Sample records for magnetic force control

  1. Control of aqueous droplets using magnetic and electrostatic forces.

    PubMed

    Ohashi, Tetsuo; Kuyama, Hiroki; Suzuki, Koichi; Nakamura, Shin

    2008-04-07

    Basic control operations were successfully performed on an aqueous droplet using both magnetic and electrostatic forces. In our droplet-based microfluidics, magnetic beads were incorporated in an aqueous droplet as a force mediator. This report describes droplet anchoring and separation of the beads from the droplet using a combination of magnetic and electrostatic forces. When an aqueous droplet is placed in an oil-filled reservoir, the droplet sinks to the bottom, under which an electrode had been placed. The droplet was adsorbed (or anchored) to the bottom surface on the electrode when a DC voltage was applied to the electrode. The magnetic beads were removed with magnetic force after the droplet had been anchored. Surfactant addition into droplet solution was very effective for the elimination of electric charge, which resulted in the stable adsorption of a droplet to hydrophobic substrate under an applied voltage of DC 0.5-3 kV. In a sequential process, small volume of aqueous liquid was successfully transferred using both magnetic and electrostatic forces.

  2. Force analysis of magnetic bearings with power-saving controls

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.

    1992-01-01

    Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. For most operating conditions, the existence of the bias current requires more power than alternative methods that do not use conventional bias. Two such methods are examined which diminish or eliminate bias current. In the typical bias control scheme it is found that for a harmonic control force command into a voltage limited transconductance amplifier, the desired force output is obtained only up to certain combinations of force amplitude and frequency. Above these values, the force amplitude is reduced and a phase lag occurs. The power saving alternative control schemes typically exhibit such deficiencies at even lower command frequencies and amplitudes. To assess the severity of these effects, a time history analysis of the force output is performed for the bias method and the alternative methods. Results of the analysis show that the alternative approaches may be viable. The various control methods examined were mathematically modeled using nondimensionalized variables to facilitate comparison of the various methods.

  3. High-force magnetic tweezers with force feedback for biological applications.

    PubMed

    Kollmannsberger, Philip; Fabry, Ben

    2007-11-01

    Magnetic micromanipulation using magnetic tweezers is a versatile biophysical technique and has been used for single-molecule unfolding, rheology measurements, and studies of force-regulated processes in living cells. This article describes an inexpensive magnetic tweezer setup for the application of precisely controlled forces up to 100 nN onto 5 microm magnetic beads. High precision of the force is achieved by a parametric force calibration method together with a real-time control of the magnetic tweezer position and current. High forces are achieved by bead-magnet distances of only a few micrometers. Applying such high forces can be used to characterize the local viscoelasticity of soft materials in the nonlinear regime, or to study force-regulated processes and mechanochemical signal transduction in living cells. The setup can be easily adapted to any inverted microscope.

  4. Design of Feedforward Controller to Reduce Force Ripple for Linear Motor using Halbach Magnet Array with T Shape Magnet

    NASA Astrophysics Data System (ADS)

    Kim, Moojong; Kim, Jinyoung; Lee, Moon G.

    Recently, in micro/nano fabrication equipments, linear motors are widely used as an actuator to position workpiece, machining tool and measurement head. To control them faster and more precise, the motor should have high actuating force and small force ripple. High actuating force enable us to more workpiece with high acceleration. Eventually, it may provide higher throughput. Force ripple gives detrimental effect on the precision and tracking performance of the equipments. In order to accomplish more precise motion, it is important to make lower the force ripple. Force ripple is categorized into cogging and mutual ripple. First is dependent on the shape of magnets and/or core. The second is not dependent on them but dependent on current commutation. In this work, coreless mover i.e. coil winding is applied to the linear motor to avoid the cogging ripple. Therefore, the mutual ripple is only considered to be minimized. Ideal Halbach magnet array has continuously varying magnetization. The THMA (Halbach magnet array with T shape magnets) is proposed to approximate the ideal one. The THMA can not produce ideal sinusoidal flux, therefore, the linear motor with THMA and sinusoidal commutation of current generates the mutual force ripple. In this paper, in order to compensate mutual force ripple by feedforward(FF) controller, we calculate the optimized commutation of input current. The ripple is lower than 1.17% of actuating force if the commutation current agree with the magnetic flux from THMA. The performance of feedforward(FF) controller is verified by experiment.

  5. BaHigh-force magnetic tweezers with force feedback for biological applications

    NASA Astrophysics Data System (ADS)

    Kollmannsberger, Philip; Fabry, Ben

    2007-11-01

    Magnetic micromanipulation using magnetic tweezers is a versatile biophysical technique and has been used for single-molecule unfolding, rheology measurements, and studies of force-regulated processes in living cells. This article describes an inexpensive magnetic tweezer setup for the application of precisely controlled forces up to 100nN onto 5μm magnetic beads. High precision of the force is achieved by a parametric force calibration method together with a real-time control of the magnetic tweezer position and current. High forces are achieved by bead-magnet distances of only a few micrometers. Applying such high forces can be used to characterize the local viscoelasticity of soft materials in the nonlinear regime, or to study force-regulated processes and mechanochemical signal transduction in living cells. The setup can be easily adapted to any inverted microscope.

  6. A multiplexed magnetic tweezer with precision particle tracking and bi-directional force control.

    PubMed

    Johnson, Keith C; Clemmens, Emilie; Mahmoud, Hani; Kirkpatrick, Robin; Vizcarra, Juan C; Thomas, Wendy E

    2017-01-01

    In the past two decades, methods have been developed to measure the mechanical properties of single biomolecules. One of these methods, Magnetic tweezers, is amenable to aquisition of data on many single molecules simultaneously, but to take full advantage of this "multiplexing" ability, it is necessary to simultaneously incorprorate many capabilities that ahve been only demonstrated separately. Our custom built magnetic tweezer combines high multiplexing, precision bead tracking, and bi-directional force control into a flexible and stable platform for examining single molecule behavior. This was accomplished using electromagnets, which provide high temporal control of force while achieving force levels similar to permanent magnets via large paramagnetic beads. Here we describe the instrument and its ability to apply 2-260 pN of force on up to 120 beads simultaneously, with a maximum spatial precision of 12 nm using a variety of bead sizes and experimental techniques. We also demonstrate a novel method for increasing the precision of force estimations on heterogeneous paramagnetic beads using a combination of density separation and bi-directional force correlation which reduces the coefficient of variation of force from 27% to 6%. We then use the instrument to examine the force dependence of uncoiling and recoiling velocity of type 1 fimbriae from Eschericia coli ( E. coli ) bacteria, and see similar results to previous studies. This platform provides a simple, effective, and flexible method for efficiently gathering single molecule force spectroscopy measurements.

  7. Suspension force control of bearingless permanent magnet slice motor based on flux linkage identification.

    PubMed

    Zhu, Suming; Zhu, Huangqiu

    2015-07-01

    The control accuracy and dynamic performance of suspension force are confined in the traditional bearingless permanent magnet slice motor (BPMSM) control strategies because the suspension force control is indirectly achieved by adopting a closed loop of displacement only. Besides, the phase information in suspension force control relies on accurate measurement of rotor position, making the control system more complex. In this paper, a new suspension force control strategy with displacement and radial suspension force double closed loops is proposed, the flux linkage of motor windings is identified based on voltage-current model and the flexibility of motor control can be improved greatly. Simulation and experimental results show that the proposed suspension force control strategy is effective to realize the stable operation of the BPMSM. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Corticospinal control of the thumb-index grip depends on precision of force control: a transcranial magnetic stimulation and functional magnetic resonance imagery study in humans.

    PubMed

    Bonnard, M; Galléa, C; De Graaf, J B; Pailhous, J

    2007-02-01

    The corticospinal system (CS) is well known to be of major importance for controlling the thumb-index grip, in particular for force grading. However, for a given force level, the way in which the involvement of this system could vary with increasing demands on precise force control is not well-known. Using transcranial magnetic stimulation and functional magnetic resonance imagery, the present experiments investigated whether increasing the precision demands while keeping the averaged force level similar during an isometric dynamic low-force control task, involving the thumb-index grip, does affect the corticospinal excitability to the thumb-index muscles and the activation of the motor cortices, primary and non-primary (supplementary motor area, dorsal and ventral premotor and in the contralateral area), at the origin of the CS. With transcranial magnetic stimulation, we showed that, when precision demands increased, the CS excitability increased to either the first dorsal interosseus or the opponens pollicis, and never to both, for similar ongoing electromyographic activation patterns of these muscles. With functional magnetic resonance imagery, we demonstrated that, for the same averaged force level, the amplitude of blood oxygen level-dependent signal increased in relation to the precision demands in the hand area of the contralateral primary motor cortex in the contralateral supplementary motor area, ventral and dorsal premotor area. Together these results show that, during the course of force generation, the CS integrates online top-down information to precisely fit the motor output to the task's constraints and that its multiple cortical origins are involved in this process, with the ventral premotor area appearing to have a special role.

  9. Towards an on-chip platform for the controlled application of forces via magnetic particles: A novel device for mechanobiology

    NASA Astrophysics Data System (ADS)

    Monticelli, M.; Albisetti, E.; Petti, D.; Conca, D. V.; Falcone, M.; Sharma, P. P.; Bertacco, R.

    2015-05-01

    In-vitro tests and analyses are of fundamental importance for investigating biological mechanisms in cells and bio-molecules. The controlled application of forces to activate specific bio-pathways and investigate their effects, mimicking the role of the cellular environment, is becoming a prominent approach in this field. In this work, we present a non-invasive magnetic on-chip platform which allows for the manipulation of magnetic particles, through micrometric magnetic conduits of Permalloy patterned on-chip. We show, from simulations and experiments, that this technology permits to exert a finely controlled force on magnetic beads along the chip surface. This force can be tuned from few to hundreds pN by applying a variable external magnetic field.

  10. Magnetic Force Switches for Magnetic Fluid Micromixing

    NASA Astrophysics Data System (ADS)

    Wei, Zung-Hang; Lee, Chiun-Peng; Lai, Mei-Feng

    2010-01-01

    A magnetic fluid micromixer with energy-saving magnetic force switches that can manipulate the magnetic fluid flow is proposed. The micromixer of high mixing efficiency uses single-domain micro magnets that have strong magnetic anisotropy to produce the magnetic force for the mixing. By altering the magnetization directions of the magnets that have different aspect ratios and coercivities, open and closed magnetic fluxes can be produced around each magnet cluster. For open magnetic flux, the mixing efficiency is numerically found to increase with the saturation magnetization of the magnets. On the contrary, the magnet clusters barely affects the mixing efficiency in the case of closed magnetic flux. Due to the different magnetic forces produced in open and closed magnetic fluxes, the magnetic fluid mixing can be switched on and off.

  11. Magnetic elements for switching magnetization magnetic force microscopy tips.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cambel, V.; Elias, P.; Gregusova, D.

    2010-09-01

    Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, lowmore » switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.« less

  12. Fundamental study of phosphor separation by controlling magnetic force

    NASA Astrophysics Data System (ADS)

    Wada, Kohei; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2013-11-01

    The phosphor wastes consist of phosphors with different emission colors, green (LAP), red (YOX), blue (BAM) and white (HP). It is required to recover and reuse the rare earth phosphors with high market value. In this study, we tried to separate the phosphor using the magnetic separation by HTS bulk magnet utilizing the differences of magnetic susceptibility by the type of phosphors. We succeeded in the successive separation of HP with low market value from YOX and BAM including the rare earth using the magnetic Archimedes method. In this method, vertical and radial components of the magnetic force were used.

  13. Advanced methods for controlling untethered magnetic devices using rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Mahoney, Arthur W., Jr.

    This dissertation presents results documenting advancements on the control of untethered magnetic devices, such as magnetic "microrobots" and magnetically actuated capsule endoscopes, motivated by problems in minimally invasive medicine. This dissertation focuses on applying rotating magnetic fields for magnetic manipulation. The contributions include advancements in the way that helical microswimmers (devices that mimic the propulsion of bacterial flagella) are controlled in the presence of gravitational forces, advancements in ways that groups of untethered magnetic devices can be differentiated and semi-independently controlled, advancements in the way that untethered magnetic device can be controlled with a single rotating permanent magnet, and an improved understanding in the nature of the magnetic force applied to an untethered device by a rotating magnet.

  14. Magnetic force microscopy with frequency-modulated capacitive tip-sample distance control

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Schwenk, J.; Mandru, A. O.; Penedo, M.; Baćani, M.; Marioni, M. A.; Hug, H. J.

