Relativistic electron in curved magnetic fields
NASA Technical Reports Server (NTRS)
An, S.
1985-01-01
Making use of the perturbation method based on the nonlinear differential equation theory, the author investigates the classical motion of a relativistic electron in a class of curved magnetic fields which may be written as B=B(O,B sub phi, O) in cylindrical coordinates (R. phi, Z). Under general astrophysical conditions the author derives the analytical expressions of the motion orbit, pitch angle, etc., of the electron in their dependence upon parameters characterizing the magnetic field and electron. The effects of non-zero curvature of magnetic field lines on the motion of electrons and applicabilities of these results to astrophysics are also discussed.
Relativistic generation of vortex and magnetic field
Mahajan, S. M.; Yoshida, Z.
2011-05-15
The implications of the recently demonstrated relativistic mechanism for generating generalized vorticity in purely ideal dynamics [Mahajan and Yoshida, Phys. Rev. Lett. 105, 095005 (2010)] are worked out. The said mechanism has its origin in the space-time distortion caused by the demands of special relativity; these distortions break the topological constraint (conservation of generalized helicity) forbidding the emergence of magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. After delineating the steps in the ''evolution'' of vortex dynamics, as the physical system goes from a nonrelativistic to a relativistically fast and hot plasma, a simple theory is developed to disentangle the two distinct components comprising the generalized vorticity--the magnetic field and the thermal-kinetic vorticity. The ''strength'' of the new universal mechanism is, then, estimated for a few representative cases; in particular, the level of seed fields, created in the cosmic setting of the early hot universe filled with relativistic particle-antiparticle pairs (up to the end of the electron-positron era), are computed. Possible applications of the mechanism in intense laser produced plasmas are also explored. It is suggested that highly relativistic laser plasma could provide a laboratory for testing the essence of the relativistic drive.
Interplanetary Magnetic Field Guiding Relativistic Particles
NASA Technical Reports Server (NTRS)
Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.
2011-01-01
The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.
Relativistic nonlinear plasma waves in a magnetic field
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Pellat, R.
1975-01-01
Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.
Radiation from Relativistic Shocks with Turbulent Magnetic Fields
NASA Technical Reports Server (NTRS)
Nishkawa, K.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Mizuno, A.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Oka, M.; Fishman, J.
2009-01-01
Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked region. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. New recent calculation of spectra with various different Lorentz factors of jets (two electrons) and initial magnetic fields. New spectra based on small simulations will be presented.
External Electromagnetic Fields of Slowly Rotating Relativistic Magnetized NUT Stars
NASA Astrophysics Data System (ADS)
Ahmedov, B. J.; Khugaev, A. V.
2006-08-01
Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with non-vanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation in specific angular momentum and NUT parameter . The relativistic star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and ii) dipolar magnetic field aligned with the axis of rotation. It has been shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, it has been obtained that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit.
Particle Acceleration, Magnetic Field Generation in Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.
2005-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.
Magnetic fields in relativistic collisionless shocks
Santana, Rodolfo; Kumar, Pawan; Barniol Duran, Rodolfo E-mail: pk@astro.as.utexas.edu
2014-04-10
We present a systematic study on magnetic fields in gamma-ray burst (GRB) external forward shocks (FSs). There are 60 (35) GRBs in our X-ray (optical) sample, mostly from Swift. We use two methods to study ε {sub B} (fraction of energy in magnetic field in the FS): (1) for the X-ray sample, we use the constraint that the observed flux at the end of the steep decline is ≥ X-ray FS flux; (2) for the optical sample, we use the condition that the observed flux arises from the FS (optical sample light curves decline as ∼t {sup –1}, as expected for the FS). Making a reasonable assumption on E (jet isotropic equivalent kinetic energy), we converted these conditions into an upper limit (measurement) on ε {sub B} n {sup 2/(p+1)} for our X-ray (optical) sample, where n is the circumburst density and p is the electron index. Taking n = 1 cm{sup –3}, the distribution of ε {sub B} measurements (upper limits) for our optical (X-ray) sample has a range of ∼10{sup –8}-10{sup –3} (∼10{sup –6}-10{sup –3}) and median of ∼few × 10{sup –5} (∼few × 10{sup –5}). To characterize how much amplification is needed, beyond shock compression of a seed magnetic field ∼10 μG, we expressed our results in terms of an amplification factor, AF, which is very weakly dependent on n (AF∝n {sup 0.21}). The range of AF measurements (upper limits) for our optical (X-ray) sample is ∼1-1000 (∼10-300) with a median of ∼50 (∼50). These results suggest that some amplification, in addition to shock compression, is needed to explain the afterglow observations.
The Role of Magnetic Fields in Relativistic Astrophysical Jets
NASA Astrophysics Data System (ADS)
Hamlin, Nathaniel; Newman, W. I.
2012-05-01
We explore, analytically and by numerical simulation, the evolution of the Kelvin-Helmholtz (KH) instability in a relativistic magnetized astrophysical jet. Our results successfully reproduce numerous magnetohydrodynamic features observed in relativistic astrophysical environments. The KH instability arises from a variation in flow speed orthogonal to the flow. Many astrophysical jets are relativistic, evidenced by apparent superluminal motion, and are likely collimated by a magnetic field, according to commonly accepted models. We find convergence of our numerical results between the hydrodynamic, magnetohydrodynamic, relativistic hydrodynamic, and relativistic magnetohydrodynamic regimes. We observe complementarity between fluid flow and magnetic field behavior. The early nonlinear regime corresponds to the formation of large vortices connected by a dual filamentary structure reminiscent of the cosmic double helix in the extragalactic jet 3C 273. These vortices are disrupted by the field, followed by a complex turbulent regime, and then an approach to an equilibrium configuration consisting of flow-aligned filaments. For stronger fields, this process occurs more rapidly, and sufficiently strong fields suppress vortices entirely. The jet also widens and decelerates by an amount depending on field strength. These results are in qualitative agreement with observations of numerous jets, including NGC 5128, 3C 273, and HH 30. Relativistic flows break synchronicity between longitudinal and transverse motions, thereby destabilizing the system, and enhancing the complexity of vortex disruption and turbulent breakdown. This desynchronization also causes early numerical breakdown at high Lorentz factors, a long-standing problem. Using a uniform-flow model, we provide the first mathematical analysis showing that for sufficiently high Lorentz factors, artificial diffusion not only fails to suppress numerical instability, but introduces growing modes which destabilize the
Relativistic Scott correction in self-generated magnetic fields
NASA Astrophysics Data System (ADS)
Erdős, László; Fournais, Søren; Solovej, Jan Philip
2012-09-01
We consider a large neutral molecule with total nuclear charge Z in a model with self-generated classical magnetic field and where the kinetic energy of the electrons is treated relativistically. To ensure stability, we assume that Zα < 2/π, where α denotes the fine structure constant. We are interested in the ground state energy in the simultaneous limit Z → ∞, α → 0 such that κ = Zα is fixed. The leading term in the energy asymptotics is independent of κ, it is given by the Thomas-Fermi energy of order Z7/3 and it is unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form S(αZ)Z2. The current paper extends the result of Solovej et al. [Commun. Pure Appl. Math. LXIII, 39-118 (2010)] on the Scott correction for relativistic molecules to include a self-generated magnetic field. Furthermore, we show that the corresponding Scott correction function S, first identified by Solovej et al. [Commun. Pure Appl. Math. LXIII, 39-118 (2010)], is unchanged by including a magnetic field. We also prove new Lieb-Thirring inequalities for the relativistic kinetic energy with magnetic fields.
Relativistic generation of vortex and magnetic field a)
NASA Astrophysics Data System (ADS)
Mahajan, S. M.; Yoshida, Z.
2011-05-01
The implications of the recently demonstrated relativistic mechanism for generating generalized vorticity in purely ideal dynamics [Mahajan and Yoshida, Phys. Rev. Lett. 105, 095005 (2010)] are worked out. The said mechanism has its origin in the space-time distortion caused by the demands of special relativity; these distortions break the topological constraint (conservation of generalized helicity) forbidding the emergence of magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. After delineating the steps in the "evolution" of vortex dynamics, as the physical system goes from a nonrelativistic to a relativistically fast and hot plasma, a simple theory is developed to disentangle the two distinct components comprising the generalized vorticity—the magnetic field and the thermal-kinetic vorticity. The "strength" of the new universal mechanism is, then, estimated for a few representative cases; in particular, the level of seed fields, created in the cosmic setting of the early hot universe filled with relativistic particle-antiparticle pairs (up to the end of the electron-positron era), are computed. Possible applications of the mechanism in intense laser produced plasmas are also explored. It is suggested that highly relativistic laser plasma could provide a laboratory for testing the essence of the relativistic drive.
Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.
2006-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.
Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts
NASA Astrophysics Data System (ADS)
Brüggen, Marcus; Bykov, Andrei; Ryu, Dongsu; Röttgering, Huub
2012-05-01
It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and γ-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zel'dovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of μG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.
Radiation from Relativistic Jets in Turbulent Magnetic Fields
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Nordlund, A.; Frederiksen, J.; Mizuno, Y.; Sol, H.; Fishman, G. J.
2008-01-01
Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations have been performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. The acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to the afterglow emission. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique.
Relativistic Killingbeck energy states under external magnetic fields
NASA Astrophysics Data System (ADS)
Eshghi, M.; Mehraban, H.; Ikhdair, S. M.
2016-07-01
We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states.
Rotating and binary relativistic stars with magnetic field
NASA Astrophysics Data System (ADS)
Markakis, Charalampos
We develop a geometrical treatment of general relativistic magnetohydrodynamics for perfectly conducting fluids in Einstein--Maxwell--Euler spacetimes. The theory is applied to describe a neutron star that is rotating or is orbiting a black hole or another neutron star. Under the hypotheses of stationarity and axisymmetry, we obtain the equations governing magnetohydrodynamic equilibria of rotating neutron stars with poloidal, toroidal or mixed magnetic fields. Under the hypothesis of an approximate helical symmetry, we obtain the first law of thermodynamics governing magnetized equilibria of double neutron star or black hole - neutron star systems in close circular orbits. The first law is written as a relation between the change in the asymptotic Noether charge deltaQ and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetofluid. In an attempt to provide a better theoretical understanding of the methods used to construct models of isolated rotating stars and corotating or irrotational binaries and their unexplained convergence properties, we analytically examine the behavior of different iterative schemes near a static solution. We find the spectrum of the linearized iteration operator and show for self-consistent field methods that iterative instability corresponds to unstable modes of this operator. On the other hand, we show that the success of iteratively stable methods is due to (quasi-)nilpotency of this operator. Finally, we examine the integrability of motion of test particles in a stationary axisymmetric gravitational field. We use a direct approach to seek nontrivial constants of motion polynomial in the momenta---in addition to energy and angular momentum about the symmetry axis. We establish the existence and uniqueness of quadratic constants and the nonexistence of quartic constants for stationary axisymmetric Newtonian potentials with equatorial symmetry
Kubo formulas for relativistic fluids in strong magnetic fields
Huang Xuguang; Sedrakian, Armen; Rischke, Dirk H.
2011-12-15
Magnetohydrodynamics of strongly magnetized relativistic fluids is derived in the ideal and dissipative cases, taking into account the breaking of spatial symmetries by a quantizing magnetic field. A complete set of transport coefficients, consistent with the Curie and Onsager principles, is derived for thermal conduction, as well as shear and bulk viscosities. It is shown that in the most general case the dissipative function contains five shear viscosities, two bulk viscosities, and three thermal conductivity coefficients. We use Zubarev's non-equilibrium statistical operator method to relate these transport coefficients to correlation functions of the equilibrium theory. The desired relations emerge at linear order in the expansion of the non-equilibrium statistical operator with respect to the gradients of relevant statistical parameters (temperature, chemical potential, and velocity.) The transport coefficients are cast in a form that can be conveniently computed using equilibrium (imaginary-time) infrared Green's functions defined with respect to the equilibrium statistical operator. - Highlights: > Strong magnetic fields can make charged fluids behave anisotropically. > Magnetohydrodynamics for these fluids contains 5 shear, 2 bulk viscosities, and 3 heat conductivities. > We derive Kubo formulas for these transport coefficients.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.
2006-01-01
Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.
Mizuno, Yosuke; Nishikawa, Ken-Ichi; Pohl, Martin; Niemiec, Jacek; Zhang, Bing; Hardee, Philip E.
2011-01-10
We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that a so-called small-scale dynamo is occurring in the postshock region. We also find that the amount of magnetic-field amplification depends on the direction of the mean preshock magnetic field, and the timescale of magnetic-field growth depends on the shock strength.
Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel
I.Yu. Kostyukov; G. Shvets; N.J. Fisch; J.M. Rax
2001-12-12
The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made.
NASA Astrophysics Data System (ADS)
Kurkin, S. A.; Hramov, A. E.; Koronovskii, A. A.
2013-07-01
The study of the output power of the electromagnetic radiation of the relativistic electron beam (REB) with virtual cathode in the presence of external magnetic field has been found out. The typical dependencies of the output microwave power of the vircator versus external magnetic field have been analyzed by means of 3D electromagnetic simulation. It has been shown that the power of vircator demonstrates several maxima with external magnetic field growth. The characteristic features of the power behavior are determined by the conditions of the virtual cathode formation in the presence of the external transversal magnetic field and the REB self-magnetic fields.
Kurkin, S. A.; Hramov, A. E.; Koronovskii, A. A.; Saratov State Technical University, Politechnicheskaja 77, Saratov 410028
2013-07-22
The study of the output power of the electromagnetic radiation of the relativistic electron beam (REB) with virtual cathode in the presence of external magnetic field has been found out. The typical dependencies of the output microwave power of the vircator versus external magnetic field have been analyzed by means of 3D electromagnetic simulation. It has been shown that the power of vircator demonstrates several maxima with external magnetic field growth. The characteristic features of the power behavior are determined by the conditions of the virtual cathode formation in the presence of the external transversal magnetic field and the REB self-magnetic fields.
Relativistic Runaway Electron Avalanches in the Presence of an External Magnetic Field
NASA Astrophysics Data System (ADS)
Cramer, E. S.; Dwyer, J. R.; Liu, N.; Rassoul, H.; Briggs, M. S.
2015-12-01
Relativistic runaway electron avalanches are known to be produced inside the high electric field regions of thunderstorms. In this work, we include the effects of an external static magnetic field. Previous studies have shown that the magnetic field has a great influence on the electron motion at higher altitudes, e.g. Lehtinen et al., 1997, and Gurevich et al., 1996. This result proves important when studying phenomena such as Terrestrial Gamma-ray Flashes, and their effects on the upper atmosphere. Therefore, electron avalanche rates, feedback rates, and electron energy distribution functions will be analyzed and compared to the results of previous studies that did not include a magnetic field. The runaway electron avalanche model (REAM) is a Monte Carlo code that simulates the generation, interactions, and propagation of relativistic runaway electrons in air [Dwyer, 2003, 2004, 2007]. We use this simulation for varying strengths and angles between the electric and magnetic fields to calculate avalanche lengths and angular distribution functions of the relativistic runaway electrons. We will also show electron distribution functions in momentum space. Finally, we will discuss the important regimes for which the magnetic field becomes significant in studying the properties of runaway electron avalanches and relativistic feedback.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.
2006-01-01
We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.
Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.
2010-01-01
Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The jitter'' radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. We will present detailed spectra for conditions relevant of various astrophysical sites of shock formation via the Weibel instability. In particular we will discuss the application to GRBs and SNRs
Maruyama, Tomoyuki; Kajino, Toshitaka; Hidaka, Jun; Takiwaki, Tomoya; Yasutake, Nobutoshi; Kuroda, Takami; Cheoun, Myung-Ki; Ryu, Chung-Yeol; Mathews, Grant J.
2014-05-02
We calculate the neutrino production cross-section in the proto-neutron-star matter under a strong magnetic field in the relativistic mean-field approach. We introduce a new parameter-set which can reproduce the 1.96 solar mass neutron star. We find that the production process increases emitted neutrinos along the direction parallel to the magnetic field and decrease those along its opposite direction. It means that resultant asymmetry due to the neutrino absorption and scattering process in the magnetic field becomes larger by the addition of the neutrino production process.
Particle acceleration magnetic field generation, and emission in Relativistic pair jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.
2005-01-01
Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.
Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.
2005-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Particle acceleration, magnetic field generation, and emission in relativistic pair jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.; Mizuno, Y.
2005-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Recent simulations show that the Weibel instability created by relativistic pair jets is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. The Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. This instability is also responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The jitter radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Twisting space-time: relativistic origin of seed magnetic field and vorticity.
Mahajan, S M; Yoshida, Z
2010-08-27
We demonstrate that a purely ideal mechanism, originating in the space-time distortion caused by the demands of special relativity, can break the topological constraint (leading to helicity conservation) that would forbid the emergence of a magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. The new mechanism, arising from the interaction between the inhomogeneous flow fields and inhomogeneous entropy, is universal and can provide a finite seed even for mildly relativistic flows. PMID:20868171
Bose-Einstein condensation of bound pairs of relativistic fermions in a magnetic field
NASA Astrophysics Data System (ADS)
Feng, Bo; Hou, De-fu; Ren, Hai-cang; Wu, Ping-ping
2016-04-01
The Bose-Einstein condensation of bound pairs made of equally and oppositely charged fermions in a magnetic field is investigated using a relativistic model. The Gaussian fluctuations have been taken into account in order to study the spectrum of bound pairs in the strong coupling region. We found, in the weak coupling region, that the condensation temperature increases with an increasing magnetic field displaying the magnetic catalysis effect. In the strong coupling region, the inverse magnetic catalysis appears when the magnetic field is low and is replaced by the usual magnetic catalysis effect when magnetic field is sufficiently high, in contrast to the nonrelativistic case where the inverse magnetic catalysis prevails in the strong coupling region regardless of the strength of the magnetic field. The resulting response to the magnetic field is the consequence of the competition between the dimensional reduction by Landau orbitals in pairing dynamics and the anisotropy of the kinetic spectrum of the bound pairs. We thus conclude that dimensional reduction dominates in the weak domain and strong coupling one except in the small magnetic field region, where the enhanced fluctuations dominate.
Plasma waves in a relativistic, strongly anisotropic plasma propagated along a strong magnetic field
NASA Technical Reports Server (NTRS)
Onishchenko, O. G.
1980-01-01
The dispersion properties of plasma waves in a relativistic homogeneous plasma propagated along a strong magnetic field are studied. It is shown that the non-damping plasma waves exist in the frequency range omega sub p or = omega or = omega sub L. The values of omega sub p and omega sub L are calculated for an arbitrary homogeneous relativistic function of the particle distribution. In the case of a power ultrarelativistic distribution, it is shown that, if the ultrarelativistic tail of the distribution drops very rapidly, slightly damping plasma waves are possible with the phase velocity (omega/K)c.
NASA Technical Reports Server (NTRS)
Nishikawa, K.; Hardee, P. E.; Richardson, G. A.; Preece, R. D.; Sol, H.; Fishman, G. J.
2003-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
NASA Astrophysics Data System (ADS)
Nishikawa, Ken-Ichi; Koide, Shinji; Sakai, Jun-ichi; Christodoulou, Dimitris M.; Sol, Hélène; Mutel, Robert L.
1998-05-01
We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (1) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (2) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy, and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese ``noren'' or vertical venetian blinds out of the way while the slats are allowed to bend in three-dimensional space rather than as a two-dimensional slab structure. Applied to relativistic extragalactic jets from blazars, the new results are encouraging, since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized--but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.
Magnetic-Field-Induced Relativistic Properties in Type-I and Type-II Weyl Semimetals.
Tchoumakov, Serguei; Civelli, Marcello; Goerbig, Mark O
2016-08-19
We investigate Weyl semimetals with tilted conical bands in a magnetic field. Even when the cones are overtilted (type-II Weyl semimetal), Landau-level quantization can be possible as long as the magnetic field is oriented close to the tilt direction. Most saliently, the tilt can be described within the relativistic framework of Lorentz transformations that give rise to a rich spectrum, displaying new transitions beyond the usual dipolar ones in the optical conductivity. We identify particular features in the latter that allow one to distinguish between semimetals of different types. PMID:27588870
Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K. I.; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.
2004-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times depend on the Lorenz factors of jets. The jets with larger Lorenz factors grow slower. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The small scale magnetic field structure generated by the Weibel instability is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.
On parasupersymmetric oscillators and relativistic vector mesons in constant magnetic fields
NASA Technical Reports Server (NTRS)
Debergh, Nathalie; Beckers, Jules
1995-01-01
Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric oscillator-like system, is characterized by real energies as opposed to previously pointed out relativistic equations corresponding to this interacting context.
Dynamics of Relativistic Magnetized Explosions
NASA Astrophysics Data System (ADS)
Lyutikov, M.
2001-11-01
The dynamics of (i) relativistic blast waves propagating through magnetized medium, (ii) magnetic explosions (when most energy is released in a form of toroidal magnetic field) is considered taking into account possible inhomogeneities of density and external magnetic field and additional energy supply. Self-similar solutions for the internal structure in the bulk flow and in the strongly magnetized sheath near contact discontinuity are found.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.
2007-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron)jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.
2006-01-01
Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.
NASA Technical Reports Server (NTRS)
Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.
2007-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Lee, H. C.; Jiang, T. F.
2010-11-15
We analytically solve the relativistic equation of motion for an electron in ion plasma channels and calculate the corresponding trajectory as well as the synchrotron radiation. The relativistic effect on a trajectory is strong, i.e., many high-order harmonic terms in the trajectory, when the ratio of the initial transverse velocity (v{sub x0}) to the longitudinal velocity (v{sub z0}) of the electron injected to ion plasma channels is high. Interestingly, these high-order harmonic terms result in a quite broad and intense radiation spectrum, especially at an oblique angle, in contrast to an earlier understanding. As the initial velocity ratio (v{sub x0}:v{sub z0}) decreases, the relativistic effect becomes weak; only the first and second harmonic terms remain in the transverse and longitudinal trajectories, respectively, which coincides with the result of Esarey et al. [Phys. Rev. E 65, 056505 (2002)]. Our formalism also allows the description of electron's trajectory in the presence of an applied magnetic field. Critical magnetic fields for cyclotron motions are figured out and compared with semiclassical results. The cyclotron motion leads to more high-order harmonic terms than the trajectory without magnetic fields and causes an immensely broad spectrum with vastly large radiation amplitude for high initial velocity ratios (v{sub x0}:v{sub z0}). The radiation from hard x-ray to gamma-ray regions can be generated with a broad radiation angle, thus available for applications.
Generation of relativistic electrons and ultra-high magnetic field for fast ignition
NASA Astrophysics Data System (ADS)
Shvets, Gennady; Fisch, Nathaniel
1997-11-01
Certain plasma processes would play a crutialal role during fast ignition (M. Tabak et. al., Phys. Plasmas 1,) 1626 (1994)., including the production of relativistic electrons in laser-matter interactions, the resulting generation of multi-megagauss magnetic fields, and the self-consistent effect on the relativistic electrons. We present an analytical model of fast electron generation by ``snow-plowing'' the plasma by an intense laser pulse and evaluate the electron beam current and energy. Since focused propagation of the electron beam is essential, and self-magnetic field can provide the required focusing, collisional and collisionless mechanisms of magnetic field penetration into the plasma are evaluated. Another mechanism of magnetic field generation is the inverse Faraday effect (IFE), whereby angular momentum is transfered from the ions to the electrons in the presence of circularly polarized laser. Implications of IFE to fast ignition are discussed. Another mechanism of B-field generation is the modification of electron-ion collisions in the presence of intense laser field. (G. Shvets and N. J. Fisch, Phys. Plasmas 4,) 428 (1997).
Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Nordlund, A.; Frederiksen, J.; Mizuno, Y.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.
2011-01-01
Using our new 3-D relativistic particle-in-cell (PIC) code, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value as predicted by hydrodynamic compression. Behind the bow shock, in the jet shock, strong electromagnetic fields are generated. These fields may lead to time dependent afterglow emission. In order to go beyond the standard synchrotron model used in astrophysical objects we have used PIC simulations and calculated radiation based on first principles. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the technique to calculate emission from electrons based on simulations with a small system. We obtain spectra which are consistent with those generated from electrons propagating in turbulent magnetic fields. This turbulent magnetic field is similar to the magnetic field generated at an early nonlinear stage of the Weibel instability. A fully developed shock within a larger system may generate a jitter/synchrotron spectrum.
Transverse conductivity of a relativistic plasma in oblique electric and magnetic fields
NASA Technical Reports Server (NTRS)
Melia, Fulvio; Fatuzzo, Marco
1991-01-01
Resistive tearing in a primary candidate for flares occurring in stressed magnetic fields. Its possible application to the strongly magnetized environments (Hz about 10 to the 12th G) near the surface of neutron stars, particularly as a mechanism for generating the plasma heating and particle acceleration leading to gamma-ray bursts, has motivated a quantum treatment of this process, which requires knowledge of the electrical conductivity sigma of a relativistic gas in a new domain (i.e., that of a low-density n/e/) plasma in oblique electric and magnetic fields. This paper discusses the mathematical formalism for calculating sigma and present numerical results for a wide range of parameter values. The results indicate that sigma depends very strongly on both the applied electric and magnetic fields.
Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.
2005-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This
COOLING RATES FOR RELATIVISTIC ELECTRONS UNDERGOING COMPTON SCATTERING IN STRONG MAGNETIC FIELDS
Baring, Matthew G.; Wadiasingh, Zorawar; Gonthier, Peter L. E-mail: zw1@rice.edu
2011-05-20
For inner magnetospheric models of hard X-ray and gamma-ray emission in high-field pulsars and magnetars, resonant Compton upscattering is anticipated to be the most efficient process for generating continuum radiation. This is in part due to the proximity of a hot soft photon bath from the stellar surface to putative radiation dissipation regions in the inner magnetosphere. Moreover, because the scattering process becomes resonant at the cyclotron frequency, the effective cross section exceeds the classical Thomson value by over two orders of magnitude, thereby enhancing the efficiency of continuum production and the cooling of relativistic electrons. This paper presents computations of the electron cooling rates for this process, which are needed for resonant Compton models of non-thermal radiation from such highly magnetized pulsars. The computed rates extend previous calculations of magnetic Thomson cooling to the domain of relativistic quantum effects, sampled near and above the quantum critical magnetic field of 44.13 TG. This is the first exposition of fully relativistic, quantum magnetic Compton cooling rates for electrons, and it employs both the traditional Johnson and Lippmann cross section and a newer Sokolov and Ternov (ST) formulation of Compton scattering in strong magnetic fields. Such ST formalism is formally correct for treating spin-dependent effects that are important in the cyclotron resonance and has not been addressed before in the context of cooling by Compton scattering. The QED effects are observed to profoundly lower the rates below extrapolations of the familiar magnetic Thomson results, as expected, when recoil and Klein-Nishina reductions become important.
Simulation of a low magnetic field relativistic backward wave oscillator with single mode structure
NASA Astrophysics Data System (ADS)
Li, Xiaoze; Song, Wei; Tan, Weibing; Zhang, Ligang; Zhu, Xiaoxin; Hu, Xianggang; Shen, Zhiyuan; Ning, Qi; Liang, Xu
2016-02-01
A low magnetic field relativistic backward wave oscillator with single mode structure is presented. Particle-in-cell simulation results show that 1.25 GW output power with 37% efficiency is generated under 0.88 T. The mode purity of the output signal is high because higher modes are cut off by the structure. According to the analytical results, the influence of bombardment of electrons on the surface of the slow wave structures is minor. A modulation cavity is adopted to enhance beam-wave interaction and realize mechanical frequency tunability. The power capacity is increased though redistribution of electric field. The computational results indicate that the device with a single mode structure is a competitive candidate for devices working at low magnetic field especially for devices focused with permanent magnet.
Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, J. F.
2009-01-01
Plasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electron's transverse deflection behind the shock. The jitter'' radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. New spectra based on simulations will be presented.
Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers
NASA Astrophysics Data System (ADS)
Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus
2015-11-01
Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.
On the theory of magnetic field generation by relativistically strong laser radiation
Berezhiani, V.I.; Shatashvili, N.L.; Mahajan, S.M. |
1996-07-01
The authors consider the interaction of subpicosecond relativistically strong short laser pulses with an underdense cold unmagnetized electron plasma. It is shown that the strong plasma inhomogeneity caused by laser pulses results in the generation of a low frequency (quasistatic) magnetic field. Since the electron density distribution is determined completely by the pump wave intensity, the generated magnetic field is negligibly small for nonrelativistic laser pulses but increases rapidly in the ultrarelativistic case. Due to the possibility of electron cavitation (complete expulsion of electrons from the central region) for narrow and intense beams, the increase in the generated magnetic field slows down as the beam intensity is increased. The structure of the magnetic field closely resembles that of the field produced by a solenoid; the field is maximum and uniform in the cavitation region, then it falls, changes polarity and vanishes. In extremely dense plasmas, highly intense laser pulses in the self-channeling regime can generate magnetic fields {approximately} 100 Mg and greater.
Quantum speed limit for a relativistic electron in a uniform magnetic field
NASA Astrophysics Data System (ADS)
Villamizar, D. V.; Duzzioni, E. I.
2015-10-01
We analyze the influence of relativistic effects on the minimum evolution time between two orthogonal states of a quantum system. Defining the initial state as a homogeneous superposition between two Hamiltonian eigenstates of an electron in a uniform magnetic field, we obtain a relation between the minimum evolution time and the displacement of the mean radial position of the electron wave packet. The quantum speed limit time is calculated for an electron dynamics described by Dirac and Schrödinger-Pauli equations considering different parameters, such as the strength of magnetic field and the linear momentum of the electron in the axial direction. We highlight that when the electron undergoes a region with extremely strong magnetic field the relativistic and nonrelativistic dynamics differ substantially, so that the description given by the Schrödinger-Pauli equation enables the electron to travel faster than c , which is prohibited by Einstein's theory of relativity. This approach allows a connection between the abstract Hilbert space and the space-time coordinates, besides the identification of the most appropriate quantum dynamics used to describe the electron motion.
Simulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplification
Caprioli, D.; Spitkovsky, A.
2014-10-10
We use large hybrid simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient, we find that the upstream magnetic field is significantly amplified. The total amplification factor is larger than 10 for shocks with Alfvénic Mach number M = 100, and scales with the square root of M. The spectral energy density of excited magnetic turbulence is determined by the energy distribution of accelerated particles, and for moderately strong shocks (M ≲ 30) agrees well with the prediction of resonant streaming instability, in the framework of quasilinear theory of diffusive shock acceleration. For M ≳ 30, instead, Bell's non-resonant hybrid (NRH) instability is predicted and found to grow faster than resonant instability. NRH modes are excited far upstream by escaping particles, and initially grow without disrupting the current, their typical wavelengths being much shorter than the current ions' gyroradii. Then, in the nonlinear stage, most unstable modes migrate to larger and larger wavelengths, eventually becoming resonant in wavelength with the driving ions, which start diffuse. Ahead of strong shocks we distinguish two regions, separated by the free-escape boundary: the far upstream, where field amplification is provided by the current of escaping ions via NRH instability, and the shock precursor, where energetic particles are effectively magnetized, and field amplification is provided by the current in diffusing ions. The presented scalings of magnetic field amplification enable the inclusion of self-consistent microphysics into phenomenological models of ion acceleration at non-relativistic shocks.
NASA Astrophysics Data System (ADS)
Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.
2016-06-01
We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are ni,f ∼104-105. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ∼1012-1013, from the results for ni,f ∼104-105. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.
NASA Astrophysics Data System (ADS)
Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.
2016-06-01
We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are ni,f ∼104-105. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ∼1012-1013, from the results for ni,f ∼104-105. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.
Particle Acceleration and Magnetic Field Amplification at Non-relativistic Collisionless Shocks
NASA Astrophysics Data System (ADS)
Caprioli, Damiano; Spitkovsky, A.
2013-04-01
We investigate the dynamics of non-relativistic, collisionless shocks by using unprecedentedly large 2D and 3D hybrid (kinetic ions - fluid electrons) simulations. We find that, at parallel shocks, ions are efficiently accelerated via first-order Fermi mechanism; the current driven by the energetic particles propagating into the upstream medium excites plasma instabilities that strongly perturb the initial electromagnetic configuration. In particular, the filamentation instability produces tubular, underdense, magnetic-field-depleted cavities, in which accelerated particles are channeled. These structures grow while being advected with the fluid, effectively corrugating the shock surface and triggering turbulent motions in the downstream. The net result is a marked increase of the magnetic field, both ahead and behind the shock, in agreement with the high levels of magnetization inferred at the blast waves of young supernova remnants. We also discuss the dependence of the ion acceleration efficiency on the orientation and on the strength of the upstream magnetic field, finding that ions are preferentially accelerated at parallel, fast shocks (i.e., shocks propagating along the initial magnetic field, with velocities much larger than the Alfvén speed).
Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields
NASA Technical Reports Server (NTRS)
Nishikawa, K.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Oka, M.; Hartmann, D. H.; Fishman, J. F.
2009-01-01
Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) excited in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a new 3-D relativistic particle-in-cell code, we have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. The simulation has been performed using a long simulation system in order to study the nonlinear stages of the Weibel instability, the particle acceleration mechanism, and the shock structure. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic (HD) like shock structure. In the leading shock, electron density increases by a factor of <_ 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. We discuss the possible implication of our simulation results within the AGN and GRB context. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique. The same technique will be used to calculate radiation from accelerated electrons (positrons) in turbulent magnetic fields generated by Weibel instability.
Relativistic dynamics of two spin-half particles in a homogeneous magnetic field
NASA Astrophysics Data System (ADS)
Datta, Sambhu N.; Misra, Anirban
2001-01-01
Relativistic dynamics of two spin-1/2 particles in an external, homogeneous magnetic field is investigated here. The problem is important for a preliminary understanding of the effect of magnetic field on atoms and molecules at the relativistic level. The relativistic Hamiltonian is formulated in three distinct forms which involve the Bethe-Salpeter interaction, generalized Breit interaction and projected Breit interaction. The total pseudomomentum of the two-particle system is conserved in each case, and its components are distinct in the zero-charge sector. This permits the separation of the center of mass motion from the Hamiltonian of the neutral two-particle system. The resulting Hamiltonian operator describes the movement of the two particles in relative coordinates. It is further simplified by using suitable unitary transformations so as to reduce the one-particle operator for the first particle into a diagonal form. The effective equation of motion for the movement of the second particle in relative coordinates is then identified. A second set of transformations convert the two-particle relative Hamiltonian into a form where the one-particle operator for each spin-1/2 particle is completely diagonalized and separable into positive and negative energy states. The correspondingly transformed interaction operators can be written in an order by order expansion from which the odd terms are removable by using suitable Foldy-Wouthuysen type transformations in a systematic way. The resulting Hamiltonian operator reduces to previously known expressions when the magnetic field is switched off. Thus the two sets of transformations which convert the one particle parts completely into separable as well as diagonal forms also transform the interaction operator to generate terms consistently through order v2/c2. The field dependence lies entirely in the diagonalized one-particle parts, which is a consequence of the initial choice of interaction operators. Our results also
Hramov, A. E.; Koronovskii, A. A.; Kurkin, S. A.; Filatova, A. E.
2012-11-15
The report is devoted to the results of the numerical study of the virtual cathode (VC) formation conditions in the relativistic electron beam (REB) under the influence of the self-magnetic and external axial magnetic fields. The azimuthal instability of the relativistic electron beam leading to the formation of the vortex electron structure in the system was found out. This instability is determined by the influence of the self-magnetic fields of the relativistic electron beam, and it leads to the decrease of the critical value of the electron beam current (current when the non-stationary virtual cathode is formed in the drift space). The typical dependencies of the critical current on the external uniform magnetic field value were discovered. The effect of the beam thickness on the virtual cathode formation conditions was also analyzed.
Wu, Ping; Sun, Jun; Cao, Yibing
2015-06-15
In O-type high power microwave (HPM) devices, the annular relativistic electron beam is constrained by a strong guiding magnetic field and propagates through an interaction region to generate HPM. Some papers believe that the E × B drift of electrons may lead to beam breakup. This paper simplifies the interaction region with a smooth cylindrical waveguide to research the radial motion of electrons under conditions of strong guiding magnetic field and TM{sub 01} mode HPM. The single-particle trajectory shows that the radial electron motion presents the characteristic of radial guiding-center drift carrying cyclotron motion. The radial guiding-center drift is spatially periodic and is dominated by the polarization drift, not the E × B drift. Furthermore, the self fields of the beam space charge can provide a radial force which may pull electrons outward to some extent but will not affect the radial polarization drift. Despite the radial drift, the strong guiding magnetic field limits the drift amplitude to a small value and prevents beam breakup from happening due to this cause.
NASA Astrophysics Data System (ADS)
Roura, P. G.; Melo, J. I.; Ruiz de Azúa, M. C.; Giribet, C. G.
