Sample records for magnetic fields needed

  1. Measurement and tricubic interpolation of the magnetic field for the OLYMPUS experiment

    NASA Astrophysics Data System (ADS)

    Bernauer, J. C.; Diefenbach, J.; Elbakian, G.; Gavrilov, G.; Goerrissen, N.; Hasell, D. K.; Henderson, B. S.; Holler, Y.; Karyan, G.; Ludwig, J.; Marukyan, H.; Naryshkin, Y.; O'Connor, C.; Russell, R. L.; Schmidt, A.; Schneekloth, U.; Suvorov, K.; Veretennikov, D.

    2016-07-01

    The OLYMPUS experiment used a 0.3 T toroidal magnetic spectrometer to measure the momenta of outgoing charged particles. In order to accurately determine particle trajectories, knowledge of the magnetic field was needed throughout the spectrometer volume. For that purpose, the magnetic field was measured at over 36,000 positions using a three-dimensional Hall probe actuated by a system of translation tables. We used these field data to fit a numerical magnetic field model, which could be employed to calculate the magnetic field at any point in the spectrometer volume. Calculations with this model were computationally intensive; for analysis applications where speed was crucial, we pre-computed the magnetic field and its derivatives on an evenly spaced grid so that the field could be interpolated between grid points. We developed a spline-based interpolation scheme suitable for SIMD implementations, with a memory layout chosen to minimize space and optimize the cache behavior to quickly calculate field values. This scheme requires only one-eighth of the memory needed to store necessary coefficients compared with a previous scheme (Lekien and Marsden, 2005 [1]). This method was accurate for the vast majority of the spectrometer volume, though special fits and representations were needed to improve the accuracy close to the magnet coils and along the toroidal axis.

  2. The Need for High-Resolution Crustal Magnetic Field Data on Mars

    NASA Technical Reports Server (NTRS)

    Raymond, C. A.; Russell, C. T.; Purucker, M. E.; Smrekar, S. E.

    2000-01-01

    Magnetometer observations from the Mars Global Surveyor spacecraft (MAG/ER on MGS) have confirmed that Mars does not presently have an internally-generated dipole magnetic field, and have also revealed intense remanent magnetism in the Martian crust. The remanent magnetic anomalies, most prevalent in the southern highlands region, are a record of the past history of the internal Mars dipole field. The MAG/ER data constitute a valuable data set for constraining the early thermal evolution of Mars and the history of the planetary magnetic field. However, the data lack the resolution needed to draw definite conclusions regarding the time history of the field. High-resolution magnetometer observations, obtained at low-altitude, are needed to complement and extend the MGS/ER data set and allow a definitive time history of the internal Mars dynamo to be constructed.

  3. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  4. Magnetization Switching of a Co /Pt Multilayered Perpendicular Nanomagnet Assisted by a Microwave Field with Time-Varying Frequency

    NASA Astrophysics Data System (ADS)

    Suto, Hirofumi; Kanao, Taro; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2018-05-01

    Microwave-assisted magnetization switching (MAS) is attracting attention as a method for reversing nanomagnets with a high magnetic anisotropy by using a small-amplitude magnetic field. We experimentally study MAS of a perpendicularly magnetized nanomagnet by applying a microwave magnetic field with a time-varying frequency. Because the microwave field frequency can follow the nonlinear decrease of the resonance frequency, larger magnetization excitation than that in a constant-frequency microwave field is induced, which enhances the MAS effect. The switching field decreases almost linearly as the start value of the time-varying microwave field frequency increases, and it becomes smaller than the minimum switching field in a constant-frequency microwave field. To obtain this enhancement of the MAS effect, the end value of the time-varying microwave field frequency needs to be almost the same as or lower than the critical frequency for MAS in a constant-frequency microwave field. In addition, the frequency change typically needs to take 1 ns or longer to make the rate of change slow enough for the magnetization to follow the frequency change. This switching behavior is qualitatively explained by the theory based on the macrospin model.

  5. Improved field free line magnetic particle imaging using saddle coils.

    PubMed

    Erbe, Marlitt; Sattel, Timo F; Buzug, Thorsten M

    2013-12-01

    Magnetic particle imaging (MPI) is a novel tracer-based imaging method detecting the distribution of superparamagnetic iron oxide (SPIO) nanoparticles in vivo in three dimensions and in real time. Conventionally, MPI uses the signal emitted by SPIO tracer material located at a field free point (FFP). To increase the sensitivity of MPI, however, an alternative encoding scheme collecting the particle signal along a field free line (FFL) was proposed. To provide the magnetic fields needed for line imaging in MPI, a very efficient scanner setup regarding electrical power consumption is needed. At the same time, the scanner needs to provide a high magnetic field homogeneity along the FFL as well as parallel to its alignment to prevent the appearance of artifacts, using efficient radon-based reconstruction methods arising for a line encoding scheme. This work presents a dynamic FFL scanner setup for MPI that outperforms all previously presented setups in electrical power consumption as well as magnetic field quality.

  6. Self-diffusion imaging by spin echo in Earth's magnetic field.

    PubMed

    Mohoric, A; Stepisnik, J; Kos, M; Planinsi

    1999-01-01

    The NMR of the Earth's magnetic field is used for diffusion-weighted imaging of phantoms. Due to a weak Larmor field, care needs to be taken regarding the use of the usual high field assumption in calculating the effect of the applied inhomogeneous magnetic field. The usual definition of the magnetic field gradient must be replaced by a generalized formula valid when the strength of a nonuniform magnetic field and a Larmor field are comparable (J. Stepisnik, Z. Phys. Chem. 190, 51-62 (1995)). It turns out that the expression for spin echo attenuation is identical to the well-known Torrey formula only when the applied nonuniform field has a proper symmetry. This kind of problem may occur in a strong Larmor field as well as when the slow diffusion rate of particles needs an extremely strong gradient to be applied. The measurements of the geomagnetic field NMR demonstrate the usefulness of the method for diffusion and flow-weighted imaging. Copyright 1999 Academic Press.

  7. Monte Carlo study of the impact of a magnetic field on the dose distribution in MRI-guided HDR brachytherapy using Ir-192

    NASA Astrophysics Data System (ADS)

    Beld, E.; Seevinck, P. R.; Lagendijk, J. J. W.; Viergever, M. A.; Moerland, M. A.

    2016-09-01

    In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner’s magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.

  8. Monte Carlo study of the impact of a magnetic field on the dose distribution in MRI-guided HDR brachytherapy using Ir-192.

    PubMed

    Beld, E; Seevinck, P R; Lagendijk, J J W; Viergever, M A; Moerland, M A

    2016-09-21

    In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner's magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.

  9. Dynamo magnetic field-induced angular momentum transport in protostellar nebulae - The 'minimum mass' protosolar nebula

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1990-01-01

    Magnetic torques can produce angular momentum redistribution in protostellar nebulas. Dynamo magnetic fields can be generated in differentially rotating and turbulent nebulas and can be the source of magnetic torques that transfer angular momentum from a protostar to a disk, as well as redistribute angular momentum within a disk. A magnetic field strength of 100-1000 G is needed to transport the major part of a protostar's angular momentum into a surrounding disk in a time characteristic of star formation, thus allowing formation of a solar-system size protoplanetary nebula in the usual 'minimum-mass' model of the protosolar nebula. This paper examines the possibility that a dynamo magnetic field could have induced the needed angular momentum transport from the proto-Sun to the protoplanetary nebula.

  10. Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses

    NASA Astrophysics Data System (ADS)

    Arribas, Enrique; Escobar, Isabel; Suarez, Carmen P.; Najera, Alberto; Beléndez, Augusto

    2015-11-01

    In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone’s magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.

  11. Mitigating reentry radio blackout by using a traveling magnetic field

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Li, Xiaoping; Xie, Kai; Liu, Yanming; Yu, Yuanyuan

    2017-10-01

    A hypersonic flight or a reentry vehicle is surrounded by a plasma layer that prevents electromagnetic wave transmission, which results in radio blackout. The magnetic-window method is considered a promising means to mitigate reentry communication blackout. However, the real application of this method is limited because of the need for strong magnetic fields. To reduce the required magnetic field strength, a novel method that applies a traveling magnetic field (TMF) is proposed in this study. A mathematical model based on magneto-hydrodynamic theory is adopted to analyze the effect of TMF on plasma. The mitigating effects of the TMF on the blackout of typical frequency bands, including L-, S-, and C-bands, are demonstrated. Results indicate that a significant reduction of plasma density occurs in the magnetic-window region by applying a TMF, and the reduction ratio is positively correlated with the velocity of the TMF. The required traveling velocities for eliminating the blackout of the Global Positioning System (GPS) and the typical telemetry system are also discussed. Compared with the constant magnetic-window method, the TMF method needs lower magnetic field strength and is easier to realize in the engineering field.

  12. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D; Mutic, S; Shvartsman, S

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placedmore » in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.« less

  13. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  14. Magnetic diffusion and flare energy buildup

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Yin, C. L.; Yang, W.-H.

    1992-01-01

    Photospheric motion shears or twists solar magnetic fields to increase magnetic energy in the corona, because this process may change a current-free state of a coronal field to force-free states which carry electric current. This paper analyzes both linear and nonlinear 2D force-free magnetic field models and derives relations of magnetic energy buildup with photospheric velocity field. When realistic data of solar magnetic field and photospheric velocity field are used, it is found that 3-4 hours are needed to create an amount of free magnetic energy which is of the order of the current-free field energy. Furthermore, the paper studies situations in which finite magnetic diffusivities in photospheric plasma are introduced. The shearing motion increases coronal magnetic energy, while the photospheric diffusion reduces the energy. The variation of magnetic energy in the coronal region, then, depends on which process dominates.

  15. Research on single-chip microcomputer controlled rotating magnetic field mineralization model

    NASA Astrophysics Data System (ADS)

    Li, Yang; Qi, Yulin; Yang, Junxiao; Li, Na

    2017-08-01

    As one of the method of selecting ore, the magnetic separation method has the advantages of stable operation, simple process flow, high beneficiation efficiency and no chemical environment pollution. But the existing magnetic separator are more mechanical, the operation is not flexible, and can not change the magnetic field parameters according to the precision of the ore needed. Based on the existing magnetic separator is mechanical, the rotating magnetic field can be used for single chip microcomputer control as the research object, design and trial a rotating magnetic field processing prototype, and through the single-chip PWM pulse output to control the rotation of the magnetic field strength and rotating magnetic field speed. This method of using pure software to generate PWM pulse to control rotary magnetic field beneficiation, with higher flexibility, accuracy and lower cost, can give full play to the performance of single-chip.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardo, v.; Barzi, E.; Turrioni, D.

    Superconducting magnets with magnetic fields above 20 T will be needed for a Muon Collider and possible LHC energy upgrade. This field level exceeds the possibilities of traditional Low Temperature Superconductors (LTS) such as Nb{sub 3}Sn and Nb{sub 3}Al. Presently the use of high field high temperature superconductors (HTS) is the only option available for achieving such field levels. Commercially available YBCO comes in tapes and shows noticeable anisotropy with respect to field orientation, which needs to be accounted for during magnet design. In the present work, critical current test results are presented for YBCO tape manufactured by Bruker. Shortmore » sample measurements results are presented up to 14 T, assessing the level of anisotropy as a function of field, field orientation and operating temperature.« less

  17. Seminal magnetic fields from inflato-electromagnetic inflation

    NASA Astrophysics Data System (ADS)

    Membiela, Federico Agustín; Bellini, Mauricio

    2012-10-01

    We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B ij in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance.

  18. Heating of cardiovascular stents in intense radiofrequency magnetic fields.

    PubMed

    Foster, K R; Goldberg, R; Bonsignore, C

    1999-01-01

    We consider the heating of a metal stent in an alternating magnetic field from an induction heating furnace. An approximate theoretical analysis is conducted to estimate the magnetic field strength needed to produce substantial temperature increases. Experiments of stent heating in industrial furnaces are reported, which confirm the model. The results show that magnetic fields inside inductance furnaces are capable of significantly heating stents. However, the fields fall off very quickly with distance and in most locations outside the heating coil, field levels are far too small to produce significant heating. The ANSI/IEEE C95.1-1992 limits for human exposure to alternating magnetic fields provide adequate protection against potential excessive heating of the stents.

  19. A viable dipole magnet concept with REBCO CORC® wires and further development needs for high-field magnet applications

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorong; Caspi, Shlomo; Dietderich, Daniel R.; Ghiorso, William B.; Gourlay, Stephen A.; Higley, Hugh C.; Lin, Andy; Prestemon, Soren O.; van der Laan, Danko; Weiss, Jeremy D.

    2018-04-01

    REBCO coated conductors maintain a high engineering current density above 16 T at 4.2 K. That fact will significantly impact markets of various magnet applications including high-field magnets for high-energy physics and fusion reactors. One of the main challenges for the high-field accelerator magnet is the use of multi-tape REBCO cables with high engineering current density in magnet development. Several approaches developing high-field accelerator magnets using REBCO cables are demonstrated. In this paper, we introduce an alternative concept based on the canted cos θ (CCT) magnet design using conductor on round core (CORC®) wires that are wound from multiple REBCO tapes with a Cu core. We report the development and test of double-layer three-turn CCT dipole magnets using CORC® wires at 77 and 4.2 K. The scalability of the CCT design allowed us to effectively develop and demonstrate important magnet technology features such as coil design, winding, joints and testing with minimum conductor lengths. The test results showed that the CCT dipole magnet using CORC® wires was a viable option in developing a REBCO accelerator magnet. One of the critical development needs is to increase the engineering current density of the 3.7 mm diameter CORC® wire to 540 A mm-2 at 21 T, 4.2 K and to reduce the bending radius to 15 mm. This would enable a compact REBCO dipole insert magnet to generate a 5 T field in a background field of 16 T at 4.2 K.

  20. Enzymatic mechanisms of biological magnetic sensitivity.

    PubMed

    Letuta, Ulyana G; Berdinskiy, Vitaly L; Udagawa, Chikako; Tanimoto, Yoshifumi

    2017-10-01

    Primary biological magnetoreceptors in living organisms is one of the main research problems in magnetobiology. Intracellular enzymatic reactions accompanied by electron transfer have been shown to be receptors of magnetic fields, and spin-dependent ion-radical processes can be a universal mechanism of biological magnetosensitivity. Magnetic interactions in intermediate ion-radical pairs, such as Zeeman and hyperfine (HFI) interactions, in accordance with proposed strict quantum mechanical theory, can determine magnetic-field dependencies of reactions that produce biologically important molecules needed for cell growth. Hyperfine interactions of electrons with nuclear magnetic moments of magnetic isotopes can explain the most important part of biomagnetic sensitivities in a weak magnetic field comparable to the Earth's magnetic field. The theoretical results mean that magnetic-field dependencies of enzymatic reaction rates in a weak magnetic field that can be independent of HFI constant a, if H < a, and are determined by the rate constant of chemical transformations in the enzyme active site. Both Zeeman and HFI interactions predict strong magnetic-field dependence in weak magnetic fields and magnetic-field independence of enzymatic reaction rate constants in strong magnetic fields. The theoretical results can explain the magnetic sensitivity of E. coli cell and demonstrate that intracellular enzymatic reactions are primary magnetoreceptors in living organisms. Bioelectromagnetics. 38:511-521, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Measurement of magnetic field fluctuations and diamagnetic currents within a laser ablation plasma interacting with an axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, S.; Horioka, K.; Okamura, M.

    Here, the guiding of laser ablation plasmas with axial magnetic fields has been used for many applications, since its effectiveness has been proven empirically. For more sophisticated and complicated manipulations of the plasma flow, the behavior of the magnetic field during the interaction and the induced diamagnetic current in the plasma plume needs to be clearly understood. To achieve the first milestone for establishing magnetic plasma manipulation, we measured the spatial and temporal fluctuations of the magnetic field caused by the diamagnetic current. We showed that the small fluctuations of the magnetic field can be detected by using a simplemore » magnetic probe. We observed that the field penetrates to the core of the plasma plume. The diamagnetic current estimated from the magnetic field had temporal and spatial distributions which were confirmed to be correlated with the transformation of the plasma plume. Our results show that the measurement by the magnetic probe is an effective method to observe the temporal and spatial distributions of the magnetic field and diamagnetic current. The systematic measurement of the magnetic field variations is a valuable method to establish the magnetic field manipulation of the laser ablation plasma.« less

  2. Measurement of magnetic field fluctuations and diamagnetic currents within a laser ablation plasma interacting with an axial magnetic field

    DOE PAGES

    Ikeda, S.; Horioka, K.; Okamura, M.

    2017-10-10

    Here, the guiding of laser ablation plasmas with axial magnetic fields has been used for many applications, since its effectiveness has been proven empirically. For more sophisticated and complicated manipulations of the plasma flow, the behavior of the magnetic field during the interaction and the induced diamagnetic current in the plasma plume needs to be clearly understood. To achieve the first milestone for establishing magnetic plasma manipulation, we measured the spatial and temporal fluctuations of the magnetic field caused by the diamagnetic current. We showed that the small fluctuations of the magnetic field can be detected by using a simplemore » magnetic probe. We observed that the field penetrates to the core of the plasma plume. The diamagnetic current estimated from the magnetic field had temporal and spatial distributions which were confirmed to be correlated with the transformation of the plasma plume. Our results show that the measurement by the magnetic probe is an effective method to observe the temporal and spatial distributions of the magnetic field and diamagnetic current. The systematic measurement of the magnetic field variations is a valuable method to establish the magnetic field manipulation of the laser ablation plasma.« less

  3. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-01

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  4. Magnetic field controlled electronic state and electric field controlled magnetic state in α-Fe1.6Ga0.4O3 oxide

    NASA Astrophysics Data System (ADS)

    Lone, Abdul Gaffar; Bhowmik, R. N.

    2018-04-01

    We have prepared α-Fe1.6Ga0.4O3 (Ga doped α-Fe2O3) system in rhombohedral phase. The material has shown room temperature ferroelectric and ferromagnetic properties. The existence of magneto-electric coupling at room temperature has been confirmed by the experimental observation of magnetic field controlled electric properties and electric field controlled magnetization. The current-voltage characteristics were controlled by external magnetic field. The magnetic state switching and exchange bias effect are highly sensitive to the polarity and ON and OFF modes of external electric field. Such materials can find novel applications in magneto-electronic devices, especially in the field of electric field controlled spintronics devices and energy storage devices which need low power consumption.

  5. Theory of plasma confinement in non-axisymmetric magnetic fields.

    PubMed

    Helander, Per

    2014-08-01

    The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.

  6. Design of Magnetic Shielding and Field Coils for a TES X-Ray Microcalorimeter Test Platform

    NASA Technical Reports Server (NTRS)

    Miniussi, Antoine R.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron M.; Doriese, William B.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2017-01-01

    The performance of Transition-Edge Sensors (TES) and their SQUID multiplexed read-outs are very sensitive to the ambient magnetic field from Earth and fluctuations that can arise due to fluctuating magnetic fields outside of the focal plane assembly from the Adiabatic Demagnetization Refrigerator (ADR).Thus, the experimental platform we are building to test the FPA of the X-ray Integral Field Unit (X-IFU) of the Athena mission needs to include a series of shields and a coil in order to meet the following requirement of magnetic field density and uniformity.

  7. Superconducting applications in propulsion systems. Magnetic insulation for plasma propulsion devices

    NASA Technical Reports Server (NTRS)

    Gonzalez, Dora E.; Karr, Gerald R.

    1990-01-01

    The purpose of this paper is to review the status of knowledge of the basic concepts needed to establish design parameters for effective magnetic insulation. The objective is to estimate the effectiveness of the magnetic field in insulating the plasma, to calculate the magnitude of the magnetic field necessary to reduce the heat transfer to the walls sufficiently enough to demonstrate the potential of magnetically driven plasma rockets.

  8. Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting.

    PubMed

    Frank, Michael B; Naleway, Steven E; Haroush, Tsuk; Liu, Chin-Hung; Siu, Sze Hei; Ng, Jerry; Torres, Ivan; Ismail, Ali; Karandikar, Keyur; Porter, Michael M; Graeve, Olivia A; McKittrick, Joanna

    2017-08-01

    Bone consists of a hard mineral phase and a compliant biopolymer phase resulting in a composite material that is both lightweight and strong. Osteoporosis that degrades spongy bone preferentially over time leads to bone brittleness in the elderly. A porous ceramic material that can mimic spongy bone for a one-time implant provides a potential solution for the future needs of an aging population. Scaffolds made by magnetic freeze casting resemble the aligned porosity of spongy bone. A magnetic field applied throughout freezing induces particle chaining and alignment of lamellae structures between growing ice crystals. After freeze drying to extract the ice and sintering to strengthen the scaffold, cubes from the scaffold center are mechanically compressed along longitudinal (z-axis, ice growth direction) and transverse (y-axis, magnetic field direction) axes. The best alignment of lamellar walls in the scaffold center occurs when applying magnetic freeze casting with the largest particles (350nm) at an intermediate magnetic field strength (75mT), which also agrees with stiffness enhancement results in both z and y-axes. Magnetic moments of different sized magnetized alumina particles help determine the ideal magnetic field strength needed to induce alignment in the scaffold center rather than just at the poles. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Magnetic micro/nanoparticle flocculation-based signal amplification for biosensing

    PubMed Central

    Mzava, Omary; Taş, Zehra; İçöz, Kutay

    2016-01-01

    We report a time and cost efficient signal amplification method for biosensors employing magnetic particles. In this method, magnetic particles in an applied external magnetic field form magnetic dipoles, interact with each other, and accumulate along the magnetic field lines. This magnetic interaction does not need any biomolecular coating for binding and can be controlled with the strength of the applied magnetic field. The accumulation can be used to amplify the corresponding pixel area that is obtained from an image of a single magnetic particle. An application of the method to the Escherichia coli 0157:H7 bacteria samples is demonstrated in order to show the potential of the approach. A minimum of threefold to a maximum of 60-fold amplification is reached from a single bacteria cell under a magnetic field of 20 mT. PMID:27354793

  10. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    NASA Astrophysics Data System (ADS)

    Windl, Roman; Abert, Claas; Bruckner, Florian; Huber, Christian; Vogler, Christoph; Weitensfelder, Herbert; Suess, Dieter

    2017-11-01

    Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  11. Axial-field permanent magnet motors for electric vehicles

    NASA Technical Reports Server (NTRS)

    Campbell, P.

    1981-01-01

    The modelling of an anisotropic alnico magnet for the purpose of field computation involves assigning a value for the material's permeability in the transverse direction. This is generally based upon the preferred direction properties, being all that are easily available. By analyzing the rotation of intrinsic magnetization due to the self demagnetizing field, it is shown that the common assumptions relating the transverse to the preferred direction are not accurate. Transverse magnetization characteristics are needed, and these are given for Alnico 5, 5-7, and 8 magnets, yielding appropriate permeability values.

  12. The current status and future direction of high magnetic field science in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, James

    2013-11-01

    This grant provided partial support for the National Research Council (NRC) study that assesses the current status of high magnetic field research in the United States and provides recommendations to guide the future of research and technology development for this area given the needs of user communities and in the context of other programs worldwide. A pdf version of the report is available for download, for free, at http://www.nap.edu/catalog.php?record_id=18355. The science drivers fall into 4 broad areas—(1) condensed matter and materials physics; (2) chemistry, biochemistry, and biology; (3) medical and life science studies; and (4) other fields such as high-energymore » physics, plasma physics, and particle astrophysics. Among the topics covered in the report’s findings, conclusions, and recommendations are a recognition that there is a continuing need for a centralized facility but also that clear benefits will flow to research communities from decentralized facilities. According to the report, support agencies should evaluate whether to establish such facilities when 32 Tesla superconducting magnets become available. The report also recommends the provision of facilities that combine magnetic fields with scattering facilities and THz radiation sources, and sets out specific magnet goals for magnets needed in several areas of research.« less

  13. Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection

    DOEpatents

    Xu, Shoujun [Berkeley, CA; Lowery, Thomas L [Belmont, MA; Budker, Dmitry [El Cerrito, CA; Yashchuk, Valeriy V [Richmond, CA; Wemmer, David E [Berkeley, CA; Pines, Alexander [Berkeley, CA

    2009-08-11

    A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and/or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and/or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.

  14. Magnetism and the history of the moon

    NASA Technical Reports Server (NTRS)

    Strangway, D. W.; Gose, W. A.; Pearce, G. W.; Carnes, J. G.

    1973-01-01

    All lunar samples measured to date contain a weak but stable remanent magnetization of lunar origin. The magnetization is carried by metallic iron and is considered to be caused by cooling from above the Curie point in the presence of a magnetic field. Although at present the moon does not have a global field, the remanent magnetization of the rock samples and the presence of magnetic anomalies, both on the near and far side of the moon, imply that the moon experienced a magnetic field during some portion of its history. The field could have been generated in a liquid iron core sustaining a self-exciting dynamo, but there are some basic thermal and geochemical objections that need to be resolved.

  15. On the resilience of helical magnetic fields to turbulent diffusion and the astrophysical implications

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Subramanian, Kandaswamy

    2013-02-01

    The extent to which large-scale magnetic fields are susceptible to turbulent diffusion is important for interpreting the need for in situ large-scale dynamos in astrophysics and for observationally inferring field strengths compared to kinetic energy. By solving coupled evolution equations for magnetic energy and magnetic helicity in a system initialized with isotropic turbulence and an arbitrarily helical large-scale field, we quantify the decay rate of the latter for a bounded or periodic system. The magnetic energy associated with the non-helical large-scale field decays at least as fast as the kinematically estimated turbulent diffusion rate, but the decay rate of the helical part depends on whether the ratio of its magnetic energy to the turbulent kinetic energy exceeds a critical value given by M1, c = (k1/k2)2, where k1 and k2 are the wavenumbers of the large and forcing scales. Turbulently diffusing helical fields to small scales while conserving magnetic helicity requires a rapid increase in total magnetic energy. As such, only when the helical field is subcritical can it so diffuse. When supercritical, it decays slowly, at a rate determined by microphysical dissipation even in the presence of macroscopic turbulence. In effect, turbulent diffusion of such a large-scale helical field produces small-scale helicity whose amplification abates further turbulent diffusion. Two curious implications are that (1) standard arguments supporting the need for in situ large-scale dynamos based on the otherwise rapid turbulent diffusion of large-scale fields require re-thinking since only the large-scale non-helical field is so diffused in a closed system. Boundary terms could however provide potential pathways for rapid change of the large-scale helical field. (2) Since M1, c ≪ 1 for k1 ≪ k2, the presence of long-lived ordered large-scale helical fields as in extragalactic jets do not guarantee that the magnetic field dominates the kinetic energy.

  16. Origin and structures of solar eruptions II: Magnetic modeling

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Cheng, Xin; Ding, MingDe

    2017-07-01

    The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.

  17. A novel heat engine for magnetizing superconductors

    NASA Astrophysics Data System (ADS)

    Coombs, T. A.; Hong, Z.; Zhu, X.; Krabbes, G.

    2008-03-01

    The potential of bulk melt-processed YBCO single domains to trap significant magnetic fields (Tomita and Murakami 2003 Nature 421 517-20 Fuchs et al 2000 Appl. Phys. Lett. 76 2107-9) at cryogenic temperatures makes them particularly attractive for a variety of engineering applications including superconducting magnets, magnetic bearings and motors (Coombs et al 1999 IEEE Trans. Appl. Supercond. 9 968-71 Coombs et al 2005 IEEE Trans. Appl. Supercond. 15 2312-5). It has already been shown that large fields can be obtained in single domain samples at 77 K. A range of possible applications exist in the design of high power density electric motors (Jiang et al 2006 Supercond. Sci. Technol. 19 1164-8). Before such devices can be created a major problem needs to be overcome. Even though all of these devices use a superconductor in the role of a permanent magnet and even though the superconductor can trap potentially huge magnetic fields (greater than 10 T) the problem is how to induce the magnetic fields. There are four possible known methods: (1) cooling in field; (2) zero field cooling, followed by slowly applied field; (3) pulse magnetization; (4) flux pumping. Any of these methods could be used to magnetize the superconductor and this may be done either in situ or ex situ. Ideally the superconductors are magnetized in situ. There are several reasons for this: first, if the superconductors should become demagnetized through (i) flux creep, (ii) repeatedly applied perpendicular fields (Vanderbemden et al 2007 Phys. Rev. B 75 (17)) or (iii) by loss of cooling then they may be re-magnetized without the need to disassemble the machine; secondly, there are difficulties with handling very strongly magnetized material at cryogenic temperatures when assembling the machine; thirdly, ex situ methods would require the machine to be assembled both cold and pre-magnetized and would offer significant design difficulties. Until room temperature superconductors can be prepared, the most efficient design of machine will therefore be one in which an in situ magnetizing fixture is included. The first three methods all require a solenoid which can be switched on and off. In the first method an applied magnetic field is required equal to the required magnetic field, whilst the second and third approaches require fields at least two times greater. The final method, however, offers significant advantages since it achieves the final required field by repeated applications of a small field and can utilize a permanent magnet (Coombs 2007 British Patent GB2431519 granted 2007-09-26). If we wish to pulse a field using, say, a 10 T magnet to magnetize a 30 mm × 10 mm sample then we can work out how big the solenoid needs to be. If it were possible to wind an appropriate coil using YBCO tape then, assuming an Ic of 70 A and a thickness of 100 µm, we would have 100 turns and 7000 A turns. This would produce a B field of approximately 7000/(20 × 10-3) × 4π × 10-7 = 0.4 T. To produce 10 T would require pulsing to 1400 A! An alternative calculation would be to assume a Jc of say 5 × 108A m-1 and a coil 1 cm2 in cross section. The field would then be 5 × 108 × 10-2 × (2 × 4π × 10-7) = 10 T. Clearly if the magnetization fixture is not to occupy more room than the puck itself then a very high activation current would be required and either constraint makes in situ magnetization a very difficult proposition. What is required for in situ magnetization is a magnetization method in which a relatively small field of the order of millitesla repeatedly applied is used to magnetize the superconductor. This paper describes a novel method for achieving this.

  18. Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2008-01-01

    An innovative method has been developed for acquiring fluid-level measurements. This method eliminates the need for the fluid-level sensor to have a physical connection to a power source or to data acquisition equipment. The complete system consists of a lightweight, thin-film magnetic-field-response fluid-level sensor (see Figure 1) and a magnetic field response recorder that was described in Magnetic-Field-Response Measurement-Acquisition System (LAR-16908-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28. The sensor circuit is a capacitor connected to an inductor. The response recorder powers the sensor using a series of oscillating magnetic fields. Once electrically active, the sensor responds with its own harmonic magnetic field. The sensor will oscillate at its resonant electrical frequency, which is dependent upon the capacitance and inductance values of the circuit.

  19. Electromagnetic nonlinearities in a Roebel-cable-based accelerator magnet prototype: variational approach

    NASA Astrophysics Data System (ADS)

    Ruuskanen, J.; Stenvall, A.; Lahtinen, V.; Pardo, E.

    2017-02-01

    Superconducting magnets are the most expensive series of components produced in the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN). When developing such magnets beyond state-of-the-art technology, one possible option is to use high-temperature superconductors (HTS) that are capable of tolerating much higher magnetic fields than low-temperature superconductors (LTS), carrying simultaneously high current densities. Significant cost reductions due to decreased prototype construction needs can be achieved by careful modelling of the magnets. Simulations are used, e.g. for designing magnets fulfilling the field quality requirements of the beampipe, and adequate protection by studying the losses occurring during charging and discharging. We model the hysteresis losses and the magnetic field nonlinearity in the beampipe as a function of the magnet’s current. These simulations rely on the minimum magnetic energy variation principle, with optimization algorithms provided by the open-source optimization library interior point optimizer. We utilize this methodology to investigate a research and development accelerator magnet prototype made of REBCO Roebel cable. The applicability of this approach, when the magnetic field dependence of the superconductor’s critical current density is considered, is discussed. We also scrutinize the influence of the necessary modelling decisions one needs to make with this approach. The results show that different decisions can lead to notably different results, and experiments are required to study the electromagnetic behaviour of such magnets further.

  20. A numerical model for aggregations formation and magnetic driving of spherical particles based on OpenFOAM®.

    PubMed

    Karvelas, E G; Lampropoulos, N K; Sarris, I E

    2017-04-01

    This work presents a numerical model for the formation of particle aggregations under the influence of a permanent constant magnetic field and their driving process under a gradient magnetic field, suitably created by a Magnetic Resonance Imaging (MRI) device. The model is developed in the OpenFOAM platform and it is successfully compared to the existing experimental and numerical results in terms of aggregates size and their motion in water solutions. Furthermore, several series of simulations are performed for two common types of particles of different diameter in order to verify their aggregation and flow behaviour, under various constant and gradient magnetic fields in the usual MRI working range. Moreover, the numerical model is used to measure the mean length of aggregations, the total time needed to form and their mean velocity under different permanent and gradient magnetic fields. The present model is found to predict successfully the size, velocity and distribution of aggregates. In addition, our simulations showed that the mean length of aggregations is proportional to the permanent magnetic field magnitude and particle diameter according to the relation : l¯ a =7.5B 0 d i 3/2 . The mean velocity of the aggregations is proportional to the magnetic gradient, according to : u¯ a =6.63G˜B 0 and seems to reach a steady condition after a certain period of time. The mean time needed for particles to aggregate is proportional to permanent magnetic field magnitude, scaled by the relationship : t¯ a ∝7B 0 . A numerical model to predict the motion of magnetic particles for medical application is developed. This model is found suitable to predict the formation of aggregations and their motion under the influence of permanent and gradient magnetic fields, respectively, that are produced by an MRI device. The magnitude of the external constant magnetic field is the most important parameter for the aggregations formation and their driving. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Domain wall dynamics driven by spin transfer torque and the spin-orbit field.

    PubMed

    Hayashi, Masamitsu; Nakatani, Yoshinobu; Fukami, Shunsuke; Yamanouchi, Michihiko; Mitani, Seiji; Ohno, Hideo

    2012-01-18

    We have studied current-driven dynamics of domain walls when an in-plane magnetic field is present in perpendicularly magnetized nanowires using an analytical model and micromagnetic simulations. We model an experimentally studied system, ultrathin magnetic nanowires with perpendicular anisotropy, where an effective in-plane magnetic field is developed when current is passed along the nanowire due to the Rashba-like spin-orbit coupling. Using a one-dimensional model of a domain wall together with micromagnetic simulations, we show that the existence of such in-plane magnetic fields can either lower or raise the threshold current needed to cause domain wall motion. In the presence of the in-plane field, the threshold current differs for positive and negative currents for a given wall chirality, and the wall motion becomes sensitive to out-of-plane magnetic fields. We show that large non-adiabatic spin torque can counteract the effect of the in-plane field.

  2. Magnetic fields and the technology challenges they pose to beam-based equipment: a semiconductor perspective

    NASA Astrophysics Data System (ADS)

    Esqueda, Vincent; Montoya, Julian A.

    2005-08-01

    As semiconductor devices shrink in size to accommodate faster processing speeds, the need for higher resolution beam-based metrology equipment and beam-based writing equipment will increase. The electron and ion beams used within these types of equipment are sensitive to very small variations in magnetic force applied to the beam. This phenomenon results from changes in Alternating Current (AC) and Direct Current (DC) magnetic flux density at the beam column which causes deflections of the beam that can impact equipment performance. Currently the most sensitive beam-based microscope manufacturers require an ambient magnetic field environment that does not have variations that exceed 0.2 milli-Gauss (mG). Studies have shown that such low levels of magnetic flux density can be extremely difficult to achieve. As examples, scissor lifts, vehicles, metal chairs, and doors moving in time and space under typical use conditions can create distortions in the Earth's magnetic field that can exceed 0.2 mG at the beam column. In addition it is known that changes in the Earth's magnetic field caused by solar flares, earthquakes, and variations in the Earth's core itself all cause changes in the magnetic field that can exceed 0.2 mG. This paper will provide the reader with the basic understanding of the emerging problem, will discuss the environmental and facility level challenges associated in meeting such stringent magnetic field environments, will discuss some of the mitigation techniques used to address the problem, and will close by discussing needs for further research in this area to assure semiconductor and nanotechnology industries are pre-positioned for even more stringent magnetic field environmental requirements.

  3. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    NASA Astrophysics Data System (ADS)

    Suhariningsih; Basuki Notobroto, Hari; Winarni, Dwi; Achmad Hussein, Saikhu; Anggono Prijo, Tri

    2017-05-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice (mus musculus), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared.

  4. Macroscopic electric charge separation during hypervelocity impacts: Potential implications for planetary paleomagnetism

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Schultz, P. H.

    1993-01-01

    The production of transient magnetic fields by hypervelocity meteoroid impact has been proposed to possibly explain the presence of paleomagnetic fields in certain lunar samples as well as across broader areas of the lunar surface. In an effort to understand the lunar magnetic record, continued experiments at the NASA Ames Vertical Gun Range allow characterizing magnetic fields produced by the 5 km/s impacts of 0.32-0.64 cm projectiles over a broad range of impact angles and projectile/target compositions. From such studies, another phenomenon has emerged, macroscopic electric charge separation, that may have importance for the magnetic state of solid-body surfaces. This phenomenon was observed during explosive cratering experiments, but the magnetic consequences of macroscopic electric charge separation (as opposed to plasma production) during explosion and impact cratering have not, to our knowledge, been explored before now. It is straightforward to show that magnetic field production due to this process may scale as a weakly increasing function of impactor kinetic energy, although more work is needed to precisely assess the scaling dependence. The original intent of our experiments was to assess the character of purely electrostatic signals for comparison with inferred electrostatic noise signals acquired by shielded magnetic sensors buried within particulate dolomite targets. The results demonstrated that electrostatic noise does affect the magnetic sensors but only at relatively short distances (less than 4 cm) from the impact point (our magnetic studies are generally performed at distances greater than approximately 5.5 cm). However, to assess models for magnetic field generation during impact, measurements are needed of the magnetic field as close to the impact point as possible; hence, work with an improved magnetic sensor design is in progress. In this paper, we focus on electric charge separation during hypervelocity impacts as a potential transient magnetic field production mechanism in its own right.

  5. Superconducting Electromagnetic Suspension (EMS) system for Grumman Maglev concept

    NASA Technical Reports Server (NTRS)

    Kalsi, Swarn S.

    1994-01-01

    The Grumman developed Electromagnetic Suspension (EMS) Maglev system has the following key characteristics: a large operating airgap--40 mm; levitation at all speeds; both high speed and low speed applications; no deleterious effects on SC coils at low vehicle speeds; low magnetic field at the SC coil--less than 0.35 T; no need to use non-magnetic/non-metallic rebar in the guideway structure; low magnetic field in passenger cabin--approximately 1 G; low forces on the SC coil; employs state-of-the-art NbTi wire; no need for an active magnet quench protection system; and lower weight than a magnet system with copper coils. The EMS Maglev described in this paper does not require development of any new technologies. The system could be built with the existing SC magnet technology.

  6. An approach to improving the signal-to-optical-noise ratio of pulsed magnetic field photonic sensors

    NASA Astrophysics Data System (ADS)

    Wang, Jiang-ping; Li, Yu-quan

    2008-12-01

    During last years, interest in pulsed magnetic field sensors has widely increased. In fact, magnetic field measurement has a critical part in various scientific and technical areas. In order to research on pulsed magnetic field characteristic and corresponding measuring and defending means, a sensor with high immunity to electrical noise, high sensitivity, high accuracy and wide dynamic range is needed. The conventional magnetic field measurement system currently use active metallic probes which can disturb the measuring magnetic field and make sensor very sensitive to electromagnetic noise. Photonic magnetic field sensor exhibit great advantages with respect to the electronic ones: a very good galvanic insulation, high sensitivity and very wide bandwidth. Photonic sensing technology is fit for demand of a measure pulsed magnetic field. A type of pulsed magnetic field photonic sensor has been designed, analyzed, and tested. The cross polarization angle in photonic sensor effect on the signal-to-optical-noise ratio is theoretically analyzed in this paper. A novel approach for improving the signal-to-optical-noise ratio of pulsed magnetic field sensors was proposed. The experiments have proved that this approach is practical. The theoretical analysis and simulation results show that the signal-to-optical-noise ratio can potentially be considerably improved by setup suitable for the cross polarization angle.

  7. Laser pumping Cs atom magnetometer of theory research based on gradient tensor measuring

    NASA Astrophysics Data System (ADS)

    Yang, Zhang; Chong, Kang; Wang, Qingtao; Lei, Cheng; Zheng, Caiping

    2011-02-01

    At present, due to space exploration, military technology, geological exploration, magnetic navigation, medical diagnosis and biological magnetic fields study of the needs of research and development, the magnetometer is given strong driving force. In this paper, it will discuss the theoretical analysis and system design of laser pumping cesium magnetometer, cesium atomic energy level formed hyperfine structure with the I-J coupling, the hyperfine structure has been further split into Zeeman sublevels for the effects of magnetic field. To use laser pump and RF magnetic field make electrons transition in the hyperfine structure to produce the results of magneto-optical double resonance, and ultimately through the resonant frequency will be able to achieve accurate value of the external magnetic field. On this basis, we further have a discussion about magnetic gradient tensor measuring method. To a large extent, it increases the magnetic field measurement of information.

  8. Columnar-to-Equiaxed Transition and Equiaxed Grain Alignment in Directionally Solidified Ni3Al Alloy Under an Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Xuan, Weidong; Xie, Xinliang; Li, Chuanjun; Wang, Jiang; Yu, Jianbo; Li, Xi; Zhong, Yunbo; Ren, Zhongming

    2017-09-01

    The effect of an axial magnetic field on the solidification structure in directionally solidified Ni-21.5Al-0.4Zr-0.1B (at. pct) alloy was investigated. The experimental results indicated that the application of a high magnetic field caused the deformation of dendrites and the occurrence of columnar-to-equiaxed transition (CET). The magnetic field tended to orient the 〈001〉 crystal direction of the equiaxed grains along the magnetic field direction. The bulk solidification experiment under a high magnetic field showed that the crystal exhibited magnetic crystalline anisotropy. Further, the thermoelectric (TE) magnetic force and TE magnetic convention were analyzed by three-dimensional (3-D) numerical simulations. The results showed that the maximum value of TE magnetic force localized in the vicinity of the secondary dendrite arm root, which should be responsible for the dendrite break and CET. Based on the high-temperature creep mechanism, a simple model was proposed to describe the magnetic field intensity needed for CET: B ≥ kG^{ - 1.5} R^{1.25} . The model is in good agreement with the experiment results. The experimental results should be attributed to the combined action of TE magnetic effects and the magnetic moment.

  9. Improvement of persistent magnetic field trapping in bulk Y-Ba-Cu-O superconductors

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Weinstein, Roy

    1993-01-01

    For type-II superconductors, magnetic field can be trapped due to persistent internal supercurrent. Quasi-persistent magnetic fields near 2 T at 60 K (and 1.4 T at 77 K) have been measured in minimagnets made of proton-irradiated melt-textured Y-Ba-Cu-O (MT-Y123) samples. Using the trapping effect, high-field permanent magnets with dipole, quadrupole, or more complicated configurations can be made of existing MT-Y123 material, thus bypassing the need for high-temperature superconductor (HTS) wires. A phenomenological current model has been developed to account for the trapped field intensity and profile in HTS samples. This model is also a guide to select directions of materials development to further improve field trapping properties. General properties such as magnetic field intensities, spatial distributions, stabilities, and temperature dependence of trapped field are discussed.

  10. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  11. Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm.

    PubMed

    Cooley, Clarissa Zimmerman; Haskell, Melissa W; Cauley, Stephen F; Sappo, Charlotte; Lapierre, Cristen D; Ha, Christopher G; Stockmann, Jason P; Wald, Lawrence L

    2018-01-01

    Permanent magnet arrays offer several attributes attractive for the development of a low-cost portable MRI scanner for brain imaging. They offer the potential for a relatively lightweight, low to mid-field system with no cryogenics, a small fringe field, and no electrical power requirements or heat dissipation needs. The cylindrical Halbach array, however, requires external shimming or mechanical adjustments to produce B 0 fields with standard MRI homogeneity levels (e.g., 0.1 ppm over FOV), particularly when constrained or truncated geometries are needed, such as a head-only magnet where the magnet length is constrained by the shoulders. For portable scanners using rotation of the magnet for spatial encoding with generalized projections, the spatial pattern of the field is important since it acts as the encoding field. In either a static or rotating magnet, it will be important to be able to optimize the field pattern of cylindrical Halbach arrays in a way that retains construction simplicity. To achieve this, we present a method for designing an optimized cylindrical Halbach magnet using the genetic algorithm to achieve either homogeneity (for standard MRI applications) or a favorable spatial encoding field pattern (for rotational spatial encoding applications). We compare the chosen designs against a standard, fully populated sparse Halbach design, and evaluate optimized spatial encoding fields using point-spread-function and image simulations. We validate the calculations by comparing to the measured field of a constructed magnet. The experimentally implemented design produced fields in good agreement with the predicted fields, and the genetic algorithm was successful in improving the chosen metrics. For the uniform target field, an order of magnitude homogeneity improvement was achieved compared to the un-optimized, fully populated design. For the rotational encoding design the resolution uniformity is improved by 95% compared to a uniformly populated design.

  12. Spatial and Temporal Variations of a Screening Current Induced Magnetic Field in a Double-Pancake HTS Insert of an LTS/HTS NMR Magnet

    PubMed Central

    Ahn, Min Cheol; Yagai, Tsuyoshi; Hahn, Seungyong; Ando, Ryuya; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper presents experimental and simulation results of a screening current induced magnetic field (SCF) in a high temperature superconductor (HTS) insert that constitutes a low-/high-temperature superconductor (LTS/HTS) NMR magnet. In this experiment, the HTS insert, a stack of 50 double-pancake coils, each wound with Bi2223 tape, was operated at 77 K. A screening current was induced in the HTS insert by three magnetic field sources: 1) a self field from the HTS insert; 2) an external field from a 5-T background magnet; and 3) combinations of 1) and 2). For each field excitation, which induced an SCF, its axial field distribution and temporal variations were measured and compared with simulation results based on the critical state model. Agreement on field profile between experiment and simulation is satisfactory but more work is needed to make the simulation useful for designing shim coils that will cancel the SCF. PMID:20401187

  13. Interplanetary magnetic field orientation for transient events in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Newell, P. T.

    1995-01-01

    It is generally believed that flux transfer events (FTEs) in the outer dayside magneosphere, usually identified by transient (approximately 1 min) bipolar magneitc field perturbations in the direction normal to the nominal magnetopause, occur when the magnetosheath magetic field has a southward component. We compare the results of three methods for determining the magnetosheath magnetic field orientationat the times of previously identified UKS/IRM events: (1) the average magnetosheath magnetic field orientation in the 30-min period adjacent to the nearest magnetopause crossing, (2) the magnetosheath magnetic field orientation observed just outside the magnetopause, and (3) the lagged interplanetary magnetic field (IMF) orientation at the time of the transient events. Whereas the results of method 2 indicate that the events tend to occur for a southward magnetosheath magnetic field, the results of methods 1 and 3 show no such tnedency. The fact that the three methods yield significantly diffeent results emphasizes the need for caution in future studies.

  14. Virtual special issue: Magnetic resonance at low fields

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2017-01-01

    It appears to be a common understanding that low magnetic fields need to be avoided in magnetic resonance, as sensitivity and the frequency dispersion of the chemical shift increase with increasing field strength. But there many reasons to explore magnetic resonance at low fields. The instrumentation tends to be far less expensive than high-field equipment, magnets are smaller and lighter, internal gradients in heterogeneous media are smaller, conductive media and even metals become transparent at low frequencies to electromagnetic fields, and new physics and phenomena await to be discovered. On account of an increasing attention of the scientific community to magnetic resonance at low field, we have decided to launch JMR's Virtual Special Issue Series with this compilation about Low-Field Magnetic Resonance. This topic, for which we have chosen to focus on articles reporting measurements at fields lower than 2 T, is of widespread interest to our readership. We are therefore happy to offer to this constituency a selected outlook based on papers published during the last five years (volumes 214-270) in the pages of The Journal of Magnetic Resonance. A brief survey of the topics covered in this Virtual Special Issue follows.

  15. Extreme Material Physical Properties and Measurements above 100 tesla

    NASA Astrophysics Data System (ADS)

    Mielke, Charles

    2011-03-01

    The National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility (PFF) at Los Alamos National Laboratory (LANL) offers extreme environments of ultra high magnetic fields above 100 tesla by use of the Single Turn method as well as fields approaching 100 tesla with more complex methods. The challenge of metrology in the extreme magnetic field generating devices is complicated by the millions of amperes of current and tens of thousands of volts that are required to deliver the pulsed power needed for field generation. Methods of detecting physical properties of materials are essential parts of the science that seeks to understand and eventually control the fundamental functionality of materials in extreme environments. De-coupling the signal of the sample from the electro-magnetic interference associated with the magnet system is required to make these state-of-the-art magnetic fields useful to scientists studying materials in high magnetic fields. The cutting edge methods that are being used as well as methods in development will be presented with recent results in Graphene and High-Tc superconductors along with the methods and challenges. National Science Foundation DMR-Award 0654118.

  16. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    NASA Astrophysics Data System (ADS)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  17. Electron beam therapy with coil-generated magnetic fields.

    PubMed

    Nardi, Eran; Barnea, Gideon; Ma, Chang-Ming

    2004-06-01

    This paper presents an initial study on the issues involved in the practical implementation of the use of transverse magnetic fields in electron beam therapy. By using such magnetic fields the dose delivered to the tumor region can increase significantly relative to that deposited to the healthy tissue. Initially we calculated the magnetic fields produced by the Helmholtz coil and modified Helmholtz coil configurations. These configurations, which can readily be used to generate high intensity magnetic fields, approximate the idealized magnetic fields studied in our previous publications. It was therefore of interest to perform a detailed study of the fields produced by these configurations. Electron beam dose distributions for 15 MeV electrons were calculated using the ACCEPTM code for a 3T transverse magnetic field produced by the modified Helmholtz configuration. The dose distribution was compared to those obtained with no magnetic field. The results were similar to those obtained in our previous work, where an idealized step function magnetic field was used and a 3T field was shown to be the optimal field strength. A simpler configuration was also studied in which a single external coil was used to generate the field. Electron dose distributions are also presented for a given geometry and given magnetic field strength using this configuration. The results indicate that this method is more difficult to apply to radiotherapy due to its lack of symmetry and its irregularity. For the various configurations dealt with here, a major problem is the need to shield the magnetic field in the beam propagation volume, a topic that must be studied in detail.

  18. Introduction to Geomagnetic Fields

    NASA Astrophysics Data System (ADS)

    Hinze, William J.

    Coincidentally, as I sat down in late October 2003 to read and review the second edition of Wallace H. Campbell's text, Introduction to Geomagnetic Fields, we received warnings from the news media of a massive solar flare and its possible effect on power supply systems and satellite communications. News programs briefly explained the source of Sun-Earth interactions. If you are interested in learning more about the physics of the connection between sun spots and power supply systems and their impact on orbiting satellites, I urge you to become acquainted with Campbell's book. It presents an interesting and informative explanation of the geomagnetic field and its applications to a wide variety of topics, including oil exploration, climate change, and fraudulent claims of the utility of magnetic fields for alleviating human pain. Geomagnetism, the study of the nature and processes of the Earth's magnetic fields and its application to the investigation of the Earth, its processes, and history, is a mature science with a well-developed theoretical foundation and a vast array of observations. It is discussed in varied detail in Earth physics books and most entry-level geoscience texts. The latter treatments largely are driven by the need to discuss paleomagnetism as an essential tool in studying plate tectonics. A more thorough explanation of geomagnetism is needed by many interested scientists in related fields and by laypersons. This is the objective of Campbell's book. It is particularly germane in view of a broad range of geomagnetic topics that are at the forefront of today's science, including environmental magnetism, so-called ``jerks'' observed in the Earth's magnetic field, the perplexing magnetic field of Mars, improved satellite magnetic field observations, and the increasing availability of high-quality continental magnetic anomaly maps, to name only a few.

  19. Cryogenic Research

    DTIC Science & Technology

    1952-05-01

    needed work lies in the ultra low- temperature range available only through use of the demagnetization cycle. SUPERCONDUCTIVITY BELOW 10 ABSOLUTE In...In Figure 1 is plotted, as a function of temperature, the magnetic field required to change hafnium from the superconducting to the normal state. For...fields of crystal physics, properties of metals, and magnetism and magnetic resonance. This article discusses the work of one group, the Cryogenics

  20. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buehler, Marc; Tartaglia, Michael; Tompkins, John

    The Mu2e experiment at Fermilab is designed to explore charged lepton flavor violation by searching for muon-to-electron conversion. The magnetic field generated by a system of solenoids is crucial for Mu2e and requires accurate characterization to detect any flaws and to produce a detailed field map. Stringent physics goals are driving magnetic field specifications for the Mu2e solenoids. A field mapper is being designed, which will produce detailed magnetic field maps. The uniform field region of the spectrometer volume requires the highest level of precision (1 Gauss per 1 Tesla). During commissioning, multiple magnetic field maps will be generated tomore » verify proper alignment of all magnet coils, and to create the final magnetic field map. In order to design and build a precise field mapping system consisting of Hall and NRM probes, tolerances and precision for such a system need to be evaluated. In this paper we present a design for the Mu2e field mapping hardware, and discuss results from OPERA-3D simulations to specify parameters for Hall and NMR probes. We also present a fitting procedure for the analytical treatment of our expected magnetic measurements.« less

  2. Analysis of magnetic fields using variational principles and CELAS2 elements

    NASA Technical Reports Server (NTRS)

    Frye, J. W.; Kasper, R. G.

    1977-01-01

    Prospective techniques for analyzing magnetic fields using NASTRAN are reviewed. A variational principle utilizing a vector potential function is presented which has as its Euler equations, the required field equations and boundary conditions for static magnetic fields including current sources. The need for an addition to this variational principle of a constraint condition is discussed. Some results using the Lagrange multiplier method to apply the constraint and CELAS2 elements to simulate the matrices are given. Practical considerations of using large numbers of CELAS2 elements are discussed.

  3. Equilibrium and magnetic properties of a rotating plasma annulus

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Si, Jiahe; Liu, Wei; Li, Hui

    2008-10-01

    Local linear analysis shows that magneto-rotational instability can be excited in laboratory rotating plasmas with a density of 1019m-3, a temperature on the order of 10eV, and a magnetic field on the order of 100G. A laboratory plasma annulus experiment with a dimension of ˜1m, and rotation at ˜0.5 sound speed is described. Correspondingly, magnetic Reynolds number of these plasmas is ˜1000, and magnetic Prandtl number ranges from about one to a few hundred. A radial equilibrium, ρUθ2/r =d(p+Bz2/2μ0)/dr=K0, with K0 being a nonzero constant, is proposed for the experimental data. Plasma rotation is observed to drive a quasisteady diamagnetic electrical current (rotational current drive) in a high-β plasma annulus. The rotational energy depends on the direction and the magnitude of the externally applied magnetic field. Radial current (Jr) is produced through biasing the center rod at a negative electric potential relative to the outer wall. Jr×Bz torque generates and sustains the plasma rotation. Rotational current drive can reverse the direction of vacuum magnetic field, satisfying a necessary condition for self-generated closed magnetic flux surfaces inside plasmas. The Hall term is found to be substantial and therefore needs to be included in the Ohm's law for the plasmas. Azimuthal magnetic field (Bθ) is found to be comparable with the externally applied vacuum magnetic field Bz, and mainly caused by the electric current flowing in the center cylinder; thus, Bθ∝r-1. Magnetic fluctuations are anisotropic, radial-dependent, and contain many Fourier modes below the ion cyclotron frequency. Further theoretical analysis reflecting these observations is needed to interpret the magnetic fluctuations.

  4. DC currents collected by a RF biased electrode quasi-parallel to the magnetic field

    NASA Astrophysics Data System (ADS)

    Faudot, E.; Devaux, S.; Moritz, J.; Bobkov, V.; Heuraux, S.

    2017-10-01

    Local plasma biasings due to RF sheaths close to ICRF antennas result mainly in a negative DC current collection on the antenna structure. In some specific cases, we may observe positive currents when the ion mobility (seen from the collecting surface) overcomes the electron one or/and when the collecting surface on the antenna side becomes larger than the other end of the flux tube connected to the wall. The typical configuration is when the antenna surface is almost parallel to the magnetic field lines and the other side perpendicular. To test the optimal case where the magnetic field is quasi-parallel to the electrode surface, one needs a linear magnetic configuration as our magnetized RF discharge experiment called Aline. The magnetic field angle is in our case lower than 1 relative to the RF biased surface. The DC current flowing through the discharge has been measured as a function of the magnetic field strength, neutral gas (He) pressure and RF power. The main result is the reversal of the DC current depending on the magnetic field, collision frequency and RF power level.

  5. The Galactic Magnetic Field as Viewed from the VLA

    NASA Astrophysics Data System (ADS)

    van Eck, Cameron; Brown, Jo-Anne

    2009-05-01

    Interstellar magnetic fields play critical roles in many astrophysical processes. Yet despite their importance, our knowledge about magnetic fields in our Galaxy remains limited. For the field within the Milky Way much of what we do know comes from radio astronomy, through observations of polarization and Faraday rotation measures (RMs) of extragalactic sources and pulsars. A high angular density of RM measurements in several critical areas of the Galaxy is needed to clarify the Galactic magnetic field structure. Understanding the overall structure of the magnetic field will subsequently help us determine the origin and evolution of the field. In an effort to determine the overall structure of the field, Sun et al. (2008) produced 3 models of the Galactic magnetic field based on RM measurements available at the time. These models made distinct predictions for RMs in a region of the inner Galaxy at low Galactic latitude. Using observations made with the Very Large Array (VLA), we have determined RMs for sources in this critical region. In this talk we will present the results of our study and show how the RMs strongly support the ASS+RING model.

  6. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    PubMed

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  7. Effects of low-frequency magnetic fields on embryonic development and pregnancy.

    PubMed

    Juutilainen, J

    1991-06-01

    Experimental and epidemiologic studies on the effects of low-frequency magnetic fields on pregnancy are reviewed. The literature suggests that these fields have adverse effects on chick embryo development. The interaction mechanism is not known. The results of experiments with mammals are inconsistent. There is more evidence of effects on mice than on rats, and the data suggest that fetal loss might be increased rather than malformations. Most of the epidemiologic studies related to pregnancy and low-frequency magnetic fields have concerned operators of a video display terminal (VDT). The results do not provide evidence for an association between adverse pregnancy outcome and use of a VDT. Other (stronger) sources of low-frequency magnetic fields have been addressed in only a few studies. It is not yet possible to conclude whether occupational or residential exposure to low-frequency magnetic fields affects human prenatal development. There is an apparent need for further investigation.

  8. Inhomogeneity and velocity fields effects on scattering polarization in solar prominences

    NASA Astrophysics Data System (ADS)

    Milić, I.; Faurobert, M.

    2015-10-01

    One of the methods for diagnosing vector magnetic fields in solar prominences is the so called "inversion" of observed polarized spectral lines. This inversion usually assumes a fairly simple generative model and in this contribution we aim to study the possible systematic errors that are introduced by this assumption. On two-dimensional toy model of a prominence, we first demonstrate importance of multidimensional radiative transfer and horizontal inhomogeneities. These are able to induce a significant level of polarization in Stokes U, without the need for the magnetic field. We then compute emergent Stokes spectrum from a prominence which is pervaded by the vector magnetic field and use a simple, one-dimensional model to interpret these synthetic observations. We find that inferred values for the magnetic field vector generally differ from the original ones. Most importantly, the magnetic field might seem more inclined than it really is.

  9. Technical Note: Enhancing the surface dose using a weak longitudinal magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlone, Marco, E-mail: marco.carlone@rmp.uhn.on.ca; Keller, Harald; Rezaee, Mohammad

    2016-06-15

    Purpose: The surface dose in radiotherapy is subject to the physical properties of the radiation beam and collimator. The purpose of this work is to investigate the manipulation of surface dose using magnetic fields produced with a resistive magnet. Better understanding of the feasibility and mechanisms of altered surface dose could have important clinical applications where the surface dose must be increased for therapeutic goals, or reduced to enhance the therapeutic benefit. Methods: A resistive magnet capable of generating a peak magnetic field up to 0.24 T was integrated with a cobalt treatment unit. The magnetic fringe field of themore » magnet was small due to the self-shielding built within the magnet. The magnetic field at the beam collimation jaws of the cobalt irradiator was less than 10 G. The surface dose and depth dose were measured for varying magnetic field strengths. Results: The resistive magnet was able to alter the dose in the buildup region of the {sup 60}Co depth dose significantly, and the magnitude of dose enhancement was directly related to the strength of the longitudinal magnetic field. Peak magnetic fields as low as 0.08 T were able to affect the surface dose. At a peak field of 0.24 T, the authors measured a surface dose enhancement of 2.8-fold. Conclusions: Surface dose enhancement using resistive magnets is feasible. Further experimental study is needed to understand the origin of the scattered electrons that contribute to the increase in surface dose.« less

  10. IMP-I spacecraft final magnetic tests

    NASA Technical Reports Server (NTRS)

    Harris, C. A.