    2018-01-01

    In a step towards routinely achieving 10 nm spatial resolution with magnetic force microscopy, we have developed a robust method for active tip-sample distance control based on frequency modulation of the cantilever oscillation. It allows us to keep a well-defined tip-sample distance of the order of 10 nm within better than +/- 0.4 nm precision throughout the measurement even in the presence of energy dissipative processes, and is adequate for single-passage non-contact operation in vacuum. The cantilever is excited mechanically in a phase-locked loop to oscillate at constant amplitude on its first flexural resonance mode. This frequency is modulated by an electrostatic force gradient generated by tip-sample bias oscillating from a few hundred Hz up to a few kHz. The sum of the side bands’ amplitudes is a proxy for the tip-sample distance and can be used for tip-sample distance control. This method can also be extended to other scanning probe microscopy techniques.

  15. Magnetic forces in high-Tc superconducting bearings

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1991-01-01

    In September 1987, researchers at Cornell levitated a small rotor on superconducting bearings at 10,000 rpm. In April 1989, a speed of 120,000 rpm was achieved in a passive bearing with no active control. The bearing material used was YBa2Cu307. There is no evidence that the rotation speed has any significant effect on the lift force. Magnetic force measurements between a permanent rare-earth magnet and high T(sub c) superconducting material versus vertical and lateral displacements were made. A large hysteresis loop results for large displacements, while minor loops result for small displacements. These minor loops seem to give a slope proportional to the magnetic stiffness, and are probably indicative of flux pinning forces. Experiments of rotary speed versus time show a linear decay in a vacuum. Measurements of magnetic dipole over a high-T(sub c) superconducting disc of YBCO show that the lateral vibrations of levitated rotors were measured which indicates that transverse flux motion in the superconductor will create dissipation. As a result of these force measurements, an optimum shape for the superconductor bearing pads which gives good lateral and axial stability was designed. Recent force measurements on melt-quench processed superconductors indicate a substantial increase in levitation force and magnetic stiffness over free sintered materials. As a result, application of high-T(sub c) superconducting bearings are beginning to show great promise at this time.

  16. Lorentz Body Force Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2003-01-01

    The Lorentz force induced by a traveling magnetic field (TMF) in a cylindrical container has been calculated. The force can be used to control flow in dectrically conducting melts and the direction of the magnetic field and resulting flow can be reversed. A TMF can be used to partially cancel flow driven by buoyancy. The penetration of the field into the cylinder decreases as the frequency increases, and there exists an optimal value of frequency for which the resulting force is a maximum. Expressions for the Lorentz force in the limiting cases of low frequency and infinite cylinder are also given and compared to the numerical calculations.

  17. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.

    PubMed

    Geng, Yanan; Wu, Weida

    2014-05-01

    We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.

  18. Longitudinal magnet forces?

    NASA Astrophysics Data System (ADS)

    Graneau, P.

    1984-03-01

    The Ampere electrodynamics of metallic conductors and experiments supporting it predict that the interaction of a current-carrying wire with its own magnetic field should produce longitudinal mechanical forces in the conductor, existing in addition to the transverse Lorentz forces. The longitudinal forces should stretch the conductor and have been referred to as Ampere tension. In 1964 it was discovered that a current pulse would break a straight copper wire into many fragments without visible melting. A metallurgical examination of the pieces confirmed that the metal parted in the solid state. The same observation has now been made with aluminum wires. In the latest experiments the wire was bent into a semicircle and arc-connected to a capacitor discharge circuit. The arc connections ruled out rupture by Lorentz hoop tension and indicated the longitudinal forces may also arise in circular magnet windings. Explanations of wire fragmentation by thermal shock, longitudinal stress waves, Lorentz pinch-off, bending stresses, and material defects have been considered and found unconvincing. Computed Ampere tensions would be sufficient to fracture hot wires. The Ampere tension would double the hoop tension normally expected in dipole magnets. This should be borne in mind in the design of large dipole magnets contemplated for MHD power generators and railgun accelerators.

  19. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  20. Magnetic forces and magnetized biomaterials provide dynamic flux information during bone regeneration.

    PubMed

    Russo, Alessandro; Bianchi, Michele; Sartori, Maria; Parrilli, Annapaola; Panseri, Silvia; Ortolani, Alessandro; Sandri, Monica; Boi, Marco; Salter, Donald M; Maltarello, Maria Cristina; Giavaresi, Gianluca; Fini, Milena; Dediu, Valentin; Tampieri, Anna; Marcacci, Maurilio

    2016-03-01

    The fascinating prospect to direct tissue regeneration by magnetic activation has been recently explored. In this study we investigate the possibility to boost bone regeneration in an experimental defect in rabbit femoral condyle by combining static magnetic fields and magnetic biomaterials. NdFeB permanent magnets are implanted close to biomimetic collagen/hydroxyapatite resorbable scaffolds magnetized according to two different protocols . Permanent magnet only or non-magnetic scaffolds are used as controls. Bone tissue regeneration is evaluated at 12 weeks from surgery from a histological, histomorphometric and biomechanical point of view. The reorganization of the magnetized collagen fibers under the effect of the static magnetic field generated by the permanent magnet produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. In contrast, only partial defect healing is achieved within the control groups. We ascribe the peculiar bone regeneration to the transfer of micro-environmental information, mediated by collagen fibrils magnetized by magnetic nanoparticles, under the effect of the static magnetic field. These results open new perspectives on the possibility to improve implant fixation and control the morphology and maturity of regenerated bone providing "in site" forces by synergically combining static magnetic fields and biomaterials.

  1. Mechanical manipulation of magnetic nanoparticles by magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jinyun; Zhang, Wenxiao; Li, Yiquan; Zhu, Hanxing; Qiu, Renxi; Song, Zhengxun; Wang, Zuobin; Li, Dayou

    2017-12-01

    A method has been developed in this work for the mechanical manipulation of magnetic nanoparticles (MNPs). A helical curve was designed as the capture path to pick up and remove the target nanoparticle on a mica surface by a magnetic probe based on the magnetic force microscope (MFM). There were magnetic, tangential and pushing forces acting on the target particle during the approaching process when the tip followed the helical curve as the capture path. The magnetic force was significant when the tip was closer to the particle. The target particle can be attached on the surface of the magnetic probe tip and then be picked up after the tip retracted from the mica surface. Theoretical analysis and experimental results were presented for the pick-up and removal of MNPs. With this method, the precision and flexibility of manipulation of MNPs were improved significantly compared to the pushing or sliding of the target object away from the corresponding original location following a planned path.

  2. Magnetically controllable 3D microtissues based on magnetic microcryogels.

    PubMed

    Liu, Wei; Li, Yaqian; Feng, Siyu; Ning, Jia; Wang, Jingyu; Gou, Maling; Chen, Huijun; Xu, Feng; Du, Yanan

    2014-08-07

    Microtissues on the scale of several hundred microns are a promising cell culture configuration resembling the functional tissue units in vivo. In contrast to conventional cell culture, handling of microtissues poses new challenges such as medium exchange, purification and maintenance of the microtissue integrity. Here, we developed magnetic microcryogels to assist microtissue formation with enhanced controllability and robustness. The magnetic microcryogels were fabricated on-chip by cryogelation and micro-molding which could endure extensive external forces such as fluidic shear stress during pipetting and syringe injection. The magnetically controllable microtissues were applied to constitute a novel separable 3D co-culture system realizing functional enhancement of the hepatic microtissues co-cultured with the stromal microtissues and easy purification of the hepatic microtissues for downstream drug testing. The magnetically controllable microtissues with pre-defined shapes were also applied as building blocks to accelerate the tissue assembly process under magnetic force for bottom-up tissue engineering. Finally, the magnetic microcryogels could be injected in vivo as cell delivery vehicles and tracked by MRI. The injectable magnetic microtissues maintained viability at the injection site indicating good retention and potential applications for cell therapy. The magnetic microcryogels are expected to significantly promote the microtissues as a promising cellular configuration for cell-based applications such as in drug testing, tissue engineering and regenerative therapy.

  3. Mechanisms explaining Coulomb's electric force & Lorentz's magnetic force from a classical perspective

    NASA Astrophysics Data System (ADS)

    Correnti, Dan S.

    2018-06-01

    The underlying mechanisms of the fundamental electric and magnetic forces are not clear in current models; they are mainly mathematical constructs. This study examines the underlying physics from a classical viewpoint to explain Coulomb's electric force and Lorentz's magnetic force. This is accomplished by building upon already established physics. Although no new physics is introduced, extension of existing models is made by close examination. We all know that an electron carries a bound cylindrical B-field (CBF) as it translates. Here, we show how the electron CBF plays an intrinsic role in the generation of the electric and magnetic forces.

  4. Retentive force and magnetic flux leakage of magnetic attachment in various keeper and magnetic assembly combinations.

    PubMed

    Hasegawa, Mikage; Umekawa, Yoshitada; Nagai, Eiich; Ishigami, Tomohiko

    2011-04-01

    Magnetic attachments are commonly used for overdentures. However, it can be difficult to identify and provide the same type and size of magnetic assembly and keeper if a repair becomes necessary. Therefore, the size and type may not match. This study evaluated the retentive force and magnetic flux strength and leakage of magnetic attachments in different combinations of keepers and magnetic assemblies. For 6 magnet-keeper combinations using 4 sizes of magnets (GIGAUSS D400, D600, D800, and D1000) (n=5), retentive force was measured 5 times at a crosshead speed of 5 mm/min in a universal testing machine. Magnetic flux strength was measured using a Hall Effect Gaussmeter. Data were statistically analyzed using a 1-way ANOVA, and between-group differences were analyzed with Tukey's HSD post hoc test (α=.05). The mean retentive force of the same-size magnet-keeper combinations was 3.2 N for GIGAUSS D400 and 5.1 N for GIGAUSS D600, but was significantly reduced when using larger magnets (P<.05). Magnetic flux leakage was significantly lower for corresponding size combinations. Size differences influence the retentive force and magnetic flux strength of magnetic attachments. Retentive force decreased due to the closed field structure becoming incomplete and due to magnetic field leakage. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  5. Repulsive vacuum-induced forces on a magnetic particle

    NASA Astrophysics Data System (ADS)

    Sinha, Kanupriya

    2018-03-01

    We study the possibility of obtaining a repulsive vacuum-induced force for a magnetic point particle near a surface. Considering the toy model of a particle with an electric-dipole transition and a large magnetic spin, we analyze the interplay between the repulsive magnetic-dipole and the attractive electric-dipole contributions to the total Casimir-Polder force. Particularly noting that the magnetic-dipole interaction is longer ranged than the electric dipole due to the difference in their respective characteristic transition frequencies, we find a regime where the repulsive magnetic contribution to the total force can potentially exceed the attractive electric part in magnitude for a sufficiently large spin. We analyze ways to further enhance the magnitude of the repulsive magnetic Casimir-Polder force for an excited particle, such as by preparing it in a "super-radiant" magnetic sublevel and designing surface resonances close to the magnetic transition frequency.

  6. Closed Loop Control of a Tethered Magnetic Capsule Endoscope

    PubMed Central

    Taddese, Addisu Z.; Slawinski, Piotr R.; Obstein, Keith L.; Valdastri, Pietro

    2017-01-01

    Magnetic field gradients have repeatedly been shown to be the most feasible mechanism for gastrointestinal capsule endoscope actuation. An inverse quartic magnetic force variation with distance results in large force gradients induced by small movements of a driving magnet; this necessitates robotic actuation of magnets to implement stable control of the device. A typical system consists of a serial robot with a permanent magnet at its end effector that actuates a capsule with an embedded permanent magnet. We present a tethered capsule system where a capsule with an embedded magnet is closed loop controlled in 2 degree-of-freedom in position and 2 degree-of-freedom in orientation. Capitalizing on the magnetic field of the external driving permanent magnet, the capsule is localized in 6-D allowing for both position and orientation feedback to be used in a control scheme. We developed a relationship between the serial robot's joint parameters and the magnetic force and torque that is exerted onto the capsule. Our methodology was validated both in a dynamic simulation environment where a custom plug-in for magnetic interaction was written, as well as on an experimental platform. The tethered capsule was demonstrated to follow desired trajectories in both position and orientation with accuracy that is acceptable for colonoscopy. PMID:28286886

  7. Closed Loop Control of a Tethered Magnetic Capsule Endoscope.

    PubMed

    Taddese, Addisu Z; Slawinski, Piotr R; Obstein, Keith L; Valdastri, Pietro

    2016-06-01

    Magnetic field gradients have repeatedly been shown to be the most feasible mechanism for gastrointestinal capsule endoscope actuation. An inverse quartic magnetic force variation with distance results in large force gradients induced by small movements of a driving magnet; this necessitates robotic actuation of magnets to implement stable control of the device. A typical system consists of a serial robot with a permanent magnet at its end effector that actuates a capsule with an embedded permanent magnet. We present a tethered capsule system where a capsule with an embedded magnet is closed loop controlled in 2 degree-of-freedom in position and 2 degree-of-freedom in orientation. Capitalizing on the magnetic field of the external driving permanent magnet, the capsule is localized in 6-D allowing for both position and orientation feedback to be used in a control scheme. We developed a relationship between the serial robot's joint parameters and the magnetic force and torque that is exerted onto the capsule. Our methodology was validated both in a dynamic simulation environment where a custom plug-in for magnetic interaction was written, as well as on an experimental platform. The tethered capsule was demonstrated to follow desired trajectories in both position and orientation with accuracy that is acceptable for colonoscopy.