2006-08-01
The linear response within the elimination of the small component formalism is aimed at obtaining the leading order relativistic corrections to magnetic molecular properties in the context of the elimination of the small component approximation. In the present work we extend the method in order to include two-body effects in the form of a mean field one-body operator. To this end we consider the four-component Dirac-Hartree-Fock operator as the starting point in the evaluation of the second order relativistic expression of magnetic properties. The approach thus obtained is the fully consistent leading order approximation of the random phase approximation four-component formalism. The mean field effect on the relativistic corrections to both the diamagnetic and paramagnetic terms of magnetic properties taking into account both the Coulomb and Breit two-body interactions is considered.
Design of a high efficiency relativistic backward wave oscillator with low guiding magnetic field
NASA Astrophysics Data System (ADS)
Li, Xiaoze; Song, Wei; Tan, Weibing; Zhang, Ligang; Su, Jiancang; Zhu, Xiaoxin; Hu, Xianggang; Shen, Zhiyuan; Liang, Xu; Ning, Qi
2016-07-01
A high efficiency relativistic backward wave oscillator working at a low guiding magnetic field is designed and simulated. A trapezoidal resonant reflector is used to reduce the modulation field in the resonant reflector to avoid overmodulation of the electron beam which will lead to a large momentum spread and then low conversion efficiency. The envelope of the inner radius of the slow wave structure (SWS) increases stepwise to keep conformal to the trajectory of the electron beam which will alleviate the bombardment of the electron on the surface of the SWS. The length of period of the SWS is reduced gradually to make a better match between phase velocity and electron beam, which decelerates continually and improves the RF current distribution. Meanwhile the modulation field is reduced by the introduction of nonuniform SWS also. The particle in cell simulation results reveal that a microwave with a power of 1.8 GW and a frequency of 14.7 GHz is generated with an efficiency of 47% when the diode voltage is 620 kV, the beam current 6.1 kA, and the guiding magnetic field 0.95 T.
Guiding of Relativistic Electron Beams in Solid Targets by Resistively Controlled Magnetic Fields
NASA Astrophysics Data System (ADS)
Kar, S.; Robinson, A. P. L.; Carroll, D. C.; Lundh, O.; Markey, K.; McKenna, P.; Norreys, P.; Zepf, M.
2009-02-01
Guided transport of a relativistic electron beam in solid is achieved experimentally by exploiting the strong magnetic fields created at the interface of two metals of different electrical resistivities. This is of substantial relevance to the Fast Ignitor approach to fusion energy production [M. Tabak , Phys. PlasmasPHPAEN1070-664X 12, 057305 (2005)10.1063/1.1871246], since it allows the electron deposition to be spatially tailored—thus adding substantial design flexibility and preventing inefficiencies due to electron beam spreading. In the experiment, optical transition radiation and thermal emission from the target rear surface provide a clear signature of the electron confinement within a high resistivity tin layer sandwiched transversely between two low resistivity aluminum slabs. The experimental data are found to agree well with numerical simulations.
Constraining the magnetic field in GRB relativistic collisionless shocks using radio data
NASA Astrophysics Data System (ADS)
Barniol Duran, R.
2014-08-01
Using gamma-ray burst (GRB) radio afterglow observations, we calculate the fraction of shocked plasma energy in the magnetic field in relativistic collisionless shocks (ɛB). We obtained ɛB for 38 bursts by assuming that the radio afterglow light curve originates in the external forward shock, and that its peak at a few to tens of days is due to the passage of the minimum (injection) frequency through the radio band. This allows for the determination of the peak synchrotron flux of the external forward shock, fp, which is f_p ∝ ɛ _B^{1/2}. The obtained value of ɛB is conservatively a minimum if the time of the `jet break' is unknown, since after the `jet break' fp is expected to decay with time faster than before it. Claims of `jet breaks' have been made for a subsample of 23 bursts, for which we can estimate a measurement of ɛB. Our results depend on the blast wave total energy, E, and the density of the circumstellar medium (CSM), n, as ɛB ∝ E-2n-1. However, by assuming a CSM magnetic field (˜10 μG), we can express the lower limits/measurements on ɛB as a density-independent ratio, B/Bsc, of the magnetic field behind the shock to the CSM shock-compressed magnetic field. We find that the distribution on both the lower limit on and the measurement of B/Bsc spans ˜3.5 orders of magnitude and both have a median of B/Bsc ˜ 30. This suggests that some amplification, beyond simple shock compression, is necessary to explain these radio afterglow observations.
Effect of the plasma-generated magnetic field on relativistic electron transport.
Nicolaï, Ph; Feugeas, J-L; Regan, C; Olazabal-Loumé, M; Breil, J; Dubroca, B; Morreeuw, J-P; Tikhonchuk, V
2011-07-01
In the fast-ignition scheme, relativistic electrons transport energy from the laser deposition zone to the dense part of the target where the fusion reactions can be ignited. The magnetic fields and electron collisions play an important role in the collimation or defocusing of this electron beam. Detailed description of these effects requires large-scale kinetic calculations and is limited to short time intervals. In this paper, a reduced kinetic model of fast electron transport coupled to the radiation hydrodynamic code is presented. It opens the possibility to carry on hybrid simulations in a time scale of tens of picoseconds or more. It is shown with this code that plasma-generated magnetic fields induced by noncollinear temperature and density gradients may strongly modify electron transport in a time scale of a few picoseconds. These fields tend to defocus the electron beam, reducing the coupling efficiency to the target. This effect, that was not seen before in shorter time simulations, has to be accounted for in any ignition design using electrons as a driver. PMID:21867317
A NOVEL EMISSION SPECTRUM FROM A RELATIVISTIC ELECTRON MOVING IN A RANDOM MAGNETIC FIELD
Teraki, Yuto; Takahara, Fumio
2011-07-10
We numerically calculate the radiation spectrum from relativistic electrons moving in small-scale turbulent magnetic fields expected in high-energy astrophysical sources. Such a radiation spectrum is characterized by the strength parameter a = {lambda}{sub B} e|B|/mc {sup 2}, where {lambda}{sub B} is the length scale of the turbulent field. When a is much larger than the Lorentz factor of a radiating electron {gamma}, synchrotron radiation is realized, while a << 1 corresponds to the so-called jitter radiation regime. Because for 1 < a < {gamma} we cannot use either approximations, we should have recourse to the Lienard-Wiechert potential to evaluate the radiation spectrum, which is performed in this Letter. We generate random magnetic fields assuming Kolmogorov turbulence, inject monoenergetic electrons, solve the equation of motion, and calculate the radiation spectrum. We perform numerical calculations for several values of a with {gamma} = 10. We obtain various types of spectra ranging between jitter radiation and synchrotron radiation. For a {approx} 7, the spectrum takes a novel shape which had not been noticed up to now. It is like a synchrotron spectrum in the middle energy region, but in the low frequency region it is a broken power law and in the high frequency region an extra power-law component appears beyond the synchrotron cutoff. We give a physical explanation of these features.
Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.
2016-03-26
We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are n(i, f) similar to 10(4)-10(5). We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one canmore » infer the decay width in more realistic magnetic fields of 10(15) G, where n(i, f) similar to 10(12)-10(13), from the results for n(i, f) similar to 10(4)-10(5). The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less
Relativistic electrons and magnetic fields of the M87 jet on the ∼10 Schwarzschild radii scale
Kino, M.; Takahara, F.; Hada, K.; Doi, A.
2014-05-01
We explore energy densities of the magnetic fields and relativistic electrons in the M87 jet. Since the radio core at the jet base is identical to the optically thick surface against synchrotron self-absorption (SSA), the observing frequency is identical to the SSA turnover frequency. As a first step, we assume the radio core has a simple uniform sphere geometry. Using the observed angular size of the radio core measured by the Very Long Baseline Array at 43 GHz, we estimate the energy densities of magnetic fields (U{sub B} ) and relativistic electrons (U{sub e} ) on the basis of the standard SSA formula. Imposing the condition that the Poynting power and kinetic power of relativistic electrons should be smaller than the total power of the jet, we find that (1) the allowed range of the magnetic field strength (B {sub tot}) is 1 G ≤ B {sub tot} ≤ 15 G and that (2) 1 × 10{sup –5} ≤ U{sub e} /U{sub B} ≤ 6 × 10{sup 2} holds. The uncertainty of U{sub e} /U{sub B} comes from the strong dependence on the angular size of the radio core and the minimum Lorentz factor of non-thermal electrons (γ {sub e,min}) in the core. It is still unsettled whether resultant energetics are consistent with either the magnetohydrodynamic jet or the kinetic power dominated jet even on the ∼10 Schwarzschild radii scale.
Bessho, Naoki; Bhattacharjee, A.
2012-05-10
Magnetic reconnection and particle acceleration in relativistic Harris sheets in low-density electron-positron plasmas with no guide field have been studied by means of two-dimensional particle-in-cell simulations. Reconnection rates are of the order of one when the background density in a Harris sheet is of the order of 1% of the density in the current sheet, which is consistent with previous results in the non-relativistic regime. It has been demonstrated that the increase of the Lorentz factors of accelerated particles significantly enhances the collisionless resistivity needed to sustain a large reconnection electric field. It is shown analytically and numerically that the energy spectrum of accelerated particles near the X-line is the product of a power law and an exponential function of energy, {gamma}{sup -1/4}exp (- a{gamma}{sup 1/2}), where {gamma} is the Lorentz factor and a is a constant. However, in the low-density regime, while the most energetic particles are produced near X-lines, many more particles are energized within magnetic islands. Particles are energized in contracting islands by multiple reflection, but the mechanism is different from Fermi acceleration in magnetic islands for magnetized particles in the presence of a guide field. In magnetic islands, strong core fields are generated and plasma beta values are reduced. As a consequence, the fire-hose instability condition is not satisfied in most of the island region, and island contraction and particle acceleration can continue. In island coalescence, reconnection between two islands can accelerate some particles, however, many particles are decelerated and cooled, which is contrary to what has been discussed in the literature on particle acceleration due to reconnection in non-relativistic hydrogen plasmas.
Colavita, E.; Hacyan, S.
2014-03-15
We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle.
NASA Astrophysics Data System (ADS)
Hramov, Alexander; Koronovskii, Alexey; Morozov, Mikhail; Mushtakov, Alexander
2008-02-01
In this Letter we research the space charge limiting current value at which the oscillating virtual cathode is formed in the relativistic electron beam as a function of the external magnetic field guiding the beam electrons. It is shown that the space charge limiting (critical) current decreases with growth of the external magnetic field, and that there is an optimal induction value of the magnetic field at which the critical current for the onset of virtual cathode oscillations in the electron beam is minimum. For the strong external magnetic field the space charge limiting current corresponds to the analytical relation derived under the assumption that the motion of the electron beam is one-dimensional [D.J. Sullivan, J.E. Walsh, E. Coutsias, in: V.L. Granatstein, I. Alexeff (Eds.), Virtual Cathode Oscillator (Vircator) Theory, in: High Power Microwave Sources, vol. 13, Artech House Microwave Library, 1987, Chapter 13]. Such behavior is explained by the characteristic features of the dynamics of electron space charge in the longitudinal and radial directions in the drift space at the different external magnetic fields.
On the relativistic classical motion of a radiating spinning particle in a magnetic field
Kar, Arnab; Rajeev, S.G.
2011-04-15
Research Highlights: > We propose classical equations of motion for a charged particle with magnetic moment. > We account for radiation reaction as well. > Unlike previous proposals we do not have runaway solutions. > We find that the particle loses energy even in a constant magnetic field for a particular spin-polarized state. - Abstract: We propose classical equations of motion for a charged particle with magnetic moment, taking radiation reaction into account. This generalizes the Landau-Lifshitz equations for the spinless case. In the special case of spin-polarized motion in a constant magnetic field (synchrotron motion) we verify that the particle does lose energy. Previous proposals did not predict dissipation of energy and also suffered from runaway solutions analogous to those of the Lorentz-Dirac equations of motion.
NASA Astrophysics Data System (ADS)
Tot'meninov, E. M.; Klimov, A. I.
2016-06-01
Coupling impedance Z 0 of a continuous relativistic electron beam with the fundamental harmonic of the TM01 wave slowed down to the speed of light in a slow-wave structure (SWS) based on a hollow corrugated waveguide is estimated analytically and using the program based on the scattering matrix method. It is shown that Z 0 in relativistic Cherenkov microwave oscillators without a guiding magnetic field realized in earlier experiments with the given type of interaction amounts to about 6-7 Ω, which is several times higher than the coupled impedances averaged over the SWS cross section for-1 and +1 spatial harmonics of the operating wave and can be increased in future to values exceeding 10 Ω due to a decrease in the average SWS diameter in admissible limits. In numerical simulation using the KARAT code, the possibility of reduction of the time of stabilization of oscillations of the Cherenkov microwave oscillator without a guiding magnetic field by 1.5 times is demonstrated.
Persistence of magnetic field driven by relativistic electrons in a plasma
NASA Astrophysics Data System (ADS)
Flacco, A.; Vieira, J.; Lifschitz, A.; Sylla, F.; Kahaly, S.; Veltcheva, M.; Silva, L. O.; Malka, V.
2015-05-01
The onset and evolution of magnetic fields in laboratory and astrophysical plasmas is determined by several mechanisms, including instabilities, dynamo effects and ultrahigh-energy particle flows through gas, plasma and interstellar media. These processes are relevant over a wide range of conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion in stars. The disparate temporal and spatial scales where each process operates can be reconciled by scaling parameters that enable one to emulate astrophysical conditions in the laboratory. Here we unveil a new mechanism by which the flow of ultra-energetic particles in a laser-wakefield accelerator strongly magnetizes the boundary between plasma and non-ionized gas. We demonstrate, from time-resolved large-scale magnetic-field measurements and full-scale particle-in-cell simulations, the generation of strong magnetic fields up to 10-100 tesla (corresponding to nT in astrophysical conditions). These results open new paths for the exploration and modelling of ultrahigh-energy particle-driven magnetic-field generation in the laboratory.
NASA Astrophysics Data System (ADS)
Pramanik, Sourav; Kuznetsov, V. I.; Bakaleinikov, L. A.; Chakrabarti, Nikhil
2016-08-01
A comprehensive study on the steady states of a planar vacuum diode driven by a cold relativistic electron beam in the presence of an external transverse magnetic field is presented. The regimes, where no electrons are turned around by the external magnetic field and where they are reflected back to the emitter by the magnetic field, are both considered in a generalized way. The problem is solved by two methods: with the Euler and the Lagrange formulation. Taking non-relativistic limit, the solutions are compared with the similar ones which were obtained for the Bursian diode with a non-relativistic electron beam in previous work [Pramanik et al., Phys. Plasmas 22, 112108 (2015)]. It is shown that, at a moderate value of the relativistic factor of the injected beam, the region of the ambiguous solutions located to the right of the SCL bifurcation point (space charge limit) in the non-relativistic regime disappears. In addition, the dependencies of the characteristic bifurcation points and the transmitted current on the Larmor frequency as well as on the relativistic factor are explored.
Relativistic Shocks: Particle Acceleration and Magnetization
NASA Astrophysics Data System (ADS)
Sironi, L.; Keshet, U.; Lemoine, M.
2015-10-01
We review the physics of relativistic shocks, which are often invoked as the sources of non-thermal particles in pulsar wind nebulae (PWNe), gamma-ray bursts (GRBs), and active galactic nuclei (AGN) jets, and as possible sources of ultra-high energy cosmic-rays. We focus on particle acceleration and magnetic field generation, and describe the recent progress in the field driven by theory advances and by the rapid development of particle-in-cell (PIC) simulations. In weakly magnetized or quasi parallel-shocks (i.e. where the magnetic field is nearly aligned with the flow), particle acceleration is efficient. The accelerated particles stream ahead of the shock, where they generate strong magnetic waves which in turn scatter the particles back and forth across the shock, mediating their acceleration. In contrast, in strongly magnetized quasi-perpendicular shocks, the efficiencies of both particle acceleration and magnetic field generation are suppressed. Particle acceleration, when efficient, modifies the turbulence around the shock on a long time scale, and the accelerated particles have a characteristic energy spectral index of s_{γ}˜eq2.2 in the ultra-relativistic limit. We discuss how this novel understanding of particle acceleration and magnetic field generation in relativistic shocks can be applied to high-energy astrophysical phenomena, with an emphasis on PWNe and GRB afterglows.
Fully Relativistic Simulations of Black Holes and Neutron Stars with Global Magnetic Fields
NASA Astrophysics Data System (ADS)
Motl, Patrick
We propose to conduct fully relativistic simulations of the merger of compact objects to investigate their connection to the population of short-duration, hard-spectrum gamma ray bursts. In particular, we will explore possible observational signatures that may lead to the simultaneous study of such mergers through both their gravitational radiation and through an electromagnetic counterpart. The combination of so-called multi-messenger observations can yield significantly more astrophysical content than either gravitational radiation or electromagnetic radiation alone. Through the work described herein to extend our previous efforts we will arrive at a numerical tool set that allows us to simulate the merger of a neutron star with another neutron star or with a black hole that include (i) full general relativity, (ii) a hydrodynamic treatment of the neutron star material, (iii) electromagnetic fields in both the stellar material and globally and (iv) a treatment of energy transport and losses via neutrinos. These physics modules run within the publicly available, distributed adaptive mesh refinement framework (named HAD) developed by our collaboration. The numerical tools that we develop and release will likely be of use in other areas of computational astrophysics. Furthermore, predications and the interpretation of the signatures from compact object mergers may make a timely contribution to current efforts to study these systems observationally as well as efforts underway to detect these mergers through their gravitational radiation for the first time.
The Invariant Twist of Magnetic Fields in the Relativistic Jets of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes; Gabuzda, Denise C.
2009-01-01
The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in Active Galactic Nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1 %. This lends support to the hypothesis that the Universe is seeded by B fields that are generated in AGN via this mechanism
THE INVARIANT TWIST OF MAGNETIC FIELDS IN THE RELATIVISTIC JETS OF ACTIVE GALACTIC NUCLEI
Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes E-mail: dimitris_christodoulou@uml.edu E-mail: gabuzda@physics.ucc.ie
2009-09-10
The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in active galactic nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1%. This lends support to the hypothesis that the universe is seeded by B fields that are generated in AGNs via this mechanism and subsequently injected into intergalactic space by the jet outflows.
Gillani, S. S. A.; Shah, H. A.; Tsintsadze, N. L.; Razzaq, M.
2010-08-15
It is shown that the interaction of the superstrong laser radiation with an isotropic plasma leads to the generation of low frequency electromagnetic (EM) waves and in particular a quasistationary magnetic field. When the relativistic circularly polarized transverse EM wave propagates along z-axis, it creates a ponderomotive force, which affects the motion of particles along the direction of its propagation. On the other hand, motion of the particles across the direction of propagation is defined by the ponderomotive potential. The dispersion relation for the transverse EM wave using a special distribution function, which has an anisotropic form, is derived. The dispersion relation is subsequently investigated for a number of special cases. In general, it is shown that the growth rate of the EM wave strongly depends upon its intensity.
Xiao Renzhen; Tan Weibing; Li Xiaoze; Song Zhimin; Sun Jun; Chen Changhua
2012-09-15
A klystron-like relativistic backward wave oscillator with a ratio of transverse dimension to free-space wavelength being about four is presented. In the beam-wave interaction region, the electron beam interacts with surface wave and volume wave simultaneously. The cathode holder plays an important role in the reflection of backward waves. A guard electrode, an electron collector ring, and a reflection ring are used to optimize the beam-wave interaction. The particle in cell simulation results reveal that microwaves with a power of 2 GW and a frequency of 12.3 GHz are generated with an efficiency of 42% when the diode voltage is 400 kV, the beam current 12 kA, and the magnetic field 0.48 T.
NASA Astrophysics Data System (ADS)
Li, L.
2013-12-01
By removing the influences of 'magnetopause shadowing' (r0>6.6RE) and geomagnetic activities, we investigated statistically the responses of magnetic field and relativistic (>0.5MeV) electrons at geosynchronous orbit to 201 interplanetary perturbations during 6 years from 2003 (solar maximum) to 2008 (solar minimum). The statistical results indicate that during geomagnetically quiet times (HSYM ≥-30nT, and AE<200nT), ~47.3% changes in the geosynchronous magnetic field and relativistic electron fluxes are caused by the combined actions of the enhancement of solar wind dynamic pressure (Pd) and the southward turning of interplanetary magnetic field (IMF) (ΔPd>0.4 nPa, and IMF Bz<0 nT), and only ~18.4% changes are due to single dynamic pressure increase (ΔPd >0.4 nPa, but IMF Bz>0 nT), and ~34.3% changes are due to single southward turning of IMF (IMF Bz<0 nT, but |ΔPd|<0.4 nPa). Although the responses of magnetic field and relativistic electrons to the southward turning of IMF are weaker than their responses to the dynamic pressure increase, the southward turning of IMF can cause the dawn-dusk asymmetric perturbations that the magnetic field and the relativistic electrons tend to increase on the dawnside (LT~00:00-12:00) but decrease on the duskside (LT~13:00-23:00). Furthermore, the variation of relativistic electron fluxes is adiabatically controlled by the magnitude and elevation angle changes of magnetic field during the single IMF southward turnings. However, the variation of relativistic electron fluxes is independent of the change in magnetic field in some compression regions during the enhancement of solar wind dynamic pressure (including the single pressure increases and the combined external perturbations), indicating that nonadiabatic dynamic processes of relativistic electrons occur there. Acknowledgments. This work is supported by NSFC (grants 41074119 and 40604018). Liuyuan Li is grateful to the staffs working for the data from GOES 8-12 satellites
NASA Astrophysics Data System (ADS)
Ye, Hu; Teng, Yan; Chen, Changhua; Ning, Hui; Song, Zhimin; Cao, Yibing; Wu, Ping
2015-06-01
A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM03 mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM03 mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM03 mode. In addition, the TM03 mode dominates over the other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425 MW and a conversion efficiency of 32% are achieved at 60.5 GHz with an external magnetic field of 1.25 T. This RBWO can provide greater power handling capacity when operating on the TM03 mode than on the TM01 mode.
Ye, Hu; Wu, Ping; Teng, Yan; Chen, Changhua; Ning, Hui; Song, Zhimin; Cao, Yibing
2015-06-15
A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM{sub 03} mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM{sub 03} mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM{sub 03} mode. In addition, the TM{sub 03} mode dominates over the other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425 MW and a conversion efficiency of 32% are achieved at 60.5 GHz with an external magnetic field of 1.25 T. This RBWO can provide greater power handling capacity when operating on the TM{sub 03} mode than on the TM{sub 01} mode.
Kurkin, S. A. Koronovskii, A. A.; Frolov, N. S.; Hramov, A. E.; Rak, A. O.; Kuraev, A. A.
2015-04-13
The high-power scheme for the amplification of powerful microwave signals based on the overcritical electron beam with a virtual cathode (virtual cathode amplifier) has been proposed and investigated numerically. General output characteristics of the virtual cathode amplifier including the dependencies of the power gain on the input signal frequency and amplitude have been obtained and analyzed. The possibility of the geometrical working frequency tuning over the range about 8%–10% has been shown. The obtained results demonstrate that the proposed virtual cathode amplifier scheme may be considered as the perspective high-power microwave amplifier with gain up to 18 dB, and with the following important advantages: the absence of external magnetic field, the simplicity of construction, the possibility of geometrical frequency tuning, and the amplification of relatively powerful microwave signals.
Yoon, P. H. E-mail: rsch@tp4.rub.de; Schlickeiser, R. E-mail: rsch@tp4.rub.de; Kolberg, U. E-mail: rsch@tp4.rub.de
2014-03-15
Any fully ionized collisionless plasma with finite random particle velocities contains electric and magnetic field fluctuations. The fluctuations can be of three different types: weakly damped, weakly propagating, or aperiodic. The kinetics of these fluctuations in general unmagnetized plasmas, governed by the competition of spontaneous emission, absorption, and stimulated emission processes, is investigated, extending the well-known results for weakly damped fluctuations. The generalized Kirchhoff radiation law for both collective and noncollective fluctuations is derived, which in stationary plasmas provides the equilibrium energy densities of electromagnetic fluctuations by the ratio of the respective spontaneous emission coefficient and the true absorption coefficient. As an illustrative example, the equilibrium energy densities of aperiodic transverse collective electric and magnetic fluctuations in an isotropic thermal electron-proton plasmas of density n{sub e} are calculated as |δB|=√((δB){sup 2})=2.8(n{sub e}m{sub e}c{sup 2}){sup 1/2}g{sup 1/2}β{sub e}{sup 7/4} and |δE|=√((δE){sup 2})=3.2(n{sub e}m{sub e}c{sup 2}){sup 1/2}g{sup 1/3}β{sub e}{sup 2}, where g and β{sub e} denote the plasma parameter and the thermal electron velocity in units of the speed of light, respectively. For densities and temperatures of the reionized early intergalactic medium, |δB|=6·10{sup −18}G and |δE|=2·10{sup −16}G result.
Dynamics of relativistic magnetized blast waves
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim
2002-03-01
The dynamics of a relativistic blast wave propagating through a magnetized medium is considered, taking into account possible inhomogeneities of density and magnetic field and additional energy supply. Under the simplifying assumption of a spherically symmetric explosion in a medium with toroidal magnetic field self-similar solutions for the internal dynamics of the flow are derived. In the weakly magnetized case, when the bulk of the flow may be described by the unmagnetized solutions, there is a strongly magnetized sheath near the contact discontinuity (when it exists). Self-similar solutions inside the sheath are investigated. In the opposite limit of strongly magnetized upstream plasma new analytical self-similar solutions are found. Possible application to the physics of gamma-ray bursts is discussed.
3D Relativistic Magnetohydrodynamic Simulations of Magnetized Spine-Sheath Relativistic Jets
NASA Technical Reports Server (NTRS)
Mizuno, Yosuke; Hardee, Philip; Nishikawa, Ken-Ichi
2006-01-01
Numerical simulations of weakly magnetized and strongly magnetized relativistic jets embedded in a weakly magnetized and strongly magnetized stationary or weakly relativistic (v = c/2) sheath have been performed. A magnetic field parallel to the flow is used in these simulations performed by the new GRMHD numerical code RAISHIN used in its RMHD configuration. In the numerical simulations the Lorentz factor gamma = 2.5 jet is precessed to break the initial equilibrium configuration. In the simulations sound speeds are less than or equal to c/the square root of 3 in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The Alfven wave speed is less than or equal to 0.07 c in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The results of the numerical simulations are compared to theoretical predictions from a normal mode analysis of the linearized relativistic magnetohydrodynamic (RMHD) equations capable of describing a uniform axially magnetized cylindrical relativistic jet embedded in a uniform axially magnetized relativistically moving sheath. The theoretical dispersion relation allows investigation of effects associated with maximum possible sound speeds, Alfven wave speeds near light speed and relativistic sheath speeds. The prediction of increased stability of the weakly magnetized system resulting from c/2 sheath speeds and the stabilization of the strongly magnetized system resulting from c/2 sheath speeds is verified by the numerical simulation results.
NASA Astrophysics Data System (ADS)
Pang, Long-Gang; Endrődi, Gergely; Petersen, Hannah
2016-04-01
In off-central heavy-ion collisions, quark-gluon plasma (QGP) is exposed to the strongest magnetic fields ever created in the universe. Because of the paramagnetic nature of the QGP at high temperatures, the spatially inhomogeneous magnetic field configuration exerts an anisotropic force density that competes with the pressure gradients resulting from purely geometric effects. In this paper, we simulate (3+1)-dimensional ideal hydrodynamics with external magnetic fields to estimate the effect of this force density on the anisotropic expansion of the QGP in collisions at the Relativistic Heavy Ion Collider and at the Large Hadron Collider (LHC). While negligible for quickly decaying magnetic fields, we find that long-lived fields generate a substantial force density that suppresses the momentum anisotropy of the plasma by up to 20 % at the LHC energy and also leaves its imprint on the elliptic flow v2 of charged pions.
Relativistic laser pulse compression in magnetized plasmas
Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song
2015-07-15
The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.
Gu, Y J; Klimo, O; Kumar, D; Liu, Y; Singh, S K; Esirkepov, T Zh; Bulanov, S V; Weber, S; Korn, G
2016-01-01
The magnetic quadrupole structure formation during the interaction of two ultrashort high power laser pulses with a collisionless plasma is demonstrated with 2.5-dimensional particle-in-cell simulations. The subsequent expansion of the quadrupole is accompanied by magnetic-field annihilation in the ultrarelativistic regime, when the magnetic field cannot be sustained by the plasma current. This results in a dominant contribution of the displacement current exciting a strong large scale electric field. This field leads to the conversion of magnetic energy into kinetic energy of accelerated electrons inside the thin current sheet. PMID:26871179
Lehner, T; di Menza, L
2002-01-01
Nonlinear equations are derived relevant to describe the propagation of powerful electromagnetic fields launched within a plasma. The nonlinear generation of self-induced collective electromagnetic perturbations are obtained with matter lying in the relativistic regime. Our main result is the self-consistent treatment of the coupled equations between the pump and its self-induced fields. In particular, a mechanism is pointed out for self-generation of quasistatic magnetic field that is due to the relativistic ponderomotive force. This process is found to be more efficient to produce quasistatic magnetic fields, as confirmed by recent experiments, as compared to known effects such as the inverse Faraday effect. As an application, we investigate conditions for relativistic magnetic guiding of light to occur under the combined action of the self-induced density and magnetic field. PMID:11800797
Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design
Yu, S.; Sessler, A.
1995-02-01
Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.
NASA Astrophysics Data System (ADS)
Kolesnikov, E. K.; Manuilov, A. S.
2016-04-01
The problem of formulating the generalization of the Bennett equilibrium condition is considered for a relativistic electron beam propagating in the Ohmic plasma channel, as well as in the ion focusing regime in the presence of an external longitudinal uniform magnetic field. We assume that the electron component of the background plasma is not completely removed from the region occupied by the beam. This equilibrium condition is derived using the mass and momentum transport equations obtained for a paraxial monoenergetic beam from the Fokker-Planck kinetic equation.
High-order harmonic generation on atoms and ions with laser fields of relativistic intensities
Avetissian, H. K.; Markossian, A. G.; Mkrtchian, G. F.
2011-07-15
High-order harmonic generation (HHG) by hydrogenlike atoms or ions in the field of counterpropagating laser beams of standing-wave configuration, with linear polarizations and relativistic intensities, is studied. The relativistic quantum theory of HHG in such field configurations (homogeneous), at which the impeding factor of relativistic magnetic drift of superstrong laser fields can be eliminated, is presented.
Ayala, Alejandro; Bashir, Adnan; Raya, Alfredo; Sanchez, Angel
2009-08-01
Working in the linear sigma model with quarks, we compute the finite-temperature effective potential in the presence of a weak magnetic field, including the contribution of the pion ring diagrams and considering the sigma as a classical field. In the approximation where the pion self-energy is computed perturbatively, we show that there is a region of the parameter space where the effect of the ring diagrams is to preclude the phase transition from happening. Inclusion of the magnetic field has small effects that however become more important as the system evolves to the lowest temperatures allowed in the analysis.
NASA Astrophysics Data System (ADS)
Osmane, Adnane; Hamza, A. M.; Meziane, Karim
The wave-particle interaction (WPI) is very likely the most studied physical mechanism in plasmas in general, and space plasmas in particular. This mechanism is best studied when the wave propagation is assumed parallel to the background magnetic field. However, oblique wave propagation is more realistic and changes the nature of the WPI as far as its impact on transport is concerned. The goal of this report is to present a synthesis of analytical and numerical studies of the wave-particle interaction for obliquely propagating waves and its effect on the particle's dynamics (physical trapping, acceleration) and distribution functions (beam generation). Initially, the classical WPI, in the case of a homogeneous background magnetic field, was treated using a dynamical systems approach [1]. Most notably, it was shown that the introduction of an electric field parallel to the background magnetic field results in physical trapping of particles. Using Liouville's theorem of phase-space density conservation, particle distribution functions were constructed by following phase-space trajectories. It was further shown that the WPI, in the oblique propagation case, provides a quantitative explanation to the kinetic distortions of proton distribution functions observed in fast streams of the solar wind (beams, tails)[2]. We have extended this work to the case of relativistic protons interacting with obliquely propagating electromagnetic waves; a dynamical system governing the WPI has been derived. The results of the numerical integration will be presented for the case where the background magnetic field is homogeneous, and for the special case of a dipolar magnetic field. We will also attempt to complete the study by running the model for relativistic electrons and comparing the results to observations of radiation belt electrons. [1] Hamza, A. M., K. Meziane, C. Mazelle, (2006) Oblique Propagation and nonlinear wave-particle processes, J. Geophys. Res., 111, A04,104, doi:10
NASA Astrophysics Data System (ADS)
Stefańska, Patrycja
2016-02-01
We consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to the first order in the strength B of the external field, the only electric multipole moments, which are induced by the perturbation in the atom, are those of an even order. Using the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997), 10.1088/0953-4075/30/4/007; J. Phys. B 30, 2747 (1997), 10.1088/0953-4075/30/11/023], We derive a closed-form expression for the electric quadrupole moment induced in the atom in an arbitrary discrete energy eigenstate. The result, which has the form of a double finite sum involving the generalized hypergeometric functions 3F2 of the unit argument, agrees with the earlier relativistic formula for that quantity, obtained by us for the ground state of the atom.
NASA Astrophysics Data System (ADS)
Wang, Zaijun; Ren, Zhongzhou; Dong, Tiekuang; Xu, Chang
2014-08-01
The ground-state spins and parities of the odd-A phosphorus isotopes 25-47P are studied with the relativistic mean-field (RMF) model and relativistic elastic magnetic electron-scattering theory (REMES). Results of the RMF model with the NL-SH, TM2, and NL3 parameters show that the 2s1/2 and 1d3/2 proton level inversion may occur for the neutron-rich isotopes 37-47P, and, consequently, the possible spin-parity values of 37-47P may be 3/2+, which, except for P47, differs from those given by the NUBASE2012 nuclear data table by Audi et al. Calculations of the elastic magnetic electron scattering of 37-47P with the single valence proton in the 2s1/2 and 1d3/2 state show that the form factors have significant differences. The results imply that elastic magnetic electron scattering can be a possible way to study the 2s1/2 and 1d3/2 level inversion and the spin-parity values of 37-47P. The results can also provide new tests as to what extent the RMF model, along with its various parameter sets, is valid for describing the nuclear structures. In addition, the contributions of the upper and lower components of the Dirac four-spinors to the form factors and the isotopic shifts of the magnetic form factors are discussed.
Foldy-Wouthuysen transformation for relativistic particles in external fields
NASA Astrophysics Data System (ADS)
Silenko, Alexander J.
2003-07-01
A method of Foldy-Wouthuysen transformation for relativistic spin-1/2 particles in external fields is proposed. It permits the determination of the Hamilton operator in the Foldy-Wouthuysen representation with any accuracy. Interactions between a particle having an anomalous magnetic moment and nonstationary electromagnetic and electroweak fields are investigated.
Corrugation of Relativistic Magnetized Shock Waves
NASA Astrophysics Data System (ADS)
Lemoine, Martin; Ramos, Oscar; Gremillet, Laurent
2016-08-01
As a shock front interacts with turbulence it develops corrugation, which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophysical relativistic magnetized shock waves.
Relativistic Lagrangian displacement field and tensor perturbations
NASA Astrophysics Data System (ADS)
Rampf, Cornelius; Wiegand, Alexander
2014-12-01
We investigate the purely spatial Lagrangian coordinate transformation from the Lagrangian to the basic Eulerian frame. We demonstrate three techniques for extracting the relativistic displacement field from a given solution in the Lagrangian frame. These techniques are (a) from defining a local set of Eulerian coordinates embedded into the Lagrangian frame; (b) from performing a specific gauge transformation; and (c) from a fully nonperturbative approach based on the Arnowitt-Deser-Misner (ADM) split. The latter approach shows that this decomposition is not tied to a specific perturbative formulation for the solution of the Einstein equations. Rather, it can be defined at the level of the nonperturbative coordinate change from the Lagrangian to the Eulerian description. Studying such different techniques is useful because it allows us to compare and develop further the various approximation techniques available in the Lagrangian formulation. We find that one has to solve the gravitational wave equation in the relativistic analysis, otherwise the corresponding Newtonian limit will necessarily contain spurious nonpropagating tensor artifacts at second order in the Eulerian frame. We also derive the magnetic part of the Weyl tensor in the Lagrangian frame, and find that it is not only excited by gravitational waves but also by tensor perturbations which are induced through the nonlinear frame dragging. We apply our findings to calculate for the first time the relativistic displacement field, up to second order, for a Λ CDM Universe in the presence of a local primordial non-Gaussian component. Finally, we also comment on recent claims about whether mass conservation in the Lagrangian frame is violated.
Perpendicular propagating modes for weakly magnetized relativistic degenerate plasma
Abbas, Gohar; Bashir, M. F.; Murtaza, G.