    1972-01-01

    The increased IMP-I spacecraft spin axis moment resulting from excessive field exposures during environmental testing substantiated the need for a final pre-launch magnetic deperm and measurement. By performing a dc rotation deperm it was possible to reduce this moment below the previous initial test post deperm magnitude. In addition, the magnetic field disturbance at the flight magnetometer diminished to below 0.1 nanotesla (gamma) in all directions.

  11. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  12. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  13. Permanent magnets composed of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  14. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seong-Joo, E-mail: sj.lee@kriss.re.kr; Shim, Jeong Hyun; Kim, Kiwoong

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach,more » the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.« less

  16. A 0.5 Tesla Transverse-Field Alternating Magnetic Field Demagnetizer

    NASA Astrophysics Data System (ADS)

    Schillinger, W. E.; Morris, E. R.; Finn, D. R.; Coe, R. S.

    2015-12-01

    We have built an alternating field demagnetizer that can routinely achieve a maximum field of 0.5 Tesla. It uses an amorphous magnetic core with an air-cooled coil. We have started with a 0.5 T design, which satisfies most of our immediate needs, but we can certainly achieve higher fields. In our design, the magnetic field is transverse to the bore and uniform to 1% over a standard (25 mm) paleomagnetic sample. It is powered by a 1 kW power amplifier and is compatible with our existing sample handler for automated demagnetization and measurement (Morris et al., 2009). It's much higher peak field has enabled us to completely demagnetize many of the samples that previously we could not with commercial equipment. This capability is especially needed for high-coercivity sedimentary and igneous rocks that contain magnetic minerals that alter during thermal demagnetization. It will also enable detailed automated demagnetization of high coercivity phases in extraterrestrial samples, such as native iron, iron-alloy and sulfide minerals that are common in lunar rocks and meteorites. Furthermore, it has opened the door for us to use the rock-magnetic technique of component analysis, using coercivity distributions derived from very detailed AF demagnetization of NRM and remanence produced in the laboratory to characterize the magnetic mineralogy of sedimentary rocks. In addition to the many benefits this instrument has brought to our own research, a much broader potential impact is to replace the transverse coils in automated AF demagnetization systems, which typically are limited to peak fields around 0.1 T.

  17. Optimization of the magnetic dynamo.

    PubMed

    Willis, Ashley P

    2012-12-21

    In stars and planets, magnetic fields are believed to originate from the motion of electrically conducting fluids in their interior, through a process known as the dynamo mechanism. In this Letter, an optimization procedure is used to simultaneously address two fundamental questions of dynamo theory: "Which velocity field leads to the most magnetic energy growth?" and "How large does the velocity need to be relative to magnetic diffusion?" In general, this requires optimization over the full space of continuous solenoidal velocity fields possible within the geometry. Here the case of a periodic box is considered. Measuring the strength of the flow with the root-mean-square amplitude, an optimal velocity field is shown to exist, but without limitation on the strain rate, optimization is prone to divergence. Measuring the flow in terms of its associated dissipation leads to the identification of a single optimal at the critical magnetic Reynolds number necessary for a dynamo. This magnetic Reynolds number is found to be only 15% higher than that necessary for transient growth of the magnetic field.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Francis

    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magneticmore » refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.« less

  19. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer for detecting bridge cables.

    PubMed

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables.

  20. A Magnetic Flux Leakage and Magnetostrictive Guided Wave Hybrid Transducer for Detecting Bridge Cables

    PubMed Central

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables. PMID:22368483

  1. Magnetic monitoring of earth and space

    USGS Publications Warehouse

    Love, Jeffrey J.

    2008-01-01

    For centuries, navigators of the world’s oceans have been familiar with an effect of Earth’s magnetic field: It imparts a directional preference to the needle of a compass. Although in some settings magnetic orientation remains important, the modern science of geomagnetism has emerged from its romantic nautical origins and developed into a subject of great depth and diversity. The geomagnetic field is used to explore the dynamics of Earth’s interior and its surrounding space environment, and geomagnetic data are used for geophysical mapping, mineral exploration, risk mitigation, and other practical applications. A global distribution of ground-based magnetic observatories supports those pursuits by providing accurate records of the magnetic-field direction and intensity at fixed locations and over long periods of time.Magnetic observatories were first established in the early 19th century in response to the influence of Alexander von Humboldt and Carl Friedrich Gauss. Since then, magnetic measurement has advanced significantly, progressing from simple visual readings of magnetic survey instruments to include automatic photographic measurement and modern electronic acquisition. To satisfy the needs of the scientific community, observatories are being upgraded to collect data that meet ever more stringent standards, to achieve higher acquisition frequencies, and to disseminate data in real time.To appreciate why data from magnetic observatories can be used for so many purposes, one needs only to recall that the geomagnetic field is a continuum, connecting the different parts of Earth to each other and to nearby space. Beneath our feet and above our heads, electric currents generate magnetic fields that contribute to the totality of the geomagnetic field measured at an observatory on Earth’s surface. The many physical processes that operate in each geophysical domain give rise to a complicated field that exhibits a wide variety of time-dependent behavior.1 In this article I review the status of the global community of magnetic observatories, show how Earth and space can be monitored for purposes of scientific understanding and practical application, and highlight the role played by magnetic observatories in the history of geomagnetism research.

  2. A new probe of the magnetic field power spectrum in cosmic web filaments

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Greiner, Maksim; Ensslin, Torsten A.

    2015-08-01

    Establishing the properties of magnetic fields on scales larger than galaxy clusters is critical for resolving the unknown origin and evolution of galactic and cluster magnetism. More generally, observations of magnetic fields on cosmic scales are needed for assessing the impacts of magnetism on cosmology, particle physics, and structure formation over the full history of the Universe. However, firm observational evidence for magnetic fields in large scale structure remains elusive. In an effort to address this problem, we have developed a novel statistical method to infer the magnetic field power spectrum in cosmic web filaments using observation of the two-point correlation of Faraday rotation measures from a dense grid of extragalactic radio sources. Here we describe our approach, which embeds and extends the pioneering work of Kolatt (1998) within the context of Information Field Theory (a statistical theory for Bayesian inference on spatially distributed signals; Enfllin et al., 2009). We describe prospects for observation, for example with forthcoming data from the ultra-deep JVLA CHILES Con Pol survey and future surveys with the SKA.

  3. Cloud-based calculators for fast and reliable access to NOAA's geomagnetic field models

    NASA Astrophysics Data System (ADS)

    Woods, A.; Nair, M. C.; Boneh, N.; Chulliat, A.

    2017-12-01

    While the Global Positioning System (GPS) provides accurate point locations, it does not provide pointing directions. Therefore, the absolute directional information provided by the Earth's magnetic field is of primary importance for navigation and for the pointing of technical devices such as aircrafts, satellites and lately, mobile phones. The major magnetic sources that affect compass-based navigation are the Earth's core, its magnetized crust and the electric currents in the ionosphere and magnetosphere. NOAA/CIRES Geomagnetism (ngdc.noaa.gov/geomag/) group develops and distributes models that describe all these important sources to aid navigation. Our geomagnetic models are used in variety of platforms including airplanes, ships, submarines and smartphones. While the magnetic field from Earth's core can be described in relatively fewer parameters and is suitable for offline computation, the magnetic sources from Earth's crust, ionosphere and magnetosphere require either significant computational resources or real-time capabilities and are not suitable for offline calculation. This is especially important for small navigational devices or embedded systems, where computational resources are limited. Recognizing the need for a fast and reliable access to our geomagnetic field models, we developed cloud-based application program interfaces (APIs) for NOAA's ionospheric and magnetospheric magnetic field models. In this paper we will describe the need for reliable magnetic calculators, the challenges faced in running geomagnetic field models in the cloud in real-time and the feedback from our user community. We discuss lessons learned harvesting and validating the data which powers our cloud services, as well as our strategies for maintaining near real-time service, including load-balancing, real-time monitoring, and instance cloning. We will also briefly talk about the progress we achieved on NOAA's Big Earth Data Initiative (BEDI) funded project to develop API interface to our Enhanced Magnetic Model (EMM).

  4. Contributions of Spherical Harmonics to Magnetic and Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.

    2004-01-01

    Gravitational forces are of cardinal importance in the dynamics of spacecraft; magnetic attractions sometime play a significant role also, as was the case with the Long Duration Exposure Facility, and as is now true for the first segment of Space Station Freedom. Both satellites depend on gravitational moment and a device known as a magnetic damper to stabilize their orientation. Magnetic fields are mathematically similar to gravitational fields in one important respect: each can be regarded as a gradient of a potential function that, in turn, can be described as an infinite series of spherical harmonics. Consequently, the two fields can be computed, in part, with quantities that need only be evaluated once, resulting in a savings of time when both fields are needed. The objective of this material is to present magnetic field and gravitational force expressions, and point out the terms that belong to both this is accomplished in Section 1 and 2. Section 3 contains the deductive reasoning with which one obtains the expressions of interest. Finally, examples in Section 4 show these equations can be used to reproduce others that arise in connection with special cases such as the magnetic field produced by a tilted dipole, and gravitational force exerted by an oblate spheroid. The mathematics are discussed in the context of terrestrial fields; however, by substituting appropriate constants, the results can be made applicable to fields belonging to other celestial bodies. The expressions presented here share the characteristics of algorithms set forth for computing gravitational force. In particular, computation is performed speedily by means of recursion formulae, and the expressions do not suffer from the shortcoming of a singularity when evaluated at points that lie on the polar axis.

  5. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field

    NASA Astrophysics Data System (ADS)

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; D'Angelo, Raffaele; Zeni, Olga

    2016-01-01

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components.

  6. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field

    PubMed Central

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; d’Angelo, Raffaele; Zeni, Olga

    2016-01-01

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components. PMID:26762783

  7. Design, simulation and evaluation of uniform magnetic field systems for head-free eye movement recordings with scleral search coils.

    PubMed

    Eibenberger, Karin; Eibenberger, Bernhard; Rucci, Michele

    2016-08-01

    The precise measurement of eye movements is important for investigating vision, oculomotor control and vestibular function. The magnetic scleral search coil technique is one of the most precise measurement techniques for recording eye movements with very high spatial (≈ 1 arcmin) and temporal (>kHz) resolution. The technique is based on measuring voltage induced in a search coil through a large magnetic field. This search coil is embedded in a contact lens worn by a human subject. The measured voltage is in direct relationship to the orientation of the eye in space. This requires a magnetic field with a high homogeneity in the center, since otherwise the field inhomogeneity would give the false impression of a rotation of the eye due to a translational movement of the head. To circumvent this problem, a bite bar typically restricts head movement to a minimum. However, the need often emerges to precisely record eye movements under natural viewing conditions. To this end, one needs a uniform magnetic field that is uniform over a large area. In this paper, we present the numerical and finite element simulations of the magnetic flux density of different coil geometries that could be used for search coil recordings. Based on the results, we built a 2.2 × 2.2 × 2.2 meter coil frame with a set of 3 × 4 coils to generate a 3D magnetic field and compared the measured flux density with our simulation results. In agreement with simulation results, the system yields a highly uniform field enabling high-resolution recordings of eye movements.

  8. Boundary value problem for the solution of magnetic cutoff rigidities and some special applications

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry

    1987-01-01

    Since a planet's magnetic field can sometimes provide a spacecraft with some protection against cosmic ray and solar flare particles, it is important to be able to quantify this protection. This is done by calculating cutoff rigidities. An alternate to the conventional method (particle trajectory tracing) is introduced, which is to treat the problem as a boundary value problem. In this approach trajectory tracing is only needed to supply boundary conditions. In some special cases, trajectory tracing is not needed at all because the problem can be solved analytically. A differential equation governing cutoff rigidities is derived for static magnetic fields. The presense of solid objects, which can block a trajectory and other force fields are not included. A few qualititative comments, on existence and uniqueness of solutions, are made which may be useful when deciding how the boundary conditions should be set up. Also included are topics on axially symmetric fields.

  9. Magnon Hall effect without Dzyaloshinskii-Moriya interaction.

    PubMed

    Owerre, S A

    2017-01-25

    Topological magnon bands and magnon Hall effect in insulating collinear ferromagnets are induced by the Dzyaloshinskii-Moriya interaction (DMI) even at zero magnetic field. In the geometrically frustrated star lattice, a coplanar/noncollinear [Formula: see text] magnetic ordering may be present due to spin frustration. This magnetic structure, however, does not exhibit topological magnon effects even with DMI in contrast to collinear ferromagnets. We show that a magnetic field applied perpendicular to the star plane induces a non-coplanar spin configuration with nonzero spin scalar chirality, which provides topological effects without the need of DMI. The non-coplanar spin texture originates from the topology of the spin configurations and does not need the presence of DMI or magnetic ordering, which suggests that this phenomenon may be present in the chiral spin liquid phases of frustrated magnetic systems. We propose that these anomalous topological magnon effects can be accessible in polymeric iron (III) acetate-a star-lattice antiferromagnet with both spin frustration and long-range magnetic ordering.

  10. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas ofmore » further improvements needed to bring the imaging performance to parity with conventional MRI systems.« less

  11. Thermally actuated magnetization flux pump in single-grain YBCO bulk

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Li, Quan; Coombs, T. A.

    2009-10-01

    Recent progress in material processing has proved that high temperature superconductors (HTS) have a great potential to trap large magnetic fields at cryogenic temperatures. For example, HTS are widely used in MRI scanners and in magnetic bearings. However, using traditional ways to magnetize, the YBCO will always need the applied field to be as high as the expected field on the superconductor or much higher than it, leading to a much higher cost than that of using permanent magnets. In this paper, we find a method of YBCO magnetization in liquid nitrogen that only requires the applied field to be at the level of a permanent magnet. Moreover, rather than applying a pulsed high current field on the YBCO, we use a thermally actuated material (gadolinium) as an intermedia and create a travelling magnetic field through it by changing the partial temperature so that the partial permeability is changed to build up the magnetization of the YBCO gradually after multiple pumps. The gadolinium bulk is located between the YBCO and the permanent magnet and is heated and cooled repeatedly from the outer surface to generate a travelling thermal wave inwards. In the subsequent experiment, an obvious accumulation of the flux density is detected on the surface of the YBCO bulk.

  12. Vertical bloch line memory

    NASA Technical Reports Server (NTRS)

    Katti, R.; Wu, J.; Stadler, H.

    1990-01-01

    Vertical Bloch Line (VBL) memory is a recently conceived, integrated, solid-state, block-access, VLSI memory which offers the potential of 1Gbit/sq cm real storage density, gigabit per second data rates, and sub-millisecond average access times simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBL's are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of VBL pairs are used to store binary information. At present, efforts are being directed at developing a single-chip memory using 25Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. This paper describes the current design architecture, functional elements, and supercomputer simulation results which are used to assist the design process. The current design architecture uses three metal layers, two ion implantation steps for modulating the thickness of the magnetic layer, one ion implantation step for assisting propagation in the major line track, one NiFe soft magnetic layer, one CoPt hard magnetic layer, and one reflective Cr layer for facilitating magneto-optic observation of magnetic structure. Data are stored in a series of elongated magnetic domains, called stripes, which serve as storage sites for arrays of VBL pairs. The ends of these stripes are placed near conductors which serve as VBL read/write gates. A major line track is present to provide a source and propagation path for magnetic bubbles. Writing and reading, respectively, are achieved by converting magnetic bubbles to VBL's and vice versa. The output function is effected by stretching a magnetic bubble and detecting it magnetoresistively. Experimental results from the past design cycle created four design goals for the current design cycle. First, the bias field ranges for the stripes and the major line needed to be matched. Second, the magnetic field barrier between the stripe and the read/write gates needed to be reduced. Third, current conductor routing needed to be improved to reduce occurrences of open-circuiting, short-circuiting, and eddy-current shielding. Fourth, a modified Co-alloy was needed with an increased coercivity and controlled magnetization to allow VBL stabilization to occur without affecting stripe stability.

  13. Multimodal magnetic nano-carriers for cancer treatment: Challenges and advancements

    NASA Astrophysics Data System (ADS)

    Aadinath, W.; Ghosh, Triroopa; Anandharamakrishnan, C.

    2016-03-01

    Iron oxide nanoparticles (IONPs) have been a propitious topic for cancer treatment in recent years because of its multifunctional theranostic applications under magnetic field. Two such widely used applications in cancer biology are gradient magnetic field guided targeting and alternative magnetic field (AMF) induced local hyperthermia. Gradient magnetic field guided targeting is a mode of active targeting of therapeutics conjugated with iron oxide nanoparticles. These particles also dissipate heat in presence of AMF which causes thermal injury to the cells of interest, for example tumour cells and subsequent death. Clinical trials divulge the feasibility of such magnetic nano-carrier as a promising candidate in cancer biology. However, these techniques need further investigations to curtail certain limitations manifested. Recent progresses in response have shrunken the barricade to certain extent. In this context, principles, challenges associated with these applications and recent efforts made in response will be discussed.

  14. A novel electron gun for inline MRI-linac configurations.

    PubMed

    Constantin, Dragoş E; Holloway, Lois; Keall, Paul J; Fahrig, Rebecca

    2014-02-01

    This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Simple electron gun geometry modifications of a Varian 600 C electron gun are considered and solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600 C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ± 15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600 C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.

  15. A novel electron gun for inline MRI-linac configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Dragoş E., E-mail: dragos.constantin@varian.com; Fahrig, Rebecca; Holloway, Lois

    2014-02-15

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered andmore » solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. Conclusions: In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.« less

  16. A novel electron gun for inline MRI-linac configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Dragoş E., E-mail: dragos.constantin@varian.com; Fahrig, Rebecca; Holloway, Lois

    Purpose: This work introduces a new electron gun geometry capable of robust functioning in the presence of a high strength external magnetic field for axisymmetric magnetic resonance imaging (MRI)-linac configurations. This allows an inline MRI-linac to operate without the need to isolate the linear accelerator (linac) using a magnetic shield. This MRI-linac integration approach not only leaves the magnet homogeneity unchanged but also provides the linac flexibility to move along the magnet axis of symmetry if the source to target distance needs to be adjusted. Methods: Simple electron gun geometry modifications of a Varian 600C electron gun are considered andmore » solved in the presence of an external magnetic field in order to determine a set of design principles for the new geometry. Based on these results, a new gun geometry is proposed and optimized in the fringe field of a 0.5 T open bore MRI magnet (GE Signa SP). A computer model for the 6 MeV Varian 600C linac is used to determine the capture efficiency of the new electron gun-linac system in the presence of the fringe field of the same MRI scanner. The behavior of the new electron gun plus the linac system is also studied in the fringe fields of two other magnets, a 1.0 T prototype open bore magnet and a 1.5 T GE Conquest scanner. Results: Simple geometrical modifications of the original electron gun geometry do not provide feasible solutions. However, these tests show that a smaller transverse cathode diameter with a flat surface and a slightly larger anode diameter could alleviate the current loss due to beam interactions with the anode in the presence of magnetic fields. Based on these findings, an initial geometry resembling a parallel plate capacitor with a hole in the anode is proposed. The optimization procedure finds a cathode-anode distance of 5 mm, a focusing electrode angle of 5°, and an anode drift tube length of 17.1 mm. Also, the linac can be displaced with ±15 cm along the axis of the 0.5 T magnet without capture efficiency reduction below the experimental value in zero field. In this range of linac displacements, the electron beam generated by the new gun geometry is more effectively injected into the linac in the presence of an external magnetic field, resulting in approximately 20% increase of the target current compared to the original gun geometry behavior at zero field. The new gun geometry can generate and accelerate electron beams in external magnetic fields without current loss for fields higher than 0.11 T. The new electron-gun geometry is robust enough to function in the fringe fields of the other two magnets with a target current loss of no more than 16% with respect to the current obtained with no external magnetic fields. Conclusions: In this work, a specially designed electron gun was presented which can operate in the presence of axisymmetric strong magnetic fringe fields of MRI magnets. Computer simulations show that the electron gun can produce high quality beams which can be injected into a straight through linac such as Varian 600C and accelerated with more efficiency in the presence of the external magnetic fields. Also, the new configuration allows linac displacements along the magnet axis in a range equal to the diameter of the imaging spherical volume of the magnet under consideration. The new electron gun-linac system can function in the fringe field of a MRI magnet if the field strength at the cathode position is higher than 0.11 T. The capture efficiency of the linac depends on the magnetic field strength and the field gradient. The higher the gradient the better the capture efficiency. The capture efficiency does not degrade more than 16%.« less

  17. Advanced Magnetic Materials Methods and Numerical Models for Fluidization in Microgravity and Hypogravity

    NASA Technical Reports Server (NTRS)

    Atwater, James; Wheeler, Richard, Jr.; Akse, James; Jovanovic, Goran; Reed, Brian

    2013-01-01

    To support long-duration manned missions in space such as a permanent lunar base, Mars transit, or Mars Surface Mission, improved methods for the treatment of solid wastes, particularly methods that recover valuable resources, are needed. The ability to operate under microgravity and hypogravity conditions is essential to meet this objective. The utilization of magnetic forces to manipulate granular magnetic media has provided the means to treat solid wastes under variable gravity conditions by filtration using a consolidated magnetic media bed followed by thermal processing of the solid wastes in a fluidized bed reactor. Non-uniform magnetic fields will produce a magnetic field gradient in a bed of magnetically susceptible media toward the distributor plate of a fluidized bed reactor. A correctly oriented magnetic field gradient will generate a downward direct force on magnetic media that can substitute for gravitational force in microgravity, or which may augment low levels of gravity, such as on the Moon or Mars. This approach is termed Gradient Magnetically Assisted Fluidization (G-MAFB), in which the magnitude of the force on the fluidized media depends upon the intensity of the magnetic field (H), the intensity of the field gradient (dH/dz), and the magnetic susceptibility of the media. Fluidized beds based on the G-MAFB process can operate in any gravitational environment by tuning the magnetic field appropriately. Magnetic materials and methods have been developed that enable G-MAFB operation under variable gravity conditions.

  18. On Multiple Hall-Like Electron Currents and Tripolar Guide Magnetic Field Perturbations During Kelvin-Helmholtz Waves

    NASA Astrophysics Data System (ADS)

    Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.

    2018-02-01

    Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.

  19. Summary of dipole field angle measurements on 50mm-aperture SSC Collider Dipole Magnet Protoypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, J.; DiMarco, J.; Kuzminski, J.

    At several stages in the production of the SSC collider dipole magnets and their final installation the magnetic field angle needs to be known. A simple device using a permanent magnet which aligns itself with the magnetic field had been developed at FNAL to survey the direction of the magnetic dipole field with respect to the vertical (as determined by gravity) along the magnet axis. The determination of the dipole field angle was part of the field quality characterization of a series of thirteen full-length 50mm-aperture SSC Collider Dipole Magnet Prototypes which were built for R&D purposes at FNAL. Measurementsmore » with the first developed FAP system were performed on a regular basis through several stages of the magnet production process with the intention of fabrication quality control. Part of these included measurements performed before and after cryogenic testing: these data are summarized here. The performance of a second system with an improved probe and data acquisition system was tested on part of the DCA series as well. This paper includes a presentation of time stability, noise and angular resolution data of this second probe. Another alternative instrument to determine the dipole field angle is the ``mole`` rotating coil system developed at BNL used mainly to measure the multipole components of the magnetic field. In the case of magnet DCA320, a comparison is made between the field angle as determined by the mole and those determined by both of the FAPS.« less

  20. Future Trends in Solar Radio Astronomy and Coronal Magnetic-Field Measurements

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory; Nita, Gelu; Gary, Dale

    Solar radio astronomy has an amazingly rich, but yet largely unexploited, potential for probing the solar corona and chromosphere. Radio emission offers multiple ways of detecting and tracking electron beams, studying chromospheric and coronal thermal structure, plasma processes, particle acceleration, and measuring magnetic fields. To turn the mentioned potential into real routine diagnostics, two major components are needed: (1) well-calibrated observations with high spatial, spectral, and temporal resolutions and (2) accurate and reliable theoretical models and fast numerical tools capable of recovering the emission source parameters from the radio data. This report gives a brief overview of the new, expanded, and planned radio facilities, such as Expanded Owens Valley Solar Array (EOVSA), Jansky Very Large Array (JVLA), Chinese Solar Radio Heliograph (CSRH), Upgraded Siberian Solar Radio Telescope (USSRT), and Frequency Agile Solar Radiotelescope (FASR) with the emphasis on their ability to measure the coronal magnetic fields in active regions and flares. In particular, we emphasize the new tools for 3D modeling of the radio emission and forward fitting tools in development needed to derive the magnetic field data from the radio measurements.

  1. Solar Prominence Eruption

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    1998-01-01

    The prominence that erupts in a prominence eruption is a magnetic structure in the chromosphere and corona. It is visible in chromospheric images by virtue of chromospheric-temperature plasma suspended in the magnetic field, and belongs to that large class of magnetic structures appropriately called filaments because of their characteristic sinewy sigmoidal form. Hence, the term "filament eruption" is used interchangeably with the term "prominence eruption". The magnetic field holding a filament is prone to undergo explosive changes in configuration. In these upheavals, because the filament material is compelled by its high conductivity to ride with the magnetic field that threads it, this material is a visible tracer of the field motion. The part of the magnetic explosion displayed by the entrained filament material is the phenomenon known as a filament eruption, the topic of this article. This article begins with a description of basic observed characteristics of filament eruptions, with attention to the magnetic fields, flares, and coronal mass ejections in which erupting filaments are embedded. The present understanding of these characteristics in terms of the form and action of the magnetic field is then laid out by means of a rudimentary three-dimensional model of the field. The article ends with basic questions that this picture leaves unresolved and with remarks on the observations needed to probe these questions.

  2. A magnetic boundary layer at the magnetopause

    NASA Astrophysics Data System (ADS)

    Kartalev, M. D.; Simeonov, G.

    A new approach in the boundary layer description of the magnetopause is proposed. The magnetopause is considered as a mixing region of two streams of plasma with different parameters. The assumption is made that wave-particle interactions cause the plasma to be resistive. Thus only the magnetic viscosity is supposed to be essential. Other dissipation effects are neglected. The plasma and magnetic field conditions at the outer boundary of the layer can be obtained from the solution of the nondissipative problem for the magnetosheath. The magnetic field is assumed to be known at the inner boundary. No further conditions are needed in our formulation of the problem. The variation of the flow parameters and the magnetic field can be obtained numerically.

  3. Determination of domain wall chirality using in situ Lorentz transmission electron microscopy

    DOE PAGES

    Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.; ...

    2017-02-23

    Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less

  4. Determination of domain wall chirality using in situ Lorentz transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.

    Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less

  5. Towards a Decentralized Magnetic Indoor Positioning System

    PubMed Central

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2015-01-01

    Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters. PMID:26690145

  6. Towards a Decentralized Magnetic Indoor Positioning System.

    PubMed

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2015-12-04

    Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters.

  7. The mechanisms of the effects of magnetic fields on cells

    NASA Astrophysics Data System (ADS)

    Kondrachuk, A.

    The evolution of organisms in conditions of the Earth magnetism results in close dependence of their functioning on the properties of the Earth magnetic field. The magnetic conditions in space flight differ from those on the Earth (e.g. much smaller values of magnetic filed) that effect various processes in living organisms. Meanwhile the mechanisms of interaction of magnetic fields with cell structures are poorly understood and systemized. The goal of the present work is to analyze and estimate the main established mechanisms of "magnetic fields - cell" interaction. Due to variety and complexity of the effects the analysis is mainly restricted to biological effects of the static magnetic field at a cellular level. 1) Magnetic induction. Static magnetic fields exert forces on moving ions in solution (e.g., electrolytes), giving rise to induced electric fields and currents. This effect may be especially important when the currents changed due to the magnetic field application are participating in some receptor functions of cells (e.g. plant cells). 2) Magneto-mechanical effect of reorientation. Uniform static magnetic fields produce torques on certain molecules with anisotropic magnetic properties, which results in their reorientation and spatial ordering. Since the structures of biological cells are magnetically and mechanically inhomogeneous, the application of a homogeneous magnetic field may cause redistribution of stresses within cells, deformation of intracellular structures, change of membrane permeability, etc. 3) Ponderomotive effects. Spatially non-uniform magnetic field exerts ponderomotive force on magnetically non-uniform cell structures. This force is proportional to the gradient of the square of magnetic field and the difference of magnetic susceptibilities of the component of the cell and its environment. 4) Biomagnetic effects. Magnetic fields can exert torques and translational forces on ferromagnetic structures, such as magnetite and ferritins presented in the cells. 5) Electronic interactions. Static magnetic fields can alter energy levels and spin orientation of electrons. Similar interactions can also occur with nuclear spins, but these are very weak compared to electron interactions. 6) Free radicals. Magnetic fields alter the spin states of the radicals, which, in turn, changes the relative probabilities of recombination and other interactions, possibly with biological consequences. 7) Non-linear effects. A number of non-linear mechanisms of magnetic effects on cells were recently proposed to explain how the cell could extract a weak magnetic signal from noise (e.g. stochastic non-linear resonance, self-tuned Hopf bifurcations). These new models need further experimental testing.

  8. New constraints on modelling the random magnetic field of the MW

    NASA Astrophysics Data System (ADS)

    Beck, Marcus C.; Beck, Alexander M.; Beck, Rainer; Dolag, Klaus; Strong, Andrew W.; Nielaba, Peter

    2016-05-01

    We extend the description of the isotropic and anisotropic random component of the small-scale magnetic field within the existing magnetic field model of the Milky Way from Jansson & Farrar, by including random realizations of the small-scale component. Using a magnetic-field power spectrum with Gaussian random fields, the NE2001 model for the thermal electrons and the Galactic cosmic-ray electron distribution from the current GALPROP model we derive full-sky maps for the total and polarized synchrotron intensity as well as the Faraday rotation-measure distribution. While previous work assumed that small-scale fluctuations average out along the line-of-sight or which only computed ensemble averages of random fields, we show that these fluctuations need to be carefully taken into account. Comparing with observational data we obtain not only good agreement with 408 MHz total and WMAP7 22 GHz polarized intensity emission maps, but also an improved agreement with Galactic foreground rotation-measure maps and power spectra, whose amplitude and shape strongly depend on the parameters of the random field. We demonstrate that a correlation length of 0≈22 pc (05 pc being a 5σ lower limit) is needed to match the slope of the observed power spectrum of Galactic foreground rotation-measure maps. Using multiple realizations allows us also to infer errors on individual observables. We find that previously-used amplitudes for random and anisotropic random magnetic field components need to be rescaled by factors of ≈0.3 and 0.6 to account for the new small-scale contributions. Our model predicts a rotation measure of -2.8±7.1 rad/m2 and 04.4±11. rad/m2 for the north and south Galactic poles respectively, in good agreement with observations. Applying our model to deflections of ultra-high-energy cosmic rays we infer a mean deflection of ≈3.5±1.1 degree for 60 EeV protons arriving from CenA.

  9. Plasma Equilibria With Stochastic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Krommes, J. A.; Reiman, A. H.

    2009-05-01

    Plasma equilibria that include regions of stochastic magnetic fields are of interest in a variety of applications, including tokamaks with ergodic limiters and high-pressure stellarators. Such equilibria are examined theoretically, and a numerical algorithm for their construction is described.^2,3 % The balance between stochastic diffusion of magnetic lines and small effects^2 omitted from the simplest MHD description can support pressure and current profiles that need not be flattened in stochastic regions. The diffusion can be described analytically by renormalizing stochastic Langevin equations for pressure and parallel current j, with particular attention being paid to the satisfaction of the periodicity constraints in toroidal configurations with sheared magnetic fields. The equilibrium field configuration can then be constructed by coupling the prediction for j to Amp'ere's law, which is solved numerically. A. Reiman et al., Pressure-induced breaking of equilibrium flux surfaces in the W7AS stellarator, Nucl. Fusion 47, 572--8 (2007). J. A. Krommes and A. H. Reiman, Plasma equilibrium in a magnetic field with stochastic regions, submitted to Phys. Plasmas. J. A. Krommes, Fundamental statistical theories of plasma turbulence in magnetic fields, Phys. Reports 360, 1--351.

  10. Resonant Magnetic Field Sensors Based On MEMS Technology.

    PubMed

    Herrera-May, Agustín L; Aguilera-Cortés, Luz A; García-Ramírez, Pedro J; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  11. Resonant Magnetic Field Sensors Based On MEMS Technology

    PubMed Central

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  12. Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels.

    PubMed

    Moelker, Adriaan; Wielopolski, Piotr A; Pattynama, Peter M T

    2003-02-01

    The need for better signal-to-noise ratios and resolution has pushed magnetic resonance imaging (MRI) towards high-field MR-scanners for which only little data on MR-related acoustic noise production have been published. The purpose of this study was to validate the theoretical relationship of sound pressure level (SPL) and static magnetic field strength. This is relevant for allowing adequate comparisons of acoustic data of MR systems at various magnetic field strengths. Acoustic data were acquired during various pulse sequences at field strengths of 0.5, 1.0, 1.5 and 2.0 Tesla using the same MRI unit by means of a Helicon rampable magnet. Continuous-equivalent, i.e. time-averaged, linear SPLs and 1/3-octave band frequencies were recorded. Ramping from 0.5 to 1.0 Tesla and from 1.0 to 2.0 Tesla resulted in an SPL increase of 5.7 and 5.2 dB(L), respectively, when averaged over the various pulse sequences. Most of the acoustic energy was in the 1-kHz frequency band, irrespective of magnetic field strength. The relation between field strength and SPL was slightly non-linear, i.e. a slightly less increase at higher field strengths, presumably caused by the elastic properties of the gradient coil encasings.

  13. Comparison of potential field solutions for Carrington Rotation 2144

    NASA Astrophysics Data System (ADS)

    Hayashi, Keiji; Yang, Shangbin; Deng, Yuagyong

    2016-02-01

    We examined differences among the coronal magnetic field structures derived with the potential field source surface (PFSS) model for Carrington Rotation 2144, from 21 November to 19 December 2013. We used the synoptic maps of solar photospheric magnetic field from four observatories, the Huairou Solar Observing Station (HSOS), Global Oscillation Network Group (GONG), Helioseismic Magnetic Imager (HMI), and Wilcox Solar Observatory (WSO). We tested two smoothing methods, Gaussian and boxcar averaging, and correction of unbalanced net magnetic flux. The solutions of three-dimensional coronal magnetic field are significantly different each other. An open-field region derived with HSOS data agrees best with the corresponding coronal hole observed by Solar Dynamics Observatories/Atmospheric Imaging Assembly, while HMI data yielded best agreements with the near-Earth OMNI database. The GONG data overall gave agreements as good as the HMI. The PFSS calculations using WSO data were least sensitive to the choices we examined in this work. Differences in PFSS solutions using different choices and parameters in smoothing imply that the photospheric magnetic field distributions with size of several degrees at midlatitude and low-latitude regions can be decisive, at least, in the examined period. To better determine the global solar corona, therefore, further evaluation of influences from compact bipolar magnetic field is needed.

  14. Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause.

    PubMed

    Korth, Haje; Tsyganenko, Nikolai A; Johnson, Catherine L; Philpott, Lydia C; Anderson, Brian J; Al Asad, Manar M; Solomon, Sean C; McNutt, Ralph L

    2015-06-01

    Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT R M 3 , where R M is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross-tail current sheet. The cross-tail current is described by a disk-shaped current near the planet and a sheet current at larger (≳ 5  R M ) antisunward distances. The tail currents are constrained by minimizing the root-mean-square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause.

  15. Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause

    PubMed Central

    Tsyganenko, Nikolai A.; Johnson, Catherine L.; Philpott, Lydia C.; Anderson, Brian J.; Al Asad, Manar M.; Solomon, Sean C.; McNutt, Ralph L.

    2015-01-01

    Abstract Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT RM 3, where RM is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross‐tail current sheet. The cross‐tail current is described by a disk‐shaped current near the planet and a sheet current at larger (≳ 5 RM) antisunward distances. The tail currents are constrained by minimizing the root‐mean‐square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause. PMID:27656335

  16. Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.

    PubMed

    Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W

    2000-02-01

    The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences. Copyright 2000 Academic Press.

  17. Plasma Equilibrium in a Magnetic Field with Stochastic Field-Line Trajectories

    NASA Astrophysics Data System (ADS)

    Krommes, J. A.; Reiman, A. H.

    2008-11-01

    The nature of plasma equilibrium in a magnetic field with stochastic field lines is examined, expanding upon the ideas first described by Reiman et al. The magnetic partial differential equation (PDE) that determines the equilibrium Pfirsch-Schlüter currents is treated as a passive stochastic PDE for μj/B. Renormalization leads to a stochastic Langevin equation for μ in which the resonances at the rational surfaces are broadened by the stochastic diffusion of the field lines; even weak radial diffusion can significantly affect the equilibrium, which need not be flattened in the stochastic region. Particular attention is paid to satisfying the periodicity constraints in toroidal configurations with sheared magnetic fields. A numerical scheme that couples the renormalized Langevin equation to Ampere's law is described. A. Reiman et al, Nucl. Fusion 47, 572--8 (2007). J. A. Krommes, Phys. Reports 360, 1--351.

  18. [Design of Adjustable Magnetic Field Generating Device in the Capsule Endoscope Tracking System].

    PubMed

    Ruan, Chao; Guo, Xudong; Yang, Fei

    2015-08-01

    The capsule endoscope swallowed from the mouth into the digestive system can capture the images of important gastrointestinal tract regions. It can compensate for the blind spot of traditional endoscopic techniques. It enables inspection of the digestive system without discomfort or need for sedation. However, currently available clinical capsule endoscope has some limitations such as the diagnostic information being not able to correspond to the orientation in the body, since the doctor is unable to control the capsule motion and orientation. To solve the problem, it is significant to track the position and orientation of the capsule in the human body. This study presents an AC excitation wireless tracking method in the capsule endoscope, and the sensor embedded in the capsule can measure the magnetic field generated by excitation coil. And then the position and orientation of the capsule can be obtained by solving a magnetic field inverse problem. Since the magnetic field decays with distance dramatically, the dynamic range of the received signal spans three orders of magnitude, we designed an adjustable alternating magnetic field generating device. The device can adjust the strength of the alternating magnetic field automatically through the feedback signal from the sensor. The prototype experiment showed that the adjustable magnetic field generating device was feasible. It could realize the automatic adjustment of the magnetic field strength successfully, and improve the tracking accuracy.

  19. Operation of A Sunpower M87 Cryocooler In A Magnetic Field

    NASA Technical Reports Server (NTRS)

    Breon, S. R.; Shirey, K. A.; Banks, I. S.; Warner, B. A.; Boyle, R. F.; Mustafi, S.; Krebs,Carolyn A. (Technical Monitor)

    2002-01-01

    The Alpha Magnetic Spectrometer-02 (AMS-02) is an experiment that will be flown as an attached payload on the International Space Station to detect dark matter and antimatter. It uses large superconducting magnets cooled with superfluid helium to bend the path of cosmic particles through a series of detectors, which then measure the mass, speed, charge, and direction of the particles. Four Sunpower M87N Stirling-cycle cryocoolers are used to extend the mission life by cooling the outer vapor-cooled shield of the dewar. The main magnet coils are separated by a distance of approximately 1 m and the coolers are located approximately 1.5 m from the center line of the magnet, where the field is as high as 925 gauss perpendicular to the cryocooler axis and 400 gauss along the cryocooler axis. Interactions between the applied magnetic field and the linear motor may result in additional forces and torques on the compressor piston. Motion of the compressor arid displacer pistons through the magnetic field spatial gradients will generate eddy currents. Additional eddy currents are created during magnet charge, discharge, and quench by the time-varying magnetic field. The results of tests to determine the magnitude of the forces, torques, and heating effects, as well as the need for additional magnetic shielding, are presented.

  20. New Methods of Low-Field Magnetic Resonance Imaging for Application to Traumatic Brain Injury

    DTIC Science & Technology

    2016-04-01

    the need for high power radio - frequency (RF) to saturate the electron spins. Addition- ally, as EPR frequencies are two orders of magnitude higher...Crozier S. Electromechanical design and construction of a rotating radio - frequency coil system for applications in magnetic resonance. IEEE Trans Biomed...1 Award Number: W81XWH- 11 -2-0076 TITLE: New Methods of Low-Field Magnetic Resonance Imaging for Application to Traumatic Brain Injury PRINCIPAL

  1. Magnetically Actuated Propellant Orientation, Controlling Fluids in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Holt, James B.

    2000-01-01

    Cryogenic fluid management (CFM) is a technology area common to virtually every space transportation propulsion concept envisioned. Storage, supply, transfer and handling of sub-critical cryogenic fluids are basic capabilities that have long been needed by multiple programs and the need is expected to continue in the future. The use of magnetic fields provides another method, which could replace or augment current/traditional approaches, potentially simplifying vehicle operational constraints. The magnetically actuated propellant orientation (MAPO) program effort focused on the use of magnetic fields to control fluid motion as it relates to positioning (i.e. orientation and acquisition) of a paramagnetic substance such as LO2. Current CFM state- of-the-art systems used to control and acquire propellant in low gravity environments rely on liquid surface tension devices which employ vanes, fine screen mesh channels and baskets. These devices trap and direct propellant to areas where it's needed and have been used routinely with storable (non-cryogenic) propellants. However, almost no data exists r,egarding their operation in cryogenics and the use of such devices confronts designers with a multitude of significant technology issues. Typical problems include a sensitivity to screen dry out (due to thermal loads and pressurant gas) and momentary adverse accelerations (generated from either internal or external sources). Any of these problems can potentially cause the acquisition systems to ingest or develop vapor and fail. The use of lightweight high field strength magnets may offer a valuable means of augmenting traditional systems potentially mitigating or at least easing operational requirements. Two potential uses of magnetic fields include: 1) strategically positioning magnets to keep vent ports clear of liquid (enabling low G vented fill operations), and 2) placing magnets in the center or around the walls of the tank to create an insulating vapor pocket (between the liquid and the tank wall) which could effectively lower heat transfer to the liquid (enabling increased storage time).

  2. New Insights into the Puzzling P-Cygni Profiles of Magnetic Massive Stars

    NASA Astrophysics Data System (ADS)

    Erba, Christiana; David-Uraz, Alexandre; Petit, Véronique; Owocki, Stanley P.

    2017-11-01

    Magnetic massive stars comprise approximately 10% of the total OB star population. Modern spectropolarimetry shows these stars host strong, stable, large-scale, often nearly dipolar surface magnetic fields of 1 kG or more. These global magnetic fields trap and deflect outflowing stellar wind material, forming an anisotropic magnetosphere that can be probed with wind-sensitive UV resonance lines. Recent HST UV spectra of NGC 1624-2, the most magnetic O star observed to date, show atypically unsaturated P-Cygni profiles in the Civ resonant doublet, as well as a distinct variation with rotational phase. We examine the effect of non-radial, magnetically-channeled wind outflow on P-Cygni line formation, using a Sobolev Exact Integration (SEI) approach for direct comparison with HST UV spectra of NGC 1624-2. We demonstrate that the addition of a magnetic field desaturates the absorption trough of the P-Cygni profiles, but further efforts are needed to fully account for the observed line profile variation. Our study thus provides a first step toward a broader understanding of how strong magnetic fields affect mass loss diagnostics from UV lines.

  3. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2007-01-01

    Magnetic field response sensors designed as passive inductor- capacit or circuits produce magnetic field responses whose harmonic frequenci es correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induc tion. A radio frequency antenna produces the time varying magnetic fi eld used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for disce rning changes in sensor's response frequency, resistance and amplitud e is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminat ing the need to have a data acquisition channel dedicated to each se nsor. The method does not require the sensors to be in proximity to a ny form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  4. An Observational Approach toward Understanding and Prediction of CME Magnetic Ejecta

    NASA Astrophysics Data System (ADS)

    Pizzo, V. J.; de Koning, C. A.; Riley, P.

    2017-12-01

    Quantitative knowledge of the magnetic field inside a coronal mass ejection (CME) is an important contributor to an actionable space weather forecast of geomagnetic storms. However, at present it is not possible to predict the magnetic cloud component of a CME with any accuracy. This has led to the development of increasingly sophisticated physics-based models, each promising a path toward more accurate space weather forecasts. Unfortunately, none of these models can provide meaningful output if they lack for reliable quantitative input. Until we can measure magnetic fields at solar distances where CMEs are launched and over their early-stage evolution, this will remain a fundamental obstacle to successful modeling. Instead of continuing to focus primarily on the modeling approach, we suggest an active investigation of direct, up-stream measurement of the CME internal magnetic field. For current forecasting purposes, or even as a science concept mission, the measurements do not need to be of high accuracy or high cadence. Since previous magnetic cloud analyses have demonstrated that a single spacecraft provides insufficient data to robustly reconstruct the CME internal magnetic field, we suggest deploying a swarm of cube-sats in "quasi-satellite" orbits that are known to be horizontally and vertically stable, even at large (several tenths of an AU) distances from Earth. In this presentation, we describe how simulations of CMEs incorporating magnetic clouds can be used to develop and support this mission concept. By taking simulated cuts through model CMEs with a range of magnetic morphologies and field strengths, we aim to determine the minimum number of spacecraft needed for such a mission and their optimum orbital characteristics. Although a host of challenges remain, especially related to communications and cube-sat telemetry in interplanetary space, we believe that these technological issues can be surmounted once it has been demonstrated that a major leap in understanding and forecasting magnetic ejecta is possible via a cube-sat swarm.

  5. MRI induced torque and demagnetization in retention magnets for a bone conduction implant.

    PubMed

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Taghavi, Hamidreza; Eeg-Olofsson, Måns

    2014-06-01

    Performing magnetic resonance imaging (MRI) examinations in patients who use implantable medical devices involve safety risks both for the patient and the implant. Hearing implants often use two permanent magnets, one implanted and one external, for the retention of the external transmitter coil to the implanted receiver coil to achieve an optimal signal transmission. The implanted magnet is subjected to both demagnetization and torque, magnetically induced by the MRI scanner. In this paper, demagnetization and a comparison between measured and simulated induced torque is studied for the retention magnet used in a bone conduction implant (BCI) system. The torque was measured and simulated in a uniform static magnetic field of 1.5 T. The magnetic field was generated by a dipole electromagnet and permanent magnets with two different types of coercive fields were tested. Demagnetization and maximum torque for the high coercive field magnets was 7.7% ± 2.5% and 0.20 ± 0.01 Nm, respectively and 71.4% ± 19.1% and 0.18 ± 0.01 Nm for the low coercive field magnets, respectively. The simulated maximum torque was 0.34 Nm, deviating from the measured torque in terms of amplitude, mainly related to an insufficient magnet model. The BCI implant with high coercive field magnets is believed to be magnetic resonance (MR) conditional up to 1.5 T if a compression band is used around the skull to fix the implant. This is not approved and requires further investigations, and if removal of the implant is needed, the surgical operation is expected to be simple.

  6. POSSIBLE EVIDENCE FOR A FISK-TYPE HELIOSPHERIC MAGNETIC FIELD. I. ANALYZING ULYSSES/KET ELECTRON OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sternal, O.; Heber, B.; Kopp, A.

    The propagation of energetic charged particles in the heliospheric magnetic field is one of the fundamental problems in heliophysics. In particular, the structure of the heliospheric magnetic field remains an unsolved problem and is discussed as a controversial topic. The first successful analytic approach to the structure of the heliospheric magnetic field was the Parker field. However, the measurements of the Ulysses spacecraft at high latitudes revealed the possible need for refinements of the existing magnetic field model during solar minimum. Among other reasons, this led to the development of the Fisk field. This approach is highly debated and couldmore » not be ruled out with magnetic field measurements so far. A promising method to trace this magnetic field structure is to model the propagation of electrons in the energy range of a few MeV. Employing three-dimensional and time-dependent simulations of the propagation of energetic electrons, this work shows that the influence of a Fisk-type field on the particle transport in the heliosphere leads to characteristic variations of the electron intensities on the timescale of a solar rotation. For the first time it is shown that the Ulysses count rates of 2.5-7 MeV electrons contain the imprint of a Fisk-type heliospheric magnetic field structure. From a comparison of simulation results and the Ulysses count rates, realistic parameters for the Fisk theory are derived. Furthermore, these parameters are used to investigate the modeled relative amplitudes of protons and electrons, including the effects of drifts.« less

  7. Fuel magnetization without external field coils (AutoMag)

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Jennings, Christopher; Awe, Thomas; Shipley, Gabe; Lamppa, Derek; McBride, Ryan

    2016-10-01

    Magnetized Liner Inertial Fusion (MagLIF) has produced fusion-relevant plasma conditions on the Z accelerator where the fuel was magnetized using external field coils. We present a novel concept that does not need external field coils. This concept (AutoMag) magnetizes the fuel during the early part of the drive current by using a composite liner with helical conduction paths separated by insulating material. The drive is designed so the current rises slowly enough to avoid electrical breakdown of the insulators until a sufficiently strong magnetic field is established. Then the current rises more quickly, which causes the insulators to break down allowing the drive current to follow an axial path and implode the liner. Low inductance magnetically insulated power feeds can be used with AutoMag to increase the drive current without interfering with diagnostic access. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.

    PubMed

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-08-24

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases).

  9. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    PubMed Central

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-01-01

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912

  10. Material and cooling requirements for poly-Bitter resistive magnets and hybrid inserts generating continuous fields up to 50 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, B.J.; Bird, M.D.; Eyssa, Y.M.

    1994-07-01

    The new National High Magnetic Field Laboratory (NHMFL), equipped with a 40 MW DC power supply, will design and construct the next generation of high field resistive magnets and hybrid inserts generating DC fields up to 50 T. The authors present a study on the required materials and the necessary cooling characteristics, these magnets need. The configuration selected for this study consists of a combination of thin poly-Bitter and thick Bitter coils optimized in dimensions and power under constraint of maximum design stress and heat removal to obtain maximum field. The study shows that each design requires a different optimummore » ratio of conductor strength to electrical conductivity and that efficient cooling is only advantageous if strong copper alloys are used. For efficient use of the available power the development of new high strength, high conductivity materials will be necessary. Equally important are improvements in the heat transfer characteristics of these high power density magnets.« less

  11. The Mass of a Solar Quiescent Prominence

    NASA Technical Reports Server (NTRS)

    Low, B. C.; Fong, B.; Fan, Y.

    2003-01-01

    This paper follows up on our recent paper on the role of prominence mass in the storage of magnetic energy for driving a coronal mass ejection (CME). The previous paper erroneously rejected a set of sheet- prominence solutions, the recovery of which allows for a simple theoretical estimate of the mass of a quiescent prominence. For coronal fields of 5-10 G, these hydromagnetic solutions suggest that a prominence mass of (1-26) x 10(exp 6) g is needed to hold detached magnetic fields of intensity comparable to the coronal fields in an unbounded atmosphere such that the global magnetic field is energetically able to spontaneously open up and still have enough energy to account for the kinetic and gravitational potential energies carried away in a CME. This simple result is discussed in relation to observed prominence magnetic field intensities, densities, and masses, pointing to the relevance of such observations to the question of magnetic energy storage in the solar corona.

  12. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    DOE PAGES

    Shipley, Gabriel A.; Awe, Thomas James; Hutsel, Brian Thomas; ...

    2018-05-03

    We present Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate dI/dt=5 kA/ns. After the cold fuel is magnetized,more » a rapidly rising current (200 kA/ns) generates a calculated electric field of 64 MV/m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. Lastly, a range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.« less

  13. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipley, Gabriel A.; Awe, Thomas James; Hutsel, Brian Thomas

    We present Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate dI/dt=5 kA/ns. After the cold fuel is magnetized,more » a rapidly rising current (200 kA/ns) generates a calculated electric field of 64 MV/m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. Lastly, a range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.« less

  14. Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

    NASA Astrophysics Data System (ADS)

    Shipley, G. A.; Awe, T. J.; Hutsel, B. T.; Slutz, S. A.; Lamppa, D. C.; Greenly, J. B.; Hutchinson, T. M.

    2018-05-01

    Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate d I / d t = 5 k A / n s . After the cold fuel is magnetized, a rapidly rising current ( 200 k A / n s ) generates a calculated electric field of 64 M V / m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. A range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.

  15. Voltage-controlled magnetization switching in MRAMs in conjunction with spin-transfer torque and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Munira, Kamaram; Pandey, Sumeet C.; Kula, Witold; Sandhu, Gurtej S.

    2016-11-01

    Voltage-controlled magnetic anisotropy (VCMA) effect has attracted a significant amount of attention in recent years because of its low cell power consumption during the anisotropy modulation of a thin ferromagnetic film. However, the applied voltage or electric field alone is not enough to completely and reliably reverse the magnetization of the free layer of a magnetic random access memory (MRAM) cell from anti-parallel to parallel configuration or vice versa. An additional symmetry-breaking mechanism needs to be employed to ensure the deterministic writing process. Combinations of voltage-controlled magnetic anisotropy together with spin-transfer torque (STT) and with an applied magnetic field (Happ) were evaluated for switching reliability, time taken to switch with low error rate, and energy consumption during the switching process. In order to get a low write error rate in the MRAM cell with VCMA switching mechanism, a spin-transfer torque current or an applied magnetic field comparable to the critical current and field of the free layer is necessary. In the hybrid processes, the VCMA effect lowers the duration during which the higher power hungry secondary mechanism is in place. Therefore, the total energy consumed during the hybrid writing processes, VCMA + STT or VCMA + Happ, is less than the energy consumed during pure spin-transfer torque or applied magnetic field switching.

  16. Primordial magnetic fields from a non-singular bouncing cosmology

    NASA Astrophysics Data System (ADS)

    Membiela, Federico Agustín

    2014-08-01

    Although inflation is a natural candidate to generate the lengths of coherence of magnetic fields needed to explain current observations, it needs to break conformal invariance of electromagnetism to obtain significant magnetic amplitudes. Of the simplest realizations are the kinetically-coupled theories f2(ϕ)FμνF (or IFF theories). However, these are known to suffer from electric fields backreaction or the strong coupling problem. In this work we shall confirm that such class of theories are problematic to support magnetogenesis during inflationary cosmology. On the contrary, we show that a bouncing cosmology with a contracting phase dominated by an equation of state with p>-ρ/3 can support magnetogenesis, evading the backreaction/strong-coupling problem. Finally, we study safe magnetogenesis in a particular bouncing model with an ekpyrotic-like contracting phase. In this case we found that f2(ϕ)F2-instabilities might arise during the final kinetic-driven expanding phase for steep ekpyrotic potentials.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Gene; Johnson, Rolland

    High field superconducting magnets are used in particle colliders, fusion energy devices, and spectrometers for medical imaging and advanced materials research. Magnets capable of generating fields of 20-30 T are needed by future accelerator facilities. A 20-30 T magnet will require the use of high-temperature superconductors (HTS) and therefore the challenges of high field HTS magnet development need to be addressed. Superconducting Bi 2Sr 2CaCu 2O x (Bi2212) conductors fabricated by the oxide-powder-in-tube (OPIT) technique have demonstrated the capability to carry large critical current density of 10 5 A/cm 2 at 4.2 K and in magnetic fields up to 45more » T. Available in round wire multi-filamentary form, Bi2212 may allow fabrication of 20-50 T superconducting magnets. Until recently the performance of Bi2212 has been limited by challenges in realizing high current densities (J c ) in long lengths. This problem now is solved by the National High Magnetic Field Lab using an overpressure (OP) processing technique, which uses external pressure to process the conductor. OP processing also helps remove the ceramic leakage that results when Bi-2212 liquid leaks out from the sheath material and reacts with insulation, coil forms, and flanges. Significant advances have also been achieved in developing novel insulation materials (TiO 2 coating) and Ag-Al sheath materials that have higher mechanical strengths than Ag-0.2wt.% Mg, developing heat treatment approaches to broadening the maximum process temperature window, and developing high-strength, mechanical reinforced Bi-2212 cables. In the Phase I work, we leveraged these new opportunities to prototype overpressure processed solenoids and test them in background fields of up to 14 T. Additionally a design of a fully superconducting 30 T solenoid was produced. This work in conjunction with the future path outlined in the Phase II proposal would provide a major step toward qualifying Bi2212 technology for use in high-field accelerator magnets. Additionally, the performance parameters match key requirements of a final muon beam cooling solenoid. This technology will also be of interest to high-field NMR manufacturers.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winn, Barry L.; Broholm, C.; Bird, M.

    X-ray and neutron scattering techniques are capable of acquiring information about the structure and dynamics of quantum matter. However, the high-field magnet systems currently available at x-ray and neutron scattering facilities in the United States are limited to fields of 16 tesla (T) at maximum, which precludes applications that require and/or study ultra-high field states of matter. This gap in capability—and the need to address it—is a central conclusion of the 2005 National Academy of Sciences report by the Committee on Opportunities in High Magnetic Field Science. To address this gap, we propose a magnet development program that would moremore » than double the field range accessible to scattering experiments. With the development and use of new ultra-high field–magnets, the program would bring into view new worlds of quantum matter with profound impacts on our understanding of advanced electronic materials.« less

  19. Magnetic field angle dependent hysteresis of a magnetorheological suspension

    NASA Astrophysics Data System (ADS)

    Dohmen, Eike; Borin, Dmitry; Zubarev, Andrey

    2017-12-01

    Magnetorheological (MR) materials are of growing interest for a development and realisation of adaptive components and damping devices. The influence of the magnetic field orientation on the rheological properties of smart materials like MR fluids or magnetic hybrid composites is a key aspect which still is not fully understood, but occurs in almost every real life MR application. To cope with the practical needs and efficiently utilise these smart materials while taking into account their material phenomena experimentally validated practice-oriented models are needed. The authors use a coupled phenomenological approach to adjust and discuss a developed theoretical model based on experimentally obtained data. In addition the data helps to get a better understanding of internal processes and interrelations in MR suspensions.

  20. Small-scale dynamo at low magnetic Prandtl numbers

    NASA Astrophysics Data System (ADS)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S.

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓϑ, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm(1-ϑ)/(1+ϑ). We furthermore discuss the critical magnetic Reynolds number Rmcrit, which is required for small-scale dynamo action. The value of Rmcrit is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rmcrit provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  1. Small-scale dynamo at low magnetic Prandtl numbers.

    PubMed

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓ^{ϑ}, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm^{(1-ϑ)/(1+ϑ)}. We furthermore discuss the critical magnetic Reynolds number Rm_{crit}, which is required for small-scale dynamo action. The value of Rm_{crit} is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_{crit} provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  2. Accessible magnetic resonance imaging.

    PubMed

    Kaufman, L; Arakawa, M; Hale, J; Rothschild, P; Carlson, J; Hake, K; Kramer, D; Lu, W; Van Heteren, J

    1989-10-01

    The cost of magnetic resonance imaging (MRI) is driven by magnetic field strength. Misperceptions as to the impact of field strength on performance have led to systems that are more expensive than they need to be. Careful analysis of all the factors that affect diagnostic quality lead to the conclusion that field strength per se is not a strong determinant of system performance. Freed from the constraints imposed by high-field operation, it is possible to exploit a varied set of opportunities afforded by low-field operation. In addition to lower costs and easier siting, we can take advantage of shortened T1 times, higher contrast, reduced sensitivity to motion, and reduced radiofrequency power deposition. These conceptual advantages can be made to coalesce onto practical imaging systems. We describe a low-cost MRI system that utilizes a permanent magnet of open design. Careful optimization of receiving antennas and acquisition sequences permit performance levels consistent with those needed for an effective diagnostic unit. Ancillary advantages include easy access to the patient, reduced claustrophobia, quiet and comfortable operation, and absence of a missile effect. The system can be sited in 350 sq ft and consumes a modest amount of electricity. MRI equipment of this kind can widen the population base than can access this powerful and beneficial diagnostic modality.

  3. Dark soliton interaction of spinor Bose-Einstein condensates in an optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zaidong; Li Qiuyan

    2007-08-15

    We study the magnetic soliton dynamics of spinor Bose-Einstein condensates in an optical lattice which results in an effective Hamiltonian of anisotropic pseudospin chain. An equation of nonlinear Schroedinger type is derived and exact magnetic soliton solutions are obtained analytically by means of Hirota method. Our results show that the critical external field is needed for creating the magnetic soliton in spinor Bose-Einstein condensates. The soliton size, velocity and shape frequency can be controlled in practical experiment by adjusting the magnetic field. Moreover, the elastic collision of two solitons is investigated in detail.

  4. System and method for damping vibration in a drill string using a magnetorheological damper

    DOEpatents

    Wassell, Mark Ellsworth; Burgess, Daniel E.; Barbely, Jason R.; Thompson, Fred Lamar

    2018-05-22

    A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid. A remanent magnetic field is induced in the valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils except temporarily when changing the amount of damping required. The current to be supplied to the coil for inducing a desired magnetic field in the valve is determined based on the limiting hysteresis curve of the valve and the history of the magnetization of the value using a binary search methodology. The history of the magnetization of the valve is expressed as a series of sets of current and it resulting magnetization at which the current experienced a reversal compared to prior values of the current.

  5. Finite Element Modeling of Magnetically-Damped Convection during Solidification

    NASA Technical Reports Server (NTRS)

    deGroh, H. C.; Li, B. Q.; Lu, X.