  8. Optimal Control-Enabled Imaging and Spectroscopy using a Nanowire Magnetic Resonance Force Microscope

    NASA Astrophysics Data System (ADS)

    Rose, William; Haas, Holger; Chen, Angela; Cory, David; Budakian, Raffi

    Magnetic resonance imaging (MRI) is a powerful non-invasive technique that has transformed our ability to study the structure and function of biological systems. Key to its success has been the unique ability to combine imaging with magnetic resonance spectroscopy. Although it remains a significant challenge, there is considerable interest in extending MRI spectroscopy to the nanometer scale because it would provide a fundamentally new route for determining the structure and function of complex biomolecules. We present data taken with a nanowire magnetic resonance force microscopy (MRFM) setup. We show how the capabilities of this very sensitive spin-detection system can be extended to include spectroscopy and nanometer-scale imaging by combining optimal control theory (OCT) techniques with magic echo sequences. We apply OCT-based dynamical-decoupling pulses to nanoscale ensembles of proton spins in polystyrene, and demonstrate a 500-fold line-narrowing of the proton spin resonance, from 30 kHz to 60 Hz. We further demonstrate 1-D imaging over a 35-nm region with an average voxel size of 2.2 nm. Funding provided by the U.S. Army Research Office, Grant No. W911NF-12-1-0341.

  9. Principle and Basic Characteristics of Variable-Magnetic-Force Memory Motors

    NASA Astrophysics Data System (ADS)

    Sakai, Kazuto; Yuki, Kazuaki; Hashiba, Yutaka; Takahashi, Norio; Yasui, Kazuya; Kovudhikulrungsri, Lilit

    A reduction in the power consumed by motors is required for energy saving in the case of electrical appliances and electric vehicles (EV). The motors used for operating these apparatus operate at variable speeds. Further, the motors operate with small load in stationary mode and with large load in start-up mode. A permanent magnet motor can operate at the rated power with a high efficiency. However, the efficiency is lower at small load or high speed because the large constant magnetic force results in substantial core loss. Furthermore, the flux-weakening current that depresses voltage at high speed leads to significant copper loss. Therefore, we have developed a new technique for controlling the magnetic force of permanent magnet on the basis of the load or speed of the motor. In this paper, we propose the novel motor that can vary magnetic flux and we clarify the principle.

  10. Force sensor using changes in magnetic flux

    NASA Technical Reports Server (NTRS)

    Pickens, Herman L. (Inventor); Richard, James A. (Inventor)

    2012-01-01

    A force sensor includes a magnetostrictive material and a magnetic field generator positioned in proximity thereto. A magnetic field is induced in and surrounding the magnetostrictive material such that lines of magnetic flux pass through the magnetostrictive material. A sensor positioned in the vicinity of the magnetostrictive material measures changes in one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux.

  11. Force characteristic analysis of a magnetic gravity compensator with annular magnet array for magnetic levitation positioning system

    NASA Astrophysics Data System (ADS)

    Zhou, Yiheng; Kou, Baoquan; Liu, Peng; Zhang, He; Xing, Feng; Yang, Xiaobao

    2018-05-01

    Magnetic levitation positioning system (MLPS) is considered to be the state of the art in inspection and manufacturing systems in vacuum. In this paper, a magnetic gravity compensator with annular magnet array (AMA-MGC) for MLPS is proposed. Benefiting from the double-layer annular Halbach magnet array on the stator, the proposed AMA-MGC possesses the advantages of symmetrical force, high force density and small force fluctuation. Firstly, the basic structure and operation principle of the AMA-MGC are introduced. Secondly, the basic characteristics of the AMA-MGC such as magnetic field distribution, levitation force, parasitic force and parasitic torque are analyzed by the three-dimensional finite element analysis (3-D FEA). Thirdly, the influence of structural parameters on force density and force fluctuation is investigated, which is conductive to the design and optimization of the AMA-MGC. Finally, a prototype of the AMA-MGC is constructed, and the experiment shows good agreement with the 3-D FEA results.

  12. Magnetic domain structure imaging near sample surface with alternating magnetic force microscopy by using AC magnetic field modulated superparamagnetic tip.

    PubMed

    Cao, Yongze; Nakayama, Shota; Kumar, Pawan; Zhao, Yue; Kinoshita, Yukinori; Yoshimura, Satoru; Saito, Hitoshi

    2018-05-03

    For magnetic domain imaging with a very high spatial resolution by magnetic force microscopy the tip-sample distance should be as small as possible. However, magnetic imaging near sample surface is very difficult with conventional MFM because the interactive forces between tip and sample includes van der Waals and electrostatic forces along with magnetic force. In this study, we proposed an alternating magnetic force microscopy (A-MFM) which extract only magnetic force near sample surface without any topographic and electrical crosstalk. In the present method, the magnetization of a FeCo-GdOx superparamagnetic tip is modulated by an external AC magnetic field in order to measure the magnetic domain structure without any perturbation from the other forces near the sample surface. Moreover, it is demonstrated that the proposed method can also measure the strength and identify the polarities of the second derivative of the perpendicular stray field from a thin-film permanent magnet with DC demagnetized state and remanent state. © 2018 IOP Publishing Ltd.

  13. Forces between permanent magnets: experiments and model

    NASA Astrophysics Data System (ADS)

    González, Manuel I.

    2017-03-01

    This work describes a very simple, low-cost experimental setup designed for measuring the force between permanent magnets. The experiment consists of placing one of the magnets on a balance, attaching the other magnet to a vertical height gauge, aligning carefully both magnets and measuring the load on the balance as a function of the gauge reading. A theoretical model is proposed to compute the force, assuming uniform magnetisation and based on laws and techniques accessible to undergraduate students. A comparison between the model and the experimental results is made, and good agreement is found at all distances investigated. In particular, it is also found that the force behaves as r -4 at large distances, as expected.

  14. Effect of magnet/slot combination on triple-frequency magnetic force and vibration of permanent magnet motors

    NASA Astrophysics Data System (ADS)

    Huo, Mina; Wang, Shiyu; Xiu, Jie; Cao, Shuqian

    2013-10-01

    The relationship between magnet/slot combination and magnetic forces including unbalanced magnetic force (UMF) and cogging torque (CT) of permanent magnet (PM) motors is investigated by using superposition principle and mechanical and magnetic symmetries. The results show that magnetic force can be produced by all magnets passing a single slot, by all slots passing a single magnet, or by eccentricity, which respectively correspond to three frequency components. The results further show that net force/torque can be classified into three typical cases: UMF is suppressed and CT is excited, UMF excited and CT suppressed, and UMF and CT both suppressed, and consequently possible vibrations include three unique groups: rotational modes, translational modes, and balanced modes. The conclusion that combinations with the greatest common divisor (GCD) greater than unity can avoid UMF is mathematically verified, and at the same time lower CT harmonics are preliminarily addressed by the typical excitations. The above findings can create simple guidelines for the suppression of certain UMF and/or CT by using suitable combinations, which in turn can present approach to yield a more desirable response in high performance applications. The superposition effect and predicted relationship are verified by the transient magnetic Finite Element method. Since this work is motivated by symmetries, comparisons are made in order to give further insight into the inner force and vibration behaviors of general rotary power-transmission systems.

  15. Experimental verification of radial magnetic levitation force on the cylindrical magnets in ferrofluid dampers

    NASA Astrophysics Data System (ADS)

    Yang, Wenming; Wang, Pengkai; Hao, Ruican; Ma, Buchuan

    2017-03-01

    Analytical and numerical calculation methods of the radial magnetic levitation force on the cylindrical magnets in cylindrical vessels filled with ferrofluid was reviewed. An experimental apparatus to measure this force was designed and tailored, which could measure the forces in a range of 0-2.0 N with an accuracy of 0.001 N. After calibrated, this apparatus was used to study the radial magnetic levitation force experimentally. The results showed that the numerical method overestimates this force, while the analytical ones underestimate it. The maximum deviation between the numerical results and the experimental ones was 18.5%, while that between the experimental results with the analytical ones attained 68.5%. The latter deviation narrowed with the lengthening of the magnets. With the aids of the experimental verification of the radial magnetic levitation force, the effect of eccentric distance of magnets on the viscous energy dissipation in ferrofluid dampers could be assessed. It was shown that ignorance of the eccentricity of magnets during the estimation could overestimate the viscous dissipation in ferrofluid dampers.

  16. Hyper-resistive forced magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vekstein, G., E-mail: g.vekstein@manchester.ac.uk

    We study Taylor's model of forced magnetic reconnection mediated by plasma hyper-resistivity. This includes both linear and nonlinear regimes of the process. It is shown how the onset of plasmoid instability occurs in the strongly nonlinear regime of forced reconnection.

  17. The Role of Magnetic Forces in Biology and Medicine

    PubMed Central

    Roth, Bradley J

    2011-01-01

    The Lorentz force (the force acting on currents in a magnetic field) plays an increasingly larger role in techniques to image current and conductivity. This review will summarize several applications involving the Lorentz force, including 1) magneto-acoustic imaging of current, 2) “Hall effect” imaging, 3) ultrasonically-induced Lorentz force imaging of conductivity, 4) magneto-acoustic tomography with magnetic induction, and 5) Lorentz force imaging of action currents using magnetic resonance imaging. PMID:21321309

  18. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump.

    PubMed

    Pai, C N; Shinshi, T; Shimokohbe, A

    2010-01-01

    Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response.

  19. Passive force balancing of an active magnetic regenerative liquefier

    NASA Astrophysics Data System (ADS)

    Teyber, R.; Meinhardt, K.; Thomsen, E.; Polikarpov, E.; Cui, J.; Rowe, A.; Holladay, J.; Barclay, J.

    2018-04-01

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Implementation details are investigated which affirm the potential of the proposed methodology.

  20. Magnetic moment of solar plasma and the Kelvin force: -The driving force of plasma up-flow -

    NASA Astrophysics Data System (ADS)

    Shibasaki, Kiyoto

    2017-04-01

    Thermal plasma in the solar atmosphere is magnetized (diamagnetic). The magnetic moment does not disappear by collisions because complete gyration is not a necessary condition to have magnetic moment. Magnetized fluid is subjected to Kelvin force in non-uniform magnetic field. Generally, magnetic field strength decreases upwards in the solar atmosphere, hence the Kelvin force is directed upwards along the field. This force is not included in the fluid treatment of MHD. By adding the Kelvin force to the MHD equation of motion, we can expect temperature dependent plasma flows along the field which are reported by many observations. The temperature dependence of the flow speed is explained by temperature dependence of magnetic moment. From the observed parameters, we can infer physical parameters in the solar atmosphere such as scale length of the magnetic field strength and the friction force acting on the flowing plasma. In case of closed magnetic field lines, loop-top concentration of hot plasma is expected which is frequently observed.

  1. Electromagnetic tweezers with independent force and torque control

    NASA Astrophysics Data System (ADS)

    Jiang, Chang; Lionberger, Troy A.; Wiener, Diane M.; Meyhofer, Edgar

    2016-08-01

    Magnetic tweezers are powerful tools to manipulate and study the mechanical properties of biological molecules and living cells. In this paper we present a novel, bona fide electromagnetic tweezer (EMT) setup that allows independent control of the force and torque applied via micrometer-sized magnetic beads to a molecule under study. We implemented this EMT by combining a single solenoid that generates force (f-EMT) with a set of four solenoids arranged into a symmetric quadrupole to generate torque (τ-EMT). To demonstrate the capability of the tweezers, we attached optically asymmetric Janus beads to single, tethered DNA molecules. We show that tension in the piconewton force range can be applied to single DNA molecules and the molecule can simultaneously be twisted with torques in the piconewton-nanometer range. Furthermore, the EMT allows the two components to be independently controlled. At various force levels applied to the Janus bead, the trap torsional stiffness can be continuously changed simply by varying the current magnitude applied to the τ-EMT. The flexible and independent control of force and torque by the EMT makes it an ideal tool for a range of measurements where tensional and torsional properties need to be studied simultaneously on a molecular or cellular level.