2012-07-15
Using the Vlasov-Maxwell system of equations, the dispersion relations for the perpendicular propagating modes (i.e., X-mode, O-mode, and upper hybrid mode) are derived for a weakly magnetized relativistic degenerate electron plasma. By using the density (n{sub 0}=p{sub F}{sup 3}/3{pi}{sup 2} Planck-Constant-Over-Two-Pi {sup 3}) and the magnetic field values for different relativistic degenerate environments, the propagation characteristics (i.e., cutoff points, resonances, dispersions, and band widths in k-space) of these modes are examined. It is observed that the relativistic effects suppress the effect of ambient magnetic field and therefore the cutoff and resonance points shift towards the lower frequency regime resulting in enhancement of the propagation domain. The dispersion relations of these modes for the non-relativistic limit (p{sub F}{sup 2} Much-Less-Than m{sub 0}{sup 2}c{sup 2}) and the ultra-relativistic limit (p{sub F}{sup 2} Much-Greater-Than m{sub 0}{sup 2}c{sup 2}) are also presented.
Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Zenitani, Seiji; Hesse, Michael; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
Asymptotic theory of relativistic, magnetized jets
Lyubarsky, Yuri
2011-01-15
The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors.
Relativistic diffusive motion in random electromagnetic fields
NASA Astrophysics Data System (ADS)
Haba, Z.
2011-08-01
We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Jüttner equilibrium at the inverse temperature β-1 = mc2. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).
Anomalous skin effects in relativistic parallel propagating weakly magnetized electron plasma waves
Abbas, Gohar; Bashir, M. F.; Murtaza, G.
2011-10-15
Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized electron plasma is presented and general expressions for longitudinal and transverse permittivites are derived. It is found that the penetration depth for R- and L-waves increases as we move from non-relativistic to highly relativistic regime. The ambient magnetic field reduces/enhances the skin effects for R-wave/L-wave as the strength of the field is increased. In general, the weak magnetic field effects are pronounced for the weakly relativistic regime as compared with other relativistic cases. The results are also graphically illustrated. On switching off the magnetic field, previous results for field free case are retrieved [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Priniples of Plasma Electrodynamics (Springer-Verlag, Berlin, Heidelberg, 1984), Vol. 9, p. 106].
RELATIVISTIC CORRECTION TO THE MOVEMENT OF MAGNETIC POLES
Ng, Kim Kwee
2010-05-01
The equations of motion, modified by the relativistic correction to a rotating inclined magnetic field, are discussed. It is shown that the magnetic moment would precess under the influence of the retardation torques identifiable by several higher-order terms in the relativistic correction. The observed cyclical behaviors from the clock-like pulse-emitting pulsars reported by many researchers are likely to be the consequences of the retardation effect produced by an inclined magnetic moment of a spinning body. The results, which come from the study of two independently rotating magnetic moments, are in agreement with the observed pulsar data for the pulsar PSR B1828-11. These electromagnetic driving forces are presented for further exploration and discussion.
The CD Kink Instability in Magnetically Dominated Relativistic Jets
NASA Astrophysics Data System (ADS)
Hardee, Philip E.; Mizuno, Y.; Lyubarsky, Y.; Nishikawa, K.
2010-03-01
The relativistic jets associated with blazar emission from radio through TeV gamma-rays are thought to be accelerated and collimated by strong helically twisted magnetic fields with footpoints threading the black hole ergosphere and the surrounding accretion disk. The resulting magnetically dominated jet is current-driven (CD) unstable. In a resistive system instability may lead to magnetic reconnection, particle acceleration to the high energies required by the observed emission, and also to the observed kinetically dominated jets far from the central engine. We have investigated the temporal development of current-driven kink instability in magnetically dominated relativistic jets via 3D RMHD simulations. In this investigation a static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We find that the initial configuration is strongly distorted but not disrupted by the CD kink instability. The linear growth and nonlinear evolution of the CD kink instability depends moderately on the radial density profile and strongly on the magnetic pitch profile. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch. We also present preliminary results showing the effect of velocity shear on the spatial and temporal development of the CD kink instability.
The CD Kink Instability in Magnetically Dominated Relativistic Jets
NASA Astrophysics Data System (ADS)
Nishikawa, Ken-Ichi; Mizuno, Yosuke; Lyubarsky, Yuri; Hardee, Phil
The relativistic jets associated with blazar emission from radio through TeV gamma-rays are thought to be accelerated and collimated by strong helically twisted magnetic fields with foot-points threading the black hole ergosphere and/or the surrounding accretion disk. The resulting magnetically dominated jet is current-driven (CD) unstable. In a resistive system instability may lead to magnetic reconnection, particle acceleration to the high energies required by the observed emission, and also to the observed kinetically dominated jets far from the central engine. We have investigated the temporal development of current-driven kink instability in magnetically dominated relativistic jets via 3D RMHD simulations. In this investigation a static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We find that the initial configuration is strongly distorted but not disrupted by the CD kink instability. The linear growth and nonlinear evolution of the CD kink instability depends mod-erately on the radial density profile and strongly on the magnetic pitch profile. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch. We also present preliminary results showing the effect of velocity shear on the spatial and temporal development of the CD kink instability.
Particle acceleration, magnetization and radiation in relativistic shocks
NASA Astrophysics Data System (ADS)
Derishev, Evgeny V.; Piran, Tsvi
2016-08-01
The mechanisms of particle acceleration and radiation, as well as magnetic field build-up and decay in relativistic collisionless shocks, are open questions with important implications to various phenomena in high-energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build-up and diffusive shock acceleration is a model for acceleration, both have problems and current particle-in-cell simulations show that particles are accelerated only under special conditions and the magnetic field decays on a very short length-scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplification of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the shock-generated magnetic field at large distances from the shock front. The dissipation of this magnetic field results in a continuous particle acceleration within the downstream region. A unique feature of the model is the existence of an `attractor', towards which any shock will evolve. The model is applicable to any relativistic shock, but its distinctive features show up only for sufficiently large compactness. We demonstrate that prompt and afterglow gamma-ray bursts' shocks satisfy the relevant conditions, and we compare their observations with the predictions of the model.
Relativistic mean-field theory
NASA Astrophysics Data System (ADS)
Meng, Jie; Ring, Peter; Zhao, Pengwei
In this chapter, the covariant energy density functional is constructed with both the meson-exchange and the point-coupling pictures. Several widely used functionals with either nonlinear or density-dependent effective interactions are introduced. The applications of covariant density functional theory are demonstrated for infinite nuclear matter and finite nuclei with spherical symmetry, axially symmetric quadrupole deformation, and triaxial quadrupole shapes. Finally, a relativistic description of the nuclear landscape has been discussed, which is not only important for nuclear structure, but also important for nuclear astrophysics, where we are facing the problem of a reliable extrapolation to the very neutron-rich nuclei.
MAGNETIC ENERGY BUILDUP FOR RELATIVISTIC MAGNETAR GIANT FLARES
Yu Cong
2011-09-01
Motivated by coronal mass ejection studies, we construct general relativistic models of a magnetar magnetosphere endowed with strong magnetic fields. The equilibrium states of the stationary, axisymmetric magnetic fields in the magnetar magnetosphere are obtained as solutions of the Grad-Shafranov equation in a Schwarzschild spacetime. To understand the magnetic energy buildup in the magnetar magnetosphere, a generalized magnetic virial theorem in the Schwarzschild metric is newly derived. We carefully address the question whether the magnetar magnetospheric magnetic field can build up sufficient magnetic energy to account for the work required to open up the magnetic field during magnetar giant flares. We point out the importance of the Aly-Sturrock constraint, which has been widely studied in solar corona mass ejections, as a reference state in understanding magnetar energy storage processes. We examine how the magnetic field can possess enough energy to overcome the Aly-Sturrock energy constraint and open up. In particular, general relativistic (GR) effects on the Aly-Sturrock energy constraint in the Schwarzschild spacetime are carefully investigated. It is found that, for magnetar outbursts, the Aly-Sturrock constraint is more stringent, i.e., the Aly-Sturrock energy threshold is enhanced due to the GR effects. In addition, neutron stars with greater mass have a higher Aly-Sturrock energy threshold and are more difficult to erupt. This indicates that magnetars are probably not neutron stars with extreme mass. For a typical neutron star with mass of 1-2 M{sub sun}, we further explore the cross-field current effects, caused by the mass loading, on the possibility of stored magnetic field energy exceeding the Aly-Sturrock threshold.
NASA Technical Reports Server (NTRS)
Mitchell, T. P.
1973-01-01
The motion of a charged particle in electromagnetic fields of various geometric configurations and arising from a variety of sources is of intrinsic interest in electromagnetic theory. The particular configuration consisting of a plane wave propagating in the presence of a static uniform magnetic field whose direction is parallel to the wave normal is examined. The analysis presented here is treated within the context of classical electromagnetic theory. A numerical solution - at least to the approximate Lorentz-Dirac equation - is obtained.
Relativistic Quantum Mechanics and Field Theory
NASA Astrophysics Data System (ADS)
Gross, Franz
1999-04-01
An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.
Energy balance in the course of relativistic magnetic reconnection
NASA Astrophysics Data System (ADS)
Semenov, V. S.; Tolstykh, Yu. V.; Dyadechkin, S. A.
Magnetic reconnection plays an important role in space physics, for example, in Earth's magnetosphere, on the Sun, in the magnetospheres of magnetars, pulsars, black holes, etc. Reconnection starts with abrupt drop of plasma conductivity in a small part of a current sheet, so called, diffusion region. As a result electric field is generated and is transferred by relativistic MHD surface wave from the diffusion region to the current sheet which leads to decay of the disturbed part of the current sheet into a system of slow shocks. Plasma is highly accelerated and heated at the shock fronts forming outflow region with relativistic plasma jets and weak magnetic field (Semenov & Bernikov 1991). At some stage the reconnection process has to switch-off, then outflow regions must detach from the site where the electric field was initiated, and propagate along the current sheet as solitary waves (Tolstykh et al. 2005). The energy balance of relativistic reconnection is investigated in details. It is shown that magnetic and thermal energy from the inflow region is spent for acceleration and heating of the plasma in jets. It is interesting that the temperature of the plasma in the wake of the propagating outflow regions drops after each pulse of reconnection. This differ from usual explosion which heats the plasma behind the shock front (Tolstykh et al. 2007).
Nonthermal Particle Acceleration and Radiation in Relativistic Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Werner, Gregory
2015-11-01
Many spectacular and violent phenomena in the high-energy universe exhibit nonthermal radiation spectra, from which we infer power-law energy distributions of the radiating particles. Relativistic magnetic reconnection, recognized as a leading mechanism of nonthermal particle acceleration, can efficiently transfer magnetic energy to energetic particles. We present a comprehensive particle-in-cell study of particle acceleration in 2D relativistic reconnection in both electron-ion and pair plasmas without guide field. We map out the power-law index α and the high-energy cutoff of the electron energy spectrum as functions of three key parameters: the system size (and initial layer length) L, the ambient plasma magnetization σ, and the ion/electron mass ratio (from 1 to 1836). We identify the transition between small- and large-system regimes: for small L, the system size affects the slope and extent of the high-energy spectrum, while for large enough L, α and the cutoff energy are independent of L. We compare high energy particle spectra and radiative (synchrotron and inverse Compton) signatures of the electrons, for pair and electron-ion reconnection. The latter cases maintain highly relativistic electrons, but include a range of different magnetizations yielding sub- to highly-relativistic ions. Finally, we show how nonthermal acceleration and radiative signatures alter when the radiation back-reaction becomes important. These results have important implications for assessing the promise and the limitations of relativistic reconnection as an astrophysically-important particle acceleration mechanism. This work is funded by NSF, DOE, and NASA.
Searches for relativistic magnetic monopoles in IceCube
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K.-H.; Beiser, E.; Benabderrahmane, M. L.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.
2016-03-01
Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (vge 0.76c) and mildly relativistic (vge 0.51c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 × 10^{-18} text {cm}^{-2} text {s}^{-1} text {sr}^{-1}. This is an improvement of almost two orders of magnitude over previous limits.
Relativistic diffusive motion in thermal electromagnetic fields
NASA Astrophysics Data System (ADS)
Haba, Z.
2013-04-01
We discuss relativistic dynamics in a random electromagnetic field which can be considered as a high temperature limit of the quantum electromagnetic field in a heat bath (cavity) moving with a uniform velocity w. We derive a diffusion approximation for the particle’s dynamics generalizing the diffusion of Schay and Dudley. It is shown that the Jüttner distribution is the equilibrium state of the diffusion.
NASA Astrophysics Data System (ADS)
Xia, Lifang
In the first part of this thesis, we use the generalized Landau-level represen- tation to study the effect of screening on the properties of the graphene quantum Hall states with integer filling factors. The analysis is performed in the low-energy Dirac model in the mean-field approximation, in which the long-range Coulomb in- teraction is modified by the one-loop static screening effects. The solutions demon- strate that static screening leads to a substantial suppression of the gap parameters in the quantum Hall states with a broken U (4) flavor symmetry. The results of the temperature dependence of the energy gaps mimic well the temperature dependence of the activation energies measured in experiment. The Landau-level running of the quasiparticle dynamical parameters could be tested via optical studies of the integer quantum Hall states. In the second part, by using the generalized Landau-level representation, we study the interaction induced chiral asymmetry in cold QED plasma beyond the weak-field approximation. The chiral shift and the parity-even chiral chemical potential function are obtained numerically and are found peaking near the Fermi surface and increases and decreases with the Landau level index, respectively. The results are used to quantify the chiral asymmetry of the Fermi surface in dense QED matter. The chiral asymmetry appears to be rather small even in the strongest mag- netic fields and at the highest stellar densities. However, the analogous asymmetry can be substantial in the case of dense quark matter.
Non-relativistic fields from arbitrary contracting backgrounds
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas
2016-09-01
We discuss a non-relativistic contraction of massive and massless field theories minimally coupled to gravity. Using the non-relativistic limiting procedure introduced in our previous work, we (re-)derive non-relativistic field theories of massive and massless spins 0 to 3/2 coupled to torsionless Newton–Cartan backgrounds. We elucidate the relativistic origin of the Newton–Cartan central charge gauge field {m}μ and explain its relation to particle number conservation.
Magnetization dynamics using ultrashort magnetic field pulses
NASA Astrophysics Data System (ADS)
Tudosa, Ioan
Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic
NASA Astrophysics Data System (ADS)
Zhu, Zhenni; Wu, Zhengwei; Li, Chunhua; Yang, Weihong
2014-11-01
A model for the nonlinear properties of obliquely propagating electron acoustic solitary waves in a two-electron populated relativistically quantum magnetized plasma is presented. By using the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived and this equation gives the solitary wave solution. It is observed that the relativistic effects, the ratio of the cold to hot electron unperturbed number density and the magnetic field normalized by electron cyclotron frequency significantly influence the solitary structures.
Self-compression of intense short laser pulses in relativistic magnetized plasma
Olumi, M.; Maraghechi, B.
2014-11-15
The compression of a relativistic Gaussian laser pulse in a magnetized plasma is investigated. By considering relativistic nonlinearity and using non-linear Schrödinger equation with paraxial approximation, a second-order differential equation is obtained for the pulse width parameter (in time) to demonstrate the longitudinal pulse compression. The compression of laser pulse in a magnetized plasma can be observed by the numerical solution of the equation for the pulse width parameter. The effects of magnetic field and chirping are investigated. It is shown that in the presence of magnetic field and negative initial chirp, compression of pulse is significantly enhanced.
Spatiotemporal evolution of high power laser pulses in relativistic magnetized inhomogeneous plasmas
Bokaei, B.; Niknam, A. R. Imani, E.
2015-09-15
In this work, the spatiotemporal evolution of Gaussian laser pulse propagated through a plasma is investigated in the presence of an external axial magnetic field. The coupled equations of self-focusing and self-compression are obtained via paraxial approximation by taking into account the relativistic nonlinearity. The effect of axial magnetic field on simultaneously relativistic self-focusing and self-compression of the laser pulse is studied for homogeneous and inhomogeneous plasmas. The results show that the simultaneous use of both axial magnetic field and density ramp-up leads to generate pulses with the smallest spot size and shortest compression length.
Wave-breaking amplitudes of relativistic upper-hybrid oscillations in a cold magnetized plasma
NASA Astrophysics Data System (ADS)
Karmakar, Mithun; Maity, Chandan; Chakrabarti, Nikhil
2016-06-01
A travelling wave solution is presented for relativistic upper-hybrid oscillations (RUHOs) in a cold magnetized plasma. An expression for the wave-breaking amplitudes of RUHOs is derived. The wave-breaking amplitudes of RUHOs are found to decrease with the increase of the strength of an ambient magnetic field. These results will be of relevance to the laboratory context of particle acceleration by wake-fields in which magnetic field plays a central role.
The facets of relativistic quantum field theory
NASA Astrophysics Data System (ADS)
Dosch, H. G.; Müller, V. F.
2010-04-01
Relativistic quantum field theory is generally recognized to form the adequate theoretical frame for subatomic physics, with the Standard Model of Particle Physics as a major achievement. We point out that quantum field theory in its present form is not a monolithic theory, but rather consists of distinct facets, which aim at a common ideal goal. We give a short overview of the strengths and limitations of these facets. We emphasize the theory-dependent relation between the quantum fields, and the basic objects in the empirical domain, the particles. Given the marked conceptual differences between the facets, we argue to view these, and therefore also the Standard Model, as symbolic constructions. We finally note that this view of physical theories originated in the 19th century and is related to the emergence of the classical field as an autonomous concept.
The facets of relativistic quantum field theory
NASA Astrophysics Data System (ADS)
Dosch, H. G.; Müller, V. F.
2011-04-01
Relativistic quantum field theory is generally recognized to form the adequate theoretical frame for subatomic physics, with the Standard Model of Particle Physics as a major achievement. We point out that quantum field theory in its present form is not a monolithic theory, but rather consists of distinct facets, which aim at a common ideal goal. We give a short overview of the strengths and limitations of these facets. We emphasize the theory-dependent relation between the quantum fields, and the basic objects in the empirical domain, the particles. Given the marked conceptual differences between the facets, we argue to view these, and therefore also the Standard Model, as symbolic constructions. We finally note that this view of physical theories originated in the 19th century and is related to the emergence of the classical field as an autonomous concept.
Relativistic Mean Field description of exotic nuclei
NASA Astrophysics Data System (ADS)
Gambhir, Y. K.
1994-03-01
The Relativistic Mean Field (RMF) approach which essentially is an extension of the original σ — ω model of Walecka, has been applied to exotic nuclei as an illustration. We consider nuclei near Z = 34 in the very interesting 2p-1f region. The calculated binding energies, root mean square radii, deformations and other observables are very satisfactory and are in accordance with the experiment (where available) and also with the available empirical studies. Large deformations and shape co-existence are obtained for several cases.
Computational Relativistic Astrophysics Using the Flow Field-Dependent Variation Theory
NASA Technical Reports Server (NTRS)
Richardson, G. A.; Chung, T. J.
2002-01-01
We present our method for solving general relativistic nonideal hydrodynamics. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks which may lead to the study of gamma-ray bursts. Nonideal flows are present where radiation, magnetic forces, viscosities, and turbulence play an important role. Our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flow field-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for computational relativistic astrophysics (CRA) are demonstrated.
Lopez, Rodrigo A.; Munoz, Victor; Asenjo, Felipe A.; Alejandro Valdivia, J.
2012-08-15
The nonlinear evolution of a circularly polarized electromagnetic wave in an electron-positron plasma propagating along a constant background magnetic field is considered, by studying its parametric decays. Relativistic effects, of the particle motion in the wave field and of the plasma temperature, are included to obtain the dispersion relation of the decays. The exact dispersion relation of the pump wave has been previously calculated within the context of a relativistic fluid theory and presents two branches: an electromagnetic and an Alfven one. We investigate the parametric decays for the pump wave in these two branches, including the anomalous dispersion zone of the Alfven branch where the group velocity is negative. We solve the nonlinear dispersion relation for different pump wave amplitudes and plasma temperatures, finding various resonant and nonresonant wave couplings. We are able to identify these couplings and study their behavior as we modify the plasma parameters. Some of these couplings are suppressed for larger amplitudes or temperatures. We also find two kinds of modulational instabilities, one involving two sideband daughter waves and another involving a forward-propagating electroacoustic mode and a sideband daughter wave.
NASA Astrophysics Data System (ADS)
López, Rodrigo A.; Asenjo, Felipe A.; Muñoz, Víctor; Alejandro Valdivia, J.
2012-08-01
The nonlinear evolution of a circularly polarized electromagnetic wave in an electron-positron plasma propagating along a constant background magnetic field is considered, by studying its parametric decays. Relativistic effects, of the particle motion in the wave field and of the plasma temperature, are included to obtain the dispersion relation of the decays. The exact dispersion relation of the pump wave has been previously calculated within the context of a relativistic fluid theory and presents two branches: an electromagnetic and an Alfvén one. We investigate the parametric decays for the pump wave in these two branches, including the anomalous dispersion zone of the Alfvén branch where the group velocity is negative. We solve the nonlinear dispersion relation for different pump wave amplitudes and plasma temperatures, finding various resonant and nonresonant wave couplings. We are able to identify these couplings and study their behavior as we modify the plasma parameters. Some of these couplings are suppressed for larger amplitudes or temperatures. We also find two kinds of modulational instabilities, one involving two sideband daughter waves and another involving a forward-propagating electroacoustic mode and a sideband daughter wave.
Relativistic solitons and shocks in magnetized e(-)-e(+)-p(+) fluids
NASA Technical Reports Server (NTRS)
Chiueh, Tzihong
1989-01-01
A new type of relativistic magnetosonic soliton, which is electrically charged with a gigavolt potential, is found to exist in a magnetized electron-positron-proton plasma. Relativistic collisionless shocks resulting from such solitons can carry an even larger electric potential at the shock front. GeV electrons and positrons in some active astrophsyical sources may be produced due to acceleration by these electric fields.
Beaming of Particles and Synchrotron Radiation in Relativistic Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Kagan, Daniel; Nakar, Ehud; Piran, Tsvi
2016-08-01
Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealized analytical models, reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with an isotropic electron velocity distribution in its rest frame, we find that the bulk motion of the particles in X-points is similar to their Lorentz factor γ, and the particles are beamed within ˜ 5/γ . On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropize after completing a full Larmor gyration and their radiation is no longer strongly beamed. The radiation pattern at a given frequency depends on where the corresponding emitting electrons radiate their energy. Lower-energy particles that cool slowly spend most of their time in the islands and their radiation is not highly beamed. Only particles that quickly cool at the edge of the X-points generate a highly beamed fan-like radiation pattern. The radiation emerging from these fast cooling particles is above the burn-off limit (˜100 MeV in the overall rest frame of the reconnecting plasma). This has significant implications for models of gamma-ray bursts and active galactic nuclei that invoke beaming in that frame at much lower energies.
Beaming of Particles and Synchrotron Radiation in Relativistic Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Kagan, Daniel; Nakar, Ehud; Piran, Tsvi
2016-08-01
Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealized analytical models, reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with an isotropic electron velocity distribution in its rest frame, we find that the bulk motion of the particles in X-points is similar to their Lorentz factor γ, and the particles are beamed within ∼ 5/γ . On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropize after completing a full Larmor gyration and their radiation is no longer strongly beamed. The radiation pattern at a given frequency depends on where the corresponding emitting electrons radiate their energy. Lower-energy particles that cool slowly spend most of their time in the islands and their radiation is not highly beamed. Only particles that quickly cool at the edge of the X-points generate a highly beamed fan-like radiation pattern. The radiation emerging from these fast cooling particles is above the burn-off limit (∼100 MeV in the overall rest frame of the reconnecting plasma). This has significant implications for models of gamma-ray bursts and active galactic nuclei that invoke beaming in that frame at much lower energies.
Axisymmetric toroidal modes of general relativistic magnetized neutron star models
Asai, Hidetaka; Lee, Umin E-mail: lee@astr.tohoku.ac.jp
2014-07-20
We calculate axisymmetric toroidal modes of magnetized neutron stars with a solid crust in the general relativistic Cowling approximation. We assume that the interior of the star is threaded by a poloidal magnetic field, which is continuous at the surface with an outside dipole field. We examine the cases of the field strength B{sub S} ∼ 10{sup 16} G at the surface. Since separation of variables is not possible for the oscillations of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. We find discrete normal toroidal modes of odd parity, but no toroidal modes of even parity are found. The frequencies of the toroidal modes form distinct mode sequences and the frequency in a given mode sequence gradually decreases as the number of radial nodes of the eigenfunction increases. From the frequency spectra computed for neutron stars of different masses, we find that the frequency is almost exactly proportional to B{sub S} and is well represented by a linear function of R/M for a given B{sub S}, where M and R are the mass and radius of the star. The toroidal mode frequencies for B{sub S} ∼ 10{sup 15} G are in the frequency range of the quasi-periodic oscillations (QPOs) detected in the soft-gamma-ray repeaters, but we find that the toroidal normal modes cannot explain all the detected QPO frequencies.
Relativistic effects on the nuclear magnetic shielding tensor
NASA Astrophysics Data System (ADS)
Melo, J. I.; Ruiz de Azua, M. C.; Giribet, C. G.; Aucar, G. A.; Romero, R. H.
2003-01-01
A new approach for calculating relativistic corrections to the nuclear magnetic shieldings is presented. Starting from a full relativistic second order perturbation theory expression a two-component formalism is constructed by transforming matrix elements using the elimination of small component scheme and separating out the contributions from the no-virtual pair and the virtual pair part of the second order corrections to the energy. In this way we avoid a strong simplification used previously in the literature. We arrive at final expressions for the relativistic corrections which are equivalent to those of Fukui et al. [J. Chem Phys. 105, 3175 (1996)] and at some other additional terms correcting both the paramagnetic and the diamagnetic part of the nuclear magnetic shielding. Results for some relativistic corrections to the shieldings of the heavy and light nuclei in HX and CH3X (X=Br,I) at both random phase and second order polarization propagator approach levels are given.
Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas
NASA Technical Reports Server (NTRS)
Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael
2015-01-01
Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma is greater than O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains approximately 0.1 in both the non-relativistic and relativistic limits.
Relativistic gravity and parity-violating nonrelativistic effective field theories
NASA Astrophysics Data System (ADS)
Wu, Chaolun; Wu, Shao-Feng
2015-06-01
We show that the relativistic gravity theory can offer a framework to formulate the nonrelativistic effective field theory in a general coordinate invariant way. We focus on the parity violating case in 2 +1 dimensions which is particularly appropriate for the study on quantum Hall effects and chiral superfluids. We discuss how the nonrelativistic spacetime structure emerges from relativistic gravity. We present covariant maps and constraints that relate the field contents in the two theories, which also serve as the holographic dictionary in the context of gauge/gravity duality. A low energy effective action for fractional quantum Hall states is constructed, which captures universal geometric properties and generates nonuniversal corrections systematically. We give another holographic example with dyonic black brane background to calculate thermodynamic and transport properties of strongly coupled nonrelativistic fluids in magnetic field. In particular, by identifying the shift function in the gravity as a minus of guiding center velocity, we obtain the Hall viscosity with its relation to Landau orbital angular momentum density proportional to Wen-Zee shift. Our formalism has a good projection to lowest Landau level.
NASA Astrophysics Data System (ADS)
Silva, Nicolas
2012-09-01
Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.
Measurements of Fast Magnetic Reconnection Driven by Relativistic Electrons
NASA Astrophysics Data System (ADS)
Raymond, Anthony; McKelvey, Andrew; Zulick, Calvin; Chuanfei, Dong; Maksimchuk, Anatoly; Thomas, Alexander; Yanovsky, Victor; Krushelnick, Karl; Willingale, Louise; Chykov, Vladimir; Nilson, Phil; Chen, Hui; Williams, Gerald; Bhattacharjee, Amitava; Fox, Will
2015-11-01
Magnetic reconnection is a process whereby opposing magnetic field lines are forced together and topologically rearrange, resulting in lower magnetic potential energy and in corresponding plasma heating. Such occurrences are ubiquitous in astrophysics as well as appearing in laboratory plasmas such as in ICF in the form of instabilities. We report measurements in the domain of ultra-fast, ultra-intense lasers, in which the mechanism responsible follows from radially expanding surface electrons with v ~ c . Results are compared from two laser facilities (HERCULES and Omega EP), both of which produced two relativistic intensity pulses focused within close proximity onto copper foils. A spherical X-ray crystal was used to image the Kα radiation induced by electron currents, revealing the midplane diffusion region wherein electrons are accelerated into the target by the electric field generated during reconnection. The characteristics of this signal are studied as a function of the focal spot separation, laser energy, and pulse duration. The results are then compared to 3D PIC simulations.
Filamentation of laser in a magnetized plasma under relativistic and ponderomotive nonlinearities
Singh, Ranjeet; Tripathi, V. K.
2009-05-15
Filamentation of a circularly polarized short pulse laser propagating along the direction of ambient magnetic field in plasma is studied. The nonlinearity arises through the combined effect of relativistic mass variation and ponderomotive force induced electron cavitation. The growth rate is maximum {gamma}{sub max} for an optimum filament size, q{sub opt}{sup -1}. {gamma}{sub max} and q{sub opt} increases with plasma density and ambient magnetic field.
Galactic and Intergalactic Magnetic Fields
NASA Astrophysics Data System (ADS)
Klein, U.; Fletcher, A.
This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.
NASA Astrophysics Data System (ADS)
Hamlin, Nathaniel D.; Newman, William I.
2013-04-01
We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magnetized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic (RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely, field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a relativistic extension of the Alfvénic Mach number MA. We observe close complementarity between flow and magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and intermediate turbulence
INVERSE CASCADE OF NONHELICAL MAGNETIC TURBULENCE IN A RELATIVISTIC FLUID
Zrake, Jonathan
2014-10-20
The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum P{sub M} (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and –2, respectively. The magnetic coherence scale is found to grow in time as t {sup 2/5}, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.
Inverse Cascade of Nonhelical Magnetic Turbulence in a Relativistic Fluid
NASA Astrophysics Data System (ADS)
Zrake, Jonathan
2014-10-01
The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum PM (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and -2, respectively. The magnetic coherence scale is found to grow in time as t 2/5, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.
One-pion exchange current effects on magnetic form factor in the relativistic formalism
NASA Astrophysics Data System (ADS)
Zhang, Cun; Liu, Jian; Ren, Zhongzhou
2016-08-01
One-pion exchange current effects on the magnetic form factors of some odd nuclei are studied in the relativistic formalism. The Dirac wave functions of nucleons are calculated from the relativistic mean-field theory. After fitting to experimental data by quenching factors, it is found that taking the one-pion exchange currents into account gives a better description of the magnetic form factor. The root-mean-square radii of the valance nucleon orbits are also calculated in RMF model, which coincide with experimental radii extracted with meson exchange current corrections.
Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar
2015-09-15
A numerical study is presented of the nonlinear dynamics of a magnetized, cold, non-relativistic plasma, in the presence of electron-ion collisions. The ions are considered to be immobile while the electrons move with non-relativistic velocities. The primary interest is to study the effects of the collision parameter, external magnetic field strength, and the initial electromagnetic polarization on the evolution of the plasma system.
Superoscillations underlying remote state preparation for relativistic fields
NASA Astrophysics Data System (ADS)
Ber, Ran; Kenneth, Oded; Reznik, Benni
2015-05-01
We present a physical (gedanken) implementation of a generalized remote state preparation of relativistic quantum field states for an arbitrary set of observers. The prepared states are created in regions that are outside the future light cone of the generating region. The mechanism, which is based on utilizing the vacuum state of a relativistic quantum field as a resource, sheds light on the well known Reeh-Schlieder theorem, indicating its strong connection with the mathematical phenomenon of superoscillations.
Wave-breaking phenomena in a relativistic magnetized plasma.
Maity, Chandan; Sarkar, Anwesa; Shukla, Padma Kant; Chakrabarti, Nikhil
2013-05-24
We study the wave-breaking phenomenon of relativistic upper-hybrid (UH) oscillations in a cold magnetoplasma. For our purposes, we use the electron continuity and relativistic electron momentum equations, together with Maxwell's equations, as well as introduce Lagrangian coordinates to obtain an exact nonstationary solution of the governing nonlinear equations. It is found that bursts in the electron density appear in a finite time as a result of relativistic electron mass variations in the UH electric field, indicating a phase mixing or breaking of relativistic UH oscillations. We highlight the relevance of our investigation of the UH wave phase-mixing or UH wave-breaking process to electron energization and plasma particle heating. PMID:23745888
GRMHD/RMHD Simulations and Stability of Magnetized Spine-Sheath Relativistic Jets
NASA Technical Reports Server (NTRS)
Hardee, Philip; Mizuno, Yosuke; Nishikawa, Ken-Ichi
2007-01-01
A new general relativistic magnetohydrodynamics (GRMHD ) code "RAISHIN" used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the Kelvin-Helmholtz (KH) velocity shear driven instability. The RAISHIN code has been used in its relativistic magnetohydrodynamic (RMHD) configuration to study the effects of strong magnetic fields and weakly relativistic sheath motion, cl2, on the KH instability associated with a relativistic, Y = 2.5, jet spine-sheath interaction. In the simulations sound speeds up to ? c/3 and Alfven wave speeds up to ? 0.56 c are considered. Numerical simulation results are compared to theoretical predictions from a new normal mode analysis of the RMHD equations. Increased stability of a weakly magnetized system resulting from c/2 sheath speeds and stabilization of a strongly magnetized system resulting from d 2 sheath speeds is found.
NASA Astrophysics Data System (ADS)
Melzani, Mickaël; Walder, Rolf; Folini, Doris; Winisdoerffer, Christophe; Favre, Jean M.
2014-10-01
Magnetic reconnection is a leading mechanism for magnetic energy conversion and high-energy non-thermal particle production in a variety of high-energy astrophysical objects, including ones with relativistic ion-electron plasmas (e.g., microquasars or AGNs), a regime where first principle studies are scarce. We present 2D particle-in-cell (PIC) simulations of low β ion-electron plasmas under relativistic conditions, i.e., with inflow magnetic energy exceeding the plasma restmass energy. We identify outstanding properties: (i) For relativistic inflow magnetizations (here 10 ≤ σe ≤ 360), the reconnection outflows are dominated by thermal agitation instead of bulk kinetic energy. (ii) At high inflow electron magnetization (σe ≥ 80), the reconnection electric field is sustained more by bulk inertia than by thermal inertia. It challenges the thermal-inertia paradigm and its implications. (iii) The inflows feature sharp transitions at the entrance of the diffusion zones. These are not shocks but results from particle ballistic motions, all bouncing at the same location, provided that the thermal velocity in the inflow is far lower than the inflow E × B bulk velocity. (iv) Island centers are magnetically isolated from the rest of the flow and can present a density depletion at their center. (v) The reconnection rates are slightly higher than in non-relativistic studies. They are best normalized by the inflow relativistic Alfvén speed projected in the outflow direction, which then leads to rates in a close range (0.14-0.25), thus allowing for an easy estimation of the reconnection electric field.
DiPerna-Lions Flow for Relativistic Particles in an Electromagnetic Field
NASA Astrophysics Data System (ADS)
Jabin, P.-E.; Masmoudi, N.
2015-09-01
We show the existence and uniqueness of a DiPerna-Lions flow for relativistic particles subject to a Lorentz force in an electromagnetic field. The electric and magnetic fields solve the linear Maxwell system in the vacuum but for singular initial conditions which are only in the physical energy space. As the corresponding force field is only in L 2, we have to perform a careful analysis of the cancellations over a trajectory.
Núñez, Manuel
2013-06-15
In the equations of classical magnetohydrodynamics, the displacement current is considered vanishingly small due to low plasma velocities. For velocities comparable to the speed of light, the full relativistic electromagnetic equations must be used. In the absence of gravitational forcings and with an isotropic Ohm's law, it is proved that for poloidal magnetic field and velocity and toroidal electric field, the electric and magnetic energies tend to be equivalent in average for large times. This represents a partial extension of Cowling's theorem for axisymmetric fields.
NASA Technical Reports Server (NTRS)
Howard, R.
1972-01-01
Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.
Three-dimensional fast magnetic reconnection driven by relativistic ultraintense femtosecond lasers.