    1998-01-01

    A fully 3-D, transient finite element model is developed to represent the magnetic damping effects on complex fluid flow, heat transfer and electromagnetic field distributions in a Sn- 35.5%Pb melt undergoing unidirectional solidification. The model is developed based on our in- house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The numerical model is tested against numerical and experimental results for water as reported in literature. Various numerical simulations are carried out for the melt convection and temperature distribution with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to stabilize melt flow, reduce turbulence and flow levels in the melt and over a certain threshold value a higher magnetic field resulted in a greater reduction in velocity. Also, for the study of melt flow instability, a long enough running time is needed to ensure the final fluid flow recirculation pattern. Moreover, numerical results suggest that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the 0 convection in the melt is actually enhanced.

  6. Uniform magnetic fields and double-wrapped coil systems: improved techniques for the design of bioelectromagnetic experiments.

    PubMed

    Kirschvink, J L

    1992-01-01

    A common mistake in biomagnetic experimentation is the assumption that Helmholtz coils provide uniform magnetic fields; this is true only for a limited volume at their center. Substantial improvements on this design have been made during the past 140 years with systems of three, four, and five coils. Numerical comparisons of the field uniformity generated by these designs are made here, along with a table of construction details and recommendations for their use in experiments in which large volumes of uniform intensity magnetic exposures are needed. Double-wrapping, or systems of bifilar windings, can also help control for the non-magnetic effects of the electric coils used in many experiments. In this design, each coil is wrapped in parallel with two separate, adjacent strands of copper wire, rather than the single strand used normally. If currents are flowing in antiparallel directions, the magnetic fields generated by each strand will cancel and yield virtually no external magnetic field, whereas parallel currents will yield an external field. Both cases will produce similar non-magnetic effects of ohmic heating, and simple measures can reduce the small vibration and electric field differences. Control experiments can then be designed such that the only major difference between treated and untreated groups is the presence or absence of the magnetic field. Double-wrapped coils also facilitate the use of truly double-blind protocol, as the same apparatus can be used either for experimental or control groups.

  7. High magnetic field magnetization of a new triangular lattice antiferromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, H. D.; Stritzinger, Laurel Elaine Winter; Harrison, Neil

    2017-03-23

    In CsV(MoO 4) 2, the magnetic V 3+ ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO 4) 2 by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Willmore » it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V 3+ (3d 2) ions. Apparently we need higher field to reach 1/3 value or full moment.« less

  8. Is the Non-Dipole Magnetic Field Random?

    NASA Technical Reports Server (NTRS)

    Walker, Andrew D.; Backus, George E.

    1996-01-01

    Statistical modelling of the Earth's magnetic field B has a long history. In particular, the spherical harmonic coefficients of scalar fields derived from B can be treated as Gaussian random variables. In this paper, we give examples of highly organized fields whose spherical harmonic coefficients pass tests for independent Gaussian random variables. The fact that coefficients at some depth may be usefully summarized as independent samples from a normal distribution need not imply that there really is some physical, random process at that depth. In fact, the field can be extremely structured and still be regarded for some purposes as random. In this paper, we examined the radial magnetic field B(sub r) produced by the core, but the results apply to any scalar field on the core-mantle boundary (CMB) which determines B outside the CMB.

  9. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun's polar regions in general and the polar meridonal flow in particular.

  10. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north ]south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north ]south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun fs polar regions in general and the polar meridional flow in particular

  11. Development status of a next generation ECRIS: MARS-D at LBNL

    DOE PAGES

    Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.; ...

    2015-09-29

    To demonstrate a Mixed Axial and Radial field System (MARS) as the best magnet scheme for future ECRISs, MARS-D, a demonstrative ECRIS using a NbTi MARS magnet is progressing at Lawrence Berkeley National Laboratory. An optimized MARS design can use either NbTi or Nb 3Sn coils with reduced engineering complexities to construct the needed high-field magnets. The optimized magnet design could enhance MARS-D to a next generation ECRIS by producing minimum-B field maxima of 5.6 T axially and 3.2 T radially for operating frequencies up to 45 GHz. Lastly, in-progress test winding has achieved a milestone demonstrating the fabrication feasibilitymore » of a MARS closed-loop coil.« less

  12. Development status of a next generation ECRIS: MARS-D at LBNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.

    To demonstrate a Mixed Axial and Radial field System (MARS) as the best magnet scheme for future ECRISs, MARS-D, a demonstrative ECRIS using a NbTi MARS magnet is progressing at Lawrence Berkeley National Laboratory. An optimized MARS design can use either NbTi or Nb 3Sn coils with reduced engineering complexities to construct the needed high-field magnets. The optimized magnet design could enhance MARS-D to a next generation ECRIS by producing minimum-B field maxima of 5.6 T axially and 3.2 T radially for operating frequencies up to 45 GHz. Lastly, in-progress test winding has achieved a milestone demonstrating the fabrication feasibilitymore » of a MARS closed-loop coil.« less

  13. Line of magnetic monopoles and an extension of the Aharonov–Bohm effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chee, J.; Lu, W.

    2016-10-15

    In the Landau problem on the two-dimensional plane, physical displacement of a charged particle (i.e., magnetic translation) can be induced by an in-plane electric field. The geometric phase accompanying such magnetic translation around a closed path differs from the topological phase of Aharonov and Bohm in two essential aspects: The particle is in direct contact with the magnetic field and the geometric phase has an opposite sign from the Aharonov–Bohm phase. We show that magnetic translation on the two-dimensional cylinder implemented by the Schrödinger time evolution truly leads to the Aharonov–Bohm effect. The magnetic field normal to the cylinder’s surfacemore » corresponds to a line of magnetic monopoles of uniform density whose simulation is currently under investigation in cold atom physics. In order to characterize the quantum problem, one needs to specify the value of the magnetic flux (modulo the flux unit) that threads but not in touch with the cylinder. A general closed path on the cylinder may enclose both the Aharonov–Bohm flux and the local magnetic field that is in direct contact with the charged particle. This suggests an extension of the Aharonov–Bohm experiment that naturally takes into account both the geometric phase due to local interaction with the magnetic field and the topological phase of Aharonov and Bohm.« less

  14. Radio Emission from Binary Stars

    NASA Astrophysics Data System (ADS)

    Hjellming, R.; Murdin, P.

    2000-11-01

    Stellar radio emission is most common in double star systems where each star provides something essential in producing the large amounts of radio radiation needed for it to be detectable by RADIO TELESCOPES. They transfer mass, supply energy or, when one of the stars is a NEUTRON STAR or BLACK HOLE, have the strong gravitational fields needed for the energetic particles and magnetic fields needed...

  15. Could Magnetic Fields Affect the Circadian Clock Function of Cryptochromes? Testing the Basic Premise of the Cryptochrome Hypothesis (ELF Magnetic Fields).

    PubMed

    Vanderstraeten, Jacques; Burda, Hynek; Verschaeve, Luc; De Brouwer, Christophe

    2015-07-01

    It has been suggested that weak 50/60 Hz [extremely low frequency (ELF)] magnetic fields (MF) could affect circadian biorhythms by disrupting the clock function of cryptochromes (the "cryptochrome hypothesis," currently under study). That hypothesis is based on the premise that weak (Earth strength) static magnetic fields affect the redox balance of cryptochromes, thus possibly their signaling state as well. An appropriate method for testing this postulate could be real time or short-term study of the circadian clock function of retinal cryptochromes under exposure to the static field intensities that elicit the largest redox changes (maximal "low field" and "high field" effects, respectively) compared to zero field. Positive results might encourage further study of the cryptochrome hypothesis itself. However, they would indicate the need for performing a similar study, this time comparing the effects of only slight intensity changes (low field range) in order to explore the possible role of the proximity of metal structures and furniture as a confounder under the cryptochrome hypothesis.

  16. Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Brouwer, Lucas Nathan

    Advances in superconducting magnet technology have historically enabled the construction of new, higher energy hadron colliders. Looking forward to the needs of a potential future collider, a significant increase in magnet field and performance is required. Such a task requires an open mind to the investigation of new design concepts for high field magnets. Part I of this thesis will present an investigation of the Canted-Cosine-Theta (CCT) design for high field Nb3Sn magnets. New analytic and finite element methods for analysis of CCT magnets will be given, along with a discussion on optimization of the design for high field. The design, fabrication, and successful test of the 2.5 T NbTi dipole CCT1 will be presented as a proof-of-principle step towards a high field Nb3Sn magnet. Finally, the design and initial steps in the fabrication of the 16 T Nb3Sn dipole CCT2 will be described. Part II of this thesis will investigate the CCT concept extended to a curved magnet for use in an ion beam therapy gantry. The introduction of superconducting technology in this field shows promise to reduce the weight and cost of gantries, as well as open the door to new beam optics solutions with high energy acceptance. An analytic approach developed for modeling curved CCT magnets will be presented, followed by a design study of a superconducting magnet for a proton therapy gantry. Finally, a new magnet concept called the "Alternating Gradient CCT" (AG-CCT) will be introduced. This concept will be shown to be a practical magnet solution for achieving the alternating quadrupole fields desired for an achromatic gantry, allowing for the consideration of treatment with minimal field changes in the superconducting magnets. The primary motivation of this thesis is to share new developments for Canted-Cosine-Theta superconducting magnets, with the hope this design will improve technology for high energy physics and ion beam cancer therapy.

  17. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MRmore » application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.« less

  18. Electromagnetic Meissner-Effect Launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1990-01-01

    Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.

  19. A ferromagnetic shim insert for NMR magnets - Towards an integrated gyrotron for DNP-NMR spectroscopy.

    PubMed

    Ryan, Herbert; van Bentum, Jan; Maly, Thorsten

    2017-04-01

    In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400MHz 1 H NMR, ⩾9.4T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B 1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Threshold heating temperature for magnetic hyperthermia: Controlling the heat exchange with the blocking temperature of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pimentel, B.; Caraballo-Vivas, R. J.; Checca, N. R.; Zverev, V. I.; Salakhova, R. T.; Makarova, L. A.; Pyatakov, A. P.; Perov, N. S.; Tishin, A. M.; Shtil, A. A.; Rossi, A. L.; Reis, M. S.

    2018-04-01

    La0.75Sr0.25MnO3 nanoparticles with average diameter close to 20.9 nm were synthesized using a sol-gel method. Measurements showed that the heating process stops at the blocking temperaturesignificantly below the Curie temperature. Measurements of Specific Absorption Rate (SAR) as a function of AC magnetic field revealed a superquadratic power law, indicating that, in addition to usual Néel and Brown relaxation, the hysteresis also plays an important role in the mechanism of heating. The ability to control the threshold heating temperature, a low remanent magnetization and a low field needed to achieve the magnetic saturation are the advantages of this material for therapeutic magnetic hyperthermia.

  1. A Proper-Motion Corrected, Cross-Matched Catalog Of M Dwarfs In SDSS And FIRST

    NASA Astrophysics Data System (ADS)

    Arai, Erin; West, A. A.; Thyagarajan, N.; Agüeros, M.; Helfand, D.

    2011-05-01

    We present a preliminary analysis of M dwarfs identified in both the Sloan Digital Sky Survey (SDSS) and the Very Large Array's (VLA) Faint Images of the Radio Sky at Twenty-centimeters survey (FIRST). The presence of magnetic fields is often associated with indirect magnetic activity measurements, such as H-alpha or X-ray emission. Radio emission, in contrast, is directly proportional to the magnetic field strength in addition to being another measure of activity. We search for stellar radio emission by cross-matching the SDSS DR7 M dwarf sample with the FIRST catalog. The SDSS data allow us to examine the spectra of our objects and correlate the magnetic activity (H-alpha) with the magnetic field strength (radio emission). Accurate positions and proper motions are important for obtaining a complete list of overlapping targets. Positions in FIRST and SDSS need to be proper motion corrected in order to ensure unique target matches since nearby M dwarfs can have significant proper motions (up to 1'' per year). Some previous studies have neglected the significance of proper motions in identifying overlapping targets between SDSS and FIRST; we correct for some of these previous oversights. In addition the FIRST data were taken in multiple epochs; individual images need to be proper motion corrected before the images can be co-added. Our cross-match catalog puts important constraints on models of magnetic field generation in low-mass stars in addition to the true habitability of attending planets.

  2. Zeeman splitting of 6.7 GHz methanol masers. On the uncertainty of magnetic field strength determinations

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Torres, R. M.; Dodson, R.

    2011-05-01

    Context. To properly determine the role of magnetic fields during massive star formation, a statistically significant sample of field measurements probing different densities and regions around massive protostars needs to be established. However, relating Zeeman splitting measurements to magnetic field strengths needs a carefully determined splitting coefficient. Aims: Polarization observations of, in particular, the very abundant 6.7 GHz methanol maser, indicate that these masers appear to be good probes of the large scale magnetic field around massive protostars at number densities up to nH2 ≈ 109 cm-3. We thus investigate the Zeeman splitting of the 6.7 GHz methanol maser transition. Methods: We have observed of a sample of 46 bright northern hemisphere maser sources with the Effelsberg 100-m telescope and an additional 34 bright southern masers with the Parkes 64-m telescope in an attempt to measure their Zeeman splitting. We also revisit the previous calculation of the methanol Zeeman splitting coefficients and show that these were severely overestimated making the determination of magnetic field strengths highly uncertain. Results: In total 44 of the northern masers were detected and significant splitting between the right- and left-circular polarization spectra is determined in >75% of the sources with a flux density >20 Jy beam-1. Assuming the splitting is due to a magnetic field according to the regular Zeeman effect, the average detected Zeeman splitting corrected for field geometry is ~0.6 m s-1. Using an estimate of the 6.7 GHz A-type methanol maser Zeeman splitting coefficient based on old laboratory measurements of 25 GHz E-type methanol transitions this corresponds to a magnetic field of ~120 mG in the methanol maser region. This is significantly higher than expected using the typically assumed relation between magnetic field and density (B∝ n_H_20.47) and potentially indicates the extrapolation of the available laboratory measurements is invalid. The stability of the right- and left-circular calibration of the Parkes observations was insufficient to determine the Zeeman splitting of the Southern sample. Spectra are presented for all sources in both samples. Conclusions: There is no strong indication that the measured splitting between right- and left-circular polarization is due to non-Zeeman effects, although this cannot be ruled out until the Zeeman coefficient is properly determined. However, although the 6.7 GHz methanol masers are still excellent magnetic field morphology probes through linear polarization observations, previous derivations of magnetic fields strength turn out to be highly uncertain. A solution to this problem will require new laboratory measurements of the methanol Landé-factors. Table 2 and Figs. 5-7 are only available in electronic form at http://www.aanda.org

  3. Extremely low-frequency magnetic fields of transformers and possible biological and health effects.

    PubMed

    Sirav, Bahriye; Sezgin, Gaye; Seyhan, Nesrin

    2014-12-01

    Physiological processes in organisms can be influenced by extremely low-frequency (ELF) electromagnetic energy. Biological effect studies have great importance; as well as measurement studies since they provide information on the real exposure situations. In this study, the leakage magnetic fields around a transformer were measured in an apartment building in Küçükçekmece, Istanbul, and the measurement results were evaluated with respect to the international exposure standards. The transformer station was on the bottom floor of a three-floor building. It was found that people living and working in the building were exposed to ELF magnetic fields higher than the threshold magnetic field value of the International Agency for Research on Cancer (IARC). Many people living in this building reported health complaints such as immunological problems of their children. There were child-workers working in the textile factories located in the building. Safe distances or areas for these people should be recommended. Protective measures could be implemented to minimize these exposures. Further residential exposure studies are needed to demonstrate the exposure levels of ELF magnetic fields. Precautions should, therefore, be taken either to reduce leakage or minimize the exposed fields. Shielding techniques should be used to minimize the leakage magnetic fields in such cases.

  4. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Danni; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang

    2015-11-15

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% aremore » obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.« less

  5. Plasma properties and magnetic field structure of the solar corona, based on coordinated Max 1991 observations from SERTS, the VLA, and magnetographs

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.

    1995-01-01

    The purposes of this investigation are to use existing, calibrated, coaligned sets of coordinated multiwaveband observations of the Sun to determine the coronal magnetic field strength and structure, and interpret the collective observations in terms of a self-consistent model of the coronal plasma and magnetic field. This information is vital to understanding processes such as coronal heating, solar wind acceleration, pre-flare energy storage, and active region evolution. Understanding these processes is the central theme of Max '91, the NASA-supported series of solar observing campaigns under which the observations acquired for this work were obtained. The observations came from NASA/GSFC's Solar EUV Rocket Telescope and Spectrograph (SERTS), the Very Large Array (VLA), and magnetographs. The technique of calculating the coronal magnetic field is to establish the contributions to the microwave emission from the two main emission mechanisms: thermal bremsstrahlung and thermal gyroemission. This is done by using the EUV emission to determine values of the coronal plasma quantities needed to calculate the thermal bremsstrahlung contribution to the microwave emission. Once the microwave emission mechanism(s) are determined, the coronal magnetic field can be calculated. A comparison of the coronal magnetic field derived from the coordinated multiwaveband observations with extrapolations from photospheric magnetograms will provide insight into the nature of the coronal magnetic field.

  6. Concern that "EMF" magnetic fields from power lines cause cancer.

    PubMed

    Repacholi, Michael

    2012-06-01

    In 2002, the International Agency for Research on Cancer (IARC, 2002) categorized extremely low frequency (ELF) (including the power frequencies of 50 and 60 Hz) magnetic fields as "possibly carcinogenic to humans." That was based on pooled analyses of epidemiological research that reported an association between exposure to low-level magnetic fields and childhood leukemia. In 2007 a task group of scientific experts convened by the World Health Organization (WHO) acknowledged the IARC categorization but found that the laboratory studies and other research results did not support the association. Taking all evidence into account WHO reported that it could not confirm the existence of any health consequences from exposure to low-level magnetic fields. There remains continuing concern by some people that exposure to power frequency magnetic fields may cause adverse health effects, particularly childhood leukemia. Public health authorities need to fully understand the reasons for that ongoing concern and effective ways to address it. This paper describes what drives the concern, including how people perceive risks, how WHO and other public health authorities assess scientific research to determine whether health risks exist and the conclusions they have reached about power frequency magnetic fields. This paper also addresses the scientific basis of international exposure guidelines for power frequency magnetic fields and what precautionary measures are warranted to address the concern. Copyright © 2012. Published by Elsevier B.V.

  7. Effects of AC/DC magnetic fields, frequency, and nanoparticle aspect ratio on cellular transfection of gene vectors

    NASA Astrophysics Data System (ADS)

    Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard

    2008-10-01

    In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.

  8. Performance of low-rank QR approximation of the finite element Biot-Savart law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D A; Fasenfest, B J

    2006-01-12

    We are concerned with the computation of magnetic fields from known electric currents in the finite element setting. In finite element eddy current simulations it is necessary to prescribe the magnetic field (or potential, depending upon the formulation) on the conductor boundary. In situations where the magnetic field is due to a distributed current density, the Biot-Savart law can be used, eliminating the need to mesh the nonconducting regions. Computation of the Biot-Savart law can be significantly accelerated using a low-rank QR approximation. We review the low-rank QR method and report performance on selected problems.

  9. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    DOE PAGES

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; ...

    2015-12-07

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal ofmore » the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.« less

  10. Resonant spin tunneling in randomly oriented nanospheres of Mn 12 acetate

    DOE PAGES

    Lendínez, S.; Zarzuela, R.; Tejada, J.; ...

    2015-01-06

    We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore » single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less

  11. Resonant spin tunneling in randomly oriented nanospheres of Mn 12 acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lendínez, S.; Zarzuela, R.; Tejada, J.

    We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore » single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less

  12. Sensing magnetic flux density of artificial neurons with a MEMS device.

    PubMed

    Tapia, Jesus A; Herrera-May, Agustin L; García-Ramírez, Pedro J; Martinez-Castillo, Jaime; Figueras, Eduard; Flores, Amira; Manjarrez, Elías

    2011-04-01

    We describe a simple procedure to characterize a magnetic field sensor based on microelectromechanical systems (MEMS) technology, which exploits the Lorentz force principle. This sensor is designed to detect, in future applications, the spiking activity of neurons or muscle cells. This procedure is based on the well-known capability that a magnetic MEMS device can be used to sense a small magnetic flux density. In this work, an electronic neuron (FitzHugh-Nagumo) is used to generate controlled spike-like magnetic fields. We show that the magnetic flux density generated by the hardware of this neuron can be detected with a new MEMS magnetic field sensor. This microdevice has a compact resonant structure (700 × 600 × 5 μm) integrated by an array of silicon beams and p-type piezoresistive sensing elements, which need an easy fabrication process. The proposed microsensor has a resolution of 80 nT, a sensitivity of 1.2 V.T(-1), a resonant frequency of 13.87 kHz, low power consumption (2.05 mW), quality factor of 93 at atmospheric pressure, and requires a simple signal processing circuit. The importance of our study is twofold. First, because the artificial neuron can generate well-controlled magnetic flux density, we suggest it could be used to analyze the resolution and performance of different magnetic field sensors intended for neurobiological applications. Second, the introduced MEMS magnetic field sensor may be used as a prototype to develop new high-resolution biomedical microdevices to sense magnetic fields from cardiac tissue, nerves, spinal cord, or the brain.

  13. Electronic Measurement of Rock Stress

    DTIC Science & Technology

    atomic resonances that are pressure-sensitive. Nuclear quadrupole resonance ( NQR ) appeared clearly applicable, since no magnetic aligning field is needed...there are several common NQR -active nuclear species in major rock-forming minerals, and rf magnetic fields between 0.3 and 3 megahertz (the resonant...comprehensive literature search has been completed on NQR in minerals, which shows that aluminum-27 and a few other elements in feldspars are promising

  14. A practical and flexible implementation of 3D MRI in the Earth’s magnetic field

    NASA Astrophysics Data System (ADS)

    Halse, Meghan E.; Coy, Andrew; Dykstra, Robin; Eccles, Craig; Hunter, Mark; Ward, Rob; Callaghan, Paul T.

    2006-09-01

    The Earth's magnetic field, though weak, is appealing for NMR applications because it is highly homogeneous, globally available and free. However, the practicality of Earth's field NMR (EFNMR) has long been limited by the need to perform experiments in outdoor locations where the local field homogeneity is not disrupted by ferrous or magnetic objects and where ultra-low frequency (ULF) noise sources are at a minimum. Herein we present a flexible and practical implementation of MRI in the Earth's magnetic field that demonstrates that EFNMR is not as difficult as it was previously thought to be. In this implementation, pre-polarization and ULF noise shielding, achieved using a crude electromagnet, are used to significantly improve signal-to-noise ratio (SNR) even in relatively noisy environments. A three axis gradient coil set, in addition to providing imaging gradients, is used to provide first-order shims such that sub-hertz linewidths can routinely be achieved, even in locations of significant local field inhomogeneity such as indoor scientific laboratories. Temporal fluctuations in the magnitude of the Earth's magnetic field are measured and a regime found within which these variations in Larmor frequency produce no observable artefacts in reconstructed images.

  15. Telecoil-mode hearing aid compatibility performance requirements for wireless and cordless handsets: magnetic signal levels.

    PubMed

    Julstrom, Stephen; Kozma-Spytek, Linda; Isabelle, Scott

    2011-09-01

    In the development of the requirements for telecoil-compatible magnetic signal sources for wireless and cordless telephones to be specified in the American National Standards Institute (ANSI) C63.19 and ANSI/Telecommunications Industry Association-1083 compatibility standards, it became evident that additional data concerning in-the-field telecoil use and subjective preferences were needed. Primarily, the magnetic signal levels and, secondarily, the field orientations required for effective and comfortable telecoil use with wireless and cordless handsets needed further characterization. (A companion article addresses user signal-to-noise needs and preferences.) Test subjects used their own hearing aids, which were addressed with both a controlled acoustic speech source and a controlled magnetic speech source. Each subject's hearing aid was first measured to find the telecoil's magnetic field orientation for maximum response, and an appropriate large magnetic head-worn coil was selected to apply the magnetic signal. Subjects could control the strength of the magnetic signal, first to match the loudness of a reference acoustic signal and then to find their Most Comfortable Level (MCL). The subjective judgments were compared against objective in-ear probe tube level measurements. The 57 test subjects covered an age range of 22 to 79 yr, with a self-reported hearing loss duration of 12 to 72 yr. All had telecoils that they used for at least some telecommunications needs. The self-reported degree of hearing loss ranged from moderate to profound. A total of 69 hearing aids were surveyed for their telecoil orientation. A guided intake questionnaire yielded general background information for each subject. A custom-built test jig enabled hearing aid telecoil orientation within the aid to be determined. By comparing this observation with the in-use hearing aid position, the in-use orientation for each telecoil was determined. A custom-built test control box fed by prepared speech recordings from computer files enabled the tester to switch between acoustic and magnetic speech signals and to read and record the subject's selected magnetic level settings. The overwhelming majority of behind-the-ear aids tested exhibited in-use telecoil orientations that were substantially vertical. An insufficient number of participants used in-the-ear aids to be able to draw general conclusions concerning the telecoil orientations of this style aid. The subjects showed a generally consistent preference for telecoil speech levels that subjectively matched the level that they heard from 65 dB SPL acoustic speech. The magnetic level needed to achieve their MCL, however, varied over a 30 dB range. Producing the necessary magnetic field strengths from a wireless or cordless telephone's handset in an in-use vertical orientation is vital for compatibility with the vast majority of behind-the-ear aids. Due to the very wide range of preferred magnetic signal levels shown, only indirect conclusions can be drawn concerning required signal levels. The strong preference for a 65 dB SPL equivalent level can be combined with established standards addressing hearing aid performance to derive reasonable source level requirements. Greater consistency between in-the-field hearing aid telecoil and microphone sensitivity adjustments could yield improved results for some users. American Academy of Audiology.

  16. Increasing the magnetic-field capability of the magneto-inertial fusion electrical discharge system using an inductively coupled coil

    NASA Astrophysics Data System (ADS)

    Barnak, D. H.; Davies, J. R.; Fiksel, G.; Chang, P.-Y.; Zabir, E.; Betti, R.

    2018-03-01

    Magnetized high energy density physics (HEDP) is a very active and relatively unexplored field that has applications in inertial confinement fusion, astrophysical plasma science, and basic plasma physics. A self-contained device, the Magneto-Inertial Fusion Electrical Discharge System, MIFEDS [G. Fiksel et al., Rev. Sci. Instrum. 86, 016105 (2015)], was developed at the Laboratory for Laser Energetics to conduct magnetized HEDP experiments on both the OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495-506 (1997)] and OMEGA EP [J. H. Kelly et al., J. Phys. IV France 133, 75 (2006) and L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)] laser systems. Extremely high magnetic fields are a necessity for magnetized HEDP, and the need for stronger magnetic fields continues to drive the redevelopment of the MIFEDS device. It is proposed in this paper that a magnetic coil that is inductively coupled rather than directly connecting to the MIFEDS device can increase the overall strength of the magnetic field for HEDP experiments by increasing the efficiency of energy transfer while decreasing the effective magnetized volume. A brief explanation of the energy delivery of the MIFEDS device illustrates the benefit of inductive coupling and is compared to that of direct connection for varying coil size and geometry. A prototype was then constructed to demonstrate a 7-fold increase in energy delivery using inductive coupling.

  17. Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection.

    PubMed

    Reimann, Sarah; Borgoo, Alex; Tellgren, Erik I; Teale, Andrew M; Helgaker, Trygve

    2017-09-12

    We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.

  18. Iron formations as the source of the West African magnetic crustal anomaly

    NASA Astrophysics Data System (ADS)

    Launay, Nicolas; Quesnel, Yoann; Rochette, Pierre; Demory, François

    2018-04-01

    The geological sources of major magnetic field anomalies are still poorly constrained, in terms of nature, geometry and vertical position. A common feature of several anomalies is their spatial correlation with cratonic shields and, for the largest anomalies, with Banded Iron Formations (BIF). This study first unveils the magnetic properties of some BIF samples from Mauritania, where the main part of the West African magnetic anomaly is observed. It shows how strong the magnetic susceptibility and natural remanent magnetization for such rocks are. High Koenigsberger ratios imply that the remanent magnetization should be taken into account to explain the anomaly. A numerical modeling of the crust beneath this anomaly is performed using these constraints and both gravity and magnetic field data. A forward approach is used, investigating the depth, thickness and magnetization intensity of all possible crustal lithologies. Our results show that BIF slices can be the only magnetized crustal sources needed to explain the anomaly, and that they could be buried several kilometers deep. The results of this study provide a new perspective to address the investigation of magnetic field anomaly sources in other cratonic regions with BIF outcrops.

  19. Pooled analysis of recent studies on magnetic fields and childhood leukaemia

    PubMed Central

    Kheifets, L; Ahlbom, A; Crespi, C M; Draper, G; Hagihara, J; Lowenthal, R M; Mezei, G; Oksuzyan, S; Schüz, J; Swanson, J; Tittarelli, A; Vinceti, M; Wunsch Filho, V

    2010-01-01

    Background: Previous pooled analyses have reported an association between magnetic fields and childhood leukaemia. We present a pooled analysis based on primary data from studies on residential magnetic fields and childhood leukaemia published after 2000. Methods: Seven studies with a total of 10 865 cases and 12 853 controls were included. The main analysis focused on 24-h magnetic field measurements or calculated fields in residences. Results: In the combined results, risk increased with increase in exposure, but the estimates were imprecise. The odds ratios for exposure categories of 0.1–0.2 μT, 0.2–0.3 μT and ⩾0.3 μT, compared with <0.1 μT, were 1.07 (95% CI 0.81–1.41), 1.16 (0.69–1.93) and 1.44 (0.88–2.36), respectively. Without the most influential study from Brazil, the odds ratios increased somewhat. An increasing trend was also suggested by a nonparametric analysis conducted using a generalised additive model. Conclusions: Our results are in line with previous pooled analyses showing an association between magnetic fields and childhood leukaemia. Overall, the association is weaker in the most recently conducted studies, but these studies are small and lack methodological improvements needed to resolve the apparent association. We conclude that recent studies on magnetic fields and childhood leukaemia do not alter the previous assessment that magnetic fields are possibly carcinogenic. PMID:20877339

  20. Remote magnetic actuation using a clinical scale system

    PubMed Central

    Stehning, Christian; Gleich, Bernhard

    2018-01-01

    Remote magnetic manipulation is a powerful technique for controlling devices inside the human body. It enables actuation and locomotion of tethered and untethered objects without the need for a local power supply. In clinical applications, it is used for active steering of catheters in medical interventions such as cardiac ablation for arrhythmia treatment and for steering of camera pills in the gastro-intestinal tract for diagnostic video acquisition. For these applications, specialized clinical-scale field applicators have been developed, which are rather limited in terms of field strength and flexibility of field application. For a general-purpose field applicator, flexible field generation is required at high field strengths as well as high field gradients to enable the generation of both torques and forces on magnetic devices. To date, this requirement has only been met by small-scale experimental systems. We have built a highly versatile clinical-scale field applicator that enables the generation of strong magnetic fields as well as strong field gradients over a large workspace. We demonstrate the capabilities of this coil-based system by remote steering of magnetic drills through gel and tissue samples with high torques on well-defined curved trajectories. We also give initial proof that, when equipped with high frequency transmit-receive coils, the machine is capable of real-time magnetic particle imaging while retaining a clinical-scale bore size. Our findings open the door for image-guided radiation-free remote magnetic control of devices at the clinical scale, which may be useful in minimally invasive diagnostic and therapeutic medical interventions. PMID:29494647

  1. LDRD final report on confinement of cluster fusion plasmas with magnetic fields.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio

    2011-11-01

    Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must bemore » brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the University of Texas in Austin where magnetic fields up to 50 T have been produced in vacuum. Peak charge voltage and current for this system have been 100 kV and 490 kA. It was used this last year to verify injection of deuterium and surrogate clusters into these small, single-turn coils without shorting the coil. Initial test confirmed the need to insulate the inner surface of the coil, which requires that the clusters must be injected through small holes in an insulator. Tests with a low power laser confirmed that it is possible to inject clusters into the magnetic field coils through these holes without destroying the clusters. The university team also learned the necessity of maintaining good vacuum to avoid insulator, transmission line, and coil shorting. A 200-T, 2 MA system was also constructed using the experience from the first design to make the pulsed-power system more robust. This machine is a copy of the prototype design, but with ten 100-kV capacitors versus the two used in the prototype. It has additional inductance in the switch/capacitor unit to avoid breakdown seen in the prototype design. It also has slightly more inductance at the cable connection to the vacuum chamber. With this design we have been able to demonstrate 1 MA current into a 1 cm diameter coil with the vacuum chamber at air pressure. Circuit code simulations, including the additional inductance with the new design, agree well with the measured current at a charge voltage of 40 kV with a short circuit load, and at 50 kV with a coil. The code also predicts that with a charge voltage of 97 kV we will be able to get 2 MA into a 1 cm diameter coil, which will be sufficient for 200 T fields. Smaller diameter or multiple-turn coils will be able to achieve even higher fields, or be able to achieve 200-T fields with lower charge voltage. Work is now proceeding at the university under separate funding to verify operation at the 2-MA level, and to address issues of debris mitigation, measurement of the magnetic field, and operation in vacuum. We anticipate operation at full current with single-turn, magnetic field coils this fall, with 200 T experiments on the Texas Petawatt laser in the spring of 2012.« less

  2. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kento; Monnai, Yasuaki; Saijo, Soya

    2016-05-15

    We report on a microwave planar ring antenna specifically designed for optically detected magnetic resonance (ODMR) of nitrogen-vacancy (NV) centers in diamond. It has the resonance frequency at around 2.87 GHz with the bandwidth of 400 MHz, ensuring that ODMR can be observed under external magnetic fields up to 100 G without the need of adjustment of the resonance frequency. It is also spatially uniform within the 1-mm-diameter center hole, enabling the magnetic-field imaging in the wide spatial range. These features facilitate the experiments on quantum sensing and imaging using NV centers at room temperature.

  3. A current filamentation mechanism for breaking magnetic field lines during reconnection

    NASA Astrophysics Data System (ADS)

    Che, H.; Drake, J. F.; Swisdak, M.

    2011-06-01

    During magnetic reconnection, the field lines must break and reconnect to release the energy that drives solar and stellar flares and other explosive events in space and in the laboratory. Exactly how this happens has been unclear, because dissipation is needed to break magnetic field lines and classical collisions are typically weak. Ion-electron drag arising from turbulence, dubbed `anomalous resistivity', and thermal momentum transport are two mechanisms that have been widely invoked. Measurements of enhanced turbulence near reconnection sites in space and in the laboratory support the anomalous resistivity idea but there has been no demonstration from measurements that this turbulence produces the necessary enhanced drag. Here we report computer simulations that show that neither of the two previously favoured mechanisms controls how magnetic field lines reconnect in the plasmas of greatest interest, those in which the magnetic field dominates the energy budget. Rather, we find that when the current layers that form during magnetic reconnection become too intense, they disintegrate and spread into a complex web of filaments that causes the rate of reconnection to increase abruptly. This filamentary web can be explored in the laboratory or in space with satellites that can measure the resulting electromagnetic turbulence.

  4. Improvement of the limit torque for the torque limiter with magnetic rheological fluid

    NASA Astrophysics Data System (ADS)

    Umehara, Noritsugu; Kita, Shizuo

    Robots are coming to support and help our life. The robots that work together with human need to avoid sever hitting and holding that force is more than the adequate and comfortable range. In order to keep the force to the safe level in the robot arms, t he limit torque should be controlled on the basis of the case the robot used. Magnetic rheological fluids were tried to be used for the clutch that transmission torque can be controlled continuously because MR fluids can be controlled its viscosity by magnetic field. However those clutch devices were too heavy and large to use for the robot arms. Therefore we tried to increase the sensitivity of magnetic field to viscosity of MR fluids. By applying rough surface for the mating surface, sensitivity of the magnetic field to the shearing torque increase drastically in the case of co-axial torque meter. On the other hand, the changing of the size of the orifice is effective to increase the sensitivity of the magnetic field on the flow resistance in the case of the orifice type equipment.

  5. First Application of the Zeeman Technique to Remotely Measure Auroral Electrojet Intensity From Space

    NASA Technical Reports Server (NTRS)

    Yee, J. H.; Gjerloev, J.; Wu, D.; Schwartz, M. J.

    2017-01-01

    Using the O2 118 GHz spectral radiance measurements obtained by the Microwave Limb Sounder instrument on board the Aura spacecraft, we demonstrate that the Zeeman effect can be used to remotely measure the magnetic field perturbations produced by the auroral electrojet near the Hall current closure altitudes. Our derived current-induced magnetic field perturbations are found to be highly correlated with those coincidently obtained by ground magnetometers. These perturbations are also found to be linearly correlated with auroral electrojet strength. The statistically derived polar maps of our measured magnetic field perturbation reveal a spatial-temporal morphology consistent with that produced by the Hall current during substorms and storms. With today's technology, a constellation of compact, low-power, high spectral-resolution cubesats would have the capability to provide high precision and spatiotemporal magnetic field samplings needed for auroral electrojet measurements to gain insights into the spatiotemporal behavior of the auroral electrojet system.

  6. Spatial characterization of the edge barrier in wide superconducting films

    NASA Astrophysics Data System (ADS)

    Sivakov, A. G.; Turutanov, O. G.; Kolinko, A. E.; Pokhila, A. S.

    2018-03-01

    The current-induced destruction of superconductivity is discussed in wide superconducting thin films, whose width is greater than the magnetic field penetration depth, in weak magnetic fields. Particular attention is paid to the role of the boundary potential barrier (the Bin-Livingston barrier) in critical state formation and detection of the edge responsible for this critical state with different mutual orientations of external perpendicular magnetic field and transport current. Critical and resistive states of the film were visualized using the space-resolving low-temperature laser scanning microscopy (LTLSM) method, which enables detection of critical current-determining areas on the film edges. Based on these observations, a simple technique was developed for investigation of the critical state separately at each film edge, and for the estimation of residual magnetic fields in cryostats. The proposed method only requires recording of the current-voltage characteristics of the film in a weak magnetic field, thus circumventing the need for complex LTLSM techniques. Information thus obtained is particularly important for interpretation of studies of superconducting film single-photon light emission detectors.

  7. Flight deck magnetic fields in commercial aircraft.

    PubMed

    Nicholas, J S; Butler, G C; Lackland, D T; Hood, W C; Hoel, D G; Mohr, L C

    2000-11-01

    Airline pilots are exposed to magnetic fields generated by the aircraft's electrical system. The objectives of this study were (1) to directly measure flight deck magnetic fields in terms of personal exposure to the pilots when flying on different aircraft types over a 75-hour flight-duty month, and (2) to compare magnetic field exposures across flight deck types and job titles. Measurements were taken using personal dosimeters carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. Approximately 1,008 block hours were recorded at a sampling frequency of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200. Measured flight deck magnetic field levels were substantially above the 0.8-1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure. Copyright 2000 Wiley-Liss, Inc.

  8. Effects of parallel magnetic field on electrocodeposition behavior of Fe/nano-Si particles composite electroplating

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhong, Yunbo; Wang, Huai; Long, Qiong; Li, Fu; Sun, Zongqian; Dong, Licheng; Fan, Lijun

    2013-10-01

    The influence of an external parallel strong parallel magnetic field (respect to current) on the electrocodeposition of nano-silicon particles into an iron matrix has been studied in this paper. Test results show that magnetic field has a great influence on the distribution of silicon, as well as the surface morphology and the thickness of the composite coatings. When no magnetic field was applied, a high current density was needed to get high concentration of silicon particles, while that could be easily obtained at a low current density with a 2 T parallel magnetic field. However, Owing to the unevenness of the current density J-distribution on the surface of the electrode in 8 T, the thicker and rougher composite deposits appear in the edge region (L or R region), and the thinner and smoother ones appear in the middle region (M). Meanwhile, the distribution curve of silicon content looks like a “pan” along the center line of coatings. A possible mechanism combining to the numerical simulation results was suggested out to illustrate the obtained experiment results.

  9. Pioneer 10/11 data analysis of the magnetic field experiment

    NASA Technical Reports Server (NTRS)

    Jones, D. E.

    1982-01-01

    Work conducted in support of the Pioneer missions to Jupiter (10,11), and Saturn (11) as well as the reduction, analysis and interpretation of magnetic field data obtained by the vector helium magnetometer on the Pioneer 10 and 11 spacecraft is summarized. Initial efforts concentrated primarily on the interplanetary data, and those aspcts of the data of relevance to obtaining a better understanding of the interaction of the magnetized solar wind with the terrestrial magnetic field. After encounters of Jupiter and Saturn, the emphasis of research was directed primarily to an analysis of the planetary data. In particular, it soon became clear that there was a need for modelling of the various candidate magnetospheric currents suggested by the data. Results not published as yet, are also summarized.

  10. Magnetic domain wall creep and depinning: A scalar field model approach

    NASA Astrophysics Data System (ADS)

    Caballero, Nirvana B.; Ferrero, Ezequiel E.; Kolton, Alejandro B.; Curiale, Javier; Jeudy, Vincent; Bustingorry, Sebastian

    2018-06-01

    Magnetic domain wall motion is at the heart of new magnetoelectronic technologies and hence the need for a deeper understanding of domain wall dynamics in magnetic systems. In this context, numerical simulations using simple models can capture the main ingredients responsible for the complex observed domain wall behavior. We present a scalar field model for the magnetization dynamics of quasi-two-dimensional systems with a perpendicular easy axis of magnetization which allows a direct comparison with typical experimental protocols, used in polar magneto-optical Kerr effect microscopy experiments. We show that the thermally activated creep and depinning regimes of domain wall motion can be reached and the effect of different quenched disorder implementations can be assessed with the model. In particular, we show that the depinning field increases with the mean grain size of a Voronoi tessellation model for the disorder.

  11. Harnessing mass differential confinement effects in magnetized rotating plasmas to address new separation needs

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Rax, J.-M.; Zweben, S. J.; Fisch, N. J.

    2018-01-01

    The ability to separate large volumes of mixed species based on atomic mass appears desirable for a variety of emerging applications with high societal impact. One possibility to meet this objective consists in leveraging mass differential effects in rotating plasmas. Beyond conventional centrifugation, rotating plasmas offer in principle additional ways to separate elements based on mass. Single ion orbits show that ion radial mass separation in a uniform magnetized plasma column can be achieved by applying a tailored electric potential profile across the column, or by driving a rotating magnetic field within the column. Furthermore, magnetic pressure and centrifugal effects can be combined in a non-uniform geometry to separate ions based on mass along the field lines. Practical application of these separation schemes hinges on the ability to produce the desirable electric and magnetic field configuration within the plasma column.

  12. Atomic magnetometer-based ultra-sensitive magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    2016-03-01

    An atomic magnetometer (AM) based on lasers and alkali-metal vapor cells is currently the most sensitive non-cryogenic magnetic-field sensor. Many applications in neuroscience and other fields require high resolution, high sensitivity magnetic microscopic measurements. In order to meet this need we combined a cm-size spin-exchange relaxation-free AM with a flux guide (FG) to produce an ultra-sensitive FG-AM magnetic microscope. The FG serves to transmit the target magnetic flux to the AM thus enhancing both the sensitivity and resolution for tiny magnetic objects. In this talk, we will describe a prototype FG-AM device and present experimental and numerical tests of its sensitivity and resolution. We also demonstrate that an optimized FG-AM achieves high resolution and high sensitivity sufficient to detect a magnetic field of a single neuron in a few seconds, which would be an important milestone in neuroscience. We anticipate that this unique device can be applied to the detection of a single neuron, the detection of magnetic nano-particles, which in turn are very important for detection of target molecules in national security and medical diagnostics, and non-destructive testing.

  13. Magnetic field extrapolation with MHD relaxation using AWSoM

    NASA Astrophysics Data System (ADS)

    Shi, T.; Manchester, W.; Landi, E.

    2017-12-01

    Coronal mass ejections are known to be the major source of disturbances in the solar wind capable of affecting geomagnetic environments. In order for accurate predictions of such space weather events, a data-driven simulation is needed. The first step towards such a simulation is to extrapolate the magnetic field from the observed field that is only at the solar surface. Here we present results of a new code of magnetic field extrapolation with direct magnetohydrodynamics (MHD) relaxation using the Alfvén Wave Solar Model (AWSoM) in the Space Weather Modeling Framework. The obtained field is self-consistent with our model and can be used later in time-dependent simulations without modifications of the equations. We use the Low and Lou analytical solution to test our results and they reach a good agreement. We also extrapolate the magnetic field from the observed data. We then specify the active region corona field with this extrapolation result in the AWSoM model and self-consistently calculate the temperature of the active region loops with Alfvén wave dissipation. Multi-wavelength images are also synthesized.

  14. The magnetoactive electret

    NASA Astrophysics Data System (ADS)

    Monkman, G. J.; Sindersberger, D.; Diermeier, A.; Prem, N.

    2017-07-01

    A magnet which adheres to every surface, not only those of ferromagnetic materials, has hitherto been the domain of science fiction. Now for the first time such a novel device exists. The fusion of a permanently magnetized magnetoactive polymer containing hard magnetic particles and an electret enhanced with ferroelectric particles has resulted in the development of a new smart device—the magnetoactive electret. Magnetoactive electrets can be made to exhibit the usual magnetic properties of permanent magnetism together with the electrostatic properties of electrets. This results in simultaneous magnetoadhesion and electroadhesion forces from the same elastomeric element. The biasing field, needed to avoid discontinuities concerned with transition through the zero point in operating curves, is normally provided by means of either a magnetic or an electric field. This novel technology provides both bias options in a single device.

  15. Anisotropic characterization of magnetorheological materials

    NASA Astrophysics Data System (ADS)

    Dohmen, E.; Modler, N.; Gude, M.

    2017-06-01

    For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) [1-3] or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) [4]. The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle.

  16. Experimental Design of a Magnetic Flux Compression Experiment

    NASA Astrophysics Data System (ADS)

    Fuelling, Stephan; Awe, Thomas J.; Bauer, Bruno S.; Goodrich, Tasha; Lindemuth, Irvin R.; Makhin, Volodymyr; Siemon, Richard E.; Atchison, Walter L.; Reinovsky, Robert E.; Salazar, Mike A.; Scudder, David W.; Turchi, Peter J.; Degnan, James H.; Ruden, Edward L.

    2007-06-01

    Generation of ultrahigh magnetic fields is an interesting topic of high-energy-density physics, and an essential aspect of Magnetized Target Fusion (MTF). To examine plasma formation from conductors impinged upon by ultrahigh magnetic fields, in a geometry similar to that of the MAGO experiments, an experiment is under design to compress magnetic flux in a toroidal cavity, using the Shiva Star or Atlas generator. An initial toroidal bias magnetic field is provided by a current on a central conductor. The central current is generated by diverting a fraction of the liner current using an innovative inductive current divider, thus avoiding the need for an auxiliary power supply. A 50-mm-radius cylindrical aluminum liner implodes along glide planes with velocity of about 5 km/s. Inward liner motion causes electrical closure of the toroidal chamber, after which flux in the chamber is conserved and compressed, yielding magnetic fields of 2-3 MG. Plasma is generated on the liner and central rod surfaces by Ohmic heating. Diagnostics include B-dot probes, Faraday rotation, radiography, filtered photodiodes, and VUV spectroscopy. Optical access to the chamber is provided through small holes in the walls.

  17. Near field magnetic communications for helmet-mounted display applications

    NASA Astrophysics Data System (ADS)

    Field, Mark; Sailer, Alan

    2005-05-01

    Helmet-mounted displays need a data feed that is typically provided by a cable or RF wireless data link to an external computer. In defense applications these solutions are problematic: a cable gets in the way and restricts use and emergency egress, while an RF wireless link can be detected at some distance giving away position and is susceptible to jamming. What is required is an alternative wireless technology that is low power, extremely localized and difficult to detect or jam. Near field magnetic communications is one possible alternative to RF communications that may fulfill these needs. This technology uses a time varying magnetic field to carry information, and is only useable over small distances of order six feet. This is expected to have significant advantages for particular applications: notably power requirements and security compared with RF wireless links. The power stored in a magnetic field falls off as 1/r6, compared with 1/r2 for RF, which means that all the power is localized around the transmitter. By having a physically small communications region around each platform or user, a large bandwidth can be guaranteed by allowing the reuse of the frequency spectrum outside the immediate vicinity. It also confers security on the data-link, as the signal is undetectable beyond the short range of the system.

  18. System and method for damping vibration in a drill string using a magnetorheological damper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wassell, Mark Ellsworth; Burgess, Daniel E; Barbely, Jason R

    2012-01-03

    A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil for inducing a magnetic field thatmore » alters the resistance of the magnetorheological fluid to flow between the first and second chambers, thereby increasing the damping provided by the valve. A remnant magnetic field is induced in one or more components of the magnetorheological fluid valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils during operation except temporarily when changing the amount of damping required, thereby eliminating the need for a turbine alternator power the magnetorheological fluid valve. A demagnetization cycle can be used to reduce the remnant magnetic field when necessary.« less

  19. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  20. Magnetoinfrared spectroscopy of Landau levels and Zeeman splitting of three-dimensional massless Dirac Fermions in ZrTe 5

    DOE PAGES

    R. Y. Chen; Gu, G. D.; Chen, Z. G.; ...

    2015-10-22

    We present a magnetoinfrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe 5. We observe clear transitions between Landau levels and their further splitting under a magnetic field. Both the sequence of transitions and their field dependence follow quantitatively the relation expected for 3D massless Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe 5 is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides direct, bulk spectroscopic evidence that a relatively weakmore » magnetic field can produce a sizable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. As a result, our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under the current magnetic field configuration.« less

  1. A formalism for reference dosimetry in photon beams in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    van Asselen, B.; Woodings, S. J.; Hackett, S. L.; van Soest, T. L.; Kok, J. G. M.; Raaymakers, B. W.; Wolthaus, J. W. H.

    2018-06-01

    A generic formalism is proposed for reference dosimetry in the presence of a magnetic field. Besides the regular correction factors from the conventional reference dosimetry formalisms, two factors are used to take into account magnetic field effects: (1) a dose conversion factor to correct for the change in local dose distribution and (2) a correction of the reading of the dosimeter used for the reference dosimetry measurements. The formalism was applied to the Elekta MRI-Linac, for which the 1.5 T magnetic field is orthogonal to the 7 MV photon beam. For this setup at reference conditions it was shown that the dose decreases with increasing magnetic field strength. The reduction in local dose for a 1.5 T transverse field, compared to no field is 0.51%  ±  0.03% at the reference point of 10 cm depth. The effect of the magnetic field on the reading of the dosimeter was measured for two waterproof ionization chambers types (PTW 30013 and IBA FC65-G) before and after multiple ramp-up and ramp-downs of the magnetic field. The chambers were aligned perpendicular and parallel to the magnetic field. The corrections of the readings of the perpendicularly aligned chambers were 0.967  ±  0.002 and 0.957  ±  0.002 for respectively the PTW and IBA ionization chambers. In the parallel alignment the corrections were small; 0.997  ±  0.001 and 1.002  ±  0.003 for the PTW and IBA chamber respectively. The change in reading due to the magnetic field can be measured by individual departments. The proposed formalism can be used to determine the correction factors needed to establish the absorbed dose in a magnetic field. It requires Monte Carlo simulations of the local dose and measurements of the response of the dosimeter. The formalism was successfully implemented for the MRI-Linac and is applicable for other field strengths and geometries.

  2. A formalism for reference dosimetry in photon beams in the presence of a magnetic field.

    PubMed

    van Asselen, B; Woodings, S J; Hackett, S L; van Soest, T L; Kok, J G M; Raaymakers, B W; Wolthaus, J W H

    2018-06-11

    A generic formalism is proposed for reference dosimetry in the presence of a magnetic field. Besides the regular correction factors from the conventional reference dosimetry formalisms, two factors are used to take into account magnetic field effects: (1) a dose conversion factor to correct for the change in local dose distribution and (2) a correction of the reading of the dosimeter used for the reference dosimetry measurements. The formalism was applied to the Elekta MRI-Linac, for which the 1.5 T magnetic field is orthogonal to the 7 MV photon beam. For this setup at reference conditions it was shown that the dose decreases with increasing magnetic field strength. The reduction in local dose for a 1.5 T transverse field, compared to no field is 0.51%  ±  0.03% at the reference point of 10 cm depth. The effect of the magnetic field on the reading of the dosimeter was measured for two waterproof ionization chambers types (PTW 30013 and IBA FC65-G) before and after multiple ramp-up and ramp-downs of the magnetic field. The chambers were aligned perpendicular and parallel to the magnetic field. The corrections of the readings of the perpendicularly aligned chambers were 0.967  ±  0.002 and 0.957  ±  0.002 for respectively the PTW and IBA ionization chambers. In the parallel alignment the corrections were small; 0.997  ±  0.001 and 1.002  ±  0.003 for the PTW and IBA chamber respectively. The change in reading due to the magnetic field can be measured by individual departments. The proposed formalism can be used to determine the correction factors needed to establish the absorbed dose in a magnetic field. It requires Monte Carlo simulations of the local dose and measurements of the response of the dosimeter. The formalism was successfully implemented for the MRI-Linac and is applicable for other field strengths and geometries.

  3. Sensitivity of Proposed Search for Axion-induced Magnetic Field using Optically Pumped Magnetometers

    DOE PAGES

    Chu, Pinghan; Duffy, Leanne Delma; Kim, Young Jin; ...

    2018-04-17

    We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014)]. The modification of Maxwell’s equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an opticallymore » pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. Here, we discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10 -7 GeV -1 for an axion mass near 3 × 10 -10 eV, which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10 -1 and 10 -7 eV.« less

  4. Sensitivity of Proposed Search for Axion-induced Magnetic Field using Optically Pumped Magnetometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Pinghan; Duffy, Leanne Delma; Kim, Young Jin

    We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014)]. The modification of Maxwell’s equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an opticallymore » pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. Here, we discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10 -7 GeV -1 for an axion mass near 3 × 10 -10 eV, which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10 -1 and 10 -7 eV.« less

  5. Sensitivity of proposed search for axion-induced magnetic field using optically pumped magnetometers

    NASA Astrophysics Data System (ADS)

    Chu, P.-H.; Duffy, L. D.; Kim, Y. J.; Savukov, I. M.

    2018-04-01

    We investigate the sensitivity of a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers. This experiment is based upon the LC circuit (circuit with inductor and capacitor) axion detection concept of Sikivie et al. [Phys. Rev. Lett. 112, 131301 (2014), 10.1103/PhysRevLett.112.131301]. The modification of Maxwell's equations caused by the axion-photon coupling results in a minute magnetic field oscillating at a frequency equal to the axion mass, in the presence of an external magnetic field. The axion-induced magnetic field could be searched for using a LC circuit amplifier with an optically pumped magnetometer, the most sensitive cryogen-free magnetic-field sensor, in a room-temperature experiment, avoiding the need for a complicated and expensive cryogenic system. We discuss how an existing magnetic resonance imaging experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for magnetic resonance imagining, is already sensitive to an axion-photon coupling of 10-7 GeV-1 for an axion mass near 3 ×10-10 eV , which is already limited by astrophysical processes and solar axion searches. We show that realistic modifications, and optimization of the experiment for axion detection, can probe the axion-photon coupling up to 4 orders of magnitude beyond the current best limit, for axion masses between 10-11 and 10-7 eV .

  6. Spin valves with spin-engineered domain-biasing scheme

    NASA Astrophysics Data System (ADS)

    Lu, Z. Q.; Pan, G.

    2003-06-01

    Synthetic spin-filter spin valves with spin-engineered biasing scheme "sub/Ta/NiFe/IrMn/NiFe/NOL/Cu1/CoFe/Cu2/CoFe/Ru/CoFe/IrMn/Ta" were developed. In the structure, the orthogonal magnetic configuration for biasing and pinning field was obtained by one-step magnetic annealing process by means of spin flop, which eliminated the need for two antiferromagnetic materials with distinctively different blocking temperatures and two-step magnetic annealing as in conventional exchange biasing scheme. The longitudinal domain biasing of spin valves was achieved by using interlayer coupling field through Cu1 spacer. By adjusting the thickness of the Cu1 layer, the interlayer coupling biasing field can provide domain stabilization and was sufficiently strong to constrain the magnetization in coherent rotation. This can prevent Barkhausen noises associated with magnetization reversal. We report here a proof of concept study of such a domain-biasing scheme, which has its important technological applications in nanoscale spin valve and magnetic tunneling junction read heads and other spintronic devices.

  7. Magnetically Driven Swimming of Nanoscale Colloidal Assemblies

    NASA Astrophysics Data System (ADS)

    Breidenich, Jennifer; Benkoski, Jason; Baird, Lance; Deacon, Ryan; Land, H. Bruce; Hayes, Allen; Keng, Pei; Pyun, Jeffrey

    2009-03-01

    At microscopic length scales, locomotion can only be generated through asymmetric conformation changes, such as the undulating flagellum employed by protozoa. This simple yet elegant design is optimized according to the dueling needs of miniaturization and the fluid dynamics of the low Reynolds number environment. In this study, we fabricate nanoscale colloidal assemblies that mimic the head + tail structure of flagellates. The assemblies consist of two types of magnetic colloids: 25 nm polystyrene-coated Co nanoparticles, and 250 nm polyethylene glycol coated magnetite nanoparticles. When mixed together in N-dimethylformamide, the Co nanoparticles assemble into flexible, segmented chains ranging in length from 1 - 5 μm. These chains then attach at one end to the larger magnetic beads due to magnetic attraction. This head + tail structure aligns with an external uniform magnetic field and is actuated by an oscillating transverse field. We examine the effects of Co nanoparticle concentration, magnetite bead concentration, magnetic field strength, and oscillation frequency on the formation of swimmers and the speed of locomotion.

  8. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo

    In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less

  9. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    DOE PAGES

    Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo; ...

    2017-05-18

    In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less

  10. Occupational exposure to electromagnetic fields from medical sources

    PubMed Central

    STAM, Rianne; YAMAGUCHI-SEKINO, Sachiko

    2017-01-01

    High exposures to electromagnetic fields (EMF) can occur near certain medical devices in the hospital environment. A systematic assessment of medical occupational EMF exposure could help to clarify where more attention to occupational safety may be needed. This paper seeks to identify sources of high exposure for hospital workers and compare the published exposure data to occupational limits in the European Union. A systematic search for peer-reviewed publications was conducted via PubMed and Scopus databases. Relevant grey literature was collected via a web search. For each publication, the highest measured magnetic flux density or internal electric field strength per device and main frequency component was extracted. For low frequency fields, high action levels may be exceeded for magnetic stimulation, MRI gradient fields and movement in MRI static fields. For radiofrequency fields, the action levels may be exceeded near devices for diathermy, electrosurgery and hyperthermia and in the radiofrequency field inside MRI scanners. The exposure limit values for internal electric field may be exceeded for MRI and magnetic stimulation. For MRI and magnetic stimulation, practical measures can limit worker exposure. For diathermy, electrosurgery and hyperthermia, additional calculations are necessary to determine if SAR limits may be exceeded in some scenarios. PMID:29109357

  11. Magnetic-Field-Response Measurement-Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a response inflection. The "transmit-receive-compare" of sequential harmonics is repeated until the inflection is identified. The harmonic producing the amplitude inflection is the sensor resonant frequency. Resonant frequency and response amplitude are stored and then correlated to calibration data.

  12. Partial independence of bioelectric and biomagnetic fields and its implications for encephalography and cardiography

    NASA Astrophysics Data System (ADS)

    Irimia, Andrei; Swinney, Kenneth R.; Wikswo, John P.

    2009-05-01

    In this paper, we clearly demonstrate that the electric potential and the magnetic field can contain different information about current sources in three-dimensional conducting media. Expressions for the magnetic fields of electric dipole and quadrupole current sources immersed in an infinite conducting medium are derived, and it is shown that two different point dipole distributions that are electrically equivalent have different magnetic fields. Although measurements of the electric potential are not sufficient to determine uniquely the characteristics of a quadrupolar source, the radial component of the magnetic field can supply the additional information needed to resolve these ambiguities and to determine uniquely the configuration of dipoles required to specify the electric quadrupoles. We demonstrate how the process can be extended to even higher-order terms in an electrically silent series of magnetic multipoles. In the context of a spherical brain source model, it has been mathematically demonstrated that the part of the neuronal current generating the electric potential lives in the orthogonal complement of the part of the current generating the magnetic potential. This implies a mathematical relationship of complementarity between electroencephalography and magnetoencephalography, although the theoretical result in question does not apply to the nonspherical case [G. Dassios, Math. Med. Biol. 25, 133 (2008)]. Our results have important practical applications in cases where electrically silent sources that generate measurable magnetic fields are of interest. Moreover, electrically silent, magnetically active moments of higher order can be useful when cancellation due to superposition of fields can occur, since this situation leads to a substantial reduction in the measurable amplitude of the signal. In this context, information derived from magnetic recordings of electrically silent, magnetically active multipoles can supplement electrical recordings for the purpose of studying the physiology of the brain. Magnetic fields of the electric multipole sources in a conducting medium surrounded by an insulating spherical shell are also presented and the relevance of this calculation to cardiographic and encephalographic experimentation is discussed.