  2. Nature of the electromagnetic force between classical magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2017-09-01

    The Lorentz force law of classical electrodynamics states that the force 𝑭𝑭 exerted by the magnetic induction 𝑩𝑩 on a particle of charge 𝑞𝑞 moving with velocity 𝑽𝑽 is given by 𝑭𝑭 = 𝑞𝑞𝑽𝑽 × 𝑩𝑩. Since this force is orthogonal to the direction of motion, the magnetic field is said to be incapable of performing mechanical work. Yet there is no denying that a permanent magnet can readily perform mechanical work by pushing/pulling on another permanent magnet or by attracting pieces of magnetizable material such as scrap iron or iron filings. We explain this apparent contradiction by examining the magnetic Lorentz force acting on an Amperian current loop, which is the model for a magnetic dipole. We then extend the discussion by analyzing the Einstein-Laub model of magnetic dipoles in the presence of external magnetic fields.

  3. Passive force balancing of an active magnetic regenerative liquefier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teyber, R.; Meinhardt, K.; Thomsen, E.

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Finally, implementation details aremore » investigated which affirm the potential of the proposed methodology.« less

  4. Passive force balancing of an active magnetic regenerative liquefier

    DOE PAGES

    Teyber, R.; Meinhardt, K.; Thomsen, E.; ...

    2017-11-02

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Finally, implementation details aremore » investigated which affirm the potential of the proposed methodology.« less

  5. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.

    2015-05-19

    A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  6. Driving reconnection in sheared magnetic configurations with forced fluctuations

    NASA Astrophysics Data System (ADS)

    Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David

    2018-02-01

    We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.

  7. Magnetic force induced tristability for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Li, Xin-Qiang; Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-10-01

    This paper presents a novel dielectric elastomer actuator (DEA) with three stable states. By introducing magnetic forces and coupling them with two cone dielectric elastomer (DE) films, an inherent tristability for the DEA is obtained with a compact design. It is easy to switch between the three stable states by controlling the voltages applied to the DE films. A theoretical model of the system’s potential energy that contains the free energy of the DEs and the potential energy of the applied magnetic field was developed for the tristable mechanism. The experimental results demonstrate that controllable transitions between the three stable states can be achieved with this design by applying over-critical voltages to the various DE films. The maximum dynamic range of the DEA can exceed 53.8% of the total length of the device and the DE’s creep speed was accelerated under the action of the magnetic field.

  8. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    NASA Astrophysics Data System (ADS)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  9. Fractionation of Magnetic Microspheres in a Microfluidic Spiral: Interplay between Magnetic and Hydrodynamic Forces

    PubMed Central

    Hayden, M. E.; Häfeli, U. O.

    2017-01-01

    Magnetic forces and curvature-induced hydrodynamic drag have both been studied and employed in continuous microfluidic particle separation and enrichment schemes. Here we combine the two. We investigate consequences of applying an outwardly directed magnetic force to a dilute suspension of magnetic microspheres circulating in a spiral microfluidic channel. This force is realized with an array of permanent magnets arranged to produce a magnetic field with octupolar symmetry about the spiral axis. At low flow rates particles cluster around an apparent streamline of the flow near the outer wall of the turn. At high flow rates this equilibrium is disrupted by the induced secondary (Dean) flow and a new equilibrium is established near the inner wall of the turn. A model incorporating key forces involved in establishing these equilibria is described, and is used to extract quantitative information about the magnitude of local Dean drag forces from experimental data. Steady-state fractionation of suspensions by particle size under the combined influence of magnetic and hydrodynamic forces is demonstrated. Extensions of this work could lead to new continuous microscale particle sorting and enrichment processes with improved fidelity and specificity. PMID:28107472

  10. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function.

    PubMed

    Gahl, Trevor J; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.

  11. Tunneling magnetic force microscopy

    NASA Technical Reports Server (NTRS)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  12. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  13. Verifying Magnetic Force on a Conductor

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2011-01-01

    The laboratory measurement of the magnetic force acting on a straight wire of length "l" carrying a current of intensity "i" in a magnetic field "B" is usually made using current balances, which are offered by various physics apparatus suppliers' catalogues. These balances require an adequate magnet and commonly allow only the measurement of the…

  14. Design, implementation and control of a magnetic levitation device

    NASA Astrophysics Data System (ADS)

    Shameli, Ehsan

    Magnetic levitation technology has shown a great deal of promise for micromanipulation tasks. Due to the lack of mechanical contact, magnetic levitation systems are free of problems caused by friction, wear, sealing and lubrication. These advantages have made magnetic levitation systems a great candidate for clean room applications. In this thesis, a new large gap magnetic levitation system is designed, developed and successfully tested. The system is capable of levitating a 6.5(gr) permanent magnet in 3D space with an air gap of approximately 50(cm) with the traveling range of 20x20x30 mm3. The overall positioning accuracy of the system is 60mum. With the aid of finite elements method, an optimal geometry for the magnetic stator is proposed. Also, an energy optimization approach is utilized in the design of the electromagnets. In order to facilitate the design of various controllers for the system, a mathematical model of the magnetic force experienced by the levitated object is obtained. The dynamic magnetic force model is determined experimentally using frequency response system identification. The response of the system components including the power amplifiers, and position measurement system are also considered in the development of the force model. The force model is then employed in the controller design for the magnetic levitation device. Through a modular approach, the controller design for the 3D positioning system is started with the controller design for the vertical direction, i.e. z, and then followed by the controller design in the horizontal directions, i.e. x and y. For the vertical direction, several controllers such as PID, feed forward and feedback linearization are designed and their performances are compared. Also a control command conditioning method is introduced as a solution to increase the control performance and the results of the proposed controller are compared with the other designs. Experimental results showed that for the magnetic

  15. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function

    PubMed Central

    Gahl, Trevor J.; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices. PMID:29867315

  16. Principle and Basic Characteristics of a Hybrid Variable-Magnetic-Force Motor

    NASA Astrophysics Data System (ADS)

    Sakai, Kazuto; Kuramochi, Satoru

    Reduction in the power consumed by motors is important for energy saving in the case of electrical appliances and electric vehicles (EVs). The motors used for operating these devices operate at variable speeds. Further, the motors operate with a small load in the stationary mode and a large load in the starting mode. A permanent magnet motor can be operated at the rated power with a high efficiency. However, the efficiency is low at a small load or at a high speed because the large constant magnetic force results in substantial core loss. Furthermore, the flux-weakening current that decreases the voltage at a high speed leads to significant copper loss and core loss. Therefore, we have developed a new technique for controlling the magnetic force of a permanent magnet on the basis of the load or speed of the motor. In this paper, we propose a novel motor that can vary the magnetic flux of a permanent magnet and clarify the principle and basic characteristics of the motor. The new motor has a permanent magnet that is magnetized by the magnetizing coil of the stator. The analysis results show that the magnetic flux linkage of the motor can be changed from 37% to 100% that a high torque can be produced.

  17. Nonlinear oscillation of a rigid body over high- Tc superconductors supported by electro-magnetic forces

    NASA Astrophysics Data System (ADS)

    Sugiura, T.; Ogawa, S.; Ura, H.

    2005-10-01

    Characteristics of high- Tc superconducting levitation systems are no contact support and stable levitation without control. They can be applied to supporting mechanisms in machines, such as linear-drives and magnetically levitated trains. But small damping due to noncontact support and nonlinearity in the magnetic force can easily cause complicated phenomena of nonlinear dynamics. This research deals with nonlinear oscillation of a rigid bar supported at its both ends by electro-magnetic forces between superconductors and permanent magnets as a simple modeling of the above application. Deriving the equation of motion, we discussed an effect of nonlinearity in the magnetic force on dynamics of the levitated body: occurrence of combination resonance in the asymmetrical system. Numerical analyses and experiments were also carried out, and their results confirmed the above theoretical prediction.

  18. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  19. Fundamental study on the magnetic field control method using multiple HTS coils for Magnetic Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Hirano, R.; Kim, S. B.; Nakagawa, T.; Tomisaka, Y.; Ueda, H.

    2017-07-01

    The magnetic drug delivery system (MDDS) is a key technology to reduce the side effects in the medical applications, and the magnetic force control is very important issue in MDDS. In this application, the strength of magnetic field and gradient required to MDDS devices are 54 mT and 5.5 T/m, respectively. We proposed the new magnetic force control system that consists of the multiple racetrack HTS magnets. We can control the magnetic field gradient along the longitudinal direction by the arrangement of the multiple racetrack HTS magnets and operating current of each magnet. When the racetrack HTS magnets were used, the critical current was reduced by the self-magnetic field. Therefore, the shape design of HTS magnet to reduce the magnet field into the surface of HTS tapes was required. Therefore, the electromagnetic analysis based on finite element method (FEM) was carried out to design and optimize the shape of multiple racetrack HTS magnet. We were able to suppress the reduction of critical current by placing the magnetic substance at upper and lower side of the HTS magnets. It was confirmed that obtained maximum values of magnetic field strength and field gradient were 33 mT and 0.18 T/m, respectively.

  20. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

    2014-05-20

    A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  1. Multiple degree-of-freedom force and moment measurement for static propulsion testing using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Stuart, Keith; Bartosh, Blake

    1993-01-01

    Innovative Information Systems (IIS), Inc. is in the process of designing and fabricating a high bandwidth force and moment measuring device (i.e. the Magnetic Thruster Test Stand). This device will use active magnetic suspension to allow direct measurements of the forces and torques generated by the rocket engines of the missile under test. The principle of operation of the Magnetic Thruster Test Stand (MTTS) is based on the ability to perform very precise, high bandwidth force and position measurements on an object suspended in a magnetic field. This ability exists due to the fact that the digital servo control mechanism that performs the magnetic suspension uses high bandwidth (10 kHz) position data (via an eddy-current proximity sensor) to determine the amount of force required to maintain stable suspension at a particular point. This force is converted into required electromagnet coil current, which is then output to a current amplifier driving the coils. A discussion of how the coil current and magnetic gap distance (the distance between the electromagnet and the object being suspended) is used to determine the forces being applied from the suspended assembly is presented.

  2. Time-delay control of a magnetic levitated linear positioning system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    In this paper, a high accuracy linear positioning system with a linear force actuator and magnetic levitation is proposed. By locating a permanently magnetized rod inside a current-carrying solenoid, the axial force is achieved by the boundary effect of magnet poles and utilized to power the linear motion, while the force for levitation is governed by Ampere's Law supplied with the same solenoid. With the levitation in a radial direction, there is hardly any friction between the rod and the solenoid. The high speed motion can hence be achieved. Besides, the axial force acting on the rod is a smooth function of rod position, so the system can provide nanometer resolution linear positioning to the molecule size. Since the force-position relation is highly nonlinear, and the mathematical model is derived according to some assumptions, such as the equivalent solenoid of the permanently magnetized rod, so there exists unknown dynamics in practical application. Thus 'robustness' is an important issue in controller design. Meanwhile the load effect reacts directly on the servo system without transmission elements, so the capability of 'disturbance rejection; is also required. With the above consideration, a time-delay control scheme is chosen and applied. By comparing the input-output relation and the mathematical model, the time-delay controller calculates an estimation of unmodeled dynamics and disturbances and then composes the desired compensation into the system. Effectiveness of the linear positioning system and control scheme are illustrated with simulation results.

  3. Lateral restoring force on a magnet levitated above a superconductor

    NASA Technical Reports Server (NTRS)

    Davis, L. C.

    1990-01-01

    The lateral restoring force on a magnet levitated above a superconductor is calculated as a function of displacement from its original position at rest using Bean's critical-state model to describe flux pinning. The force is linear for small displacements and saturates at large displacements. In the absence of edge effects the force always attracts the magnet to its original position. Thus it is a restoring force that contributes to the stability of the levitated magnet. In the case of a thick superconductor slab, the origin of the force is a magnetic dipole layer consisting of positive and negative supercurrents induced on the trailing side of the magnet. The qualitative behavior is consistent with experiments reported to date. Effects due to the finite thickness of the superconductor slab and the granular nature of high-Tc materials are also considered.

  4. Contact force with magnetic-guided catheter ablation.

    PubMed

    Bessière, Francis; Zikry, Christopher; Rivard, Lena; Dyrda, Katia; Khairy, Paul

    2018-05-01

    Achieving adequate catheter tip-tissue contact is essential for delivering robust radiofrequency (RF) ablation lesions. We measured the contact force generated by a remote magnetic-guided catheter navigation system. A plexiglass model with an integrated scale was fashioned to mimic transvenous and retrograde access to sites in the right atrium and right and left ventricles. An 8 Fr RF ablation catheter was steered by remote magnetic guidance at fields of 0.08 and 0.10 T, with and without a long sheath positioned at the entrance of the chamber. Ten contact force readings were taken at each setting, with the scale recalibrated prior to each measurement. Generalized estimating equations were used to compare contact force measurements while adjusting for the non-independent data structure. A total of 240 contact force measurements were taken. Without a long sheath, contact forces with magnetic fields of 0.10 T (n = 60) and 0.08 T (n = 60) were similar (6.1 ± 1.4 g vs. 6.0 ± 1.3 g, P = 0.089). Contact forces were not significantly different with simulated transvenous (n = 80) and retrograde aortic (n = 40) approaches (6.2 ± 1.4 g vs. 5.7 ± 1.2 g, P = 0.132). The contact force increased substantially with a long sheath (P < 0.001) and was significantly higher with 0.10 T (n = 60) vs. 0.08 T (n = 60) fields (20.4 ± 0.6 g vs. 18.0 ± 0.5 g, P < 0.001). Magnetic fields of 0.08 and 0.10 T provide stable catheter contact forces, as reflected by the small variability between measurements. The average contact force is approximately 6 g without a sheath and increases to 20 g with a long sheath positioned at the entrance of the chamber of interest.