Ping, Y L; Zhong, J Y; Sheng, Z M; Wang, X G; Liu, B; Li, Y T; Yan, X Q; He, X T; Zhang, J; Zhao, G
2014-03-01
Three-dimensional fast magnetic reconnection driven by two ultraintense femtosecond laser pulses is investigated by relativistic particle-in-cell simulation, where the two paralleled incident laser beams are shot into a near-critical plasma layer to form a magnetic reconnection configuration in self-generated magnetic fields. A reconnection X point and out-of-plane quadrupole field structures associated with magnetic reconnection are formed. The reconnection rate is found to be faster than that found in previous two-dimensional Hall magnetohydrodynamic simulations and electrostatic turbulence contribution to the reconnection electric field plays an essential role. Both in-plane and out-of-plane electron and ion accelerations up to a few MeV due to the magnetic reconnection process are also obtained. PMID:24730781
Magnetized relativistic stellar models in Eddington-inspired Born-Infeld gravity
NASA Astrophysics Data System (ADS)
Sotani, Hajime
2015-04-01
We consider the structure of the magnetic fields inside the neutron stars in Eddington-inspired Born-Infeld (EiBI) gravity. In order to construct the magnetic fields, we derive the relativistic Grad-Shafranov equation in EiBI and numerically determine the magnetic distribution in such a way that the interior magnetic fields should be connected to the exterior distribution. Then, we find that the magnetic distribution inside the neutron stars in EiBI is qualitatively similar to that in general relativity, where the deviation of magnetic distribution in EiBI from that in general relativity is almost comparable to uncertainty due to the equation of state for the neutron star matter. However, we also find that the magnetic fields in the crust region are almost independent of the coupling constant in EiBI, which suggests a possibility of obtaining the information about the crust equation of state independent from the gravitational theory via the observations of the phenomena associated with the crust region. In any case, since the imprint of EiBI gravity on the magnetic fields is weak, the magnetic fields could be a poor probe of gravitational theories, considering the many magnetic uncertainties.
Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin
2014-10-10
Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection. PMID:25375716
NASA Astrophysics Data System (ADS)
Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin
2014-10-01
Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ≡B2/(4πnmec2)>1 and when the system size is sufficiently large. In the limit σ≫1, the spectral index approaches p=1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.
NASA Astrophysics Data System (ADS)
Koide, Shinji; Shibata, Kazunari; Kudoh, Takahiro
1999-09-01
Relativistic jets are observed in both active galactic nuclei (AGNs) and ``microquasars'' in our Galaxy. It is believed that these relativistic jets are ejected from the vicinity of black holes. To investigate the formation mechanism of these jets, we have developed a new general relativistic magnetohydrodynamic (GRMHD) code. We report on the basic methods and test calculations to check whether the code reproduces some analytical solutions, such as a standing shock and a Keplerian disk with a steady state infalling corona or with a corona in hydrostatic equilibrium. We then apply the code to the formation of relativistic MHD jets, investigating the dynamics of an accretion disk initially threaded by a uniform poloidal magnetic field in a nonrotating corona (either in a steady state infall or in hydrostatic equilibrium) around a nonrotating black hole. The numerical results show the following: as time goes on, the disk loses angular momentum as a result of magnetic braking and falls into the black hole. The infalling motion of the disk, which is faster than in the nonrelativistic case because of general relativistic effects below 3rS (rS is the Schwarzschild radius), is strongly decelerated around r=2rS by centrifugal force to form a shock inside the disk. The magnetic field is tightly twisted by the differential rotation, and plasma in the shocked region of the disk is accelerated by the JXB force to form bipolar relativistic jets. In addition, and interior to, this magnetically driven jet, we also found a gas-pressure-driven jet ejected from the shocked region by the gas-pressure force. This two-layered jet structure is formed not only in the hydrostatic corona case but also in the steady state falling corona case.
NASA Astrophysics Data System (ADS)
Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin; Li, Xiaocan
2014-10-01
Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density and when the system size is sufficiently large. The power law slope approaches ``-1'' for closed systems and gets softer when particle loss from the acceleration region is included. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection. We demonstrate that both continuous inflow and Fermi-type acceleration lead to the power-law distributions. Finally, we discuss the role of particle anisotropy in particle acceleration during magnetic reconnection. The work shows that hard power-law distributions are a common feature in relativistic magnetic reconnection region, which may be important for explaining the high-energy emissions in systems like pulsars, jets from black holes, and gamma-ray bursts.
Generalised relativistic Ohm's laws, extended gauge transformations, and magnetic linking
Pegoraro, F.
2015-11-15
Generalisations of the relativistic ideal Ohm's law are presented that include specific dynamical features of the current carrying particles in a plasma. Cases of interest for space and laboratory plasmas are identified where these generalisations allow for the definition of generalised electromagnetic fields that transform under a Lorentz boost in the same way as the real electromagnetic fields and that obey the same set of homogeneous Maxwell's equations.
Generalised relativistic Ohm's laws, extended gauge transformations, and magnetic linking
NASA Astrophysics Data System (ADS)
Pegoraro, F.
2015-11-01
Generalisations of the relativistic ideal Ohm's law are presented that include specific dynamical features of the current carrying particles in a plasma. Cases of interest for space and laboratory plasmas are identified where these generalisations allow for the definition of generalised electromagnetic fields that transform under a Lorentz boost in the same way as the real electromagnetic fields and that obey the same set of homogeneous Maxwell's equations.
Relativistic soliton formation in laser magnetized plasma interactions
NASA Astrophysics Data System (ADS)
Feng, W.; Li, J. Q.; Kishimoto, Y.
2016-05-01
The laser plasma interactions in the presence of strong magnetic field are studied by employing particle-in-cell simulations. Simulations show that the energy absorption of strong laser pulse is mainly characterized by the electron cyclotron resonance heating (ECRH) when the magnetic field is large enough. However, it is found that for a weaker magnetic field, a standing or moving soliton can be generated in some moderate laser intensity regions, greatly enhancing the laser absorption. The laser intensity for the soliton heating decreases as the magnetic field increases. Furthermore, the soliton position moves towards the front boundary when the laser intensity or magnetic field strength increases.
Krienin, Frank
1990-01-01
A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.
Slow decay of magnetic fields in open Friedmann universes
Barrow, John D.; Tsagas, Christos G.
2008-05-15
Magnetic fields in Friedmann universes can experience superadiabatic growth without departing from conventional electromagnetism. The reason is the relativistic coupling between vector fields and spacetime geometry, which slows down the decay of large-scale magnetic fields in open universes, compared to that seen in perfectly flat models. The result is a large relative gain in magnetic strength that can lead to astrophysically interesting B fields, even if our Universe is only marginally open today.
NASA Astrophysics Data System (ADS)
Florido, E.; Battaner, E.
2010-12-01
Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.
Near field properties in relativistic heavy ion collisions
NASA Astrophysics Data System (ADS)
Li, Yang; Fries, Rainer; Kapusta, Joseph
2006-04-01
We study the properties of the soft gluon field produced in relativistic heavy ion collisions. In the spirit of McLerran-Venugopalan model, we write the field potential in a power series of the proper time τ and solve the Yang-Mills equation along with color current conservation equations simultaneously. We find that the classical gluon field at small τ, i.e., the near field, is mainly longitudinal. We also calculate the energy-momentum tensor of the field. This gluon field will decay and thermalize into a quark gluon plasma. Our results can be used as the initial conditions for the consequent relativistic hydrodynamic description of the dense parton matter.
NASA Astrophysics Data System (ADS)
Beck, Rainer
Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.
Parametrization of light clusters within relativistic mean field models
Ferreira, Marcio; Providencia, Constanca
2013-06-10
Light clusters are included in the equation of state of nuclearmatter within the relativistic mean field theory. The effect of the cluster-meson coupling constants on the dissolution density is discussed. Theoretical and experimental constraints are used to fix the cluster-meson couplings at T Almost-Equal-To 5 MeV.
Relativistic mean field calculations in neutron-rich nuclei
Gangopadhyay, G.; Bhattacharya, Madhubrata; Roy, Subinit
2014-08-14
Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.
Hamlin, Nathaniel D; Newman, William I
2013-04-01
We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magnetized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic (RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely, field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a relativistic extension of the Alfvénic Mach number M(A). We observe close complementarity between flow and magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and intermediate turbulence
ERIC Educational Resources Information Center
Kholmetskii, Alexander L.; Yarman, T.
2010-01-01
In this paper we consider the relativistic polarization of a moving magnetic dipole and show that this effect can be understood via the relativistic generalization of Kirchhoff's first law to a moving closed circuit with a steady current. This approach allows us to better understand the law of relativistic transformation of four-current density…
FROM THE CURRENT LITERATURE: Spinning relativistic particles in external fields
NASA Astrophysics Data System (ADS)
Pomeranskii, Andrei A.; Sen'kov, Roman A.; Khriplovich, Iosif B.
2000-10-01
The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars.
The magnet system of the Relativistic Heavy Ion Collider (RHIC)
Greene, A.; Anerella, M.; Cozzolino, J.
1995-07-01
The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang.`` The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.
Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.
2015-12-30
Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power lawmore » $${\\gamma }^{-\\alpha }$$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.« less
Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.
2015-12-30
Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power law ${\\gamma }^{-\\alpha }$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.
NASA Astrophysics Data System (ADS)
Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.
2016-01-01
Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron-positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power law {γ }-α , with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. For large L and σ, the power-law index α approaches about 1.2.
Magnetic fields in spiral galaxies
NASA Astrophysics Data System (ADS)
Krause, Marita
2015-03-01
The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).
Non-perturbative methods in relativistic field theory
Franz Gross
2013-03-01
This talk reviews relativistic methods used to compute bound and low energy scattering states in field theory, with emphasis on approaches that John Tjon and I discussed (and argued about) together. I compare the Bethe–Salpeter and Covariant Spectator equations, show some applications, and then report on some of the things we have learned from the beautiful Feynman–Schwinger technique for calculating the exact sum of all ladder and crossed ladder diagrams in field theory.
Charged and Electromagnetic Fields from Relativistic Quantum Geometry
NASA Astrophysics Data System (ADS)
Arcodía, Marcos; Bellini, Mauricio
2016-06-01
In the Relativistic Quantum Geometry (RQG) formalism recently introduced, was explored the possibility that the variation of the tensor metric can be done in a Weylian integrable manifold using a geometric displacement, from a Riemannian to a Weylian integrable manifold, described by the dynamics of an auxiliary geometrical scalar field $\\theta$, in order that the Einstein tensor (and the Einstein equations) can be represented on a Weyl-like manifold. In this framework we study jointly the dynamics of electromagnetic fields produced by quantum complex vector fields, which describes charges without charges. We demonstrate that complex fields act as a source of tetra-vector fields which describe an extended Maxwell dynamics.
Optical-model potential in a relativistic quantum field model
NASA Astrophysics Data System (ADS)
Jaminon, M.; Mahaux, C.; Rochus, P.
1980-11-01
The average nucleon-nucleus potential at low and medium energy is investigated in the framework of a relativistic quantum field model. Using the same input parameters as Brockmann in his recent study of nuclear ground states, we calculate the self-consistent relativistic Hartree potential at positive energy in the case of infinite nuclear matter and of 16O and 40Ca. This potential is the sum of a scalar operator and of the fourth component of a vector operator. We construct its Schrödinger-equivalent potential by eliminating the small component of the Dirac spinor. The central part of this Schrödinger-equivalent potential is in fair agreement with empirical values at low and intermediate energy. Particular attention is paid to the intermediate energy domain, in which the calculated potential is repulsive in the nuclear interior and attractive at the nuclear surface. This is in keeping with some empirical evidence and is similar to results found in the framework of the nonrelativistic Brueckner-Hartree-Fock approximation. The spin-orbit potential of the relativistic Hartree model is also in good agreement with empirical values. NUCLEAR REACTIONS Calculated average nuclear field of nuclear matter, 16O and 40Ca at positive energy from relativistic Hartree approximation.
Stochastic Motion of Relativistic Particles in the Field of a Wide Wave Packet
NASA Astrophysics Data System (ADS)
Nagornykh, E.; Tel'nikhin, A.
2003-06-01
Stochastic motion of relativistic particles in the field of a wave packet propagating under an angle to the external magnetic field are investigated. The interplay of the dynamical and statistical aspects of the behavior of the relativistic particle-potential wave packet system is considered. Dynamics of this system are described by nonlinear mapping and corresponding Fokker-Planck-Kolmogorov equation in phase space possesses canonical Hamiltonian structure. The following general problems of stochastic motion are disscussed: local instability and the Lyapunov exponents and the Kolmogorov entropy; a fractal structures and its dimension; bifurcations of a vector fields and the boundaries of the region of dynamical chaos. The results of numerical simulation are presented. A possible astrophysical application of the results obtained is discussed.
Magnetic field dosimeter development
Lemon, D.K.; Skorpik, J.R.; Eick, J.L.
1980-09-01
In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.
Mahmood, S.; Sadiq, Safeer; Haque, Q.
2013-12-15
Linear and nonlinear electrostatic waves in magnetized dense electron-ion plasmas are studied with nonrelativistic and ultra-relativistic degenerate and singly, doubly charged helium (He{sup +}, He{sup ++}) and hydrogen (H{sup +}) ions, respectively. The dispersion relation of electrostatic waves in magnetized dense plasmas is obtained under both the energy limits of degenerate electrons. Using reductive perturbation method, the Zakharov-Kuznetsov equation for nonlinear propagation of electrostatic solitons in magnetized dense plasmas is derived for both nonrelativistic and ultra-relativistic degenerate electrons. It is found that variations in plasma density, magnetic field intensity, different mass, and charge number of ions play significant role in the formation of electrostatic solitons in magnetized dense plasmas. The numerical plots are also presented for illustration using the parameters of dense astrophysical plasma situations such as white dwarfs and neutron stars exist in the literature. The present investigation is important for understanding the electrostatic waves propagation in the outer periphery of compact stars which mostly consists of hydrogen and helium ions with degenerate electrons in dense magnetized plasmas.
Magnetic fields in spiral galaxies
NASA Astrophysics Data System (ADS)
Chiba, Masashi
The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.
NASA Astrophysics Data System (ADS)
Rezzolla, Luciano; Ahmedov, Bobomurat J.
2016-07-01
An important issue in the asteroseismology of compact and magnetized stars is the determination of the dissipation mechanism which is most efficient in damping the oscillations when these are produced. In a linear regime and for low-multipolarity modes, these mechanisms are confined to either gravitational-wave or electromagnetic losses. We here consider the latter and compute the energy losses in the form of Poynting fluxes, Joule heating and Ohmic dissipation in a relativistic oscillating spherical star with a dipolar magnetic field in vacuum. While this approach is not particularly realistic for rapidly rotating stars, it has the advantage that it is fully analytic and that it provides expressions for the electric and magnetic fields produced by the most common modes of oscillation both in the vicinity of the star and far away from it. In this way, we revisit and extend to a relativistic context the classical estimates of McDermott et al. Overall, we find that general-relativistic corrections lead to electromagnetic damping time-scales that are at least one order of magnitude smaller than in Newtonian gravity. Furthermore, with the only exception of g (gravity) modes, we find that f (fundamental), p (pressure), i (interface) and s (shear) modes are suppressed more efficiently by gravitational losses than by electromagnetic ones.
NASA Technical Reports Server (NTRS)
Smith, E. J.
1995-01-01
The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.
Scaling of magnetic reconnection in relativistic collisionless pair plasmas.
Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael
2015-03-01
Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the nonrelativistic to ultrarelativistic limit. In the antiparallel configuration, the inflow speed increases with the upstream magnetization parameter σ and approaches the speed of light when σ>O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains ∼0.1 in both the nonrelativistic and relativistic limits. PMID:25793820
Relativistic mean field model for entrainment in general relativistic superfluid neutron stars
NASA Astrophysics Data System (ADS)
Comer, G. L.; Joynt, R.
2003-07-01
General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of “relativistic”: relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro’s number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons.
McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.
2012-04-26
Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by
Magnetic Field Measurement System
Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter
2007-01-19
A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.
Truesdell invariance in relativistic electromagnetic fields
NASA Astrophysics Data System (ADS)
Walwadkar, B. B.; Virkar, K. V.
1984-01-01
The Truesdell derivative of a contravariant tensor fieldX ab is defined with respect to a null congruencel a analogous to the Truesdell stress rate in classical continuum mechanics. The dynamical consequences of the Truesdell invariance with respect to a timelike vectoru a of the stress-energy tensor characterizing a charged perfect fluid with null conductivity are the conservation of pressure (p), charged density (e) an expansion-free flow, constancy of the Maxwell scalars, and vanishing spin coefficientsα+¯β = ¯σ - λ = τ = 0 (assuming freedom conditionsk = λ = ɛ ψ + ¯γ = 0). The electromagnetic energy momentum tensor for the special subcases of Ruse-Synge classification for typesA andB are described in terms of the spin coefficients introduced by Newman-Penrose.
NASA Technical Reports Server (NTRS)
Ilin, Andrew V.
2006-01-01
The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.
Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M
1989-12-15
The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes
The current-driven kink instability in magnetically dominated relativistic jets
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi; Hardee, Philip E.
2012-04-01
We have investigated the development of current-driven (CD) kink instability in relativistic jets, via 3D relativistic magnetohydrodynamic simulations. For this purpose, a static force-free equilibrium helical magnetic configuration is considered in order to study its influence on the linear and nonlinear stages of the instability. We found that this configuration is strongly distorted but not disrupted by the CD kink instability. Both the linear growth and the nonlinear evolution of this in-stability depend moderately on the radial density profile but are strongly sensitive to the magnetic pitch profile. For decreasing magnetic pitch, kink amplitude growth leads, in the nonlinear regime, to a slender helically twisted column wrapped by magnetic field. Differently, for increasing magnetic pitch, the kink amplitude nearly saturates in the nonlinear regime. We have also investigated the influence of velocity shear on the linear and non-linear development of the instability. We found that helically distorted density structures propagate along the jet with a speed and a flow structure that are dependent on the location of the velocity shear relative to the characteristic radius of the helically twisted force-free magnetic field. At small radius, the plasma flows through the kink. The kink propagation speed increases with the velocity shear radius, and the kink becomes more em-bedded in the plasma flow. Larger velocity shear radius leads to slower linear growth, with a later transition to the nonlinear stage and a larger maximum amplitude than in the case of a static plasma column. However, when the velocity shear radius is much greater than the characteristic radius of the helical magnetic field, linear and non-linear developments become more similar to those of a static plasma column.
Diffusion of relativistic gas mixtures in gravitational fields
NASA Astrophysics Data System (ADS)
Kremer, Gilberto M.
2014-01-01
A mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric is studied on the basis of a relativistic Boltzmann equation in the presence of gravitational fields. A BGK-type model equation of the collision operator of the Boltzmann equation is used in order to compute the non-equilibrium distribution functions by the Chapman-Enskog method. The main focus of this work is to obtain Fick’s law without the thermal-diffusion cross-effect. Fick’s law has four contributions, two of them are the usual terms proportional to the gradients of concentration and pressure. The other two are of the same nature as those which appear in Fourier’s law in the presence of gravitational fields and are related to an acceleration and a gravitational potential gradient, but unlike Fourier’s law these last two terms are of non-relativistic order. Furthermore, it is shown that the coefficients of diffusion depend on the gravitational potential and become smaller than those in its absence.
Finite- to zero-range relativistic mean-field interactions
Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.
2008-03-15
We study the relation between the finite-range (meson-exchange) and zero-range (point-coupling) representations of effective nuclear interactions in the relativistic mean-field framework. Starting from the phenomenological interaction DD-ME2 with density-dependent meson-nucleon couplings, we construct a family of point-coupling effective interactions for different values of the strength parameter of the isoscalar-scalar derivative term. In the meson-exchange picture this corresponds to different values of the {sigma}-meson mass. The parameters of the isoscalar-scalar and isovector-vector channels of the point-coupling interactions are adjusted to nuclear matter and ground-state properties of finite nuclei. By comparing results for infinite and semi-infinite nuclear matter, ground-state masses, charge radii, and collective excitations, we discuss constraints on the parameters of phenomenological point-coupling relativistic effective interaction.
A generally relativistic gauge classification of the Dirac fields
NASA Astrophysics Data System (ADS)
Fabbri, Luca
2016-04-01
We consider generally relativistic gauge transformations for the spinorial fields finding two mutually exclusive but together exhaustive classes in which fermions are placed adding supplementary information to the results obtained by Lounesto, and identifying quantities analogous to the momentum vector and the Pauli-Lubanski axial vector. We discuss how our results are similar to those obtained by Wigner by taking into account the system of Dirac field equations. We will investigate the consequences for the dynamics and in particular we shall address the problem of getting the nonrelativistic approximation in a consistent way. We are going to comment on extensions.
Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization
NASA Astrophysics Data System (ADS)
Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.
2016-04-01
We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χm<0 ), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time τ with a power law ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.
Relativistic electron loss process by pitch angle scattering due to field curvature
NASA Astrophysics Data System (ADS)
Lee, J. J.; Parks, G. K.; Lee, E.; McCarthy, M. P.; Min, K.; Kim, H.; Park, J.; Hwang, J.
2006-12-01
Relativistic electron dropout (RED) events are characterized by fast electron flux decrease at the geostationary orbit. It is known that the main loss process is non adiabatic and more effective for the high energy particles. RED events generally start to occur at midnight sector and propagate to noon sector and are correlated with magnetic field stretching. We discuss this kind of event can be caused from pitch angle diffusion induced when the gyro radius of the electrons is comparable to the radius of curvature of the magnetic field and the magnetic moment is not conserved any more. While this process has been studied theoretically, the question is whether electron precipitation could be explained with this process for the real field configuration. This paper will show that this process can successfully explain the precipitation that occurred on June 14, 2004 observed by the low-altitude (680 km) polar orbiting Korean satellite, STSAT-1. In this precipitation event, the energy dispersion showed higher energy electron precipitation occurred at lower L values. This feature is a good indicator that precipitation was caused by the magnetic moment scattering in the geomagnetic tail. This interpretation is supported by the geosynchronous satellite GOES observations that showed significant magnetic field distortion occurred on the night side accompanying the electron flux depletion. Tsyganenko-01 model also shows the magnetic moment scattering could occur under the geomagnetic conditions existing at that time. We suggest the pitch angle scattering by field curvature violating the first adiabatic invariant as a possible candidate for loss mechanism of relativistic electrons in radiation belt.
Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP
Baker, D.N.; Pulkkinen, T.I.; Li, X.; Kanekal, S.G.; Blake, J.B.; Selesnick, R.S.; Henderson, M.G.; Reeves, G.D.; Spence, H.E.
1998-08-01
The role of high-speed solar wind streams in driving relativistic electron acceleration within the Earth{close_quote}s magnetosphere during solar activity minimum conditions has been well documented. The rising phase of the new solar activity cycle (cycle 23) commenced in 1996, and there have recently been a number of coronal mass ejections (CMEs) and related {open_quotes}magnetic clouds{close_quotes} at 1 AU. As these CME/cloud systems interact with the Earth{close_quote}s magnetosphere, some events produce substantial enhancements in the magnetospheric energetic particle population while others do not. This paper compares and contrasts relativistic electron signatures observed by the POLAR, SAMPEX, Highly Elliptical Orbit, and geostationary orbit spacecraft during two magnetic cloud events: May 27{endash}29, 1996, and January 10{endash}11, 1997. Sequences were observed in each case in which the interplanetary magnetic field was first strongly southward and then rotated northward. In both cases, there were large solar wind density enhancements toward the end of the cloud passage at 1 AU. Strong energetic electron acceleration was observed in the January event, but not in the May event. The relative geoeffectiveness for these two cases is assessed, and it is concluded that large induced electric fields ({partial_derivative}B/{partial_derivative}t) caused in situ acceleration of electrons throughout the outer radiation zone during the January 1997 event. {copyright} 1998 American Geophysical Union
High field superconducting magnets
NASA Technical Reports Server (NTRS)
Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)
2011-01-01
A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.
NASA Astrophysics Data System (ADS)
Yu, J.; Li, L. Y.; Cao, J. B.; Reeves, G. D.; Baker, D. N.; Spence, H.
2016-07-01
Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < -2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00-18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancake distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00-06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. These variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.
Yu, J.; Li, L. Y.; Cao, J. B.; Reeves, Geoffrey D.; Baker, D. N.; Spence, H.
2016-07-22
Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < –2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00–18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancakemore » distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00–06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. As a result, these variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.« less
The interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Davis, L., Jr.
1972-01-01
Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.
RICHTMYER-MESHKOV-TYPE INSTABILITY OF A CURRENT SHEET IN A RELATIVISTICALLY MAGNETIZED PLASMA
Inoue, Tsuyoshi
2012-11-20
The linear stability of a current sheet that is subject to an impulsive acceleration due to shock passage with the effect of a guide magnetic field is studied. We find that a current sheet embedded in relativistically magnetized plasma always shows a Richtmyer-Meshkov-type instability, while the stability depends on the density structure in the Newtonian limit. The growth of the instability is expected to generate turbulence around the current sheet, which can induce the so-called turbulent reconnection, the rate of which is essentially free from plasma resistivity. Thus, the instability can be applied as a triggering mechanism for rapid magnetic energy release in a variety of high-energy astrophysical phenomena such as pulsar wind nebulae, gamma-ray bursts, and active galactic nuclei, where the shock wave is thought to play a crucial role.
Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation
NASA Astrophysics Data System (ADS)
Bromberg, Omer; Tchekhovskoy, Alexander
2016-02-01
Relativistic jets are associated with extreme astrophysical phenomena, like the core collapse of massive stars in gamma-ray bursts (GRBs) and the accretion on to supermassive black holes in active galactic nuclei. It is generally accepted that these jets are powered electromagnetically, by the magnetized rotation of a central compact object (black hole or neutron star). However, how the jets produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic, Poynting-flux-dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetized central object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a global, external kink mode that grows on long time-scales. It bodily twists the jet, reducing its propagation velocity. We show analytically that in flat density profiles, like the ones associated with galactic cores, the external mode grows and may stall the jet. In the steep profiles of stellar envelopes the external kink weakens as the jet propagates outward. (ii) a local, internal kink mode that grows over short time-scales and causes small-angle magnetic reconnection and conversion of about half of the jet electromagnetic energy flux into heat. We suggest that internal kink instability is the main dissipation mechanism responsible for powering GRB prompt emission.
NASA Astrophysics Data System (ADS)
Nalewajko, Krzysztof; Uzdensky, Dmitri A.; Cerutti, Benoît; Werner, Gregory R.; Begelman, Mitchell C.
2015-12-01
We investigate the distribution of particle acceleration sites, independently of the actual acceleration mechanism, during plasmoid-dominated, relativistic collisionless magnetic reconnection by analyzing the results of a particle-in-cell numerical simulation. The simulation is initiated with Harris-type current layers in pair plasma with no guide magnetic field, negligible radiative losses, no initial perturbation, and using periodic boundary conditions. We find that the plasmoids develop a robust internal structure, with colder dense cores and hotter outer shells, that is recovered after each plasmoid merger on a dynamical timescale. We use spacetime diagrams of the reconnection layers to probe the evolution of plasmoids, and in this context we investigate the individual particle histories for a representative sample of energetic electrons. We distinguish three classes of particle acceleration sites associated with (1) magnetic X-points, (2) regions between merging plasmoids, and (3) the trailing edges of accelerating plasmoids. We evaluate the contribution of each class of acceleration sites to the final energy distribution of energetic electrons: magnetic X-points dominate at moderate energies, and the regions between merging plasmoids dominate at higher energies. We also identify the dominant acceleration scenarios, in order of decreasing importance: (1) single acceleration between merging plasmoids, (2) single acceleration at a magnetic X-point, and (3) acceleration at a magnetic X-point followed by acceleration in a plasmoid. Particle acceleration is absent only in the vicinity of stationary plasmoids. The effect of magnetic mirrors due to plasmoid contraction does not appear to be significant in relativistic reconnection.
Systematic study of bubble nuclei in relativistic mean field model
NASA Astrophysics Data System (ADS)
Shukla, A.; Åberg, S.; Bajpeyi, A.
2016-01-01
We have theoretically studied potential bubble nuclei (20,22O, 34,36Si, and 46Ar), which are experimentally accessible and have attracted several studies in the recent past. Relativistic mean field is employed in conjunction with the NL-SH parameter set. Our results show that among the possible candidates, 22Oand 34Si may be the most prominent candidates, showing significant depletion of density at the center, which could be verified experimentally in the near future with some of the experiments underway.
Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field
NASA Astrophysics Data System (ADS)
Luo, Sui
Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its
Magnetic properties of f-electron systems in spin-polarized relativistic density functional theory
NASA Astrophysics Data System (ADS)
Yamagami, H.; Mavromaras, A.; Kübler, J.
1997-12-01
The magnetic ground state of the series of lanthanide and actinide trivalent ions is investigated by means of spin-polarized relativistic spin-density functional theory. In the local density functional approximation (LDA) an internal effective magnetic field due to exchange and correlation couples to the spin degrees of freedom. The resulting set of coupled Dirac equations yields ground-state multiplets that obey the well-known Hund's rules. This remarkable result comes about by the coupling of the j = l + 1/2 with the j = l - 1/2 states due to the exchange - correlation potential that is, as usual, the functional derivative of the exchange - correlation energy with respect to the spin magnetic moment. The effect of the coupling is shown to depend on the varying relative strengths of spin - orbit coupling and exchange splitting within the f series. Since in the f levels the internal exchange splitting dominates rather than the spin - orbit splitting, the energy level scheme is that of the Paschen - Back effect, and thus features of the Russell - Saunders coupling persist in spite of relativistic effects.
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.; Ravat, D.; Frawley, James J.
1999-01-01
Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.
Takahashi, Hiroyuki R.; Ohsuga, Ken
2013-08-01
We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 Multiplication-Sign 4 matrices (for the gas-radiation interaction) and 3 Multiplication-Sign 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroyuki R.; Ohsuga, Ken
2013-08-01
We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 × 4 matrices (for the gas-radiation interaction) and 3 × 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag.
Warm and dense stellar matter under strong magnetic fields
Rabhi, A.; Panda, P. K.; Providencia, C.
2011-09-15
We investigate the effects of strong magnetic fields on the equation of state of warm stellar matter as it may occur in a protoneutron star. Both neutrino-free and neutrino-trapped matter at a fixed entropy per baryon are analyzed. A relativistic mean-field nuclear model, including the possibility of hyperon formation, is considered. A density-dependent magnetic field with a magnitude of 10{sup 15} G at the surface and not more than 3x10{sup 18} G at the center is considered. The magnetic field gives rise to a neutrino suppression, mainly at low densities, in matter with trapped neutrinos. It is shown that a hybrid protoneutron star will not evolve into a low-mass black hole if the magnetic field is strong enough and the magnetic field does not decay. However, the decay of the magnetic field after cooling may give rise to the formation of a low-mass black hole.
Weak-field general relativistic dynamics and the Newtonian limit
NASA Astrophysics Data System (ADS)
Cooperstock, F. I.
2016-01-01
We show that the generally held view that the gravity of weak-field nonrelativistic-velocity sources being invariably almost equivalent to Newtonian gravity (NG) (the “Newtonian limit” approach) is in some instances misleading and in other cases incorrect. A particularly transparent example is provided by comparing the Newtonian and general relativistic analyses of a simple variant of van Stockum’s infinite rotating dust cylinder. We show that some very recent criticisms of our work that had been motivated by the Newtonian limit approach were incorrect and note that no specific errors in our work were found in the critique. In the process, we underline some problems that arise from inappropriate coordinate transformations. As further support for our methodology, we note that our weak-field general relativistic treatment of a model galaxy was vindicated recently by the observations of Xu et al. regarding our prediction that the Milky Way was 19-21 kpc in radius as opposed to the commonly held view that the radius was 15 kpc.
NASA Astrophysics Data System (ADS)
Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete
2015-07-01
Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.
NASA Astrophysics Data System (ADS)
Singh, Chandra B.; Mizuno, Yosuke; de Gouveia Dal Pino, Elisabete M.
2016-06-01
Using the three-dimensional relativistic magnetohydrodynamic code RAISHIN, we investigated the influence of the radial density profile on the spatial development of the current-driven kink instability along magnetized rotating, relativistic jets. For the purposes of our study, we used a nonperiodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers the growth of the kink instability. We studied light and heavy jets with respect to the environment depending on the density profile. Different angular velocity amplitudes have been also tested. The results show the propagation of a helically kinked structure along the jet and a relatively stable configuration for the lighter jets. The jets appear to be collimated by the magnetic field, and the flow is accelerated owing to conversion of electromagnetic into kinetic energy. We also identify regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated with the kink-unstable regions and correlated with the decrease of the sigma parameter of the flow. We discuss the implications of our findings for Poynting-flux-dominated jets in connection with magnetic reconnection processes. We find that fast magnetic reconnection may be driven by the kink-instability turbulence and govern the transformation of magnetic into kinetic energy, thus providing an efficient way to power and accelerate particles in active galactic nucleus and gamma-ray-burst relativistic jets.
NASA Astrophysics Data System (ADS)
Etienne, Zachariah; Liu, Y. T.; Shapiro, S.
2007-04-01
Understanding the role general relativistic magnetohydrodynamic (GRMHD) effects play in the evolution of nascent neutron stars is a problem at the forefront of theoretical astrophysics. To this end, we performed long-term (˜10^4 M) axisymmetric simulations of differentially rotating magnetized neutron stars in the slow-rotation, weak magnetic field limit using a dynamically updated perturbative metric evolution technique. Although the perturbative metric approach yields results comparable to those obtained via a nonperturbative (BSSN) metric evolution technique, simulations performed with the perturbative metric solver require about 1/4 the computational resources at a given resolution. This computational efficiency enabled us to observe and analyze the effects of magnetic braking and the magnetorotational instability (MRI) at very high resolution. Our GRMHD simulations demonstrate that (1) MRI is not observed unless the estimated fastest-growing mode wavelength is resolved by >˜ 10 gridpoints; (2) as resolution is improved, the MRI growth rate converges, but due to the small-scale nature of MRI-induced turbulence, the maximum growth amplitude increases, but does not exhibit convergence, even at the highest resolution; and (3) independent of resolution, magnetic braking drives the star toward uniform rotation as energy is sapped from differential rotation by winding magnetic fields.
Meson spectrum in strong magnetic fields
NASA Astrophysics Data System (ADS)
Andreichikov, M. A.; Kerbikov, B. O.; Orlovsky, V. D.; Simonov, Yu. A.
2013-05-01
We study the relativistic quark-antiquark system embedded in a magnetic field (MF). The Hamiltonian containing confinement, one gluon exchange, and spin-spin interaction is derived. We analytically follow the evolution of the lowest meson states as a function of MF strength. Calculating the one gluon exchange interaction energy ⟨VOGE⟩ and spin-spin contribution ⟨aSS⟩ we have observed that these corrections remain finite at large MF, preventing the vanishing of the total ρ meson mass at some Bcrit, as previously thought. We display the ρ masses as functions of the MF in comparison with recent lattice data.
MM-wave emission by magnetized plasma during sub-relativistic electron beam relaxation
Ivanov, I. A. Arzhannikov, A. V.; Burmasov, V. S.; Popov, S. S.; Postupaev, V. V.; Sklyarov, V. F.; Vyacheslavov, L. N.; Burdakov, A. V.; Sorokina, N. V.; Gavrilenko, D. E.; Kasatov, A. A.; Kandaurov, I. V.; Mekler, K. I.; Rovenskikh, A. F.; Trunev, Yu. A.; Kurkuchekov, V. V.; Kuznetsov, S. A.; Polosatkin, S. V.
2015-12-15
There are described electromagnetic spectra of radiation emitted by magnetized plasma during sub-relativistic electron beam in a double plasma frequency band. Experimental studies were performed at the multiple-mirror trap GOL-3. The electron beam had the following parameters: 70–110 keV for the electron energy, 1–10 MW for the beam power and 30–300 μs for its duration. The spectrum was measured in 75–230 GHz frequency band. The frequency of the emission follows variations in electron plasma density and magnetic field strength. The specific emission power on the length of the plasma column is estimated on the level 0.75 kW/cm.
NASA Astrophysics Data System (ADS)
Campanelli, Leonardo
2016-03-01
We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.
Two-fluid temperature-dependent relativistic waves in magnetized streaming pair plasmas.
Soto-Chavez, A R; Mahajan, S M; Hazeltine, R D
2010-02-01
A relativistic two-fluid temperature-dependent approach for a streaming magnetized pair plasma is considered. Such a scenario corresponds to secondary plasmas created at the polar caps of pulsar magnetospheres. In the model the generalized vorticity rather than the magnetic field is frozen into the fluid. For parallel propagation four transverse modes are found. Two are electromagnetic plasma modes which at high temperature become light waves. The remaining two are Alfvénic modes split into a fast and slow mode. The slow mode is cyclotron two-stream unstable at large wavelengths and is always subluminous. We find that the instability cannot be suppressed by temperature effects in the limit of large (finite) magnetic field. The fast Alfvén mode can be superluminous only at large wavelengths, however it is always subluminous at high temperatures. In this incompressible approximation only the ordinary mode is present for perpendicular propagation. For oblique propagation the dispersion relation is studied for finite and large strong magnetic fields and the results are qualitatively described. PMID:20365661
Magnetic Field Topology in Jets
NASA Technical Reports Server (NTRS)
Gardiner, T. A.; Frank, A.
2000-01-01
We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.
Low field magnetic resonance imaging
Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.
2010-07-13
A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.; Etters, R. D.
1982-01-01
A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.