  13. The Revised Electromagnetic Fields Directive and Worker Exposure in Environments With High Magnetic Flux Densities

    PubMed Central

    Stam, Rianne

    2014-01-01

    Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers’ exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker’s body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices. PMID:24557933

  14. One dimensional spatial resolution optimization on a hybrid low field MRI-gamma detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co; Abril, A., E-mail: ajabrilf@unal.edu.co

    Hybrid systems like Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and MRI/gamma camera, offer advantages combining the resolution and contrast capability of MRI with the better contrast and functional information of nuclear medicine techniques. However, the radiation detectors are expensive and need an electronic set-up, which can interfere with the MRI acquisition process or viceversa. In order to improve these drawbacks, in this work it is presented the design of a low field NMR system made up of permanent magnets compatible with a gamma radiation detector based on gel dosimetry. The design is performed using the software FEMM for estimation ofmore » the magnetic field, and GEANT4 for the physical process involved in radiation detection and effect of magnetic field. The homogeneity in magnetic field is achieved with an array of NbFeB magnets in a linear configuration with a separation between the magnets, minimizing the effect of Compton back scattering compared with a no-spacing linear configuration. The final magnetic field in the homogeneous zone is ca. 100 mT. In this hybrid proposal, although the gel detector do not have spatial resolution per se, it is possible to obtain a dose profile (1D image) as a function of the position by using a collimator array. As a result, the gamma detector system described allows a complete integrated radiation detector within the low field NMR (lfNMR) system. Finally we present the better configuration for the hybrid system considering the collimator parameters such as height, thickness and distance.« less

  15. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Büttner, Felix; Lemesh, Ivan; Schneider, Michael; Pfau, Bastian; Günther, Christian M.; Hessing, Piet; Geilhufe, Jan; Caretta, Lucas; Engel, Dieter; Krüger, Benjamin; Viefhaus, Jens; Eisebitt, Stefan; Beach, Geoffrey S. D.

    2017-11-01

    Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii-Moriya interaction (DMI). The last favours homochiral skyrmions, whose motion is driven by spin-orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin-orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect. This leads to torques that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field. Although spin-orbit torques led to domain nucleation in continuous films and to stochastic nucleation of skyrmions in magnetic tracks, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs.

  16. Report on the B-Fields at NIF Workshop Held at LLNL October 12-13, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K. B.; Moody, J. D.

    2015-12-13

    A national ICF laboratory workshop on requirements for a magnetized target capability on NIF was held by NIF at LLNL on October 12 and 13, attended by experts from LLNL, SNL, LLE, LANL, GA, and NRL. Advocates for indirect drive (LLNL), magnetic (Z) drive (SNL), polar direct drive (LLE), and basic science needing applied B (many institutions) presented and discussed requirements for the magnetized target capabilities they would like to see. 30T capability was most frequently requested. A phased operation increasing the field in steps experimentally can be envisioned. The NIF management will take the inputs from the scientific communitymore » represented at the workshop and recommend pulse-powered magnet parameters for NIF that best meet the collective user requests. In parallel, LLNL will continue investigating magnets for future generations that might be powered by compact laser-B-field generators (Moody, Fujioka, Santos, Woolsey, Pollock). The NIF facility engineers will start to analyze compatibility of the recommended pulsed magnet parameters (size, field, rise time, materials) with NIF chamber constraints, diagnostic access, and final optics protection against debris in FY16. The objective of this assessment will be to develop a schedule for achieving an initial Bfield capability. Based on an initial assessment, room temperature magnetized gas capsules will be fielded on NIF first. Magnetized cryo-ice-layered targets will take longer (more compatibility issues). Magnetized wetted foam DT targets (Olson) may have somewhat fewer compatibility issues making them a more likely choice for the first cryo-ice-layered target fielded with applied Bz.« less

  17. Kicker field simulation and measurement for the muon g-2 experiment at FNAL

    NASA Astrophysics Data System (ADS)

    Chang, Seung Pyo; Kim, Young Im; Choi, Jihoon; Semertzidis, Yannis; muon g-2 experiment Collaboration

    2017-01-01

    In the Muon g-2 experiment, muon beam is injected to the storage ring in a slightly tilted orbit whose center is 77 mm away from the center of the ring. The kicker is needed to send the muon beam to the central orbit. The magnetic kicker is designed for the experiment and about 0.1 Tm field integral is needed. The peak current pulse is 4200 A to make this field integral. This strong kicker pulse could make unwanted eddy current occur. This eddy current could spoil the main magnetic field of the storage ring. This could be a critical threat to the precision of experiment. The kicker field simulation has done using OPERA to estimate the effects. Also the kicker field should be measured based on Faraday effect. The measurement has tested in the lab before install the experiment area. In this presentation, the simulation and measurement results will be discussed. This work was supported by IBS-R017-D1-2016-a00.

  18. "Non-Contact Ultrasonic Treatment of Metals in a Magnetic Field"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludtka, Gerard Michael; Wilgen, John B; Kisner, Roger A

    2007-01-01

    A concept has been originated for non-contact ultrasonic treatment of metals based on the use of an induction coil located in a high-field superconducting magnet. An advantage of using a high magnetic field environment (> 9 T) is that this allows the induced surface current in the sample to be decreased proportionately. As a result, the incidental induction heating associated with the use of the EMAT (Electromagnetic Acoustical Transducer) is greatly reduced, which improves the energy efficiency of the EMAT approach. The method can be coupled with high-field magnetic processing, but can also be used where only ultrasonic treatment ismore » beneficial. In the proof-of-principle experiments, a high-field EMAT was used for non-contact ultrasonic processing of aluminum samples during solidification. The magnetic field for the EMAT was supplied by a high-field (20 Tesla) resistive magnet, and the current was provided by an induction coil. This resulted in a highly efficient EMAT that delivered 0.5 MPa (~5 atmospheres) of acoustic drive to the surface of the sample while coupling less than 100 watts of incidental induction heating. The exceptionally high energy efficiency of the electromagnetic transducer is due to the use of the high magnetic field, which reduces the current needed to achieve the same acoustic pressure. In these initial experiments, aluminum samples of A356 alloy were heated to the liquid state and allowed to solidify at a controlled cooling rate while subjected to the non-contact ultrasonic stimulation (0.5 MPa @ 165 kHz) provided by an induction coil located within the 200 mm (~8-inch) bore of a 20-T Bitter resistive magnet.« less

  19. Magnetic fields in giant planet formation and protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Keith, Sarah Louise

    2015-12-01

    Protoplanetary discs channel accretion onto their host star. How this is achieved is critical to the growth of giant planets which capture their massive gaseous atmosphere from the surrounding flow. Theoretical studies find that an embedded magnetic field could power accretion by hydromagnetic turbulence or torques from a large-scale field. This thesis presents a study of the inuence of magnetic fields in three key aspects of this process: circumplanetary disc accretion, gas flow across gaps in protoplanetary discs, and magnetic-braking in accretion discs. The first study examines the conditions needed for self-consistent accretion driven by magnetic fields or gravitational instability. Models of these discs typically rely on hydromagnetic turbulence as the source of effective viscosity. However, magnetically coupled,accreting regions may be so limited that the disc may not support sufficient inflow. An improved Shakura-Sunyaev ? disc is used to calculate the ionisation fraction and strength of non-ideal effects. Steady magnetically-driven accretion is limited to the thermally ionised, inner disc so that accretion in the remainder of the disc is time-dependent. The second study addresses magnetic flux transport in an accretion gap evacuated by a giant planet. Assuming the field is passively drawn along with the gas, the hydrodynamical simulation of Tanigawa, Ohtsuki & Machida (2012) is used for an a posteriori analysis of the gap field structure. This is used to post-calculate magnetohydrodynamical quantities. This assumption is self-consistent as magnetic forces are found to be weak, and good magnetic coupling ensures the field is frozen into the gas. Hall drift dominates across much of the gap, with the potential to facilitate turbulence and modify the toroidal field according to the global field orientation. The third study considers the structure and stability of magnetically-braked accretion discs. Strong evidence for MRI dead-zones has renewed interest in accretion powered by large-scale fields. An equilibrium model is presented for the radial structure of an axisymmetric, magnetically-braked accretion disc connected to a force-free external field. The accretion rate is multivalued at protoplanetary disc column densities, featuring an `S-curve' associated with models of accretion outbursting. A local, linear analysis of the stability of radial modes finds that the rapidly accreting, middle and upper solution branches are unstable, further highlighting the potential for eruptive accretion events.

  20. The Juno Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-11-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno's spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.

  1. The Juno Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Benna, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; hide

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields andor sensor offsets are monitored in flight taking advantage of Juno's spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.

  2. The solar activity measurements experiments (SAMEX) for improved scientific understanding of solar activity

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.

  3. Analytical solution of concentric two-pole Halbach cylinders as a preliminary design tool for magnetic refrigeration systems

    NASA Astrophysics Data System (ADS)

    Fortkamp, F. P.; Lozano, J. A.; Barbosa, J. R.

    2017-12-01

    This work presents a parametric analysis of the performance of nested permanent magnet Halbach cylinders intended for applications in magnetic refrigeration and heat pumping. An analytical model for the magnetic field generated by the cylinders is used to systematically investigate the influence of their geometric parameters. The proposed configuration generates two poles in the air gap between the cylinders, where active magnetic regenerators are positioned for conversion of magnetic work into cooling capacity or heat power. A sample geometry based on previous designs of magnetic refrigerators is investigated, and the results show that the magnetic field in the air gap oscillates between 0 to approximately 1 T, forming a rectified cosine profile along the circumference of the gap. Calculations of the energy density of the magnets indicate the need to operate at a low energy (particular the inner cylinder) in order to generate a magnetic profile suitable for a magnetic cooler. In practice, these low-energy regions of the magnet can be potentially replaced by soft ferromagnetic material. A parametric analysis of the air gap height has been performed, showing that there are optimal values which maximize the magnet efficiency parameter Λcool . Some combinations of cylinder radii resulted in magnetic field changes that were too small for practical purposes. No demagnetization of the cylinders has been found for the range of parameters considered.

  4. Magnet Design Considerations for Fusion Nuclear Science Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Y.; Kessel, C.; El-Guebaly, L.

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5more » T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  5. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGES

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; ...

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  6. Narrow Scale Flow and a Weak Field by the Top of Earth's Core: Evidence from Orsted, Magsat and Secular Variation

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2004-01-01

    As Earth's main magnetic field weakens, our magnetic shield against the onslaught of the solar wind thins. And the field strength needed to fend off battering by solar coronal mass ejections is decreasing, just when the delicate complexity of modem, vulnerable, electro-technological systems is increasing at an unprecedented rate. Recently, a working group of distinguished scientist from across the nation has asked NASA's Solid Earth and Natural Hazards program a key question: What are the dynamics of Earth s magnetic field and its interactions with the Earth system? Paleomagnetic studies of crustal rocks magnetized in the geologic past reveal that polarity reversals have occurred many times during Earth s history. Networked super-computer simulations of core field and flow, including effects of gravitational, pressure, rotational Coriolis, magnetic and viscous forces, suggest how this might happen in detail. And space-based measurements of the real, time-varying magnetic field help constrain estimates of the speed and direction of fluid iron flowing near the top of the core and enable tests of some hypotheses about such flow. Now scientists at NASA s Goddard Space Flight Center have developed and applied methods to test the hypotheses of narrow scale flow and of a dynamically weak magnetic field near the top of Earth s core. Using two completely different methods, C. V. Voorhies has shown these hypotheses lead to specific theoretical forms for the "spectrum" of Earth s main magnetic field and the spectrum of its rate of change. Much as solar physicists use a prism to separate sunlight into its spectrum, from long wavelength red to short wavelength blue light, geophysicists use a digital prism, spherical harmonic analysis, to separate the measured geomagnetic field into its spectrum, from long to short wavelength fields. They do this for the rate of change of the field as well.

  7. Detailed ADM-based Modeling of Shock Retreat and X-ray Emission of τ Sco

    NASA Astrophysics Data System (ADS)

    Fletcher, C. L.; Petit, V.; Cohen, D. H.; Townsend, R. H.; Wade, G. A.

    2018-01-01

    Leveraging the improvement of spectropolarimeters over the past few decades, surveys have found that about 10% of OB-type stars host strong (˜ kG) and mostly dipolar surface magnetic fields. One B-type star, τ Sco, has a more complex surface magnetic field than the general population of OB stars. Interestingly, its X-ray luminosity is an order of magnitude higher than predicted from analytical models of magnetized winds. Previous studies of τ Sco's magnetosphere have predicted that the region of closed field loops should be located close to the stellar surface. However, the lack of X-ray variability and the location of the shock-heated plasma measured from forbidden-to-intercombination X-ray line ratios suggest that the hot plasma, and hence the closed magnetic loops, extend considerably farther from the stellar surface, implying a significantly lower mass loss rate than initially assumed. We present an adaptation of the Analytic Dynamical Magnetosphere model, describing the magnetic confinement of the stellar wind, for an arbitrary field loop configuration. This model is used to predict the shock-heated plasma temperatures for individual field loops, which are then compared to high resolution grating spectra from the Chandra X-ray Observatory. This comparison shows that larger closed magnetic loops are needed.

  8. Nonreciprocal reconfigurable microwave optomechanical circuit.

    PubMed

    Bernier, N R; Tóth, L D; Koottandavida, A; Ioannou, M A; Malz, D; Nunnenkamp, A; Feofanov, A K; Kippenberg, T J

    2017-09-19

    Nonreciprocal microwave devices are ubiquitous in radar and radio communication and indispensable in the readout chains of superconducting quantum circuits. Since they commonly rely on ferrite materials requiring large magnetic fields that make them bulky and lossy, there has been significant interest in magnetic-field-free on-chip alternatives, such as those recently implemented using the Josephson nonlinearity. Here, we realize reconfigurable nonreciprocal transmission between two microwave modes using purely optomechanical interactions in a superconducting electromechanical circuit. The scheme relies on the interference in two mechanical modes that mediate coupling between the microwave cavities and requires no magnetic field. We analyse the isolation, transmission and the noise properties of this nonreciprocal circuit. Finally, we show how quantum-limited circulators can be realized with the same principle. All-optomechanically mediated nonreciprocity demonstrated here can also be extended to directional amplifiers, and it forms the basis towards realizing topological states of light and sound.Nonreciprocal optical devices traditionally rely on magnetic fields and magnetic-free approaches are rather recent. Here, Bernier et al. propose and demonstrate a purely optomechanical circulator with reconfigurable transmission without the need for direct coupling between input and output modes.

  9. Mechanical Enhancement of Sensitivity in Natural Rubber Using Electrolytic Polymerization Aided by a Magnetic Field and MCF for Application in Haptic Sensors

    PubMed Central

    Shimada, Kunio; Saga, Norihiko

    2016-01-01

    Sensors are essential to the fulfillment of every condition of haptic technology, and they need simultaneously to sense shear stress as well as normal force, and temperature. They also must have a strong and simple structure, softness, and large extension. To achieve these conditions simultaneously, we enhanced the sensitivity of sensors utilizing natural rubber (NR)-latex through the application of electrolytic polymerization focused on the isoprene C=C bonds in natural rubbers such as NR-latex, and then applied a magnetic field and magnetic compound fluid (MCF) as magnetically responsive fluid. When an electric field alone was used in the rubber, the effect of electrolytic polymerization was very small compared to the effect in well-known conductive polymer solution such as plastic. The MCF developed by Shimada in 2001 involved magnetite and metal particles, and acts as a filler in NR-latex. By utilizing the magnetic, electric fields and the MCF, we aligned the electrolytically polymerized C=C along the magnetic field line with the magnetic clusters formed by the aggregation of magnetite and metal particles so as to enhance the effect of electrolytic polymerization. We then demonstrated the effectiveness of the new method of rubber vulcanization on the sensitivity of the rubber by experimentally investigating its electric and dynamic characteristics. PMID:27649210

  10. Mechanical Enhancement of Sensitivity in Natural Rubber Using Electrolytic Polymerization Aided by a Magnetic Field and MCF for Application in Haptic Sensors.

    PubMed

    Shimada, Kunio; Saga, Norihiko

    2016-09-18

    Sensors are essential to the fulfillment of every condition of haptic technology, and they need simultaneously to sense shear stress as well as normal force, and temperature. They also must have a strong and simple structure, softness, and large extension. To achieve these conditions simultaneously, we enhanced the sensitivity of sensors utilizing natural rubber (NR)-latex through the application of electrolytic polymerization focused on the isoprene C=C bonds in natural rubbers such as NR-latex, and then applied a magnetic field and magnetic compound fluid (MCF) as magnetically responsive fluid. When an electric field alone was used in the rubber, the effect of electrolytic polymerization was very small compared to the effect in well-known conductive polymer solution such as plastic. The MCF developed by Shimada in 2001 involved magnetite and metal particles, and acts as a filler in NR-latex. By utilizing the magnetic, electric fields and the MCF, we aligned the electrolytically polymerized C=C along the magnetic field line with the magnetic clusters formed by the aggregation of magnetite and metal particles so as to enhance the effect of electrolytic polymerization. We then demonstrated the effectiveness of the new method of rubber vulcanization on the sensitivity of the rubber by experimentally investigating its electric and dynamic characteristics.

  11. Three-axis attitude control by two-step rotations using only magnetic torquers in a low Earth orbit near the magnetic equator

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Otsuki, Kensuke; Sugawara, Yoshiki; Saisutjarit, Phongsatorn; Nakasuka, Shinichi

    2016-11-01

    This study proposes a novel method for three-axis attitude control using only magnetic torquers (MTQs). Previously, MTQs have been utilized for attitude control in many low Earth orbit satellites. Although MTQs are useful for achieving attitude control at low cost and high reliability without the need for propellant, these electromagnetic coils cannot be used to generate an attitude control torque about the geomagnetic field vector. Thus, conventional attitude control methods using MTQs assume the magnetic field changes in an orbital period so that the satellite can generate a required attitude control torque after waiting for a change in the magnetic field direction. However, in a near magnetic equatorial orbit, the magnetic field does not change in an inertial reference frame. Thus, satellites cannot generate a required attitude control torque in a single orbital period with only MTQs. This study proposes a method for achieving a rotation about the geomagnetic field vector by generating a torque that is perpendicular to it. First, this study shows that the three-axis attitude control using only MTQs is feasible with a two-step rotation. Then, the study proposes a method for controlling the attitude with the two-step rotation using a PD controller. Finally, the proposed method is assessed by examining the results of numerical simulations.

  12. On the discrimination between nucleation and propagation in nanomagnetic logic devices

    NASA Astrophysics Data System (ADS)

    Ziemys, Grazvydas; Csaba, Gyorgy; Becherer, Markus

    2018-05-01

    In this paper we present the extensive nucleation and propagation characterization of fabricated nanomagnets by applying ns-range magnetic field pulses. For that, an artificial nucleation center (ANC) is created by focused ion beam irradiation (FIB) of a 50 x 50 nm area at the side of a Co/Pt island as typically used in Nanomagnetic Logic with perpendicular anisotropy (pNML). Laser-Kerr Microscope is applied for statistical evaluation of the switching probability of the whole magnet, while the wide-field-Kerr microscopy is employed to discriminate between the nucleation process (which takes place at the irradiated ANC area) and the domain wall propagation process along the magnet. We show that the nanomagnet can be treated as a single Stoner-Wolfhart particle above 100 ns field-pulse width, as the whole magnetization is switched during the field-pulse. By contrary, for field-pulse width below 100 ns, the domain wall (DW) motion is the limiting process hindering full magnetization reversal on that time-scale. However, the nucleation still follows the Arrhenius law. The results allow precise understanding of the reversal process and highlight the need for faster DW speed in pNML materials.

  13. Comparison of Coil Designs for Transcranial Magnetic Stimulation on Mice

    NASA Astrophysics Data System (ADS)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    2015-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive treatment for neurological disorders using time varying magnetic field. The electric field generated by the time varying magnetic field is used to depolarize the brain neurons which can lead to measurable effects. TMS provides a surgical free method for the treatment of neurological brain disorders like depression, post-traumatic stress disorder, traumatic brain injury and Parkinson's disease. Before using TMS on human subjects, it is appropriate that its effects are verified on animals such as mice. The magnetic field intensity and stimulated region of the brain can be controlled by the shape, position and current in the coils. There are few reports on the designs of the coils for mice. In this paper, different types of coils are developed and compared using an anatomically realistic mouse model derived from MRI images. Parameters such as focality, depth of the stimulation, electric field strength on the scalp and in the deep brain regions, are taken into account. These parameters will help researchers to determine the most suitable coil design according to their need. This should result in improvements in treatment of specific disorders. Carver Charitable Trust.

  14. Magnetic behaviour of multisegmented FeCoCu/Cu electrodeposited nanowires

    NASA Astrophysics Data System (ADS)

    Núñez, A.; Pérez, L.; Abuín, M.; Araujo, J. P.; Proenca, M. P.

    2017-04-01

    Understanding the magnetic behaviour of multisegmented nanowires (NWs) is a major key for the application of such structures in future devices. In this work, magnetic/non-magnetic arrays of FeCoCu/Cu multilayered NWs electrodeposited in nanoporous alumina templates are studied. Contrarily to most reports on multilayered NWs, the magnetic layer thickness was kept constant (30 nm) and only the non-magnetic layer thickness was changed (0 to 80 nm). This allowed us to tune the interwire and intrawire interactions between the magnetic layers in the NW array creating a three-dimensional (3D) magnetic system without the need to change the template characteristics. Magnetic hysteresis loops, measured with the applied field parallel and perpendicular to the NWs’ long axis, showed the effect of the non-magnetic Cu layer on the overall magnetic properties of the NW arrays. In particular, introducing Cu layers along the magnetic NW axis creates domain wall nucleation sites that facilitate the magnetization reversal of the wires, as seen by the decrease in the parallel coercivity and the reduction of the perpendicular saturation field. By further increasing the Cu layer thickness, the interactions between the magnetic segments, both along the NW axis and of neighbouring NWs, decrease, thus rising again the parallel coercivity and the perpendicular saturation field. This work shows how one can easily tune the parallel and perpendicular magnetic properties of a 3D magnetic layer system by adjusting the non-magnetic layer thickness.

  15. The radial electric field as a measure for field penetration of resonant magnetic perturbations

    DOE PAGES

    Mordijck, Saskia; Moyer, Richard A.; Ferraro, Nathaniel M.; ...

    2014-06-18

    In this study, we introduce a new indirect method for identifying the radial extent of the stochastic layer due to applying resonant magnetic perturbations (RMPs) in H-mode plasmas by measuring the spin-up of the plasma near the separatrix. This spin-up is a predicted consequence of enhanced loss of electrons due to magnetic stochastization. We find that in DIII-D H-mode plasmas with n = 3 RMPs applied for edge localized mode (ELM) suppression, the stochastic layer is limited to the outer 5% region in normalized magnetic flux, Ψ N. This is in contrast to vacuum modeling predictions where this layer canmore » penetrate up to 20% in Ψ N. Theoretical predictions of a stochastic red radial electric field, E r component exceed the experimental measurements by about a factor 3 close to the separatrix, suggesting that the outer region of the plasma is weakly stochastic. Linear response calculations with M3D-C1, a resistive two-fluid model, show that in this outer 5% region, plasma response often reduces the resonant magnetic field components by 67% or more in comparison with vacuum calculations. These results for DIII-D are in reasonable agreement with results from the MAST tokamak, where the magnetic field perturbation from vacuum field calculations needed to be reduced by 75% for agreement with experimental measurements of the x-point lobe structures.« less

  16. Three-dimensional magnetic engineering: The programs magnus and epilog

    NASA Astrophysics Data System (ADS)

    Fan, Mingwu; Pissanetzky, Sergio

    1988-10-01

    We present the post-processor EPILOG for the well established finite element program MAGNUS for three-dimensional magnetic engineering. MAGNUS solves problems of magnetostatics with nonlinear magnetic materials, permanent magnets and electric currents, for any 3-D geometry. The two-scalar-potentials formulation of magnetostatics used by MAGNUS combines numerical accuracy and computational efficiency, and is considered state of the art. The well known program KUBIK is used as a pre-processor to describe the geometry and finite element mesh. KUBIK is highly interactive and allows the user to effectively control all geometric details. The needs of magnetic engineers, however, go far beyond the simple availability of a mathematical solution. Once the solution has been obtained by MAGNUS in the form of a continuous magnetic scalar potential function defined at every point in the solution domain, those needs are met by EPILOG. EPILOG is command operated. Commands are independent of each other and can be used in any order, or not used at all. The purpose of each command is to use the solution for the calculation of a derived quantity or the production of a plot or table. The following derived quantities can be obtained: the magnetic energy in specific regions, the magnetic force on specified conductors in space, the magnetic torque on specified conductors, the magnetic flux across a given surface in space, the inductance of a circuit, and a variety of line integrals for specified lines in space. A useful facility is the automatic calculation of harmonic multipoles averaged along the beam direction for accelerator magnets, essential for end analysis and the integral effect of the magnetic field on the beam. Graphical facilities include color plots of the shapes of the conductors, the geometry, field lines and surfaces of constant magnetic scalar potential in specified regions of space. EPILOG produces a device independent graphical metafile, which can be seen on any device by running the Graphical Kernel System GKS or some other graphics package. Another important feature of EPILOG is its ability to produce tables of quantities such as the scalar potential, the total field, the field of conductors alone, the magnetic permeability, etc. Editing options allow the user to specify where the quantities are to be tabulated, such as on equispaced points on a line or arc in space. One useful application is the evaluation of the maximum field inside conductors for superconducting magnets. The ability of EPILOG to accurately provide the magnetic field components at any given point in space is convenient for its use as input to particle tracking programs. EPILOG can easily be interfaced to such a program. EPILOG is appropriate for complicated 3-D geometries, common in wigglers and undulators, or for the analysis of ends of bending magnets, as required in the design of synchrotron light sources.

  17. Mass determination with the magnetic levitation method—proposal for a new design of electromechanical system

    NASA Astrophysics Data System (ADS)

    Kajastie, H.; Riski, K.; Satrapinski, A.

    2009-06-01

    The method for realization of the kilogram using 'superconducting magnetic levitation' was re-evaluated at MIKES. The realization of the kilogram based on the traditional levitation method is limited by the imperfections of the superconducting materials and the indefinable dependence between supplied electrical energy and the gravitational potential energy of the superconducting mass. This indefiniteness is proportional to the applied magnetic field and is caused by increasing losses and trapped magnetic fluxes. A new design of an electromechanical system for the levitation method is proposed. In the proposed system the required magnetic field and the corresponding force are reduced, as the mass of the body (hanging from a mass comparator) is compensated by the reference weight on the mass comparator. The direction of the magnetic force can be upward (levitation force, when the body is over the coil) or downward (repulsive force, when the body is under the coil). The initial force to move the body from the coil is not needed and magnetic field sensitivity is increased, providing linearization of displacement versus applied current. This new construction allows a lower magnetic induction, reduces energy losses compared with previous designs of electromechanical system and reduces the corresponding systematic error.

  18. Cryogenic Considerations for Superconducting Magnet Design for the Material Plasma Exposure eXperiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C; Demko, Dr. Jonathan A; Lumsdaine, Arnold

    2015-01-01

    In order to determine long term performance of plasma facing components such as diverters and first walls for fusion devices, next generation plasma generators are needed. A Material Plasma Exposure eXperiment (MPEX) has been proposed to address this need through the generation of plasmas in front of the target with electron temperatures of 1-15 eV and electron densities of 1020 to 1021 m-3. Heat fluxes on target diverters could reach 20 MW/m2. In order generate this plasma, a unique radio frequency helicon source and heating of electrons and ions through Electron Bernstein Wave (EBW) and Ion Cyclotron Resonance Heating (ICRH)more » has been proposed. MPEX requires a series of magnets with non-uniform central fields up to 2 T over a 5m length in the heating and transport region and 1 T uniform central field over a 1-m length on a diameter of 1.3 m. Given the field requirements, superconducting magnets are under consideration for MPEX. In order to determine the best construction method for the magnets, the cryogenic refrigeration has been analyzed with respect to cooldown and operational performance criteria for open-cycle and closed-cycle systems, capital and operating costs of these system, and maturity of supporting technology such as cryocoolers. These systems will be compared within the context of commercially available magnet constructions to determine the most economical method for MPEX operation. The current state of the MPEX magnet design including details on possible superconducting magnet configurations will be presented.« less

  19. Influence of demagnetization coil configuration on residual field in an extremely magnetically shielded room: Model and measurements

    NASA Astrophysics Data System (ADS)

    Knappe-Grueneberg, Silvia; Schnabel, Allard; Wuebbeler, Gerd; Burghoff, Martin

    2008-04-01

    The Berlin magnetically shielded room 2 (BMSR-2) features a magnetic residual field below 500pT and a field gradient level less than 0.5pT/mm, which are needed for very sensitive human biomagnetic recordings or low field NMR. Nevertheless, below 15Hz, signals are compromised by an additional noise contribution due to vibration forced sensor movements in the field gradient. Due to extreme shielding, the residual field and its homogeneity are determined mainly by the demagnetization results of the mumetal shells. Eight different demagnetization coil configurations can be realized, each results in a characteristic field pattern. The spatial dc flux density inside BMSR-2 is measured with a movable superconducting quantum interference device system with an accuracy better than 50pT. Residual field and field distribution of the current-driven coils fit well to an air-core coil model, if the high permeable core and the return lines outside of the shells are neglected. Finally, we homogenize the residual field by selecting a proper coil configuration.

  20. The inverse problem to the evaluation of magnetic fields

    NASA Astrophysics Data System (ADS)

    Caspi, S.; Helm, M.; Laslett, L. J.; Brady, V.

    1992-12-01

    In the design of superconducting magnet elements, such as may be required to guide and focus ions in a particle accelerator, one frequently premises some particular current distribution and then proceeds to compute the consequent magnetic field through use of the laws of Biot and Savart or of Ampere. When working in this manner one of course may need to revise frequently the postulated current distribution before arriving at a resulting magnetic field of acceptable field quality. It therefore is of interest to consider an alternative ('inverse') procedure in which one specifies a desired character for the field required in the region interior to the winding and undertakes them to evaluate the current distribution on the specified winding surface that would provide this desired field. We may note that in undertaking such an inverse procedure we would wish, on practical grounds, to avoid the use of any 'double-layer' distributions of current on the winding surface or interface but would not demand that no fields be generated in the exterior region, so that in this respect the goal would differ in detail from that discussed by other authors, in analogy to the distribution sought in electrostatics by the so-caged Green's equivalent stratum.

  1. Collimator with attachment mechanism and system

    DOEpatents

    Kross, Brian J [Yorktown, VA; McKisson, John [Hampton, VA; Stolin, Aleksandr [Morgantown, WV; Weisenberger, Andrew G [Yorktown, VA; Zorn, Carl [Yorktown, VA

    2012-07-10

    A self-aligning collimator for a radiation imaging device that is secured and aligned through the use of a plurality of small magnets. The collimator allows for the rapid exchange, removal, or addition of collimators for the radiation imaging device without the need for tools. The accompanying method discloses the use of magnets and accompanying magnetic fields to align and secure collimators in a radiation imaging assembly.

  2. Multiscale numerical simulations of magnetoconvection at low magnetic Prandtl and Rossby numbers.

    NASA Astrophysics Data System (ADS)

    Maffei, S.; Calkins, M. A.; Julien, K. A.; Marti, P.

    2017-12-01

    The dynamics of the Earth's outer core is characterized by low values of the Rossby (Ro), Ekman and magnetic Prandtl numbers. These values indicate the large spectra of temporal and spatial scales that need to be accounted for in realistic numerical simulations of the system. Current direct numerical simulation are not capable of reaching this extreme regime, suggesting that a new class of models is required to account for the rich dynamics expected in the natural system. Here we present results from a quasi-geostrophic, multiscale model based on the scale separation implied by the low Ro typical of rapidly rotating systems. We investigate a plane layer geometry where convection is driven by an imposed temperature gradient and the hydrodynamic equations are modified by a large scale magnetic field. Analytical investigation shows that at values of thermal and magnetic Prandtl numbers relevant for liquid metals, the energetic requirements for the onset of convection is not significantly altered even in the presence of strong magnetic fields. Results from strongly forced nonlinear numerical simulations show the presence of an inverse cascade, typical of 2-D turbulence, when no or weak magnetic field is applied. For higher values of the magnetic field the inverse cascade is quenched.

  3. The revised electromagnetic fields directive and worker exposure in environments with high magnetic flux densities.

    PubMed

    Stam, Rianne

    2014-06-01

    Some of the strongest electromagnetic fields (EMF) are found in the workplace. A European Directive sets limits to workers' exposure to EMF. This review summarizes its origin and contents and compares magnetic field exposure levels in high-risk workplaces with the limits set in the revised Directive. Pubmed, Scopus, grey literature databases, and websites of organizations involved in occupational exposure measurements were searched. The focus was on EMF with frequencies up to 10 MHz, which can cause stimulation of the nervous system. Selected studies had to provide individual maximum exposure levels at the workplace, either in terms of the external magnetic field strength or flux density or as induced electric field strength or current density. Indicative action levels and the corresponding exposure limit values for magnetic fields in the revised European Directive will be higher than those in the previous version. Nevertheless, magnetic flux densities in excess of the action levels for peripheral nerve stimulation are reported for workers involved in welding, induction heating, transcranial magnetic stimulation, and magnetic resonance imaging (MRI). The corresponding health effects exposure limit values for the electric fields in the worker's body can be exceeded for welding and MRI, but calculations for induction heating and transcranial magnetic stimulation are lacking. Since the revised European Directive conditionally exempts MRI-related activities from the exposure limits, measures to reduce exposure may be necessary for welding, induction heating, and transcranial nerve stimulation. Since such measures can be complicated, there is a clear need for exposure databases for different workplace scenarios with significant EMF exposure and guidance on good practices. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  4. Technical Note: A Monte Carlo study of magnetic-field-induced radiation dose effects in mice

    PubMed Central

    Liao, Zhongxing; Melancon, Adam D.; Guindani, Michele; Followill, David S.; Tailor, Ramesh C.; Hazle, John D.; Court, Laurence E.

    2015-01-01

    Purpose: Magnetic fields are known to alter radiation dose deposition. Before patients receive treatment using an MRI-linear accelerator (MRI-Linac), preclinical studies are needed to understand the biological consequences of magnetic-field-induced dose effects. In the present study, the authors sought to identify a beam energy and magnetic field strength combination suitable for preclinical murine experiments. Methods: Magnetic field dose effects were simulated in a mouse lung phantom using various beam energies (225 kVp, 350 kVp, 662 keV [Cs-137], 2 MV, and 1.25 MeV [Co-60]) and magnetic field strengths (0.75, 1.5, and 3 T). The resulting dose distributions were compared with those in a simulated human lung phantom irradiated with a 6 or 8 MV beam and orthogonal 1.5 T magnetic field. Results: In the human lung phantom, the authors observed a dose increase of 45% and 54% at the soft-tissue-to-lung interface and a dose decrease of 41% and 48% at the lung-to-soft-tissue interface for the 6 and 8 MV beams, respectively. In the mouse simulations, the magnetic fields had no measurable effect on the 225 or 350 kVp dose distribution. The dose increases with the Cs-137 beam for the 0.75, 1.5, and 3 T magnetic fields were 9%, 29%, and 42%, respectively. The dose decreases were 9%, 21%, and 37%. For the 2 MV beam, the dose increases were 16%, 33%, and 31% and the dose decreases were 9%, 19%, and 30%. For the Co-60 beam, the dose increases were 19%, 54%, and 44%, and the dose decreases were 19%, 42%, and 40%. Conclusions: The magnetic field dose effects in the mouse phantom using a Cs-137, 3 T combination or a Co-60, 1.5 or 3 T combination most closely resemble those in simulated human treatments with a 6 MV, 1.5 T MRI-Linac. The effects with a Co-60, 1.5 T combination most closely resemble those in simulated human treatments with an 8 MV, 1.5 T MRI-Linac. PMID:26328998

  5. SU-F-J-147: Magnetic Field Dose Response Considerations for a Linac Monitor Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, M; Fallone, B

    Purpose: The impact of magnetic fields on the readings of a linac monitor chamber have not yet been investigated. Herein we examine the total dose response as well as any deviations in the beam parameters of flatness and symmetry when a Varian monitor chamber is irradiated within an applied magnetic field. This work has direct application to the development of Linac-MR systems worldwide. Methods: A Varian monitor chamber was modeled in the Monte Carlo code PENELOPE and irradiated in the presence of a magnetic field with a phase space generated from a model of a Linac-MR prototype system. The magneticmore » field strength was stepped from 0 to 3.0T in both parallel and perpendicular directions with respect to the normal surface of the phase space. Dose to each of the four regions in the monitor chamber were scored separately for every magnetic field adaptation to evaluate the effect of the magnetic field on flatness and symmetry. Results: When the magnetic field is perpendicular to the phase space normal we see a change in dose response with a maximal deviation (10–25% depending on the chamber region) near 0.75T. In the direction of electron deflection we expectedly see opposite responses in chamber regions leading to a measured asymmetry. With a magnetic field parallel to the phase space normal we see no measured asymmetries, however there is a monotonic rise in dose response leveling off at about +12% near 2.5T. Conclusion: Attention must be given to correct for the strength and direction of the magnetic field at the location of the linac monitor chamber in hybrid Linac-MR devices. Elsewise the dose sampled by these chambers may not represent the actual dose expected at isocentre; additionally there may be a need to correct for the symmetry of the beam recorded by the monitor chamber. Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization).« less

  6. The contribution of inductive electric fields to particle energization in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Ilie, R.; Toth, G.; Liemohn, M. W.; Chan, A. A.

    2017-12-01

    Assessing the relative contribution of potential versus inductive electric fields at the energization of the hot ion population in the inner magnetosphere is only possible by thorough examination of the time varying magnetic field and current systems using global modeling of the entire system. We present here a method to calculate the inductive and potential components of electric field in the entire magnetosphere region. This method is based on the Helmholtz vector decomposition of the motional electric field as calculated by the BATS-R-US model, and is subject to boundary conditions. This approach removes the need to trace independent field lines and lifts the assumption that the magnetic field lines can be treated as frozen in a stationary ionosphere. In order to quantify the relative contributions of potential and inductive electric fields at driving plasma sheet ions into the inner magnetosphere, we apply this method for the March 17th, 2013 geomagnetic storm. We present here the consequences of slow continuous changes in the geomagnetic field as well as the strong tail dipolarizations on the distortion of the near-Earth magnetic field and current systems. Our findings indicate that the inductive component of the electric field is comparable, and even higher at times than the potential component, suggesting that the electric field induced by the time varying magnetic field plays a crucial role in the overall particle energization in the inner magnetosphere.

  7. Long-term vacuum tests of single-mode vertical cavity surface emitting laser diodes used for a scalar magnetometer

    NASA Astrophysics Data System (ADS)

    Hagen, C.; Ellmeier, M.; Piris, J.; Lammegger, R.; Jernej, I.; Magnes, W.; Murphy, E.; Pollinger, A.; Erd, C.; Baumjohann, W.

    2017-11-01

    Scalar magnetometers measure the magnitude of the magnetic field, while vector magnetometers (mostly fluxgate magnetometers) produce three-component outputs proportional to the magnitude and the direction of the magnetic field. While scalar magnetometers have a high accuracy, vector magnetometers suffer from parameter drifts and need to be calibrated during flight. In some cases, full science return can only be achieved by a combination of vector and scalar magnetometers.

  8. Observable Signatures of Energy Release in Braided Coronal Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontin, D. I.; Janvier, M.; Tiwari, S. K.

    We examine the turbulent relaxation of solar coronal loops containing non-trivial field line braiding. Such field line tangling in the corona has long been postulated in the context of coronal heating models. We focus on the observational signatures of energy release in such braided magnetic structures using MHD simulations and forward modeling tools. The aim is to answer the following question: if energy release occurs in a coronal loop containing braided magnetic flux, should we expect a clearly observable signature in emissions? We demonstrate that the presence of braided magnetic field lines does not guarantee a braided appearance to themore » observed intensities. Observed intensities may—but need not necessarily—reveal the underlying braided nature of the magnetic field, depending on the degree and pattern of the field line tangling within the loop. However, in all cases considered, the evolution of the braided loop is accompanied by localized heating regions as the loop relaxes. Factors that may influence the observational signatures are discussed. Recent high-resolution observations from Hi-C have claimed the first direct evidence of braided magnetic fields in the corona. Here we show that both the Hi-C data and some of our simulations give the appearance of braiding at a range of scales.« less

  9. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. In the fall of 2010 (when the North Pole was most visible), there was a strong flow in the North while in the spring of 2011 (when the South Pole was most visible) the flow there was weaker. With these results, we have a possible solution to this polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun s polar regions in general and the polar meridional flow in particular.

  10. Fluxgate magnetometer offset vector determination by the 3D mirror mode method

    NASA Astrophysics Data System (ADS)

    Plaschke, F.; Goetz, C.; Volwerk, M.; Richter, I.; Frühauff, D.; Narita, Y.; Glassmeier, K.-H.; Dougherty, M. K.

    2017-07-01

    Fluxgate magnetometers on-board spacecraft need to be regularly calibrated in flight. In low fields, the most important calibration parameters are the three offset vector components, which represent the magnetometer measurements in vanishing ambient magnetic fields. In case of three-axis stabilized spacecraft, a few methods exist to determine offsets: (I) by analysis of Alfvénic fluctuations present in the pristine interplanetary magnetic field, (II) by rolling the spacecraft around at least two axes, (III) by cross-calibration against measurements from electron drift instruments or absolute magnetometers, and (IV) by taking measurements in regions of well-known magnetic fields, e.g. cometary diamagnetic cavities. In this paper, we introduce a fifth option, the 3-dimensional (3D) mirror mode method, by which 3D offset vectors can be determined using magnetic field measurements of highly compressional waves, e.g. mirror modes in the Earth's magnetosheath. We test the method by applying it to magnetic field data measured by the following: the Time History of Events and Macroscale Interactions during Substorms-C spacecraft in the terrestrial magnetosheath, the Cassini spacecraft in the Jovian magnetosheath and the Rosetta spacecraft in the vicinity of comet 67P/Churyumov-Gerasimenko. The tests reveal that the achievable offset accuracies depend on the ambient magnetic field strength (lower strength meaning higher accuracy), on the length of the underlying data interval (more data meaning higher accuracy) and on the stability of the offset that is to be determined.

  11. Novel semi-airborne CSEM system for the exploration of mineral resources

    NASA Astrophysics Data System (ADS)

    Nittinger, Christian; Cherevatova, Maria; Becken, Michael; Rochlitz, Raphael; Günther, Thomas; Martin, Tina; Matzander, Ulrich

    2017-04-01

    Within the DESMEX project (Deep Electromagnetic Sounding for Mineral Exploration), a semi-airborne CSEM system for mineral exploration is developed which aims to achieve a penetration depth of 1 km with a large areal coverage. Harmonically Time-varying electrical currents are injected with a grounded transmitter in order to measure the electric field on the ground and induced magnetic fields with highly sensitive magnetic sensors in the air. To measure the magnetic field and its variations, three-axis induction coils (MFS-11e by Metronix) and fluxgate sensors (Bartington FGS-03) are mounted on the platform towed by a helicopter. In addition, there is a SQUID based magnetometer, developed by IPHT and Supracon AG, available for future measurements. We deploy the different magnetometer sensors to cover a broad frequency range of 1-10000Hz. During the flight, the sensors encounter a broad variety of motion/vibration which produces noise in the magnetic field sensors. Therefore, a high accuracy motion tracking system is installed within the bird and a low vibrating system design needs to be considered in the airborne sensor platform. We conducted several flights with different source positions in a test area in Germany, which is already covered by ground based measurements. Based on the data, we discuss possible calibration schemes which are needed to overcome orthogonality and scaling errors in the fluxgate data as well as orientation errors. We apply noise correction schemes to the data and calculate transfer functions between the magnetic field and the source current. First 1-D inversion models based on the estimated transfer functions are calculated and compared to existing conductivity models from DC geoelectrics and helicopter electromagnetic (HEM) measurements.

  12. Discovery of massive star formation quenching by non-thermal effects in the centre of NGC 1097

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.; Minguez, P.; Prieto, M. A.; Fernández-Ontiveros, J. A.

    2018-01-01

    Observations show that massive star formation quenches first at the centres of galaxies. To understand quenching mechanisms, we investigate the thermal and non-thermal energy balance in the central kpc of NGC 1097—a prototypical galaxy undergoing quenching—and present a systematic study of the nuclear star formation efficiency and its dependencies. This region is dominated by the non-thermal pressure from the magnetic field, cosmic rays and turbulence. A comparison of the mass-to-magnetic flux ratio of the molecular clouds shows that most of them are magnetically critical or supported against the gravitational collapse needed to form the cores of massive stars. Moreover, the star formation efficiency of the clouds drops with the magnetic field strength. Such an anti-correlation holds with neither the turbulent nor the thermal pressure. Hence, a progressive build up of the magnetic field results in high-mass stars forming inefficiently, and this may be the cause of the low-mass stellar population in the bulges of galaxies.

  13. Development and testing of passive tracking markers for different field strengths and tracking speeds.

    PubMed

    Peeters, J M; Seppenwoolde, J-H; Bartels, L W; Bakker, C J G

    2006-03-21

    Susceptibility markers for passive tracking need to be small in order to maintain the shape and mechanical properties of the endovascular device. Nevertheless, they also must have a high magnetic moment to induce an adequate artefact at a variety of scan techniques, tracking speeds and, preferably, field strengths. Paramagnetic markers do not satisfy all of these requirements. Ferro- and ferrimagnetic materials were therefore investigated with a vibrating sample magnetometer and compared with the strongly paramagnetic dysprosium oxide. Results indicated that the magnetic behaviour of stainless steel type AISI 410 corresponds the best with ideal marker properties. Markers with different magnetic moments were constructed and tested in in vitro and in vivo experiments. The appearance of the corresponding artefacts was field strength independent above magnetic saturation of 1.5 T. Generally, the contrast-to-noise ratio decreased at increasing tracking speed and decreasing magnetic moment. Device depiction was most consistent at a frame rate of 20 frames per second.

  14. The Potential for Ambient Plasma Wave Propulsion

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at frequencies below the ion cyclotron frequency. They have been observed in both laboratory and astrophysical settings. On Earth, they are being investigated as a possible means for plasma heating, current drive, and momentum addition in magnetic confinement fusion systems. In addition, Alfven waves have been proposed as a mechanism for acceleration of the solar wind away from the sun.

  15. Development of a Magnetic-Core, Transverse-Field AF Demagnetizer

    NASA Astrophysics Data System (ADS)

    Schillinger, W. E.; Morris, E. R.; Coe, R. S.; Finn, D. R.

    2016-12-01

    A standard cleaning technique in the study of a rock's natural remanent magnetization (NRM) is progressive Alternating Field Demagnetization (AFD). However, for a significant fraction of samples, demagnetization is not completed by the maximum field of 200 mT or less available in commercial instruments; a field at least two or three times higher is needed. The data from 0 to 160 mT for a resistant red bed sample from Tibet is shown below. It just starts to reveal the sample's characteristic component, but this interpretation would have been tenuous, since 85% of the NRM remained untouched. Continued demagnetization to 500 mT helps a great deal, reducing the NRM to just 30% of its initial value and proving that the segment from 160 to 500 mT indeed trends toward the origin. We have constructed an alternating field (AF) demagnetizer that can routinely operate at fields of up to 0.6 Tesla. It uses a magnetic core in an air-cooled coil and is compatible with our existing sample handler for automated demagnetization and measurement experiments. Nonlinearities of the magnetic core are not a significant problem; even harmonics of the magnetic field are ≤1 ppm of the fundamental and so generate negligible anhysteretic remanence. A surprising result during the testing was that the coil's inductance changed with magnetic field. This made it necessary to add an auto-tuning feature, to keep the drive's frequency on the coil's resonance. We have recently added the ability to include a DC field of up to 0.5 mT, parallel to the alternating field, to perform Anhysteretic Remanent Magnetization (ARM), partial ARM experiments and anisotropy of ARM. We will report on these ARM results at the AGU meeting. Currently the maximum field we can obtain is 600 mT, but by reshaping the core to minimize flux leakage, significantly higher fields should be attainable, since the saturation flux density of the core material is 1.5T.

  16. Monitoring magnetar outbursts .

    NASA Astrophysics Data System (ADS)

    Israel, G. L.

    We report on recent results concerning the timing properties of two transient sources, namely SGR 0418+5729 and Swift J1822.3-1606, for which dedicated monitoring programs have been carried out in the latest years. The timing analysis allowed us to obtain the first measurement of the first period derivative of SGR 0418+5729, dot {P}=4(1)×1015ss-1, significant at a ˜3.5sigma confidence level. This leads to a surface dipolar magnetic field of Bdip˜6×1012 Gauss, confirming SGR 0418+5729 as the lowest magnetic field magnetar. The X-ray timing analysis of Swift J1822.3-1606 showed that a second period derivative is needed in order to fit well the pulsation phases. The period derivative of dot {P}=1.1(4)×10-13s s-1leads to an estimate of the dipolar surface magnetic field of Bdip=3×1013 G. This measurement makes Swift J1822.3-1606, the second magnetar with a dipolar magnetic field lower than the electron critical field (after SGR 0418+5729; \\citealt{rea10}).

  17. SU-F-T-324: Experimental Measurement of Optically Stimulated Luminescence Detectors in a MR-IGRT Environment Toward Assessing Magnetic Field Effects On These Devices and Their Use as An In-Vivo Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, M; Curcuru, A; Yaddanapudi, S

    Purpose: To characterize magnetic field effects on Optically Stimulated Luminescence Detectors (OSLDs) for use as an in-vivo dosimeter in an MRIGRT machine. Methods: Landauer OSLD nano-dots and the MicroStar II reader were used to measure and record OSLDs exposed in and on a solid water phantom in a 10.5 × 10.5 cm{sup 2} field, Co-60, 0.32-Tesla MR-IGRT machine - with and without the presence of the magnetic field. Two orthogonal gantry angles were considered to assess orientation effects on the OSLDs with respect to the incident angle of the radiation beam and magnetic field. The same OSLDs were then usedmore » (after readout and bleaching) when the magnetic field was restored. Results: The measured surface dose decreased by 14.1 ± 1.8% when magnetic field was ’on’ due to contamination electrons being swept away by the field. Doses at both 0.5 cm and 5 cm depth increased by 6.5 ± 0.9% and 8.8 ± 0.5% respectively when the magnetic field was present and the OSLDs oriented with their long axis parallel with the incident beam. This contrasts with an increased dose of 2.7 ± 1.1% when the magnetic field was present and the OSLDs were oriented with their long axis perpendicular to the incident beam. Conclusion: Previous works have shown that OSLDs have a dependence on beam incidence angle. Our current work suggests an additional dependence on the presence of the magnetic field when the beam is not perpendicular to the plane of the detector and this effect needs to be considered. Furthermore, the use of an in-vivo dosimeter was shown to have no effect on image quality during the use of MR guidance. Future work will focus on the use of an electromagnet with a linear accelerator to further characterize these effects.« less

  18. Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries

    DOE PAGES

    Wan, Weishi; Brouwer, Lucas; Caspi, Shlomo; ...

    2015-10-23

    We present a design of superconducting magnets, optimized for application in a gantry for proton therapy. We have introduced a new magnet design concept, called an alternating-gradient canted cosine theta (AG-CCT) concept, which is compatible with an achromatic layout. This layout allows a large momentum acceptance. The 15 cm radius of the bore aperture enables the application of pencil beam scanning in front of the SC-magnet. The optical and dynamic performance of a gantry based on these magnets has been analyzed using the fields derived (via Biot-Savart law) from the actual windings of the AG-CCT combined with the full equationsmore » of motion. The results show that with appropriate higher order correction, a large 3D volume can be rapidly scanned with little beam shape distortion. A very big advantage is that all this can be done while keeping the AG-CCT fields fixed. This reduces the need for fast field ramping of the superconducting magnets between the successive beam energies used for the scanning in depth and it is important for medical application since this reduces the technical risk (e.g., a quench) associated with fast field changes in superconducting magnets. For proton gantries the corresponding superconducting magnet system holds promise of dramatic reduction in weight. For heavier ion gantries there may furthermore be a significant reduction in size.« less

  19. Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries

    NASA Astrophysics Data System (ADS)

    Wan, Weishi; Brouwer, Lucas; Caspi, Shlomo; Prestemon, Soren; Gerbershagen, Alexander; Schippers, Jacobus Maarten; Robin, David

    2015-10-01

    We present a design of superconducting magnets, optimized for application in a gantry for proton therapy. We have introduced a new magnet design concept, called an alternating-gradient canted cosine theta (AG-CCT) concept, which is compatible with an achromatic layout. This layout allows a large momentum acceptance. The 15 cm radius of the bore aperture enables the application of pencil beam scanning in front of the SC-magnet. The optical and dynamic performance of a gantry based on these magnets has been analyzed using the fields derived (via Biot-Savart law) from the actual windings of the AG-CCT combined with the full equations of motion. The results show that with appropriate higher order correction, a large 3D volume can be rapidly scanned with little beam shape distortion. A very big advantage is that all this can be done while keeping the AG-CCT fields fixed. This reduces the need for fast field ramping of the superconducting magnets between the successive beam energies used for the scanning in depth and it is important for medical application since this reduces the technical risk (e.g., a quench) associated with fast field changes in superconducting magnets. For proton gantries the corresponding superconducting magnet system holds promise of dramatic reduction in weight. For heavier ion gantries there may furthermore be a significant reduction in size.

  20. Electron beam control for barely separated beams

    DOEpatents

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method for achieving independent control of multiple beams in close proximity to one another, such as in a multi-pass accelerator where coaxial beams are at different energies, but moving on a common axis, and need to be split into spatially separated beams for efficient recirculation transport. The method for independent control includes placing a magnet arrangement in the path of the barely separated beams with the magnet arrangement including at least two multipole magnets spaced closely together and having a multipole distribution including at least one odd multipole and one even multipole. The magnetic fields are then tuned to cancel out for a first of the barely separated beams to allow independent control of the second beam with common magnets. The magnetic fields may be tuned to cancel out either the dipole component or tuned to cancel out the quadrupole component in order to independently control the separate beams.

  1. Effect of Discontinuities and Penetrations on the Shielding Efficacy of High Temperature Superconducting Magnetic Shields

    NASA Astrophysics Data System (ADS)

    Hatwar, R.; Kvitkovic, J.; Herman, C.; Pamidi, S.

    2015-12-01

    High Temperature Superconducting (HTS) materials have been demonstrated to be suitable for applications in shielding of both DC and AC magnetic fields. Magnetic shielding is required for protecting sensitive instrumentation from external magnetic fields and for preventing the stray magnetic fields produced by high power density equipment from affecting neighbouring devices. HTS shields have high current densities at relatively high operating temperatures (40-77 K) and can be easily fabricated using commercial HTS conductor. High current densities in HTS materials allow design and fabrication of magnetic shields that are lighter and can be incorporated into the body and skin of high power density devices. HTS shields are particularly attractive for HTS devices because a single cryogenic system can be used for cooling the device and the associated shield. Typical power devices need penetrations for power and signal cabling and the penetrations create discontinuities in HTS shields. Hence it is important to assess the effect of the necessary discontinuities on the efficacy of the shields and the design modifications necessary to accommodate the penetrations.

  2. Line-of-sight magnetic flux imbalances caused by electric currents

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Rabin, Douglas

    1995-01-01

    Several physical and observational effects contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0-15%, depending on the character of the current-carying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other- probably larger- effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.

  3. Effects of a Guide Field on the Larmor Electric Field and Upstream Electron Temperature Anisotropy in Collisionless Asymmetric Magnetic Reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ek-In, Surapat; Ruffolo, David; Malakit, Kittipat

    We perform the first study of the properties of the Larmor electric field (LEF) in collisionless asymmetric magnetic reconnection in the presence of an out-of-plane (guide) magnetic field for different sets of representative upstream parameters at Earth’s dayside magnetopause with an ion temperature greater than the electron temperature (the ion-to-electron temperature ratio fixed at 2) using two-dimensional particle-in-cell simulations. We show that the LEF does persist in the presence of a guide field. We study how the LEF thickness and strength change as a function of guide field and the magnetospheric temperature and reconnecting magnetic field strength. We find thatmore » the thickness of the LEF structure decreases, while its magnitude increases when a guide field is added to the reconnecting magnetic field. The added guide field makes the Larmor radius smaller, so the scaling with the magnetospheric ion Larmor radius is similar to that reported for the case without a guide field. Note, however, that the physics causing the LEF is not well understood, so future work in other parameter regimes is needed to fully predict the LEF for arbitrary conditions. We also find that a previously reported upstream electron temperature anisotropy arises in the vicinity of the LEF region both with and without a guide field. We argue that the generation of the anisotropy is linked to the existence of the LEF. The LEF can be used in combination with the electron temperature anisotropy as a signature to effectively identify dayside reconnection sites in observations.« less

  4. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    NASA Astrophysics Data System (ADS)

    Duan, Aiying; Jiang, Chaowei; Hu, Qiang; Zhang, Huai; Gary, G. Allen; Wu, S. T.; Cao, Jinbin

    2017-06-01

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ˜10°. This suggests that the CESE-MHD-NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (˜30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  5. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Aiying; Zhang, Huai; Jiang, Chaowei

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from themore » region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.« less

  6. Detection of Primordial Magnetic Fields in TeV gamma-ray data

    NASA Astrophysics Data System (ADS)

    Wingler, A.

    The analysis of the time-variable flux of γ-ray photons from extragalactic sources is currently the only proposed way to directly determine the magnetic field strengths in intergalactic space - far away from galaxies and clusters (in the cosmological "voids") - in the range below about 10,10 Gauss (Plaga 1995). Remnant magnetic fields with field strengths much below this, which may well have formed in early cosmological times, could exist in these voids. Due to their interaction with infrared photons TeV gamma-rays induce pair production in intergalactic space. The electrons and positrons are deflected by ambient magnetic fields and produce γ-rays via inverse Compton scattering that are delayed with respect to the original photons in an energy-dependent, characteristic manner. A standard method to identify these delayed events in a data sample of a source with a variable VHE γ-ray flux (as available from several Cherenkov telescope experiments for the high-emission phase of the AGN Mrk 501 in 1997) is described. Monte-Carlo simulations of existing data sets (taking into backgrounds and instrumental limitations) are used to explore how sensitive data sets similar to the existing ones are to primordial magnetic fields. We find that about 22000 (15000) events from a source with characteristics similar to Mrk 501 are needed to detect a primordial B field of 3 (10) atto Gauss (10,18 G) with a 3 significance.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constable, S.A.; Orange, Arnold S.; Hoversten, G. Michael

    Induction in electrically conductive seawater attenuates themagnetotelluric (MT) fields and, coupled with a minimum around 1 Hz inthe natural magnetic field spectrum, leads to a dramatic loss of electricand magnetic field power on the sea floor at periods shorter than 1000 s,For this reason the marine MT method traditionally has been used only atperiods of 10(3) to 10(5) s to probe deep mantle structure; rarely does asea-floor MT response extend to a 100-s period. To be useful for mappingcontinental shelf structure at depths relevant to petroleum exploration,however, MT measurements need to be made at periods between 1 and 1000 s.Thismore » can be accomplished using ac-coupled sensors, induction coils forthe magnetic field, and an electric field amplifier developed for marinecontrolled-source applications. The electrically quiet sea floor allowsthe attenuated electric field to be amplified greatly before recording;in deep (l-km) water, motional noise in magnetic field sensors appearsnot to be a problem. In shallower water, motional noise does degrade themagnetic measurement, but sea-floor magnetic records can be replaced byland recordings, producing an effective sea-surface MT response. Fieldtrials of such equipment in l-km-deep water produced good-quality MTresponses at periods of 3 to 1000 s: in shallower water, responses to afew hertz can be obtained. Using an autonomous sea-floor data loggerdeveloped at Scripps Institution of Oceanography, marine surveys of 50 to100 sites are feasible.« less

  8. Rotational magnetization: Problems in experimental and theoretical studies of electrical steels and amorphous magnetic materials

    NASA Astrophysics Data System (ADS)

    Moses, A. J.

    1994-03-01

    Flux rotating in the plane of laminations of amorphous materials or electrical steels can cause additional losses in electrical machines. To make full use of laboratory rotational magnetization studies, a better understanding of the nature of rotational flux in machine cores is needed. This paper highlights the need for careful laboratory simulation of the conditions which occur in actual machines. Single specimen tests must produce uniform flux over a given measuring region and output from field and flux sensors need careful analysis. Differences between thermal and flux sensing methods are shown as well as anomalies caused when the magnetisation direction is reversed in an anistropic specimen. Methods of overcoming these problems are proposed.

  9. Theoretical analysis of flux amplification by soft magnetic material in a putative biological magnetic-field receptor.