  5. Extending the Range for Force Calibration in Magnetic Tweezers

    PubMed Central

    Daldrop, Peter; Brutzer, Hergen; Huhle, Alexander; Kauert, Dominik J.; Seidel, Ralf

    2015-01-01

    Magnetic tweezers are a wide-spread tool used to study the mechanics and the function of a large variety of biomolecules and biomolecular machines. This tool uses a magnetic particle and a strong magnetic field gradient to apply defined forces to the molecule of interest. Forces are typically quantified by analyzing the lateral fluctuations of the biomolecule-tethered particle in the direction perpendicular to the applied force. Since the magnetic field pins the anisotropy axis of the particle, the lateral fluctuations follow the geometry of a pendulum with a short pendulum length along and a long pendulum length perpendicular to the field lines. Typically, the short pendulum geometry is used for force calibration by power-spectral-density (PSD) analysis, because the movement of the bead in this direction can be approximated by a simple translational motion. Here, we provide a detailed analysis of the fluctuations according to the long pendulum geometry and show that for this direction, both the translational and the rotational motions of the particle have to be considered. We provide analytical formulas for the PSD of this coupled system that agree well with PSDs obtained in experiments and simulations and that finally allow a faithful quantification of the magnetic force for the long pendulum geometry. We furthermore demonstrate that this methodology allows the calibration of much larger forces than the short pendulum geometry in a tether-length-dependent manner. In addition, the accuracy of determination of the absolute force is improved. Our force calibration based on the long pendulum geometry will facilitate high-resolution magnetic-tweezers experiments that rely on short molecules and large forces, as well as highly parallelized measurements that use low frame rates. PMID:25992733

  6. Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets

    NASA Astrophysics Data System (ADS)

    Prat-Camps, J.; Teo, C.; Rusconi, C. C.; Wieczorek, W.; Romero-Isart, O.

    2017-09-01

    We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet in the Meissner state without applying any external field. The trapping potential created by such induced-only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated from the environment. We propose to use it as an ultrasensitive force and inertial sensor. A magnetomechanical readout of its displacement can be performed by using superconducting quantum interference devices. An analysis using current technology shows that force and acceleration sensitivities on the order of 10-23 N /√{Hz } (for a 100-nm magnet) and 10-14 g /√{Hz } (for a 10-mm magnet) might be within reach in a cryogenic environment. Such remarkable sensitivities, both in force and acceleration, can be used for a variety of purposes, from designing ultrasensitive inertial sensors for technological applications (e.g., gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of magnetic origin and gravitational physics.

  7. Axial force in a superconductor magnet journal bearing

    NASA Astrophysics Data System (ADS)

    Postrekhin, E.; Chong, Wang; Ki Bui, Ma; Chen, Quark; Chu, Wei-Kan

    Using superconductors and magnets, a journal bearing could be made from a permanent magnet cylinder in a superconductor ring. We have assembled a prototype superconductor magnet journal bearing of this configuration, and investigated the behavior of the axial force that it can provide. We have put together a numerical model of the interaction between the permanent magnet and the superconductor that is capable of describing these experimental results semi-quantitatively. Combining direct experimental measurements and using the numerical models proposed, we have achieved a qualitative understanding of the behavior of the axial force and its relationship of to the dimensions of the magnet and material quality such as the homogeneity of the superconductor that constitute the bearing.

  8. DNA Micromanipulation Using Novel High-Force, In-Plane Magnetic Tweezer

    NASA Astrophysics Data System (ADS)

    McAndrew, Christopher; Mehl, Patrick; Sarkar, Abhijit

    2010-03-01

    We report the development of a magnetic force transducer that can apply piconewton forces on single DNA molecules in the focus plane allowing continuous high precision tethered-bead tracking. The DNA constructs, proteins, and buffer are introduced into a 200μL closed cell created using two glass slides separated by rigid spacers interspersed within a thin viscoelastic perimeter wall. This closed cell configuration isolates our sample and produces low-noise force-extension measurements. Specially-drawn micropipettes are used for capturing the polystyrene bead, pulling on the magnetic sphere, introducing proteins of interest, and maintaining flow. Various high-precision micromanipulators allow us to move pipettes and stage as required. The polystyrene bead is first grabbed, and held using suction; then the magnetic particle at the other end of the DNA is pulled by a force created by either two small (1mm x 2mm x 4mm) bar magnets or a micro magnet-tipped pipette. Changes in the end-to-end length of the DNA are observable in real time. We will present force extension data obtained using the magnetic tweezer.

  9. Magnetic force and work: an accessible example

    NASA Astrophysics Data System (ADS)

    Gates, Joshua

    2014-05-01

    Despite their physics instructors’ arguments to the contrary, introductory students can observe situations in which there seems to be compelling evidence for magnetic force doing work. The counterarguments are often highly technical and require physics knowledge beyond the experience of novice students, however. A simple example is presented which can illustrate that all may not be what it seems when energy transfer and the magnetic force are involved. Excel and Python simulations of the process are also provided.

  10. Active magnetic force microscopy of Sr-ferrite magnet by stimulating magnetization under an AC magnetic field: Direct observation of reversible and irreversible magnetization processes

    NASA Astrophysics Data System (ADS)

    Cao, Yongze; Kumar, Pawan; Zhao, Yue; Yoshimura, Satoru; Saito, Hitoshi

    2018-05-01

    Understanding the dynamic magnetization process of magnetic materials is crucial to improving their fundamental properties and technological applications. Here, we propose active magnetic force microscopy for observing reversible and irreversible magnetization processes by stimulating magnetization with an AC magnetic field based on alternating magnetic force microscopy with a sensitive superparamagnetic tip. This approach simultaneously measures sample's DC and AC magnetic fields. We used this microscopy approach to an anisotropic Sr-ferrite (SrF) sintered magnet. This is a single domain type magnet where magnetization mainly changes via magnetic rotation. The proposed method can directly observe the reversible and irreversible magnetization processes of SrF and clearly reveal magnetic domain evolution of SrF (without stimulating magnetization—stimulating reversible magnetization—stimulating irreversible magnetization switching) by slowly increasing the amplitude of the external AC magnetic field. This microscopy approach can evaluate magnetic inhomogeneity and explain the local magnetic process within the permanent magnet.

  11. Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, C. E.; Yamada, M.; Ji, H.

    Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force ismore » found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.« less

  12. Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes

    DOE PAGES

    Myers, C. E.; Yamada, M.; Ji, H.; ...

    2016-11-22

    Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force ismore » found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.« less

  13. Perihelion precession from power law central force and magnetic-like force

    NASA Astrophysics Data System (ADS)

    Xu, Feng

    2011-04-01

    By the Laplace-Runge-Lenz (LRL) vector, we analyzed perihelion precessions of orbit with arbitrary eccentricity from perturbations of 1) power law central force and 2) fThusmagnetic-like force. Exact and analytically closed expressions for the precession rate are derived in both cases. In the central force case, we give a further expansion expression of precession rate in orders of eccentricity, and a rule judging pro- or retrograde precession is also given. We applied the result of central force to precessions of a planet in 1) Schwarzschild space-time, for which the formula for the Mercury’s 43”/century is reproduced, and 2) spherically distributed dark matter, for which we find a formula that is a generalization of the result derived by others for circular orbit. In the magnetic case, the use of the LRL vector proves to be simple and efficient. An example of magnetic-like perturbation is also discussed.

  14. Perihelion precession from power law central force and magnetic-like force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Feng

    2011-04-15

    By the Laplace-Runge-Lenz (LRL) vector, we analyzed perihelion precessions of orbit with arbitrary eccentricity from perturbations of 1) power law central force and 2) fThusmagnetic-like force. Exact and analytically closed expressions for the precession rate are derived in both cases. In the central force case, we give a further expansion expression of precession rate in orders of eccentricity, and a rule judging pro- or retrograde precession is also given. We applied the result of central force to precessions of a planet in 1) Schwarzschild space-time, for which the formula for the Mercury's 43''/century is reproduced, and 2) spherically distributed darkmore » matter, for which we find a formula that is a generalization of the result derived by others for circular orbit. In the magnetic case, the use of the LRL vector proves to be simple and efficient. An example of magnetic-like perturbation is also discussed.« less

  15. A novel constant-force scanning probe incorporating mechanical-magnetic coupled structures.

    PubMed

    Wang, Hongxi; Zhao, Jian; Gao, Renjing; Yang, Yintang

    2011-07-01

    A one-dimensional scanning probe with constant measuring force is designed and fabricated by utilizing the negative stiffness of the magnetic coupled structure, which mainly consists of the magnetic structure, the parallel guidance mechanism, and the pre-stressed spring. Based on the theory of material mechanics and the equivalent surface current model for computing the magnetic force, the analytical model of the scanning probe subjected to multi-forces is established, and the nonlinear relationship between the measuring force and the probe displacement is obtained. The practicability of introducing magnetic coupled structure in the constant-force probe is validated by the consistency of the results in numerical simulation and experiments.

  16. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-10-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  17. [Evaluation of three dimensional orthodontic force produced by magnet of fix appliance].

    PubMed

    Dai, Xin; Hou, Zhi-ming; Yao, Ge; Wen, Jing-long

    2008-12-01

    To analyze the feature and magnitude of three dimensional orthodontic force produced by the magnet of fix appliance. Forces detected by universal fatigue test system included the attractive and repulsive,the inclined and rotated orthodontic forces of two magnets in different air gaps, and the integrated inclined and rotated orthodontic forces of two magnets and NiTi wire. The attractive and repulsive forces of two magnets were 4.68 to 0.45 N and 3.00 to 0.40 N respectively in the air gaps of 0 to 5 mm. The inclined orthodontic forces were 1.54 to 1.67 N, 0.63 to 0.69 N, 0.47 to 0.54 N when the magnets were vertically inclined 10 degrees to 40 degrees in the air gaps of 0, 1, 2mm. The rotated orthodontic forces were 0.97 to 1.32 N, 0.53 to 0.59 N, 0.39 to 0.48 N when the magnets were horizontally rotated 10 degrees to 40 degrees in the air gaps of 0, 1, 2mm. The integrated orthodontic force of two magnets and 0.014-inch NiTi wire was 0.32 to 0.5 N when the magnets was vertically inclined 10 degrees to 40 degrees in the air gap of 4 mm. The integrated orthodontic force of two magnets and 0.012-inch NiTi wire was 0.32 to 0.39 N when the magnets were horizontally rotated 10 degrees to 40 degrees in the air gap of 3 mm. Magnets made into orthodontic brackets to some extent could replace the mechanical orthodontic force produced by orthodontic wires and elastics.

  18. Adaptive Variable Bias Magnetic Bearing Control

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.

    1998-01-01

    Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. With the existence of the bias current, even in no load conditions, there is always some power consumption. In aerospace applications, power consumption becomes an important concern. In response to this concern, an alternative magnetic bearing control method, called Adaptive Variable Bias Control (AVBC), has been developed and its performance examined. The AVBC operates primarily as a proportional-derivative controller with a relatively slow, bias current dependent, time-varying gain. The AVBC is shown to reduce electrical power loss, be nominally stable, and provide control performance similar to conventional bias control. Analytical, computer simulation, and experimental results are presented in this paper.

  19. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  20. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1978-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  1. Interaction Forces Between Multiple Bodies in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Joffe, Benjamin

    1996-01-01

    Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.

  2. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  3. The magnetofection method: using magnetic force to enhance gene delivery.

    PubMed

    Plank, Christian; Schillinger, Ulrike; Scherer, Franz; Bergemann, Christian; Rémy, Jean-Serge; Krötz, Florian; Anton, Martina; Lausier, Jim; Rosenecker, Joseph

    2003-05-01

    In order to enhance and target gene delivery we have previously established a novel method, termed magnetofection, which uses magnetic force acting on gene vectors that are associated with magnetic particles. Here we review the benefits, the mechanism and the potential of the method with regard to overcoming physical limitations to gene delivery. Magnetic particle chemistry and physics are discussed, followed by a detailed presentation of vector formulation and optimization work. While magnetofection does not necessarily improve the overall performance of any given standard gene transfer method in vitro, its major potential lies in the extraordinarily rapid and efficient transfection at low vector doses and the possibility of remotely controlled vector targeting in vivo.