Relativistic Cyclotron Resonance Shape in Magnetic Bottle Geonium
NASA Astrophysics Data System (ADS)
Dehmelt, Hans; Mittleman, Richard; Liu, Yuan
1988-10-01
The thermally excited axial oscillation of the electron through the weak magnetic bottle needed for the continuous Stern-Gerlach effect modulates the cyclotron frequency and produces a characteristic ≈ 12-kHz-wide vertical rise-exponential decline line shape of the cyclotron resonance. At the same time the relativistic mass shift decreases the frequency by ≈ 200 Hz per cyclotron motion quantum level n. Nevertheless, our analysis of the complex line shape shows that it should be possible to produce an abrupt rise in the cyclotron quantum number n from 0 to ≈ 20 over a small fraction of 200 Hz, when the 160-GHz microwave drive approaches the n = 0 → 1 transition, and a jump of 14 levels over a frequency increment of 200 Hz has already been observed in preliminary work. This realizes an earlier proposal to generate a very sharp cyclotron resonance feature by quasithermal excitation with a square noise band and should provide a way to detect spin flips when a weak bottle is used to reduce the broadening of the g - 2 resonance by a factor of 20.
Kagan, Daniel; Milosavljevic, Milos; Spitkovsky, Anatoly
2013-09-01
We investigate magnetic reconnection and particle acceleration in relativistic pair plasmas with three-dimensional particle-in-cell simulations of a kinetic-scale current sheet in a periodic geometry. We include a guide field that introduces an inclination between the reconnecting field lines and explore outside-of-the-current sheet magnetizations that are significantly below those considered by other authors carrying out similar calculations. Thus, our simulations probe the transitional regime in which the magnetic and plasma pressures are of the same order of magnitude. The tearing instability is the dominant mode in the current sheet for all guide field strengths, while the linear kink mode is less important even without the guide field, except in the lower magnetization case. Oblique modes seem to be suppressed entirely. In its nonlinear evolution, the reconnection layer develops a network of interconnected and interacting magnetic flux ropes. As smaller flux ropes merge into larger ones, the reconnection layer evolves toward a three-dimensional, disordered state in which the resulting flux rope segments contain magnetic substructure on plasma skin depth scales. Embedded in the flux ropes, we detect spatially and temporally intermittent sites of dissipation reflected in peaks in the parallel electric field. Magnetic dissipation and particle acceleration persist until the end of the simulations, with simulations with higher magnetization and lower guide field strength exhibiting greater and faster energy conversion and particle energization. At the end of our largest simulation, the particle energy spectrum attains a tail extending to high Lorentz factors that is best modeled with a combination of two additional thermal components. We confirm that the primary energization mechanism is acceleration by the electric field in the X-line region. The highest-energy positrons (electrons) are moderately beamed with median angles {approx}30 Degree-Sign -40 Degree
Reconnection of Magnetic Fields
NASA Technical Reports Server (NTRS)
1984-01-01
Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.
NASA Technical Reports Server (NTRS)
Hildebrand, Roger H.
1988-01-01
The purpose of this paper is to outline the principles governing the use of far-infrared and submillimeter polarimetry to investigate magnetic fields and dust in interstellar clouds. Particular topics of discussion are the alignment of dust grains in dense clouds, the dependence on wavelength of polarization due to emission or to partial absorption by aligned grains, the nature of that dependence for mixtures of grains with different properties, and the problem of distinguishing between (1) the effects of the shapes and dielectric functions of the grains and (2) the degree and direction of their alignment.
The Electric Fields of Radio Pulsars with Asymmetric Nondipolar Magnetic Fields
NASA Astrophysics Data System (ADS)
Kantor, E. M.; Tsygan, A. I.
2003-07-01
The effect of the curvature of open magnetic field lines on the generation of electric fields in radio pulsars is considered in the framework of a Goldreich-Julian model, for both a regime with a free outflow of electrons from the neutron-star surface and the case of a small thermoemission current. An expression for the electron thermoemission current in a strong magnetic field is derived. The electric field associated with the curvature of the magnetic flux tubes is comparable to the field generated by the relativistic dragging of the inertial frames.
Polar Magnetic Field Experiment
NASA Technical Reports Server (NTRS)
Russell, C. T.
1999-01-01
This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.
Photonic Magnetic Field Sensor
NASA Astrophysics Data System (ADS)
Wyntjes, Geert
2002-02-01
Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.
I.Y. Dodin; N.J. Fisch; G.M. Fraiman
2003-02-06
The Lagrangian and Hamiltonian functions describing average motion of a relativistic particle under the action of intensive high-frequency electromagnetic radiation are obtained. In weak, low-frequency background fields, such a particle on average drifts with an effective, relativistically invariant mass, which depends on the intensity of the electromagnetic field.
Relativistic mean-field models and nuclear matter constraints
Dutra, M.; Lourenco, O.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Avancini, S. S.; Stone, J. R.; Providencia, C.; Typel, S.
2013-05-06
This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear {sigma}{sup 3}+{sigma}{sup 4} models, (iii) {sigma}{sup 3}+{sigma}{sup 4}+{omega}{sup 4} models, (iv) models containing mixing terms in the fields {sigma} and {omega}, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the {sigma} ({omega}) field. The isospin dependence of the interaction is modeled by the {rho} meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.
NASA Astrophysics Data System (ADS)
Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.
2010-12-01
In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for Ca40,42,44,48 with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+Ca40,42,44,48 systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.
Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.
2010-12-15
In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for {sup 40,42,44,48}Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+{sup 40,42,44,48}Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.
Magnetic Fields: Visible and Permanent.
ERIC Educational Resources Information Center
Winkeljohn, Dorothy R.; Earl, Robert D.
1983-01-01
Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)
Properties of hyperonic matter in strong magnetic fields
Yue, P.; Yang, F.; Shen, H.
2009-02-15
We study the effects of strong magnetic fields on the properties of hyperonic matter. We employ the relativistic mean field theory, which is known to provide excellent descriptions of nuclear matter and finite nuclei. The two additional hidden-strangeness mesons, {sigma}* and {phi}, are taken into account, and some reasonable hyperon potentials are used to constrain the meson-hyperon couplings, which reflect the recent developments in hypernuclear physics. It is found that the effects of strong magnetic fields become significant only for magnetic field strength B>5x10{sup 18} G. The threshold densities of hyperons can be significantly altered by strong magnetic fields. The presence of hyperons makes the equation of state (EOS) softer than that in the case without hyperons, and the softening of the EOS becomes less pronounced with increasing magnetic field strength.
Effects of non-linearities on magnetic field generation
Nalson, Ellie; Malik, Karim A.; Christopherson, Adam J. E-mail: achristopherson@gmail.com
2014-09-01
Magnetic fields are present on all scales in the Universe. While we understand the processes which amplify the fields fairly well, we do not have a ''natural'' mechanism to generate the small initial seed fields. By using fully relativistic cosmological perturbation theory and going beyond the usual confines of linear theory we show analytically how magnetic fields are generated. This is the first analytical calculation of the magnetic field at second order, using gauge-invariant cosmological perturbation theory, and including all the source terms. To this end, we have rederived the full set of governing equations independently. Our results suggest that magnetic fields of the order of 10{sup -30}- 10{sup -27} G can be generated (although this depends on the small scale cut-off of the integral), which is largely in agreement with previous results that relied upon numerical calculations. These fields are likely too small to act as the primordial seed fields for dynamo mechanisms.
Pair production rates in mildly relativistic, magnetized plasmas
NASA Technical Reports Server (NTRS)
Burns, M. L.; Harding, A. K.
1984-01-01
Electron-positron pairs may be produced by either one or two photons in the presence of a strong magnetic field. In magnetized plasmas with temperatures kT approximately sq mc, both of these processes may be important and could be competitive. The rates of one-photon and two-photon pair production by photons with Maxwellian, thermal bremsstrahlung, thermal synchrotron and power law spectra are calculated as a function of temperature or power law index and field strength. This allows a comparison of the two rates and a determination of the conditions under which each process may be a significant source of pairs in astrophysical plasmas. It is found that for photon densities n(gamma) or = 10 to the 25th power/cu cm and magnetic field strengths B or = 10 to the 12th power G, one-photon pair production dominates at kT approximately sq mc for a Maxwellian, at kT approximately 2 sq mc for a thermal bremsstrahlung spectrum, at all temperatures for a thermal synchrotron spectrum, and for power law spectra with indices s approximately 4.
Observations of galactic magnetic fields
NASA Astrophysics Data System (ADS)
Beck, Rainer
Magnetic fields are enchored in gas clouds. Field lines are tangled in spiral arms, but highly regular between the arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamcis of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.
Fast superconducting magnetic field switch
Goren, Y.; Mahale, N.K.
1996-08-06
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.
Fast superconducting magnetic field switch
Goren, Yehuda; Mahale, Narayan K.
1996-01-01
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.
Martian external magnetic field proxies
NASA Astrophysics Data System (ADS)
Langlais, Benoit; Civet, Francois
2015-04-01
Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.
Cremaschini, Claudio Stuchlík, Zdeněk; Tessarotto, Massimo
2014-03-15
The kinetic description of relativistic plasmas in the presence of time-varying and spatially non-uniform electromagnetic (EM) fields is a fundamental theoretical issue both in astrophysics and plasma physics. This refers, in particular, to the treatment of collisionless and strongly-magnetized plasmas in the presence of intense radiation sources. In this paper, the problem is investigated in the framework of a covariant gyrokinetic treatment for Vlasov–Maxwell equilibria. The existence of a new class of kinetic equilibria is pointed out, which occur for spatially-symmetric systems. These equilibria are shown to exist in the presence of non-uniform background EM fields and curved space-time. In the non-relativistic limit, this feature permits the determination of kinetic equilibria even for plasmas in which particle energy is not conserved due to the occurrence of explicitly time-dependent EM fields. Finally, absolute stability criteria are established which apply in the case of infinitesimal symmetric perturbations that can be either externally or internally produced.
Cosmological perturbations: Vorticity, isocurvature and magnetic fields
NASA Astrophysics Data System (ADS)
Christopherson, Adam J.
2014-10-01
In this paper, I review some recent, interlinked, work undertaken using cosmological perturbation theory — a powerful technique for modeling inhomogeneities in the universe. The common theme which underpins these pieces of work is the presence of nonadiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or nonadiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close this paper with a summary and some potential extensions of this work.
Resistive Magnetic Field Generation at Cosmic Dawn
NASA Astrophysics Data System (ADS)
Miniati, Francesco; Bell, A. R.
2011-03-01
Relativistic charged particles (CRs for cosmic rays) produced by supernova explosion of the first generation of massive stars that are responsible for the reionization of the universe escape into the intergalactic medium, carrying an electric current. Charge imbalance and induction give rise to a return current, \\vec{j}_t, carried by the cold thermal plasma which tends to cancel the CR current. The electric field, \\vec{E}=η\\vec{j}_t, required to draw the collisional return current opposes the outflow of low-energy CRs and ohmically heats the cold plasma. Owing to inhomogeneities in the resistivity, η(T), caused by a structure in the temperature, T, of the intergalactic plasma, the electric field possesses a rotational component which sustains Faraday's induction. It is found that a magnetic field is robustly generated throughout intergalactic space at a rate of 10-17 to 10-16 G Gyr-1, until the temperature of the intergalactic medium is raised by cosmic reionization. The magnetic field may seed the subsequent growth of magnetic fields in the intergalactic environment. The role of CR-driven instabilities is discussed, and nonlinear effects are briefly considered.
Magnetic field evolution in superconducting neutron stars
NASA Astrophysics Data System (ADS)
Graber, Vanessa; Andersson, Nils; Glampedakis, Kostas; Lander, Samuel K.
2015-10-01
The presence of superconducting and superfluid components in the core of mature neutron stars calls for the rethinking of a number of key magnetohydrodynamical notions like resistivity, the induction equation, magnetic energy and flux-freezing. Using a multifluid magnetohydrodynamics formalism, we investigate how the magnetic field evolution is modified when neutron star matter is composed of superfluid neutrons, type-II superconducting protons and relativistic electrons. As an application of this framework, we derive an induction equation where the resistive coupling originates from the mutual friction between the electrons and the vortex/fluxtube arrays of the neutron and proton condensates. The resulting induction equation allows the identification of two time-scales that are significantly different from those of standard magnetohydrodynamics. The astrophysical implications of these results are briefly discussed.
Electromagnetic field evolution in relativistic heavy-ion collisions
Voronyuk, V.; Toneev, V. D.; Cassing, W.; Bratkovskaya, E. L.; Konchakovski, V. P.; Voloshin, S. A.
2011-05-15
The hadron string dynamics (HSD) model is generalized to include the creation and evolution of retarded electromagnetic fields as well as the influence of the magnetic and electric fields on the quasiparticle propagation. The time-space structure of the fields is analyzed in detail for noncentral Au + Au collisions at {radical}(s{sub NN})=200 GeV. It is shown that the created magnetic field is highly inhomogeneous, but in the central region of the overlapping nuclei it changes relatively weakly in the transverse direction. For the impact parameter b=10 fm, the maximal magnetic field - perpendicularly to the reaction plane - is obtained of order eB{sub y}/m{sub {pi}}{sup 2}{approx}5 for a very short time {approx}0.2 fm/c, which roughly corresponds to the time of a maximal overlap of the colliding nuclei. We find that at any time, the location of the maximum in the eB{sub y} distribution correlates with that of the energy density of the created particles. In contrast, the electric field distribution, being also highly inhomogeneous, has a minimum in the center of the overlap region. Furthermore, the field characteristics are presented as a function of the collision energy and the centrality of the collisions. To explore the effect of the back reaction of the fields on hadronic observables, a comparison of HSD results with and without fields is exemplified. Our actual calculations show no noticeable influence of the electromagnetic fields--created in heavy-ion collisions--on the effect of the electric charge separation with respect to the reaction plane.
Cyclical magnetic field flow fractionation
NASA Astrophysics Data System (ADS)
Tasci, T. O.; Johnson, W. P.; Gale, B. K.
2012-04-01
In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.
Magnetic field modification of optical magnetic dipoles.
Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David
2015-03-11
Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869
Weakly relativistic quantum kinetic theory for electrostatic wave modes in magnetized plasmas
Hussain, Azhar; Stefan, Martin; Brodin, Gert
2014-03-15
We have derived the electrostatic dispersion relation in a magnetized plasma using a recently developed quantum kinetic model based on the Dirac equation. The model contains weakly relativistic spin effects such as Thomas precession, the polarization currents associated with the spin and the spin-orbit coupling. It turns out that for strictly electrostatic perturbations the non-relativistic spin effects vanish, and the modification of the classical dispersion relation is solely associated with the relativistic terms. Several new wave modes appear due the electron spin effects, and an example for astrophysical plasmas are given.
Exposure guidelines for magnetic fields.
Miller, G
1987-12-01
The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields. PMID:3434538
Exposure guidelines for magnetic fields
Miller, G.
1987-12-01
The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.
[Magnetic fields and fish behavior].
Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A
2013-01-01
In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25438567
[Magnetic fields and fish behavior].
2013-01-01
In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25508098
Magnetic-field-dosimetry system
Lemon, D.K.; Skorpik, J.R.; Eick, J.L.
1981-01-21
A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.
Effects of δ mesons in relativistic mean field theory
NASA Astrophysics Data System (ADS)
Singh, Shailesh K.; Biswal, S. K.; Bhuyan, M.; Patra, S. K.
2014-04-01
The effect of δ- and ω-ρ-meson cross couplings on asymmetry nuclear systems are analyzed in the framework of an effective field theory motivated relativistic mean field formalism. The calculations are done on top of the G2 parameter set, where these contributions are absent. To show the effect of δ meson on the nuclear system, we split the isospin coupling into two parts: (i) gρ due to ρ meson and (ii) gδ for δ meson. Thus, our investigation is based on varying the coupling strengths of the δ and ρ mesons to reproduce the binding energies of the nuclei Ca48 and Pb208. We calculate the root mean square radius, binding energy, single particle energy, density, and spin-orbit interaction potential for some selected nuclei and evaluate the Lsym and Esym coefficients for nuclear matter as function of δ- and ω-ρ-meson coupling strengths. As expected, the influence of these effects are negligible for the symmetric nuclear system, but substantial for the contribution with large isospin asymmetry.
Gregor, J.A.; Antoniades, J.A.
1993-11-05
A diagnostic used for measuring the energy of 1 to 5 MEV pulsed electron beams by means independent of the beam generating device is investigated. The method employed is capable of collecting the required data optically in a single pulse. The beam energy is measured using a magnetic electron spectrometer coupled with a scintillating material. Using a polaroid camera to collect data, the energy of electron beams from two field emission diode accelerators is measured. The first is a nominal 1 MEV, 16 kA, 25 ns FWHM electron beam and the second is a nominal 5 MEV, 20 kA, 50 ns FWHM electron beam. A detailed study of measurement accuracy and possible sources of error was accomplished. Energy, Relativistic, Electron beam. Electron, Spectrometer.
Magnetic fields in nearby spirals
NASA Astrophysics Data System (ADS)
Sun, Xiaohui; Lenc, Emil
2013-10-01
Magnetic fields play an important role in star formation process and dynamic evolution of galaxies. Previous studies of magnetic fields relied on narrow band polarisation observations and difficult to disentangle magnetised structures along line of sight. Thanks to the broad bandwidth and multi-channels of CABB we are now able to recover the 3D structures of magnetic fields using RM synthesis and QU-fitting. We propose to observe two nearby spirals M83 and NGC 4945 to build clear pictures of their magnetic fields.
General relativistic considerations of the field shedding model of fast radio bursts
NASA Astrophysics Data System (ADS)
Punsly, Brian; Bini, Donato
2016-06-01
Popular models of fast radio bursts (FRBs) involve the gravitational collapse of neutron star progenitors to black holes. It has been proposed that the shedding of the strong neutron star magnetic field (B) during the collapse is the power source for the radio emission. Previously, these models have utilized the simplicity of the Schwarzschild metric which has the restriction that the magnetic flux is magnetic `hair' that must be shed before final collapse. But neutron stars have angular momentum and charge and a fully relativistic Kerr-Newman solution exists in which B has its source inside of the event horizon. In this Letter, we consider the magnetic flux to be shed as a consequence of the electric discharge of a metastable collapsed state of a Kerr-Newman black hole. It has also been argued that the shedding model will not operate due to pair creation. By considering the pulsar death line, we find that for a neutron star with B = 1011-1013 G and a long rotation period, >1s this is not a concern. We also discuss the observational evidence supporting the plausibility of magnetic flux shedding models of FRBs that are spawned from rapidly rotating progenitors.
Vestibular stimulation by magnetic fields
Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.
2015-01-01
Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662
Magnetic fields around evolved stars
NASA Astrophysics Data System (ADS)
Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.
2014-04-01
A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.
The magnetic-field structure in a stationary accretion disk
NASA Astrophysics Data System (ADS)
Piotrovich, M. Yu.; Silant'ev, N. A.; Gnedin, Yu. N.; Natsvlishvili, T. M.; Buliga, S. D.
2016-05-01
The magnetic-field structure in regions of stationary, planar accretion disks around active galactic nuclei where general-relativistic effects can be neglected (from 10 to 200 gravitational radii) is considered. It is assumed that the magnetic field in the outer edges of the disk, which forms in the magnetosphere of the central black hole during the creation of the relativisitic jets, corresponds to the field of a magnetic dipole perpendicular to the plane of the disk. In this case, the azimuthal field component B φ in the disk arises due to the presence of the radial field B ρ and the azimuthal velocity component U φ . The value of the magnetic field at the inner radius of the disk is taken to correspond to the solution of the induction equation in a diffusion approximation. Numerical solutions of the induction equation are given for a number of cases.
Compton scattering in strong magnetic fields
NASA Technical Reports Server (NTRS)
Daugherty, Joseph K.; Harding, Alice K.
1986-01-01
The relativistic cross section for Compton scattering by electrons in strong magnetic fields is derived. The results confirm and extend earlier work which has treated only transitions to the lowest or first excited Landau levels. For the teragauss field strengths expected in neutron star magnetospheres, the relative rates for excited state transitions are found to be significant, especially for incident photon energies several times the cyclotron frequency. Since these transitions must result in the rapid emission of one or more cyclotron photons as well as the Compton-scattered photon, the scattering process actually becomes a photon 'splitting' mechanism which acts to soften hard photon spectra, and also provides a specific mechanism for populating higher Landau levels in the electron distribution function. The results should be significant for models of gamma-ray bursters and pulsating X-ray sources.
Relativistic mean field model based on realistic nuclear forces
Hirose, S.; Serra, M.; Ring, P.; Otsuka, T.; Akaishi, Y.
2007-02-15
In order to predict properties of asymmetric nuclear matter, we construct a relativistic mean field (RMF) model consisting of one-meson exchange (OME) terms and point coupling (PC) terms. In order to determine the density dependent parameters of this model, we use properties of isospin symmetric nuclear matter in combination with the information on nucleon-nucleon scattering data, which are given in the form of the density dependent G-matrix derived from Brueckner calculations based on the Tamagaki potential. We show that the medium- and long-range components of this G-matrix can be described reasonably well by our effective OME interaction. In order to take into account the short-range part of the nucleon-nucleon interaction, which cannot be described well in this manner, a point coupling term is added. Its analytical form is taken from a model based on chiral perturbation theory. It contains only one additional parameter, which does not depend on the density. It is, together with the parameters of the OME potentials adjusted to the equation of state of symmetric nuclear matter. We apply this model for the investigation of asymmetric nuclear matter and find that the results for the symmetry energy as well as for the equation of state of pure neutron matter are in good agreement with either experimental data or with presently adopted theoretical predictions. In order to test the model at higher density, we use its equation of state for an investigation of properties of neutron stars.
Quasinormal modes of relativistic stars and interacting fields
NASA Astrophysics Data System (ADS)
Macedo, Caio F. B.; Cardoso, Vitor; Crispino, Luís C. B.; Pani, Paolo
2016-03-01
The quasinormal modes of relativistic compact objects encode important information about the gravitational response associated with astrophysical phenomena. Detecting such oscillations would provide us with a unique understanding of the properties of compact stars and may give definitive evidence for the existence of black holes. However, computing quasinormal modes in realistic astrophysical environments is challenging due to the complexity of the spacetime background and of the dynamics of the perturbations. We discuss two complementary methods for computing the quasinormal modes of spherically symmetric astrophysical systems, namely, the direct integration method and the continued-fraction method. We extend these techniques to dealing with generic coupled systems of linear equations, with the only assumption being that the interaction between different fields is effectively localized within a finite region. In particular, we adapt the continued-fraction method to include cases where a series solution can be obtained only outside an effective region. As an application, we compute the polar quasinormal modes of boson stars by using the continued-fraction method for the first time. The methods discussed here can be applied to other situations in which the perturbations effectively couple only within a finite region of space.
The Capacitive Magnetic Field Sensor
NASA Astrophysics Data System (ADS)
Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.
2016-01-01
The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.
Origin of cosmic magnetic fields.
Campanelli, Leonardo
2013-08-01
We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12) G if the energy scale of inflation is few×10(16) GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556
Measurements of magnetic field alignment
Kuchnir, M.; Schmidt, E.E.
1987-11-06
The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.
Magnetic fields in young galaxies
NASA Astrophysics Data System (ADS)
Nordlund, Åke; Rögnvaldsson, Örnólfur
We have studied the fate of initial magnetic fields in the hot halo gas out of which the visible parts of galaxies form, using three-dimensional numerical MHD-experiments. The halo gas undergoes compression by several orders of magnitude in the subsonic cooling flow that forms the cold disk. The magnetic field is carried along and is amplified considerably in the process, reaching μG levels for reasonable values of the initial ratio of magnetic to thermal energy density.
The MAVEN Magnetic Field Investigation
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2015-12-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.
The MAVEN Magnetic Field Investigation
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2014-01-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.
Cosmic Magnetic Fields - An Overview
NASA Astrophysics Data System (ADS)
Wielebinski, Richard; Beck, Rainer
Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.
NASA Astrophysics Data System (ADS)
Deák, A.; Simon, E.; Balogh, L.; Szunyogh, L.; dos Santos Dias, M.; Staunton, J. B.
2014-06-01
We develop a self-consistent relativistic disordered local moment (RDLM) scheme aimed at describing finite-temperature magnetism of itinerant metals from first principles. Our implementation in terms of the Korringa-Kohn-Rostoker multiple-scattering theory and the coherent potential approximation allows us to relate the orientational distribution of the spins to the electronic structure, thus a self-consistent treatment of the distribution is possible. We present applications for bulk bcc Fe, L10-FePt, and FeRh ordered in the CsCl structure. The calculations for Fe show significant variation of the local moments with temperature, whereas according to the mean-field treatment of the spin fluctuations the Curie temperature is overestimated. The magnetic anisotropy of FePt alloys is found to depend strongly on intermixing between nominally Fe and Pt layers, and it shows a power-law behavior as a function of magnetization for a broad range of chemical disorder. In the case of FeRh we construct a lattice constant vs temperature phase diagram and determine the phase line of metamagnetic transitions based on self-consistent RDLM free-energy curves.
Magnetic field synthesis for microwave magnetics
NASA Astrophysics Data System (ADS)
Morgenthaler, F. R.
1982-04-01
The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.
Magnetic field structure evolution in rotating magnetic field plasmas
Petrov, Yuri; Yang Xiaokang; Huang, T.-S.
2008-07-15
A study of magnetic field structure evolution during 40-ms plasma discharge has been performed in a new device with 80 cm long/40 cm diameter cylindrical chamber, in which a plasma current I{sub p}{approx_equal}2 kA was driven and sustained by a rotating magnetic field. The main focus of the experiments is on how the changes in externally applied magnetic field affect the current profile and magnetic field in plasma. During plasma discharge, a pulse current was briefly fed to a magnetic coil located at the midplane (middle coil). The magnetic field in cross section of plasma was scanned with pickup probes. Two regimes were studied: without and with an external toroidal field (TF) produced by axial I{sub z} current. With a relatively small current (I{sub m} {<=} 600 A) in the middle coil, the plasma current is boosted up to 5 kA. The magnetic flux surfaces become extended along the axial Z direction, sometimes with the formation of doublet shape plasma. The regime without TF appears to be less stable, presumably due to the reversal of plasma current in central area of plasma column.
Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai
2015-05-29
We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less
Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai
2015-05-29
We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.
NASA Astrophysics Data System (ADS)
Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai
2015-06-01
We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.
NASA Astrophysics Data System (ADS)
Haba, Z.
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed. PMID:19391727
PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS
Yamamoto, Tetsuya T.; Kusano, K.
2012-06-20
Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.
Lattice Study of Magnetic Catalysis in Graphene Effective Field Theory
NASA Astrophysics Data System (ADS)
Winterowd, Christopher; Detar, Carleton; Zafeiropoulos, Savvas
2016-03-01
The discovery of graphene ranks as one of the most important developments in condensed matter physics in recent years. As a strongly interacting system whose low-energy excitations are described by the Dirac equation, graphene has many similarities with other strongly interacting field theories, particularly quantum chromodynamics (QCD). Graphene, along with other relativistic field theories, have been predicted to exhibit spontaneous symmetry breaking (SSB) when an external magnetic field is present. Using nonperturbative methods developed to study QCD, we study the low-energy effective field theory (EFT) of graphene subject to an external magnetic field. We find strong evidence supporting the existence of SSB at zero-temperature and characterize the dependence of the chiral condensate on the external magnetic field. We also present results for the mass of the Nambu-Goldstone boson and the dynamically generated quasiparticle mass that result from the SSB.
Dynamically important magnetic fields near accreting supermassive black holes.
Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A
2014-06-01
Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets. PMID:24899311
Rotating superconductor magnet for producing rotating lobed magnetic field lines
Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.
1978-01-01
This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.
Preflare magnetic and velocity fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.
1986-01-01
A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares
Cyclotron resonance in an inhomogeneous magnetic field
Albert, J.M. )
1993-08-01
Relativistic test particles interacting with a small monochromatic electromagnetic wave are studied in the presence of an inhomogeneous background magnetic field. A resonance-averaged Hamiltonian is derived which retains the effects of passage through resonance. Two distinct regimes are found. In the strongly inhomogeneous case, the resonant phase angle at successive resonances is random, and multiple resonant interactions lead to a random walk in phase space. In the other, adiabatic limit, the phase angle is determined by the phase portrait of the Hamiltonian and leads to a systematic change in the appropriate canonical action (and therefore in the energy and pitch angle), so that the cumulative effect increases directly with the number of resonances.
Magnetic Field of Strange Dwarfs
NASA Astrophysics Data System (ADS)
Baghdasaryan, D. S.
2016-03-01
The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.
Magnetic fields and scintillator performance
Green, D.; Ronzhin, A.; Hagopian, V.
1995-06-01
Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.
AC photovoltaic module magnetic fields
Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.
1997-12-31
Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.
Magnetoconvection in sheared magnetic fields
Bian, N. H.; Garcia, O. E.
2008-10-15
The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.
Stable solitary waves in super dense plasmas at external magnetic fields
NASA Astrophysics Data System (ADS)
Ghaani, Azam; Javidan, Kurosh; Sarbishaei, Mohsen
2015-07-01
Propagation of localized waves in a Fermi-Dirac distributed super dense matter at the presence of strong external magnetic fields is studied using the reductive perturbation method. We have shown that stable solitons can be created in such non-relativistic fluids in the presence of an external magnetic field. Such solitary waves are governed by the Zakharov-Kuznetsov (ZK) equation. Properties of solitonic solutions are studied in media with different values of background mass density and strength of magnetic field.
López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, J. Alejandro
2014-09-15
We use a kinetic treatment to study the linear transverse dispersion relation for a magnetized isotropic relativistic electron-positron plasma with finite relativistic temperature. The explicit linear dispersion relation for electromagnetic waves propagating along a constant background magnetic field is presented, including an analytical continuation to the whole complex frequency plane for the case of Maxwell-Jüttner velocity distribution functions. This dispersion relation is studied numerically for various temperatures. For left-handed solutions, the system presents two branches, the electromagnetic ordinary mode and the Alfvén mode. In the low frequency regime, the Alfvén branch has two dispersive zones, the normal zone (where ∂ω/∂k > 0) and an anomalous zone (where ∂ω/∂k < 0). We find that in the anomalous zone of the Alfvén branch, the electromagnetic waves are damped, and there is a maximum wave number for which the Alfvén branch is suppressed. We also study the dependence of the Alfvén velocity and effective plasma frequency with the temperature. We complemented the analytical and numerical approaches with relativistic full particle simulations, which consistently agree with the analytical results.
Gamma-Ray Bursts as Sources of Strong Magnetic Fields
NASA Astrophysics Data System (ADS)
Granot, Jonathan; Piran, Tsvi; Bromberg, Omer; Racusin, Judith L.; Daigne, Frédéric
2015-10-01
Gamma-Ray Bursts (GRBs) are the strongest explosions in the Universe, which due to their extreme character likely involve some of the strongest magnetic fields in nature. This review discusses the possible roles of magnetic fields in GRBs, from their central engines, through the launching, acceleration and collimation of their ultra-relativistic jets, to the dissipation and particle acceleration that power their γ-ray emission, and the powerful blast wave they drive into the surrounding medium that generates their long-lived afterglow emission. An emphasis is put on particular areas in which there have been interesting developments in recent years.
Bioluminescence under static magnetic fields
NASA Astrophysics Data System (ADS)
Iwasaka, M.; Ueno, S.
1998-06-01
In the present study, the effect of magnetic fields on the emission of light by a living system was studied. The fireflies Hotaria parvula and Luciola cruciata were used as the bioluminescence systems. The firefly light organ was fixed at the edge of an optical fiber. The emitted light was introduced into a single-channel photon-counting system using an optical fiber. We measured both the spectrum of a constant light emission and, the time course of bioluminescence pulses. Two horizontal-type superconducting magnets, which produced 8 and 14 T magnetic fields at their center, were used as the magnetic-field generators. We also carried out an in vitro study of bioluminescence. The enzymatic activity of luciferase was measured under a 14 T magnetic field. We measured emission spectra of bioluminescence over the interval 500-600 nm at 25 °C in a stable emission state. It was observed that the peak wavelength around 550 nm shifted to 560 nm under a 14 T magnetic field. However, the effects of magnetic fields were not significant. Also, we measured the time course of emissions at 550 nm in a transient emission state. The rate in the light intensity under a 14 T magnetic field increased compared to the control. There is a possibility that the change in the emission intensities under a magnetic field is related to a change in the biochemical systems of the firefly, such as the enzymatic process of luciferase and the excited singlet state with subsequent light emission.
Magnetic field structure of Mercury
NASA Astrophysics Data System (ADS)
Hiremath, K. M.
2012-04-01
Recently planet Mercury - an unexplored territory in our solar system - has been of much interest to the scientific community due to recent flybys of the spacecraft MESSENGER that discovered its intrinsic stationary and large-scale dipole like magnetic field structure with an intensity of ˜300nT confirming Mariner 10 observations. In the present study, with the observed constraint of Mercury's atmospheric magnetic field structure, internal magnetic field structure is modeled as a solution of magnetic diffusion equation. In this study, Mercury's internal structure mainly consists of a stable stratified fluid core and the convective mantle. For simplicity, magnetic diffusivity in both parts of the structure is considered to be uniform and constant with a value represented by a suitable averages. It is further assumed that vigorous convection in the mantle disposes of the electric currents leading to a very high diffusivity in that region. Thus, in order to satisfy observed atmospheric magnetic field structure, Mercury's most likely magnetic field structure consists of a solution of MHD diffusion equation in the core and a combined multipolar (dipole and quadrupole like magnetic field structures embedded in the uniform field) solution of a current free like magnetic field structure in the mantle and in the atmosphere. With imposition of appropriate boundary conditions at the core-mantle boundary for the first two diffusion eigen modes, in order to satisfy the observed field structure, present study puts the constraint on Mercury's core radius to be ˜2000km. From the estimated magnetic diffusivity and the core radius, it is also possible to estimate the two diffusion eigen modes with their diffusion time scales of ˜8.6 and 3.7 billion years respectively suggesting that the planet inherits its present-day magnetic field structure from the solar Nebula. It is proposed that permanency of such a large-scale magnetic field structure of the planet is attained during
Magnetic Field Generation in Stars
NASA Astrophysics Data System (ADS)
Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan
2015-10-01
Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.
Modified Fermi energy of electrons in a superhigh magnetic field
NASA Astrophysics Data System (ADS)
Zhu, Cui; Gao, Zhi Fu; Li, Xiang Dong; Wang, Na; Yuan, Jian Ping; Peng, Qiu He
2016-04-01
In this paper, we investigate the electron Landau level stability and its influence on the electron Fermi energy, EF(e), in the circumstance of magnetars, which are powered by magnetic field energy. In a magnetar, the Landau levels of degenerate and relativistic electrons are strongly quantized. A new quantity gn, the electron Landau level stability coefficient is introduced. According to the requirement that gn decreases with increasing the magnetic field intensity B, the magnetic field index β in the expression of EF(e) must be positive. By introducing the Dirac-δ function, we deduce a general formulae for the Fermi energy of degenerate and relativistic electrons, and obtain a particular solution to EF(e) in a superhigh magnetic field (SMF). This solution has a low magnetic field index of β = 1/6, compared with the previous one, and works when ρ ≥ 107g cm-3 and Bcr ≪ B ≤ 1017 Gauss. By modifying the phase space of relativistic electrons, a SMF can enhance the electron number density ne, and decrease the maximum of electron Landau level number, which results in a redistribution of electrons. According to Pauli exclusion principle, the degenerate electrons will fill quantum states from the lowest Landau level to the highest Landau level. As B increases, more and more electrons will occupy higher Landau levels, though gn decreases with the Landau level number n. The enhanced ne in a SMF means an increase in the electron Fermi energy and an increase in the electron degeneracy pressure. The results are expected to facilitate the study of the weak-interaction processes inside neutron stars and the magnetic-thermal evolution mechanism for magnetars.
Relativistic central-field Green's functions for the RATIP package
NASA Astrophysics Data System (ADS)
Koval, Peter; Fritzsche, Stephan
2005-11-01
From perturbation theory, Green's functions are known for providing a simple and convenient access to the (complete) spectrum of atoms and ions. Having these functions available, they may help carry out perturbation expansions to any order beyond the first one. For most realistic potentials, however, the Green's functions need to be calculated numerically since an analytic form is known only for free electrons or for their motion in a pure Coulomb field. Therefore, in order to facilitate the use of Green's functions also for atoms and ions other than the hydrogen-like ions, here we provide an extension to the RATIP program which supports the computation of relativistic (one-electron) Green's functions in an—arbitrarily given—central-field potential V(r). Different computational modes have been implemented to define these effective potentials and to generate the radial Green's functions for all bound-state energies E<0. In addition, care has been taken to provide a user-friendly component of the RATIP package by utilizing features of the Fortran 90/95 standard such as data structures, allocatable arrays, or a module-oriented design. Program summaryTitle of program:XGREENS Catalogue number: ADWM Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWM Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computer for which the new version has been tested: PC Pentium II, III, IV, Athlon Installations: University of Kassel (Germany) Operating systems: SuSE Linux 8.2, SuSE Linux 9.0 Program language used in the new version: ANSI standard Fortran 90/95 Memory required to execute with typical data: On a standard grid (400 nodes), one central-field Green's function requires about 50 kBytes in RAM while approximately 3 MBytes are needed if saved as two-dimensional array on some external disc space No. of bits in a word: Real variables of double- and quad-precision are used Peripheral used: Disk for input
Measuring Earth's Magnetic Field Simply.
