hydrogen or nitrogen) are determined by the crystal-electric-field (CEF) and exchange interaction (EI) parameters. We have calculated the parameters using high-field magnetization data. We choose the ferrimagnetic Tm-containing compounds, which are most sensitive to magnetic field and demonstrate that TmFe 11 Ti-H reaches the ferromagnetic state in the magnetic field of 52 T. Knowledge of exact CEF and EI parameters and their variation in the compounds modified by the interstitial atoms is a cornerstone of the quest for hard magnetic materials with low rare-earth content.
NASA Technical Reports Server (NTRS)
Lipatov, A. S.; Farrell, W. M.; Cooper, J. F.; Sittler, E. C., Jr.; Hartle, R. E.
2015-01-01
The interactions between the solar wind and Moon-sized objects are determined by a set of the solar wind parameters and plasma environment of the space objects. The orientation of upstream magnetic field is one of the key factors which determines the formation and structure of bow shock wave/Mach cone or Alfven wing near the obstacle. The study of effects of the direction of the upstream magnetic field on lunar-like plasma environment is the main subject of our investigation in this paper. Photoionization, electron-impact ionization and charge exchange are included in our hybrid model. The computational model includes the self-consistent dynamics of the light (hydrogen (+), helium (+)) and heavy (sodium (+)) pickup ions. The lunar interior is considered as a weakly conducting body. Our previous 2013 lunar work, as reported in this journal, found formation of a triple structure of the Mach cone near the Moon in the case of perpendicular upstream magnetic field. Further advances in modeling now reveal the presence of strong wave activity in the upstream solar wind and plasma wake in the cases of quasiparallel and parallel upstream magnetic fields. However, little wave activity is found for the opposite case with a perpendicular upstream magnetic field. The modeling does not show a formation of the Mach cone in the case of theta(Sub B,U) approximately equal to 0 degrees.
Magnon Polarons in the Spin Seebeck Effect.
Kikkawa, Takashi; Shen, Ka; Flebus, Benedetta; Duine, Rembert A; Uchida, Ken-Ichi; Qiu, Zhiyong; Bauer, Gerrit E W; Saitoh, Eiji
2016-11-11
Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y_{3}Fe_{5}O_{12} at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.
NASA Astrophysics Data System (ADS)
Zheng, Gong-Ping; Li, Pin; Li, Ting; Xue, Ya-Jie
2018-02-01
Motivated by the recent experiments realized in a flat-bottomed optical trap (Navon et al., 2015; Chomaz et al., 2015), we study the ground state of polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a finite-size homogeneous trap with a weak magnetic field. The exact spatial distribution of local spin is obtained with a variational method. Unlike the fully-magnetized planar spin texture with a zero-spin core, which was schematically demonstrated in previous studies for the ideal polar-core spin vortex in a homogeneous trap with infinitely large boundary, some plateaus and two-cores structure emerge in the distribution curves of spin magnitude in the polar-core spin vortex we obtained for the larger effective spin-dependent interaction. More importantly, the spin values of the plateaus are not 1 as expected in the fully-magnetized spin texture, except for the sufficiently large spin-dependent interaction and the weak-magnetic-field limit. We attribute the decrease of spin value to the effect of finite size of the system. The spin values of the plateaus can be controlled by the quadratic Zeeman energy q of the weak magnetic field, which decreases with the increase of q.
Flows, Fields, and Forces in the Mars-Solar Wind Interaction
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Brain, D. A.; Luhmann, J. G.; DiBraccio, G. A.; Ruhunusiri, S.; Harada, Y.; Fowler, C. M.; Mitchell, D. L.; Connerney, J. E. P.; Espley, J. R.; Mazelle, C.; Jakosky, B. M.
2017-11-01
We utilize suprathermal ion and magnetic field measurements from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, organized by the upstream magnetic field, to investigate the morphology and variability of flows, fields, and forces in the Mars-solar wind interaction. We employ a combination of case studies and statistical investigations to characterize the interaction in both quasi-parallel and quasi-perpendicular regions and under high and low solar wind Mach number conditions. For the first time, we include a detailed investigation of suprathermal ion temperature and anisotropy. We find that the observed magnetic fields and suprathermal ion moments in the magnetosheath, bow shock, and upstream regions have observable asymmetries controlled by the interplanetary magnetic field, with particularly large asymmetries found in the ion parallel temperature and anisotropy. The greatest temperature anisotropies occur in quasi-perpendicular regions of the magnetosheath and under low Mach number conditions. These results have implications for the growth and evolution of wave-particle instabilities and their role in energy transport and dissipation. We utilize the measured parameters to estimate the average ion pressure gradient, J × B, and v × B macroscopic force terms. The pressure gradient force maintains nearly cylindrical symmetry, while the J × B force has larger asymmetries and varies in magnitude in comparison to the pressure gradient force. The v × B force felt by newly produced planetary ions exceeds the other forces in magnitude in the magnetosheath and upstream regions for all solar wind conditions.
NASA Astrophysics Data System (ADS)
Bezbaruah, Pratikshya; Das, Nilakshi
2018-05-01
Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.
Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature
NASA Technical Reports Server (NTRS)
Parkin, C. W.
1978-01-01
In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.
NASA Astrophysics Data System (ADS)
Ivanov, V. V.; Maximov, A. V.; Betti, R.; Wiewior, P. P.; Hakel, P.; Sherrill, M. E.
2017-08-01
Dynamics of laser produced plasma in a strong magnetic field was studied using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2-2.5 MG magnetic field was generated on the surface of a rod load 0.8-1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 1015 W cm-2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1-3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magnetic field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s-1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.