  4. A magnetic micro-manipulator for application of three dimensional forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punyabrahma, P.; Jayanth, G. R.

    2015-02-15

    Magnetic manipulation finds diverse applications in actuation, characterization, and manipulation of micro- and nano-scale samples. This paper presents the design and development of a novel magnetic micro-manipulator for application of three-dimensional forces on a magnetic micro-bead. A simple analytical model is proposed to obtain the forces of interaction between the magnetic micro-manipulator and a magnetic micro-bead. Subsequently, guidelines are proposed to perform systematic design and analysis of the micro-manipulator. The designed micro-manipulator is fabricated and evaluated. The manipulator is experimentally demonstrated to possess an electrical bandwidth of about 1 MHz. The ability of the micro-manipulator to apply both in-plane andmore » out-of-plane forces is demonstrated by actuating permanent-magnet micro-beads attached to micro-cantilever beams. The deformations of the micro-cantilevers are also employed to calibrate the dependence of in-plane and out-of-plane forces on the position of the micro-bead relative to the micro-manipulator. The experimentally obtained dependences are found to agree well with theory.« less

  5. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    PubMed

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  6. Magnetically controlled ferromagnetic swimmers

    PubMed Central

    Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.

    2017-01-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control. PMID:28276490

  7. Magnetically controlled ferromagnetic swimmers

    NASA Astrophysics Data System (ADS)

    Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.

    2017-03-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control.

  8. Electromagnetic Forces in a Hybrid Magnetic-Bearing Switched-Reluctance Motor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.

    2008-01-01

    Analysis and experimental measurement of the electromagnetic force loads on the hybrid rotor in a novel hybrid magnetic-bearing switched-reluctance motor (MBSRM) have been performed. A MBSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The MBSRM discussed in this report has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of four stator poles, while a second set of four stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Static torque and radial force analysis were done for rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental and the theoretical radial force loads predictions was obtained with typical magnetic bearing derating factors applied to the predictions.

  9. Comparative study of the surface characteristics, microstructure, and magnetic retentive forces of laser-welded dowel-keepers and cast dowel-keepers for use with magnetic attachments.

    PubMed

    Chao, Yonglie; Du, Li; Yang, Ling

    2005-05-01

    Information regarding the merits and problems associated with connecting a keeper to a dowel and coping using a laser welding technique has not been explored extensively in the dental literature. This in vitro study compared the surface characteristics, microstructure, and magnetic retentive forces for a dowel and coping-keeper mechanism fabricated using a laser welding process and a cast-to casting technique. Five cast-to and 6 laser-welded dowel and coping-keeper specimens were tested. Using 5 freestanding keepers as the control group, the surface characteristics and microstructures of the specimens were examined by means of stereomicroscopy, metallographic microscopy, and scanning electron microscopy (SEM). Energy-dispersive spectroscopic (EDS) microanalysis with SEM provided elemental concentration information for the test specimens. The vertical magnetic retentive forces (N) of the 3 groups were measured using a universal testing machine. The results were statistically compared using 1-way analysis of variance and the Newman-Keuls multiple range test (alpha =.05). The laser-welded dowel-keeper generally maintained its original surface smoothness as well as the original microstructure. Elements diffused readily through the fusion zone. The surface of the cast dowel-keeper became rough with the formation of an oxide layer, the microstructure changed, and there was only limited elemental diffusion in the fusion zone. The average vertical magnetic retentive force of the laser-welded group, the cast group, and the control group were 4.2 +/- 0.2 N, 3.8 +/- 0.3 N, and 5.6 +/- 0.3 N, respectively. Statistically significant differences in vertical magnetic retentive force were found between the control group and both the laser-welded and cast groups (P <.01). Compared with the cast dowel-keepers, the average vertical magnetic retentive force of the laser-welded dowel-keepers was significantly higher (P <.05). The laser welding technique had less influence on the

  10. Varying the effective buoyancy of cells using magnetic force

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Valles, James M.

    2004-06-01

    We introduce a magnetic force buoyancy variation (MFBV) technique that employs intense inhomogeneous magnetic fields to vary the effective buoyancy of cells and other diamagnetic systems in solution. Nonswimming Paramecia have been suspended, forced to sediment and driven to rise in solution using MFBV. Details of their response to MFBV have been used to determine the magnetic susceptibility of a single Paramecium. The use of MFBV as a means by which to suspend cell cultures indefinitely is also described.

  11. System for Controlling a Magnetically Levitated Rotor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor)

    2006-01-01

    In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a "bounce" mode in which the rotor axis is displaced from the principal axis defined between the bearings and a "tilt" mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the "bounce" or "tilt" modes.

  12. Levitation and lateral forces between a point magnetic dipole and a superconducting sphere

    NASA Astrophysics Data System (ADS)

    H, M. Al-Khateeb; M, K. Alqadi; F, Y. Alzoubi; B, Albiss; M, K. Hasan (Qaseer; N, Y. Ayoub

    2016-05-01

    The dipole-dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.

  13. Magnetic Control of Convection in Electrically Nonconducting Fluids

    NASA Technical Reports Server (NTRS)

    Huang, Jie; Gray, Donald D.; Edwards, Boyd F.

    1999-01-01

    Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.

  14. Experiments with a Magnetically Controlled Pendulum

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    A magnetically controlled pendulum is used for observing free and forced oscillations, including nonlinear oscillations and chaotic motion. A data-acquisition system stores the data and displays time series of the oscillations and related phase plane plots, Poincare maps, Fourier spectra and histograms. The decay constant of the pendulum can be…

  15. On the Unsteady-Motion Theory of Magnetic Forces for Maglev

    DTIC Science & Technology

    1993-11-01

    DivisionEnergy Technology Division Forces for Maglev Energy Technology DivisionEnergy Technology Division by S. S. Chen, S. Zhu, and Y. Cai APQ 4 袲...On the Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S. Chen, S. Zhu, and Y. Cai Energy Technology Division November 1993 Work supported...vi On The Unsteady-Motion Theory of Magnetic Forces for Maglev by S. S

  16. Vertically polarizing undulator with the dynamic compensation of magnetic forces for the next generation of light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelnikov, N.; Budker Institute of Nuclear Physics, Novosibirsk 630090; Trakhtenberg, E.

    2014-11-15

    A short prototype (847-mm-long) of an Insertion Device (ID) with the dynamic compensation of ID magnetic forces has been designed, built, and tested at the Advanced Photon Source (APS) of the Argonne National Laboratory. The ID magnetic forces were compensated by the set of conical springs placed along the ID strongback. Well-controlled exponential characteristics of conical springs permitted a very close fit to the ID magnetic forces. Several effects related to the imperfections of actual springs, their mounting and tuning, and how these factors affect the prototype performance has been studied. Finally, series of tests to determine the accuracy andmore » reproducibility of the ID magnetic gap settings have been carried out. Based on the magnetic measurements of the ID B{sub eff}, it has been demonstrated that the magnetic gaps within an operating range were controlled accurately and reproducibly within ±1 μm. Successful tests of this ID prototype led to the design of a 3-m long device based on the same concept. The 3-m long prototype is currently under construction. It represents R and D efforts by the APS toward APS Upgrade Project goals as well as the future generation of IDs for the Linac Coherent Light Source (LCLS)« less

  17. The change in retentive force of magnetic attachment by abrasion.

    PubMed

    Huang, Yuanjin; Tawada, Yasuyuki; Hata, Yoshiaki; Watanabe, Fumihiko

    2008-07-01

    Magnets are frequently applied to removable dentures as retentive attachments. A magnet-retained removable overdenture might be slightly shifted from side to side by eccentric movement in the mouth, and the surface of magnetic attachment may be worn as a result. However, the relationship between the retentive force of magnetic attachment and its surface abrasion has not been reported. The purpose of this research is to investigate this relationship. Ten Mgfit DX 400 magnetic attachments for natural tooth roots were used for this experiment. The magnetic attachments were embedded in autopolymerizing acrylic resin, and ten pairs of specimens were fabricated. A 5-mm repeated gliding motion was applied on each pair of specimens until 30 000, 50 000, or 90 000 cycles had been achieved. The abrasion machine was under 5 kg loading, and the slide speed was 60 times/min. The retentive force of magnetic attachment was measured with a tension gauge at (1) before gliding; (2) after 30 000 gliding cycles; (3)after 50 000 gliding cycles; or (4) after 90 000 gliding cycles. The average change of retentive force of ten magnetic attachments after 30 000, 50 000, and 90 000 gliding cycles was 0.016 N, 0.003 N, and -0.008 N, respectively. The change was statistically analyzed using a paired-sample t test, which showed that the number of gliding cycles did not affect the retentive force of magnetic attachment significantly. The surface of magnetic attachment after gliding was observed by a microscope, and the abrasion of this attachment surface is clearly seen.

  18. Measurement and calculation of forces in a magnetic journal bearing actuator

    NASA Technical Reports Server (NTRS)

    Knight, Josiah; Mccaul, Edward; Xia, Zule

    1991-01-01

    Numerical calculations and experimental measurements of forces from an actuator of the type used in active magnetic journal bearings are presented. The calculations are based on solution of the scalar magnetic potential field in and near the gap regions. The predicted forces from single magnet with steady current are compared with experimental measurements in the same geometry. The measured forces are smaller than calculated ones in the principal direction but are larger than calculated in the normal direction. This combination of results indicate that material and spatial effects other than saturation play roles in determining the force available from an actuator.

  19. Vibration and shape control of hinged light structures using electromagnetic forces

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuji; Miyachi, Shigenobu; Sasaki, Toshiyuki

    2003-08-01

    This paper describes a new electromagnetic device for vibration control of a light-weighted deployable/retractable structure which consists of many small units connected with mechanical hinges. A typical example of such a structure is a solar cell paddle of an artificial satellite which is composed of many thin flexible blankets connected in series. Vibration and shape control of the paddle is not easy, because control force and energy do not transmit well between the blankets which are discretely connected by hinges with each other. The new device consists of a permanent magnet glued along an edge of a blanket and an electric current-conducting coil glued along an adjoining edge of another adjacent blanket. Conduction of the electric current in a magnetic field from the magnet generates an electromagnetic force on the coil. By changing the current in the coil, therefore, we may control the vibration and shape of the blankets. To confirm the effectiveness of the new device, constructing a simple paddle model consisting eight hinge- panels, we have carried out a model experiment of vibration and shape control of the paddle. In addition, a numerical simulation of vibration control of the hinge structure is performed to compare with measured data.

  20. Acceleration-Augmented LQG Control of an Active Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Feeley, Joseph J.

    1993-01-01

    A linear-quadratic-gaussian (LQG) regulator controller design for an acceleration-augmented active magnetic bearing (AMB) is outlined. Acceleration augmentation is a key feature in providing improved dynamic performance of the controller. The optimal control formulation provides a convenient method of trading-off fast transient response and force attenuation as control objectives.

  1. [Studies on reduction of repellent force of rare earth magnets--concerning tooth intrusion].

    PubMed

    Kitsugi, A

    1992-12-01

    The purpose of this investigation was to evaluate the sealing effect of the repelling force of the magnets with ferromagnetic stainless steel and also to examine the reduction pattern along with the change of the relative position of the magnets. The Nd-Fe-B magnet as rare earth magnet, and SUSXM 27, YEP-3, SUS 416 as ferromagnetic stainless steel were used in this experiment. The findings were as follows: 1. There was a little decrease of the repelling force of the magnets sealed with ferromagnetic stainless steel. On the other hand, no significant differences in the repelling force sealed with any kind of ferromagnetic stainless steel were found. 2. Direct contact of the repelling force of the phi 4.0 x 1.5 mm magnets sealed with SUSXM 27 of 0.2 mm in thickness was 242 gf. According to relative horizontal 1.2 mm movement keeping direct contact, the vertical and horizontal components of the repelling force were of the same value. 3. The repelling force of the phi 10.0 x 1.8 mm magnets sealed with SUSXM 27 of 0.2 mm in thickness was 815 gf. It showed more than 300 gf of vertical component of the repelling force when the magnets shifted to 3.0 mm horizontally when in contact. 4. It is suggested that the repelling force of the Nd-Fe-B magnets will be clinically useful for the intrusion of molar teeth.

  2. How Can Magnetic Forces Do Work? Investigating the Problem with Students

    ERIC Educational Resources Information Center

    Onorato, Pasquale; De Ambrosis, Anna

    2013-01-01

    We present a sequence of activities aimed at promoting both learning about magnetic forces and students' reflection about the conceptual bridge between magnetic forces on a moving charge and on a current-carrying wire in a magnetic field. The activity sequence, designed for students in high school or on introductory physics courses, has been…

  3. Magnetic Control of Solutal Buoyancy Driven Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.

  4. Comparison of digital controllers used in magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, William A.

    1990-01-01

    Dynamic systems that were once controlled by analog circuits are now controlled by digital computers. Presented is a comparison of the digital controllers presently used with magnetic suspension and balance systems. The overall responses of the systems are compared using a computer simulation of the magnetic suspension and balance system and the digital controllers. The comparisons include responses to both simulated force and position inputs. A preferred digital controller is determined from the simulated responses.