    PubMed

    Shcherbakov, Valera P; Winklhofer, Michael

    2010-03-01

    Birds are endowed with a magnetic sense that allows them to detect Earth's magnetic field and to use it for orientation. Physiological and behavioral experiments have shown the upper beak to host a magnetoreceptor. Putative magnetoreceptive structures in the beak are nerve terminals that each contain a dozen or so of micrometer-sized clusters of superparamagnetic nanocrystals made of magnetite/maghemite and numerous electron-opaque platelets filled with a so far unidentified, amorphous ferric iron compound. The platelets typically form chainlike structures, which have been proposed to function as magnetic flux focusers for detecting the intensity of the geomagnetic field. Here, we test that proposition from first principles and develop an unconstrained model to determine the equilibrium distribution of magnetization along a linear chain of platelets which we assume to behave magnetically soft and to have no magnetic remanence. Our analysis, which is valid for arbitrary values of the intrinsic magnetic susceptibility chi , shows that chi needs to be much greater than unity to amplify the external field by two orders of magnitude in a chain of platelets. However, the high amplification is confined to the central region of the chain and subsides quadratically toward the ends of the chain. For large values of chi , the possibility opens up of realizing magnetoreceptor mechanisms on the basis of attraction forces between adjacent platelets in a linear chain. The force in the central region of the chain may amount to several pN, which would be sufficient to convert magnetic input energy into mechanical output energy. The striking feature of an ensemble of platelets is its ability to organize into tightly spaced chains under the action of an external field of given strength. We discuss how this property can be exploited for a magnetoreception mechanism.

  10. Tuning Magnetic Anisotropy Through Ligand Substitution in Five-Coordinate Co(II) Complexes.

    PubMed

    Schweinfurth, David; Krzystek, J; Atanasov, Mihail; Klein, Johannes; Hohloch, Stephan; Telser, Joshua; Demeshko, Serhiy; Meyer, Franc; Neese, Frank; Sarkar, Biprajit

    2017-05-01

    Understanding the origin of magnetic anisotropy and having the ability to tune it are essential needs of the rapidly developing field of molecular magnetism. Such attempts at determining the origin of magnetic anisotropy and its tuning are still relatively infrequent. One candidate for such attempts are mononuclear Co(II) complexes, some of which have recently been shown to possess slow relaxation of their magnetization. In this contribution we present four different five-coordinated Co(II) complexes, 1-4, that contain two different "click" derived tetradentate tripodal ligands and either Cl - or NCS - as an additional, axial ligand. The geometric structures of all four complexes are very similar. Despite this, major differences are observed in their electronic structures and hence in their magnetic properties as well. A combination of temperature dependent susceptibility measurements and high-frequency and -field EPR (HFEPR) spectroscopy was used to accurately determine the magnetic properties of these complexes, expressed through the spin Hamiltonian parameters: g-values and zero-field splitting (ZFS) parameters D and E. A combination of optical d-d absorption spectra together with ligand field theory was used to determine the B and Dq values of the complexes. Additionally, state of the art quantum chemical calculations were applied to obtain bonding parameters and to determine the origin of magnetic anisotropy in 1-4. This combined approach showed that the D values in these complexes are in the range from -9 to +9 cm -1 . Correlations have been drawn between the bonding nature of the ligands and the magnitude and sign of D. These results will thus have consequences for generating novel Co(II) complexes with tunable magnetic anisotropy and hence contribute to the field of molecular magnetism.

  11. Radiation protection effectiveness of a proposed magnetic shielding concept for manned Mars missions

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.; Shinn, J. L.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    The effectiveness of a proposed concept for shielding a manned Mars vehicle using a confined magnetic field configuration is evaluated by computing estimated crew radiation exposures resulting from galactic cosmic rays and a large solar flare event. In the study the incident radiation spectra are transported through the spacecraft structure/magnetic shield using the deterministic space radiation transport computer codes developed at Langley Research Center. The calculated exposures unequivocally demonstrate that magnetic shielding could provide an effective barrier against solar flare protons but is virtually transparent to the more energetic galactic cosmic rays. It is then demonstrated that through proper selection of materials and shield configuration, adequate and reliable bulk material shielding can be provided for the same total mass as needed to generate and support the more risky magnetic field configuration.

  12. Designing asymmetric multiferroics with strong magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team

    2015-03-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  13. Designing asymmetric multiferroics with strong magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Lu, X. Z.; Xiang, H. J.

    2014-09-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the "asymmetric multiferroic." In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  14. The correlation between the total magnetic flux and the total jet power

    NASA Astrophysics Data System (ADS)

    Nokhrina, Elena E.

    2017-12-01

    Magnetic field threading a black hole ergosphere is believed to play the key role in both driving the powerful relativistic jets observed in active galactic nuclei and extracting the rotational energy from a black hole via Blandford-Znajek process. The magnitude of magnetic field and the magnetic flux in the vicinity of a central black hole is predicted by theoretical models. On the other hand, the magnetic field in a jet can be estimated through measurements of either the core shift effect or the brightness temperature. In both cases the obtained magnetic field is in the radiating domain, so its direct application to the calculation of the magnetic flux needs some theoretical assumptions. In this paper we address the issue of estimating the magnetic flux contained in a jet using the measurements of a core shift effect and of a brightness temperature for the jets, directed almost at the observer. The accurate account for the jet transversal structure allow us to express the magnetic flux through the observed values and an unknown rotation rate of magnetic surfaces. If we assume the sources are in a magnetically arrested disk state, the lower limit for the rotation rate can be obtained. On the other hand, the flux estimate may be tested against the total jet power predicted by the electromagnetic energy extraction model. The resultant expression for power depends logarithmically weakly on an unknown rotation rate. We show that the total jet power estimated through the magnetic flux is in good agreement with the observed power. We also obtain the extremely slow rotation rates, which may be an indication that the majority of the sources considered are not in the magnetically arrested disk state.

  15. Probing Magnetic Fields of Early Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    How do magnetic fields form and evolve in early galaxies? A new study has provided some clever observations to help us answer this question.The Puzzle of Growing FieldsDynamo theory is the primary model describing how magnetic fields develop in galaxies. In this picture, magnetic fields start out as weak seed fields that are small and unordered. These fields then become ordered and amplified by large-scale rotation and turbulence in galaxy disks and halos, eventually leading to the magnetic fields we observe in galaxies today.Schematic showinghow to indirectly measure protogalactic magnetic fields. The measured polarization of a background quasar is altered by the fields in a foreground protogalaxy. Click for a closer look! [Farnes et al. 2017/Adolf Schaller/STSCI/NRAO/AUI/NSF]To test this model, we need observations of the magnetic fields in young protogalaxies. Unfortunately, we dont have the sensitivity to be able to measure these fields directly but a team of scientists led by Jamie Farnes (Radboud University in the Netherlands) have come up with a creative alternative.The key is to find early protogalaxies that absorb the light of more distant background objects. If a protogalaxy lies between us and a distant quasar, then magnetic fields of the protogalaxy if present will affect the polarization measurements of the background quasar.Observing Galactic Building BlocksTop: Redshift distribution for the background quasars in the authors sample. Bottom: Redshift distribution for the foreground protogalaxies the authors are exploring. [Farnes et al. 2017]Farnes and collaborators examined two types of foreground protogalaxies: Damped Lyman-Alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). They obtained polarimetric data for a sample of 114 distant quasars with nothing in the foreground (the control sample), 19 quasars with DLAs in the foreground, and 27 quasars with LLSs in the foreground. They then used statistical analysis techniques to draw conclusions about the magnetic fields in the foreground protogalaxies.Farnes and collaborators were unable to detect either coherent or random magnetic fields in DLAs. LLSs, however, showed some evidence of coherent magnetic fields and significant evidence of incoherent magnetic fields. The observations show that the magnetized gas in LLSs must be highly turbulent on a scale of 520 parsecs similar to turbulence scales in the Milky Way.Support for DynamosWhat do these observations imply? Both support the dynamo theory of magnetic field growth in galaxies!Polarization fraction distributions (top) and their logarithms (bottom) for sources with and without protogalaxies in the foreground (pink for DLAs, blue for LLSs, and grey for no intervenor). Statistical analysis reveals that the distribution for LLSs differs from the control sample, indicating the presence of magnetized gas. [Adapted from Farnes et al. 2017]The DLAs appear to consist of mostly non-turbulent quiescent gas; no dynamo action is currently occurring in these protogalaxies. The LLSs, on the other hand, appear to be growing their random magnetic fields via a turbulent dynamo. Thefields have not yet had enough time to become ordered like the fields of more evolved galaxies, however.Farnes and collaborators data indicate that magnetic fields are indeed being gradually built up in early galaxies by dynamos. They also suggest that DLAs may represent an earlier galactic evolutionary stage than LLSs, as DLAs havent yet had the time to develop their magnetic fields to a detectable level.A future increase in sample size will certainly help improve our understanding of the field formation process. In the meantime, the data in this study provide the first observational picture of magnetic field evolution in galaxies, lending excellent support to theoretical models.CitationJ. S. Farnes et al 2017 ApJ 841 67. doi:10.3847/1538-4357/aa7060

  16. On Ex Situ NMR: Developing portable low-cost and/or single sided NMR/MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demas, V; Herberg, J; Maxwell, R

    2006-06-09

    Nuclear magnetic resonance spectroscopy (NMR) is of unsurpassed versatility in its ability to non-destructively probe for chemical identity. Portable, low-cost NMR sensors would enable on site identification of potentially hazardous substances, such as signatures from production of nuclear, chemical, and biological weapon agents, narcotics, explosives, toxins, and poisons. There exist however problems that need to be considered in the case of such sensors: (a) small-scale magnets produce inhomogeneous magnetic fields and therefore undesired Larmor frequency distributions that conceal much of the useful spectral information, and (b) sensitivity in most experiments decreases due to the inherently low and strongly inhomogeneous fieldsmore » associated with portable instruments. Our approach is to: (a) try to improve the field of low cost magnets either with hardware (e.g. magnet design and construction of ''shim coils'') or via special pulse sequences, where the field is ''effectively shimmed'' to appear homogeneous to the sample, and (b) to use microcoils to improve sensitivity and to allow focusing in smaller regions and therefore smaller static field variations. We have been working in setting up a table top, 2-Tesla permanent Halbach magnet system for tabletop NMR. The Spectrometer console is a Tecmag Apollo, controlled by a dell notebook. Currently an external linear chemagnetics rf amplifier is being used, though the power requirements for our system are quite low (a few Watts). The Magnetic Resonance lab in LLNL, has developed several types and sizes of microcoils, which have been proven to perform well for NMR experiments. We have evaluated an rf, 360 {micro}m O.D., microcoil probe that was built previously. We have finished mapping the magnetic field of the magnet. In the optimal position (in terms of field quality), the field inhomogeneity was at 17ppm. Preliminary fluorine spectra with a resolved two peak separation have now been obtained. For the field, as mapped, we have initial designs of first degree shimming, or gradient coils (linear correction to the field). We have calculated ''shim pulses'' to effectively shim the mapped field, for ideal gradient coils. These calculations will be repeated after the coils will be built and evaluated.« less

  17. Characterization and Modeling of Materials Responsible for Planetary Crustal Magnetism

    NASA Astrophysics Data System (ADS)

    Strauss, Becky E.

    Earth and Mercury are the only terrestrial planets in our solar system with present-day magnetic dipole fields generated by internal dynamo systems. In contrast, Mars and the Moon show evidence of past dipole fields in the form of crustal magnetic anomalies; to hold measurable magnetizations, crustal materials must have been exposed to an applied field. While the physical principles of magnetic recording are consistent between terrestrial planets, the particular conditions at each planet control the mechanisms by which crustal materials may be magnetized and limit the types of minerals that can retain magnetic remanence. As the suite of magnetic materials used for studies of remanence expands, the need for new methods follows. The integration of rock magnetic techniques with microscopy and chemical analyses enables the reconstruction of increasingly comprehensive narratives of remanence acquisition and alteration, even in materials that are challenging to study using traditional methods. This thesis demonstrates the utility of a materials approach to rock magnetism by applying techniques designed for terrestrial use in a planetary context. The first of two case studies focuses on calcite cave deposits as a means to demonstrate how novel techniques can be used to unlock previously inaccessible archives of magnetic information. Tandem magnetic and microscopic analyses improve our understanding of the rock magnetic properties of weakly magnetic stalagmites and their potential for paleomagnetic research, as well as illuminating the pathways of remanence acquisition in cave systems. The second case study addresses the magnetic anomalies recently detected by the MESSENGER orbiter at Mercury. These anomalies are consistent with remanence acquired in a dipole field. However, in the absence of physical samples, the types of magnetic minerals that could be holding remanence in Mercury's hot, highly reducing surface environment have not yet been determined. Orbital data is combined with fundamental rock magnetic principles to constrain the magnetic mineralogy of Mercury and to propose mechanisms of magnetization and remagnetization in the lithosphere.

  18. Magnetic Tomography - Assessing Tie Bar and Dowel Bar Placement Accuracy : Technical Summary

    DOT National Transportation Integrated Search

    2017-12-01

    Timely detection of misplaced steel would provide feedback needed to correct the construction process. To address this need, KDOT developed a field instrument capable of non-destructively assessing the placement (depth and orientation) accuracy of re...

  19. Implications of p +Pb measurements on the chiral magnetic effect in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Belmont, R.; Nagle, J. L.

    2017-08-01

    The chiral magnetic effect (CME) is a fundamental prediction of QCD, and various observables have been proposed in heavy ion collisions to access this physics. Recently the CMS Collaboration [V. Khachatryan et al., Phys. Rev. Lett. 118, 122301 (2017), 10.1103/PhysRevLett.118.122301] has reported results from p +Pb collisions at 5.02 TeV on one such observable, the three-point correlator. The results are strikingly similar to those measured at the same particle multiplicity in Pb +Pb collisions, which have been attributed to the CME. This similarity, combined with two key assumptions about the magnetic field in p +Pb collisions, presents a major challenge to the CME picture. These two assumptions as stated in the CMS paper are (i) that the magnetic field in p +Pb collisions is smaller than that in Pb +Pb collisions and (ii) that the magnetic field direction is uncorrelated with the flow angle. We test these two postulates in the Monte Carlo-Glauber framework and find that the magnetic fields are not significantly smaller in central p +Pb collisions; however the magnetic field direction and the flow angle are indeed uncorrelated. The second finding alone gives strong evidence that the three-point correlator signal in Pb +Pb and p +Pb collisions is not an indication of the CME. Similar measurements in d +Au over a range of energies accessible at the BNL Relativistic Heavy Ion Collider would be elucidating. In the same calculational framework, we find that even in Pb +Pb collisions, where the magnetic field direction and the flow angle are correlated, there exist large inhomogeneities that are on the size scale of topological domains. These inhomogeneities need to be incorporated in any detailed CME calculation.

  20. Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin

    2011-02-07

    The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting techniquemore » is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.« less

  1. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice

    PubMed Central

    Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub

    2015-01-01

    Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635

  2. SEISMIC DISCRIMINATION OF THERMAL AND MAGNETIC ANOMALIES IN SUNSPOT UMBRAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsey, C.; Cally, P. S.; Rempel, M.

    2010-08-20

    Efforts to model sunspots based on helioseismic signatures need to discriminate between the effects of (1) a strong magnetic field that introduces time-irreversible, vantage-dependent phase shifts, apparently connected to fast- and slow-mode coupling and wave absorption and (2) a thermal anomaly that includes cool gas extending an indefinite depth beneath the photosphere. Helioseismic observations of sunspots show travel times considerably reduced with respect to equivalent quiet-Sun signatures. Simulations by Moradi and Cally of waves skipping across sunspots with photospheric magnetic fields of order 3 kG show travel times that respond strongly to the magnetic field and relatively weakly to themore » thermal anomaly by itself. We note that waves propagating vertically in a vertical magnetic field are relatively insensitive to the magnetic field, while remaining highly responsive to the attendant thermal anomaly. Travel-time measurements for waves with large skip distances into the centers of axially symmetric sunspots are therefore a crucial resource for discrimination of the thermal anomaly beneath sunspot umbrae from the magnetic anomaly. One-dimensional models of sunspot umbrae based on compressible-radiative-magnetic-convective simulations such as by Rempel et al. can be fashioned to fit observed helioseismic travel-time spectra in the centers of sunspot umbrae. These models are based on cooling of the upper 2-4 Mm of the umbral subphotosphere with no significant anomaly beneath 4.5 Mm. The travel-time reductions characteristic of these models are primarily a consequence of a Wilson depression resulting from a strong downward buoyancy of the cooled umbral medium.« less

  3. Fabrication of Fe–Co Magnetostrictive Fiber Reinforced Plastic Composites and Their Sensor Performance Evaluation

    PubMed Central

    Katabira, Kenichi; Yoshida, Yu; Masuda, Atsuji; Watanabe, Akihito; Narita, Fumio

    2018-01-01

    The inverse magnetostrictive effect is an effective property for energy harvesting; the material needs to have large magnetostriction and ease of mass production. Fe–Co alloys being magnetostrictive materials have favorable characteristics which are high strength, ductility, and excellent workability, allowing easy fabrication of Fe–Co alloy fibers. In this study, we fabricated magnetostrictive polymer composites, in which Fe–Co fibers were woven into polyester fabric, and discussed their sensor performance. Compression and bending tests were carried out to measure the magnetic flux density change, and the effects of magnetization, bias magnetic field, and the location of the fibers on the performance were discussed. It was shown that magnetic flux density change due to compression and bending is related to the magnetization of the Fe–Co fiber and the bias magnetic field. The magnetic flux density change of Fe–Co fiber reinforced plastics was larger than that of the plastics with Terfenol-D particles. PMID:29522455

  4. Ultrafast magnetization reversal by picosecond electrical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Wilson, Richard B.; Gorchon, Jon

    The field of spintronics involves the study of both spin and charge transport in solid-state devices. Ultrafast magnetism involves the use of femtosecond laser pulses to manipulate magnetic order on subpicosecond time scales. Here, we unite these phenomena by using picosecond charge current pulses to rapidly excite conduction electrons in magnetic metals. We observe deterministic, repeatable ultrafast reversal of the magnetization of a GdFeCo thin film with a single sub–10-ps electrical pulse. The magnetization reverses in ~10 ps, which is more than one order of magnitude faster than any other electrically controlled magnetic switching, and demonstrates a fundamentally new electricalmore » switching mechanism that does not require spin-polarized currents or spin-transfer/orbit torques. The energy density required for switching is low, projecting to only 4 fJ needed to switch a (20 nm) 3 cell. This discovery introduces a new field of research into ultrafast charge current–driven spintronic phenomena and devices.« less

  5. Ultrafast magnetization reversal by picosecond electrical pulses

    DOE PAGES

    Yang, Yang; Wilson, Richard B.; Gorchon, Jon; ...

    2017-11-03

    The field of spintronics involves the study of both spin and charge transport in solid-state devices. Ultrafast magnetism involves the use of femtosecond laser pulses to manipulate magnetic order on subpicosecond time scales. Here, we unite these phenomena by using picosecond charge current pulses to rapidly excite conduction electrons in magnetic metals. We observe deterministic, repeatable ultrafast reversal of the magnetization of a GdFeCo thin film with a single sub–10-ps electrical pulse. The magnetization reverses in ~10 ps, which is more than one order of magnitude faster than any other electrically controlled magnetic switching, and demonstrates a fundamentally new electricalmore » switching mechanism that does not require spin-polarized currents or spin-transfer/orbit torques. The energy density required for switching is low, projecting to only 4 fJ needed to switch a (20 nm) 3 cell. This discovery introduces a new field of research into ultrafast charge current–driven spintronic phenomena and devices.« less

  6. Measurements of the Magnetic Field of the Upper Chromosphere with Polarimetry

    NASA Technical Reports Server (NTRS)

    Rachmeler, Laurel; Mckenzie, David; Winebarger, Amy; Kobayashi, Ken; Ishikawa, Ryohko; Kubo, Masahito; Narukage, Noriyuki; Bueno, Trujillo, Javier; Auchere, Frederic

    2017-01-01

    A major remaining challenge for heliophysics is to decipher the magnetic structure of the chromosphere. The chromosphere is the critical interface between the Sun's photosphere and corona: it contains more mass than the entire interplanetary heliosphere, requires a heating rate that is larger than that of the corona, and mediates all the energy driving the solar wind, solar atmospheric heating and solar eruptions. While measurements of the magnetic field in the photosphere are routine, the chromosphere poses several extra challenges. The magnetically sensitive lines formed in the upper chromosphere are in the ultraviolet, so space-based observations are required. The lines are often formed over a range of heights, sampling different plasma which complicates the inversion process. These lines are sensitive to the magnetic field via polarized light that is created or modified through the Hanle and Zeeman effects. There are a few observations of these lines, and a significant challenge remains in extracting the magnetic field from the polarization measurements, as detailed model atmospheres with advanced radiative transfer physics are needed. Real progress is obtained by a simultaneous improvement in both the observational side and the modeling side. We present information on the CLASP (Chromospheric LAyer Spectro-Polarimeter) sounding rocket program, and future prospects for these types of measurements.

  7. Testing system for ferromagnetic shape memory microactuators.

    PubMed

    Ganor, Y; Shilo, D; Messier, J; Shield, T W; James, R D

    2007-07-01

    Ferromagnetic shape memory alloys are a class of smart materials that exhibit a unique combination of large strains and fast response when exposed to magnetic field. Accordingly, these materials have significant potential in motion generation applications such as microactuators and sensors. This article presents a novel experimental system that measures the dynamic magnetomechanical behavior of microscale ferromagnetic shape memory specimens. The system is comprised of an alternating magnetic field generator (AMFG) and a mechanical loading and sensing system. The AMFG generates a dynamic magnetic field that periodically alternates between two orthogonal directions to facilitate martensitic variant switching and to remotely achieve a full magnetic actuation cycle, without the need of mechanical resetting mechanisms. Moreover, the AMFG is designed to produce a magnetic field that inhibits 180 degrees magnetization domain switching, which causes energy loss without strain generation. The mechanical loading and sensing system maintains a constant mechanical load on the measured specimen by means of a cantilever beam, while the displacement is optically monitored with a resolution of approximately 0.1 microm. Preliminary measurements using Ni(2)MnGa single crystal specimens, with a cross section of 100x100 microm(2), verified their large actuation strains and established their potential to become a material of great importance in microactuation technology.

  8. The effect of spherical nanoparticles on rheological properties of bi-dispersed magnetorheological fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannappan, K. Thiruppathi, E-mail: thiruppathi.ka@gmail.com; Laherisheth, Zarana; Parekh, Kinnari

    2015-06-24

    In the present investigation, the rheological properties of bi-dispersed magnetorheological (MR) fluid based on Fe{sub 3}O{sub 4} nanosphere and microsphere of iron particles are experimentally investigated. The MR fluid is prepared by substituting nanosphere of 40nm Fe{sub 3}O{sub 4} particles in MR fluids having microsphere iron particles (7-8 μm). Three different weight fractions (0%, 1% and 3%) of nanosphere-microsphere MR fluids are synthesized. In the absence of the magnetic field, substitution of magnetic nanosphere decreases the viscosity lower than without substituted sample at high as well as low shear rate. Upon the application of the magnetic field, the particles alignmore » along the direction of the field, which promotes the yield stress. Here too the yield stress value decreases with magnetic nanosphere substitution. This behaviour is explain based on the inter-particle interaction as well as formation of nanosphere cloud around the magnetic microsphere, which effectively reduces the viscosity and works as weak point when chains are formed. Variation of dynamic yield stress with magnetic field is explained using microscopic model. In any event such fluid does not sediment and is not abrasive so it could be useful if not too high yield stress is needed.« less

  9. Modeling of Magnetoelastic Nanostructures with a Fully-coupled Mechanical-Micromagnetic Model and Its Applications

    NASA Astrophysics Data System (ADS)

    Liang, Cheng-Yen

    Micromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model assuming uniform strain (and/or assuming uniform magnetization). While the uniform strain assumption is reasonable when modeling magnetoelastic thin films, this constant strain approach becomes increasingly inaccurate for smaller in-plane nanoscale structures. In this dissertation, a fully-coupled finite element micromagnetic method is developed. The method deals with the micromagnetics, elastodynamics, and piezoelectric effects. The dynamics of magnetization, non-uniform strain distribution, and electric fields are iteratively solved. This more sophisticated modeling technique is critical for guiding the design process of the nanoscale strain-mediated multiferroic elements such as those needed in multiferroic systems. In this dissertation, we will study magnetic property changes (e.g., hysteresis, coercive field, and spin states) due to strain effects in nanostructures. in addition, a multiferroic memory device is studied. The electric-field-driven magnetization switching by applying voltage on patterned electrodes simulation in a nickel memory device is shown in this work. The deterministic control law for the magnetization switching in a nanoring with electric field applied to the patterned electrodes is investigated. Using the patterned electrodes, we show that strain-induced anisotropy is able to be controlled, which changes the magnetization deterministically in a nano-ring.

  10. Current Collection in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Krivorutsky, E. N.

    1997-01-01

    It is found that the upper-bound limit for current collection in the case of strong magnetic field from the current is close to that given by the Parker-Murphy formula. This conclusion is consistent with the results obtained in laboratory experiments. This limit weakly depends on the shape of the wire. The adiabatic limit in this case will be easily surpassed due to strong magnetic field gradients near the separatrix. The calculations can be done using the kinetic equation in the drift approximation. Analytical results are obtained for the region where the Earth's magnetic field is dominant. The current collection can be calculated (neglecting scattering) using a particle simulation code. Dr. Singh has agreed to collaborate, allowing the use of his particle code. The code can be adapted for the case when the current magnetic field is strong. The needed dm for these modifications is 3-4 months. The analytical description and essential part of the program is prepared for the calculation of the current in the region where the adiabatic description can be used. This was completed with the collaboration of Drs. Khazanov and Liemohn. A scheme of measuring the end body position is also proposed. The scheme was discussed in the laboratory (with Dr. Stone) and it was concluded that it can be proposed for engineering analysis.

  11. The octapolic ellipsoidal term in magnetoencephalography

    NASA Astrophysics Data System (ADS)

    Dassios, George; Hadjiloizi, Demetra; Kariotou, Fotini

    2009-01-01

    The forward problem of magnetoencephalography (MEG) in ellipsoidal geometry has been studied by Dassios and Kariotou ["Magnetoencephalography in ellipsoidal geometry," J. Math. Phys. 44, 220 (2003)] using the theory of ellipsoidal harmonics. In fact, the analytic solution of the quadrupolic term for the magnetic induction field has been calculated in the case of a dipolar neuronal current. Nevertheless, since the quadrupolic term is only the leading nonvanishing term in the multipole expansion of the magnetic field, it contains not enough information for the construction of an effective algorithm to solve the inverse MEG problem, i.e., to recover the position and the orientation of a dipole from measurements of the magnetic field outside the head. For this task, the next multipole of the magnetic field is also needed. The present work provides exactly this octapolic contribution of the dipolar current to the expansion of the magnetic induction field. The octapolic term is expressed in terms of the ellipsoidal harmonics of the third degree, and therefore it provides the highest order terms that can be expressed in closed form using long but reasonable analytic and algebraic manipulations. In principle, the knowledge of the quadrupolic and the octapolic terms is enough to solve the inverse problem of identifying a dipole inside an ellipsoid. Nevertheless, a simple inversion algorithm for this problem is not yet known.

  12. Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation.

    PubMed

    Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing

    2017-11-08

    Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.

  13. Magnetic damping of thermocapillary convection in the floating-zone growth of semiconductor crystals

    NASA Astrophysics Data System (ADS)

    Morthland, Timothy Edward

    The floating zone is one process used to grow high purity semiconductor single crystals. In the floating-zone process, a liquid bridge of molten semiconductor, or melt, is held by surface tension between the upper, melting polycrystalline feed rod and the lower, solidifying single crystal. A perfect crystal would require a quiescent melt with pure diffusion of dopants during the entire period needed to grow the crystal. However, temperature variations along the free surface of the melt lead to gradients of the temperature-dependent surface tension, driving a strong and unsteady flow in the melt, commonly labeled thermocapillary or Marangoni convection. For small temperature differences along the free surface, unsteady thermocapillary convection occurs, disrupting the diffusion controlled solidification and creating undesirable dopant concentration variations in the semiconductor single crystal. Since molten semiconductors are good electrical conductors, an externally applied, steady magnetic field can eliminate the unsteadiness in the melt and can reduce the magnitude of the residual steady motion. Crystal growers hope that a strong enough magnetic field will lead to diffusion controlled solidification, but the magnetic field strengths needed to damp the unsteady thermocapillary convection as a function of floating-zone process parameters is unknown. This research has been conducted in the area of the magnetic damping of thermocapillary convection in floating zones. Both steady and unsteady flows have been investigated. Due to the added complexities in solving Maxwells equations in these magnetohydrodynamic problems and due to the thin boundary layers in these flows, a direct numerical simulation of the fluid and heat transfer in the floating zone is virtually impossible, and it is certainly impossible to run enough simulations to search for neutral stability as a function of magnetic field strength over the entire parameter space. To circumvent these difficulties, we have used matched asymptotic expansions, linear stability theory and numerics to characterize these flows. Some fundamental aspects of the heat transfer and fluid mechanics in these magnetohydrodynamic flows are elucidated in addition to the calculation of the magnetic field strengths required to damp unsteady thermocapillary convection as a function of process parameters.

  14. Magnetic field exposure of commercial airline pilots.

    PubMed

    Hood; Nicholas; Butler; Lackland; Hoel; Mohr

    2000-10-01

    PURPOSE: Airline pilots are exposed to magnetic fields generated by the aircraft's electrical and electronic systems. The purpose of this study was to directly measure the flight deck magnetic fields to which commercial airline pilots are exposed when flying on different aircraft types over a 75-hour flight-duty month.METHODS: Magentic field measurements were taken using personal dosimeters capable of measuring magnetic fields in the 40-800 Hz frequency range. Dosimeters were carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. The data were analyzed by aircraft type, with statistics based on block hours. Block hours begin when the aircraft departs the gate prior to take off and end when the aircraft returns to the gate after landing.RESULTS: Approximately 1008 block hours were recorded at a sampling rate of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200.CONCLUSIONS: Measured flight deck magnetic field levels were substantially above the 0.8 to 1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure.

  15. Spray-Deposited Superconductor/Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  16. Galactic neutral hydrogen and the magnetic ISM foreground

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2018-05-01

    The interstellar medium is suffused with magnetic fields, which inform the shape of structures in the diffuse gas. Recent high-dynamic range observations of Galactic neutral hydrogen, combined with novel data analysis techniques, have revealed a deep link between the morphology of neutral gas and the ambient magnetic field. At the same time, an observational revolution is underway in low-frequency radio polarimetry, driven in part by the need to characterize foregrounds to the cosmological 21-cm signal. A new generation of experiments, capable of high angular and Faraday depth resolution, are revealing complex filamentary structures in diffuse polarization. The relationship between filamentary structures observed in radio-polarimetric data and those observed in atomic hydrogen is not yet well understood. Multiwavelength observations will enable new insights into the magnetic interstellar medium across phases.

  17. A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device

    NASA Astrophysics Data System (ADS)

    Haldar, Arabinda; Kumar, Dheeraj; Adeyeye, Adekunle Olusola

    2016-05-01

    Spin-wave-based devices promise to usher in an era of low-power computing where information is carried by the precession of the electrons' spin instead of dissipative translation of their charge. This potential is, however, undermined by the need for a bias magnetic field, which must remain powered on to maintain an anisotropic device characteristic. Here, we propose a reconfigurable waveguide design that can transmit and locally manipulate spin waves without the need for any external bias field once initialized. We experimentally demonstrate the transmission of spin waves in straight as well as curved waveguides without a bias field, which has been elusive so far. Furthermore, we experimentally show a binary gating of the spin-wave signal by controlled switching of the magnetization, locally, in the waveguide. The results have potential implications in high-density integration and energy-efficient operation of nanomagnetic devices at room temperature.

  18. Magnetic Flux Concentrations in Stratified Turbulent Plasma Due to Negative Effective Magnetic Pressure Instability

    NASA Astrophysics Data System (ADS)

    Jabbari, Sarah

    2015-08-01

    We study a system of a highly stratified turbulent plasma. In such a system, when the magnetic Reynolds number is large enough and there is a background field of suitable strength, a new effect will play role in con- centrating magnetic fields such that it leads to the formation of magnetic spots and bipolar regions. This effect is due to the fact that the turbu- lent pressure is suppressed by the large-scale magnetic field, which adds a negative term to the total mean-field (effective) pressure. This leads to an instability, which is known as the negative effective magnetic pressure instability (NEMPI). Direct numerical simulations (DNS) of isothermally forced turbulence have shown that NEMPI leads to the formation of spots in the presence of an imposed field. Our main aim now is to use NEMPI to explain the formation of active regions and sunspots. To achieve this goal, we need to move progressively to more realistic models. Here we extend our model by allowing the magnetic field to be generated by a dy- namo. A dynamo plays an important role in solar activity. Therefore, it is of interest to investigate NEMPI in the presence of dynamo-generated magnetic fields. Mean-field simulations (MFS) of such systems in spheri- cal geometry have shown how these two instabilities work in concert. In fact NEMPI will be activated as long as the strength of the magnetic field generated by the dynamo is in a proper range (for more detail see Jab- bari et al. 2013). In our new study, we use DNS to investigate a similar system. The turbulence is forced in the entire spherical shell, but the forc- ing is made helical in the lower 30% of the shell, similar to the model of Mitra et al. (2014). We perform simulations using the Pencil Code for different density contrasts and other input parameters. We applied ver- tical field boundary conditions in the r direction. The results show that, when the stratification is high enough, intense bipolar regions form and as time passes, they expand, merge and create giant structures. At the same time, the new structures appear at different latitudes. By extending in φ direction, the size of the bipolar regions decreases. When the helical zone is thinner, the structures appear at a later time.

  19. Harmonic phases of the nanoparticle magnetization: An intrinsic temperature probe

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Collantes, Juan-Mari; Garcia, Jose Angel; Plazaola, Fernando; Sandre, Olivier

    2015-09-01

    Magnetic fluid hyperthermia is a promising cancer therapy in which magnetic nanoparticles act as heat sources activated by an external AC magnetic field. The nanoparticles, located near or inside the tumor, absorb energy from the magnetic field and then heat up the cancerous tissues. During the hyperthermia treatment, it is crucial to control the temperature of different tissues: too high temperature can cause undesired damage in healthy tissues through an uncontrolled necrosis. However, the current thermometry in magnetic hyperthermia presents some important technical problems. The widely used optical fiber thermometers only provide the temperature in a discrete set of spatial points. Moreover, surgery is required to locate these probes in the correct place. In this scope, we propose here a method to measure the temperature of a magnetic sample. The approach relies on the intrinsic properties of the magnetic nanoparticles because it is based on monitoring the thermal dependence of the high order harmonic phases of the nanoparticle dynamic magnetization. The method is non-invasive and it does not need any additional probe or sensor attached to the magnetic nanoparticles. Moreover, this method has the potential to be used together with the magnetic particle imaging technique to map the spatial distribution of the temperature.

  20. EMF Rapid Program Engineering Projects, Project 1, Development of Recommendations for Guidelines for Field Source Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Electric Research and Management, Inc.

    1997-03-11

    The goal of this project is to develop a protocol for measuring the electric and magnetic fields around sources. Data from these measurements may help direct future biological effects research by better defining the complexity of magnetic and electric fields to which humanity is exposed, as well asprovide the basis for rigorous field exposure analysis and risk assessment once the relationship between field exposure and biological response. is better understood. The data base also should have sufficient spatial and temporal characteristics to guide electric and magnetic field management. The goal of Task A is to construct a set of characteristicsmore » that would be ideal to have for guiding and interpreting biological studies and for focusing any future effort at field management. This ideal set will then be quantified and reduced according to the availability (or possible development of) instrumentation to measure the desired characteristics. Factors that also will be used to define pragmatic data sets will be the cost of collecting the data, the cost of developing an adequate data base, and the needed precision in measuring specific characteristics. A field, electric or magnetic, will always be ,some function of time and space. The first step in this section of the protocol development will be to determine what span of time and what portion of space are required to quantify the electric and magnetic fields around sources such as appliances and electrical apparatus. Constraints on time will be set by examining measurement limitations and biological data requirements.« less

  1. Implantable batteryless device for on-demand and pulsatile insulin administration

    NASA Astrophysics Data System (ADS)

    Lee, Seung Ho; Lee, Young Bin; Kim, Byung Hwi; Lee, Cheol; Cho, Young Min; Kim, Se-Na; Park, Chun Gwon; Cho, Yong-Chan; Choy, Young Bin

    2017-04-01

    Many implantable systems have been designed for long-term, pulsatile delivery of insulin, but the lifetime of these devices is limited by the need for battery replacement and consequent replacement surgery. Here we propose a batteryless, fully implantable insulin pump that can be actuated by a magnetic field. The pump is prepared by simple-assembly of magnets and constituent units and comprises a drug reservoir and actuator equipped with a plunger and barrel, each assembled with a magnet. The plunger moves to noninvasively infuse insulin only when a magnetic field is applied on the exterior surface of the body. Here we show that the dose is easily controlled by varying the number of magnet applications. Also, pump implantation in diabetic rats results in profiles of insulin concentration and decreased blood glucose levels similar to those observed in rats treated with conventional subcutaneous insulin injections.

  2. Axial magnetic field injection in magnetized liner inertial fusion

    NASA Astrophysics Data System (ADS)

    Gourdain, P.-A.; Adams, M. B.; Davies, J. R.; Seyler, C. E.

    2017-10-01

    MagLIF is a fusion concept using a Z-pinch implosion to reach thermonuclear fusion. In current experiments, the implosion is driven by the Z-machine using 19 MA of electrical current with a rise time of 100 ns. MagLIF requires an initial axial magnetic field of 30 T to reduce heat losses to the liner wall during compression and to confine alpha particles during fusion burn. This field is generated well before the current ramp starts and needs to penetrate the transmission lines of the pulsed-power generator, as well as the liner itself. Consequently, the axial field rise time must exceed hundreds of microseconds. Any coil capable of being submitted to such a field for that length of time is inevitably bulky. The space required to fit the coil near the liner, increases the inductance of the load. In turn, the total current delivered to the load decreases since the voltage is limited by driver design. Yet, the large amount of current provided by the Z-machine can be used to produce the required 30 T field by tilting the return current posts surrounding the liner, eliminating the need for a separate coil. However, the problem now is the field penetration time, across the liner wall. This paper discusses why skin effect arguments do not hold in the presence of resistivity gradients. Numerical simulations show that fields larger than 30 T can diffuse across the liner wall in less than 60 ns, demonstrating that external coils can be replaced by return current posts with optimal helicity.

  3. Maxwell-Higgs equation on higher dimensional static curved spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulyanto, E-mail: mulyanto37@gmail.com; Akbar, Fiki Taufik, E-mail: ftakbar@fi.itb.ac.id; Gunara, Bobby Eka, E-mail: bobby@fi.itb.ac.id

    In this paper we consider a class of solutions of Maxwell-Higgs equation in higher dimensional static curved spacetimes called Schwarzchild de-Sitter spacetimes. We obtain the general form of the electric fields and magnetic fields in background Schwarzchild de-Sitter spacetimes. However, determining the interaction between photons with the Higgs scalar fields is needed further studies.

  4. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Heczko, O.; Drahokoupil, J.; Straka, L.

    2015-05-01

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  5. Development and characterization of a multi-layer magnetorheological elastomer isolator based on a Halbach array

    NASA Astrophysics Data System (ADS)

    Przybylski, Michal; Sun, Shuaishuai; Li, Weihua

    2016-10-01

    Most existing vibration isolators and dampers based on magnetorheological (MR) materials need electrical power to feed magnetic coils to stimulate the MR material, so if there is a loss of power, such as during a strong earthquake or system failure, they are unable to protect the structure. This paper outlines the design and test of a controllable multilayered magnetorheological elastomer (MRE) isolator based on a circular dipolar Halbach array; which is a set of magnets that generates a strong and uniform magnetic field. Combining an MRE layered isolator system with the Halbach array allows for constant vibration isolation with very low power consumption, where the power generated is only used to adjust the Halbach position. When this system was tested it successfully altered the lateral stiffness and damping force by 81.13% and 148.72%, respectively. This paper also includes an extended analysis of the magnetic field generated by the circular dipolar Halbach array and a discussion of the improvements that may potentially improve the range of magnetic fields generated.

  6. Design of a Nb3Sn Magnet for a 4th Generation ECR Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prestemon, S,; Trillaud, F.; Caspi, S.

    2008-08-17

    The next generation of Electron Cyclotron Resonant (ECR) ion sources are expected to operate at a heating radio frequency greater than 40 GHz. The existing 3rd generation systems, exemplified by the state of the art system VENUS, operate in the 10-28 GHz range, and use NbTi superconductors for the confinement coils. The magnetic field needed to confine the plasma scales with the rf frequency, resulting in peak fields on the magnets of the 4th generation system in excess of 10 T. High field superconductors such as Nb{sub 3}Sn must therefore be considered. The magnetic design of a 4th. generation ECRmore » ion source operating at an rf frequency of 56 GHz is considered. The analysis considers both internal and external sextupole configurations, assuming commercially available Nb{sub 3}Sn material properties. Preliminary structural design issues are discussed based on the forces and margins associated with the coils in the different configurations, leading to quantitative data for the determination of a final magnet design.« less

  7. Magnetic and electronic properties of Nd--La and Ce--La alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, T.S.

    1979-05-01

    The electrical resistivity, thermoelectric power and magnetic susceptibility on Nd single crystals and polycrystalline dhcp Nd--La and Ce--La alloys have been measured at low temperatures. The measurements on the Nd--La alloys show features at the Neel temperatures and also show additional magnetic ordering phenomena. Some of these other features are dependent on the thermal history of the sample. Magnetic field studies are needed to correlate these features with observed neutron diffraction effects. Several magnetic features are seen in the Ce--La alloy system also, although the measurements are plagued with the problem of fcc contamination. In addition, alloys containing Ce showmore » Kondo effects. The logarithmic term in the resistivity is explained well by the theory of Liu et al. which uses a mean field to approximate the 4f-4f interactions in the nondilute alloys. The large peak in the thermopower of Ce--La alloys is explained well by the theory of Bhattacharjee and Coqblin which incorporates Kondo scattering from excited crystal field levels.« less

  8. Measurement of Magnetic Field Uniformity For a Neutron Electric Dipole Moment Detector with New Lead Endcaps

    NASA Astrophysics Data System (ADS)

    Kulkarni, Anita; Filippone, Bradley; Slutsky, Simon; Swank, Christopher; Carr, Robert; Osthelder, Charles; Biswas, Aritra; Molina, Daniel

    2016-09-01

    Over the last several decades, physicists have been measuring the neutron electric dipole moment (nEDM) with greater and greater sensitivity. The latest experiment we are developing will have 100 times more sensitivity than the previous leading experiment. A nonzero nEDM could, among other consequences, explain the presence of more matter than antimatter in the universe. To measure the nEDM with high accuracy, it is necessary to have a very uniform magnetic field inside the detector since non-uniformities can create false signals via the geometric phase effect. One way to improve field uniformity is to add superconducting lead endcaps to the detector, which constrain the fields at their surfaces to be parallel to them. Here, we test how the endcaps improve field uniformity by measuring the magnetic field at various points in a 1/3-scale experimental volume, inferring what the field must be at all other points, and calculating gradients in the field. This knowledge could help guide further steps needed to improve field uniformity and characterize limitations to the sensitivity of nEDM measurements for the full-scale experiment. Rose Hills Foundation, National Science Foundation Grant 1506459, and Department of Energy.

  9. The Effect of Magnetic Fields on Wound Healing

    PubMed Central

    Henry, Steven L; Concannon, Matthew J; Yee, Gloria J

    2008-01-01

    Objective: Magnets are purported to aid wound healing despite a paucity of scientific evidence. The purpose of this study was to evaluate the effect of static magnetic fields on cutaneous wound healing in an animal model. The literature was reviewed to explore the historical and scientific basis of magnet therapy and to define its current role in the evidence-based practice of plastic surgery. Methods: Standardized wounds were created on the backs of 33 Sprague-Dawley rats, which were divided into 3 groups with either a 23 gauss magnet (group 1), a sham magnet (group 2), or nothing (group 3) positioned over the wound. The rate of wound closure by secondary intention was compared between the groups. Literature review was conducted through searches of PubMed and Ovid databases for articles pertinent to magnets and wound healing. Results: Wounds in the magnet group healed in an average of 15.3 days, significantly faster than those in either the sham group (20.9 days, P = .006) or control group (20.3 days, P < .0001). There was no statistically significant difference between the sham and control groups (P = .45). Conclusions: An externally applied, low-power, static magnetic field increases the rate of secondary healing. Review of the literature reveals conflicting evidence regarding the use of magnetic energy to aid the healing of bone, tendon, and skin. Level I studies are lacking and difficult to execute but are needed to define conclusively the role of magnets in clinical practice. PMID:18725953

  10. Novel concepts in near-field optics: from magnetic near-field to optical forces

    NASA Astrophysics Data System (ADS)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic near-field response of a linear rod antenna is studied with Babinet's principle. Babinet's principle connects the magnetic field of a structure to the electric field of its complement structure. Using combined far- and near-field spectroscopy, imaging, and theory, I identify magnetic dipole and higher order bright and dark magnetic resonances at mid-infrared frequencies. From resonant length scaling and spatial field distributions, I confirm that the theoretical requirement of Babinet's principle for a structure to be infinitely thin and perfectly conducting is still fulfilled to a good approximation in the mid-infrared. Thus Babinet's principle provides access to spatial and spectral magnetic field properties, leading to targeted design and control of magnetic optical antennas. Lastly, a novel form of nanoscale optical spectroscopy based on mechanical detection of optical gradient force is explored. It is to measure the optical gradient force between induced dipole moments of a sample and an atomic force microscope (AFM) tip. My study provides the theoretical basis in terms of spectral behavior, resonant enhancement, and distance dependence of the optical gradient force from numerical simulations for a coupled nanoparticle model geometry. I show that the optical gradient force is dispersive for local electronic and vibrational resonances, yet can be absorptive for collective polaronic excitations. This spectral behavior together with the distance dependence scaling provides the key characteristics for its measurement and distinction from competing processes such as thermal expansion. Furthermore, I provide a perspective for resonant enhancement and control of optical forces in general.

  11. Design optimization of the sensor spatial arrangement in a direct magnetic field-based localization system for medical applications.

    PubMed

    Marechal, Luc; Shaohui Foong; Zhenglong Sun; Wood, Kristin L

    2015-08-01

    Motivated by the need for developing a neuronavigation system to improve efficacy of intracranial surgical procedures, a localization system using passive magnetic fields for real-time monitoring of the insertion process of an external ventricular drain (EVD) catheter is conceived and developed. This system operates on the principle of measuring the static magnetic field of a magnetic marker using an array of magnetic sensors. An artificial neural network (ANN) is directly used for solving the inverse problem of magnetic dipole localization for improved efficiency and precision. As the accuracy of localization system is highly dependent on the sensor spatial location, an optimization framework, based on understanding and classification of experimental sensor characteristics as well as prior knowledge of the general trajectory of the localization pathway, for design of such sensing assemblies is described and investigated in this paper. Both optimized and non-optimized sensor configurations were experimentally evaluated and results show superior performance from the optimized configuration. While the approach presented here utilizes ventriculostomy as an illustrative platform, it can be extended to other medical applications that require localization inside the body.

  12. Opportunities for condensed matter research at the NHMFL

    NASA Astrophysics Data System (ADS)

    Crow, Jack E.

    2004-03-01

    Magnetic fields have long been recognized as critical for science and technology. During the last 20 years, research in high magnetic fields has advanced the world's understanding of a host of materials science issues and led to new states of matter, e.g., the quantum and fractional quantum Hall Effects for which the scientists were awarded Nobel prizes. The demands of science have driven a continuing appetite for higher and more specialized magnetic fields and new capabilities have developed both at the NHMFL and in many other laboratories across the world. In this presentation, a short overview of large-scale worldwide facilities with an emphasis on those available at the NHMFL will be presented along with some scientific and technological drivers that have been the underpinnings for the large investments needed to build and support these facilities.

  13. The vector structure of active magnetic fields

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1985-01-01

    Observations are needed to show the form of the strains introduced into the fields above the surface of the Sun. The longitudinal component alone does not provide the basic information, so that it has been necessary in the past to use the filamentary structure observed in H sub alpha to supplement the longitudinal information. Vector measurements provide the additional essential information to determine the strains, with the filamentary structure available as a check for consistency. It is to be expected, then, that vector measurements will permit a direct mapping of the strains imposed on the magnetic fields of active regions. It will be interesting to study the relation of those strains to the emergence of magnetic flux, flares, eruptive prominences, etc. In particular we may hope to study the relaxation of the strains via the dynamical nonequilibrium.

  14. Introduction and a Quick Look at MUESR, the Magnetic Structure and mUon Embedding Site Refinement Suite

    NASA Astrophysics Data System (ADS)

    Bonfà, Pietro; Onuorah, Ifeanyi John; De Renzi, Roberto

    The estimation of the magnetic field generated at a given point by magnetic dipoles is an undergraduate exercise. However, under certain approximation, this is all that is needed to evaluate the local field at the muon site once the interstitial position of the muon in the unit cell is known. The development of an application to specifically solve this problem may therefore seem an excessive effort. At the same time, the lack of a general solution leads to the development of small ad hoc codes that are generally rewritten or re-adapted for different experiments and are poorly optimized. This and other motivations led to the development of MuESR, a python+C tool to perform dipolar field simulations. In this manuscript we will describe the tool, its features and its development strategies.

  15. Planck intermediate results: XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust

    DOE PAGES

    Adam, R.; Ade, P. A. R.; Aghanim, N.; ...

    2016-02-09

    The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less

  16. Planck intermediate results. XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wiesemeyer, H.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm-2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.

  17. Planck intermediate results: XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, R.; Ade, P. A. R.; Aghanim, N.

    The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less

  18. The magnetic fields of hot subdwarf stars

    NASA Astrophysics Data System (ADS)

    Landstreet, J. D.; Bagnulo, S.; Fossati, L.; Jordan, S.; O'Toole, S. J.

    2012-05-01

    Context. Detection of magnetic fields has been reported in several sdO and sdB stars. Recent literature has cast doubts on the reliability of most of these detections. The situation concerning the occurrence and frequency of magnetic fields in hot subdwarfs is at best confused. Aims: We revisit data previously published in the literature, and we present new observations to clarify the question of how common magnetic fields are in subdwarf stars. Methods: We consider a sample of about 40 hot subdwarf stars. About 30 of them have been observed with the FORS1 and FORS2 instruments of the ESO VLT. Results have been published for only about half of the hot subdwarfs observed with FORS. Here we present new FORS1 field measurements for 17 stars, 14 of which have never been observed for magnetic fields before. We also critically review the measurements already published in the literature, and in particular we try to explain why previous papers based on the same FORS1 data have reported contradictory results. Results: All new and re-reduced measurements obtained with FORS1 are shown to be consistent with non-detection of magnetic fields. We explain previous spurious field detections from data obtained with FORS1 as due to a non-optimal method of wavelength calibration. Field detections in other surveys are found to be uncertain or doubtful, and certainly in need of confirmation. Conclusions: There is presently no strong evidence for the occurrence of a magnetic field in any sdB or sdO star, with typical longitudinal field uncertainties of the order of 2-400 G. It appears that globally simple fields of more than about 1 or 2 kG in strength occur in at most a few percent of hot subdwarfs. Further high-precision surveys, both with high-resolution spectropolarimeters and with instruments similar to FORS1 on large telescopes, would be very valuable. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile under observing programmes 072.D-0290 and 075.D-0352, or obtained from the ESO/ST-ECF Science Archive Facility.

  19. Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab

    DOE PAGES

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    2016-12-05

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses inmore » the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.« less

  20. Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses inmore » the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.« less

  1. Fast Switching Magnet for Heavy Ion Beam Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartzell, Josiah

    2017-10-03

    Fast magnets for multiplexing ion beams between different beamlines are technologically challenging and expensive, but there is an ever-growing need to develop such systems for beam separation at research and industrial facilities. For example, The Argonne Tandem Linac Accelerator System (ATLAS) is planning to expand its operations as a multi-user facility and there is a clear need, presently unmet by the industry, for a switching magnet system with the sub-millisecond transient times.In response to this problem, RadiaBeam Technologies is developing a novel pulsed switching magnet system capable of producing a 1.1T peak field over 45 cm length with a shortmore » (<1 ms) rise and fall time. The key enabling innovation in this project is an introduction of a solid-state interposed modulator architecture, which enables to improve magnet performance and reliability and reduce the cost to a practical level.« less

  2. Topological insulator infrared pseudo-bolometer with polarization sensitivity

    DOEpatents

    Sharma, Peter Anand

    2017-10-25

    Topological insulators can be utilized in a new type of infrared photodetector that is intrinsically sensitive to the polarization of incident light and static magnetic fields. The detector isolates single topological insulator surfaces and allows light collection and exposure to static magnetic fields. The wavelength range of interest is between 750 nm and about 100 microns. This detector eliminates the need for external polarization selective optics. Polarization sensitive infrared photodetectors are useful for optoelectronics applications, such as light detection in environments with low visibility in the visible wavelength regime.

  3. The disappearing momentum of the supercurrent in the superconductor-to-normal phase transformation

    NASA Astrophysics Data System (ADS)

    Hirsch, J. E.

    2016-06-01

    A superconductor in a magnetic field has surface currents that prevent the magnetic field from penetrating its interior. These currents carry kinetic energy and mechanical momentum. When the temperature is raised and the system becomes normal the currents disappear. Where do the kinetic energy and mechanical momentum of the currents go, and how? Here we propose that the answer to this question reveals a key necessary condition for materials to be superconductors, that is not part of conventional BCS-London theory: superconducting materials need to have hole carriers.

  4. Flightweight Electro-Magnet Systems

    NASA Technical Reports Server (NTRS)

    Goodrich, Roy G.; Litchford, Ron; Robertson, Tony; Schmidt, Dianne; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    NASA has a need for lightweight high performance magnets to be used in propulsion systems involving plasmas. We report the design, construction, and testing of a six inch diameter by twelve inch long solenoid using high purity aluminum wire operating at a temperature of 77 Kelvin (K) for the current carrying element. High purity aluminum is the material of choice because of three properties that make it optimal for magnetic construction. At 77 K high purity aluminum has one of the lowest resistivities at 77 K of any metal (p = 0.254 muOMEGA-cm), thus reducing the power requirements for creating magnetic fields. Aluminum is a low-density (2.6989 g/cc) material and the end product magnet will be of low total mass compared to similar designs involving copper or other elements. The magneto-resistance of aluminum saturates at low magnetic fields and does not increase indefinitely as is the case in copper. The magnet consists of four layers of closely wound wire and is approximately 150 mm in diameter by 300 mm long. A cylinder made from G - 10 was machined with a spiral groove to hold the high purity Al wire and the wire wound on it. Following the winding, each layer was potted in STYCAST high thermal conductivity epoxy to provide insulation between the turns of the coil and mechanical strength. The magneto-resistance of the coil has been measured at the National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL in externally applied fields to 10 tesla. Following these tests it was energized to the full 2 tesla field it can produce using the facilities of the NHMFL at the Los Alamos National Laboratory. The results of all of these tests will be presented.

  5. Contribution to the Solar Mean Magnetic Field from Different Solar Regions

    NASA Astrophysics Data System (ADS)

    Kutsenko, A. S.; Abramenko, V. I.; Yurchyshyn, V. B.

    2017-09-01

    Seven-year-long seeing-free observations of solar magnetic fields with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) were used to study the sources of the solar mean magnetic field, SMMF, defined as the net line-of-sight magnetic flux divided over the solar disk area. To evaluate the contribution of different regions to the SMMF, we separated all the pixels of each SDO/HMI magnetogram into three subsets: weak (BW), intermediate (BI), and strong (BS) fields. The BW component represents areas with magnetic flux densities below the chosen threshold; the BI component is mainly represented by network fields, remains of decayed active regions (ARs), and ephemeral regions. The BS component consists of magnetic elements in ARs. To derive the contribution of a subset to the total SMMF, the linear regression coefficients between the corresponding component and the SMMF were calculated. We found that i) when the threshold level of 30 Mx cm-2 is applied, the BI and BS components together contribute from 65% to 95% of the SMMF, while the fraction of the occupied area varies in a range of 2 - 6% of the disk area; ii) as the threshold magnitude is lowered to 6 Mx cm-2, the contribution from BI+BS grows to 98%, and the fraction of the occupied area reaches a value of about 40% of the solar disk. In summary, we found that regardless of the threshold level, only a small part of the solar disk area contributes to the SMMF. This means that the photospheric magnetic structure is an intermittent inherently porous medium, resembling a percolation cluster. These findings suggest that the long-standing concept that continuous vast unipolar areas on the solar surface are the source of the SMMF may need to be reconsidered.

  6. A superconducting magnet mandrel with minimum symmetry laminations for proton therapy

    NASA Astrophysics Data System (ADS)

    Caspi, S.; Arbelaez, D.; Brouwer, L.; Dietderich, D. R.; Felice, H.; Hafalia, R.; Prestemon, S.; Robin, D.; Sun, C.; Wan, W.

    2013-08-01

    The size and weight of ion-beam cancer therapy gantries are frequently determined by a large aperture, curved, ninety degree, dipole magnet. The higher fields achievable with superconducting technology promise to greatly reduce the size and weight of this magnet and therefore also the gantry as a whole. This paper reports advances in the design of winding mandrels for curved, canted cosine-theta (CCT) magnets in the context of a preliminary magnet design for a proton gantry. The winding mandrel is integral to the CCT design and significantly affects the construction cost, stress management, winding feasibility, eddy current power losses, and field quality of the magnet. A laminated mandrel design using a minimum symmetry in the winding path is introduced and its feasibility demonstrated by a rapid prototype model. Piecewise construction of the mandrel using this laminated approach allows for increased manufacturing techniques and material choices. Sectioning the mandrel also reduces eddy currents produced during field changes accommodating the scan of beam energies during treatment. This symmetry concept can also greatly reduce the computational resources needed for 3D finite element calculations. It is shown that the small region of symmetry forming the laminations combined with periodic boundary conditions can model the entire magnet geometry disregarding the ends.

  7. Tracing gas and magnetic field with dust : lessons from Planck & Herschel

    NASA Astrophysics Data System (ADS)

    Guillet, Vincent

    2015-08-01

    Dust emission is a powerful tool to measure the gas mass. Its polarization also traces the magnetic field structure. With the Planck and Herschel multi-wavelength observations, we are now able to trace the gas and magnetic field over the full sky, with a large spectrum of scales, and up to high optical depths. But a question arises : is dust a reliable tracer ?I will present the statistical properties of the dust polarized emission as observed by Planck HFI over the full sky, and show how this compares to ancillary measures of starlight polarization in the optical, and to MHD simulations. I will distinguish between what is related to the 3D structure of the magnetic field, and what is related to dust (alignement efficiency, grain shape). I will show that the main features of dust polarization observed by Planck can be explained by the magnetic field structure on the line of sight, without any need for a variation of dust alignment efficiency up to an Av of 5 to 10. Dust polarization is therefore a good and reliable tracer of the magnetic field, at least at moderate extinction.I will also discuss the caveats in deriving the gas mass or dust extinction from a fit to the dust spectral energy distribution : 1) the dust far-infrared opacity is not uniform but varies accross the diffuse ISM, and increases inside star-forming regions; 2) Radiation transfer effects must be taken into account at high optical depths. I will present estimates for the systematic errors that are made when these effects are ignored.

  8. PIC simulation of a thermal anisotropy-driven Weibel instability in a circular rarefaction wave

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Sarri, G.; Murphy, G. C.; Bret, A.; Romagnani, L.; Kourakis, I.; Borghesi, M.; Ynnerman, A.; O'C Drury, L.

    2012-02-01

    The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.

  9. A southern Africa harmonic spline core field model derived from CHAMP satellite data

    NASA Astrophysics Data System (ADS)

    Nahayo, E.; Kotzé, P. B.; McCreadie, H.

    2015-02-01

    The monitoring of the Earth's magnetic field time variation requires a continuous recording of geomagnetic data with a good spatial coverage over the area of study. In southern Africa, ground recording stations are limited and the use of satellite data is needed for the studies where high spatial resolution data is required. We show the fast time variation of the geomagnetic field in the southern Africa region by deriving an harmonic spline model from CHAMP satellite measurements recorded between 2001 and 2010. The derived core field model, the Southern Africa Regional Model (SARM), is compared with the global model GRIMM-2 and the ground based data recorded at Hermanus magnetic observatory (HER) in South Africa and Tsumeb magnetic observatory (TSU) in Namibia where the focus is mainly on the long term variation of the geomagnetic field. The results of this study suggest that the regional model derived from the satellite data alone can be used to study the small scale features of the time variation of the geomagnetic field where ground data is not available. In addition, these results also support the earlier findings of the occurrence of a 2007 magnetic jerk and rapid secular variation fluctuations of 2003 and 2004 in the region.