ERIC Educational Resources Information Center
Stewart, Gay B.
2000-01-01
Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)
eRMHD simulations of jets with helical magnetic fields
NASA Astrophysics Data System (ADS)
Roca-Sogorb, M.; Perucho, M.; Gómez, J. L.; Martí, J. M.; Antón, L.; Aloy, M. A.; Agudo, I.
We present numerical magnetohydrodynamic and emission (eRMHD) simulations of relativistic jets in active galactic nuclei. We focus our study on the role played by the magnetic field in the dynamics of the jet, analyzing the balance of the main driving forces which determine the jet evolution. Overpressured jets with different magnetizations are considered in order to study their influence in the jet collimation, confinement and overall stability. Computation of the synchrotron emission from these models allows a direct comparison with actual sources. We find that the relative brightness of the knots associated with the recollimation shocks decreases with increasing magnetization, suggesting that overpressured jets presenting stationary components may have a relatively weak magnetization, with magnetic fields of the order of equipartition or below.
Polarization in cyclotron radiation in strong magnetic fields
NASA Astrophysics Data System (ADS)
Semionova, Luidmila; Leahy, Denis; Paez, Jorge
2010-10-01
We revisit the problem of radiative transitions of electrons in the presence of a strong magnetic field. We derive fully relativistic cyclotron transition rates for an arbitrary magnetic field, for any orientation of electron spin and for any polarization of the emitted radiation. Also, we obtain the transition rates for any value of the initial electron's parallel momentum. For very strong magnetic fields, transitions to the ground state predominate. Transition rates summed over the electron's spin orientation and for unpolarized radiation are also obtained, which confirm previous results by Latal. Transition widths are calculated for different electron spin orientations and different polarizations of radiation. We obtain general expressions for transition rates that reduce to the results for the non-relativistic case and for unpolarized radiation. Additionally we get, for the non-relativistic approximation, the transition rates for any polarization of radiation. As an application, the first five emission lines are evaluated and compared to the X-ray emitting neutron star V0332+53, which has multiple observable cyclotron lines, taking into account gravitational redshift. The most probable polarization is in(2).
NASA Technical Reports Server (NTRS)
Ness, N. F.
1977-01-01
The Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The first and third encounters provided detailed observations of a well-developed detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field and a modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as earth, tilted 12 deg from the rotation axis. The magnetic moment corresponds to an undistorted equatorial field intensity of 350 gammas, approximately 1% of earth's. The field, while unequivocally intrinsic to the planet, may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. The latter possibility appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature differentiated planetary interior with a large core (core radius about 0.7 Mercury radius) and a record of the history of planetary formation in the magnetization of the crustal rocks.
Optical sensor of magnetic fields
Butler, M.A.; Martin, S.J.
1986-03-25
An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.
Dissipation in Relativistic Pair-Plasma Reconnection
NASA Technical Reports Server (NTRS)
Hesse, Michael; Zenitani, Seiji
2007-01-01
We present an investigation of the relativistic dissipation in magnetic reconnection. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. We analyze a set of numerical simulations, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For anti-parallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.
Dissipation in relativistic pair-plasma reconnection
Hesse, Michael; Zenitani, Seiji
2007-11-15
An investigation into the relativistic dissipation in magnetic reconnection is presented. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. A set of numerical simulations is analyzed, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For antiparallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.
Field Quality Analysis as a Tool to Monitor Magnet Production
Gupta, R.; Anerella, M.; Cozzolino, J.; Fisher, D.; Ghosh, A.; Jain, A.; Sampson, W.; Schmalzle, J.; Thompson, P.; Wanderer, P.; Willen, E.
1997-10-18
Field harmonics offer a powerful tool to examine the mechanical structure of accelerator magnets. A large deviation from the nominal values suggests a mechanical defect. Magnets with such defects are likely to have a poor quench performance. Similarly, a trend suggests a wear in tooling or a gradual change in the magnet assem-bly or in the size of a component. This paper presents the use of the field quality as a tool to monitor the magnet production of the Relativistic Heavy Ion Collider (RHIC). Several examples are briefly described. Field quality analysis can also rule out a suspected geometric error if it can not be supported by the symmetry and the magnitude of the measured harmonics.
On the perpendicular propagating modes in the ultra-relativistic weakly magnetized plasma
Abbas, Gohar; Iqbal, Z.; Murtaza, G.
2015-03-15
The dispersion relations for the weakly magnetized perpendicular propagating modes (O-mode, X-mode, and upper hybrid mode) based on the ultra-relativistic Fermi-Dirac distribution function with chemical potential are derived using the Vlasov–Maxwell model. The results are presented in terms of Polylog functions without making any approximation. It is found that as the ratio μ/T is increased, the cutoff points shift downward. A comparison is also performed with the previously derived results for ultra-relativistic Maxwellian distribution.
Magnetic field induced dynamical chaos
Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra
2013-12-15
In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.
NASA Astrophysics Data System (ADS)
Rusakova, I. L.; Rusakov, Yu Yu; Krivdin, L. B.
2016-04-01
The theoretical grounds of the modern relativistic methods for quantum chemical calculation of spin–spin coupling constants in nuclear magnetic resonance spectra are considered. Examples and prospects of application of relativistic calculations of these constants in the structural studies of organic and heteroorganic compounds are discussed. Practical recommendations on relativistic calculations of spin–spin coupling constants using the available software are given. The bibliography includes 622 references.
Magnetic fields in quiescent prominences
NASA Technical Reports Server (NTRS)
Van Ballegooijen, A. A.; Martens, P. C. H.
1990-01-01
The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.
Magnetic fields in ring galaxies
NASA Astrophysics Data System (ADS)
Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.
2016-07-01
Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.
Turbulent Magnetic Field Amplification behind Strong Shock Waves in GRB and SNR
NASA Astrophysics Data System (ADS)
Inoue, Tsuyoshi
2012-09-01
Using three-dimensional (special relativistic) magnetohydrodynamics simulations, the amplification of magnetic field behind strong shock wave is studied. In supernova remnants and gamma-ray bursts, strong shock waves propagate through an inhomogeneous density field. When the shock wave hit a density bump or density dent, the Richtmyer-Meshkov instability is induced that cause a deformation of the shock front. The deformed shock leaves vorticity behind the shock wave that amplifies the magnetic field due to the stretching of field lines.
NASA Astrophysics Data System (ADS)
Zaccari, D. G.; Ruiz de Azúa, M. C.; Melo, J. I.; Giribet, C. G.
2006-02-01
In the present work a set of formal relations connecting different approaches to calculate relativistic effects on magnetic molecular properties are proven. The linear response (LR) within the elimination of the small component (ESC), Breit Pauli, and minimal-coupling approaches are compared. To this end, the leading order ESC reduction of operators within the minimal-coupling four-component approach is carried out. The equivalence of all three approaches within the ESC approximation is proven. It is numerically verified for the NMR nuclear-magnetic shielding tensor taking HX and CH3X (X =Br,I) as model compounds. Formal relations proving the gauge origin invariance of the full relativistic effect on the NMR nuclear-magnetic shielding tensor within the LR-ESC approach are presented.
Magnetic Fields in Stellar Jets
NASA Astrophysics Data System (ADS)
Hartigan, Patrick; Frank, Adam; Varniére, Peggy; Blackman, Eric G.
2007-06-01
Although several lines of evidence suggest that jets from young stars are driven magnetically from accretion disks, existing observations of field strengths in the bow shocks of these flows imply that magnetic fields play only a minor role in the dynamics at these locations. To investigate this apparent discrepancy we performed numerical simulations of expanding magnetized jets with stochastically variable input velocities with the AstroBEAR MHD code. Because the magnetic field B is proportional to the density n within compression and rarefaction regions, the magnetic signal speed drops in rarefactions and increases in the compressed areas of velocity-variable flows. In contrast, B~n0.5 for a steady state conical flow with a toroidal field, so the Alfvén speed in that case is constant along the entire jet. The simulations show that the combined effects of shocks, rarefactions, and divergent flow cause magnetic fields to scale with density as an intermediate power 1>p>0.5. Because p>0.5, the Alfvén speed in rarefactions decreases on average as the jet propagates away from the star. Hence, a typical Alfvén velocity in the jet close to the star is significantly larger than it is in the rarefactions ahead of bow shocks at larger distances. We find that the observed values of weak fields at large distances are consistent with strong fields required to drive the observed mass loss close to the star. Typical velocity perturbations, which form shocks at large distances, will produce only magnetic waves close to the star. For a typical stellar jet the crossover point inside which velocity perturbations of 30-40 km s-1 no longer produce shocks is ~300 AU from the source.
Hysteresis in rotation magnetic field
NASA Astrophysics Data System (ADS)
Ivanyi, Amalia
2000-01-01
The different properties of the vector Jiles-Atherton hysteresis operator is proved under forced H- and B-field supply. Feeding the magnetic material with alternating and circular polarised rotational excitation, the different properties of the model under the input field intensity and the flux density are investigated and the results are proved in figures.
MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.
JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.
2004-10-03
Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.
Relativistic mean-field hadronic models under nuclear matter constraints
NASA Astrophysics Data System (ADS)
Dutra, M.; Lourenço, O.; Avancini, S. S.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Providência, C.; Typel, S.; Stone, J. R.
2014-11-01
Background: The microscopic composition and properties of infinite hadronic matter at a wide range of densities and temperatures have been subjects of intense investigation for decades. The equation of state (EoS) relating pressure, energy density, and temperature at a given particle number density is essential for modeling compact astrophysical objects such as neutron stars, core-collapse supernovae, and related phenomena, including the creation of chemical elements in the universe. The EoS depends not only on the particles present in the matter, but, more importantly, also on the forces acting among them. Because a realistic and quantitative description of infinite hadronic matter and nuclei from first principles in not available at present, a large variety of phenomenological models has been developed in the past several decades, but the scarcity of experimental and observational data does not allow a unique determination of the adjustable parameters. Purpose: It is essential for further development of the field to determine the most realistic parameter sets and to use them consistently. Recently, a set of constraints on properties of nuclear matter was formed and the performance of 240 nonrelativistic Skyrme parametrizations was assessed [M. Dutra et al., Phys. Rev. C 85, 035201 (2012), 10.1103/PhysRevC.85.035201] in describing nuclear matter up to about three times nuclear saturation density. In the present work we examine 263 relativistic-mean-field (RMF) models in a comparable approach. These models have been widely used because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality, and, therefore, no problems related to superluminal speed of sound in medium. Method: Three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives were used. The
Axial translation of field-reversing relativistic electron rings
NASA Astrophysics Data System (ADS)
Rej, D. J.
1981-08-01
As a consequence of experiments: (1) rings were generated for the first time in a low pressure ambient neutral gas (-10 mTorr H1 and D2), increasing their collisionally limited field-reversal times to over 1 millisecond or more than five times over that previously observed; (2) the first experimental test of adiabatic magnetic compression resulted in greater than factor of ten increases in the ring kinetic energy densities; and (3) two axially separted nonfield-reversed rings, generated from a single accelerator pulse, were successfully combined or stacked to form one field-reversed ring. A quantitative analysis of the translation data is made using retarding force calculations. The rings moved axially at the terminal speed associated with a balance between the accelerating and retarding forces. Conditions were found where the major contribution to the retarding force was due to either the resistive wall or plasma currents. The wall (plasma) force dominated when the rings were moved through the low (high) pressure background gas and inside of the higher (lower) conductivity wall.
Magnetic field fluctuations during substorms
NASA Technical Reports Server (NTRS)
Fairfield, D. H.
1971-01-01
Before a magnetospheric substorm and during its early phases the magnetic field magnitude in the geomagnetic tail increases and field lines in the nighttime hemisphere assume a more tail-like configuration. Before the substorm onset a minimum amount of magnetic flux is observed to cross the neutral sheet which means that the neutral sheet currents attain their most earthward locations and their greatest current densities. This configuration apparently results from an increased transport of magnetic flux to the tail caused by a southward interplanetary magnetic field. The field begins relaxing toward a more dipolar configuration at the time of a substorm onset with the recovery probably occurring first between 6 and 10 R sub E. This recovery must be associated with magnetospheric convection which restores magnetic flux to the dayside hemisphere. Field aligned currents appear to be required to connect magnetospheric currents to the auroral electrojets, implying that a net current flows in a limited range of longitudes. Space measurements supporting current systems are limited. More evidence exists for the occurrence of double current sheets which do not involve net current at a given longitude.
NASA Astrophysics Data System (ADS)
Koide, Shinji; Shibata, Kazunari; Kudoh, Takahiro
1998-03-01
The radio observations have revealed the compelling evidence of the existence of relativistic jets not only from active galactic nuclei but also from ``microquasars'' in our Galaxy. In the cores of these objects, it is believed that a black hole exists and that violent phenomena occur in the black hole magnetosphere, forming the relativistic jets. To simulate the jet formation in the magnetosphere, we have newly developed the general relativistic magnetohydrodynamic code. Using the code, we present a model of these relativistic jets, in which magnetic fields penetrating the accretion disk around a black hole play a fundamental role of inducing nonsteady accretion and ejection of plasmas. According to our simulations, a jet is ejected from a close vicinity to a black hole (inside 3rS, where rS is the Schwarzschild radius) at a maximum speed of ~90% of the light velocity (i.e., a Lorentz factor of ~2). The jet has a two-layered shell structure consisting of a fast gas pressure-driven jet in the inner part and a slow magnetically driven jet in the outer part, both of which are collimated by the global poloidal magnetic field penetrating the disk. The former jet is a result of a strong pressure increase due to shock formation in the disk through fast accretion flow (``advection-dominated disk'') inside 3rS, which has never been seen in the nonrelativistic calculations.
FIELD QUALITY IMPROVEMENTS IN SUPERCONDUCTING MAGNETS FOR RHIC.
GUPTA,R.; JAIN,A.; KAHN,S.; MORGAN,G.; THOMPSON,P.; WANDERER,P.; WILLEN,E.
1994-06-27
A number of techniques have been developed and tested to improve the field quality in the superconducting dipole and quadrupole magnets to be used in the Relativistic Heavy Ion Collider (RHIC). These include adjustment in the coil midplane gap to compensate for the allowed and non-allowed harmonics, inclusion of holes and cutouts in the iron yoke to reduce the saturation-induced harmonics, and magnetic tuning shims to correct for the residual errors. We compare the measurements with the calculations to test the validity of these concepts.
Indoor localization using magnetic fields
NASA Astrophysics Data System (ADS)
Pathapati Subbu, Kalyan Sasidhar
Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing
NASA Astrophysics Data System (ADS)
Popov, Aleksey
2013-04-01
The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws
NASA Astrophysics Data System (ADS)
Medvedev, Mikhail
2010-02-01
An extensive body of studies indicate that small-scale (sub-Larmor-scale) magnetic turbulence are produced at relativistic shocks, in reconnection events and other high-energy density environments. Here we present a general description of radiation produced by relativistic electrons moving in such fields and stress its non-synchrotron spectral characteristics. We illustrate the results with spectral data from gamma-ray burst observations. )
Observations of Mercury's magnetic field
NASA Technical Reports Server (NTRS)
Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.
1975-01-01
Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.
Mars Crustal Magnetic Field Remnants
NASA Technical Reports Server (NTRS)
2001-01-01
The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.
This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.
The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.
These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.
The magnetic field of the Milky Way
NASA Astrophysics Data System (ADS)
Reid, Mark J.
Models of the magnetic field configuration of the Milky Way are reviewed. Current analyses of rotation measure data suggest that the Milky Way possesses a bisymmetric-like spiral magnetic field, that field reversals among spiral arms exist, and that the magnetic spiral may not closely match the mass spiral structure. Zeeman measurements of OH masers may provide alternative magnetic field information.
Satellite to study earth's magnetic field
NASA Technical Reports Server (NTRS)
1979-01-01
The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.
Relativistic electron distribution function of a plasma in a near-critical electric field
Sandquist, P.; Sharapov, S. E.; Helander, P.; Lisak, M.
2006-07-15
A corrected relativistic collision operator is used to derive a Fokker-Planck equation for the distribution function of relativistic suprathermal electrons in a weakly relativistic plasma, which is then solved by a procedure similar to that employed in Connor and Hastie [Nucl. Fusion 15, 415 (1975)]. Analytical expressions are derived for the electron distribution function in plasmas with the electric field close to critical, which is typical of plasmas with grassy sawteeth on the Joint European Torus. A numerical solution is used for determining the normalization constant, which matches the relativistic region onto the weakly relativistic region. It is found that the scaling of the runaway rate with the electric field obtained by Connor and Hastie is a good approximation in spite of their use of an incomplete form of the collision operator not conserving number of particles. The present analysis determines the proportionality constant and introduces corrections to the earlier scaling of the runaway rate with respect to the electric field. The results obtained for the electron distribution function constitute a basis for studies of experimentally observed phenomena in near-threshold electric field plasmas with a significant suprathermal electron population.
Chen, Hui; Heeter, R. F.; Link, A.; Fiksel, G.; Barnak, D.; Chang, P.-Y.; Meyerhofer, D. D.
2014-04-15
Collimation of positrons produced by laser-solid interactions has been observed using an externally applied axial magnetic field. The collimation leads to a narrow divergence positron beam, with an equivalent full width at half maximum beam divergence angle of 4° vs the un-collimated divergence of about 20°. A fraction of the laser-produced relativistic electrons with energies close to those of the positrons is collimated, so the charge imbalance ratio (n{sub e−}/n{sub e+}) in the co-propagating collimated electron-positron jet is reduced from ∼100 (no collimation) to ∼2.5 (with collimation). The positron density in the collimated beam increased from 5 × 10{sup 7} cm{sup −3} to 1.9 × 10{sup 9} cm{sup −3}, measured at the 0.6 m from the source. This is a significant step towards the grand challenge of making a charge neutral electron-positron pair plasma jet in the laboratory.
Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed
ERIC Educational Resources Information Center
Smith, Glenn S.
2011-01-01
The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…
Photospheric and coronal magnetic fields
Sheeley, N.R., Jr. )
1991-01-01
Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.
NASA Astrophysics Data System (ADS)
Zhong, J. Y.; Lin, J.; Li, Y. T.; Wang, X.; Li, Y.; Zhang, K.; Yuan, D. W.; Ping, Y. L.; Wei, H. G.; Wang, J. Q.; Su, L. N.; Li, F.; Han, B.; Liao, G. Q.; Yin, C. L.; Fang, Y.; Yuan, X.; Wang, C.; Sun, J. R.; Liang, G. Y.; Wang, F. L.; Ding, Y. K.; He, X. T.; Zhu, J. Q.; Sheng, Z. M.; Li, G.; Zhao, G.; Zhang, J.
2016-08-01
Laboratory experiments have been carried out to model the magnetic reconnection process in a solar flare with powerful lasers. Relativistic electrons with energy up to megaelectronvolts are detected along the magnetic separatrices bounding the reconnection outflow, which exhibit a kappa-like distribution with an effective temperature of ∼109 K. The acceleration of non-thermal electrons is found to be more efficient in the case with a guide magnetic field (a component of a magnetic field along the reconnection-induced electric field) than in the case without a guide field. Hardening of the spectrum at energies ≥500 keV is observed in both cases, which remarkably resembles the hardening of hard X-ray and γ-ray spectra observed in many solar flares. This supports a recent proposal that the hardening in the hard X-ray and γ-ray emissions of solar flares is due to a hardening of the source-electron spectrum. We also performed numerical simulations that help examine behaviors of electrons in the reconnection process with the electromagnetic field configurations occurring in the experiments. The trajectories of non-thermal electrons observed in the experiments were well duplicated in the simulations. Our numerical simulations generally reproduce the electron energy spectrum as well, except for the hardening of the electron spectrum. This suggests that other mechanisms such as shock or turbulence may play an important role in the production of the observed energetic electrons.
NASA Astrophysics Data System (ADS)
Zhong, J. Y.; Lin, J.; Li, Y. T.; Wang, X.; Li, Y.; Zhang, K.; Yuan, D. W.; Ping, Y. L.; Wei, H. G.; Wang, J. Q.; Su, L. N.; Li, F.; Han, B.; Liao, G. Q.; Yin, C. L.; Fang, Y.; Yuan, X.; Wang, C.; Sun, J. R.; Liang, G. Y.; Wang, F. L.; Ding, Y. K.; He, X. T.; Zhu, J. Q.; Sheng, Z. M.; Li, G.; Zhao, G.; Zhang, J.
2016-08-01
Laboratory experiments have been carried out to model the magnetic reconnection process in a solar flare with powerful lasers. Relativistic electrons with energy up to megaelectronvolts are detected along the magnetic separatrices bounding the reconnection outflow, which exhibit a kappa-like distribution with an effective temperature of ˜109 K. The acceleration of non-thermal electrons is found to be more efficient in the case with a guide magnetic field (a component of a magnetic field along the reconnection-induced electric field) than in the case without a guide field. Hardening of the spectrum at energies ≥500 keV is observed in both cases, which remarkably resembles the hardening of hard X-ray and γ-ray spectra observed in many solar flares. This supports a recent proposal that the hardening in the hard X-ray and γ-ray emissions of solar flares is due to a hardening of the source-electron spectrum. We also performed numerical simulations that help examine behaviors of electrons in the reconnection process with the electromagnetic field configurations occurring in the experiments. The trajectories of non-thermal electrons observed in the experiments were well duplicated in the simulations. Our numerical simulations generally reproduce the electron energy spectrum as well, except for the hardening of the electron spectrum. This suggests that other mechanisms such as shock or turbulence may play an important role in the production of the observed energetic electrons.
NASA Astrophysics Data System (ADS)
Horwitz, Lawrence; Hu, Bei-Lok; Lee, Da-Shin; Gill, Tepper; Land, Martin
2011-12-01
Although the subject of relativistic dynamics has been explored from both classical and quantum mechanical points of view since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anamolous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical realtivistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Linder et al (Phys. Rev. Lett. 95 0040401 (2005)) as well as the more recent work of Palacios et al (Phys. Rev. Lett. 103 253001 (2009)) and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg (Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)) could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular, local
Asenjo, Felipe A; Borotto, Felix A; Chian, Abraham C-L; Muñoz, Víctor; Valdivia, J Alejandro; Rempel, Erico L
2012-04-01
We develop a nonlinear theory for self-modulation of a circularly polarized electromagnetic wave in a relativistic hot weakly magnetized electron-positron plasma. The case of parallel propagation along an ambient magnetic field is considered. A nonlinear Schrödinger equation is derived for the complex wave amplitude of a self-modulated wave packet. We show that the maximum growth rate of the modulational instability decreases as the temperature of the pair plasma increases. Depending on the initial conditions, the unstable wave envelope can evolve nonlinearly to either periodic wave trains or solitary waves. This theory has application to high-energy astrophysics and high-power laser physics. PMID:22680585
Cosmological magnetic fields from inflation
NASA Astrophysics Data System (ADS)
Motta, Leonardo
In this thesis we review the methods for computation of cosmological correlations in the early universe known as the in-in formalism which are then applied to the problem of magnetogenesis from inflation. For this computation, a power-law single field slow- roll inflation is assumed together with a coupling of the form eφ/nuF μnuFμnu between the inflaton φ and the electrodynamical field strength Fμnu. For certain choice of parameters, the model produces a scale-invariant power spectrum that can be as high as 10-12 G at cosmological scales at present time. Finally, we compute the correlation between the magnetic field energy density and scalar metric fluctuations at tree-level from which the shape of the resulting non-gaussianity is analyzed.We show that the corresponding bispectrum is of order 10-5 times the power spectrum of magnetic fields.
Fast magnetic field annihilation driven by two laser pulses in underdense plasma
Gu, Y. J.; Kumar, D.; Weber, S.; Korn, G.; Klimo, O.; Bulanov, S. V.; Esirkepov, T. Zh.
2015-10-15
Fast magnetic annihilation is investigated by using 2.5-dimensional particle-in-cell simulations of two parallel ultra-short petawatt laser pulses co-propagating in underdense plasma. The magnetic field generated by the laser pulses annihilates in a current sheet formed between the pulses. Magnetic field energy is converted to an inductive longitudinal electric field, which efficiently accelerates the electrons of the current sheet. This new regime of collisionless relativistic magnetic field annihilation with a timescale of tens of femtoseconds can be extended to near-critical and overdense plasma with the ultra-high intensity femtosecond laser pulses.
Transverse Magnetic Field Propellant Isolator
NASA Technical Reports Server (NTRS)
Foster, John E.
2000-01-01
An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.
Crystal field and magnetic properties
NASA Technical Reports Server (NTRS)
Flood, D. J.
1977-01-01
Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.
A thermal distribution function for relativistic magnetically insulated electron flows
Desjarlais, M.P.; Sudan, R.N.
1986-05-01
A distribution function is presented that may be used to study the effects of finite temperature on the equilibrium and stability properties of magnetically insulated electron flows. This distribution function has the useful property that it generates the thoroughly studied class of constant Q = ..omega../sup 2//sub p//..cap omega../sup 2/ equilibria in its zero-temperature limit. Analytic solutions are given for the general, constant Q, zero-temperature equilibria.
NASA Astrophysics Data System (ADS)
Reity, O. K.; Reity, V. K.; Lazur, V. Yu.
2016-02-01
A recurrent scheme for finding the quasiclassical solution of the onedimensional equation obtained after the separation of variables in the Schrödinger equation in parabolic coordinates is derived. The method of quasiclassical localized states is developed for the Dirac equation with an arbitrary axially symmetric potential of barrier type which does not allow complete separation of the variables. By means of the proposed quasiclassical methods the non-relativistic and relativistic wavefunctions for hydrogenlike (H-like) atoms in an external uniform electrostatic field of intensity F are constructed in the classically forbidden and allowed regions. The general analytical expressions of the leading term of the asymptotic behaviour (at small F) of the ionization rate of an H-like atom in the uniform electrostatic field are obtained for the non-relativistic and relativistic cases.
Relativistic kinetic theory of magnetoplasmas
Beklemishev, Alexei; Nicolini, Piero; Tessarotto, Massimo
2005-05-16
Recently, an increasing interest in astrophysical as well as laboratory plasmas has been manifested in reference to the existence of relativistic flows, related in turn to the production of intense electric fields in magnetized systems. Such phenomena require their description in the framework of a consistent relativistic kinetic theory, rather than on relativistic MHD equations, subject to specific closure conditions. The purpose of this work is to apply the relativistic single-particle guiding-center theory developed by Beklemishev and Tessarotto, including the nonlinear treatment of small-wavelength EM perturbations which may naturally arise in such systems. As a result, a closed set of relativistic gyrokinetic equations, consisting of the collisionless relativistic kinetic equation, expressed in hybrid gyrokinetic variables, and the averaged Maxwell's equations, is derived for an arbitrary four-dimensional coordinate system.
General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies
NASA Technical Reports Server (NTRS)
Kopeikin, Sergei
2003-01-01
The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.
NASA Technical Reports Server (NTRS)
Mullan, D. J.
1974-01-01
The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.
High frequency electromagnetic modes in a weakly magnetized relativistic electron plasma
Abbas, Gohar; Murtaza, G.; Kingham, R. J.
2010-07-15
Using the linearized Vlasov-Maxwell model, the polarization tensor for a weakly magnetized electron plasma is derived. For isotropic relativistic Maxwellian velocity distribution function, dispersion relations are obtained for both parallel and perpendicular propagations. The integrals (called Meijer G functions) that arise due to relativistic effects are examined in various limits and dispersion relations are derived for the nonrelativistic, weakly, strongly, and ultrarelativistic Maxwellian velocity distributions. It is generally observed that the propagation domains of the modes are enlarged as one proceeds from the nonrelativistic to the highly relativistic regime. Resultantly, due to the relativistic effects, the Whistler mode is suppressed in the R-wave, the nonpropagation band of X-mode is reduced, and the X-mode itself approaches the O-mode. Further, the results derived in the ultra- and nonrelativistic limits found to be in agreement with the earlier calculations [G. Abbas et al. Phys. Scr. 76, 649 (2007); F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, New York, 1984), Vol. 1].
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1976-01-01
The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.
NASA Astrophysics Data System (ADS)
Popov, Aleksey
2013-04-01
The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws
Oxide superconductors under magnetic field
NASA Technical Reports Server (NTRS)
Kitazawa, K.
1990-01-01
One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.
Oxide superconductors under magnetic field
NASA Technical Reports Server (NTRS)
Kitazawa, K.
1991-01-01
One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.
Fractional dynamics of charged particles in magnetic fields
NASA Astrophysics Data System (ADS)
Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.
2016-02-01
In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.
NASA Astrophysics Data System (ADS)
Binz, Ernst; Schempp, Walter
2001-06-01
Quantum holography is a well established theory of mathematical physics based on harmonic analysis on the Heisenberg Lie group G. The geometric quantization is performed by projectivization of the complexified coadjoint orbit picture of the unitary dual Ĝ of G in order to achieve a geometric adjustment of the quantum scenario to special relativity theory. It admits applications to various imaging modalities such as synthetic aperture radar (SAR) in the microwave range, and, most importantly for the field of non-invasive medical diagnosis, to the clinical imaging modality of magnetic resonance tomography (MRI) in the radio frequency range. Quantum holography explains the quantum teleportation phenomemon through Einstein-Podolsky-Rosen (EPR) channels which is a consequence of the non-locality of phase coherent quantum field theory, the concept of absolute simultaneity of special relativity theory which provides the Einstein equivalence of energy and Fitzgerald-Lorentz dilated mass, and the perfect quantum holographic replication process of molecular genetic information processing. It specifically reveals what was before unobservable in quantum optics, namely the interference phenomena of matter wavelets of Bose-Einstein condensates, and what was before unobservable in special relativity, namely the light in flight (LIF) recording processing by ultrafast laser pulse trains. Finally, it provides a Lie group theoretical approach to the Kruskal coordinatized Schwarzschild manifold of relativistic cosmology with large scale applications to general relativity theory such as gravitational instanton symmetries and the theory of black holes. The direct spinorial detection of gravitational wavelets emitted by the binary radio pulsar PSR 1913+16 and known only by anticipatory system computation so far will also be based on the principles of quantum holography applied to very large array (VLA) radio interferometers. .
Radiation from Relativistic Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.
2008-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
NASA Technical Reports Server (NTRS)
Mizuno, Y.; Nishikawa, K.I.; Zhang, B.; Giacomazzo, B.; Hardee, P.E.; Nagataki, S.; Hartmann, D.H.
2008-01-01
We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta.
X-Ray Imaging of Ultrafast Magnetic Reconnection Driven by Relativistic Electrons
NASA Astrophysics Data System (ADS)
Raymond, Anthony; McKelvey, Andrew; Zulick, Calvin; Maksimchuk, Anatoly; Thomas, Alexander; Willingale, Louise; Chvykov, Vladimir; Yanovsky, Victor; Krushelnick, Karl
2014-10-01
Magnetic reconnection events driven by relativistic electrons are observed between two high intensity laser/plasma interaction sites. The two laser focuses were on average 20 μm FWHM containing 50 TW of power each, delivered with a split f/3 paraboloid onto copper foil targets at a focused intensity of 4×1018 W/cm2. A spherically bent k-alpha X-ray Bragg crystal was utilized to image the interactions, and by motorizing one half of the paraboloid vertically the focal separation was varied between 0-200 μm. While these k-alpha images demonstrated a ring structure surrounding a single focus (due to electrons returning from vacuum to the rear of the target surface), splitting the focuses revealed the rings of either spot interacting and enhancing between the focuses, evidencing magnetic reconnection driven by the relativistic electron currents. Imaging the transversely propagating electrons with a filtered LANEX screen demonstrated relativistic currents with spatial nonuniformities potentially directly originating from reconnection events, and varying target geometries were used to investigate the resulting effects on the spatial electron profiles. At present PIC simulations are being conducted to better understand and attempt to reproduce the measured electron outflow dynamics. Currently at: ELI Attosecond Light Pulse Source.
Confined Dirac fermions in a constant magnetic field
Jellal, Ahmed; Alhaidari, Abdulaziz D.; Bahlouli, Hocine
2009-07-15
We obtain an exact solution of the Dirac equation in (2+1) dimensions in the presence of a constant magnetic field normal to the plane together with a two-dimensional Dirac-oscillator potential coupling. The solution space consists of positive- and negative-energy solutions, each of which splits into two disconnected subspaces depending on the sign of an azimuthal quantum number k=0,{+-}1,{+-}2,... and whether the cyclotron frequency is larger or smaller than the oscillator frequency. The spinor wave function is written in terms of the associated Laguerre polynomials. For negative k, the relativistic energy spectrum is infinitely degenerate due to the fact that it is independent of k. We compare our results with already published work and point out the relevance of these findings to a systematic formulation of the relativistic quantum Hall effect in a confining potential.
B. Julia-Diaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, N. Suzuki
2009-04-01
Within the relativistic quantum field theory, we analyze the differences between the $\\pi N$ reaction models constructed from using (1) three-dimensional reductions of Bethe-Salpeter Equation, (2) method of unitary transformation, and (3) time-ordered perturbation theory. Their relations with the approach based on the dispersion relations of S-matrix theory are dicusssed.
Pion condensation in a relativistic field theory consistent with bulk properties of nuclear matter
Banerjee, B.; Glendenning, N. K.; Gyulassy, M.
1981-05-01
Pion condensation is investigated in a self-consistent. relativistic mean field theory that is constrained to reproduce the bulk properties of nuclear matter. This constraint and self-consistency provide stringent constraints on the existence and energy of the condensate.
NASA Astrophysics Data System (ADS)
Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.
2016-01-01
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.
Field errors in superconducting magnets
Barton, M. Q.
1982-01-01
The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.
The effect of ULF compressional modes and field line resonances on relativistic electron dynamics
NASA Astrophysics Data System (ADS)
Degeling, A. W.; Rankin, R.; Kabin, K.; Marchand, R.; Mann, I. R.
2007-04-01
The adiabatic, drift-resonant interaction between relativistic, equatorially mirroring electrons and a ULF compressional wave that couples to a field line resonance (FLR) is modelled. Investigations are focussed on the effect of azimuthal localisation in wave amplitude on the electron dynamics. The ULF wave fields on the equatorial plane (r, φ) are modelled using a box model [Zhu, X., Kivelson, M.G., 1988. Analytic formulation and quantitative solutions of the coupled ULF wave problem. J. Geophys. Res. 93(A8), 8602-8612], and azimuthal variations are introduced by adding a discrete spectrum of azimuthal modes. Electron trajectories are calculated using drift equations assuming constant magnetic moment M, and the evolution of the distribution function f(r,φ,M,t) from an assumed initial condition is calculated by assuming f remains constant along electron trajectories. The azimuthal variation in ULF wave structure is shown to have a profound effect on the electron dynamics once a threshold in azimuthal variation is exceeded. Electron energy changes occur that are significantly larger than the trapping width corresponding to the maximum wave amplitude. We show how this can be explained in terms of the overlap of multiple resonance islands, produced by the introduction of azimuthal amplitude variation. This anomalous energisation is characterised by performing parameter scans in the modulation amplitude ɛ and the wave electric field. A simple parametric model for the threshold is shown to give reasonable agreement with the threshold observed in the electron dynamics model. Above the threshold, the radial transport averaged over φ is shown to become diffusive in nature over a timescale of about 25 wave periods. The anomalous energisation described in this paper occurs over the first 15 wave periods, indicating the importance of convective transport in this process.
Simulations of Dynamical Friction Including Spatially-Varying Magnetic Fields
Bell, G. I.; Bruhwiler, D. L.; Busby, R.; Abell, D. T.; Messmer, P.; Veitzer, S.; Litvinenko, V. N.; Cary, J. R.
2006-03-20
A proposed luminosity upgrade to the Relativistic Heavy Ion Collider (RHIC) includes a novel electron cooling section, which would use {approx}55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions. We consider the dynamical friction force exerted on individual ions due to a relevant electron distribution. The electrons may be focussed by a strong solenoid field, with sensitive dependence on errors, or by a wiggler field. In the rest frame of the relativistic co-propagating electron and ion beams, where the friction force can be simulated for nonrelativistic motion and electrostatic fields, the Lorentz transform of these spatially-varying magnetic fields includes strong, rapidly-varying electric fields. Previous friction force simulations for unmagnetized electrons or error-free solenoids used a 4th-order Hermite algorithm, which is not well-suited for the inclusion of strong, rapidly-varying external fields. We present here a new algorithm for friction force simulations, using an exact two-body collision model to accurately resolve close interactions between electron/ion pairs. This field-free binary-collision model is combined with a modified Boris push, using an operator-splitting approach, to include the effects of external fields. The algorithm has been implemented in the VORPAL code and successfully benchmarked.