  5. Resistance of domain walls created by means of a magnetic force microscope in transversally magnetized epitaxial Fe wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassel, C.; Stienen, S.; Roemer, F. M.

    2009-07-20

    Magnetic domain walls are created in a controllable way in transversally magnetized epitaxial Fe wires on GaAs(110) by approaching a magnetic force microscope (MFM) tip. The electrical resistance-change due to the addition of these domain walls is measured. The anisotropic magnetoresistance as well as the intrinsic domain wall resistance contribute to the resistance-change. The efficiency of this procedure is proven by MFM images, which are obtained subsequent to the domain wall creation at a larger sample-to-probe distance. The contribution of the anisotropic magnetoresistance is calculated using micromagnetic calculations, thus making it possible to quantify the intrinsic domain wall resistance.

  6. What is the force on a magnetic dipole?

    NASA Astrophysics Data System (ADS)

    Franklin, Jerrold

    2018-05-01

    This paper will be of interest to physics graduate students and faculty. We show that attempts to modify the force on a magnetic dipole by introducing either hidden momentum or internal forces are not correct. The standard textbook result {F}={{\

  7. A three-dimensional finite element evaluation of magnetic attachment attractive force and the influence of the magnetic circuit.

    PubMed

    Kumano, Hirokazu; Nakamura, Yoshinori; Kanbara, Ryo; Takada, Yukyo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-01-01

    The finite element method has been considered to be excellent evaluative technique to study magnetic circuit optimization. The present study analyzed and quantitatively evaluated the different effects of magnetic circuit on attractive force and magnetic flux density using a three-dimensional finite element method for comparative evaluation. The diameter of a non-magnetic material in the shield disk of a magnetic assembly was variably increased by 0.1 mm to a maximum 2.0 mm in this study design. The analysis results demonstrate that attractive force increases until the diameter of the non-magnetic spacing material reaches a diameter of 0.5 mm where it peaks and then decreases as the overall diameter increases over 0.5 mm. The present analysis suggested that the attractive force for a magnetic attachment is optimized with an appropriate magnetic assembly shield disk diameter using a non-magnetic material to effectively change the magnetic circuit efficiency and resulting retention.

  8. Novel Applications of Magnetic Fields for Fluid Flow Control and for Simulating Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    Static and dynamic magnetic fields have been used to control convection in many materials processing applications. In most of the applications, convection control (damping or enhancement) is achieved through the Lorentz force that can be tailored to counteract/assist dominant system flows. This technique has been successfully applied to liquids that are electrically conducting, such as high temperature melts of semiconductors, metals and alloys, etc. In liquids with low electrical conductivity such as ionic solutions of salts in water, the Lorentz force is weak and hence not very effective and alternate ways of flow control are necessary. If the salt in solution is paramagnetic then the variation of magnetic susceptibility with temperature and/or concentration can be used for flow control. For thermal buoyancy driven flows this can be accomplished in a temperature range below the Curie point of the salt. The magnetic force is proportional to the magnetic susceptibility and the product of the magnetic field and its gradient. By suitably positioning the experiment cell in the magnet, system flows can be assisted or countered, as desired. A similar approach can be extended to diamagnetic substances and fluids but the required magnetic force is considerably larger than that required for paramagnetic substances. The presentation will provide an overview of work to date on a NASA fluid physics sponsored project that aims to test the hypothesis of convective flow control using strong magnetic fields in protein crystal growth. The objective is to understand the nature of the various forces that come into play, delineate causative factors for fluid flow and to quantify them through experiments, analysis, and numerical modeling. The seminar will report specifically on the experimental results using paramagnetic salts and solutions in magnetic fields and compare them to analytical predictions. Applications of the concept to protein crystallization studies will be discussed

  9. Vibration Control in Turbomachinery Using Active Magnetic Journal Bearings

    NASA Technical Reports Server (NTRS)

    Knight, Josiah D.

    1996-01-01

    The effective use of active magnetic bearings for vibration control in turbomachinery depends on an understanding of the forces available from a magnetic bearing actuator. The purpose of this project was to characterize the forces as functions shaft position. Both numerical and experimental studies were done to determine the characteristics of the forces exerted on a stationary shaft by a magnetic bearing actuator. The numerical studies were based on finite element computations and included both linear and nonlinear magnetization functions. Measurements of the force versus position of a nonrotating shaft were made using two separate measurement rigs, one based on strain gage measurement of forces, the other based on deflections of a calibrated beam. The general trends of the measured principal forces agree with the predictions of the theory while the magnitudes of forces are somewhat smaller than those predicted. Other aspects of theory are not confirmed by the measurements. The measured forces in the normal direction are larger than those predicted by theory when the rotor has a normal eccentricity. Over the ranges of position examined, the data indicate an approximately linear relationship between the normal eccentricity of the shaft and the ratio of normal to principal force. The constant of proportionality seems to be larger at lower currents, but for all cases examined its value is between 0.14 and 0.17. The nonlinear theory predicts the existence of normal forces, but has not predicted such a large constant of proportionality for the ratio. The type of coupling illustrated by these measurements would not tend to cause whirl, because the coupling coefficients have the same sign, unlike the case of a fluid film bearing, where the normal stiffness coefficients often have opposite signs. They might, however, tend to cause other self-excited behavior. This possibility must be considered when designing magnetic bearings for flexible rotor applications, such as gas

  10. Energy buildup in sheared force-free magnetic fields

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  11. Experimental studies of protozoan response to intense magnetic fields and forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine

    Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general

  12. Effect of transcranial magnetic stimulation on force of finger pinch

    NASA Astrophysics Data System (ADS)

    Odagaki, Masato; Fukuda, Hiroshi; Hiwaki, Osamu

    2009-04-01

    Transcranial magnetic stimulation (TMS) is used to explore many aspects of brain function, and to treat neurological disorders. Cortical motor neuronal activation by TMS over the primary motor cortex (M1) produces efferent signals that pass through the corticospinal tracts. Motor-evoked potentials (MEPs) are observed in muscles innervated by the stimulated motor cortex. TMS can cause a silent period (SP) following MEP in voluntary electromyography (EMG). The present study examined the effects of TMS eliciting MEP and SP on the force of pinching using two fingers. Subjects pinched a wooden block with the thumb and index finger. TMS was applied to M1 during the pinch task. EMG of first dorsal interosseous muscles and pinch forces were measured. Force output increased after the TMS, and then oscillated. The results indicated that the motor control system to keep isotonic forces of the muscles participated in the finger pinch was disrupted by the TMS.

  13. A study on the changes in attractive force of magnetic attachments for overdenture.

    PubMed

    Leem, Han-Wool; Cho, In-Ho; Lee, Jong-Hyuk; Choi, Yu-Sung

    2016-02-01

    Although magnetic attachment is used frequently for overdenture, it is reported that attractive force can be decreased by abrasion and corrosion. The purpose of this study was to establish the clinical basis about considerations and long term prognosis of overdenture using magnetic attachments by investigating the change in attractive force of magnetic attachment applied to the patients. Among the patients treated with overdenture using magnetic attachments in Dankook University Dental Hospital, attractive force records of 61 magnetic attachments of 20 subjects who re-visited from July 2013 to June 2014 were analyzed. Dental magnet tester (Aichi Micro Intelligent Co., Aichi, Japan) was used for measurement. The magnetic attachments used in this study were Magfit IP-B Flat, Magfit DX400, Magfit DX600 and Magfit DX800 (Aichi Steel Co., Aichi, Japan) filled with Neodymium (NdFeB), a rare-earth magnet. Reduction ratio of attractive force had no significant correlation with conditional variables to which attachments were applied, and was higher when the maintenance period was longer (P<.05, r=.361). Reduction ratio of attractive force was significantly higher in the subject group in which attachments were used over 9 years than within 9 years (P<.05). Furthermore, 16.39% of total magnetic attachments showed detachment of keeper or assembly. Attractive force of magnetic attachment is maintained regardless of conditional variables and reduction ratio increased as the maintenance period became longer. Further study on adhesive material, attachment method and design improvement to prevent detachment of magnetic attachment is needed.

  14. A study on the changes in attractive force of magnetic attachments for overdenture

    PubMed Central

    Lee, Jong-Hyuk; Choi, Yu-Sung

    2016-01-01

    PURPOSE Although magnetic attachment is used frequently for overdenture, it is reported that attractive force can be decreased by abrasion and corrosion. The purpose of this study was to establish the clinical basis about considerations and long term prognosis of overdenture using magnetic attachments by investigating the change in attractive force of magnetic attachment applied to the patients. MATERIALS AND METHODS Among the patients treated with overdenture using magnetic attachments in Dankook University Dental Hospital, attractive force records of 61 magnetic attachments of 20 subjects who re-visited from July 2013 to June 2014 were analyzed. Dental magnet tester (Aichi Micro Intelligent Co., Aichi, Japan) was used for measurement. The magnetic attachments used in this study were Magfit IP-B Flat, Magfit DX400, Magfit DX600 and Magfit DX800 (Aichi Steel Co., Aichi, Japan) filled with Neodymium (NdFeB), a rare-earth magnet. RESULTS Reduction ratio of attractive force had no significant correlation with conditional variables to which attachments were applied, and was higher when the maintenance period was longer (P<.05, r=.361). Reduction ratio of attractive force was significantly higher in the subject group in which attachments were used over 9 years than within 9 years (P<.05). Furthermore, 16.39% of total magnetic attachments showed detachment of keeper or assembly. CONCLUSION Attractive force of magnetic attachment is maintained regardless of conditional variables and reduction ratio increased as the maintenance period became longer. Further study on adhesive material, attachment method and design improvement to prevent detachment of magnetic attachment is needed. PMID:26949482

  15. Theory for measurements of penetration depth in magnetic superconductors by magnetic force microscopy and scanning SQUID microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Bulaevskii, Lev N.

    2012-07-01

    The working principle of magnetic force microscopy and scanning SQUID microscopy is introducing a magnetic source near a superconductor and measuring the magnetic field distribution near the superconductor, from which one can obtain the penetration depth. We investigate the magnetic field distribution near the surface of a magnetic superconductor when a magnetic source is placed close to the superconductor, which can be used to extract both the penetration depth λL and magnetic susceptibility χ by magnetic force microscopy or scanning SQUID microscopy. When the magnetic moments are parallel to the surface, one extracts λL/1-4πχ. When the moments are perpendicular to the surface, one obtains λL. By changing the orientation of the crystal, one thus is able to extract both χ and λL.

  16. Dynamics of Permanent-Magnet Biased Active Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Fukata, Satoru; Yutani, Kazuyuki

    1996-01-01

    Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.

  17. Modelling and control of a rotor supported by magnetic bearings

    NASA Technical Reports Server (NTRS)

    Gurumoorthy, R.; Pradeep, A. K.

    1994-01-01

    In this paper we develop a dynamical model of a rotor and the active magnetic bearings used to support the rotor. We use this model to develop a stable state feedback control of the magnetic bearing system. We present the development of a rigid body model of the rotor, utilizing both Rotation Matrices (Euler Angles) and Euler Parameters (Quaternions). In the latter half of the paper we develop a stable state feedback control of the actively controlled magnetic bearing to control the rotor position under inbalances. The control law developed takes into account the variation of the model with rotational speed. We show stability over the whole operating range of speeds for the magnetic bearing system. Simulation results are presented to demonstrate the closed loop system performance. We develop the model of the magnetic bearing, and present two schemes for the excitation of the poles of the actively controlled magnetic bearing. We also present a scheme for averaging multiple sensor measurements and splitting the actuation forces amongst redundant actuators.

  18. Probing of multiple magnetic responses in magnetic inductors using atomic force microscopy.

    PubMed

    Park, Seongjae; Seo, Hosung; Seol, Daehee; Yoon, Young-Hwan; Kim, Mi Yang; Kim, Yunseok

    2016-02-08

    Even though nanoscale analysis of magnetic properties is of significant interest, probing methods are relatively less developed compared to the significance of the technique, which has multiple potential applications. Here, we demonstrate an approach for probing various magnetic properties associated with eddy current, coil current and magnetic domains in magnetic inductors using multidimensional magnetic force microscopy (MMFM). The MMFM images provide combined magnetic responses from the three different origins, however, each contribution to the MMFM response can be differentiated through analysis based on the bias dependence of the response. In particular, the bias dependent MMFM images show locally different eddy current behavior with values dependent on the type of materials that comprise the MI. This approach for probing magnetic responses can be further extended to the analysis of local physical features.