  10. Designing a Wien Filter Model with General Particle Tracer

    NASA Astrophysics Data System (ADS)

    Mitchell, John; Hofler, Alicia

    2017-09-01

    The Continuous Electron Beam Accelerator Facility injector employs a beamline component called a Wien filter which is typically used to select charged particles of a certain velocity. The Wien filter is also used to rotate the polarization of a beam for parity violation experiments. The Wien filter consists of perpendicular electric and magnetic fields. The electric field changes the spin orientation, but also imposes a transverse kick which is compensated for by the magnetic field. The focus of this project was to create a simulation of the Wien filter using General Particle Tracer. The results from these simulations were vetted against machine data to analyze the accuracy of the Wien model. Due to the close agreement between simulation and experiment, the data suggest that the Wien filter model is accurate. The model allows a user to input either the desired electric or magnetic field of the Wien filter along with the beam energy as parameters, and is able to calculate the perpendicular field strength required to keep the beam on axis. The updated model will aid in future diagnostic tests of any beamline component downstream of the Wien filter, and allow users to easily calculate the electric and magnetic fields needed for the filter to function properly. Funding support provided by DOE Office of Science's Student Undergraduate Laboratory Internship program.

  11. Performance of conduction cooled splittable superconducting magnet package for linear accelerators

    DOE PAGES

    Kashikhin, Vladimire S.; Andreev, N.; Cheban, S.; ...

    2016-02-19

    New Linear Superconducting Accelerators need a superconducting magnet package installed inside SCRF Cryomodules to focus and steer electron or proton beams. A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a splittable in the vertical plane configuration, and features for conduction cooling. The magnet was successfully tested at room temperature, in a liquid He bath, and in a conduction cooling experiment. The paper describes the design and test results including: magnet cooling, training, and magnetic measurements by rotational coils. Furthermore, themore » effects of superconductor and iron yoke magnetization, hysteresis, and fringe fields are discussed.« less

  12. Magnetic Field Effects on Plasma Plumes

    NASA Technical Reports Server (NTRS)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  13. Demagnetization of Nd 2Fe 14B, Pr 2Fe 14B, and Sm 2Co 17 Permanent Magnets in Spallation Irradiation Fields

    DOE PAGES

    Simos, Nikolaos; Ozaki, S.; Mokhov, N.; ...

    2018-02-27

    Prompted by the need for radiation-resistant permanent magnets for insertion devices (IDs) of high-brilliance next-generation synchrotrons such as the National Synchrotron Light Source II, the demagnetization of Nd 2Fe 14B and Pr 2Fe 14B was studied after exposure to a mixed irradiating field. Degradation and damage of the permanent magnetic material by components of electromagnetic showers induced in magnets by intense high-energy electron beams will alter the magnetic field structure of the IDs. Plate-like Nd 2Fe 14B magnets were irradiated to 1.8 Grad dose and were evaluated against Pr 2Fe 14B magnets irradiated to a lower dose of 20 Mrad.more » In addition, annular Sm 2Co 17 and Nd 2Fe 14B magnets integrated within a ferrofluidic feedthrough (FFFT) rotary seal were also irradiated to dose levels of 2 Grad for Sm 2Co 17 and 20 Mrad for Nd 2Fe 14B. Post-irradiation measurements of the magnetic intensity revealed that severe demagnetization exceeding 85% occurs in Nd 2Fe 14B magnets after only 50 Mrad dose and over 87% for Pr 2Fe 14B after 10 Mrad dose. The annular-shaped Sm 2Co 17 magnets of the FFFTs were almost insensitive to irradiation up to a dose of 2 Grad. Annular-shaped Nd 2Fe 14B magnets also showed resistance to demagnetization, a direct consequence of the annular shape which is characterized by the removal of the stronger demagnetizing field present at the center of a disk-like magnet. As a result, the sensitivity of boron-based permanent magnets to neutron energy (thermal versus fast) was also assessed via specifically designed experiments and discussed.« less

  14. Demagnetization of Nd 2Fe 14B, Pr 2Fe 14B, and Sm 2Co 17 Permanent Magnets in Spallation Irradiation Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simos, Nikolaos; Ozaki, S.; Mokhov, N.

    Prompted by the need for radiation-resistant permanent magnets for insertion devices (IDs) of high-brilliance next-generation synchrotrons such as the National Synchrotron Light Source II, the demagnetization of Nd 2Fe 14B and Pr 2Fe 14B was studied after exposure to a mixed irradiating field. Degradation and damage of the permanent magnetic material by components of electromagnetic showers induced in magnets by intense high-energy electron beams will alter the magnetic field structure of the IDs. Plate-like Nd 2Fe 14B magnets were irradiated to 1.8 Grad dose and were evaluated against Pr 2Fe 14B magnets irradiated to a lower dose of 20 Mrad.more » In addition, annular Sm 2Co 17 and Nd 2Fe 14B magnets integrated within a ferrofluidic feedthrough (FFFT) rotary seal were also irradiated to dose levels of 2 Grad for Sm 2Co 17 and 20 Mrad for Nd 2Fe 14B. Post-irradiation measurements of the magnetic intensity revealed that severe demagnetization exceeding 85% occurs in Nd 2Fe 14B magnets after only 50 Mrad dose and over 87% for Pr 2Fe 14B after 10 Mrad dose. The annular-shaped Sm 2Co 17 magnets of the FFFTs were almost insensitive to irradiation up to a dose of 2 Grad. Annular-shaped Nd 2Fe 14B magnets also showed resistance to demagnetization, a direct consequence of the annular shape which is characterized by the removal of the stronger demagnetizing field present at the center of a disk-like magnet. As a result, the sensitivity of boron-based permanent magnets to neutron energy (thermal versus fast) was also assessed via specifically designed experiments and discussed.« less

  15. EPR Imaging at a Few Megahertz Using SQUID Detectors

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Day, Peter; Penanen, Konstantin; Eom, Byeong Ho

    2010-01-01

    An apparatus being developed for electron paramagnetic resonance (EPR) imaging operates in the resonance-frequency range of about 1 to 2 MHz well below the microwave frequencies used in conventional EPR. Until now, in order to obtain sufficient signal-to-noise radios (SNRs) in conventional EPR, it has been necessary to place both detectors and objects to be imaged inside resonant microwave cavities. EPR imaging has much in common with magnetic resonance imaging (MRI), which is described briefly in the immediately preceding article. In EPR imaging as in MRI, one applies a magnetic pulse to make magnetic moments (in this case, of electrons) precess in an applied magnetic field having a known gradient. The magnetic moments precess at a resonance frequency proportional to the strength of the local magnetic field. One detects the decaying resonance-frequency magnetic- field component associated with the precession. Position is encoded by use of the known relationship between the resonance frequency and the position dependence of the magnetic field. EPR imaging has recently been recognized as an important tool for non-invasive, in vivo imaging of free radicals and reduction/oxidization metabolism. However, for in vivo EPR imaging of humans and large animals, the conventional approach is not suitable because (1) it is difficult to design and construct resonant cavities large enough and having the required shapes; (2) motion, including respiration and heartbeat, can alter the resonance frequency; and (3) most microwave energy is absorbed in the first few centimeters of tissue depth, thereby potentially endangering the subject and making it impossible to obtain adequate signal strength for imaging at greater depth. To obtain greater penetration depth, prevent injury to the subject, and avoid the difficulties associated with resonant cavities, it is necessary to use lower resonance frequencies. An additional advantage of using lower resonance frequencies is that one can use weaker applied magnetic fields: For example, for a resonance frequency of 1.4 MHz, one needs a magnetic flux density of 0.5 Gauss approximately the flux density of the natural magnetic field of the Earth.

  16. Laser-pulse compression using magnetized plasmas

    DOE PAGES

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-02-28

    Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longermore » durations. Finally, in addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.« less

  17. Magnet Architectures and Active Radiation Shielding Study - SR2S Workshop

    NASA Technical Reports Server (NTRS)

    Westover, Shane; Meinke, Rainer; Burger, William; Ilin, Andrew; Nerolich, Shaun; Washburn, Scott

    2014-01-01

    Analyze new coil configurations with maturing superconductor technology -Develop vehicle-level concept solutions and identify engineering challenges and risks -Shielding performance analysis Recent advances in superconducting magnet technology and manufacturing have opened the door for re-evaluating active shielding solutions as an alternative to mass prohibitive passive shielding.Publications on static magnetic field environments and its bio-effects were reviewed. Short-term exposure information is available suggesting long term exposure may be okay. Further research likely needed. center dotMagnetic field safety requirements exist for controlled work environments. The following effects have been noted with little noted adverse effects -Magnetohydrodynamic (MHD) effects on ionized fluids (e.g. blood) creating an aortic voltage change -MHD interaction elevates blood pressure (BP) center dot5 Tesla equates to 5% BP elevation -Prosthetic devises and pacemakers are an issue (access limit of 5 gauss).

  18. Efficient Plasma Production in Low Background Neutral Pressures with the M2P2 Prototype

    NASA Technical Reports Server (NTRS)

    Ziemba, T.; Euripides, P.; Winglee, R.; Slough, J.; Giersch, L.

    2003-01-01

    Mini-Magnetospheric Plasma Propulsion (M2P2) seeks the creation of a large-scale (10 km radius) magnetic wall or bubble (i.e. a magnetosphere) by the electromagnetic inflation of a small-scale (20 cm radius) dipole magnet. The inflated magnetosphere will intercept the solar wind and thereby provide high-speed propulsion with modest power and fuel requirements due to the gain provided by the ambient medium. Magnetic field inflation is produced by the injection of plasma onto the dipole magnetic field eliminating the need for large mechanical structures and added material weight at launch. For successful inflation of the magnetic bubble a beta near unity must be achieved along the imposed dipole field. This is dependent on the plasma parameters that can be achieved with a plasma source that provide continuous operation at the desired power levels of 1 to 2 kilowatts. Over the last two years we have been developing a laboratory prototype to demonstrate the inflation of the magnetic field under space-like conditions. In this paper we will present some of the latest results from the prototype development at the University of Washington and show that the prototype can produce high ionization efficiencies while operating in near space like neutral background pressures producing electron temperatures of a few tens of electron volts. This allows for operation with propellant expenditures lower than originally estimated.

  19. Accuracy of magnetic resonance based susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Erdevig, Hannah E.; Russek, Stephen E.; Carnicka, Slavka; Stupic, Karl F.; Keenan, Kathryn E.

    2017-05-01

    Magnetic Resonance Imaging (MRI) is increasingly used to map the magnetic susceptibility of tissue to identify cerebral microbleeds associated with traumatic brain injury and pathological iron deposits associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Accurate measurements of susceptibility are important for determining oxygen and iron content in blood vessels and brain tissue for use in noninvasive clinical diagnosis and treatment assessments. Induced magnetic fields with amplitude on the order of 100 nT, can be detected using MRI phase images. The induced field distributions can then be inverted to obtain quantitative susceptibility maps. The focus of this research was to determine the accuracy of MRI-based susceptibility measurements using simple phantom geometries and to compare the susceptibility measurements with magnetometry measurements where SI-traceable standards are available. The susceptibilities of paramagnetic salt solutions in cylindrical containers were measured as a function of orientation relative to the static MRI field. The observed induced fields as a function of orientation of the cylinder were in good agreement with simple models. The MRI susceptibility measurements were compared with SQUID magnetometry using NIST-traceable standards. MRI can accurately measure relative magnetic susceptibilities while SQUID magnetometry measures absolute magnetic susceptibility. Given the accuracy of moment measurements of tissue mimicking samples, and the need to look at small differences in tissue properties, the use of existing NIST standard reference materials to calibrate MRI reference structures is problematic and better reference materials are required.

  20. A linear helicon plasma device with controllable magnetic field gradient.

    PubMed

    Barada, Kshitish K; Chattopadhyay, P K; Ghosh, J; Kumar, Sunil; Saxena, Y C

    2012-06-01

    Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well as its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.

  1. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-11-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed. The experiment was conducted both in the presence and absence of a magnetic field gradient. The magnet produces a gradient field of approx. 1 Tesla2/cm. Image analysis of the recorded images indicated an enhanced plume velocity that was of the order of the measurement limit. For this experiment, both the gradient and gravity fields are in the same direction resulting in an enhanced effective gravity that tends to accelerate the observed plume velocity. While the results are not conclusive, pending further tests, it clearly points out the inadequacy of the MSFC magnet for conducting protein crystallization experiments and the need for a stronger magnet. In spacebased experiments, however, where the gravitational effects are small, only a weak magnetic field will be required to control or mitigate the effects of convective contamination.

  2. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed. The experiment was conducted both in the presence and absence of a magnetic field gradient. The magnet produces a gradient field of approx. 1 Tesla2/cm. Image analysis of the recorded images indicated an enhanced plume velocity that was of the order of the measurement limit. For this experiment, both the gradient and gravity fields are in the same direction resulting in an enhanced effective gravity that tends to accelerate the observed plume velocity. While the results are not conclusive, pending further tests, it clearly points out the inadequacy of the MSFC magnet for conducting protein crystallization experiments and the need for a stronger magnet. In spacebased experiments, however, where the gravitational effects are small, only a weak magnetic field will be required to control or mitigate the effects of convective contamination.

  3. Determination of Flux-Gate Magnetometer Spin Axis Offsets with the Electron Drift Instrument

    NASA Astrophysics Data System (ADS)

    Plaschke, Ferdinand; Nakamura, Rumi; Giner, Lukas; Teubenbacher, Robert; Chutter, Mark; Leinweber, Hannes K.; Magnes, Werner

    2014-05-01

    Spin-stabilization of spacecraft enormously supports the in-flight calibration of onboard flux-gate magnetometers (FGMs): eight out of twelve calibration parameters can be determined by minimization of spin tone and harmonics in the calibrated magnetic field measurements. From the remaining four parameters, the spin axis offset is usually obtained by analyzing observations of Alfvénic fluctuations in the solar wind. If solar wind measurements are unavailable, other methods for spin axis offset determination need to be used. We present two alternative methods that are based on the comparison of FGM and electron drift instrument (EDI) data: (1) EDI measures the gyration periods of instrument-emitted electrons in the ambient magnetic field. They are inversely proportional to the magnetic field strength. Differences between FGM and EDI measured field strengths can be attributed to inaccuracies in spin axis offset, if the other calibration parameters are accurately known. (2) For EDI electrons to return to the spacecraft, they have to be sent out in perpendicular direction to the ambient magnetic field. Minimization of the variance of electron beam directions with respect to the FGM-determined magnetic field direction also yields an estimate of the spin axis offset. Prior to spin axis offset determination, systematic inaccuracies in EDI gyration period measurements and in the transformation of EDI beam directions into the FGM spin-aligned reference coordinate system have to be corrected. We show how this can be done by FGM/EDI data comparison, as well.

  4. Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report

    DOE PAGES

    Kharzeev, D. E.; Liao, J.; Voloshin, S. A.; ...

    2016-05-01

    Here, the interplay of quantum anomalies with magnetic field and vorticity results in a variety of novel non-dissipative transport phenomena in systems with chiral fermions, including the quark–gluon plasma. Among them is the Chiral Magnetic Effect (CME)—the generation of electric current along an external magnetic field induced by chirality imbalance. Because the chirality imbalance is related to the global topology of gauge fields, the CME current is topologically protected and hence non-dissipative even in the presence of strong interactions. As a result, the CME and related quantum phenomena affect the hydrodynamical and transport behavior of strongly coupled quark–gluon plasma, andmore » can be studied in relativistic heavy ion collisions where strong magnetic fields are created by the colliding ions. Evidence for the CME and related phenomena has been reported by the STAR Collaboration at Relativistic Heavy Ion Collider at BNL, and by the ALICE Collaboration at the Large Hadron Collider at CERN. The goal of the present review is to provide an elementary introduction into the physics of anomalous chiral effects, to describe the current status of experimental studies in heavy ion physics, and to outline the future work, both in experiment and theory, needed to eliminate the existing uncertainties in the interpretation of the data.« less

  5. Maladjustment of programmable ventricular shunt valves by inadvertent exposure to a common hospital device.

    PubMed

    Fujimura, R; Lober, R; Kamian, K; Kleiner, L

    2018-01-01

    Programmable ventricular shunt valves are commonly used to treat hydrocephalus. They can be adjusted to allow for varying amounts of cerebrospinal fluid (CSF) flow using an external magnetic programming device, and are susceptible to maladjustment from inadvertent exposure to magnetic fields. We describe the case of a 3-month-old girl treated for hydrocephalus with a programmable Strata TM II valve found at the incorrect setting on multiple occasions during her hospitalization despite frequent reprogramming and surveillance. We found that the Vocera badge, a common hands-free wireless communication system worn by our nursing staff, had a strong enough magnetic field to unintentionally change the shunt setting. The device is worn on the chest bringing it into close proximity to the shunt valve when care providers hold the baby, resulting in the maladjustment. Some commonly used medical devices have a magnetic field strong enough to alter programmable shunt valve settings. Here, we report that the magnetic field from the Vocera hands-free wireless communication system, combined with the worn position, results in shunt maladjustment for the Strata TM II valve. Healthcare facilities using the Vocera badges need to put protocols in place and properly educate staff members to ensure the safety of patients with Strata TM II valves.

  6. GUMICS-4 Year Run: Ground Magnetic Field Predictions

    NASA Astrophysics Data System (ADS)

    Honkonen, I. J.; Viljanen, A.; Juusola, L.; Facsko, G.; Vanhamäki, H.

    2013-12-01

    Space weather can have severe effects even at ground level when Geomagnetically Induced Currents (GIC) disrupt power transmission networks, the worst case being a complete blackout affecting millions of people. The importance of space weather forecasting as well as the need for model improvement and validation has been recognized internationally. The recently concluded GUMICS-4 one year run, in which solar wind observations obtained from OMNIWeb for the period 2002-01-29 to 2003-02-02 were given as input to the model, will allow GUMICS to be validated against observations on an unprecedented scale. The performance of GUMICS can be quantified statistically, as a function of, for example, the solar wind driver, various geomagnetic indices, magnetic local time and other parameters. Here we concentrate on the ability of GUMICS to predict ground magnetic field observations for one year of simulated results. The ground magnetic field predictions are compared to observations of the mainland IMAGE magnetometer stations located at CGM latitudes 54-68 N. Furthermore the GIC derived from ground magnetic field predictions are compared to observations along the natural gas pipeline at Mäntsälä, South Finland. Various metrics are used to objectively evaluate the performance of GUMICS as a function of different parameters, thereby providing significant insight into the space weather forecasting ability of models based on first principles.

  7. A divergence-cleaning scheme for cosmological SPMHD simulations

    NASA Astrophysics Data System (ADS)

    Stasyszyn, F. A.; Dolag, K.; Beck, A. M.

    2013-01-01

    In magnetohydrodynamics (MHD), the magnetic field is evolved by the induction equation and coupled to the gas dynamics by the Lorentz force. We perform numerical smoothed particle magnetohydrodynamics (SPMHD) simulations and study the influence of a numerical magnetic divergence. For instabilities arising from {nabla }\\cdot {boldsymbol B} related errors, we find the hyperbolic/parabolic cleaning scheme suggested by Dedner et al. to give good results and prevent numerical artefacts from growing. Additionally, we demonstrate that certain current SPMHD implementations of magnetic field regularizations give rise to unphysical instabilities in long-time simulations. We also find this effect when employing Euler potentials (divergenceless by definition), which are not able to follow the winding-up process of magnetic field lines properly. Furthermore, we present cosmological simulations of galaxy cluster formation at extremely high resolution including the evolution of magnetic fields. We show synthetic Faraday rotation maps and derive structure functions to compare them with observations. Comparing all the simulations with and without divergence cleaning, we are able to confirm the results of previous simulations performed with the standard implementation of MHD in SPMHD at normal resolution. However, at extremely high resolution, a cleaning scheme is needed to prevent the growth of numerical {nabla }\\cdot {boldsymbol B} errors at small scales.

  8. Static Magnetic Field Therapy: A Critical Review of Treatment Parameters

    PubMed Central

    Wahbeh, Helané; Harling, Noelle; Connelly, Erin; Schiffke, Heather C.; Forsten, Cora; Gregory, William L.; Markov, Marko S.; Souder, James J.; Elmer, Patricia; King, Valerie

    2009-01-01

    Static magnetic field (SMF) therapy, applied via a permanent magnet attached to the skin, is used by people worldwide for self-care. Despite a lack of established SMF dosage and treatment regimens, multiple studies are conducted to evaluate SMF therapy effectiveness. Our objectives in conducting this review are to:(i) summarize SMF research conducted in humans; (ii) critically evaluate reporting quality of SMF dosages and treatment parameters and (iii) propose a set of criteria for reporting SMF treatment parameters in future clinical trials. We searched 27 electronic databases and reference lists. Only English language human studies were included. Excluded were studies of electromagnetic fields, transcranial magnetic stimulation, magnets placed on acupuncture points, animal studies, abstracts, posters and editorials. Data were extracted on clinical indication, study design and 10 essential SMF parameters. Three reviewers assessed quality of reporting and calculated a quality assessment score for each of the 10 treatment parameters. Fifty-six studies were reviewed, 42 conducted in patient populations and 14 in healthy volunteers. The SMF treatment parameters most often and most completely described were site of application, magnet support device and frequency and duration of application. Least often and least completely described were characteristics of the SMF: magnet dimensions, measured field strength and estimated distance of the magnet from the target tissue. Thirty-four (61%) of studies failed to provide enough detail about SMF dosage to permit protocol replication by other investigators. Our findings highlight the need to optimize SMF dosing parameters for individual clinical conditions before proceeding to a full-scale clinical trial. PMID:18955243

  9. Destruction of a Magnetized Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    What happens when a magnetized star is torn apart by the tidal forces of a supermassive black hole, in a violent process known as a tidal disruption event? Two scientists have broken new ground by simulating the disruption of stars with magnetic fields for the first time.The magnetic field configuration during a simulation of the partial disruption of a star. Top left: pre-disruption star. Bottom left: matter begins to re-accrete onto the surviving core after the partial disruption. Right: vortices form in the core as high-angular-momentum debris continues to accrete, winding up and amplifying the field. [Adapted from Guillochon McCourt 2017]What About Magnetic Fields?Magnetic fields are expected to exist in the majority of stars. Though these fields dont dominate the energy budget of a star the magnetic pressure is a million times weaker than the gas pressure in the Suns interior, for example they are the drivers of interesting activity, like the prominences and flares of our Sun.Given this, we can wonder what role stars magnetic fields might play when the stars are torn apart in tidal disruption events. Do the fields change what we observe? Are they dispersed during the disruption, or can they be amplified? Might they even be responsible for launching jets of matter from the black hole after the disruption?Star vs. Black HoleIn a recent study, James Guillochon (Harvard-Smithsonian Center for Astrophysics) and Michael McCourt (Hubble Fellow at UC Santa Barbara) have tackled these questions by performing the first simulations of tidal disruptions of stars that include magnetic fields.In their simulations, Guillochon and McCourt evolve a solar-mass star that passes close to a million-solar-mass black hole. Their simulations explore different magnetic field configurations for the star, and they consider both what happens when the star barely grazes the black hole and is only partially disrupted, as well as what happens when the black hole tears the star apart completely.Amplifying EncountersFor stars that survive their encounter with the black hole, Guillochon and McCourt find that the process of partial disruption and re-accretion can amplify the magnetic field of the star by up to a factor of 20. Repeated encounters of the star with the black hole could amplify the field even more.The authors suggest an interesting implication of this idea: a population of highly magnetized stars may have formed in our own galactic center, resulting from their encounters with the supermassive black hole Sgr A*.A turbulent magnetic field forms after a partial stellar disruption and re-accretion of the tidal tails. [Adapted from Guillochon McCourt 2017]Effects in DestructionFor stars that are completely shredded and form a tidal stream after their encounter with the black hole, the authors find that the magnetic field geometry straightens within the stream of debris. There, the pressure of the magnetic field eventually dominates over the gas pressure and self-gravity.Guillochon and McCourt find that the fields new configuration isnt ideal for powering jets from the black hole but it is strong enough to influence how the stream interacts with itself and its surrounding environment, likely affecting what we can expect to see from these short-lived events.These simulations have clearly demonstrated the need to further explore the role of magnetic fields in the disruptions of stars by black holes.BonusCheck out the full (brief) video from one of the simulations by Guillochon and McCourt (be sure to watch it in high-res!). It reveals the evolution of a stars magnetic field configuration as the star is partially disrupted by the forces of a supermassive black hole and then re-accretes.CitationJames Guillochon and Michael McCourt 2017 ApJL 834 L19. doi:10.3847/2041-8213/834/2/L19

  10. Study of a new cusp field for an 18 GHz ECR ion source

    NASA Astrophysics Data System (ADS)

    Rashid, M. H.; Nakagawa, T.; Goto, A.; Yano, Y.

    2007-08-01

    A feasibility study was performed to generate new sufficient mirror cusp magnetic field (CMF) by using the coils of the existing room temperature traditional 18 GHz electron cyclotron resonance ion source (ECRIS) at RIKEN. The CMF configuration was chosen because it contains plasma superbly and no multipole magnet is needed to make the contained plasma quiescent with no magneto-hydrodynamic (MHD) instability and to make the system cost-effective. The least magnetic field, 13 kG is achieved at the interior wall of the plasma chamber including the point cusps (PC) on the central axis and the ring cusp (RC) on the mid-plane. The mirror ratio calculation and electron simulation were done in the computed CMF. It was found to contain the electrons for longer time than in traditional field. It is proposed that a powerful CMF ECRIS can be constructed, which is capable of producing intense highly charged ion (HCI) beam for light and heavy elements.

  11. Detailed relationship between local structure, polarons, and magnetizationfor La1-xCaxMnO3 (0.21≤x≤0.45)

    NASA Astrophysics Data System (ADS)

    Bridges, F.; Downward, L.; Neumeier, J. J.; Tyson, T. A.

    2010-05-01

    We present detailed local structure measurements (using the extended x-ray absorption fine structure technique) for the colossal magnetoresistive material La1-xCaxMnO3 (0.21

  12. Recommendations for Guidelines for Environment-Specific Magnetic-Field Measurements, Rapid Program Engineering Project #2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Electric Research and Management, Inc.; IIT Research Institute; Magnetic Measurements

    1997-03-11

    The purpose of this project was to document widely applicable methods for characterizing the magnetic fields in a given environment, recognizing the many sources co-existing within that space. The guidelines are designed to allow the reader to follow an efficient process to (1) plan the goals and requirements of a magnetic-field study, (2) develop a study structure and protocol, and (3) document and carry out the plan. These guidelines take the reader first through the process of developing a basic study strategy, then through planning and performing the data collection. Last, the critical factors of data management, analysis reporting, andmore » quality assurance are discussed. The guidelines are structured to allow the researcher to develop a protocol that responds to specific site and project needs. The Research and Public Information Dissemination Program (RAPID) is based on exposure to magnetic fields and the potential health effects. Therefore, the most important focus for these magnetic-field measurement guidelines is relevance to exposure. The assumed objective of an environment-specific measurement is to characterize the environment (given a set of occupants and magnetic-field sources) so that information about the exposure of the occupants may be inferred. Ideally, the researcher seeks to obtain complete or "perfect" information about these magnetic fields, so that personal exposure might also be modeled perfectly. However, complete data collection is not feasible. In fact, it has been made more difficult as the research field has moved to expand the list of field parameters measured, increasing the cost and complexity of performing a measurement and analyzing the data. The guidelines address this issue by guiding the user to design a measurement protocol that will gather the most exposure-relevant information based on the locations of people in relation to the sources. We suggest that the "microenvironment" become the base unit of area in a study, with boundaries defined by the occupant's activity patterns and the field variation from the sources affecting the area. Such a stratification allows the researcher to determine which microenvironment are of most interest, and to methodically focus the areas, in order to gather the most relevant set of data.« less

  13. Space-based magnetometers

    NASA Astrophysics Data System (ADS)

    Acuña, Mario H.

    2002-11-01

    The general characteristics and system level concepts for space-based magnetometers are presented to illustrate the instruments, principles, and tools involved in making accurate magnetic field measurements in space. Special consideration is given to the most important practical problems that need to be solved to ensure the accuracy of the measurements and their overall impact on system design and mission costs. Several types of instruments used to measure magnetic fields aboard spacecraft and their capabilities and limitations are described according to whether they measure scalar or vector fields. The very large dynamic range associated with magnetic fields of natural origin generally dictates the use of optimized designs for each particular space mission although some wide-range, multimission magnetometers have been developed and used. Earth-field magnetic mapping missions are the most demanding in terms of absolute accuracy and resolution, approaching <1 part in 100 000 in magnitude and a few arcsec in direction. The difficulties of performing sensitive measurements aboard spacecraft, which may not be magnetically clean, represent a fundamental problem which must be addressed immediately at the planning stages of any space mission that includes these measurements. The use of long, deployable booms to separate the sensors from the sources of magnetic contamination, and their impact on system design are discussed. The dual magnetometer technique, which allows the separation of fields of external and spacecraft origin, represents an important space magnetometry tool which can result in significant savings in complex contemporary spacecraft built with minimum magnetic constraints. Techniques for in-flight estimation of magnetometer biases and sensor alignment are discussed briefly, and highlight some basic considerations within the scope and complexity of magnetic field data processing and reduction. The emerging field of space weather is also discussed, including the essential role that space-based magnetic field measurements play in this complex science, which is just in its infancy. Finally, some considerations for the future of space-based magnetometers are presented. Miniature, mass produced sensors based on magnetoresistance effects and micromachined structures have made significant advances in sensitivity but have yet to reach the performance level required for accurate space measurements. The miniaturization of spacecraft and instruments to reduce launch costs usually results in significantly increased magnetic contamination problems and degraded instrument performance parameters, a challenge that has yet to be solved satisfactorily for "world-class" science missions. The rapidly disappearing manufacturing capabilities for high-grade, low noise, soft magnetic materials of the Permalloy family is a cause of concern for the development of high performance fluxgate magnetometers for future space missions.

  14. On the Magnetic Squashing Factor and the Lie Transport of Tangents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Roger B.; Pontin, David I.; Hornig, Gunnar

    The squashing factor (or squashing degree) of a vector field is a quantitative measure of the deformation of the field line mapping between two surfaces. In the context of solar magnetic fields, it is often used to identify gradients in the mapping of elementary magnetic flux tubes between various flux domains. Regions where these gradients in the mapping are large are referred to as quasi-separatrix layers (QSLs), and are a continuous extension of separators and separatrix surfaces. These QSLs are observed to be potential sites for the formation of strong electric currents, and are therefore important for the study ofmore » magnetic reconnection in three dimensions. Since the squashing factor, Q , is defined in terms of the Jacobian of the field line mapping, it is most often calculated by first determining the mapping between two surfaces (or some approximation of it) and then numerically differentiating. Tassev and Savcheva have introduced an alternative method, in which they parameterize the change in separation between adjacent field lines, and then integrate along individual field lines to get an estimate of the Jacobian without the need to numerically differentiate the mapping itself. But while their method offers certain computational advantages, it is formulated on a perturbative description of the field line trajectory, and the accuracy of this method is not entirely clear. Here we show, through an alternative derivation, that this integral formulation is, in principle, exact. We then demonstrate the result in the case of a linear, 3D magnetic null, which allows for an exact analytical description and direct comparison to numerical estimates.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, P.

    A model of the solar chromosphere that consists of two fundamentally different regions, a lower region and an upper region, is proposed. The lower region is covered mostly by weak locally closed magnetic field and small network areas of extremely strong, locally open field. The field in the upper region is relatively uniform and locally open, connecting to the corona. The chromosphere is heated by strong collisional damping of Alfvén waves, which are driven by turbulent motions below the photosphere. The heating rate depends on the field strength, wave power from the photosphere, and altitude in the chromosphere. The wavesmore » in the internetwork area are mostly damped in the lower region, supporting radiation in the lower chromosphere. The waves in the network area, carrying more Poynting flux, are only weakly damped in the lower region. They propagate into the upper region. As the thermal pressure decreases with height, the network field expands to form the magnetic canopy where the damping of the waves from the network area supports radiation in the whole upper region. Because of the vertical stratification and horizontally nonuniform distribution of the magnetic field and heating, one circulation cell is formed in each of the upper and lower regions. The two circulation cells distort the magnetic field and reinforce the funnel-canopy-shaped magnetic geometry. The model is based on classical processes and is semi-quantitative. The estimates are constrained according to observational knowledge. No anomalous process is invoked or needed. Overall, the heating mechanism is able to damp 50% of the total wave energy.« less

  16. Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution

    PubMed Central

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-01-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351

  17. Skew projection of echo-detected EPR spectra for increased sensitivity and resolution

    NASA Astrophysics Data System (ADS)

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-06-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five.

  18. A simulation of high energy cosmic ray propagation 1

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.; Teshima, M.

    1985-01-01

    High energy cosmic ray propagation of the energy region 10 to the 14.5 power - 10 to the 18th power eV is simulated in the inter steller circumstances. In conclusion, the diffusion process by turbulent magnetic fields is classified into several regions by ratio of the gyro-radius and the scale of turbulence. When the ratio becomes larger then 10 to the minus 0.5 power, the analysis with the assumption of point scattering can be applied with the mean free path E sup 2. However, when the ratio is smaller than 10 to the minus 0.5 power, we need a more complicated analysis or simulation. Assuming the turbulence scale of magnetic fields of the Galaxy is 10-30pc and the mean magnetic field strength is 3 micro gauss, the energy of cosmic ray with that gyro-radius is about 10 to the 16.5 power eV.

  19. Signatures of Penumbral Magnetic Fields at Very High Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Langhans, K.

    2006-12-01

    Full Stokes spectro-polarimetry, together with refined techniques to interpret the measurements and continual modeling efforts, have improved our understanding of sunspot penumbrae in the last years. In spite of this progress, an improvement in the spatial resolution of the observations is clearly needed to establish in a more direct way the fine structure of the penumbra. The discovery of dark penumbral cores by tet{l3 Sc02} suggests that we are starting to resolve the fundamental scales of the penumbra. Spectro-polarimetric measurements that are sensitive to the magnetic field in both the photosphere and higher layers, and obtained at a spatial resolution approaching 0.1 arcsec, may therefore allow us to draw firm conclusions about the fine scale organization of penumbral magnetic fields. In this paper I will discuss recent polarization measurements at very high spatial resolution, trying to reconcile the different scenarios put forward to explain the structure of the penumbra.

  20. Particle Demagnetization in Collisionless Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2006-01-01

    The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. In this presentation, we present analytical theory results, as well as 2.5 and three-dimensional PIC simulations of guide field magnetic reconnection. We will show that diffusion region scale sizes in moderate and large guide field cases are determined by electron Larmor radii, and that analytical estimates of diffusion region dimensions need to include description of the heat flux tensor. The dominant electron dissipation process appears to be based on thermal electron inertia, expressed through nongyrotropic electron pressure tensors. We will argue that this process remains viable in three dimensions by means of a detailed comparison of high resolution particle-in-cell simulations.

  1. Solar Surface Velocity in the Large Scale estimated by Magnetic Element Tracking Method

    NASA Astrophysics Data System (ADS)

    Fujiyama, M.; Imada, S.; Iijima, H.; Machida, S.

    2017-12-01

    The 11years variation in the solar activity is one of the important sources of decadal variation in the solar-terrestrial environment. Therefore, predicting the solar cycle activity is crucial for the space weather. To build the prediction schemes for the next solar cycle is a key for the long-term space weather study. Recently, the relationship between polar magnetic field at the solar minimum and next solar cycle activity is intensively discussed. Nowadays, many people believe that the polar magnetic field at the solar minimum is one of the best predictor for the next solar cycle. To estimate polar magnetic field, Surface Flux Transport (SFT) model have been often used. On the other hand, SFT model needs several parameters, for example Meridional circulation, differential rotation, turbulent diffusion etc.. So far, those parameters have not been fully understood, and their uncertainties may affect the accuracy of the prediction. In this study, we try to discuss the parameters which are used in SFT model. We focus on two kinds of the solar surface motions, Differential rotation and Meridional circulation. First, we have developed Magnetic Element Tracking (MET) module, which is able to obtain the surface velocity by using the magnetic field data. We have used SOHO/MDI and SDO/HMI for the magnetic field data. By using MET, we study the solar surface motion over 2 cycle (nearly 24 years), and we found that the velocity variation is related to the active region belt. This result is consistent with [Hathaway et al., 2011]. Further, we apply our module to the Hinode/SOT data which spatial resolution is high. Because of its high resolution, we can discuss the surface motion close to the pole which has not been discussed enough. Further, we discuss the relationship between the surface motion and the magnetic field strength and the location of longitude.

  2. Synthesis of Natural Electric and Magnetic Time Series Using Impulse Responses of Inter-station Transfer Functions and a Reference

    NASA Astrophysics Data System (ADS)

    Wang, H.; Cheng, J.

    2017-12-01

    A method to Synthesis natural electric and magnetic Time series is proposed whereby the time series of local site are derived using an Impulse Response and a reference (STIR). The method is based on the assumption that the external source of magnetic fields are uniform, and the electric and magnetic fields acquired at the surface satisfy a time-independent linear relation in frequency domain.According to the convolution theorem, we can synthesize natural electric and magnetic time series using the impulse responses of inter-station transfer functions with a reference. Applying this method, two impulse responses need to be estimated: the quasi-MT impulse response tensor and the horizontal magnetic impulse response tensor. These impulse response tensors relate the local horizontal electric and magnetic components with the horizontal magnetic components at a reference site, respectively. Some clean segments of times series are selected to estimate impulse responses by using least-square (LS) method. STIR is similar with STIN (Wang, 2017), but STIR does not need to estimate the inter-station transfer functions, and the synthesized data are more accurate in high frequency, where STIN fails when the inter-station transfer functions are contaminated severely. A test with good quality of MT data shows that synthetic time-series are similar to natural electric and magnetic time series. For contaminated AMT example, when this method is used to remove noise present at the local site, the scatter of MT sounding curves are clear reduced, and the data quality are improved. *This work is funded by National Key R&D Program of China(2017YFC0804105),National Natural Science Foundation of China (41604064, 51574250), State Key Laboratory of Coal Resources and Safe Mining ,China University of Mining & Technology,(SKLCRSM16DC09)

  3. Lunar Magnetism.

    NASA Astrophysics Data System (ADS)

    Fuller, M.

    2008-05-01

    Models of lunar magnetism need to explain (1) strong Natural Remanent Magnetization (NRM), as indicated by IRMs normalization in some of the returned Apollo samples with ages from about 3.9Ae to 3.65Ae, (2) magnetic anomalies antipodal to the young basins of a similar age, (3) the absence of major magnetic anomalies over these same basins, (4) the presence of central anomalies over some Nectarian and PreNectarian basins, and finally (5) strong fields with scale lengths of homogeneity of the order of kms, or less, found over the Cayley Formations and similar material. Observations (1), (2) and (4) have frequently been taken to require the presence of a lunar dynamo. However, if there had been a lunar dynamo at this time, why are there so few samples that carry an unequivocal strong NRM appropriate for TRM in the proposed dynamo fields. It is also an uncomfortable coincidence that the dynamo appears to cease to give strong fields close to the end of the time of heavy bombardment. Given these difficulties with the lunar dynamo model, it is worth reexamining other possible explanations of lunar magnetism. The obvious candidate is impact related shock magnetization, which already appears to provide an explanation for the magnetization of 62235, a key sample with strong magnetization. Hood's model accounts for the antipodal anomalies, while the observations at Vredefort may account for the anomalies over central peaks and uplifted ring structures in major basins. The question that remains is whether all of the observed lunar magnetization can be explained by impact related magnetization, or whether a dynamo is still required.

  4. New Improvements in Magnetic Measurements Laboratory of the ALBA Synchrotron Facility

    NASA Astrophysics Data System (ADS)

    Campmany, Josep; Marcos, Jordi; Massana, Valentí

    ALBA synchrotron facility has a complete insertion devices (ID) laboratory to characterize and produce magnetic devices needed to satisfy the requirements of ALBA's user community. The laboratory is equipped with a Hall-probe bench working in on-the-fly measurement mode allowing the measurement of field maps of big magnetic structures with high accuracy, both in magnetic field magnitude and position. The whole control system of this bench is based on TANGO. The Hall probe calibration range extends between sub-Gauss to 2 Tesla with an accuracy of 100 ppm. Apart from the Hall probe bench, the ID laboratory has a flipping coil bench dedicated to measuring field integrals and a Helmholtz coil bench specially designed to characterize permanent magnet blocks. Also, a fixed stretched wire bench is used to measure field integrals of magnet sets. This device is specifically dedicated to ID construction. Finally, the laboratory is equipped with a rotating coil bench, specially designed for measuring multipolar devices used in accelerators, such as quadrupoles, sextupoles, etc. Recent improvements of the magnetic measurements laboratory of ALBA synchrotron include the design and manufacturing of very thin 3D Hall probe heads, the design and manufacturing of coil sensors for the Rotating coil bench based on multilayered PCB, and the improvement of calibration methodology in order to improve the accuracy of the measurements. ALBA magnetic measurements laboratory is open for external contracts, and has been widely used by national and international institutes such as CERN, ESRF or CIEMAT, as well as magnet manufacturing companies, such as ANTEC, TESLA and I3 M. In this paper, we will present the main features of the measurement benches as well as improvements made so far.

  5. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    NASA Astrophysics Data System (ADS)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  6. Observatory geoelectric fields induced in a two-layer lithosphere during magnetic storms

    USGS Publications Warehouse

    Love, Jeffrey J.; Swidinsky, Andrei

    2015-01-01

    We report on the development and validation of an algorithm for estimating geoelectric fields induced in the lithosphere beneath an observatory during a magnetic storm. To accommodate induction in three-dimensional lithospheric electrical conductivity, we analyze a simple nine-parameter model: two horizontal layers, each with uniform electrical conductivity properties given by independent distortion tensors. With Laplace transformation of the induction equations into the complex frequency domain, we obtain a transfer function describing induction of observatory geoelectric fields having frequency-dependent polarization. Upon inverse transformation back to the time domain, the convolution of the corresponding impulse-response function with a geomagnetic time series yields an estimated geoelectric time series. We obtain an optimized set of conductivity parameters using 1-s resolution geomagnetic and geoelectric field data collected at the Kakioka, Japan, observatory for five different intense magnetic storms, including the October 2003 Halloween storm; our estimated geoelectric field accounts for 93% of that measured during the Halloween storm. This work demonstrates the need for detailed modeling of the Earth’s lithospheric conductivity structure and the utility of co-located geomagnetic and geoelectric monitoring.

  7. Precision bounds for gradient magnetometry with atomic ensembles

    NASA Astrophysics Data System (ADS)

    Apellaniz, Iagoba; Urizar-Lanz, Iñigo; Zimborás, Zoltán; Hyllus, Philipp; Tóth, Géza

    2018-05-01

    We study gradient magnetometry with an ensemble of atoms with arbitrary spin. We calculate precision bounds for estimating the gradient of the magnetic field based on the quantum Fisher information. For quantum states that are invariant under homogeneous magnetic fields, we need to measure a single observable to estimate the gradient. On the other hand, for states that are sensitive to homogeneous fields, a simultaneous measurement is needed, as the homogeneous field must also be estimated. We prove that for the cases studied in this paper, such a measurement is feasible. We present a method to calculate precision bounds for gradient estimation with a chain of atoms or with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for experiments. Our model can take into account even correlations between particle positions. While in most of the discussion we consider an ensemble of localized particles that are classical with respect to their spatial degree of freedom, we also discuss the case of gradient metrology with a single Bose-Einstein condensate.

  8. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge

    PubMed Central

    Żak, Arkadiusz

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557

  9. Compatibility of photomultiplier tube operation with SQUIDs for a neutron EDM experiment

    NASA Astrophysics Data System (ADS)

    Libersky, Matthew; nEDM Collaboration

    2013-10-01

    An experiment at the Spallation Neutron Source at Oak Ridge National Laboratory with the goal of reducing the experimental limit on the electric dipole moment (EDM) of the neutron will measure the precession frequencies of neutrons when a strong electric field is applied parallel and anti-parallel to a weak magnetic field. A difference in these frequencies would indicate a nonzero neutron EDM. To correct for drifts of the magnetic field in the measurement volume, polarized 3He will be used as a co-magnetometer. In one of the two methods built into the apparatus, superconducting quantum interference devices (SQUIDs) will be used to read out the 3He magnetization. Photomultiplier tubes will be used concurrently to measure scintillation light from neutron capture by 3He. However, the simultaneous noise-sensitive magnetic field measurement by the SQUIDs makes conventional PMT operation problematic due to the alternating current involved in generating the high voltages needed. Tests were carried out at Los Alamos National Laboratory to study the compatibility of simultaneous SQUID and PMT operation, using a custom battery-powered high-voltage power supply developed by Meyer and Smith (NIM A 647.1) to operate the PMT. The results of these tests will be presented.

  10. Magnetic Nano- and Micro- Particles in Living Cells: Kinetics and Fluctuations

    NASA Astrophysics Data System (ADS)

    Pease, C.; Chiang, N.; Pierce, C.; Muthusamy, N.; Sooryakumar, R.

    2015-03-01

    Functional nano and micro materials have recently been used not only as diagnostic tools for extracellular studies but also as intracellular drug delivery vehicles and as internal probes of the cell. To realize proper cellular applications, it is important not only to achieve efficient delivery of these materials to targeted cells, but also to control their movement and activity within the confines of the cell. In this presentation, superparamagnetic nano and micro particles are utilized as probes, with their responses to weak external magnetic fields enabling them to be maneuvered within a cell. In order to generate the required local magnetic fields needed for manipulation, the fields emanating from microscopic domain walls stabilized on patterned surface profiles are used in conjunction with weak external magnetic fields to create mobile traps that can localize and transport the internalized particle. Preliminary findings on creating the mobile traps suitable for applications to probe the interior of cells, and the responses, both Brownian fluctuations and directed motion, of particles ranging in size from 200 nm to 1 micron within HS-5 cells will be presented. Future applications to probe cellular behavior within the framework of emerging biomaterials will be discussed.

  11. Temporal Variability of Daily Personal Magnetic Field Exposure Metrics in Pregnant Women

    PubMed Central

    Lewis, Ryan C.; Evenson, Kelly R.; Savitz, David A.; Meeker, John D.

    2015-01-01

    Recent epidemiology studies of power-frequency magnetic fields and reproductive health have characterized exposures using data collected from personal exposure monitors over a single day, possibly resulting in exposure misclassification due to temporal variability in daily personal magnetic field exposure metrics, but relevant data in adults are limited. We assessed the temporal variability of daily central tendency (time-weighted average, median) and peak (upper percentiles, maximum) personal magnetic field exposure metrics over seven consecutive days in 100 pregnant women. When exposure was modeled as a continuous variable, central tendency metrics had substantial reliability, whereas peak metrics had fair (maximum) to moderate (upper percentiles) reliability. The predictive ability of a single day metric to accurately classify participants into exposure categories based on a weeklong metric depended on the selected exposure threshold, with sensitivity decreasing with increasing exposure threshold. Consistent with the continuous measures analysis, sensitivity was higher for central tendency metrics than for peak metrics. If there is interest in peak metrics, more than one day of measurement is needed over the window of disease susceptibility to minimize measurement error, but one day may be sufficient for central tendency metrics. PMID:24691007

  12. Preface

    NASA Astrophysics Data System (ADS)

    DeCrescenzi, Maurizio; Bellucci, Stefano

    2003-09-01

    This special issue of Journal of Physics: Condensed Matter contains some of the invited papers presented at the School and Workshop on Nanotubes and Nanostructureswhich was held in Frascati, Italy in October 2001 (http://wwwsis.lnf.infn.it/conference/nn2001/). The motivation and aim of this initiative was to promote the growth and development of science at the interface between different fields, where methods in one field are used to solve problems in others, bearing in mind the need to strengthen areas of research which are between fields. The School and Workshop covered an area - that of nanotubes and nanostructures - of overlap between field theory and statistical mechanics. This area has important consequences for the study of condensed matter physics and chemistry and also has impressive potential for applications in many fields. We focussed on nanotubes because they appeared to be ideal model systems for studying the physics in one-dimensional solids and have significant potential as building blocks for various practical nanoscale devices. Nanotubes, in fact, have proved to be useful for miniaturized electronic, mechanical, electrochemical and chemical devices. Similar efforts have been devoted to growing artificially nanostructured magnetic materials. The new structural and magnetic properties of these materials are discussed with an emphasis on the correlation between structure and magnetism, which also serves as guidance for improving their magnetic properties.

  13. Multi-centennial fluctuations of radionuclide production rates are modulated by the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Pavon-Carrasco, J.; Gomez-Paccard, M.; A Campuzano, S.; González-Rouco, F. J.; Osete, M. L.

    2017-12-01

    The production of 14C and 10Be cosmogenic isotopes offer a unique way to reconstruct solar activity during the Holocene. This production is influenced by both solar and Earth magnetic fields and thus their combined effect needs to be disentangled to reconstruct past solar irradiance. Nowadays, it assumes that the long-term variations of production is modulated by the geomagnetic field and the solar field dominates shorter wavelengths. In this process, the effect of the wandering of the Earth's magnetic poles is considered negligible. Here we revaluate these assumptions and demonstrate that the geomagnetic field exerts a strong modulation of multi-centennial to millennial wavelengths (periods of 800 and 2200 yr) that have so far been wrongly assigned to solar activity. Moreover, we demonstrate that the motion of the Earth's magnetic poles produce differences of up to 35% in production at mid-latitudes. The results are supported by the identification, for the first time, of robust coherence between the production derived from geomagnetic reconstructions and that from natural archives. Our results imply a revision of the past solar forcing, with implications both for the assessment of solar-climate relationships and for the forcing conditions used in the present and future generation of paleoclimate models.

  14. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  15. A Wireless Embedded Sensor based on Magnetic Higher-order Harmonic Fields: Application to Liquid Pressure Monitoring

    PubMed Central

    Tan, Ee Lim; Pereles, Brandon D.

    2010-01-01

    A wireless sensor based on the magnetoelastic, magnetically soft ferromagnetic alloy was constructed for remote measurement of pressure in flowing fluids. The pressure sensor was a rectangular strip of ferromagnetic alloy Fe40Ni38Mo4B18 adhered on a solid polycarbonate substrate and protected by a thin polycarbonate film. Upon excitation of a time-varying magnetic field through an excitation coil, the magnetically soft sensor magnetized and produced higher-order harmonic fields, which were detected through a detection coil. Under varying pressures, the sensor's magnetoelastic property caused a change in its magnetization, altering the amplitudes of the higher-order harmonic fields. A theoretical model was developed to describe the effect of pressure on the sensor's higher order harmonic fields. Experimental observations showed the 2nd order harmonic field generated by the pressure sensor was correlated to the surrounding fluid pressure, consistent with the theoretical results. Furthermore, it was demonstrated that the sensor exhibited good repeatability and stability with minimal drift. Sensors with smaller dimensions were shown to have greater sensitivity but lower pressure range as compared to their larger counterparts. Since the sensor signal was also dependent on the location of the sensor with respect to the excitation/detection coil, a calibration algorithm was developed to eliminate signal variations due to the changing sensor location. Because of its wireless and passive nature, this sensor is useful for continuous and long-term monitoring of pressure at inaccessible areas. For example, sensors with these capabilities are suitable to be used in biomedical applications where permanent implantation and long-term monitoring are needed. PMID:20514363

  16. Coarse-grained incompressible magnetohydrodynamics: Analyzing the turbulent cascades

    DOE PAGES

    Aluie, Hussein

    2017-02-21

    Here, we formulate a coarse-graining approach to the dynamics of magnetohydrodynamic (MHD) fluids at a continuum of length-scales. In this methodology, effective equations are derived for the observable velocity and magnetic fields spatially-averaged at an arbitrary scale of resolution. The microscopic equations for the bare velocity and magnetic fields are renormalized by coarse-graining to yield macroscopic effective equations that contain both a subscale stress and a subscale electromotive force (EMF) generated by nonlinear interaction of eliminated fields and plasma motions. At large coarse-graining length-scales, the direct dissipation of invariants by microscopic mechanisms (such as molecular viscosity and Spitzer resistivity) ismore » shown to be negligible. The balance at large scales is dominated instead by the subscale nonlinear terms, which can transfer invariants across scales, and are interpreted in terms of work concepts for energy and in terms of topological flux-linkage for the two helicities. An important application of this approach is to MHD turbulence, where the coarse-graining length ℓ lies in the inertial cascade range. We show that in the case of sufficiently rough velocity and/or magnetic fields, the nonlinear inter-scale transfer need not vanish and can persist to arbitrarily small scales. Although closed expressions are not available for subscale stress and subscale EMF, we derive rigorous upper bounds on the effective dissipation they produce in terms of scaling exponents of the velocity and magnetic fields. These bounds provide exact constraints on phenomenological theories of MHD turbulence in order to allow the nonlinear cascade of energy and cross-helicity. On the other hand, we show that the forward cascade of magnetic helicity to asymptotically small scales is impossible unless 3rd-order moments of either velocity or magnetic field become infinite.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkel, L.; Dejus, R.; Maines, J.

    This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypesmore » as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications.« less

  18. Improved stability, magnetic field preservation and recovery speed in (RE)Ba2Cu3O x -based no-insulation magnets via a graded-resistance approach

    NASA Astrophysics Data System (ADS)

    Kan Chan, Wan; Schwartz, Justin

    2017-07-01

    The no-insulation (NI) approach to winding (RE)Ba2Cu3O x (REBCO) high temperature superconductor solenoids has shown significant promise for maximizing the efficient usage of conductor while providing self-protecting operation. Self-protection in a NI coil, however, does not diminish the likelihood that a recoverable quench occurs. During a disturbance resulting in a recoverable quench, owing to the low turn-to-turn contact resistance, transport current bypasses the normal zone by flowing directly from the current input lead to the output lead, leading to a near total loss of the azimuthal current responsible for magnetic field generation. The consequences are twofold. First, a long recovery process is needed to recharge the coil to full operational functionality. Second, a fast magnetic field transient is created due to the sudden drop in magnetic field in the quenching coil. The latter could induce a global inductive quench propagation in other coils of a multi-coil NI magnet, increasing the likelihood of quenching and accelerating the depletion of useful current in other coils, lengthening the post-quench recovery process. Here a novel graded-resistance method is proposed to tackle the mentioned problems while maintaining the superior thermal stability and self-protecting capability of NI magnets. Through computational modeling and analysis on a hybrid multiphysics model, patterned resistive-conductive layers are inserted between selected turn-to-turn contacts to contain hot-spot heat propagation while maintaining the turn-wise current sharing required for self-protection, resulting in faster post-quench recovery and reduced magnetic field transient. Effectiveness of the method is studied at 4.2 and 77 K. Through the proposed method, REBCO magnets with high current density, high thermal stability, low likelihood of quenching, and rapid, passive recovery emerge with high operational reliability and availability.

  19. Magnetically adjustable intraocular lens.

    PubMed

    Matthews, Michael Wayne; Eggleston, Harry Conrad; Pekarek, Steven D; Hilmas, Greg Eugene

    2003-11-01

    To provide a noninvasive, magnetic adjustment mechanism to the repeatedly and reversibly adjustable, variable-focus intraocular lens (IOL). University of Missouri-Rolla, Rolla, and Eggleston Adjustable Lens, St. Louis, Missouri, USA. Mechanically adjustable IOLs have been fabricated and tested. Samarium and cobalt rare-earth magnets have been incorporated into the poly(methyl methacrylate) (PMMA) optic of these adjustable lenses. The stability of samarium and cobalt in the PMMA matrix was examined with leaching studies. Operational force testing of the magnetic optics with emphasis on the rotational forces of adjustment was done. Prototype optics incorporating rare-earth magnetic inserts were consistently produced. After 32 days in solution, samarium and cobalt concentration reached a maximum of 5 ppm. Operational force measurements indicate that successful adjustments of this lens can be made using external magnetic fields with rotational torques in excess of 0.6 ounce inch produced. Actual lenses were remotely adjusted using magnetic fields. The magnetically adjustable version of this IOL is a viable and promising means of handling the common issues of postoperative refractive errors without the requirement of additional surgery. The repeatedly adjustable mechanism of this lens also holds promise for the developing eyes of pediatric patients and the changing needs of all patients.

  20. A high density field reversed configuration (FRC) target for magnetized target fusion: First internal profile measurements of a high density FRC

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Zhang, S. Y.; Degnan, J. H.; Furno, I.; Grabowski, C.; Hsu, S. C.; Ruden, E. L.; Sanchez, P. G.; Taccetti, J. M.; Tuszewski, M.; Waganaar, W. J.; Wurden, G. A.

    2004-05-01

    Magnetized target fusion (MTF) is a potentially low cost path to fusion, intermediate in plasma regime between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. To demonstrate the physics basis for MTF, a field reversed configuration (FRC) target plasma has been chosen that will ultimately be compressed within an imploding metal liner. The required FRC will need large density, and this regime is being explored by the FRX-L (FRC-Liner) experiment. All theta pinch formed FRCs have some shock heating during formation, but FRX-L depends further on large ohmic heating from magnetic flux annihilation to heat the high density (2-5×1022m-3), plasma to a temperature of Te+Ti≈500 eV. At the field null, anomalous resistivity is typically invoked to characterize the resistive like flux dissipation process. The first resistivity estimate for a high density collisional FRC is shown here. The flux dissipation process is both a key issue for MTF and an important underlying physics question.

  1. Electrically controlled adjustable-resistance exercise equipment employing magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Lukianovich, Alex; Ashour, Osama N.; Thurston, Wilbert L.; Rogers, Craig A.; Chaudhry, Zaffir A.

    1996-05-01

    Magnetorheological (MR) fluids consist of stable suspensions of magnetic particles in a carrying fluid. The magnetorheological effect is one of the direct influences on the mechanical properties of a fluid. It represents a reversible increase, due to an external magnetic field, of the effective viscosity. Besides the variation of the rheological properties (viscosity, elasticity, and plasticity), the magnetic properties of the fluid (permeability and susceptibility), as well as the thermal and acoustic properties, are strongly influenced when an external magnetic field is applied. MR fluids have many appealing applications in the area of vibration control. The distinguishing feature of any MR fluid device is the absence of moving mechanical parts and the extreme simplicity of construction and technology. The most important element of any MR fluid device is an MR valve, which is functionally a controllable hydraulic resistance. As a demonstration of such devices, two commercially available pieces of exercise equipment, a cross stepper and a bench press, were modified to incorporate MR fluid and an external MR valve. As the magnetic field strength operating across the MR valve is adjusted, the viscosity of the flowing MR fluid changes and, accordingly, the needed force is adjusted.

  2. Anisotropic heat transport in reversed shear configurations: shearless Cantori barriers and nonlocal transport

    NASA Astrophysics Data System (ADS)

    Blasevski, D.; Del-Castillo-Negrete, D.

    2012-10-01

    Heat transport in magnetized plasmas is a problem of fundamental interest in controlled fusion. In Ref.footnotetext D. del-Castillo-Negrete, and L. Chac'on, Phys. Rev. Lett., 106, 195004 (2011); Phys. Plasmas 19, 056112 (2012). we proposed a Lagrangian-Green's function (LG) method to study this problem in the strongly anisotropic (χ=0) regime. The LG method bypasses the need to discretize the transport operators on a grid and it is applicable to general parallel flux closures and 3-D magnetic fields. Here we apply the LG method to parallel transport (with local and nonlocal parallel flux closures) in reversed shear magnetic field configurations known to exhibit robust transport barriers in the vicinity of the extrema of the q-profile. By shearless Cantori (SC) we mean the invariant Cantor sets remaining after the destruction of toroidal flux surfaces with zero magnetic shear, q^'=0. We provide numerical evidence of the role of SC in the anomalously slow relaxation of radial temperature gradients in chaotic magnetic fields with no transport barriers. The spatio-temporal evolution of temperature pulses localized in the reversed shear region exhibits non-diffusive self-similar evolution and nonlocal effective radial transport.

  3. Generalized Squashing Factors for Covariant Description of Magnetic Connectivity in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Titov, V. S.

    2007-01-01

    The study of magnetic connectivity in the solar corona reveals a need to generalize the field line mapping technique to arbitrary geometry of the boundaries and systems of coordinates. Indeed, the global description of the connectivity in the corona requires the use of the photospheric and solar wind boundaries. Both are closed surfaces and therefore do not admit a global regular system of coordinates. At least two overlapping regular systems of coordinates for each of the boundaries are necessary in this case to avoid spherical-pole-like singularities in the coordinates of the footpoints. This implies that the basic characteristic of magnetic connectivity-the squashing degree or factor Q of elemental flux tubes, according to Titov and coworkers-must be rewritten in covariant form. Such a covariant expression of Q is derived in this work. The derived expression is very flexible and highly efficient for describing the global magnetic connectivity in the solar corona. In addition, a general expression for a new characteristic Q1, which defines a squashing of the flux tubes in the directions perpendicular to the field lines, is determined. This new quantity makes it possible to filter out the quasi-separatrix layers whose large values of Q are caused by a projection effect at the field lines nearly touching the photosphere. Thus, the value Q1 provides a much more precise description of the volumetric properties of the magnetic field structure. The difference between Q and Q1 is illustrated by comparing their distributions for two configurations, one of which is the Titov-Demoulin model of a twisted magnetic field.