Magnetic fields in irregular galaxies
NASA Astrophysics Data System (ADS)
Chyzy, Krzysztof T.
Radio data of large irregular galaxies reveal some extended synchrotron emission with a substantial degree of polarization. In the case of NGC 4449 strong galaxy-scale regular magnetic fields were found, in spite of the lack of ordered rotation required for the conventional dynamo action. The rigidly rotating large irregular NGC 55 shows vertical polarized spurs connected with a network of ionized gas filaments. Small dwarf irregulars show only isolated polarized spots.
NASA Astrophysics Data System (ADS)
Horwitz, L. P.; Land, Martin C.; Gill, Tepper; Lusanna, Luca; Salucci, Paolo
2013-04-01
Although the subject of relativistic dynamics has been explored, from both classical and quantum mechanical points of view, since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anomalous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical relativistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Lindner et al [Physical Review Letters 95 0040401 (2005)] as well as the more recent proposal of Palacios et al [Phys. Rev. Lett. 103 253001 (2009)] and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg [Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)] could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular
Penning trap with an inclined magnetic field.
Yaremko, Yurij; Przybylska, Maria; Maciejewski, Andrzej J
2016-08-01
A modified Penning trap with a spatially uniform magnetic field B inclined with respect to the axis of rotational symmetry of the electrodes is considered. The inclination angle can be arbitrary. Canonical transformation of phase variables transforming the Hamiltonian of the considered system into a sum of three uncoupled harmonic oscillators is found. We determine the region of stability in space of two parameters controlling the dynamics: the trapping parameter κ and the squared sine of the inclination angle ϑ0. If the angle ϑ0 is smaller than 54°, a charge occupies a finite spatial volume within the processing chamber. A rigid hierarchy of trapping frequencies is broken if B is inclined at the critical angle: the magnetron frequency reaches the modified cyclotron frequency while the axial frequency exceeds them. Apart from this resonance, we reveal the family of resonant curves in the region of stability. In the relativistic regime, the system is not linear. We show that it is not integrable in the Liouville sense. The averaging over the fast variable allows to reduce the system to two degrees of freedom. An analysis of the Poincaré cross-sections of the averaged systems shows the regions of effective stability of the trap. PMID:27586614
Tecimer, M.; Elias, L.R.
1995-12-31
Lienard-Wiechert (LW) fields, which are exact solutions of the Wave Equation for a point charge in free space, are employed to formulate a self-consistent treatment of the electron beam dynamics and the evolution of the generated radiation in long undulators. In a relativistic electron beam the internal forces leading to the interaction of the electrons with each other can be computed by means of retarded LW fields. The resulting electron beam dynamics enables us to obtain three dimensional radiation fields starting from an initial incoherent spontaneous emission, without introducing a seed wave at start-up. Based on the formalism employed here, both the evolution of the multi-bucket electron phase space dynamics in the beam body as well as edges and the relative slippage of the radiation with respect to the electrons in the considered short bunch are naturally embedded into the simulation model. In this paper, we present electromagnetic radiation studies, including multi-bucket electron phase dynamics and angular distribution of radiation in the time and frequency domain produced by a relativistic short electron beam bunch interacting with a circularly polarized magnetic undulator.
Imaging Black Hole Magnetic Fields with the Event Horizon Telescope
NASA Astrophysics Data System (ADS)
Chael, Andrew; Doeleman, Sheperd; Johnson, Michael D.
2015-08-01
The Event Horizon Telescope is a global mm-wavelength Very Long Baseline Interferometry array which, when completed, will achieve a nominal resolution of 20 microarcseconds. Initial observations with three stations have detected Schwarzschild-radius-scale structure around the supermassive black holes in SgrA* and M87. Future, fully polarimetric EHT images of the synchrotron emission near supermassive black holes will reveal fine magnetic field structure, potentially illuminating the role of magnetic fields in driving black hole accretion and the connection between magnetic fields, black hole spin, and relativistic jets. I will review techniques for polarimetric VLBI imaging and present new image reconstruction techniques tailored for polarimetric EHT data. Application to synthetic data from simulations shows that the EHT will be able to image changing magnetic field structure on microarcsecond scales. I will also discuss applications to the variable magnetic fields that could power flares in Sgr A*. Finally, I will present initial results from application of these techniques to data from the 2013 EHT observing run.
Polymer gel dosimetry of an electron beam in the presence of a magnetic field
NASA Astrophysics Data System (ADS)
Vandecasteele, J.; De Deene, Y.
2013-06-01
The effect of a strong external magnetic field on 4 MeV electron beam was measured with polymer gel dosimetry. The measured entrance dose distribution was compared with a calculated fluence map. The magnetic field was created by use of two permanent Neodymium (NdFeB) magnets that were positioned perpendicular to the electron beam. The magnetic field between the magnets was measured with Hall sensors. Based on the magnetic field measurement and the law of Biot-Savart, the magnetic field distribution was extrapolated. Electron trajectories were calculated using a relativistic Lorentz force operator. Although the simplified computational model that was applied, the shape and position of the calculated entrance fluence map are found to be in good agreement with the measured dose distribution in the first layer of the phantom. In combination with the development of low density polymer gel dosimeters, these preliminary results show the potential of 3D gel dosimetry in MRI-linac applications.
Instability of Toroidal Magnetic Field in Jets and Plerions
NASA Astrophysics Data System (ADS)
Begelman, Mitchell C.
1998-01-01
Astrophysical jets and pulsar-fed supernova remnants (plerions) are expected to develop highly organized magnetic structures dominated by concentric loops of toroidal field, Bφ. It has been argued that such structures could explain the polarization properties of some jets and contribute to their lateral confinement through magnetic tension forces. A concentric toroidal field geometry is also central to the Rees-Gunn model for the Crab Nebula, the archetypal plerion, and leads to the deduction that the Crab pulsar's wind must have a weak magnetic field. Yet this kind of equilibrium between magnetic and gas pressure forces, the ``equilibrium Z-pinch'' of the controlled fusion literature, is well known to be susceptible to disruptive localized instabilities, even when the magnetic field is weak and/or boundary conditions (e.g., a dense external medium) slow or suppress global modes. Thus, the magnetic field structures imputed to the interiors of jets and plerions are unlikely to persist for very long. To determine the growth rates of Z-pinch instabilities under astrophysical conditions, I derive a dispersion relation that is valid for the relativistic fluids of which jets and plerions may be composed, in the ideal magnetohydrodynamics (MHD) limit. The dominant instabilities are kink (m = 1) and pinch (m = 0) modes. The former generally dominate, destroying the concentric field structure and probably driving the system toward a more chaotic state in which the mean field strength is independent of radius (and in which resistive dissipation of the field may be enhanced). I estimate the timescales over which the field structure is likely to be rearranged and relate these to distances along relativistic jets and radii from the central pulsar in a plerion. I conclude that the central tenet of the Rees-Gunn model for the Crab Nebula, the existence of a concentric toroidal field well outside the pulsar wind's termination shock, is physically unrealistic. With this assumption
Mesoscopic Superposition States in Relativistic Landau Levels
Bermudez, A.; Martin-Delgado, M. A.; Solano, E.
2007-09-21
We show that a linear superposition of mesoscopic states in relativistic Landau levels can be built when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily superpositions of coherent states involving the particle orbital quanta in a well-defined mesoscopic regime. We demonstrate that these mesoscopic superpositions have a purely relativistic origin and disappear in the nonrelativistic limit.
Comparing Magnetic Fields on Earth and Mars
This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...
Field quality aspects of CBA superconducting magnets
Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.
1983-01-01
A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.
Anisotropic Magnetism in Field-Structured Composites
Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene
1999-06-24
Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.
Measurements of Solar Vector Magnetic Fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J. (Editor)
1985-01-01
Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.
Magnetic holes in the solar wind. [(interplanetary magnetic fields)
NASA Technical Reports Server (NTRS)
Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.
1976-01-01
An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.
Relativistic magnetohydrodynamics in one dimension.
Lyutikov, Maxim; Hadden, Samuel
2012-02-01
We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation. PMID:22463331
William Detmold; Tiburzi, Brian C.; Walker-Loud, Andre
2010-03-01
Nucleon properties are investigated in background electric fields. As the magnetic moments of baryons affect their relativistic propagation in constant electric fields, electric polarizabilities cannot be determined without knowledge of magnetic moments. We devise combinations of baryon two-point functions in external electric fields to isolate both observables. Using an ensemble of anisotropic gauge configurations with dynamical clover fermions, we demonstrate how magnetic moments and electric polarizabilities can be determined from lattice QCD simulations in background electric fields. We obtain results for both the neutron and proton. Our study is currently limited to electrically neutral sea quarks.
Das, Upasana; Mukhopadhyay, Banibrata E-mail: bm@physics.iisc.ernet.in
2014-06-01
We address the issue of stability of recently proposed significantly super-Chandrasekhar white dwarfs. We present stable solutions of magnetostatic equilibrium models for super-Chandrasekhar white dwarfs pertaining to various magnetic field profiles. This has been obtained by self-consistently including the effects of the magnetic pressure gradient and total magnetic density in a general relativistic framework. We estimate that the maximum stable mass of magnetized white dwarfs could be more than 3 solar mass. This is very useful to explain peculiar, overluminous type Ia supernovae which do not conform to the traditional Chandrasekhar mass-limit.
Magnetic field generation during intense laser channelling in underdense plasma
NASA Astrophysics Data System (ADS)
Smyth, A. G.; Sarri, G.; Vranic, M.; Amano, Y.; Doria, D.; Guillaume, E.; Habara, H.; Heathcote, R.; Hicks, G.; Najmudin, Z.; Nakamura, H.; Norreys, P. A.; Kar, S.; Silva, L. O.; Tanaka, K. A.; Vieira, J.; Borghesi, M.
2016-06-01
Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few μm and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion.
Swarm: ESA's Magnetic Field Mission
NASA Astrophysics Data System (ADS)
Haagmans, R.; Menard, Y.; Floberghagen, R.; Plank, G.; Drinkwater, M. R.
2010-12-01
Swarm is the fifth Earth Explorer mission in ESA’s Living Planet Programme. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The Mission shall deliver data that allow access to new insights into the Earth system by improving our understanding of the Earth’s interior and near-Earth electro-magnetic environment. After release from a single launcher, a side-by-side flying slowly decaying lower pair of satellites will be released at an initial altitude of about 490 km together with a third satellite that will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations that are required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission aims to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the development phase, will be addressed. The mission is scheduled for launch in 2012.
Rotating copper plasmoid in external magnetic field
Pandey, Pramod K.; Thareja, Raj K.
2013-02-15
Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.
Kinetic turbulence in 3D collisionless magnetic reconnection with a guide magnetic field
NASA Astrophysics Data System (ADS)
Alejandro Munoz Sepulveda, Patricio; Kilian, Patrick; Jain, Neeraj; Büchner, Jörg
2016-04-01
The features of kinetic plasma turbulence developed during non-relativistic 3D collisionless magnetic reconnection are still not fully understood. This is specially true under the influence of a strong magnetic guide field, a scenario common in space plasmas such as in the solar corona and also in laboratory experiments such as MRX or VINETA II. Therefore, we study the mechanisms and micro-instabilities leading to the development of turbulence during 3D magnetic reconnection with a fully kinetic PIC code, emphasizing the role of the guide field with an initial setup suitable for the aforementioned environments. We also clarify the relations between these processes and the generation of non-thermal populations and particle acceleration.
Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field
Mauel, M; Ryutov, D; Kesner, J
2003-12-02
In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.
Primordial magnetic field limits from cosmological data
Kahniashvili, Tina; Tevzadze, Alexander G.; Sethi, Shiv K.; Pandey, Kanhaiya; Ratra, Bharat
2010-10-15
We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.
Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops
NASA Astrophysics Data System (ADS)
Sun, Fei; He, Sailing
2015-09-01
A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.
Cold atom simulation of interacting relativistic quantum field theories.
Cirac, J Ignacio; Maraner, Paolo; Pachos, Jiannis K
2010-11-01
We demonstrate that Dirac fermions self-interacting or coupled to dynamic scalar fields can emerge in the low energy sector of designed bosonic and fermionic cold atom systems. We illustrate this with two examples defined in two spacetime dimensions. The first one is the self-interacting Thirring model. The second one is a model of Dirac fermions coupled to a dynamic scalar field that gives rise to the Gross-Neveu model. The proposed cold atom experiments can be used to probe spectral or correlation properties of interacting quantum field theories thereby presenting an alternative to lattice gauge theory simulations. PMID:21231152
On the dynamic efficiency of internal shocks in magnetized relativistic outflows
NASA Astrophysics Data System (ADS)
Mimica, P.; Aloy, M. A.
2010-01-01
We study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We model internal shocks as being caused by collisions of shells of plasma with the same energy flux and a non-zero relative velocity. The contact surface, where the interaction between the shells takes place, can break up either into two oppositely moving shocks (in the frame where the contact surface is at rest), or into a reverse shock and a forward rarefaction. We find that for moderately magnetized shocks (magnetization σ ~= 0.1), the dynamic efficiency in a single two-shell interaction can be as large as 40 per cent. Thus, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. If the slower shell propagates with a sufficiently large velocity, the efficiency is only weakly dependent on its Lorentz factor. Consequently, the dynamic efficiency of shell interactions in the magnetized flow of blazars and gamma-ray bursts is effectively the same. These results are quantitatively rather independent on the equation of state of the plasma. The radiative efficiency of the process is expected to be a fraction fr < 1 of the estimated dynamic one, the exact value of fr depending on the particularities of the emission processes which radiate away the thermal or magnetic energy of the shocked states.
Interplanetary magnetic field data book
NASA Technical Reports Server (NTRS)
King, J. H.
1975-01-01
An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.
The Giotto magnetic field investigation
NASA Technical Reports Server (NTRS)
Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.
1983-01-01
The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.
NASA Astrophysics Data System (ADS)
Gómez, Sergio S.; Melo, Juan I.; Romero, Rodolfo H.; Aucar, Gustavo A.; de Azúa, Martín Ruiz
2005-02-01
We have calculated the relativistic corrections to the diamagnetic term of the nuclear magnetic shielding constants for a series of molecules containing heavy atoms. An analysis of the contributions from localized orbitals is performed. We establish quantitatively the relative importance of inner core and valence shell molecular orbitals in each correcting term. Contributions from the latter are much less important than those from the former. The calculated values of the correction σL-PSO, first derived within the linear response elimination of small component formalism, show a power-law dependence on the nuclear charge ˜Z3.5, in contrast with the ˜Z3.1 behavior of the mass-velocity external-field correction to the paramagnetic term previously reported.
On variational formulation of current drive problem in uniformly magnetized relativistic plasma
NASA Astrophysics Data System (ADS)
Hu, Y. M.; Hu, Y. J.
2016-01-01
A fully relativistic extension of the variational principle with the modified test function for the Spitzer function with momentum conservation in the electron-electron collision is investigated in uniformly magnetized plasma. The term of the momentum conserving constraint in Hirshman’s variational calculation is studied. The model developed is extended for arbitrary temperatures and covers exactly the asymptotic for u\\gg 1 when {{Z}\\text{eff}}\\gg 1 , and the results obtained are suited to facilitate the development of a rigorous variational formulation of current drive efficiency in tokamak plasma.
NASA Technical Reports Server (NTRS)
Kosmahl, H. G.
1982-01-01
A theoretical investigation of three dimensional relativistic klystron action is described. The relativistic axisymmetric equations of motion are derived from the time-dependent Lagrangian function for a charged particle in electromagnetic fields. An analytical expression of the fringing RF electric and magnetic fields within and in the vicinity of the interaction gap and the space-charge forces between axially and radially elastic deformable rings of charges are both included in the formulation. This makes an accurate computation of electron motion through the tunnel of the cavities and the drift tube spaces possible. Method of analysis is based on Lagrangian formulation. Bunching is computed using a disk model of electron stream in which the electron stream is divided into axisymmetric disks of equal charge and each disk is assumed to consist of a number of concentric rings of equal charges. The Individual representative groups of electrons are followed through the interaction gaps and drift tube spaces. Induced currents and voltages in interacting cavities are calculated by invoking the Shockley-Ramo theorem.
Anisotropy of photon production: initial eccentricity or magnetic field.
Bzdak, Adam; Skokov, Vladimir
2013-05-10
Recent measurements of the azimuthal anisotropy of direct photons in heavy-ion collisions at the energies of Relativistic Heavy Ion Collider show that it is of the same order as the hadronic one. This finding appears to contradict the expected dominance of photon production from a quark-gluon plasma at an early stage of a heavy-ion collision. A possible explanation of the strong azimuthal anisotropy of the photons, given recently, is based on the presence of a large magnetic field in the early phase of a collision. In this Letter, we propose a method to experimentally measure the degree to which a magnetic field in heavy-ion collisions is responsible for the observed anisotropy of photon production. The experimental test proposed in this Letter may potentially change our understanding of the nonequilibrium stage and possible thermalization in heavy-ion collisions. PMID:23705700
On the usefulness of relativistic space-times for the description of the Earth's gravitational field
NASA Astrophysics Data System (ADS)
Soffel, Michael; Frutos, Francisco
2016-07-01
The usefulness of relativistic space-times for the description of the Earth's gravitational field is investigated. A variety of exact vacuum solutions of Einstein's field equations (Schwarzschild, Erez and Rosen, Gutsunayev and Manko, Hernández-Pastora and Martín, Kerr, Quevedo, and Mashhoon) are investigated in that respect. It is argued that because of their multipole structure and influences from external bodies, all these exact solutions are not really useful for the central problem. Then, approximate space-times resulting from an MPM or post-Newtonian approximation are considered. Only in the DSX formalism that is of the first post-Newtonian order, all aspects of the problem can be tackled: a relativistic description (a) of the Earth's gravity field in a well-defined geocentric reference system (GCRS), (b) of the motion of solar system bodies in a barycentric reference system (BCRS), and (c) of inertial and tidal terms in the geocentric metric describing the external gravitational field. A relativistic SLR theory is also discussed with respect to our central problem. Orders of magnitude of many effects related to the Earth's gravitational field and SLR are given. It is argued that a formalism with accuracies better than of the first post-Newtonian order is not yet available.
Suppression of magnetic relaxation by a transverse alternating magnetic field
Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. Yampol'skii, V. A.
2007-07-15
The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.
Magnetic field sources and their threat to magnetic media
NASA Technical Reports Server (NTRS)
Jewell, Steve
1993-01-01
Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.
NASA Astrophysics Data System (ADS)
Hajra, Rajkumar; Tsurutani, Bruce T.; Echer, Ezequiel; Gonzalez, Walter D.; Brum, Christiano Garnett Marques; Vieira, Luis Eduardo Antunes; Santolik, Ondrej
2015-07-01
We present a comparative study of high-intensity long-duration continuous AE activity (HILDCAA) events, both isolated and those occurring in the "recovery phase" of geomagnetic storms induced by corotating interaction regions (CIRs). The aim of this study is to determine the difference, if any, in relativistic electron acceleration and magnetospheric energy deposition. All HILDCAA events in solar cycle 23 (from 1995 through 2008) are used in this study. Isolated HILDCAA events are characterized by enhanced fluxes of relativistic electrons compared to the pre-event flux levels. CIR magnetic storms followed by HILDCAA events show almost the same relativistic electron signatures. Cluster 1 spacecraft showed the presence of intense whistler-mode chorus waves in the outer magnetosphere during all HILDCAA intervals (when Cluster data were available). The storm-related HILDCAA events are characterized by slightly lower solar wind input energy and larger magnetospheric/ionospheric dissipation energy compared with the isolated events. A quantitative assessment shows that the mean ring current dissipation is ~34 % higher for the storm-related events relative to the isolated events, whereas Joule heating and auroral precipitation display no (statistically) distinguishable differences. On the average, the isolated events are found to be comparatively weaker and shorter than the storm-related events, although the geomagnetic characteristics of both classes of events bear no statistically significant difference. It is concluded that the CIR storms preceding the HILDCAAs have little to do with the acceleration of relativistic electrons. Our hypothesis is that ~10-100-keV electrons are sporadically injected into the magnetosphere during HILDCAA events, the anisotropic electrons continuously generate electromagnetic chorus plasma waves, and the chorus then continuously accelerates the high-energy portion of this electron spectrum to MeV energies.
Relativistic Electron Vortex Beams in a Laser Field.
Bandyopadhyay, Pratul; Basu, Banasri; Chowdhury, Debashree
2015-11-01
The orbital angular momentum Hall effect and the spin Hall effect of electron vortex beams (EVBs) have been studied for the EVBs interacting with a laser field. In the scenario of a paraxial beam, the cumulative effect of the orbit-orbit interaction of EVBs and laser fields drives the orbital Hall effect, which in turn produces a shift of the center of the beam from that of the field-free case towards the polarization axis of the photons. In addition, for nonparaxial beams one can also perceive a similar shift of the center of the beam owing to the spin Hall effect involving spin-orbit interaction. Our analysis suggests that the shift in the paraxial beams will always be larger than that in the nonparaxial beams. PMID:26588389
Mushtaq, A.; Shah, H.A.
2005-07-15
The purpose of this work is to investigate the linear and nonlinear properties of the ion-acoustic waves (IAW), propagating obliquely to an external magnetic field in a weakly relativistic, rotating, and magnetized electron-positron-ion plasma. The Zakharov-Kuznetsov equation is derived by employing the reductive perturbation technique for this wave in the nonlinear regime. This equation admits the solitary wave solution. The amplitude and width of this solitary wave have been discussed with the effects of obliqueness, relativity, ion temperature, positron concentration, magnetic field, and rotation of the plasma and it is observed that for IAW these parameters affect the propagation properties of solitary waves and these plasmas behave differently from the simple electron-ion plasmas. Likewise, the current density and electric field of these waves are investigated for their dependence on the above-mentioned parameters.
Dispersion relation and growth rate in a Cherenkov free electron laser: Finite axial magnetic field
Kheiri, Golshad; Esmaeilzadeh, Mahdi
2013-12-15
A theoretical analysis is presented for dispersion relation and growth rate in a Cherenkov free electron laser with finite axial magnetic field. It is shown that the growth rate and the resonance frequency of Cherenkov free electron laser increase with increasing axial magnetic field for low axial magnetic fields, while for high axial magnetic fields, they go to a saturation value. The growth rate and resonance frequency saturation values are exactly the same as those for infinite axial magnetic field approximation. The effects of electron beam self-fields on growth rate are investigated, and it is shown that the growth rate decreases in the presence of self-fields. It is found that there is an optimum value for electron beam density and Lorentz relativistic factor at which the maximum growth rate can take place. Also, the effects of velocity spread of electron beam are studied and it is found that the growth rate decreases due to the electron velocity spread.
On the Magnetic Field of Pulsars with Realistic Neutron Star Configurations
NASA Astrophysics Data System (ADS)
Belvedere, R.; Rueda, Jorge A.; Ruffini, R.
2015-01-01
We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M ⊙, radius R = 10 km, and moment of inertia I = 1045 g cm2. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.
ON THE MAGNETIC FIELD OF PULSARS WITH REALISTIC NEUTRON STAR CONFIGURATIONS
Belvedere, R.; Rueda, Jorge A.; Ruffini, R. E-mail: jorge.rueda@icra.it
2015-01-20
We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M {sub ☉}, radius R = 10 km, and moment of inertia I = 10{sup 45} g cm{sup 2}. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.
Relativistic Particle-In-Cell Simulations of Particle Accleration in Relativistic Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Hartmann, D. H.; Fishman, J. F.
2008-01-01
Highly accelerated particles are observed in astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), microquasars, and Gamma-Ray Bursts (GRBs). Particle-In-Cell (PIC) simulations of relativistic electron-ion and electron-positron jets injected into a stationary medium show that efficient acceleration occurs downstream in the jet. In collisionless relativistic shocks particle acceleration is due to plasma waves and their associated instabilities, e.g., the Buneman instability, other two-stream instabilities, and the Weibel (filamentation) instability. Simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform, small-scale magnetic fields. The instability depends on strength and direction of the magnetic field. Particles in relativistic jets may be accelerated in a complicated dynamics of relativistic jets with magnetic field. We present results of our recent PIC simulations.
Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization
Doughty, Frank C.; Spencer, John E.
2000-12-19
In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.
CHANGE IN FIELD HARMONICS AFTER QUENCH AND THERMAL CYCLES IN SUPERCONDUCTING MAGNETS.
GUPTA,R.; JAIN,A.; MURATORE,J.; WANDERER,P.; WILLEN,E.; WYSS,C.
1997-05-12
A change in field harmonics after quench and thermal cycles has been observed in superconducting magnets for the Relativistic Heavy Ion Collider (RHIC). This paper presents the results of a systematic investigation of this effect in a number of RHIC dipole and quadrupole magnets. These changes in field harmonics may limit the ultimate field quality and its reproducibility in superconducting magnets. A change in pre-stress has also been observed after quench and thermal cycles. A possible link between these two changes is explored.
Oscillations of Dirac and Majorana neutrinos in matter and a magnetic field
Dvornikov, Maxim; Maalampi, Jukka
2009-06-01
We study the evolution of massive mixed Dirac and Majorana neutrinos in matter under the influence of a transversal magnetic field. The analysis is based on relativistic quantum mechanics. We solve exactly the evolution equation for relativistic neutrinos, find the neutrino wave functions, and calculate the transition probability for spin-flavor oscillations. We analyze the dependence of the transition probability on the external fields and compare the cases of Dirac and Majorana neutrinos. The evolution of Majorana particles in vacuum is also studied and correction terms to the standard oscillation formula are derived and discussed. As a possible application of our results we discuss the spin-flavor transitions in supernovae.
Chiral plasmons without magnetic field.
Song, Justin C W; Rudner, Mark S
2016-04-26
Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090
Chiral plasmons without magnetic field
NASA Astrophysics Data System (ADS)
Song, Justin C. W.
2016-04-01
Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.
Magnetic Fields in Irregular Galaxies: NGC 4214
NASA Astrophysics Data System (ADS)
Kepley, Amanda A.; Wilcots, E. M.; Robishaw, T.; Heiles, C.; Zweibel, E.
2006-12-01
Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. However, only four irregular galaxies besides the LMC and the SMC have observed magnetic field structures. The goal of our project is to significantly increase the number of irregular galaxies with observed magnetic field structure. Here we present preliminary results for one of the galaxies in our sample: NGC 4214. Using the VLA and the GBT, we have obtained 3cm, 6cm, and 20cm radio continuum polarization observations of this well-studied galaxy. Our observations allow us to investigate the effects of NGC 4214's high star formation rate, slow rotation rate, and weak bar on the structure of its magnetic field. We find that NGC 4214's magnetic field has an S-shaped structure, with the central field following the bar and the outer edges curving to follow the shape of the arms. The mechanism for generating these fields is still uncertain. A. Kepley is funded by an NSF Graduate Research Fellowship.
Near-Field Magnetic Dipole Moment Analysis
NASA Technical Reports Server (NTRS)
Harris, Patrick K.
2003-01-01
This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.
Magnetic field waves at Uranus
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.
1994-01-01
The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.
Magnetic field observations in Comet Halley's coma
NASA Astrophysics Data System (ADS)
Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.
1986-05-01
During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.
The nucleon and Delta-resonance masses in relativistic chiral effective-field theory
V. Pascalutsa; M. Vanderhaeghen
2005-11-28
We study the chiral behavior of the nucleon and De-isobar masses within a manifestly covariant chiral effective-field theory, consistent with the analyticity principle. We compute the {pi} N and {pi}{Delta} one-loop contributions to the mass and field-normalization constant, and find that they can be described in terms of universal relativistic loop functions, multiplied by appropriate spin, isospin and coupling constants. We show that these relativistic one-loop corrections, when properly renormalized, obey the chiral power-counting and vanish in the chiral limit. The results including only the {pi} N-loop corrections compare favorably with the lattice QCD data for the pion-mass dependence of the nucleon and De masses, while inclusion of the {pi}/De loops tends to spoil this agreement.
Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits
Jiang Weizhou; Li Baoan; Chen Liewen
2007-11-15
We study several structure properties of finite nuclei using relativistic mean-field Lagrangians constructed according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities. The models are consistent with current experimental constraints for the equations of state of symmetric matter at both normal and supranormal densities and of asymmetric matter at subsaturation densities. It is shown that these models can successfully describe the binding energies and charge radii of finite nuclei. Compared to calculations with usual relativistic mean-field models, these models give a reduced thickness of neutron skin in {sup 208}Pb between 0.17 fm and 0.21 fm. The reduction of the predicted neutron skin thickness is found to be due to not only the softening of the symmetry energy but also the scaling property of {rho} meson required by the partial restoration of chiral symmetry.
Magnetic field effects on microwave absorbing materials
NASA Technical Reports Server (NTRS)
Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.
1991-01-01
The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.
NASA Astrophysics Data System (ADS)
Kudo, K.; Maeda, H.; Kawakubo, T.; Ootani, Y.; Funaki, M.; Fukui, H.
2006-06-01
The normalized elimination of the small component (NESC) theory, recently proposed by Filatov and Cremer [J. Chem. Phys. 122, 064104 (2005)], is extended to include magnetic interactions and applied to the calculation of the nuclear magnetic shielding in HX (X =F,Cl,Br,I) systems. The NESC calculations are performed at the levels of the zeroth-order regular approximation (ZORA) and the second-order regular approximation (SORA). The calculations show that the NESC-ZORA results are very close to the NESC-SORA results, except for the shielding of the I nucleus. Both the NESC-ZORA and NESC-SORA calculations yield very similar results to the previously reported values obtained using the relativistic infinite-order two-component coupled Hartree-Fock method. The difference between NESC-ZORA and NESC-SORA results is significant for the shieldings of iodine.
Relativistic BEC-BCS Crossover in a magnetized Nambu-Jona-Lasinio Model
NASA Astrophysics Data System (ADS)
Duarte, Dyana C.; Farias, R. L. S.; Manso, Pedro H. A.; Ramos, Rudnei O.
2016-04-01
The BEC-BCS crossover in the NJL model is studied in the presence of an external magnetic field. Particular attention is given to two different regularization schemes used in the literature and we show how they compare to each other. The comparison is made for the case of a cold and magnetized two color NJL model. We also make a brief discussion about the Nc = 3 case without magnetic fields, as an extension of this work in the future.
Dynamical gap generation in graphene nanoribbons: An effective relativistic field theoretical model
Chaves, A. J.; Paula, W. de; Frederico, T.; Lima, G. D.; Cordeiro, C. E.; Delfino, A.
2011-04-15
We show that the assumption of a nontrivial zero band gap for a graphene sheet within an effective relativistic field theoretical model description of interacting Dirac electrons on the surface of graphene describes the experimental band gap of graphene nanoribbons for a wide range of widths. The graphene band gap is dynamically generated, corresponding to a nontrivial gapless solution, found in the limit of an infinitely wide graphene ribbon. The nanoribbon band gap is determined by the experimental graphene work function.
Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation
NASA Astrophysics Data System (ADS)
Akhter, T.; Fedele, R.; Nicola, S. De; Tanjia, F.; Jovanović, D.; Mannan, A.
2016-09-01
The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.
Multiple chiral doublet candidate nucleus {sup 105}Rh in a relativistic mean-field approach
Li Jian; Zhang, S. Q.; Meng, J.
2011-03-15
Following the reports of two pairs of chiral doublet bands observed in {sup 105}Rh, the adiabatic and configuration-fixed constrained triaxial relativistic mean-field calculations are performed to investigate their triaxial deformations with the corresponding configuration and the possible multiple chiral doublet (M{chi}D) phenomenon. The existence of the M{chi}D phenomenon in {sup 105}Rh is highly expected.
Deformation of Water by a Magnetic Field
ERIC Educational Resources Information Center
Chen, Zijun; Dahlberg, E. Dan
2011-01-01
After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…
Exploring Magnetic Fields with a Compass
ERIC Educational Resources Information Center
Lunk, Brandon; Beichner, Robert
2011-01-01
A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…
Magnetic field effect on charged Brownian swimmers
NASA Astrophysics Data System (ADS)
Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.
2016-01-01
We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.
Magnetic field calculation and measurement of active magnetic bearings
NASA Astrophysics Data System (ADS)
Ding, Guoping; Zhou, Zude; Hu, Yefa
2006-11-01
Magnetic Bearings are typical devices in which electric energy and mechanical energy convert mutually. Magnetic Field indicates the relationship between 2 of the most important parameters in a magnetic bearing - current and force. This paper presents calculation and measurement of the magnetic field distribution of a self-designed magnetic bearing. Firstly, the static Maxwell's equations of the magnetic bearing are presented and a Finite Element Analysis (FEA) is found to solve the equations and get post-process results by means of ANSYS software. Secondly, to confirm the calculation results a Lakeshore460 3-channel Gaussmeter is used to measure the magnetic flux density of the magnetic bearing in X, Y, Z directions accurately. According to the measurement data the author constructs a 3D magnetic field distribution digital model by means of MATLAB software. Thirdly, the calculation results and the measurement data are compared and analyzed; the comparing result indicates that the calculation results are consistent with the measurement data in allowable dimension variation, which means that the FEA calculation method of the magnetic bearing has high precision. Finally, it is concluded that the magnetic field calculation and measurement can accurately reflect the real magnetic distribution in the magnetic bearing and the result can guide the design and analysis of the magnetic bearing effectively.
Magnetic Trapping of Bacteria at Low Magnetic Fields
NASA Astrophysics Data System (ADS)
Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.
2016-06-01
A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.
Magnetic Trapping of Bacteria at Low Magnetic Fields.
Wang, Z M; Wu, R G; Wang, Z P; Ramanujan, R V
2016-01-01
A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771
Magnetic Trapping of Bacteria at Low Magnetic Fields
Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.
2016-01-01
A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771
Ghizzo, A.
2013-08-15
The stationary state with magnetically trapped particles is investigated at the saturation of the relativistic Weibel instability, within the “multiring” model in a Hamiltonian framework. The multistream model and its multiring extension have been developed in Paper I, under the assumption that the generalized canonical momentum is conserved in the perpendicular direction. One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are addressed using similar mathematical formalism developed by Lontano et al.[Phys. Plasmas 9, 2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both electrostatic and magnetic trapping mechanisms.
NASA Astrophysics Data System (ADS)
Ghizzo, A.
2013-08-01
The stationary state with magnetically trapped particles is investigated at the saturation of the relativistic Weibel instability, within the "multiring" model in a Hamiltonian framework. The multistream model and its multiring extension have been developed in Paper I, under the assumption that the generalized canonical momentum is conserved in the perpendicular direction. One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are addressed using similar mathematical formalism developed by Lontano et al. [Phys. Plasmas 9, 2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both electrostatic and magnetic trapping mechanisms.
Magnetic field generation from Self-Consistent collective neutrino-plasma interactions
Brizard, A.J.; Murayama H.; Wurtele, J.S.
1999-11-24
A new Lagrangian formalism for self-consistent collective neutrino-plasma interactions is presented in which each neutrino species is described as a classical ideal fluid. The neutrino-plasma fluid equations are derived from a covariant relativistic variational principle in which finite-temperature effects are retained. This new formalism is then used to investigate the generation of magnetic fields and the production of magnetic helicity as a result of collective neutrino-plasma interactions.
Analysis of magnetic field levels at KSC
NASA Technical Reports Server (NTRS)
Christodoulou, Christos G.
1994-01-01
The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.
NASA Astrophysics Data System (ADS)
N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.
A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.
Magnetic field concentrator for probing optical magnetic metamaterials.
Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz
2010-12-01
Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials. PMID:21164936
Frustrated magnets in high magnetic fields-selected examples.
Wosnitza, J; Zvyagin, S A; Zherlitsyn, S
2016-07-01
An indispensable parameter to study strongly correlated electron systems is the magnetic field. Application of high magnetic fields allows the investigation, modification and control of different states of matter. Specifically for magnetic materials experimental tools applied in such fields are essential for understanding their fundamental properties. Here, we focus on selected high-field studies of frustrated magnetic materials that have been shown to host a broad range of fascinating new and exotic phases. We will give brief insights into the influence of geometrical frustration on the critical behavior of triangular-lattice antiferromagnets, the accurate determination of exchange constants in the high-field saturated state by use of electron spin resonance measurements, and the coupling of magnetic degrees of freedom to the lattice evidenced by ultrasound experiments. The latter technique as well allowed new, partially metastable phases in strong magnetic fields to be revealed. PMID:27310818
Hanni, Matti; Lantto, Perttu; Ilias, Miroslav; Jensen, Hans Jorgen Aagaard; Vaara, Juha
2007-10-28
Relativistic effects on the (129)Xe nuclear magnetic resonance shielding and (131)Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe(2) system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular interaction-induced binary chemical shift delta, the anisotropy of the shielding tensor Deltasigma, and the NQC constant along the internuclear axis chi( parallel) are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second-order Moller-Plesset many-body perturbation (DMP2) theory is used to examine the cross coupling between correlation and relativity on NQC. The same is investigated for delta and Deltasigma by BPPT with a density functional theory model. A semiquantitative agreement between the BPPT and DHF binary property curves is obtained for delta and Deltasigma in Xe(2). For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other hand, for the BPPT-based cross coupling of relativity and correlation. For chi( parallel), the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the (129)Xe nuclear shielding is compared to experiment in Xe gas. Our best results, obtained with the piecewise approximation for the binary chemical shift combined with the
Electro-optic Measurement of the Wake Fields of a Relativistic Electron Beam
Fitch, M. J.; Melissinos, A. C.; Colestock, P. L.; Carneiro, J.-P.; Edwards, H. T.; Hartung, W. H.