  4. Effects of Traveling Magnetic Field on Dynamics of Solidification

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Lorentz body force induced in electrically conducting fluids can be utilized for a number of materials processing technologies. An application of strong static magnetic fields can be beneficial for damping convection present during solidification. On the other hand, alternating magnetic fields can be used to reduce as well as to enhance convection. However, only special types of time dependent magnetic fields can induce a non-zero time averaged Lorentz force needed for convection control. One example is the rotating magnetic field. This field configuration induces a swirling flow in circular containers. Another example of a magnetic field configuration is the traveling magnetic field (TMF). It utilizes axisymmetric magnetostatic waves. This type of field induces an axial recirculating flow that can be advantageous for controlling axial mass transport, such as during solidification in long cylindrical tubes. Incidentally, this is the common geometry for crystal growth research. The Lorentz force induced by TMF can potentially counter-balance the buoyancy force, diminishing natural convection, or even setting up the flow in reverse direction. Crystal growth process in presence of TMF can be then significantly modified. Such properties as the growth rate, interface shape and macro segregation can be affected and optimized. Melt homogenization is the other potential application of TMF. It is a necessary step prior to solidification. TMF can be attractive for this purpose, as it induces a basic flow along the axis of the ampoule. TMF can be a practical alloy mixing method especially suited for solidification research in space. In the theoretical part of this work, calculations of the induced Lorentz force in the whole frequency range have been completed. The basic flow characteristics for the finite cylinder geometry are completed and first results on stability analysis for higher Reynolds numbers are obtained. A theoretical model for TMF mixing is also developed. In the experimental part, measurements of flow induced by TMF in a column of mercury (Hg) are presented. Also, an alloy mixing of Bi-Sn of the eutectic composition is demonstrated. A traveling magnetic field of 4mT at 3kHz applied for 120 minutes is found to be sufficient to homogenize an alloy enclosed in a 1cm diameter and 12 cm long tube.

  5. Uncertainty Quantification in Geomagnetic Field Modeling

    NASA Astrophysics Data System (ADS)

    Chulliat, A.; Nair, M. C.; Alken, P.; Meyer, B.; Saltus, R.; Woods, A.

    2017-12-01

    Geomagnetic field models are mathematical descriptions of the various sources of the Earth's magnetic field, and are generally obtained by solving an inverse problem. They are widely used in research to separate and characterize field sources, but also in many practical applications such as aircraft and ship navigation, smartphone orientation, satellite attitude control, and directional drilling. In recent years, more sophisticated models have been developed, thanks to the continuous availability of high quality satellite data and to progress in modeling techniques. Uncertainty quantification has become an integral part of model development, both to assess the progress made and to address specific users' needs. Here we report on recent advances made by our group in quantifying the uncertainty of geomagnetic field models. We first focus on NOAA's World Magnetic Model (WMM) and the International Geomagnetic Reference Field (IGRF), two reference models of the main (core) magnetic field produced every five years. We describe the methods used in quantifying the model commission error as well as the omission error attributed to various un-modeled sources such as magnetized rocks in the crust and electric current systems in the atmosphere and near-Earth environment. A simple error model was derived from this analysis, to facilitate usage in practical applications. We next report on improvements brought by combining a main field model with a high resolution crustal field model and a time-varying, real-time external field model, like in NOAA's High Definition Geomagnetic Model (HDGM). The obtained uncertainties are used by the directional drilling industry to mitigate health, safety and environment risks.

  6. Magnetoacoustic Tomography with Magnetic Induction for Electrical Conductivity based Tissue imaging

    NASA Astrophysics Data System (ADS)

    Mariappan, Leo

    Electrical conductivity imaging of biological tissue has attracted considerable interest in recent years owing to research indicating that electrical properties, especially electrical conductivity and permittivity, are indicators of underlying physiological and pathological conditions in biological tissue. Also, the knowledge of electrical conductivity of biological tissue is of interest to researchers conducting electromagnetic source imaging and in design of devices that apply electromagnetic energy to the body such as MRI. So, the need for a non-invasive, high resolution impedance imaging method is highly desired. To address this need we have studied the magnetoacoustic tomography with magnetic induction (MAT-MI) method. In MAT-MI, the object is placed in a static and a dynamic magnetic field giving rise to ultrasound waves. The dynamic field induces eddy currents in the object, and the static field leads to generation of acoustic vibrations from Lorentz force on the induced currents. The acoustic vibrations are at the same frequency as the dynamic magnetic field, which is chosen to match the ultrasound frequency range. These ultrasound signals can be measured by ultrasound probes and are used to reconstruct MAT-MI acoustic source images using possible ultrasound imaging approaches .The reconstructed high spatial resolution image is indicative of the object's electrical conductivity contrast. We have investigated ultrasound imaging methods to reliably reconstruct the MAT-MI image under the practical conditions of limited bandwidth and transducer geometry. The corresponding imaging algorithm, computer simulation and experiments are developed to test the feasibility of these different methods. Also, in experiments, we have developed a system with the strong static field of an MRI magnet and a strong pulsed magnetic field to evaluate MAT-MI in biological tissue imaging. It can be seen from these simulations and experiments that conductivity boundary images with millimeter resolution can be reliably reconstructed with MAT-MI. Further, to estimate the conductivity distribution throughout the object, we reconstruct a vector source image corresponding to the induced eddy currents. As the current source is uniformly present throughout the object, we are able to reliably estimate the internal conductivity distribution for a more complete imaging. From the computer simulations and experiments it can be seen that MAT-MI method has the potential to be a clinically applicable, high resolution, non-invasive method for electrical conductivity imaging.

  7. Transport of magnetic fields into the circumgalactic medium

    NASA Astrophysics Data System (ADS)

    Lilly, Simon

    2017-08-01

    Supernova-driven winds are known to play a major role in galaxy evolution, and to drive metal-enriched material far out into the circum-galactic medium. We have demonstrated that magnetic fields in these winds are detectably modifying the polarization properties of background radio quasars with intervening MgII 2799 absorption in their spectra, through Faraday Rotation. We have obtained estimates of the disordered fields within these Faraday screens and wish to map how these vary around galaxies, e.g. whether they are maximal above the poles of the galaxies as we would expect for biconical outflows. We also want to compare our estimates quantitatively with magnetohydrodynamical models that we have been developing. For both investigations, we need to know where the lines of sight pass, relative to the galaxies. For this we need HST resolution images of the host galaxies to establish the orientation and inclination of the disks, and the general morphologies of the galaxies. We have in hand images for 17/30 quasars, and request here images for the remaining 13 sources.

  8. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    DOE PAGES

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, Durga

    2017-05-17

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spinmore » orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. As a result, through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.« less

  9. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    NASA Astrophysics Data System (ADS)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.

    2017-11-01

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. Through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.

  10. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, Durga

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spinmore » orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. As a result, through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.« less

  11. Development and Comparison of Mechanical Structures for FNAL 15 T Nb$$_3$$Sn Dipole Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novitski, I.; Zlobin, A. V.

    2016-11-08

    Main design challenges for 15 T accelerator magnets are large Lorentz forces at this field level. The large Lorentz forces generate high stresses in the coil and mechanical structure and, thus, need stress control to maintain them at the acceptable level for brittle Nb3Sn coils and other elements of magnet mechanical structure. To provide these conditions and achieve the design field in the FNAL 15 T dipole demonstrator, several mechanical structures have been developed and analysed. The possibilities and limitations of these designs are discussed in this paper

  12. 3.0 Tesla magnetic resonance imaging: A new standard in liver imaging?

    PubMed Central

    Girometti, Rossano

    2015-01-01

    An ever-increasing number of 3.0 Tesla (T) magnets are installed worldwide. Moving from the standard of 1.5 T to higher field strength implies a number of potential advantage and drawbacks, requiring careful optimization of imaging protocols or implementation of novel hardware components. Clinical practice and literature review suggest that state-of-the-art 3.0 T is equivalent to 1.5 T in the assessment of focal liver lesions and diffuse liver disease. Therefore, further technical improvements are needed in order to fully exploit the potential of higher field strength. PMID:26244063

  13. 3.0 Tesla magnetic resonance imaging: A new standard in liver imaging?

    PubMed

    Girometti, Rossano

    2015-07-28

    An ever-increasing number of 3.0 Tesla (T) magnets are installed worldwide. Moving from the standard of 1.5 T to higher field strength implies a number of potential advantage and drawbacks, requiring careful optimization of imaging protocols or implementation of novel hardware components. Clinical practice and literature review suggest that state-of-the-art 3.0 T is equivalent to 1.5 T in the assessment of focal liver lesions and diffuse liver disease. Therefore, further technical improvements are needed in order to fully exploit the potential of higher field strength.

  14. Combined magnetic vector-scalar potential finite element computation of 3D magnetic field and performance of modified Lundell alternators in Space Station applications. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wang, Ren H.

    1991-01-01

    A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.

  15. The insertion device magnetic measurement facility: Prototype and operational procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkel, L.; Dejus, R.; Maines, J.

    1993-03-01

    This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypesmore » as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications.« less

  16. Explosive X-point collapse in relativistic magnetically dominated plasma

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  17. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heczko, O., E-mail: heczko@fzu.cz; Drahokoupil, J.; Straka, L.

    2015-05-07

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolutionmore » of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.« less

  18. Potential utility of future satellite magnetic field data

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The requirements for a program of geomagnetic field studies are examined which will satisfy a wide range of user needs in the interim period between now and the time at which data from the Geopotential Research Mission (GRM) becomes available, and the long term needs for NASA's program in this area are considered. An overview of the subject, a justification for the recommended activities in the near term and long term, and a summary of the recommendations reached by the contributors is included.

  19. Cochlear implant with a non-removable magnet: preliminary research at 3-T MRI.

    PubMed

    Dubrulle, F; Sufana Iancu, A; Vincent, C; Tourrel, G; Ernst, O

    2013-06-01

    To perform preliminary tests in vitro and with healthy volunteers to determine the 3-T MRI compatibility of a cochlear implant with a non-removable magnet. In the in vitro phase, we tested six implants for temperature changes and internal malfunctioning. We measured the demagnetisation of 65 internal magnets with different tilt angles between the implant's magnetic field (bi) and the main magnetic field (b0). In the in vivo phase, we tested 28 operational implants attached to the scalps of volunteers with the head in three different positions. The study did not find significant temperature changes or electronic malfunction in the implants tested in vitro. We found considerable demagnetisation of the cochlear implant magnets in the in vitro and in vivo testing influenced by the position of the magnet in the main magnetic field. We found that if the bi/b0 angle is <90°, there is no demagnetisation; if the bi/b0 angle is >90°, there is demagnetisation in almost 60 % of the cases. When the angle is around 90°, the risk of demagnetisation is low (6.6 %). The preliminary results on cochlear implants with non-removable magnets indicate the need to maintain the contraindication of passage through 3-T MRI. • Magnetic resonance imaging can affect cochlear implants and vice versa. • Demagnetisation of cochlear implant correlates with the angle between bi and b0. • The position of the head in the MRI influences the demagnetisation. • Three-Tesla MRI for cochlear implants is still contraindicated. • However some future solutions are discussed.

  20. Development of a tunable filter for coronal polarimetry

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Mathew, S. K.; Gallagher, D.

    2016-07-01

    Measuring magnetic fields in the solar corona is crucial to understanding and predicting the Sun's generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory Large Coronagraph (COSMO LC) is a proposed 1.5 m aperture coronagraph designed to synoptically observe magnetic fields and plasma properties in the large-scale corona to improve our understanding of solar processes that cause space weather. The LC will observe coronal emission lines over the wavelength range from 500 to 1100 nm with a field of view of 1° and a spatial resolution of 2 arcsec. A spectral resolution greater than 8000 over the wavelength range is needed to resolve the polarization signatures of magnetic fields in the emission line profiles. The aperture and field of view of the LC set an étendue requirement of 1.39 m2 deg2 for the postfocus instrumentation. We find that a tunable wide-field birefringent filter using Lithium Niobate crystals can meet the étendue and spectral resolution requirements for the LC spectrometer. We have tested a number of commercially available crystals and verify that crystals of the required size and birefringence uniformity are available. We also evaluate electro-optical tuning of a Lithium Niobate birefringent filter by the application of high voltage. This tunable filter represents a key enabling technology for the COSMO LC.

  1. Do We Know the Actual Magnetopause Position for Typical Solar Wind Conditions?

    NASA Technical Reports Server (NTRS)

    Samsonov, A. A.; Gordeev, E.; Tsyganenko, N. A.; Safrankova, J.; Nemecek, Z.; Simunek, J.; Sibeck, D. G.; Toth, G.; Merkin, V. G.; Raeder, J.

    2016-01-01

    We compare predicted magnetopause positions at the subsolar point and four reference points in the terminator plane obtained from several empirical and numerical MHD (magnetohydrodynamics) models. Empirical models using various sets of magnetopause crossings and making different assumptions about the magnetopause shape predict significantly different magnetopause positions (with a scatter greater than 1 Earth radius (R (sub E)) even at the subsolar point. Axisymmetric magnetopause models cannot reproduce the cusp indentations or the changes related to the dipole tilt effect, and most of them predict the magnetopause closer to the Earth than non axisymmetric models for typical solar wind conditions and zero tilt angle. Predictions of two global non axisymmetric models do not match each other, and the models need additional verification. MHD models often predict the magnetopause closer to the Earth than the non axisymmetric empirical models, but the predictions of MHD simulations may need corrections for the ring current effect and decreases of the solar wind pressure that occur in the foreshock. Comparing MHD models in which the ring current magnetic field is taken into account with the empirical Lin et al. model, we find that the differences in the reference point positions predicted by these models are relatively small for B (sub z) equals 0 (note: B (sub z) is when the Earth's magnetic field points north versus Sun's magnetic field pointing south). Therefore, we assume that these predictions indicate the actual magnetopause position, but future investigations are still needed.

  2. SiO maser polarization in evolved stars: magnetic field

    NASA Astrophysics Data System (ADS)

    Herpin, F.; Baudry, A.; Thum, C.; Morris, D.; Wiesemeyer, H.

    The maser theory still needs to be improved, in particular in terms of polarization. The study of the maser geometry inside the circumstellar envelopes can also be achieved through polarization studies (e.g., VLBI observations). But the most exciting point is the determination of the magnetic field that can be made from polarization measurements: this is definitively a new field of investigation for these evolved objects. The magnetic field probably plays an important role in the AGB star's life and can be a major factor (magnetic rotator theory) on the origin of the high mass loss rates observed in evolved objects. Measurement of the magnetic field is thus essential to study the mass loss mechanisms and also the Alfven waves. During its transition most quasi spherical AGB stars (i.e. envelopes) become complicated aspherical objects. This shaping is well explained by the Interacting Stellar Winds theory (Kwok works), but the ISW model fails to reproduce very complicated structures with jets and ansae. A new model (Magnetized Wind Blown Bubble theory) was thus developed by Blackman et al. (2001) and A. Franck: a weak toroidal magnetic field, embedded in the stellar wind, acts as a collimating agent (cf. Garcia-Segura 1997) and can produce such structures. Three molecules can show polarized maser emission in the circumstellar envelopes: - OH traces the envelope far from the central star (1000-10000 AU) - H2O at intermediate distances (a few 100 AU) - SiO in the inner circumstellar layers (5-10 AU) Measurement of the polarization rate of the maser radiation emitted by these molecules can give us the averaged value B// of the magnetic field along the line of sight (for a single dish observation). We present here the first complete study of the SiO maser polarization in a large sample of evolved stars (more than 100). The 4 Stokes parameters I, U, Q, V were simultaneously measured with the polarimeter on the IRAM-30m telescope. From the Stokes parameters values we derive the linear (pL) and circular (pC) polarization rates and polarization angle. The circular polarization rate gives us directly the magnetic field B//: B// varies from 1 to 32 Gauss depending on the source, with an average value of 9 Gauss.

  3. The MHD Kelvin-Helmholtz Instability. II. The Roles of Weak and Oblique Fields in Planar Flows

    NASA Astrophysics Data System (ADS)

    Jones, T. W.; Gaalaas, Joseph B.; Ryu, Dongsu; Frank, Adam

    1997-06-01

    We have carried out high-resolution MHD simulations of the nonlinear evolution of Kelvin-Helmholtz unstable flows in 21/2 dimensions. The modeled flows and fields were initially uniform except for a thin shear layer with a hyperbolic tangent velocity profile and a small, normal mode perturbation. These simulations extend work by Frank et al. and Malagoli, Bodo, & Rosner. They consider periodic sections of flows containing magnetic fields parallel to the shear layer, but projecting over a full range of angles with respect to the flow vectors. They are intended as preparation for fully three-dimensional calculations and to address two specific questions raised in earlier work: (1) What role, if any, does the orientation of the field play in nonlinear evolution of the MHD Kelvin-Helmholtz instability in 21/2 dimensions? (2) Given that the field is too weak to stabilize against a linear perturbation of the flow, how does the nonlinear evolution of the instability depend on strength of the field? The magnetic field component in the third direction contributes only through minor pressure contributions, so the flows are essentially two-dimensional. In Frank et al. we found that fields too weak to stabilize a linear perturbation may still be able to alter fundamentally the flow so that it evolves from the classical ``Cat's Eye'' vortex expected in gasdynamics into a marginally stable, broad laminar shear layer. In that process the magnetic field plays the role of a catalyst, briefly storing energy and then returning it to the plasma during reconnection events that lead to dynamical alignment between magnetic field and flow vectors. In our new work we identify another transformation in the flow evolution for fields below a critical strength. That we found to be ~10% of the critical field needed for linear stabilization in the cases we studied. In this ``very weak field'' regime, the role of the magnetic field is to enhance the rate of energy dissipation within and around the Cat's Eye vortex, not to disrupt it. The presence of even a very weak field can add substantially to the rate at which flow kinetic energy is dissipated. In all of the cases we studied magnetic field amplification by stretching in the vortex is limited by tearing mode, ``fast'' reconnection events that isolate and then destroy magnetic flux islands within the vortex and relax the fields outside the vortex. If the magnetic tension developed prior to reconnection is comparable to Reynolds stresses in the flow, that flow is reorganized during reconnection. Otherwise, the primary influence on the plasma is generation of entropy. The effective expulsion of flux from the vortex is very similar to that shown by Weiss for passive fields in idealized vortices with large magnetic Reynolds numbers. We demonstrated that this expulsion cannot be interpreted as a direct consequence of steady, resistive diffusion, but must be seen as a consequence of unsteady fast reconnection.

  4. From Emergence to Eruption: The Physics and Diagnostics of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Cheung, Mark

    2017-08-01

    The solar photosphere is continuously seeded by the emergence of magnetic fields from the solar interior. In turn, photospheric evolution shapes the magnetic terrain in the overlying corona. Magnetic fields in the corona store the energy needed to power coronal mass ejections (CMEs) and solar flares. In this talk, we recount a physics-based narrative of solar eruptive events from cradle to grave, from emergence to eruption, from evaporation to condensation. We review the physical processes which are understood to transport magnetic flux from the interior to the surface, inject free energy and twist into the corona, disentangle the coronal field to permit explosive energy release, and subsequently convert the released energy into observable signatures. Along the way, we review observational diagnostics used to constrain theories of active region evolution and eruption. Finally, we discuss the opportunities and challenges enabled by the large existing repository of solar observations. We argue that the synthesis of physics and diagnostics embodied in (1) data-driven modeling and (2) machine learning efforts will be an accelerating agent for scientific discovery.

  5. Particle Energization via Tearing Instability with Global Self-Organization Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarff, John; Guo, Fan

    The presentation reviews how tearing magnetic reconnection leads to powerful ion energization in reversed field pinch (RFP) plasmas. A mature MHD model for tearing instability has been developed that captures key nonlinear dynamics from the global to intermediate spatial scales. A turbulent cascade is also present that extends to at least the ion gyroradius scale, within which important particle energization mechanisms are anticipated. In summary, Ion heating and acceleration associated with magnetic reconnection from tearing instability is a powerful process in the RFP laboratory plasma (gyro-resonant and stochastic processes are likely candidates to support the observed rapid heating and othermore » features, reconnection-driven electron heating appears weaker or even absent, energetic tail formation for ions and electrons). Global self-organization strongly impacts particle energization (tearing interactions that span to core to edge, global magnetic flux change produces a larger electric field and runaway, correlations in electric and magnetic field fluctuations needed for dynamo feedback, impact of transport processes (which can be quite different for ions and electrons), inhomogeneity on the system scale, e.g., strong edge gradients).« less

  6. Dark field imaging system for size characterization of magnetic micromarkers

    NASA Astrophysics Data System (ADS)

    Malec, A.; Haiden, C.; Kokkinis, G.; Keplinger, F.; Giouroudi, I.

    2017-05-01

    In this paper we demonstrate a dark field video imaging system for the detection and size characterization of individual magnetic micromarkers suspended in liquid and the detection of pathogens utilizing magnetically labelled E.coli. The system follows dynamic processes and interactions of moving micro/nano objects close to or below the optical resolution limit, and is especially suitable for small sample volumes ( 10 μl). The developed detection method can be used to obtain clinical information about liquid contents when an additional biological protocol is provided, i.e., binding of microorganisms (e.g. E.coli) to specific magnetic markers. Some of the major advantages of our method are the increased sizing precision in the micro- and nano-range as well as the setup's simplicity making it a perfect candidate for miniaturized devices. Measurements can thus be carried out in a quick, inexpensive, and compact manner. A minor limitation is that the concentration range of micromarkers in a liquid sample needs to be adjusted in such a manner that the number of individual particles in the microscope's field of view is sufficient.

  7. A substantial amount of hidden magnetic energy in the quiet Sun.

    PubMed

    Bueno, J Trujillo; Shchukina, N; Ramos, A Asensio

    2004-07-15

    Deciphering and understanding the small-scale magnetic activity of the quiet solar photosphere should help to solve many of the key problems of solar and stellar physics, such as the magnetic coupling to the outer atmosphere and the coronal heating. At present, we can see only approximately 1 per cent of the complex magnetism of the quiet Sun, which highlights the need to develop a reliable way to investigate the remaining 99 per cent. Here we report three-dimensional radiative transfer modelling of scattering polarization in atomic and molecular lines that indicates the presence of hidden, mixed-polarity fields on subresolution scales. Combining this modelling with recent observational data, we find a ubiquitous tangled magnetic field with an average strength of approximately 130 G, which is much stronger in the intergranular regions of solar surface convection than in the granular regions. So the average magnetic energy density in the quiet solar photosphere is at least two orders of magnitude greater than that derived from simplistic one-dimensional investigations, and sufficient to balance radiative energy losses from the solar chromosphere.

  8. A Reversible Thermally Driven Pump for Use in a Sub-Kelvin Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Miller, Franklin K.

    2012-01-01

    A document describes a continuous magnetic refrigerator that is suited for cooling astrophysics detectors. This refrigerator has the potential to provide efficient, continuous cooling to temperatures below 50 mK for detectors, and has the benefits over existing magnetic coolers of reduced mass because of faster cycle times, the ability to pump the cooled fluid to remote cooling locations away from the magnetic field created by the superconducting magnet, elimination of the added complexity and mass of heat switches, and elimination of the need for a thermal bus and single crystal paramagnetic materials due to the good thermal contact between the fluid and the paramagnetic material. A reliable, thermodynamically efficient pump that will work at 1.8 K was needed to enable development of the new magnetic refrigerator. The pump consists of two canisters packed with pieces of gadolinium gallium garnet (GGG). The canisters are connected by a superleak (a porous piece of VYCOR glass). A superconducting magnetic coil surrounds each of the canisters. The configuration enables driving of cyclic thermodynamic cycles (such as the sub-Kelvin Active Magnetic Regenerative Refrigerator) without using pistons or moving parts.

  9. A linear helicon plasma device with controllable magnetic field gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.

    2012-06-15

    Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well asmore » its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.« less

  10. Threaded-Field-Line Model for the Transition Region and Solar Corona

    NASA Astrophysics Data System (ADS)

    Sokolov, I.; van der Holst, B.; Gombosi, T. I.

    2014-12-01

    In numerical simulations of the solar corona, both for the ambient state and especially for dynamical processes the most computational resources are spent for maintaining the numerical solution in the Low Solar Corona and in the transition region, where the temperature gradients are very sharp and the magnetic field has a complicated topology. The degraded computational efficiency is caused by the need in a highest resolution as well as the use of the fully three-dimensional implicit solver for electron heat conduction. On the other hand, the physical nature of the processes involved is rather simple (which still does not facilitate the numerical methods) as long as the heat fluxes as well as slow plasma motional velocities are aligned with the magnetic field. The Alfven wave turbulence, which is often believed to be the main driver of the solar wind and the main source of the coronal heating, is characterized by the Poynting flux of the waves, which is also aligned with the magnetic field. Therefore, the plasma state in any point of the three-dimensional grid in the Low Solar Corona can be found by solving a set of one-dimensional equations for the magnetic field line ("thread"), which passes through this point and connects it to the chromosphere and to the global Solar Corona. In the present paper we describe an innovative computational technology based upon the use of the magnetic-field-line-threads to forlmulate the boundary condition for the global solar corona model which traces the connection of each boundary point to the cromosphere along the threads.

  11. A whole new Mercury: MESSENGER reveals a dynamic planet at the last frontier of the inner solar system

    NASA Astrophysics Data System (ADS)

    Johnson, Catherine L.; Hauck, , Steven A.

    2016-11-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission yielded a wealth of information about the innermost planet. For the first time, visible images of the entire planet, absolute altimetry measurements and a global gravity field, measurements of Mercury's surface composition, magnetic field, exosphere, and magnetosphere taken over more than four Earth years are available. From these data, two overarching themes emerge. First, multiple data sets and modeling efforts point toward a dynamic ancient history. Signatures of graphite in the crust suggest solidification of an early magma ocean, image data show extensive volcanism and tectonic features indicative of subsequent global contraction, and low-altitude measurements of magnetic fields reveal an ancient magnetic field. Second, the present-day Mercury environment is far from quiescent. Convective motions in the outer core support a modern magnetic field whose strength and geometry are unique among planets with global magnetic fields. Furthermore, periodic and aperiodic variations in the magnetosphere and exosphere have been observed, some of which couple to the surface and the planet's deep interior. Finally, signatures of geologically recent volatile activity at the surface have been detected. Mercury's early history and its present-day environment have common elements with the other inner solar system bodies. However, in each case there are also crucial differences and these likely hold the key to further understanding of Mercury and terrestrial planet evolution. MESSENGER's exploration of Mercury has enabled a new view of the innermost planet, and more importantly has set the stage for much-needed future exploration.

  12. The Galactic Magnetic Field and its lensing of Ultrahigh Energy and Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Farrar, Glennys

    2015-08-01

    It has long been recognized that magnetic fields play an important role in many astrophysical environments, but the magnetic field strength and structure has only been quantitatively determined for relatively few systems beyond our solar system.Our understanding of the Galactic magnetic field (GMF) has improved tremendously in recent years. The Jansson-Farrar (2012) (JF12) GMF model is the most realistic and comprehensive model available. It was constrained by fitting all-sky Faraday Rotation Measures of ~40k extragalactic sources, simultaneously with WMAP polarized (Q,U) and total synchrotron emission maps - together providing a total of more than 10,000 independent datapoints, each with measured astrophysical variance. In addition to disk and toroidal halo components, a previously overlooked coherent poloidal halo field proves to be necessary to account for the RM, Q and U data. Moreover a “striated” random component is needed in addition to a fully random component, in both disk and halo.The talk will give a concise review of the JF12 model and its derivation, with emphasis on which features of the GMF are well or poorly established. I will show that the data unambiguously demand a large scale coherent component to the halo field which is a diverging-spiral centered on the Galactic center, with field lines running from Southern to Northern hemispheres. The puzzles posed by the large scale coherent halo and disk magnetic fields, and their possible origins, will be discussed.Having a good model of the Galactic magnetic field is crucial for determining the sources of UHECRs, for modeling the transport of Galactic CRs (the halo field provides a heretofore-overlooked escape route for by diffusion along its field lines), and for calculating the background to dark matter and CMB-cosmology studies. I will present new results on the lensing effect of the GMF on UHECRs, which produces multiple images and dramatic magnification and demagnification that varies with source direction and CR rigidity, E/Z, and show movies of VHECR propagation from a transient source at the Galactic Center or elsewhere in the Galaxy.

  13. Beyond Solar-B: MTRAP, the Magnetic Transition Region Probe

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Moore, Ronald L.; Hathaway, David H.

    2003-01-01

    The next generation of solar missions will reveal and measure fine-scale solar magnetic fields and their effects in the solar atmosphere at heights, small scales, sensitivities, and fields of view well beyond the reach of Solar-B. The necessity for, and potential of, such observations for understanding solar magnetic fields, their generation in and below the photosphere, and their control of the solar atmosphere and heliosphere, were the focus of a science definition workshop, 'High-Resolution Solar Magnetography from Space: Beyond Solar-B,' held in Huntsville Alabama in April 2001. Forty internationally prominent scientists active in solar research involving fine-scale solar magnetism participated in this Workshop and reached consensus that the key science objective to be pursued beyond Solar-B is a physical understanding of the fine-scale magnetic structure and activity in the magnetic transition region, defined as the region between the photosphere and corona where neither the plasma nor the magnetic field strongly dominates the other. The observational objective requires high cadence (less than 10s) vector magnetic field maps, and spatially resolved spectra from the IR, visible, vacuum UV, to the EUV at high resolution (less than 50km) over a large FOV (approximately 140,000 km). A polarimetric resolution of one part in ten thousand is required to measure transverse magnetic fields of less than 30G. The latest SEC Roadmap includes a mission identified as MTRAP to meet these requirements. Enabling technology development requirements include large, lightweight, reflecting optics, large format sensors (16K x 16K pixels) with high QE at 150 nm, and extendable spacecraft structures. The Science Organizing Committee of the Beyond Solar-B Workshop recommends that: (1) Science and Technology Definition Teams should be established in FY04 to finalize the science requirements and to define technology development efforts needed to ensure the practicality of MTRAP's observational goals; (2) The necessary technology development funding should be included in Code S budgets for FY06 and beyond to prepare MTRAP for a new start no later than the nominal end of the Solar-B mission, around 2010.

  14. Beyond Solar-B: MTRAP, the Magnetic TRAnsition Region Probe

    NASA Astrophysics Data System (ADS)

    Davis, J. M.; Moore, R. L.; Hathaway, D. H.; Science Definition CommitteeHigh-Resolution Solar Magnetography Beyond Solar-B Team

    2003-05-01

    The next generation of solar missions will reveal and measure fine-scale solar magnetic fields and their effects in the solar atmosphere at heights, small scales, sensitivities, and fields of view well beyond the reach of Solar-B. The necessity for, and potential of, such observations for understanding solar magnetic fields, their generation in and below the photosphere, and their control of the solar atmosphere and heliosphere, were the focus of a science definition workshop, "High-Resolution Solar Magnetography from Space: Beyond Solar-B," held in Huntsville Alabama in April 2001. Forty internationally prominent scientists active in solar research involving fine-scale solar magnetism participated in this Workshop and reached consensus that the key science objective to be pursued beyond Solar-B is a physical understanding of the fine-scale magnetic structure and activity in the magnetic transition region, defined as the region between the photosphere and corona where neither the plasma nor the magnetic field strongly dominates the other. The observational objective requires high cadence (< 10s) vector magnetic field maps, and spatially resolved spectra from the IR, visible, vacuum UV, to the EUV at high resolution (< 50km) over a large FOV ( 140,000 km). A polarimetric resolution of one part in ten thousand is required to measure transverse magnetic fields of < 30G. The latest SEC Roadmap includes a mission identified as MTRAP to meet these requirements. Enabling technology development requirements include large, lightweight, reflecting optics, large format sensors (16K x 16K pixels) with high QE at 150 nm, and extendable spacecraft structures. The Science Organizing Committee of the Beyond Solar-B Workshop recommends that: 1. Science and Technology Definition Teams should be established in FY04 to finalize the science requirements and to define technology development efforts needed to ensure the practicality of MTRAP's observational goals. 2. The necessary technology development funding should be included in Code S budgets for FY06 and beyond to prepare MTRAP for a new start no later than the nominal end of the Solar-B mission, around 2010.

  15. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  16. Feasibility study on partial insulation winding technique for the development of self-protective MgB2 magnet

    NASA Astrophysics Data System (ADS)

    Kim, Y. G.; Kim, J. C.; Kim, J. M.; Yoo, B. H.; Hwang, D. Y.; Lee, H. G.

    2018-06-01

    This study investigates the feasibility of using the partial insulation winding technique for the development of a self-protective MgB2 MRI magnet with a fast charge-discharge rate. Charge-discharge and quench tests for a prototype PI MgB2 magnet confirmed that the magnet was successfully operated at full-field performance and exhibited self-protecting behavior in the event of a quench. Nonetheless, the required time to charge the 0.5-T/300-mm PI MgB2 magnet was almost five days, implying that the charge-discharge delay of the PI MgB2 magnet still needs to be ameliorated further to develop a real-scale MgB2 MRI magnet with a fast charge-discharge rate.

  17. Passive magnetic bearing system

    DOEpatents

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  18. The spatial gradients in the solar wind and IMF in the vicinity of the first Lagrangian point

    NASA Astrophysics Data System (ADS)

    Lai, H.; Russell, C. T.; Riley, P.

    2017-12-01

    To verify the accuracy of predicted solar wind conditions at L1, we need to know how accurate our measurements are as well as the spatial gradients of solar wind properties since the data are not obtained precisely at the L1 point. With ACE, Wind, and DSCOVR currently taking measurements in the vicinity of L1, we first need to test whether their responses to the solar wind are the same and if not, to determine which data are most accurate. Secondly, we need to study the coherency scales of the solar wind properties, which determine the scale over which the measurements can be accurately extrapolated. By comparing the measurements during large solar wind structures (e.g. CMEs), we find that the magnetic fields from all spacecraft are measured accurately, but the plasma parameters can be significantly different from one spacecraft to another. By examining the sum of magnetic and plasma thermal pressure across tangential discontinuities, we find that the density and temperature measurements from Wind and DSCOVR do show pressure continuity as expected while ACE does not. Since plasma data from DSCOVR have a greater variability about the mean and have many data gaps, we believe that data from Wind should be used whenever available. We find that strength of the magnetic field and zero levels of the various magnetometers are consistent, but the direction of the magnetic field can change significantly in the cross-flow direction. Thus, over the separation distance of spacecraft near L1, large changes in the IMF direction can appear between spacecraft even though the IMF is accurately measured. In contrast, the plasma parameters, when measured accurately, are spatially uniform over about 100Re and may be extrapolated well. Our results can also be applied to improving future space weather mission design. A constellation of cubesats with magnetometers would be needed to determine the IMF impinging on the magnetosphere. Fewer plasma instruments are needed to determine the impinging solar wind conditions, but they should be more accurate than the current detectors.

  19. A Two-Magnet System to Push Therapeutic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shapiro, Benjamin; Dormer, Kenneth; Rutel, Isaac B.

    2010-12-01

    Magnetic fields can be used to direct magnetically susceptible nanoparticles to disease locations: to infections, blood clots, or tumors. Any single magnet always attracts (pulls) ferro- or para-magnetic particles towards it. External magnets have been used to pull therapeutics into tumors near the skin in animals and human clinical trials. Implanting magnetic materials into patients (a feasible approach in some cases) has been envisioned as a means of reaching deeper targets. Yet there are a number of clinical needs, ranging from treatments of the inner ear, to antibiotic-resistant skin infections and cardiac arrhythmias, which would benefit from an ability to magnetically "inject", or push in, nanomedicines. We develop, analyze, and experimentally demonstrate a novel, simple, and effective arrangement of just two permanent magnets that can magnetically push particles. Such a system might treat diseases of the inner ear; diseases which intravenously injected or orally administered treatments cannot reach due to the blood-brain barrier.

  20. Novel technologies and configurations of superconducting magnets for MRI

    NASA Astrophysics Data System (ADS)

    Lvovsky, Yuri; Stautner, Ernst Wolfgang; Zhang, Tao

    2013-09-01

    A review of non-traditional approaches and emerging trends in superconducting magnets for MRI is presented. Novel technologies and concepts have arisen in response to new clinical imaging needs, changes in market cost structure, and the realities of newly developing markets. Among key trends are an increasing emphasis on patient comfort and the need for ‘greener’ magnets with reduced helium usage. The paper starts with a brief overview of the well-optimized conventional MR magnet technology that presently firmly occupies the dominant position in the imaging market up to 9.4 T. Non-traditional magnet geometries, with an emphasis on openness, are reviewed. The prospects of MgB2 and high-temperature superconductors for MRI applications are discussed. In many cases the introduction of novel technologies into a cost-conscious commercial market will be stimulated by growing needs for advanced customized procedures, and specialty scanners such as orthopedic or head imagers can lead the way due to the intrinsic advantages in their design. A review of ultrahigh-field MR is presented, including the largest 11.7 T Iseult magnet. Advanced cryogenics approaches with an emphasis on low-volume helium systems, including hermetically sealed self-contained cryostats requiring no user intervention, as well as future non-traditional non-helium cryogenics, are presented.

  1. Direct observation of temperature-driven magnetic symmetry transitions by vectorial resolved MOKE magnetometry

    NASA Astrophysics Data System (ADS)

    Cuñado, Jose Luis F.; Pedrosa, Javier; Ajejas, Fernando; Perna, Paolo; Miranda, Rodolfo; Camarero, Julio

    2017-10-01

    Angle- and temperature-dependent vectorial magnetometry measurements are necessary to disentangle the effective magnetic symmetry in magnetic nanostructures. Here we present a detailed study on an Fe(1 0 0) thin film system with competing collinear biaxial (four-fold symmetry) and uniaxial (two-fold) magnetic anisotropies, carried out with our recently developed full angular/broad temperature range/vectorial-resolved magneto-optical Kerr effect magnetometer, named TRISTAN. The data give direct views on the angular and temperature dependence of the magnetization reversal pathways, from which characteristic axes, remanences, critical fields, domain wall types, and effective magnetic symmetry are obtained. In particular, although the remanence shows four-fold angular symmetry for all investigated temperatures (15 K-400 K), the critical fields show strong temperature and angular dependencies and the reversal mechanism changes for specific angles at a given (angle-dependent) critical temperature, showing signatures of an additional collinear two-fold symmetry. This symmetry-breaking is more relevant as temperature increases to room temperature. It originates from the competition between two anisotropy contributions with different symmetry and temperature evolution. The results highlight the importance of combining temperature and angular studies, and the need to look at different magnetic parameters to unravel the underlying magnetic symmetries and temperature evolutions of the symmetry-breaking effects in magnetic nanostructures.

  2. Domain wall motion in magnetically frustrated nanorings

    NASA Astrophysics Data System (ADS)

    Lubarda, M. V.; Escobar, M. A.; Li, S.; Chang, R.; Fullerton, E. E.; Lomakin, V.

    2012-06-01

    We describe a magnetically frustrated nanoring (MFNR) configuration which is formed by introducing antiferromagnetic coupling across an interface orthogonal to the ring's circumferential direction. Such structures have the unique characteristic that only one itinerant domain wall (DW) can exist in the ring, which does not need to be nucleated or injected into the structure and can never escape making it analogous to a magnetic Möbius strip. Numerical simulations show that the DW in a MFNR can be driven consecutively around the ring with a prescribed cyclicity, and that the frequency of revolutions can be controlled by the applied field. The energy landscapes can be controlled to be flat allowing for low fields of operation or to have a barrier for thermal stability. Potential logic and memory applications of MFNRs are considered and discussed.

  3. Multi-cathode unbalanced magnetron sputtering systems

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1991-01-01

    Ion bombardment of a growing film during deposition is necessary in many instances to ensure a fully dense coating, particularly for hard coatings. Until the recent advent of unbalanced magnetron (UBM) cathodes, reactive sputtering had not been able to achieve the same degree of ion bombardment as other physical vapor deposition processes. The amount of ion bombardment of the substrate depends on the plasma density at the substrate, and in a UBM system the amount of bombardment will depend on the degree of unbalance of the cathode. In multi-cathode systems, the magnetic fields between the cathodes must be linked to confine the fast electrons that collide with the gas atoms. Any break in this linkage results in electrons being lost and a low plasma density. Modeling of the magnetic fields in a UBM cathode using a finite element analysis program has provided great insight into the interaction between the magnetic fields in multi-cathode systems. Large multi-cathode systems will require very strong magnets or many cathodes in order to maintain the magnetic field strength needed to achieve a high plasma density. Electromagnets offer the possibility of independent control of the plasma density. Such a system would be a large-scale version of an ion beam enhanced deposition (IBED) system, but, for the UBM system where the plasma would completely surround the substrate, the acronym IBED might now stand for Ion Blanket Enhanced Deposition.

  4. Jupiter's Magnetodisc in the Juno Era and Implications for the Aurora

    NASA Astrophysics Data System (ADS)

    Vogt, M. F.; Spalsbury, L.; Connerney, J. E. P.

    2017-12-01

    The magnetic field in Jupiter's middle and outer magnetosphere is highly radially stretched by the presence of an azimuthally directed current sheet or magnetodisc. Magnetic field measurements from the Voyager, Pioneer, and Galileo spacecraft have been used to construct models of this current sheet, but these observations were limited to latitudes near the jovigraphic equator. High-latitude measurements, such as those recently collected by the Juno spacecraft in its polar orbit of Jupiter, are needed to more fully constrain our understanding of the magnetodisc structure and its effects on the coupling between the ionosphere and middle and outer magnetosphere. Here we will present Juno magnetic field observations from Jupiter's middle magnetosphere and will fit these data to current sheet models, including the Connerney et al. (1981) and Khurana (1997) models, to study the structure of the magnetodisc. We will examine how well the observations are fit by the available current sheet models and discuss any model modifications that are necessary to accurately represent the magnetic field measurements at high latitudes. We will also discuss temporal changes in the magnetodisc between successive Juno orbits ( 53 days) and on longer time scales by comparing Juno data to data from the Voyager, Pioneer, and Galileo spacecraft. Finally, we will consider the implications of our findings for other magnetospheric and auroral processes, particularly the magnetic mapping between the ionosphere and middle and outer magnetosphere.

  5. Torsional Alfv\\xE9n resonances as an efficient damping mechanism for non-radial oscillations in red giant stars

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2017-05-01

    Stars are self-gravitating fluids in which pressure, buoyancy, rotation and magnetic fields provide the restoring forces for global modes of oscillation. Pressure and buoyancy energetically dominate, while rotation and magnetism are generally assumed to be weak perturbations and often ignored. However, observations of anomalously weak dipole mode amplitudes in red giant stars suggest that a substantial fraction of these are subject to an additional source of damping localized to their core region, with indirect evidence pointing to the role of a deeply buried magnetic field. It is also known that in many instances, the gravity-mode character of affected modes is preserved, but so far, no effective damping mechanism has been proposed that accommodates this aspect. Here we present such a mechanism, which damps the oscillations of stars harbouring magnetised cores via resonant interactions with standing Alfvén modes of high harmonic index. The damping rates produced by this mechanism are quantitatively on par with those associated with turbulent convection, and in the range required to explain observations, for realistic stellar models and magnetic field strengths. Our results suggest that magnetic fields can provide an efficient means of damping stellar oscillations without needing to disrupt the internal structure of the modes, and lay the groundwork for an extension of the theory of global stellar oscillations that incorporates these effects.

  6. Drift-Free Indoor Navigation Using Simultaneous Localization and Mapping of the Ambient Heterogeneous Magnetic Field

    NASA Astrophysics Data System (ADS)

    Chow, J. C. K.

    2017-09-01

    In the absence of external reference position information (e.g. surveyed targets or Global Navigation Satellite Systems) Simultaneous Localization and Mapping (SLAM) has proven to be an effective method for indoor navigation. The positioning drift can be reduced with regular loop-closures and global relaxation as the backend, thus achieving a good balance between exploration and exploitation. Although vision-based systems like laser scanners are typically deployed for SLAM, these sensors are heavy, energy inefficient, and expensive, making them unattractive for wearables or smartphone applications. However, the concept of SLAM can be extended to non-optical systems such as magnetometers. Instead of matching features such as walls and furniture using some variation of the Iterative Closest Point algorithm, the local magnetic field can be matched to provide loop-closure and global trajectory updates in a Gaussian Process (GP) SLAM framework. With a MEMS-based inertial measurement unit providing a continuous trajectory, and the matching of locally distinct magnetic field maps, experimental results in this paper show that a drift-free navigation solution in an indoor environment with millimetre-level accuracy can be achieved. The GP-SLAM approach presented can be formulated as a maximum a posteriori estimation problem and it can naturally perform loop-detection, feature-to-feature distance minimization, global trajectory optimization, and magnetic field map estimation simultaneously. Spatially continuous features (i.e. smooth magnetic field signatures) are used instead of discrete feature correspondences (e.g. point-to-point) as in conventional vision-based SLAM. These position updates from the ambient magnetic field also provide enough information for calibrating the accelerometer bias and gyroscope bias in-use. The only restriction for this method is the need for magnetic disturbances (which is typically not an issue for indoor environments); however, no assumptions are required for the general motion of the sensor (e.g. static periods).

  7. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  8. Runaway Electrons Modeling and Nanoparticle Plasma Jet Penetration into Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Galkin, S. A.; Bogatu, I. N.

    2017-10-01

    A novel idea to probe runaway electrons (REs) by superfast injection of high velocity nanoparticle plasma jet (NPPJ) from a plasma accelerator needs to be sustained by both RE dynamics modeling and simulation of NPPJ penetration through increasing tokamak magnetic field. We present our recent progress in both areas. RE simulation is based on the model, including Dreicer and ``avalanche'' mechanisms of RE generation, with emphasis on high Zeff effects. The high-density hyper-velocity C60 and BN NPPJ penetration through transversal B-field is conducted with the Hybrid Electro-Magnetic code (HEM-2D) in cylindrical coordinates, with 1/R B-field dependence for both DIII-D and ITER tokamaks. Work is supported in part by US DOE SBIR Grant.

  9. Magnetic field line random walk in two-dimensional dynamical turbulence

    NASA Astrophysics Data System (ADS)

    Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.

    2017-08-01

    The field line random walk (FLRW) of magnetic turbulence is one of the important topics in plasma physics and astrophysics. In this article, by using the field line tracing method, the mean square displacement (MSD) of FLRW is calculated on all possible length scales for pure two-dimensional turbulence with the damping dynamical model. We demonstrate that in order to describe FLRW with the damping dynamical model, a new dimensionless quantity R is needed to be introduced. On different length scales, dimensionless MSD shows different relationships with the dimensionless quantity R. Although the temporal effect affects the MSD of FLRW and even changes regimes of FLRW, it does not affect the relationship between the dimensionless MSD and dimensionless quantity R on all possible length scales.

  10. Electric Field Feature of Moving Magnetic Field

    NASA Astrophysics Data System (ADS)

    Chen, You Jun

    2001-05-01

    A new fundamental relationship of electric field with magnetic field has been inferred from the fundamental experimental laws and theories of classical electromagnetics. It can be described as moving magnetic field has or gives electric feature. When a field with magnetic induction of B moves in the velocity of V, it will show electric field character, the electric field intensity E is E = B x V and the direction of E is in the direction of the vector B x V. It is improper to use the time-varying electromagnetics theories as the fundamental theory of the electromagnetics and group the electromagnetic field into static kind and time-varying kind for the static is relative to motional not only time-varying. The relationship of time variation of magnetic field induction or magnetic flux with electric field caused by magnetic field is fellowship not causality. Thus time-varying magnetic field can cause electric field is not a nature principle. Sometime the time variation of magnetic flux is equal to the negative electromotive force or the time variation of magnetic field induction is equal to the negative curl of electric field caused by magnetic field motion, but not always. And not all motion of magnetic field can cause time variation of magnetic field. Therefore Faraday-Lenz`s law can only be used as mathematics tool to calculate the quantity relation of the electricity with the magnetism in some case like the magnetic field moving in uniform medium. Faraday-Lenz`s law is unsuitable to be used in moving uniform magnetic field or there is magnetic shield. Key word: Motional magnetic field, Magnetic induction, Electric field intensity, Velocity, Faraday-Lenz’s law

  11. Magnetically-driven medical robots: An analytical magnetic model for endoscopic capsules design

    NASA Astrophysics Data System (ADS)

    Li, Jing; Barjuei, Erfan Shojaei; Ciuti, Gastone; Hao, Yang; Zhang, Peisen; Menciassi, Arianna; Huang, Qiang; Dario, Paolo

    2018-04-01

    Magnetic-based approaches are highly promising to provide innovative solutions for the design of medical devices for diagnostic and therapeutic procedures, such as in the endoluminal districts. Due to the intrinsic magnetic properties (no current needed) and the high strength-to-size ratio compared with electromagnetic solutions, permanent magnets are usually embedded in medical devices. In this paper, a set of analytical formulas have been derived to model the magnetic forces and torques which are exerted by an arbitrary external magnetic field on a permanent magnetic source embedded in a medical robot. In particular, the authors modelled cylindrical permanent magnets as general solution often used and embedded in magnetically-driven medical devices. The analytical model can be applied to axially and diametrically magnetized, solid and annular cylindrical permanent magnets in the absence of the severe calculation complexity. Using a cylindrical permanent magnet as a selected solution, the model has been applied to a robotic endoscopic capsule as a pilot study in the design of magnetically-driven robots.

  12. High Temperature Superconducting Magnets with Active Control for Attraction Levitation Transport Applications

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Jenkins, Richard G.; Goodall, Roger M.; Macleod, Colin; ElAbbar, Abdallah A.; Campbell, Archie M.

    1996-01-01

    A research program, involving 3 British universities, directed at quantifying the controllability of High Temperature Superconducting (HTS) magnets for use in attraction levitation transport systems will be described. The work includes measurement of loss mechanisms for iron cored HTS magnets which need to produce a flux density of approx. 1 tesla in the airgap between the magnet poles and a ferromagnetic rail. This flux density needs to be maintained and this is done by introducing small variations of the magnet current using a feedback loop, at frequencies up to 10 Hz to compensate for load changes, track variation etc. The test magnet assemblies constructed so far will be described and the studies and modelling of designs for a practical levitation demonstrator (using commercially obtained HTS tape) will be discussed with particular emphasis on how the field distribution and its components, e.g., the component vector normal to the broad face of the tape, can radically affect design philosophy compared to the classical electrical engineering approach. Although specifically aimed at levitation transport the controllability data obtained have implications for a much wider range of applications.

  13. Was Dick Tracy Right? Do Magnetic Fields Rule the Cosmos?

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.

    2007-12-01

    Astronomers generally subordinate magnetic forces to gravitational ones at all but the smallest scales. The 'Dual Proposal', however, introduces a new scale, λo=400 pc [1]. Here the photon has a real mass and the graviton an imaginary one, both of mc2=hc/λo = 10 - 25 eV. The resulting sinusoidal gravitational potential (φ = - (GM/r) Cos[kor], ko=2 π/λo) does not compromise solar system dynamics, explains the large tidal forces observed in the Milky Way, and predicts that the Galaxy has a central, physical stationary bar. The sinusoidal potential is powerless to bind large amorphous objects such as clusters of galaxies (or the Universe itself). Here one needs the massive photon (φ = (Q/r) Exp[- kor]). Chibisov (1976) has shown that at large scales (s>>λo), a massive photon will generally provide an attractive force rather than the usual repulsive one of the massless photon. At recent meetings of the AAS I have shown how the new cosmic magnetic fields can bind the Coma cluster or strip the gas (and plasma) from the stars in the Bullet Collision (Clowe et al 2006). In this poster, I demonstrate how magnetic fields can replace gravitational ones in cosmology. Two elements are critical. The Dark Ages are needed to explain the evolution of the scale factor a(t) from the time of nucleosynthesis to the present. Gravitational energy densities (ΔW/ΔV= (1/2) ρφ ) and magnetic energy densities (ΔW/ΔV= (1/2) J.A ) are now absolute and thus meaningful. Ref [1]: "Analogies between electricity and gravity", Metrologia 41 (2004) S115-S124.

  14. Dual-force aggregation of magnetic particles enhances label-free quantification of DNA at the sub-single cell level.

    PubMed

    Nelson, Daniel A; Strachan, Briony C; Sloane, Hillary S; Li, Jingyi; Landers, James P

    2014-03-28

    We recently reported the 'pinwheel effect' as the foundation for a DNA assay based on a DNA concentration-dependent aggregation of silica-coated magnetic beads in a rotating magnetic field (RMF). Using a rotating magnet that generated a 5 cm magnetic field that impinged on a circular array of 5mm microwells, aggregation was found to only be effective in a single well at the center of the field. As a result, when multiple samples needed to be analyzed, the single-plex (single well) analysis was tedious, time-consuming and labor-intensive, as each well needed to be exposed to the center of the RMF in a serial manner for consistent well-to-well aggregation. For more effective multiplexing (simultaneous aggregation in 12 wells), we used a circular array of microwells and incorporated 'agitation' as a second force that worked in concert with the RMF to provide effective multiplexed aggregation-based DNA quantitation. The dual-force aggregation (DFA) approach allows for effective simultaneous aggregation in multiple wells (12 demonstrated) of the multi-well microdevice, allowing for 12 samples to be interrogated for DNA content in 140 s, providing a ∼35-fold improvement in time compared to single-plex approach (80 min) and ∼4-fold improvement over conventional fluorospectrometric methods. Furthermore, the increased interaction between DNA and beads provided by DFA improved the limit of detection to 250 fg μL(-1). The correlation between the DFA results and those from a fluorospectrometer, demonstrate DFA as an inexpensive and rapid alternative to more conventional methods (fluorescent and spectrophotometric). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Effect of Heat-Treatment on the Phases of Ni-Mn-Ga Magnetic Shape Memory Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huq, Ashfia; Ari-Gur, Pnina; Kimmel, Giora

    2009-01-01

    The Heusler alloys Ni50Mn25+xGa25-x display magnetic shape memory effect (MSM) with very fast and large reversible strain under magnetic fields. This large strain and the speed of reaction make MSM alloys attractive as smart materials. Our crystallographic investigation of these alloys, focused on non-stoichiometric composition with excess of manganese. Using neutron diffraction, we revealed the necessary processing parameters to achieve and preserve the homogeneous metastable one-phase martensitic structure that is needed for an MSM effect at room temperature.

  16. Geophysics: Timing of the Martian dynamo

    NASA Astrophysics Data System (ADS)

    Schubert, G.; Russell, C. T.; Moore, W. B.

    2000-12-01

    On Mars, the strong magnetization in the highland crust of the southern hemisphere and the absence of magnetic anomalies at the Hellas and Argyre impact basins have been taken as signs that the core dynamo that once drove the planet's magnetic field turned off more than 4 billion years (Gyr) ago. Here, we argue instead that the Martian dynamo turned on less than 4 Gyr ago and turned off at an unknown time since then. High spatial resolution magnetometry in both Martian hemispheres is needed to reveal the true history of the Martian dynamo.

  17. Interplanetary Magnetic Flux Ropes as Agents Connecting Solar Eruptions and Geomagnetic Activities

    NASA Astrophysics Data System (ADS)

    Marubashi, K.; Cho, K.-S.; Ishibashi, H.

    2017-12-01

    We investigate the solar wind structure for 11 cases that were selected for the campaign study promoted by the International Study of Earth-affecting Solar Transients (ISEST) MiniMax24 Working Group 4. We can identify clear flux rope signatures in nine cases. The geometries of the nine interplanetary magnetic flux ropes (IFRs) are examined with a model-fitting analysis with cylindrical and toroidal force-free flux rope models. For seven cases in which magnetic fields in the solar source regions were observed, we compare the IFR geometries with magnetic structures in their solar source regions. As a result, we can confirm the coincidence between the IFR orientation and the orientation of the magnetic polarity inversion line (PIL) for six cases, as well as the so-called helicity rule as regards the handedness of the magnetic chirality of the IFR, depending on which hemisphere of the Sun the IFR originated from, the northern or southern hemisphere; namely, the IFR has right-handed (left-handed) magnetic chirality when it is formed in the southern (northern) hemisphere of the Sun. The relationship between the orientation of IFRs and PILs can be taken as evidence that the flux rope structure created in the corona is in most cases carried through interplanetary space with its orientation maintained. In order to predict magnetic field variations on Earth from observations of solar eruptions, further studies are needed about the propagation of IFRs because magnetic fields observed at Earth significantly change depending on which part of the IFR hits the Earth.

  18. Atomic-scale sensing of the magnetic dipolar field from single atoms

    NASA Astrophysics Data System (ADS)

    Choi, Taeyoung; Paul, William; Rolf-Pissarczyk, Steffen; MacDonald, Andrew J.; Natterer, Fabian D.; Yang, Kai; Willke, Philip; Lutz, Christopher P.; Heinrich, Andreas J.

    2017-05-01

    Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions. In recent years, there have been notable achievements in detecting and coherently controlling individual atomic-scale spin centres for sensitive local magnetometry. However, positioning the spin sensor and characterizing spin-spin interactions with sub-nanometre precision have remained outstanding challenges. Here, we use individual Fe atoms as an electron spin resonance (ESR) sensor in a scanning tunnelling microscope to measure the magnetic field emanating from nearby spins with atomic-scale precision. On artificially built assemblies of magnetic atoms (Fe and Co) on a magnesium oxide surface, we measure that the interaction energy between the ESR sensor and an adatom shows an inverse-cube distance dependence (r-3.01±0.04). This demonstrates that the atoms are predominantly coupled by the magnetic dipole-dipole interaction, which, according to our observations, dominates for atom separations greater than 1 nm. This dipolar sensor can determine the magnetic moments of individual adatoms with high accuracy. The achieved atomic-scale spatial resolution in remote sensing of spins may ultimately allow the structural imaging of individual magnetic molecules, nanostructures and spin-labelled biomolecules.

  19. On the electrophonic generation of audio frequency sound by meteors

    NASA Astrophysics Data System (ADS)

    Kelley, Michael C.; Price, Colin

    2017-04-01

    Recorded for centuries, people can hear and see meteors nearly concurrently. Electromagnetic energy clearly propagates at the speed of light and converts to sound (called electrophonics) when coupled to metals. An explanation for the electromagnetic energy source is suggested. Coma ions around the meteor head can easily travel across magnetic field lines up to 120 km. The electrons, however, are tied to magnetic field lines, since they must gyrate around the field above 75 km. A large ambipolar electric field must be generated to conserve charge neutrality. This localized electric field maps to the E region then drives a large Hall current that launches the electromagnetic wave. Using antenna theory and following, a power flux of over 10-8 W/m2 at the ground is found. Electrophonic conversion to sound efficiency then needs to be only 0.1% to explain why humans can hear and see meteors nearly concurrently.

  20. Statistical Theory of the Ideal MHD Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the rotation axis.

  1. Magnetic fields are causing small, but significant changes of the radiochromic EBT3 film response to 6 MV photons

    NASA Astrophysics Data System (ADS)

    Delfs, Björn; Schoenfeld, Andreas A.; Poppinga, Daniela; Kapsch, Ralf-Peter; Jiang, Ping; Harder, Dietrich; Poppe, Björn; Khee Looe, Hui

    2018-02-01

    The optical density (OD) of EBT3 radiochromic films (Ashland Specialty Ingredients, Bridgewater, NJ, USA) exposed to absorbed doses to water up to D  =  20 Gy in magnetic fields of B  =  0.35 and 1.42 T was measured in the three colour channels of an Epson Expression 10000XL flatbed scanner. A 7 cm wide water phantom with fixed film holder was placed between the pole shoes of a constant-current electromagnet with variable field strength and was irradiated by a 6 MV photon beam whose axis was directed at right angles with the field lines. The doses at the film position at water depth 5 cm were measured with a calibrated ionization chamber when the magnet was switched off and were converted to the doses in presence of the magnetic field via the monitor units and by a Monte Carlo-calculated correction accounting for the slight change of the depth dose curves in magnetic fields. In the presence of the 0.35 and 1.42 T fields small negative changes of the OD values at given absorbed doses to water occurred and just significantly exceeded the uncertainty margin given by the stochastic and the uncorrected systematic deviations. This change can be described by a  +2.1% change of the dose values needed to produce a given optical density in the presence of a 1.42 T field. The thereby modified OD versus D function remained unchanged irrespective of whether the original short film side—the preference direction of the monomer crystals of the film—was directed parallel or orthogonal to the magnetic field. The ‘orientation effect’, the difference between the optical densities measured in the ‘portrait’ or ‘landscape’ film positions on the scanner bed caused by the reflection of polarised light in the scanner’s mirror system, remained unaltered after EBT3 film exposure in magnetic fields. An independent optical bench investigation of EBT3 films exposed to doses of 10 and 20 Gy at 0.35 and 1.42 T showed that the direction of the electric vector of polarised light experiencing the largest transmission through EBT3 films remained unaltered after film exposure in the magnetic fields. The observed small modification of the OD versus D curve of the radiochromic film EBT3 in the range up to 20 Gy and 1.42 T, hardly exceeding the experimental uncertainty margin, numerically confirms other recent studies on EBT3 film. A stronger magnetic field effect had been observed with the previous product EBT2 exposed to 60Co gamma radiation at 0.35 T.