2001-07-16
When a relativistic electron bunch traverses a structure, strong electromagnetic fields are induced in its wake. For a 12 nC bunch of duration 4.2ps FWHM, the peak field is measured >0.5 MV/m . Time resolution of {approx}5 ps is achieved using electro-optic sampling with a lithium tantalate (LiTaO{sub 3}) crystal and a short-pulse infrared laser synchronized to the beam. We present measurements for both the longitudinal and radial components of the field and relate them to the wall impedance.
Collisional excitation of electron Landau levels in strong magnetic fields
NASA Technical Reports Server (NTRS)
Langer, S. H.
1981-01-01
The cross sections for the excitation and deexcitation of the quantized transverse energy levels of an electron in a magnetic field are calculated for electron-proton and electron-electron collisions in light of the importance of the cross sections for studies of X-ray pulsar emission. First-order matrix elements are calculated using the Dirac theory of the electron, thus taking into account relativistic effects, which are believed to be important in accreting neutron stars. Results for the collisional excitation of ground state electrons by protons are presented which demonstrate the importance of proton recoil and relativistic effects, and it is shown that electron-electron excitations may contribute 10 to 20% of the excitation rate from electron-proton scattering in a Maxwellian plasma. Finally, calculations of the cross section for electron-proton small-angle scattering are presented which lead to relaxation rates for the electron velocity distribution which are modified by the magnetic field, and to a possible increase in the value of the Coulomb logarithm.
Effects of resistive magnetic field on fast electron divergence measured in experiments
NASA Astrophysics Data System (ADS)
Yang, X. H.; Zhuo, H. B.; Ma, Y. Y.; Xu, H.; Yu, T. P.; Zou, D. B.; Ge, Z. Y.; Xu, B. B.; Zhu, Q. J.; Shao, F. Q.; Borghesi, M.
2015-02-01
Transport of fast electrons driven by an ultraintense laser through a tracer layer buried in solid targets is studied by particle-in-cell simulations. It is found that intense resistive magnetic fields, having a magnitude of several thousand Tesla, are generated at the interfaces of the materials due to the steep resistivity gradient between the target and tracer layer. Such magnetic fields can significantly inhibit the fast electron propagation. The electrons that can penetrate the first interface are mostly confined in the buried layer by the magnetic fields and cause heating of the tracer layer. The lateral extent of the heated region can be significantly larger than that of the relativistic electron beam. This finding suggests that the relativistic electron divergence inferred from Kα x-ray emission in experiments might be overestimated.
Antimagnetic rotation in 108,110In with tilted axis cranking relativistic mean-field approach
NASA Astrophysics Data System (ADS)
Sun, Wu-Ji; Xu, Hai-Dan; Li, Jian; Liu, Yong-Hao; Ma, Ke-Yan; Yang, Dong; Lu, Jing-Bing; Ma, Ying-Jun
2016-08-01
Based on tilted axis cranking relativistic mean-field theory within point-coupling interaction PC-PK1, the rotational structure and the characteristic features of antimagnetic rotation for ΔI = 2 bands in 108,110In are studied. Tilted axis cranking relativistic mean-field calculations reproduce the experimental energy spectrum well and are in agreement with the experimental I ∼ ω plot, although the calculated spin overestimates the experimental values. In addition, the two-shears-like mechanism in candidate antimagnetic rotation bands is clearly illustrated and the contributions from two-shears-like orbits, neutron (gd) orbits above Z = 50 shell and Z = 50, N = 50 core are investigated microscopically. The predicted B(E2), dynamic moment of inertia ℑ(2), deformation parameters β and γ, and ℑ(2)/B(E2) ratios in tilted axis cranking relativistic mean-field calculations are discussed and the characteristic features of antimagnetic rotation for the bands before and after alignment are shown. Supported by National Natural Science Foundation of China (11205068, 11205069, 11405072, 11475072, 11547308) and China Postdoctoral Science Foundation (2012M520667)
NASA Astrophysics Data System (ADS)
Simulik, Volodimir
2016-01-01
The new relativistic equations of motion for the particles with arbitrary spin and nonzero mass have been introduced. The axiomatic level description of the relativistic canonical quantum mechanics of the arbitrary mass and spin has been given. The 64-dimensional ClR(0,6) algebra in terms of Dirac gamma matrices has been suggested. The link between the relativistic canonical quantum mechanics of the arbitrary spin and the covariant local field theory has been found. Different methods of the Dirac equation derivation have been reviewed. The manifestly covariant field equations for an arbitrary spin that follow from the quantum mechanical equations have been considered. The covariant local field theory equations for spin s = (1,1) particle-antiparticle doublet, spin s = (1,0,1,0) particle antiparticle multiplet, spin s = (3/2,3/2) particle-antiparticle doublet, spin s = (2,2) particle-antiparticle doublet, spin s = (2,0,2,0) particle-antiparticle multiplet and spin s = (2,1,2,1) particle-antiparticle multiplet have been introduced. The Maxwell-like equations for the boson with spin s = 1 and nonzero mass have been introduced as well.
Spatial distributions of magnetic field in the RHIC and LHC energy regions
NASA Astrophysics Data System (ADS)
Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin
2015-10-01
Relativistic heavy-ion collisions can produce extremely strong magnetic fields in the collision regions. The spatial variation features of the magnetic fields are analyzed in detail for non-central Pb-Pb collisions at LHC at \\sqrt{s_NN}=900, 2760 and 7000 GeV and Au-Au collisions at RHIC at \\sqrt{s_NN}=62.4, 130 and 200 GeV. The dependencies of magnetic field on proper time, collision energies and impact parameters are investigated in this paper. It is shown that an enormous and highly inhomogeneous spatial distribution magnetic field can indeed be created in off-centre relativistic heavy-ion collisions in RHIC and LHC energy regions. The enormous magnetic field is produced just after the collision, and the magnitude of magnetic field of the LHC energy region is larger than that of the RHIC energy region at small proper time. It is found that the magnetic field in the LHC energy region decreases more quickly with the increase of proper time than that of the RHIC energy region. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory foundation of Quark and Lepton Physics (Hua-Zhong Normal University) (QLPL2014P01)
Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence
NASA Astrophysics Data System (ADS)
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-03-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.
Abnormal magnetic field effects on electrogenerated chemiluminescence.
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-01-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes in solution at room temperature. PMID:25772580
Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-01-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet → singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580
Hot and dense matter beyond relativistic mean field theory
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Prakash, Madappa
2016-05-01
Properties of hot and dense matter are calculated in the framework of quantum hadrodynamics by including contributions from two-loop (TL) diagrams arising from the exchange of isoscalar and isovector mesons between nucleons. Our extension of mean field theory (MFT) employs the same five density-independent coupling strengths which are calibrated using the empirical properties at the equilibrium density of isospin-symmetric matter. Results of calculations from the MFT and TL approximations are compared for conditions of density, temperature, and proton fraction encountered in the study of core-collapse supernovae, young and old neutron stars, and mergers of compact binary stars. The TL results for the equation of state (EOS) of cold pure neutron matter at sub- and near-nuclear densities agree well with those of modern quantum Monte Carlo and effective field-theoretical approaches. Although the high-density EOS in the TL approximation for cold and β -equilibrated neutron-star matter is substantially softer than its MFT counterpart, it is able to support a 2 M⊙ neutron star required by recent precise determinations. In addition, radii of 1.4 M⊙ stars are smaller by ˜1 km than those obtained in MFT and lie in the range indicated by analysis of astronomical data. In contrast to MFT, the TL results also give a better account of the single-particle or optical potentials extracted from analyses of medium-energy proton-nucleus and heavy-ion experiments. In degenerate conditions, the thermal variables are well reproduced by results of Landau's Fermi-liquid theory in which density-dependent effective masses feature prominently. The ratio of the thermal components of pressure and energy density expressed as Γth=1 +(Pth/ɛth) , often used in astrophysical simulations, exhibits a stronger dependence on density than on proton fraction and temperature in both MFT and TL calculations. The prominent peak of Γth at supranuclear density found in MFT is, however, suppressed in
NASA Astrophysics Data System (ADS)
Coelho, E. L.; Chiapparini, M.; Negreiros, R. P.
2016-04-01
Neutron stars are born with high temperatures and during a few seconds suffer rapid cooling by emission of neutrinos. The direct Urca process is the main mechanism to explain this loss of energy. In this work we study the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature. We describe the matter through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons magnetic field. As output of the numerical calculations, we obtain the relative population for a parametrized magnetic field. We calculate the cooling of neutron stars with different mass and magnetic fields due to direct Urca process.
Bipolar pulse field for magnetic refrigeration
Lubell, M.S.
1994-10-25
A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.
Bipolar pulse field for magnetic refrigeration
Lubell, Martin S.
1994-01-01
A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.
Application peculiarities of magnetic materials for protection from magnetic fields
NASA Astrophysics Data System (ADS)
Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.
2016-02-01
In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.
Theoretical Aspects of Magnetic Fields for Gamma Ray Bursts
NASA Astrophysics Data System (ADS)
Hanami, Hitoshi
We propose magnetic cannon ball mechanism in which the collapse of a magnetosphere onto a black hole can generate strong outward Poynting flux which drives a baryon-free fireball called the magnetic cannon ball. In the early stage, the magnetic fields in the cannon ball can prepare the explanation for the cycrotoron absorptions observed by GINGA. The magnetic cannon ball can drive, in general, a relativistic outflow which interacts with the interstellar matter and forms a shock. The magnetic field in the shock approximately equal to 104 G can induce the synchrotron radiations with peaks at approximately equal to 10^2 keV observed. This magnetic field in the cannon ball can also confine the high energy protons (gamma_p > 30) which are required for delayed photons (>25 GeV) following a burst on 1994 February 17. Accretion induced collapse of a white dwarf of > 109 G, merger of a close binary and failed type Ib supernovae are possible scenarios even without the rotation of the central object. This mechanism works at the final phase of gravitational collapse even after a neutrino driven fireball proposed in most scenarios for gamma ray bursts. Twice bursts, which consist of primary neutrino driven fireball and secondary magnetic cannon ball can be induced sometime, can be explained in this model. It suggests that the magnetic cannon ball works some parts in multiple populations and delayed or multiple burst events. The final remnant in the model should be a black hole. It implies that any gamma ray bursts can have no optical counter part if they do not have a companion in a binary.
Magnetic field waves at Uranus
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.
1991-01-01
The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.
Solution of relativistic quantum optics problems using clusters of graphical processing units
Gordon, D.F. Hafizi, B.; Helle, M.H.
2014-06-15
Numerical solution of relativistic quantum optics problems requires high performance computing due to the rapid oscillations in a relativistic wavefunction. Clusters of graphical processing units are used to accelerate the computation of a time dependent relativistic wavefunction in an arbitrary external potential. The stationary states in a Coulomb potential and uniform magnetic field are determined analytically and numerically, so that they can used as initial conditions in fully time dependent calculations. Relativistic energy levels in extreme magnetic fields are recovered as a means of validation. The relativistic ionization rate is computed for an ion illuminated by a laser field near the usual barrier suppression threshold, and the ionizing wavefunction is displayed.
Magnetic Field Generation During the Collision of Narrow Plasma Clouds
NASA Astrophysics Data System (ADS)
Sakai, Jun-ichi; Kazimura, Yoshihiro; Haruki, Takayuki
1999-06-01
We investigate the dynamics of the collision of narrow plasma clouds,whose transverse dimension is on the order of the electron skin depth.A 2D3V (two dimensions in space and three dimensions in velocity space)particle-in-cell (PIC) collisionless relativistic code is used toshow the generation of a quasi-staticmagnetic field during the collision of narrow plasma clouds both inelectron-ion and electron-positron (pair) plasmas. The localizedstrong magnetic fluxes result in the generation of the charge separationwith complicated structures, which may be sources of electromagneticas well as Langmuir waves. We also present one applicationof this process, which occurs during coalescence of magnetic islandsin a current sheet of pair plasmas.
Representation of magnetic fields in space
NASA Technical Reports Server (NTRS)
Stern, D. P.
1975-01-01
Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.
DC-based magnetic field controller
Kotter, D.K.; Rankin, R.A.; Morgan, J.P.
1994-05-31
A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.
DC-based magnetic field controller
Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.
1994-01-01
A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.
NASA Astrophysics Data System (ADS)
Almosallami, Azzam
2011-03-01
In this paper we derived the relativistic Quantized force, where the force given as a function of frequency [1]. Where, in this paper we defined the relativistic momentum as a function of frequency equivalent to the energy held by a body, and time, and then the quantized force is given as the first derivative of the momentum with respect to time. Subsequently we introduce in section one Newton's second law as it is relativistic quantized, and in section two we introduce the relativistic quantized inertial force, and then the relativistic quantized gravitational force, and the quantized gravitational time dilation. At the end we shall generalize the Schwartzschild metric to describe the weak and strong gravitational field.
Exploring the Magnetic field and Black Hole Spin in Black Hole--Neutron star mergers
NASA Astrophysics Data System (ADS)
Chawla, Sarvnipun; Anderson, Matthew; Lehner, Luis; Liebling, Steven; Megevand, Miguel; Motl, Patrick; Neilsen, David; Palenzuela, Carlos
2010-02-01
A sizable magnetic field in neutron star-black hole binaries can have a strong influence on the merger dynamics of the fluid by redistributing angular momentum through different mechanisms. The magnetic field can also be responsible for collimating jets. BH spin can increase the number of orbits before merger as compared to a binary with a non-spinning BH. The corresponding decrease in ISCO can alter the tidal disruption suffered by the NS. We present results of fully relativistic black hole--neutron star simulations proceeding from quasi-circular initial data generated with the Lorene libraries. We explore the effect of magnetic field and spin by evolving four sets of nearly identical initial data which differ in their magnetic field and spin values. We examine the gravitational wave signature through direct simulation. Finally, we compare the fluid structure and explore the magnetic field configuration in the post-merger remnant disk. )
Resolved magnetic-field structure and variability near the event horizon of Sagittarius A.
Johnson, Michael D; Fish, Vincent L; Doeleman, Sheperd S; Marrone, Daniel P; Plambeck, Richard L; Wardle, John F C; Akiyama, Kazunori; Asada, Keiichi; Beaudoin, Christopher; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C; Brinkerink, Christiaan; Broderick, Avery E; Cappallo, Roger; Chael, Andrew A; Crew, Geoffrey B; Dexter, Jason; Dexter, Matt; Freund, Robert; Friberg, Per; Gold, Roman; Gurwell, Mark A; Ho, Paul T P; Honma, Mareki; Inoue, Makoto; Kosowsky, Michael; Krichbaum, Thomas P; Lamb, James; Loeb, Abraham; Lu, Ru-Sen; MacMahon, David; McKinney, Jonathan C; Moran, James M; Narayan, Ramesh; Primiani, Rurik A; Psaltis, Dimitrios; Rogers, Alan E E; Rosenfeld, Katherine; SooHoo, Jason; Tilanus, Remo P J; Titus, Michael; Vertatschitsch, Laura; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H; Zensus, J Anton; Ziurys, Lucy M
2015-12-01
Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields. PMID:26785487
Resolved magnetic-field structure and variability near the event horizon of Sagittarius A*
NASA Astrophysics Data System (ADS)
Johnson, Michael D.; Fish, Vincent L.; Doeleman, Sheperd S.; Marrone, Daniel P.; Plambeck, Richard L.; Wardle, John F. C.; Akiyama, Kazunori; Asada, Keiichi; Beaudoin, Christopher; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C.; Brinkerink, Christiaan; Broderick, Avery E.; Cappallo, Roger; Chael, Andrew A.; Crew, Geoffrey B.; Dexter, Jason; Dexter, Matt; Freund, Robert; Friberg, Per; Gold, Roman; Gurwell, Mark A.; Ho, Paul T. P.; Honma, Mareki; Inoue, Makoto; Kosowsky, Michael; Krichbaum, Thomas P.; Lamb, James; Loeb, Abraham; Lu, Ru-Sen; MacMahon, David; McKinney, Jonathan C.; Moran, James M.; Narayan, Ramesh; Primiani, Rurik A.; Psaltis, Dimitrios; Rogers, Alan E. E.; Rosenfeld, Katherine; SooHoo, Jason; Tilanus, Remo P. J.; Titus, Michael; Vertatschitsch, Laura; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H.; Zensus, J. Anton; Ziurys, Lucy M.
2015-12-01
Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields.
Static uniform magnetic fields and amoebae
Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A.
1997-03-01
Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.
High field terahertz emission from relativistic laser-driven plasma wakefields
Chen, Zi-Yu; Pukhov, Alexander
2015-10-15
We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range of 1–10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.
Initial fields and instabilities in the classical model of relativistic heavy-ion collisions
Fukushima, Kenji
2007-08-15
Color Glass Condensate (CGC) provides a classical description of dense gluon matter at high energies. Using the McLerran-Venugopalan (MV) model we calculate the initial energy density {epsilon}({tau}) in the early stage of the relativistic nucleus-nucleus collision. Our analytical formula reproduces the quantitative results from lattice discretized simulations and leads to an estimate {epsilon}({tau}=0.1 fm)=40{approx}50 GeV{center_dot}fm{sup -3} in the (central) Au-Au collision at BNL Relativistic Heavy Ion Collider. We then formulate instabilities with respect to soft fluctuations that violate boost invariance inherent in hard CGC backgrounds. We find unstable modes arising, which are attributed to ensemble average over the initial CGC fields.
Initial fields and instabilities in the classical model of relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Fukushima, Kenji
2007-08-01
Color Glass Condensate (CGC) provides a classical description of dense gluon matter at high energies. Using the McLerran-Venugopalan (MV) model we calculate the initial energy density ɛ(τ) in the early stage of the relativistic nucleus-nucleus collision. Our analytical formula reproduces the quantitative results from lattice discretized simulations and leads to an estimate ɛ(τ=0.1fm)=40~50GeV·fm-3 in the (central) Au-Au collision at BNL Relativistic Heavy Ion Collider. We then formulate instabilities with respect to soft fluctuations that violate boost invariance inherent in hard CGC backgrounds. We find unstable modes arising, which are attributed to ensemble average over the initial CGC fields.
Controlled generation of short-wavelength periodic megagauss magnetic fields in plasmas
Fiuza, F.; Silva, L. O.
2009-01-22
We examine the possibility of producing short-wavelength MG magnetic fields by exciting a magnetic mode from the collision of electromagnetic light pulses with relativistic ionization fronts. PIC simulation results demonstrate the validity of the scheme to generate compact coherent long lived magnetic structures that can be used to produce ultrashort-wavelength radiation with existing state-of-the-art laser systems. In particular, we analyze the possibility of making a compact Gamma-ray synchrotron source based on this magnetic mode.
Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane
NASA Technical Reports Server (NTRS)
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
2001-01-01
A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.
NASA Astrophysics Data System (ADS)
Coelho, Eduardo Lenho; Chiapparini, Marcelo; Negreiros, Rodrigo Picanço
2015-12-01
One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 1014 G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 1018 G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.
Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields
NASA Astrophysics Data System (ADS)
Soto-Aquino, D.; Rinaldi, C.
2015-11-01
The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, Hélène; Mutel, Robert L.
1998-12-01
We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese "noren" or vertical Venetian blinds out of the way while the slats are allowed to bend and twist in 3-D space. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized - but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.
Electron motion in solenoidal magnetic fields using a first order symplectic integration algorithm
Fraser, J.S.
1984-05-07
The use of nonsymplectic procedures in particle tracing codes for relativistic electrons leads to errors that can be reduced only at the expense of using very small integration steps. More accurate results are obtained with symplectic transformations for position and momentum. A first-order symplectic integration procedure requires an iterative calculation of the new position coordinates using the old momenta, but the process usually converges in three or four steps. A first-order symplectic algorithm has been coded for cylindrical as well as Cartesian coordinates using the relativistic equations of motion with Hamiltonian variables. The procedure is applied to the steering of a beam of 80-keV electrons by a weak transverse magnetic field superposed on a strong magnetic field in the axial direction. The steering motion is shown to be parallel to the transverse field rather than perpendicular as would be the case without the strong axial field.
Minimizing magnetic fields for precision experiments
Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.
2015-06-21
An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.
NASA Astrophysics Data System (ADS)
Luo, S. S.; Grugan, P. D.; Walker, B. C.
2015-03-01
Using a relativistic adaptation of a three-step recollision model we calculate photoelectron energy spectra for ionization with elastic scattering in ultrastrong laser fields up to 24 a.u. (2 ×1019 W/cm 2) . Hydrogenlike and noble gas species with Hartree-Fock scattering potentials show a reduction in elastic rescattering beyond 6 ×1016 W/cm 2 when the laser Lorentz deflection of the photoelectron exceeds its wave-function spread. A relativistic rescattering enhancement occurs at 2 ×1018 W/cm 2, commensurate with the relativistic motion of a classical electron in a single field cycle. The noble gas results are compared with available experiments. The theory approach is well suited to modeling scattering in the ultrastrong intensity regime that lies between traditional strong fields and extreme relativistic interactions.
Operating a magnetic nozzle helicon thruster with strong magnetic field
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira
2016-03-01
A pulsed axial magnetic field up to ˜2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ˜9.5 mN for magnetic field above ˜2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ˜50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.
Bats Respond to Very Weak Magnetic Fields
Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang
2015-01-01
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944
Magnetic vector field tag and seal
Johnston, Roger G.; Garcia, Anthony R.
2004-08-31
One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.
Ferroelectric Cathodes in Transverse Magnetic Fields
Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch
2002-07-29
Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.
Magnetic fields of the spinning bodies
NASA Astrophysics Data System (ADS)
Trenčevski, Kostadin
2015-03-01
In this paper we show that the Thomas precession of the spinning bodies, which is in general case constrained in all rigid bodies, induces magnetic field of the spinning bodies. This is one of the main reasons for the magnetic field of the spinning bodies. The general formula for this magnetic field is deduced and if it is applied to the Earth, its magnetic field changes between 0.295 G at the equator and 0.59 G at the poles, assuming that the density inside the Earth is uniform.
Flow Transitions in a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
1996-01-01
Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.
X-Ray imaging of ultrafast magnetic reconnection driven by relativistic electrons
NASA Astrophysics Data System (ADS)
Raymond, A.; McKelvey, A.; Zulick, C.; Maksimchuk, A.; Thomas, A. G. R.; Willingale, L.; Chykov, V.; Yanovsky, V.; Krushelnick, K.
2015-05-01
Evidence of magnetic reconnection (MR) events driven by relativistic electrons is observed between two high-intensity laser/plasma interaction sites. The two laser foci were on average 20um FWHM containing 50TW of power each, delivered with a split f/3 paraboloid onto copper foil targets at a focused intensity of 1019 W/cm2 with the HERCULES laser system. Cu K-alpha emissions from the interactions were imaged with a spherically bent Quartz crystal, and by motorizing one half of the paraboloid vertically the focal separation was varied between 0- 400um. Splitting the beam halves revealed an enhanced region between the foci with the highest a maximized K-alpha signal intensity at one inter-beam separation, evidencing inflow from relativistic electron driven MR. A filtered LANEX screen was imaged to search for outflow/jet electrons along the plane of the target surface and normal to the axis defined by the two spots, to calculate the electron temperature and to search for spatial profile nonuniformities potentially directly originating from reconnection events. Ongoing 2D and 3D PIC simulations are being conducted to better understand and model the measured electron outflow dynamics.
Rydberg EIT in High Magnetic Field
NASA Astrophysics Data System (ADS)
Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg
2016-05-01
We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.
Free oscillations of magnetic fluid in strong magnetic field
NASA Astrophysics Data System (ADS)
Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.
2016-05-01
The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.
Notes on Translational and Rotational Properties of Tensor Fields in Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Dvoeglazov, V. V.
Recently, several discussions on the possible observability of 4-vector fields have been published in literature. Furthermore, several authors recently claimed existence of the helicity=0 fundamental field. We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We study the massless limits. In fact, a theoretical motivation for this venture is the old papers of Ogievetskiĭ and Polubarinov, Hayashi, and Kalb and Ramond. Ogievetskiĭ and Polubarinov proposed the concept of the notoph, whose helicity properties are complementary to those of the photon. We analyze the quantum field theory with taking into account mass dimensions of the notoph and the photon. It appears to be possible to describe both photon and notoph degrees of freedom on the basis of the modified Bargmann-Wigner formalism for the symmetric second-rank spinor. Next, we proceed to derive equations for the symmetric tensor of the second rank on the basis of the Bargmann-Wigner formalism in a straightforward way. The symmetric multispinor of the fourth rank is used. Due to serious problems with the interpretation of the results obtained on using the standard procedure we generalize it and obtain the spin-2 relativistic equations, which are consistent with the general relativity. Thus, in fact we deduced the gravitational field equations from relativistic quantum mechanics. The relations of this theory with the scalar-tensor theories of gravitation and f(R) are discussed. Particular attention has been paid to the correct definitions of the energy-momentum tensor and other Nöther currents in the electromagnetic theory, the relativistic theory of gravitation, the general relativity, and their generalizations. We estimate possible interactions, fermion-notoph, graviton-notoph, photon-notoph, and we conclude that they can probably be seen in experiments in the next few years.
GAMMA-RAY BURST PROMPT EMISSION: JITTER RADIATION IN STOCHASTIC MAGNETIC FIELD REVISITED
Mao, Jirong; Wang Jiancheng
2011-04-10
We revisit the radiation mechanism of relativistic electrons in the stochastic magnetic field and apply it to the high-energy emissions of gamma-ray bursts (GRBs). We confirm that jitter radiation is a possible explanation for GRB prompt emission in the condition of a large electron deflection angle. In the turbulent scenario, the radiative spectral property of GRB prompt emission is decided by the kinetic energy spectrum of turbulence. The intensity of the random and small-scale magnetic field is determined by the viscous scale of the turbulent eddy. The microphysical parameters {epsilon}{sub e} and {epsilon}{sub B} can be obtained. The acceleration and cooling timescales are estimated as well. Due to particle acceleration in magnetized filamentary turbulence, the maximum energy released from the relativistic electrons can reach a value of about 10{sup 14} eV. The GeV GRBs are possible sources of high-energy cosmic-ray.
Reducing Field Distortion in Magnetic Resonance Imaging
NASA Technical Reports Server (NTRS)
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2010-01-01
A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T
NASA Astrophysics Data System (ADS)
Hegelich, B. Manuel
2011-10-01
A steady increase of on-target laser intensity with also increasing pulse contrast is leading to light-matter interactions of extreme laser fields with matter in new physics regimes which in turn enable a host of applications. A first example is the realization of interactions in the transperent-overdense regime (TOR), which is reached by interacting a highly relativistic (a0 >10), ultra high contrast laser pulse [1] with a solid density target, turning it transparent to the laser by the relativistic mass increase of the electrons. Thus, the interactions becomes volumetric, increasing the energy coupling from laser to plasma, facilitating a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration [3], highly efficient ion acceleration in the break-out afterburner regime [4], and the generation of relativistic and forward directed surface harmonics. Experiments at the LANL 130TW Trident laser facility successfully reached the TOR, and show relativistic pulse shaping beyond the Fourier limit, the acceleration of mono-energetic ~40 MeV electron bunches from solid targets, forward directed coherent relativistic high harmonic generation >1 keV Break-Out Afterburner (BOA) ion acceleration of Carbon to >1 GeV and Protons to >100 MeV. Carbon ions were accelerated with a conversion efficiency of >10% for ions >20 MeV and monoenergetic carbon ions with an energy spread of <20%, have been accelerated at up to ~500 MeV, demonstrating 3 out of 4 for key requirements for ion fast ignition. The shown results now approach or exceed the limits set by many applications from ICF diagnostics over ion fast ignition to medical physics. Furthermore, TOR targets traverse a wide range of HEDP parameter space during the interaction ranging from WDM conditions (e.g. brown dwarfs) to energy densities of ~1011 J/cm3 at peak, then dropping back to the underdense but extremely hot parameter range of gamma-ray bursts. Whereas today this regime can
Magnetic field evolution in interacting galaxies
NASA Astrophysics Data System (ADS)
Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.
2011-09-01
Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to
NASA Astrophysics Data System (ADS)
Horwitz, L. P.; Land, Martin C.; Gill, Tepper; Lusanna, Luca; Salucci, Paolo
2013-04-01
Although the subject of relativistic dynamics has been explored, from both classical and quantum mechanical points of view, since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anomalous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical relativistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Lindner et al [Physical Review Letters 95 0040401 (2005)] as well as the more recent proposal of Palacios et al [Phys. Rev. Lett. 103 253001 (2009)] and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg [Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)] could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular
Cosmic Magnetic Fields (IAU S259)
NASA Astrophysics Data System (ADS)
Strassmeier, Klaus G.; Kosovichev, Alexander G.; Beckman, John E.
2009-06-01
Preface K. G. Strassmeier, A. G. Kosovichev and J. E. Beckman; Organising committee; Conference photograph; Conference participants; Session 1. Interstellar magnetic fields, star-forming regions and the Death Valley Takahiro Kudoh and Elisabeta de Gouveia Dal Pino; Session 2. Multi-scale magnetic fields of the Sun; their generation in the interior, and magnetic energy release Nigel O. Weiss; Session 3. Planetary magnetic fields and the formation and evolution of planetary systems and planets; exoplanets Karl-Heinz Glassmeier; Session 4. Stellar magnetic fields: cool and hot stars Swetlana Hubrig; Session 5. From stars to galaxies and the intergalactic space Dimitry Sokoloff and Bryan Gaensler; Session 6. Advances in methods and instrumentation for measuring magnetic fields across all wavelengths and targets Tom Landecker and Klaus G. Strassmeier; Author index; Object index; Subject index.
The AGN origin of cluster magnetic fields
NASA Astrophysics Data System (ADS)
Xu, Hao
The origin of magnetic fields in galaxy clusters is one of the most fascinating but challenging problems in astrophysics. In this dissertation, the possibility of an Active Galactic Nucleus (AGN) origin of cluster magnetic fields is studied through state of the art simulations of magnetic field evolution in large scale structure formation using a newly developed cosmological Adaptive Mesh Refinement (AMR) Magnetohydrodynamics (MHD) code -- EnzoMHD. After presenting a complete but concise description and verification of the code, we discuss the creation of magnetic fields through the Biermann Battery effect during first star formation and galaxy cluster formation. We find that magnetic fields are produced as predicted by theory in both cases. For the first star formation, we obtain a lower limit of (~ 10 -9 G) for magnetic fields when the first generation stars form. On the other hand, we find that the magnetic energy is amplified 4 orders of magnitude within ~ 10 Gyr during cluster formation. We then study magnetic field injection from AGN into the Intra- Cluster Medium (ICM) and their impact on the ICM. We reproduce the X-ray cavities as well as weak shocks seen in observations in the simulation, and further confirm the idea that AGN outburst must contain lots of magnetic energy (up to 10 61 ergs) and the magnetic fields play an important part in the formation of jet/lobe system. We present high resolution simulations of cluster formation with magnetic fields injected from high redshift AGN. We find that these local magnetic fields are spread quickly throughout the whole cluster by cluster mergers. The ICM is in a turbulent state with a Kolmogorov-like power spectrum. Magnetic fields are amplified to and maintained at the observational level of a few mG by bulk flows at large scale and the ICM turbulence at small scale. The total magnetic energy increases about 25 times to ~ 1.2 × 10^61 ergs at the present time. We conclude that magnetic fields from AGN at high
Higher-order nonlocal effects of a relativistic ponderomotive force in high-intensity laser fields.
Iwata, Natsumi; Kishimoto, Yasuaki
2014-01-24
We have developed a new formula for a relativistic ponderomotive force of transversely localized laser fields based on the noncanonical Lie perturbation method by finding proper coordinates and gauges in the variational principle. The formula involves new terms represented by second and third spatial derivatives of the field amplitude, so that the ponderomotive force depends not only on the local field gradient, but also on the curvature and its variation. The formula is then applicable to a regime in which the conventional formula is hardly applied such that nonlocal and/or global extent of the field profile becomes important. The result can provide a theoretical basis for describing nonlinear laser-plasma interaction including such nonlocal effects, which is examined via particle-in-cell simulation of laser propagation in a plasma with a super Gaussian transverse field profile. PMID:24484146
López, Rodrigo A; Asenjo, Felipe A; Muñoz, Víctor; Chian, Abraham C-L; Valdivia, J A
2013-08-01
We study the self-modulation of a circularly polarized Alfvén wave in a strongly magnetized relativistic electron-positron plasma with finite temperature. This nonlinear wave corresponds to an exact solution of the equations, with a dispersion relation that has two branches. For a large magnetic field, the Alfvén branch has two different zones, which we call the normal dispersion zone (where dω/dk>0) and the anomalous dispersion zone (where dω/dk<0). A nonlinear Schrödinger equation is derived in the normal dispersion zone of the Alfvén wave, where the wave envelope can evolve as a periodic wave train or as a solitary wave, depending on the initial condition. The maximum growth rate of the modulational instability decreases as the temperature is increased. We also study the Alfvén wave propagation in the anomalous dispersion zone, where a nonlinear wave equation is obtained. However, in this zone the wave envelope can evolve only as a periodic wave train. PMID:24032950
NASA Astrophysics Data System (ADS)
Bogdanovich, B. Yu.; L'vov, E. I.; Nesterovich, A. V.; Sukhanova, L. A.; Khlestkov, Yu. A.
2016-04-01
A scheme of forming an annular high-current relativistic beam (HCRB) from a directly propagating HCRB in a diode with magnetic insulation and toroidal chamber with a constant magnet is described. The code KARAT is used to analyze numerically the HCRB dynamics. It is demonstrated that for a proper relationship of the system parameters the directly propagating HCRB is rolled up into a torus.
Robinson, A P L; Key, M H; Tabak, M
2012-03-23
A method for producing a self-generated magnetic focussing structure for a beam of laser-generated relativistic electrons using a complex array of resistivity gradients is proposed and demonstrated using numerical simulations. The array of resistivity gradients is created by using a target consisting of alternating layers of different Z material. This new scheme is capable of effectively focussing the fast electrons even when the source is highly divergent. The application of this technique to cone-guided fast ignition inertial confinement fusion is considered, and it is shown that it may be possible to deposit over 25% of the fast electron energy into a hot spot even when the fast electron divergence angle is very large (e.g., 70° half-angle). PMID:22540591
Terahertz radiation from a laser bunched relativistic electron beam in a magnetic wiggler
Kumar, Manoj; Tripathi, V. K.
2012-07-15
We develop a formalism for tunable coherent terahertz radiation generation from a relativistic electron beam, modulated by two laser beams, as it passes through a magnetic wiggler of wave vector k{sub w}z-caret. The lasers exert a beat frequency ponderomotive force on beam electrons, and modulate their velocity. In the drift space, velocity modulation translates into density modulation. As the beam bunches pass through the wiggler, they acquire a transverse velocity, constituting a transverse current that acts as an antenna to produce coherent THz radiation, when {omega}{sub 1}-{omega}{sub 2}=k{sub w}c/(cos{theta}-v{sub 0b}/c), where {omega}{sub 1}, {omega}{sub 2} are the frequencies of the lasers, v{sub 0b}z-caret is the beam velocity, and {theta} is the direction of maximum radiated intensity with respect to the direction of propagation of the beam.
Non-adiabatic response of relativistic radiation belt electrons to GEM magnetic storms
NASA Astrophysics Data System (ADS)
McAdams, K. L.; Reeves, G. D.
The importance of fully adiabatic effects in the relativistic radiation belt electron response to magnetic storms is poorly characterized due to many difficulties in calculating adiabatic flux response. Using the adiabatic flux model of Kim and Chan [1997a] and Los Alamos National Laboratory geosynchronous satellite data, we examine the relative timing of the adiabatic and non-adiabatic flux responses. In the three storms identified by the GEM community for in depth study, the non-adiabatic energization occurs hours earlier than the adiabatic re-energization. The adiabatic energization can account for only 10-20% of the flux increases in the first recovery stages, and only 1% of the flux increase if there is continuing activity.
Magnetohydrodynamics of chiral relativistic fluids
NASA Astrophysics Data System (ADS)
Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg
2015-08-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature T ≫m , where m is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magnetohydrodynamical description of the evolution of such a plasma. We show that, compared to conventional magnetohydronamics (MHD) for a plasma of nonrelativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudoscalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its nonlinear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.