  2. Magnetic fields are causing small, but significant changes of the radiochromic EBT3 film response to 6 MV photons.

    PubMed

    Delfs, Björn; Schoenfeld, Andreas A; Poppinga, Daniela; Kapsch, Ralf-Peter; Jiang, Ping; Harder, Dietrich; Poppe, Björn; Looe, Hui Khee

    2018-01-31

    The optical density (OD) of EBT3 radiochromic films (Ashland Specialty Ingredients, Bridgewater, NJ, USA) exposed to absorbed doses to water up to D  =  20 Gy in magnetic fields of B  =  0.35 and 1.42 T was measured in the three colour channels of an Epson Expression 10000XL flatbed scanner. A 7 cm wide water phantom with fixed film holder was placed between the pole shoes of a constant-current electromagnet with variable field strength and was irradiated by a 6 MV photon beam whose axis was directed at right angles with the field lines. The doses at the film position at water depth 5 cm were measured with a calibrated ionization chamber when the magnet was switched off and were converted to the doses in presence of the magnetic field via the monitor units and by a Monte Carlo-calculated correction accounting for the slight change of the depth dose curves in magnetic fields. In the presence of the 0.35 and 1.42 T fields small negative changes of the OD values at given absorbed doses to water occurred and just significantly exceeded the uncertainty margin given by the stochastic and the uncorrected systematic deviations. This change can be described by a  +2.1% change of the dose values needed to produce a given optical density in the presence of a 1.42 T field. The thereby modified OD versus D function remained unchanged irrespective of whether the original short film side-the preference direction of the monomer crystals of the film-was directed parallel or orthogonal to the magnetic field. The 'orientation effect', the difference between the optical densities measured in the 'portrait' or 'landscape' film positions on the scanner bed caused by the reflection of polarised light in the scanner's mirror system, remained unaltered after EBT3 film exposure in magnetic fields. An independent optical bench investigation of EBT3 films exposed to doses of 10 and 20 Gy at 0.35 and 1.42 T showed that the direction of the electric vector of polarised light experiencing the largest transmission through EBT3 films remained unaltered after film exposure in the magnetic fields. The observed small modification of the OD versus D curve of the radiochromic film EBT3 in the range up to 20 Gy and 1.42 T, hardly exceeding the experimental uncertainty margin, numerically confirms other recent studies on EBT3 film. A stronger magnetic field effect had been observed with the previous product EBT2 exposed to 60 Co gamma radiation at 0.35 T.

  3. Magnetostriction and Magnetic Heterogeneities in Iron-Gallium

    DTIC Science & Technology

    2010-07-08

    instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send...2Materials Research Division, Risø DTU , Technical University of Denmark, DK-4000 Roskilde, Denmark 3Nano-Science Center, Niels Bohr Institute, University...gauges monitored the strain. Comparing Eqs. (1) and the dependencies of the data at high magnetic fields [Fig. 1(d)], we see ðRÞ ¼ 0 everywhere, i.e

  4. Superconducting Magnetic Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Lawson, Daniel D.

    1991-01-01

    Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.

  5. Beam loss detection system in the arcs of the LHC

    NASA Astrophysics Data System (ADS)

    Arauzo, A.; Bovet, C.

    2000-11-01

    Over the whole circumference of the LHC, Beam Loss Monitors (BLM) will be needed for a continuous surveillance of fast and slow beam losses. In this paper, the location of the BLMs set outside the magnet cryostats in the arcs is proposed. In order to know the number of protons lost on the beam screen, the sensitivity of each BLM has been computed using the program GEANT 3.21, which generates the shower inside the cryostat. The material and the magnetic fields have been described thoroughly in 3-D and the simulation results show the best locations for 6 BLMs needed around each quadrupole. The number of minimum ionizing particles received for each lost proton serves to define local thresholds to dump the beam when the losses are menacing to quench a magnet.

  6. Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes.

    PubMed

    Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Seo, Jin Keun; Lee, June-Yub; Baek, Woon Sik

    2003-07-07

    In magnetic resonance electrical impedance tomography (MREIT), we try to reconstruct a cross-sectional resistivity (or conductivity) image of a subject. When we inject a current through surface electrodes, it generates a magnetic field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the induced magnetic flux density from MR phase images of the subject. We use recessed electrodes to avoid undesirable artefacts near electrodes in measuring magnetic flux densities. An MREIT image reconstruction algorithm produces cross-sectional resistivity images utilizing the measured internal magnetic flux density in addition to boundary voltage data. In order to develop such an image reconstruction algorithm, we need a three-dimensional forward solver. Given injection currents as boundary conditions, the forward solver described in this paper computes voltage and current density distributions using the finite element method (FEM). Then, it calculates the magnetic flux density within the subject using the Biot-Savart law and FEM. The performance of the forward solver is analysed and found to be enough for use in MREIT for resistivity image reconstructions and also experimental designs and validations. The forward solver may find other applications where one needs to compute voltage, current density and magnetic flux density distributions all within a volume conductor.

  7. Sensor probes and phantoms for advanced transcranial magnetic stimulation system developments

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Patel, Prashil; Trivedi, Sudhir; Du, Xiaoming; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Transcranial magnetic stimulation (TMS) has become one of the most widely used noninvasive method for brain tissue stimulation and has been used as a treatment tool for various neurological and psychiatric disorders including migraine, stroke, Parkinson's disease, dystonia, tinnitus and depression. In the process of developing advanced TMS deep brain stimulation tools, we need first to develop field measurement devices like sensory probes and brain phantoms, which can be used to calibrate the TMS systems. Currently there are commercially available DC magnetic or electric filed measurement sensors, but there is no instrument to measure transient fields. In our study, we used a commercial figure-8 shaped TMS coil to generate transient magnetic field and followed induced field and current. The coil was driven by power amplified signal from a pulse generator with tunable pulse rate, amplitude, and duration. In order to obtain a 3D plot of induced vector electric field, many types of probes were designed to detect single component of electric-field vectors along x, y and z axis in the space around TMS coil. We found that resistor probes has an optimized signal-to-noise ratio (SNR) near 3k ohm but it signal output is too weak compared with other techniques. We also found that inductor probes can have very high output for Curl E measurement, but it is not the E-field distribution we are interested in. Probes with electrical wire wrapped around iron coil can directly measure induced E-field with high sensitivity, which matched computer simulation results.

  8. Uniform hydrogen fuel layers for inertial fusion targets by microgravity

    NASA Technical Reports Server (NTRS)

    Parks, P. B.; Fagaly, Robert L.

    1994-01-01

    A critical concern in the fabrication of targets for inertial confinement fusion (ICF) is ensuring that the hydrogenic (D(sub 2) or DT) fuel layer maintains spherical symmetry. Solid layered targets have structural integrity, but lack the needed surface smoothness. Liquid targets are inherently smooth, but suffer from gravitationally induced sagging. One method to reduce the effective gravitational field environment is freefall insertion into the target chamber. Another method to counterbalance field gravitational force is to use an applied magnetic field combined with a gradient field to induce a magnetic dipole force on the liquid fuel layer. Based on time dependent calculations of the dynamics of the liquid fuel layer in microgravity environments, we show that it may be possible to produce a liquid layered ICF target that satisfies both smoothness and symmetry requirements.

  9. The measurement system of birefringence and Verdet constant of optical fiber

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Chen, Li; Guo, Qiang; Pang, Fufei; Wen, Jianxiang; Shang, Yana; Wang, Tingyun

    2013-12-01

    The Faraday magneto-optical effect of optical fiber has many applications in monitoring magnetic field and electric current. When a linearly polarized light propagates in the direction of a magnetic field, the plane of polarization will rotate linearly proportional to the strength of the applied magnetic field, which following the relationship of θF =VBl. θF is the Faraday rotation angle, which is proportional to the magnetic flux density B and the Verdet constant V . However, when the optical fiber contains the effect of linear birefringence, the detection of Faraday rotation angle will depend on the line birefringence. In order to determine the Verdet constant of an optical fiber under a linear birefringence, the fiber birefringence needs to be accurately measured. In this work, a model is applied to analyze the polarization properties of an optical fiber by using the Jones matrix method. A measurement system based on the lock-in amplifier technology is designed to test the Verdet constant and the birefringence of optical fiber. The magnetic field is produced by a solenoid with a DC current. A tunable laser is intensity modulated with a motorized rotating chopper. The actuator supplies a signal as the phase-locked synchronization reference to the signal of the lock-in amplifier. The measurement accuracy is analyzed and the sensitivity of the system is optimized. In this measurement system, the Verdet constant of the SMF-28 fiber was measured to be 0.56±0.02 rad/T·m at 1550nm. This setup is well suitable for measuring the high signal-to-noise ratio (SNR) sensitivity for lock-in amplifier at a low magnetic field strength.

  10. The NASA Inductrack Model Rocket Launcher at the Lawrence Livermore National Laboratory

    NASA Technical Reports Server (NTRS)

    Tung, L. S.; Post, R. F.; Cook, E.; Martinez-Frias, J.

    2000-01-01

    The Inductrack magnetic levitation system, developed at the Lawrence Livermore National Laboratory, is being studied for its possible use for launching rockets. Under NASA sponsorship, a small model system is being constructed at the Laboratory to pursue key technical aspects of this proposed application. The Inductrack is a passive magnetic levitation system employing special arrays of high-field permanent magnets (Halbach arrays) on the levitating carrier, moving above a "track" consisting of a close-packed array of shorted coils with which are interleaved with special drive coils. Halbach arrays produce a strong spatially periodic magnetic field on the front surface of the arrays, while canceling the field on their back surface. Relative motion between the Halbach arrays and the track coils induces currents in those coils. These currents levitate the carrier cart by interacting with the horizontal component of the magnetic field. Pulsed currents in the drive coils, synchronized with the motion of the carrier, interact with the vertical component of the magnetic field to provide acceleration forces. Motional stability, including resistance to both vertical and lateral aerodynamic forces, is provided by having Halbach arrays that interact with both the upper and the lower sides of the track coils. In its completed form the model system that is under construction will have a track approximately 100 meters in length along which the carrier cart will be propelled up to peak speeds of Mach 0.4 to 0.5 before being decelerated. Preliminary studies of the parameters of a full-scale system have also been made. These studies address the problems of scale-up, including means to simplify the track construction and to reduce the cost of the pulsed-power systems needed for propulsion.

  11. Time-of-flight magnetic resonance angiography (TOF-MRA) of the normal equine head.

    PubMed

    Manso-Díaz, G; García-Real, M I; Casteleyn, C; San-Román, F; Taeymans, O

    2013-03-01

    Noncontrast magnetic resonance angiography (MRA) is widely used in human and small animal medicine. However, this technique has not yet been described in the horse, and compared to other angiographic techniques MRA could be more cost efficient and potentially safer. The aim of this study was to provide a comprehensive anatomical reference of the normal equine head vasculature using a noncontrast MRA technique, on both low- and high-field MRI. Five healthy adult horses were examined, 4 with a low-field magnet (0.23T) and the remaining one with a high-field magnet (1.5T). The magnetic resonance angiography sequence used was TOF (time-of-flight) 2D-MRA and CT images of a vascular corrosion cast were subsequently used as anatomical references. The MRA imaging protocol provided good visualisation of all major intra- and extracranial vessels down to a size of approximately 2 mm in diameter on both low- and high-field systems. This resulted in identification of vessels to the order of 3rd-4th branches of ramification. The visibility of the arteries was higher than of the veins, which showed lower signal intensity. Overall, MRA obtained with the high-field protocol provided better visualisation of the arteries, showing all the small arterial branches with a superior resolution. The use of a specific vascular sequence such as TOF 2D-MRA allows good visualisation of the equine head vasculature and eliminates the need for contrast media for MRA. Magnetic resonance angiography allows for visualisation of the vasculature of the equine head. Vessel morphology, symmetry and size can be evaluated and this may possibly play a role in preoperative planning or characterisation of diseases of the head, such as neoplasia or guttural pouch mycosis. © 2012 EVJ Ltd.

  12. Body MR Imaging: Artifacts, k-Space, and Solutions

    PubMed Central

    Seethamraju, Ravi T.; Patel, Pritesh; Hahn, Peter F.; Kirsch, John E.; Guimaraes, Alexander R.

    2015-01-01

    Body magnetic resonance (MR) imaging is challenging because of the complex interaction of multiple factors, including motion arising from respiration and bowel peristalsis, susceptibility effects secondary to bowel gas, and the need to cover a large field of view. The combination of these factors makes body MR imaging more prone to artifacts, compared with imaging of other anatomic regions. Understanding the basic MR physics underlying artifacts is crucial to recognizing the trade-offs involved in mitigating artifacts and improving image quality. Artifacts can be classified into three main groups: (a) artifacts related to magnetic field imperfections, including the static magnetic field, the radiofrequency (RF) field, and gradient fields; (b) artifacts related to motion; and (c) artifacts arising from methods used to sample the MR signal. Static magnetic field homogeneity is essential for many MR techniques, such as fat saturation and balanced steady-state free precession. Susceptibility effects become more pronounced at higher field strengths and can be ameliorated by using spin-echo sequences when possible, increasing the receiver bandwidth, and aligning the phase-encoding gradient with the strongest susceptibility gradients, among other strategies. Nonuniformities in the RF transmit field, including dielectric effects, can be minimized by applying dielectric pads or imaging at lower field strength. Motion artifacts can be overcome through respiratory synchronization, alternative k-space sampling schemes, and parallel imaging. Aliasing and truncation artifacts derive from limitations in digital sampling of the MR signal and can be rectified by adjusting the sampling parameters. Understanding the causes of artifacts and their possible solutions will enable practitioners of body MR imaging to meet the challenges of novel pulse sequence design, parallel imaging, and increasing field strength. ©RSNA, 2015 PMID:26207581

  13. Understanding the Interiors of Saturn and Mercury through Magnetic Field Observation and Dynamo Modeling

    NASA Astrophysics Data System (ADS)

    Cao, Hao

    Understanding the interior structure and dynamics of a planet is a key step towards understanding the formation and evolution of a planet. In this thesis, I combine field observation and dynamo modeling to understand planetary interiors. Focus has been put on planets Saturn and Mercury. The Cassini spacecraft has been taking continuous measurements in the Saturnian system since the Saturn orbital insertion in June 2004. Since the Mercury orbital insertion in March 2011, the MESSENGER spacecraft has been examining planet Mercury. After analyzing the close-in portion of the in-situ Cassini magnetometer measurements around Saturn, I find that Saturn's magnetic field features several surprising characteristics. First, Saturn's magnetic field is extremely axisymmetric. We cannot find any consistent departure from axisymmetry, and have put an extremely tight upper bound on the dipole tilt of Saturn: the dipole tilt of Saturn has to be smaller than 0.06 degrees. Second, we find that Saturn's magnetic field is extremely stable with time. Third, we estimated the magnetic moments of Saturn up to degree 5. This is the first magnetic field model for Saturn which goes beyond degree 3. We find that not only Saturn's intrinsic magnetic field is dominated by the axial moments; among these axial moments the odd degree ones dominate. In addition, the first three odd degree axial moments all take the same sign. This sign pattern of Saturn's magnetic moments is in contrast to that of the Earth's magnetic moments which takes alternative signs for the past century. The contrast between the geometries of Saturn's magnetic field and the Earth's magnetic field lead us to propose a dynamo hypothesis which speculates that such differences are caused by structural and dynamical differences inside these two planets. Our dynamo hypothesis for Saturn has two essential ingredients. The first concerns about the existence and size of a central core inside Saturn and its influence on Saturn's dynamo action. The second concerns about the possible heterogeneous heat transfer efficiency in the outer envelope of Saturn and its influence on Saturn's dynamo action. We then carried out numerical convective dynamo simulations using the community dynamo code MagIC version 3.44 to test our dynamo hypothesis. In our numerical dynamo experiments, the central core sizes and the outer boundary heat flow heterogeneities are both varied. We find that the central core size is an important factor that can strongly influence the geometry of the dynamo generated magnetic field. Such influence is rendered through the tangent cylinder, which is an imaginary cylinder with its axis parallel to the spin axis of the planet and is tangent to the central core at the equator. We find that both the convective motion and the magnetic field generation efficiency, represented by kinetic helicity, are weaker inside the tangent cylinder than those outside the tangent cylinder. As a result, the magnetic fields inside the tangent cylinder are consistently weaker than those outside the tangent cylinder. Thus the lack of a polar field minimum region at Saturn could be indicative of the absence or a small central core inside Saturn. MESSENGER observations revealed that Mercury's magnetic field is more unusual than previously thought. In particular, Mercury's magnetic field is strongly north-south asymmetric: the magnetic field strength in the northern hemisphere is three times as strong as that in the southern hemisphere. Yet, there is no evidence for any such north-south asymmetry in the basic properties of Mercury that could possibly influence the present-day dynamo action. Here we propose a mechanism to break the equatorial symmetry of Mercury's magnetic field within the framework of convective dynamos. The essence of our mechanism is the mutual excitation of two fundamental modes of columnar convection in rapidly rotating spherical shells. Such mutual excitation results in equatorially asymmetric kinetic helicity, which then leads to equatorially asymmetric magnetic field. With numerical dynamo experiments, we find two necessary conditions to reproduce the equatorial symmetry breaking of Mercury's magnetic field with equatorially symmetric core-mantle boundary (CMB) heat flows. The first is that buoyancy sources need to be distributed within an extended volume of the outer core rather than being concentrated near the inner boundary. The second is an equatorially peaked CMB heat flow. From this study, we conclude that 1) Mercury's core dynamo is likely powered by distributed buoyancy sources and thus is different from the present-day geodynamo which is predominantly powered by bottom-up inner core growth; 2) Mercury's mantle structure and dynamics could be favoring higher heat flow from the equatorial region of Mercury's core. (Abstract shortened by UMI.)

  14. The role of electron heat flux in guide-field magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesse, Michael; Kuznetsova, Masha; Birn, Joachim

    2004-12-01

    A combination of analytical theory and particle-in-cell simulations are employed in order to investigate the electron dynamics near and at the site of guide field magnetic reconnection. A detailed analysis of the contributions to the reconnection electric field shows that both bulk inertia and pressure-based quasiviscous processes are important for the electrons. Analytic scaling demonstrates that conventional approximations for the electron pressure tensor behavior in the dissipation region fail, and that heat flux contributions need to be accounted for. Based on the evolution equation of the heat flux three tensor, which is derived in this paper, an approximate form ofmore » the relevant heat flux contributions to the pressure tensor is developed, which reproduces the numerical modeling result reasonably well. Based on this approximation, it is possible to develop a scaling of the electron current layer in the central dissipation region. It is shown that the pressure tensor contributions become important at the scale length defined by the electron Larmor radius in the guide magnetic field.« less

  15. Relativistic Dynamos in Magnetospheres of Rotating Compact Objects

    NASA Astrophysics Data System (ADS)

    Tomimatsu, Akira

    2000-01-01

    The kinematic evolution of axisymmetric magnetic fields in rotating magnetospheres of relativistic compact objects is analytically studied, based on relativistic Ohm's law in stationary axisymmetric geometry. By neglecting the poloidal flows of plasma in simplified magnetospheric models, we discuss a self-excited dynamo due to the frame-dragging effect (originally pointed out by Khanna & Camenzind) and propose alternative processes to generate axisymmetric magnetic fields against ohmic dissipation. The first process (which may be called ``induced excitation'') is caused by the help of a background uniform magnetic field in addition to the dragging of inertial frames. It is shown that excited multipolar components of poloidal and azimuthal fields are sustained as stationary modes, and outgoing Poynting flux converges toward the rotation axis. The second process is a self-excited dynamo through azimuthal convection current, which is found to be effective if plasma rotation becomes highly relativistic with a sharp gradient in the angular velocity. In this case, no frame-dragging effect is needed, and the coupling between charge separation and plasma rotation becomes important. We discuss briefly the results in relation to active phenomena in the relativistic magnetospheres.

  16. Oxypnictide SmFeAs(O,F) superconductor: a candidate for high-field magnet applications

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Hänisch, Jens; Tarantini, Chiara; Kurth, Fritz; Jaroszynski, Jan; Ueda, Shinya; Naito, Michio; Ichinose, Ataru; Tsukada, Ichiro; Reich, Elke; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard

    2013-07-01

    The recently discovered oxypnictide superconductor SmFeAs(O,F) is the most attractive material among the Fe-based superconductors due to its highest transition temperature of 56 K and potential for high-field performance. In order to exploit this new material for superconducting applications, the knowledge and understanding of its electro-magnetic properties are needed. Recent success in fabricating epitaxial SmFeAs(O,F) thin films opens a great opportunity to explore their transport properties. Here we report on a high critical current density of over 105 A/cm2 at 45 T and 4.2 K for both main field orientations, feature favourable for high-field magnet applications. Additionally, by investigating the pinning properties, we observed a dimensional crossover between the superconducting coherence length and the FeAs interlayer distance at 30-40 K, indicative of a possible intrinsic Josephson junction in SmFeAs(O,F) at low temperatures that can be employed in electronics applications such as a terahertz radiation source and a superconducting Qubit.

  17. Oxypnictide SmFeAs(O,F) superconductor: a candidate for high–field magnet applications

    PubMed Central

    Iida, Kazumasa; Hänisch, Jens; Tarantini, Chiara; Kurth, Fritz; Jaroszynski, Jan; Ueda, Shinya; Naito, Michio; Ichinose, Ataru; Tsukada, Ichiro; Reich, Elke; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard

    2013-01-01

    The recently discovered oxypnictide superconductor SmFeAs(O,F) is the most attractive material among the Fe-based superconductors due to its highest transition temperature of 56 K and potential for high-field performance. In order to exploit this new material for superconducting applications, the knowledge and understanding of its electro-magnetic properties are needed. Recent success in fabricating epitaxial SmFeAs(O,F) thin films opens a great opportunity to explore their transport properties. Here we report on a high critical current density of over 105 A/cm2 at 45 T and 4.2 K for both main field orientations, feature favourable for high-field magnet applications. Additionally, by investigating the pinning properties, we observed a dimensional crossover between the superconducting coherence length and the FeAs interlayer distance at 30–40 K, indicative of a possible intrinsic Josephson junction in SmFeAs(O,F) at low temperatures that can be employed in electronics applications such as a terahertz radiation source and a superconducting Qubit. PMID:23823976

  18. DESIGN STUDY OF 20 T, 15 CM BORE HYBRID MAGNET WITH RADIATION RESISTANT INSERT FOR PION CAPTURE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEGGEL,R.J.; PEARSON,C.E.; KING,B.J.

    2001-06-18

    To capture pions the Neutrino Factory and Muon Collider Collaboration needs a field of {approx}20 T throughout a cylinder 15 cm in diameter and 60 cm long, falling over the next 18 m to 1.25 T, while the bore increases fourfold inversely as the square root of the field. We propose a hybrid system. The superconducting magnet is of world-class parameters, storing 600 MJ and including a coil to generate 14 T in a bore of {approx}1.3 m. Intercoil forces reach 100 MN. For high radiation resistance, the insert coil is of mineral-insulated hollow conductor, as developed for the Japanmore » Hadron Facility; it would require 12 MW to generate 6 T. Needed is research to develop a more efficient hollow conductor or radiation-resistant insulator for a Bitter coil.« less

  19. The Image-Optimized Corona; Progress on Using Coronagraph Images to Constrain Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Jones, S. I.; Uritsky, V. M.; Davila, J. M.

    2017-12-01

    In absence of reliable coronal magnetic field measurements, solar physicists have worked for several decades to develop techniques for extrapolating photospheric magnetic field measurements into the solar corona and/or heliosphere. The products of these efforts tend to be very sensitive to variation in the photospheric measurements, such that the uncertainty in the photospheric measurements introduces significant uncertainty into the coronal and heliospheric models needed to predict such things as solar wind speed, IMF polarity at Earth, and CME propagation. Ultimately, the reason for the sensitivity of the model to the boundary conditions is that the model is trying to extact a great deal of information from a relatively small amout of data. We have published in recent years about a new method we are developing to use morphological information gleaned from coronagraph images to constrain models of the global coronal magnetic field. In our approach, we treat the photospheric measurements as approximations and use an optimization algorithm to iteratively find a global coronal model that best matches both the photospheric measurements and quasi-linear features observed in polarization brightness coronagraph images. Here we will summarize the approach we have developed and present recent progress in optimizing PFSS models based on GONG magnetograms and MLSO K-Cor images.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, M.; Savin, D. W.

    We have measured the energy and dissipation of Alfvénic waves in the quiet Sun. A magnetic field model was used to infer the location and orientation of the magnetic field lines along which the waves are expected to travel. The waves were measured using spectral lines to infer the wave amplitude. The waves cause a non-thermal broadening of the spectral lines, which can be expressed as a non-thermal velocity v {sub nt}. By combining the spectroscopic measurements with this magnetic field model, we were able to trace the variation of v {sub nt} along the magnetic field. At each footpointmore » of the quiet-Sun loops, we find that waves inject an energy flux in the range of 1.3-5.5 × 10{sup 5} erg cm{sup –2} s{sup –1}. At the minimum of this range, this amounts to more than 80% of the energy needed to heat the quiet Sun. We also find that these waves are dissipated over a region centered on the top of the loops. The position along the loop where the damping begins is strongly correlated with the length of the loop, implying that the damping mechanism depends on the global loop properties rather than on local collisional dissipation.« less

  1. Development of a Josephson vortex two-state system based on a confocal annular Josephson junction

    NASA Astrophysics Data System (ADS)

    Monaco, Roberto; Mygind, Jesper; Koshelets, Valery P.

    2018-07-01

    We report theoretical and experimental work on the development of a Josephson vortex two-state system based on a confocal annular Josephson tunnel junction (CAJTJ). The key ingredient of this geometrical configuration is a periodically variable width that generates a spatial vortex potential with bistable states. This intrinsic vortex potential can be tuned by an externally applied magnetic field and tilted by a bias current. The two-state system is accurately modeled by a one-dimensional sine-Gordon like equation by means of which one can numerically calculate both the magnetic field needed to set the vortex in a given state as well as the vortex-depinning currents. Experimental data taken at 4.2 {{K}} on high-quality Nb/Al-AlOx/Nb CAJTJs with an individual trapped fluxon advocate the presence of a robust and finely tunable double-well potential for which reliable manipulation of the vortex state has been classically demonstrated. The vortex is prepared in a given potential by means of an externally applied magnetic field, while the state readout is accomplished by measuring the vortex-depinning current in a small magnetic field. Our proof of principle experiment convincingly demonstrates that the proposed vortex two-state system based on CAJTJs is robust and workable.

  2. Magnetotherapy: The quest for tendon regeneration.

    PubMed

    Pesqueira, Tamagno; Costa-Almeida, Raquel; Gomes, Manuela E

    2018-05-09

    Tendons are mechanosensitive tissues that connect and transmit the forces generated by muscles to bones by allowing the conversion of mechanical input into biochemical signals. These physical forces perform the fundamental work of preserving tendon homeostasis assuring body movements. However, overloading causes tissue injuries, which leads us to the field of tendon regeneration. Recently published reviews have broadly shown the use of biomaterials and different strategies to attain tendon regeneration. In this review, our focus is the use of magnetic fields as an alternative therapy, which has demonstrated clinical relevance in tendon medicine because of their ability to modulate cell fate. Yet the underlying cellular and molecular mechanisms still need to be elucidated. While providing a brief outlook about specific signalling pathways and intracellular messengers as framework in play by tendon cells, application of magnetic fields as a subcategory of physical forces is explored, opening up a compelling avenue to enhance tendon regeneration. We outline here useful insights on the effects of magnetic fields both at in vitro and in vivo levels, particularly on the expression of tendon genes and inflammatory cytokines, ultimately involved in tendon regeneration. Subsequently, the potential of using magnetically responsive biomaterials in tendon tissue engineering is highlighted and future directions in magnetotherapy are discussed. © 2018 Wiley Periodicals, Inc.

  3. Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury

    PubMed Central

    Vaněček, Václav; Zablotskii, Vitalii; Forostyak, Serhiy; Růřička, Jiří; Herynek, Vít; Babič, Michal; Jendelová, Pavla; Kubinová, Šárka; Dejneka, Alexandr; Syková, Eva

    2012-01-01

    The transplantation of mesenchymal stem cells (MSC) is currently under study as a therapeutic approach for spinal cord injury, and the number of transplanted cells that reach the lesioned tissue is one of the critical parameters. In this study, intrathecally transplanted cells labeled with superparamagnetic iron oxide nanoparticles were guided by a magnetic field and successfully targeted near the lesion site in the rat spinal cord. Magnetic resonance imaging and histological analysis revealed significant differences in cell numbers and cell distribution near the lesion site under the magnet in comparison to control groups. The cell distribution correlated well with the calculated distribution of magnetic forces exerted on the transplanted cells in the subarachnoid space and lesion site. The kinetics of the cells’ accumulation near the lesion site is described within the framework of a mathematical model that reveals those parameters critical for cell targeting and suggests ways to enhance the efficiency of magnetic cell delivery. In particular, we show that the targeting efficiency can be increased by using magnets that produce spatially modulated stray fields. Such magnetic systems with tunable geometric parameters may provide the additional level of control needed to enhance the efficiency of stem cell delivery in spinal cord injury. PMID:22888231

  4. Antiferromagnetic structure of exchange-coupled L a0.7S r0.3Fe O3 thin films studied using angle-dependent x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Jia, Yue; Chopdekar, Rajesh V.; Shafer, Padraic; Arenholz, Elke; Liu, Zhiqi; Biegalski, Michael D.; Takamura, Yayoi

    2017-12-01

    The magnetic structure of exchange-coupled antiferromagnetic (AF) layers in epitaxial L a0.7S r0.3Mn O3 (LSMO)/L a0.7S r0.3Fe O3 (LSFO) superlattices grown on (111)-oriented SrTi O3 substrates was studied using angle-dependent x-ray absorption spectroscopy utilizing linearly polarized x rays. We demonstrate the development of the measurement protocols needed to determine the orientation of the LSFO antiferromagnetic spin axis and how it responds to an applied magnetic field due to exchange interactions with an adjacent ferromagnetic layer. A small energy difference exists between two types of AF order: the majority of the AF moments cant out-of-the-plane of the film along the 110 or 100 directions depending on the LSFO layer thickness. In response to an applied magnetic field, these canted moments are aligned with a single 110 or 100 direction that maintains a nearly perpendicular orientation relative to the LSMO sublayer magnetization. The remaining AF moments lie within the (111 ) plane and these in-plane moments can be reoriented to an arbitrary in-plane direction to lie parallel to the LSMO sublayer magnetization. These results demonstrate that the magnetic order of AF thin films and heterostructures is far more complex than in bulk LSFO and can be tuned with orientation, thickness, and applied magnetic field.

  5. Magnetic ionic liquids in analytical chemistry: A review.

    PubMed

    Clark, Kevin D; Nacham, Omprakash; Purslow, Jeffrey A; Pierson, Stephen A; Anderson, Jared L

    2016-08-31

    Magnetic ionic liquids (MILs) have recently generated a cascade of innovative applications in numerous areas of analytical chemistry. By incorporating a paramagnetic component within the cation or anion, MILs exhibit a strong response toward external magnetic fields. Careful design of the MIL structure has yielded magnetoactive compounds with unique physicochemical properties including high magnetic moments, enhanced hydrophobicity, and the ability to solvate a broad range of molecules. The structural tunability and paramagnetic properties of MILs have enabled magnet-based technologies that can easily be added to the analytical method workflow, complement needed extraction requirements, or target specific analytes. This review highlights the application of MILs in analytical chemistry and examines the important structural features of MILs that largely influence their physicochemical and magnetic properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Novel views of the lithospheric magnetic field for hazard mitigation, tectonics, and geology

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.; Blakely, R. J.; Nelson, J. B.; Bracken, R.; White, T.

    2016-12-01

    The altitude of magnetic field observations is critical for high-resolution mapping. We advocate two views of the lithospheric magnetic field, at altitudes of 20 and 90 km. Magnetic surveys are most sensitive to sources with wavelengths comparable to the altitude of the survey. Thus, low-altitude satellite surveys emphasize wavelengths greater than 300 km, such as subduction zones and the continent-ocean contrast. Magnetic sources elongated along satellite tracks are subdued, however, and lithospheric features are obscured in the auroral ovals around the magnetic poles. Near-surface surveys (0.1 to 5 km altitudes) are sensitive to tectonic and upper-crustal geologic sources. There are many under-explored regions, even in this near-surface realm, notably the Antarctic and the southern oceans. Few magnetic surveys are available between airborne ( 5 km) and orbital altitudes ( 300 km), and this lack of information reduces knowledge of geologic and tectonic features in this spectral band; e.g., sources associated with the lower crust or that encompass the whole crust are strongly suppressed because the average thickness of continental crust is 30 km. Technologies are being developed to acquire magnetic field information at suborbital altitudes with UAVs at altitudes of 20 km, and with a laser guide star technique for remote sensing at an altitude averaging 90 km. Use of the laser guide star technique on a polar-orbiting satellite with in-situ magnetometers would greatly facilitate separating ionospheric from lithospheric fields. Laser guide stars can be produced in Na-rich layers where micro-meteorite breakup occurs in a planetary or satellite system, and they are ubiquitous in the Solar System. The ideal observation platform at 20 km has small and well-characterized EM fields, can execute maneuvers that permit flying of tie lines, and can fly for long periods so as to survey large areas. A main limitation of surveying remote areas concerns the need for a local base station for resolving temporal-spatial aliasing. The traditional approach of siting temporary base stations in the survey area is often not feasible, and we discuss possible alternatives.

  7. Swarm Optimization-Based Magnetometer Calibration for Personal Handheld Devices

    PubMed Central

    Ali, Abdelrahman; Siddharth, Siddharth; Syed, Zainab; El-Sheimy, Naser

    2012-01-01

    Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a processor that generates position and orientation solutions by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are usually corrupted by several errors, including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO)-based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometers. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. Furthermore, the proposed algorithm can help in the development of Pedestrian Navigation Devices (PNDs) when combined with inertial sensors and GPS/Wi-Fi for indoor navigation and Location Based Services (LBS) applications.

  8. Analysis of inner and outer zone: OGO-1 and OGO-2 electron spectrometer and ion chamber data

    NASA Technical Reports Server (NTRS)

    Pfitzer, K. A.

    1972-01-01

    The dynamic processes governing the acceleration and loss of electrons in the radiation zones are investigated. The radial diffusion coefficient was determined for a McIlwain parameter between 1.6 and 2.2 for electrons having a first adiabatic invariant of 12 MeV/gauss. The coefficient is larger than earlier values and suggests that there exists a lower limit to the fluxes in the inner zone. The agreement between observed and calculated magnetic fields and particle fluxes is improved by using solar wind pressure as input to the magnetic field models. Changes in the plasma pressure can cause apparent local time asymmetries in particle flux. A comparison of the magnetic field models with observed location of the trapping boundary also indicates the need for including distributed currents within the magnetosphere. The high latitude trapping boundary is only weakly dependent on A sub p, and the trapping boundary data are improved by including in the models a stand-off distance which varies with the plasma pressure.

  9. Magnetic shielding of interplanetary spacecraft against solar flare radiation

    NASA Technical Reports Server (NTRS)

    Cocks, Franklin H.; Watkins, Seth

    1993-01-01

    The ultimate objective of this work is to design, build, and fly a dual-purpose, piggyback payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field (1) to protect spacecraft against solar flare protons, (2) to produce a thrust of sufficient magnitude to stabilize low satellite orbits against orbital decay from atmospheric drag, and (3) to test the magsail concept. These all appear to be capable of being tested using the same deployed high temperature superconducting coil. In certain orbits, high temperature superconducting wire, which has now been developed to the point where silver-sheathed high T sub c wires one mm in diameter are commercially available, can be used to produce the magnetic moments required for shielding without requiring any mechanical cooling system. The potential benefits of this concept apply directly to both earth-orbital and interplanetary missions. The usefulness of a protective shield for manned missions needs scarcely to be emphasized. Similarly, the usefulness of increasing orbit perigee without expenditure of propellant is obvious. This payload would be a first step in assessing the true potential of large volume magnetic fields in the US space program. The objective of this design research is to develop an innovative, prototype deployed high temperature superconducting coil (DHTSC) system.

  10. Magnetizing technique for permanent magnets by intense static fields generated by HTS bulk magnets: Numerical Analysis

    NASA Astrophysics Data System (ADS)

    N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.

    A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.

  11. Magnetic Fields on the National Ignition Facility (MagNIF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, D.; Folta, J.

    2016-08-12

    A magnetized target capability on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been investigated. Stakeholders’ needs and project feasibility analysis were considered in order to down-select from a wide variety of different potential magnetic field magnitudes and volumes. From the large range of different target platforms, laser configurations, and diagnostics configurations of interest to the stakeholders, the gas-pipe platform has been selected for the first round of magnetized target experiments. Gas pipe targets are routinely shot on the NIF and provide unique value for external collaborators. High-level project goals have been established including an experimentallymore » relevant 20Tesla magnetic field magnitude. The field will be achieved using pulsed power-driven coils. A system architecture has been proposed. The pulsed power drive system will be located in the NIF target bay. This decision provides improved maintainability and mitigates equipment safety risks associated with explosive failure of the drive capacitor. High-level and first-level subsystem requirements have been established. Requirements have been included for two distinct coil designs – full solenoid and quasi-Helmholtz. A Failure Modes and Effects Analysis (FMEA) has been performed and documented. Additional requirements have been derived from the mitigations included in the FMEA document. A project plan is proposed. The plan includes a first phase of electromagnetic simulations to assess whether the design will meet performance requirements, then a second phase of risk mitigation projects to address the areas of highest technical risk. The duration from project kickoff to the first magnetized target shot is approximately 29 months.« less

  12. Magnetic heating of stellar chromospheres and coronae

    NASA Astrophysics Data System (ADS)

    van Ballegooijen, A. A.

    The theoretical discussion of magnetic heating focuses on heating by dissipation of field-aligned electric currents. Several mechanisms are set forth to account for the very high current densities needed to generate the heat, but observed radiative losses do not justify the resultant Ohmic heating rate. Tearing modes, 'turbulent resistivity', and 'hyper-resistivity' are considered to resolve the implied inefficiency of coronal heating. Because the mechanisms are not readily applicable to the sun, transverse magnetic energy flows and magnetic flare release are considered to account for the magnitude of observed radiative loss. High-resolution observations of the sun are concluded to be an efficient way to examine the issues of magnetic heating in spite of the very small spatial scales of the heating processes.

  13. Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes

    PubMed Central

    Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver

    2015-01-01

    The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601

  14. Numerical Calculation of Non-uniform Magnetization Using Experimental Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    Jhun, Bukyoung; Jhun, Youngseok; Kim, Seung-wook; Han, JungHyun

    2018-05-01

    A relation between the distance from the surface of a magnet and the number of cells required for a numerical calculation in order to secure the error below a certain threshold is derived. We also developed a method to obtain the magnetization at each part of the magnet from the experimentally measured magnetic field. This method is applied to three magnets with distinct patterns on magnetic-field-viewing film. Each magnet showed a unique pattern of magnetization. We found that the magnet that shows symmetric magnetization on the magnetic-field-viewing film is not uniformly magnetized. This method can be useful comparing the magnetization between magnets that yield typical magnetic field and those that yield atypical magnetic field.

  15. Reversing the polarity of a cochlear implant magnet after magnetic resonance imaging.

    PubMed

    Jeon, Ju Hyun; Bae, Mi Ran; Chang, Jae Won; Choi, Jae Young

    2012-08-01

    The number of patients with cochlear implant (CI) has been rapidly increasing in recent years, and these patients show a growing need of examination by magnetic resonance imaging (MRI). However, the use of MRI on patients with CI is restricted by the internal magnet of the CI. Many studies have investigated the safety of performing 1.5T MRI on patients with CI, which is now being practiced in a clinical setting. We experienced a case in which the polarity of the cochlear implant magnet was reversed after the patient was examined using 1.5T MRI. The external device was attached to the internal device oppositely. We could not find displacement of the internal device, magnet, or electrode upon radiological evaluation. We came up with two possible mechanisms by which the polarity of the magnet reversed. The first possibility was that the magnetic field of MRI reversed the polarity of the magnet. The second was that the internal magnet was physically realigned while interacting with the MRI. We believe the second hypothesis to be more reliable. A removable magnet and a loose magnet boundary of a CI device may have allowed for physical reorientation of the internal magnet. Therefore, in order to avoid these complications, first, the internal magnet must not be aligned anti-parallel with the magnetic polarity of MRI. In the Siemens MRI, the vector of the magnetic field is downward, so implant site should be placed in facing upwards to minimize demagnetization. In the GE Medical Systems MRI, the vector of the magnetic field is upward, so the implant site should be placed facing downwards. Second, wearing of a commercial mold which is fixed to the internal device before performing MRI can be helpful. In addition, any removable internal magnets in a CI device should be removed before MRI, especially in the trunk. However, to ultimately solve this problem, the pocket of the internal magnet should be redesigned for safety. Copyright © 2011. Published by Elsevier Ireland Ltd.

  16. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  17. Apparatus and method for magnetically processing a specimen

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A

    2013-09-03

    An apparatus for magnetically processing a specimen that couples high field strength magnetic fields with the magnetocaloric effect includes a high field strength magnet capable of generating a magnetic field of at least 1 Tesla and a magnetocaloric insert disposed within a bore of the high field strength magnet. A method for magnetically processing a specimen includes positioning a specimen adjacent to a magnetocaloric insert within a bore of a magnet and applying a high field strength magnetic field of at least 1 Tesla to the specimen and to the magnetocaloric insert. The temperature of the specimen changes during the application of the high field strength magnetic field due to the magnetocaloric effect.

  18. A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Wu, Fuyuan; Ramis, Rafael; Li, Zhenghong

    2018-03-01

    A new algorithm to model resistive magnetohydrodynamics (MHD) in Z-pinches has been developed. Two-dimensional axisymmetric geometry with azimuthal magnetic field Bθ is considered. Discretization is carried out using unstructured meshes made up of arbitrarily connected polygons. The algorithm is fully conservative for mass, momentum, and energy. Matter energy and magnetic energy are managed separately. The diffusion of magnetic field is solved using a derivative of the Symmetric-Semi-Implicit scheme, Livne et al. (1985) [23], where unconditional stability is obtained without needing to solve large sparse systems of equations. This MHD package has been integrated into the radiation-hydrodynamics code MULTI-2D, Ramis et al. (2009) [20], that includes hydrodynamics, laser energy deposition, heat conduction, and radiation transport. This setup allows to simulate Z-pinch configurations relevant for Inertial Confinement Fusion.

  19. Electric Conductivity of Hot and Dense Quark Matter in a Magnetic Field with Landau Level Resummation via Kinetic Equations

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji; Hidaka, Yoshimasa

    2018-04-01

    We compute the electric conductivity of quark matter at finite temperature T and a quark chemical potential μ under a magnetic field B beyond the lowest Landau level approximation. The electric conductivity transverse to B is dominated by the Hall conductivity σH. For the longitudinal conductivity σ∥, we need to solve kinetic equations. Then, we numerically find that σ∥ has only a mild dependence on μ and the quark mass mq. Moreover, σ∥ first decreases and then linearly increases as a function of B , leading to an intermediate B region that looks consistent with the experimental signature for the chiral magnetic effect. We also point out that σ∥ at a nonzero B remains within the range of the lattice-QCD estimate at B =0 .

  20. Electric Conductivity of Hot and Dense Quark Matter in a Magnetic Field with Landau Level Resummation via Kinetic Equations.

    PubMed

    Fukushima, Kenji; Hidaka, Yoshimasa

    2018-04-20

    We compute the electric conductivity of quark matter at finite temperature T and a quark chemical potential μ under a magnetic field B beyond the lowest Landau level approximation. The electric conductivity transverse to B is dominated by the Hall conductivity σ_{H}. For the longitudinal conductivity σ_{∥}, we need to solve kinetic equations. Then, we numerically find that σ_{∥} has only a mild dependence on μ and the quark mass m_{q}. Moreover, σ_{∥} first decreases and then linearly increases as a function of B, leading to an intermediate B region that looks consistent with the experimental signature for the chiral magnetic effect. We also point out that σ_{∥} at a nonzero B remains within the range of the lattice-QCD estimate at B=0.

  1. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Scott Campbell

    2012-06-30

    The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50more » T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have the very significant advantage of an extremely high H{sub c2}. For this reason, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212, or 2212) in the form of a multifilamentary Ag alloy matrix composite is beginning to attract the interest of the magnet community for future extremely high-field magnets or magnet-insert coils for 4.2K operation. Fig. 1 shows an example of excellent JE (engineering current density) in Bi-2212 round wire at fields up to 45 T, demonstrating the potential for high field applications of this material. For comparison, the Nb{sub 3}Sn wires used in magnets in the 16-18 T range typically perform with J{sub E} in the range 200-500 A/mm{sup 2}; the Bi-2212 wire retains this level of performance to fields at least as high as 45 T, and probably significantly higher. Bi-2212 conductors have in fact been used to generate a 25 T field in a superconducting insert magnet. These two factors- the very high field critical current performance of Bi-2212, and the already demonstrated capability of this material for high field magnets up to 25 T, strongly suggest this material as a leading contender for the next generation high field superconducting (HFS) wire. This potential was recognized by the US Academy of Science's Committee on Opportunities in High Magnetic Field Science. Their report of the same name specifically calls out the high field potential for this material, and suggests that 30 T magnets appear feasible based on the performance of 2212. There are several requirements for HFS conductors. The most obvious is J{sub E} (B, T), the engineering current density at the field and temperature of operation. As shown in Fig. 1, Bi-2212 excels in this regard. Stability requirements for magnets dictate that the effective filament diameter should be less than 30 micrometers, something that Bi-2212 multifilamentary wire can uniquely satisfy among the HFS superconducting wire technologies. Additional requirements include mechanical properties that prevent stress limitation of J{sub E} at the operating conditions, resistive transition index (n-value) sufficiently high to meet the field decay requirements (in persistent magnets), piece lengths long enough to wind coils, and acceptably low costs. HEP has traditionally used very high current magnets made from Rutherford cables, and the ability to be cabled is another key advantage. Very high on the list of materials able to fulfill the requirements above is Bi-2212 round wire. Both cables and high field coils on a small scale have been demonstrated using this material. By contrast, YBCO is a single-filament tape that is not easy to cable. As shown in Figure 1 these tapes are highly anisotropic in their current density. In the good orientation the performance is considerably better than Bi-2212, however at the highest fields measured, the isotropic current behavior of 2212 exceeds the bad orientation of YBCO.« less

  2. Polymer- and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents.

    PubMed

    Kainz, Quirin M; Reiser, Oliver

    2014-02-18

    The work-up of chemical reactions by standard techniques is often time consuming and energy demanding, especially when chemists have to guarantee low levels of metal contamination in the products. Therefore, scientists need new ideas to rapidly purify reaction mixtures that are both economically and environmentally benign. One intriguing approach is to tether functionalities that are required to perform organic reactions to magnetic nanoparticles, for example, catalysts, reagents, scavengers, or chelators. This strategy allows researchers to quickly separate active agents from reaction mixtures by exploiting the magnetic properties of the support. In this Account, we discuss the main attributes of magnetic supports and describe how we can make the different nanomagnets accessible by surface functionalization. Arguably the most prominent magnetic nanoparticles are superparamagnetic iron oxide nanoparticles (SPIONs) due to their biologically well-accepted constituents, their established size-selective synthesis methods, and their diminished agglomeration (no residual magnetic attraction in the absence of an external magnetic field). However, nanoparticles made of pure metal have a considerably higher magnetization level that is useful in applications where high loadings are needed. A few layers of carbon can efficiently shield such highly reactive metal nanoparticles and, equally important, enable facile covalent functionalization via diazonium chemistry or non-covalent functionalization through π-π interactions. We highlight carbon-coated cobalt (Co/C) and iron (Fe/C) nanoparticles in this Account and compare them to SPIONs stabilized with surfactants or silica shells. The graphene-like coating of these nanoparticles offers only low loadings with functional groups via direct surface modification, and the resulting nanomagnets are prone to agglomeration without effective steric stabilization. To overcome these restrictions and to tune the dispersibility of the magnetic supports in different solvents, we can introduce dendrimers and polymers on Co/C and Fe/C platforms by various synthetic strategies. While dendrimers have the advantage of being able to array all functional groups on the surface, polymers need fewer synthetic steps and higher molecular weight analogues are easily accessible. We present the application of these promising hybrid materials for the extraction of analytes or contaminates from complex aqueous solutions (e.g. waste water treatments or blood analytics), for metal-, organo-, and biocatalysis, and in organic synthesis. In addition, we describe advanced concepts like magnetic protecting groups, a multistep synthesis solely applying magnetic reagents and scavengers, and thermoresponsive self-separating magnetic catalysts. We also discuss the first examples of the use of magnetic scaffolds manipulated by external magnetic fields in flow reactors on the laboratory scale. These hold promise for future applications of magnetic hybrid materials in continuous flow or highly parallelized syntheses with rapid magnetic separation of the applied resins.

  3. Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system.

    PubMed

    Rana, S; Rawat, J; Sorensson, M M; Misra, R D K

    2006-07-01

    The present study describes and makes a relative comparison of the antimicrobial function of undoped and neodymium-doped titania coated-nickel ferrite composite nanoparticles processed by uniquely combining the reverse micelle and chemical hydrolysis approaches. This methodology facilitates the formation of undoped and doped photocatalytic titania shells and a magnetic ferrite core. The ferrite core is needed to help in the removal of particles from the sprayed surface using a small magnetic field. Doping of the titania shell with neodymium significantly enhances the photocatalytic and anti-microbial function of the core-shell composite nanoparticles without influencing the magnetic characteristics of the nickel ferrite core. The increased performance is believed to be related to the inhibition of electron-hole recombination and a decrease in the band gap energy of titania. The retention of magnetic strength ensures controlled movement of the composite nanoparticles by the magnetic field, facilitating their application as removable anti-microbial photocatalyst nanoparticles. The consistent behavior of the composite nanoparticles points to the viability of the synthesis process adopted.

  4. On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain

    NASA Astrophysics Data System (ADS)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-06-01

    We present and demonstrate a new method for on-chip Brownian relaxation measurements on magnetic nanobeads in the time domain using magnetoresistive sensors. The beads are being magnetized by the sensor self-field arising from the bias current passed through the sensors and thus no external magnetic fields are needed. First, the method is demonstrated on Brownian relaxation measurements of beads with nominal sizes of 40, 80, 130, and 250 nm. The results are found to compare well to those obtained by an already established measurement technique in the frequency domain. Next, we demonstrate the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s, which is about six times faster than in the frequency domain. This substantial reduction of the measurement time allows for continuous monitoring of the bead dynamics vs. time and opens for time-resolved studies, e.g., of binding kinetics.

  5. Magnetic storm effects in electric power systems and prediction needs

    NASA Technical Reports Server (NTRS)

    Albertson, V. D.; Kappenman, J. G.

    1979-01-01

    Geomagnetic field fluctuations produce spurious currents in electric power systems. These currents enter and exit through points remote from each other. The fundamental period of these currents is on the order of several minutes which is quasi-dc compared to the normal 60 Hz or 50 Hz power system frequency. Nearly all of the power systems problems caused by the geomagnetically induced currents result from the half-cycle saturation of power transformers due to simultaneous ac and dc excitation. The effects produced in power systems are presented, current research activity is discussed, and magnetic storm prediction needs of the power industry are listed.

  6. Memory and Spin Injection Devices Involving Half Metals

    DOE PAGES

    Shaughnessy, M.; Snow, Ryan; Damewood, L.; ...

    2011-01-01

    We suggest memory and spin injection devices fabricated with half-metallic materials and based on the anomalous Hall effect. Schematic diagrams of the memory chips, in thin film and bulk crystal form, are presented. Spin injection devices made in thin film form are also suggested. These devices do not need any external magnetic field but make use of their own magnetization. Only a gate voltage is needed. The carriers are 100% spin polarized. Memory devices may potentially be smaller, faster, and less volatile than existing ones, and the injection devices may be much smaller and more efficient than existing spin injectionmore » devices.« less

  7. The Mu2e Solenoid Cold Mass Position Monitor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.

    The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less

  8. The Mu2e Solenoid Cold Mass Position Monitor System

    DOE PAGES

    Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.; ...

    2018-01-23

    The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less

  9. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead.

    PubMed

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-21

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety.

  10. Magnetofection™ of NMDA Receptor Subunits GluN1 and GluN2A Expression Vectors in Non-Neuronal Host Cells.

    PubMed

    Bruneau, Nadine; Szepetowski, Pierre

    2017-01-01

    The functional study of reconstituted NMDA receptors (NMDARs) in host cells requires that the corresponding vectors for the expression of the NMDAR subunits are co-transfected with high efficiency. Magnetofection™ is a technology used to deliver nucleic acids to cells. It is driven and site-specifically guided by the attractive forces of magnetic fields acting on magnetic nanoparticles that are associated with nucleic acid vectors. In magnetofection™, cationic lipids form self-assembled complexes with the nucleic acid vectors of interest. Those complexes are then associated with magnetic nanoparticles that are concentrated at the surface of cultured cells by applying a permanent magnetic field. Magnetofection™ is a simple method to transfect cultured cells with high transfection rates. Satisfactory expression levels are obtained with very low amounts of nucleic acid vector. Moreover, incubation time with host cells is less than 1 h, as compared with the several hours needed with standard transfection assays.

  11. Pulsed Magnetic Resonance to Signal-Enhance Metabolites within Seconds by utilizing para-Hydrogen.

    PubMed

    Korchak, Sergey; Yang, Shengjun; Mamone, Salvatore; Glöggler, Stefan

    2018-05-01

    Diseases such as Alzheimer's and cancer have been linked to metabolic dysfunctions, and further understanding of metabolic pathways raises hope to develop cures for such diseases. To broaden the knowledge of metabolisms in vitro and in vivo, methods are desirable for direct probing of metabolic function. Here, we are introducing a pulsed nuclear magnetic resonance (NMR) approach to generate hyperpolarized metabolites within seconds, which act as metabolism probes. Hyperpolarization represents a magnetic resonance technique to enhance signals by over 10 000-fold. We accomplished an efficient metabolite hyperpolarization by developing an isotopic labeling strategy for generating precursors containing a favorable nuclear spin system to add para -hydrogen and convert its two-spin longitudinal order into enhanced metabolite signals. The transfer is performed by an invented NMR experiment and 20 000-fold signal enhancements are achieved. Our technique provides a fast way of generating hyperpolarized metabolites by using para -hydrogen directly in a high magnetic field without the need for field cycling.

  12. Magnetic stray-field studies of a single Cobalt nanoelement as a component of the building blocks of artificial square spin ice

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Porrati, Fabrizio; Huth, Michael; Ohno, Yuzo; Ohno, Hideo; Müller, Jens

    2016-02-01

    We use Focused Electron Beam Deposition (FEBID) to directly write Cobalt magnetic nanoelements onto a micro-Hall magnetometer, which allows for high-sensitivity measurements of the magnetic stray field emanating from the samples. In a previous study [M. Pohlit et al., J. Appl. Phys. 117 (2015) 17C746] [21] we investigated thermal dynamics of an individual building block (nanocluster) of artificial square spin ice. In this work, we compare the results of this structure with interacting elements to the switching of a single nanoisland. By analyzing the survival function of the repeatedly prepared state in a given temperature range, we find thermally activated switching dynamics. A detailed analysis of the hysteresis loop reveals a metastable microstate preceding the overall magnetization reversal of the single nanoelement, also found in micromagnetic simulations. Such internal degrees of freedom may need to be considered, when analyzing the thermal dynamics of larger spin ice configurations on different lattice types.

  13. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead

    PubMed Central

    Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing

    2017-01-01

    To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety. PMID:28117721

  14. Quadrupole Magnetic Sorting of Porcine Islets of Langerhans

    PubMed Central

    Shenkman, Rustin M.; Chalmers, Jeffrey J.; Hering, Bernhard J.; Kirchhof, Nicole

    2009-01-01

    Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. Inconsistent isolation, purification, and recovery of large numbers of high-quality islets remain substantial impediments to progress in the field. Removing islets as soon as they are liberated from the pancreas during digestion and circumventing the need for density gradient purification is likely to result in substantially increased viable islet yields by minimizing exposure to proteolytic enzymes, reactive oxygen intermediates, and mechanical stress associated with centrifugation. This study capitalized on the hypervascularity of islets compared with acinar tissue to explore their preferential enrichment with magnetic beads to enable immediate separation in a magnetic field utilizing a quadrupole magnetic sorting. The results demonstrate that (1) preferential enrichment of porcine islets is achievable, but homogeneous bead distribution within the pancreas is difficult to achieve with current protocols; (2) greater than 70% of islets in the dissociated pancreatic tissue were recovered by quadrupole magnetic sorting, but their purity was low; and (3) infused islets purified by density gradients and subsequently passed through quadrupole magnetic sorting had similar potency as uninfused islets. These results demonstrate proof of concept and define the steps for implementation of this technology in pig and human islet isolation. PMID:19505179

  15. Magnetic field reversals in the Milky Way- "cherchez le champ magnetique".

    NASA Astrophysics Data System (ADS)

    Vallee, J. P.

    1996-04-01

    Radio observations of nearby spiral galaxies have tremendously enhanced our knowledge of their global magnetic field distributions. Recent theoretical developments in the area of dynamos have also helped in the interpretation of magnetic field data in spiral galaxies. When it comes to the magnetic field in the Milky Way galaxy, our position in the Milky Way's galactic disk hinders our attempts at interpreting the observational data. This makes the proposition of "cherchez le champ magnetique" a difficult one to follow. Some recent papers have attempted to fit magnetic field models to spiral galaxies, and in particular to the Milky Way galaxy. Magnetic field reversals in the Milky Way are crucial to all interpretations, be they axisymmetric spiral (ASS) or bisymmetric spiral (BSS) global magnetic field models. Magnetic field reversals can be found in both ASS and BSS magnetic field models, not just BSS ones. The axisymmetric spiral (ASS) magnetic field models produced by the dynamo theory already predict magnetic field reversals, and they are of the type observed in the Milky Way. The small number of magnetic field reversals observed in the Milky Way is compatible with the ASS magnetic field models. The bisymmetric spiral (BSS) magnetic field models as applied to the pulsar RM data and to the QSO and galaxies data have many problems, due to the many pitfalls in model fitting the magnetic field reversals observed in the Milky Way. Many pitfalls are discussed here, including the incomplete comparisons of BSS versus ASS models, the number of spiral arms to be used in modelling, and the proper distance to pulsars via the more accurate distribution of thermal electrons within spiral arms. The two magnetic field reversals in our Milky Way are clearly located in the interarm regions. Predicted magnetic field reversals are periodic, while observed ones are not periodic. Magnetic field reversals cannot be masked effectively by local interstellar magnetised shells. The strength and direction of the magnetic field with galactic radius show that the BSS magnetic field models are less suitable to explain the RM data in the Milky Way. The prediction by the BSS magnetic field models of a large number of magnetic field reversals differs from the available observations.

  16. External split field generator

    DOEpatents

    Thundat, Thomas George [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  17. Internal split field generator

    DOEpatents

    Thundat,; George, Thomas [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  18. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobra, M. G.; Couvidat, S., E-mail: couvidat@stanford.edu

    2015-01-10

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a databasemore » of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.« less

  19. Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes.

    PubMed

    Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P

    2014-09-20

    The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films.

  20. Ultrahigh field NMR and MRI: Science at a crossroads. Report on a jointly-funded NSF, NIH and DOE workshop, held on November 12-13, 2015 in Bethesda, Maryland, USA

    NASA Astrophysics Data System (ADS)

    Polenova, Tatyana; Budinger, Thomas F.

    2016-05-01

    Magnetic resonance plays a central role in academic, industrial and medical research. NMR is widely used for characterizing the structure, chemistry and dynamic properties of new materials, chemicals and pharmaceuticals, in both the liquid and solid phases. NMR also provides detailed functional information on biological macromolecules and their assemblies, in vitro, in membranes and even in whole cells. In vivo, MRI/S are used for clinical diagnosis and prognosis of disease, for non-invasive studies of human physiology and metabolism in general, and for evaluating brain function, in particular. MRI/S is also a key technology for imaging small organisms at the cellular level, monitoring catalysis in chemical reactors and other scientific areas where non-destructive characterizations of structure and dynamics in complex systems are needed. At the heart of all the MR methods are strong, stable and homogeneous magnets built from low-temperature superconductors (LTS), which are essential to these experiments. Further developments in NMR/MRI are hampered because the ultimate limit of the attainable field strengths of persistent LTS magnets has now been reached. Fortunately, recent breakthroughs in new high-temperature superconductors (HTS) and hybrid LTS/HTS magnet technologies promise to greatly increase the achievable field strength of NMR magnets and to decrease the operational complexity of high field human MRI infrastructures, thereby enabling new applications at the forefront of modern multidisciplinary research.

Top