  19. Separating the influence of electric charges in magnetic force microscopy images of inhomogeneous metal samples

    NASA Astrophysics Data System (ADS)

    Arenas, Mónica P.; Lanzoni, Evandro M.; Pacheco, Clara J.; Costa, Carlos A. R.; Eckstein, Carlos B.; de Almeida, Luiz H.; Rebello, João M. A.; Deneke, Christoph F.; Pereira, Gabriela R.

    2018-01-01

    In this study, we investigate artifacts arising from electric charges present in magnetic force microscopy images. Therefore, we use two austenitic steel samples with different microstructural conditions. Furthermore, we examine the influence of the surface preparation, like etching, in magnetic force images. Using Kelvin probe force microscopy we can quantify the charges present on the surface. Our results show that electrical charges give rise to a signature in the magnetic force microscopy, which is indistinguishable from a magnetic signal. Our results on two differently aged steel samples demonstrate that the magnetic force microscopy images need to be interpreted with care and must be corrected due to the influence of electrical charges present. We discuss three approaches, how to identify these artifacts - parallel acquisition of magnetic force and electric force images on the same position, sample surface preparation to decrease the presence of charges and inversion of the magnetic polarization in two succeeding measurement.

  20. Calculation of cogging force in a novel slotted linear tubular brushless permanent magnet motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z.Q.; Hor, P.J.; Howe, D.

    1997-09-01

    There is an increasing requirement for controlled linear motion over short and long strokes, in the factory automation and packaging industries, for example. Linear brushless PM motors could offer significant advantages over conventional actuation technologies, such as motor driven cams and linkages and pneumatic rams--in terms of efficiency, operating bandwidth, speed and thrust control, stroke and positional accuracy, and indeed over other linear motor technologies, such as induction motors. Here, a finite element/analytical based technique for the prediction of cogging force in a novel topology of slotted linear brushless permanent magnet motor has been developed and validated. The various forcemore » components, which influence cogging are pre-calculated by the finite element analysis of some basic magnetic structures, facilitate the analytical synthesis of the resultant cogging force. The technique can be used to aid design for the minimization of cogging.« less

  1. Characterization of magnetic force microscopy probe tip remagnetization for measurements in external in-plane magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weis, Tanja; Engel, Dieter; Ehresmann, Arno

    2008-12-15

    A quantitative analysis of magnetic force microscopy (MFM) images taken in external in-plane magnetic fields is difficult because of the influence of the magnetic field on the magnetization state of the magnetic probe tip. We prepared calibration samples by ion bombardment induced magnetic patterning with a topographically flat magnetic pattern magnetically stable in a certain external magnetic field range for a quantitative characterization of the MFM probe tip magnetization in point-dipole approximation.

  2. Magnetic tweezers optimized to exert high forces over extended distances from the magnet in multicellular systems

    NASA Astrophysics Data System (ADS)

    Selvaggi, L.; Pasakarnis, L.; Brunner, D.; Aegerter, C. M.

    2018-04-01

    Magnetic tweezers are mainly divided into two classes depending on the ability of applying torque or forces to the magnetic probe. We focused on the second category and designed a device composed by a single electromagnet equipped with a core having a special asymmetric profile to exert forces as large as 230 pN-2.8 μm Dynabeads at distances in excess of 100 μm from the magnetic tip. Compared to existing solutions our magnetic tweezers overcome important limitations, opening new experimental paths for the study of a wide range of materials in a variety of biophysical research settings. We discuss the benefits and drawbacks of different magnet core characteristics, which led us to design the current core profile. To demonstrate the usefulness of our magnetic tweezers, we determined the microrheological properties inside embryos of Drosophila melanogaster during the syncytial stage. Measurements in different locations along the dorsal-ventral axis of the embryos showed little variation, with a slight increase in cytoplasm viscosity at the periphery of the embryos. The mean cytoplasm viscosity we obtain by active force exertion inside the embryos is comparable to that determined passively using high-speed video microrheology.

  3. Novel concepts in near-field optics: from magnetic near-field to optical forces

    NASA Astrophysics Data System (ADS)

    Yang, Honghua

    near-field response of a linear rod antenna is studied with Babinet's principle. Babinet's principle connects the magnetic field of a structure to the electric field of its complement structure. Using combined far- and near-field spectroscopy, imaging, and theory, I identify magnetic dipole and higher order bright and dark magnetic resonances at mid-infrared frequencies. From resonant length scaling and spatial field distributions, I confirm that the theoretical requirement of Babinet's principle for a structure to be infinitely thin and perfectly conducting is still fulfilled to a good approximation in the mid-infrared. Thus Babinet's principle provides access to spatial and spectral magnetic field properties, leading to targeted design and control of magnetic optical antennas. Lastly, a novel form of nanoscale optical spectroscopy based on mechanical detection of optical gradient force is explored. It is to measure the optical gradient force between induced dipole moments of a sample and an atomic force microscope (AFM) tip. My study provides the theoretical basis in terms of spectral behavior, resonant enhancement, and distance dependence of the optical gradient force from numerical simulations for a coupled nanoparticle model geometry. I show that the optical gradient force is dispersive for local electronic and vibrational resonances, yet can be absorptive for collective polaronic excitations. This spectral behavior together with the distance dependence scaling provides the key characteristics for its measurement and distinction from competing processes such as thermal expansion. Furthermore, I provide a perspective for resonant enhancement and control of optical forces in general.

  4. Detecting the gravitational sensitivity of Paramecium caudatum using magnetic forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Valles, James M., Jr.

    2006-03-01

    Under normal conditions, Paramecium cells regulate their swimming speed in response to the pN level mechanical force of gravity. This regulation, known as gravikinesis, is more pronounced when the external force is increased by methods such as centrifugation. Here we present a novel technique that simulates gravity fields using the interactions between strong inhomogeneous magnetic fields and cells. We are able to achieve variable gravities spanning from 10xg to -8xg; where g is earth's gravity. Our experiments show that the swimming speed regulation of Paramecium caudatum to magnetically simulated gravity is a true physiological response. In addition, they reveal a maximum propulsion force for paramecia. This advance establishes a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.

  5. Magnetic Control of Concentration Gradient in Microgravity

    NASA Technical Reports Server (NTRS)

    Leslie, Fred; Ramachandran, Narayanan

    2005-01-01

    A report describes a technique for rapidly establishing a fluid-concentration gradient that can serve as an initial condition for an experiment on solutal instabilities associated with crystal growth in microgravity. The technique involves exploitation of the slight attractive or repulsive forces exerted on most fluids by a magnetic-field gradient. Although small, these forces can dominate in microgravity and therefore can be used to hold fluids in position in preparation for an experiment. The magnetic field is applied to a test cell, while a fluid mixture containing a concentration gradient is prepared by introducing an undiluted solution into a diluting solution in a mixing chamber. The test cell is then filled with the fluid mixture. Given the magnetic susceptibilities of the undiluted and diluting solutions, the magnetic-field gradient must be large enough that the magnetic force exceeds both (1) forces associated with the flow of the fluid mixture during filling of the test cell and (2) forces imposed by any residual gravitation and fluctuations thereof. Once the test cell has been filled with the fluid mixture, the magnetic field is switched off so that the experiment can proceed, starting from the proper initial conditions.

  6. On the use of high-gradient magnetic force field in capturing airborne particles

    DOE PAGES

    Cheng, Mengdawn; Murphy, Bart L.; Moon, Ji Won; ...

    2018-06-01

    Airborne particles in the environment are generally smaller than a couple of microns. Use of magnetic force to collect aerosol particles thus has not been popular as the other means. There are billions of airborne particles emitted by a host of man-made sources with the particle size smaller than 1 µm and possess some magnetic susceptibility. We are thus interested in the use of high-gradient magnetic collection to extract the magnetic fraction in an aerosol population. Here in this study, we reported that the magnetic force is the dominant force in collection of ferromagnetic particles of mobility equivalent size largermore » than or equal to 50 nm in a high-gradient permanent-magnetic aerosol collector, while the diffusiophoretic force is responsible for particles smaller than 10 nm. Both forces compete for particles in between these two sizes in the magnetic aerosol collector designed for this study. To enable a wide-range effective collection of aerosol particles across entire size spectrum from a few nanometers to tens of a micron, the ORNL-designed high-gradient magnetic collector would require the use of an engineered matrix. Thus, the matrix design for a specific application becomes application specific. Irrespective of the collection efficiency, the use of permanent magnets to collect magnetic particles is feasible and also highly selective because it tunes into the magnetic susceptibility of the particles as well as the size. Lastly, the use of permanent magnets enables the collector to be operated at a minimal power requirement, which is a critical factor in long-term field operation.« less

  7. On the use of high-gradient magnetic force field in capturing airborne particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Murphy, Bart L.; Moon, Ji Won

    Airborne particles in the environment are generally smaller than a couple of microns. Use of magnetic force to collect aerosol particles thus has not been popular as the other means. There are billions of airborne particles emitted by a host of man-made sources with the particle size smaller than 1 µm and possess some magnetic susceptibility. We are thus interested in the use of high-gradient magnetic collection to extract the magnetic fraction in an aerosol population. Here in this study, we reported that the magnetic force is the dominant force in collection of ferromagnetic particles of mobility equivalent size largermore » than or equal to 50 nm in a high-gradient permanent-magnetic aerosol collector, while the diffusiophoretic force is responsible for particles smaller than 10 nm. Both forces compete for particles in between these two sizes in the magnetic aerosol collector designed for this study. To enable a wide-range effective collection of aerosol particles across entire size spectrum from a few nanometers to tens of a micron, the ORNL-designed high-gradient magnetic collector would require the use of an engineered matrix. Thus, the matrix design for a specific application becomes application specific. Irrespective of the collection efficiency, the use of permanent magnets to collect magnetic particles is feasible and also highly selective because it tunes into the magnetic susceptibility of the particles as well as the size. Lastly, the use of permanent magnets enables the collector to be operated at a minimal power requirement, which is a critical factor in long-term field operation.« less

  8. Control concepts for active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Siegwart, Roland; Vischer, D.; Larsonneur, R.; Herzog, R.; Traxler, Alfons; Bleuler, H.; Schweitzer, G.

    1992-01-01

    Active Magnetic Bearings (AMB) are becoming increasingly significant for various industrial applications. Examples are turbo-compressors, centrifuges, high speed milling and grinding spindles, vibration isolation, linear guides, magnetically levitated trains, vacuum and space applications. Thanks to the rapid progress and drastic cost reduction in power- and micro-electronics, the number of AMB applications is growing very rapidly. Industrial uses of AMBs leads to new requirements for AMB-actuators, sensor systems, and rotor dynamics. Especially desirable are new and better control concepts to meet demand such as low cost AMB, high stiffness, high performance, high robustness, high damping up to several kHz, vibration isolation, force-free rotation, and unbalance cancellation. This paper surveys various control concepts for AMBs and discusses their advantages and disadvantages. Theoretical and experimental results are presented.

  9. Decoupling suspension controller based on magnetic flux feedback.

    PubMed

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  10. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    PubMed Central

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced. PMID:23844415

  11. A Smart Magnetically Active Nanovehicle for on-Demand Targeted Drug Delivery: Where van der Waals Force Balances the Magnetic Interaction.

    PubMed

    Panja, Sudipta; Maji, Somnath; Maiti, Tapas K; Chattopadhyay, Santanu

    2015-11-04

    The magnetic field is a promising external stimulus for controlled and targeted delivery of therapeutic agents. Here, we focused on the preparation of a novel magnetically active polymeric micelle (MAPM) for magnetically targeted controlled drug delivery. To accomplish this, a number of superparamagnetic as well as biocompatible hybrid micelles were prepared by grafting four armed pentaerythretol poly(ε-caprolactone) (PE-PCL) onto the surface of Fe3O4 magnetic nanoparticles (MNPs) of two different ranges of size (∼5 nm and ∼15 nm). PE-PCL (four-armed) was synthesized by ring-opening polymerization, and it has been subsequently grafted onto the surface of modified MNP through urethane (-NHCO-) linkage. Polymer-immobilized MNP (5 and 15 nm) showed peculiar dispersion behavior. One displayed uniform dispersion of MNP (5 nm), while the other (15 nm) revealed associated structure. This type of size dependent contradictory dispersion behavior was realized by taking the van der Waals force as well as magnetic dipole-dipole force into consideration. The uniformly dispersed polymer immobilized MNP (5 nm) was used for the preparation of MAPM. The hydrodynamic size and bulk morphology of MAPM were studied by dynamic light scattering and high-resolution transmission electron microscopy. The anticancer drug (DOX) was encapsulated into the MAPM. The magnetic field triggers cell uptake of MAPM micelles preferentially toward targeted cells compare to untargeted ones. The cell viabilities of MAMP, DOX-encapsulated MAPM, and free DOX were studied against HeLa cell by MTT assay. In vitro release profile displayed about 51.5% release of DOX from MAPM (just after 1 h) under the influence of high frequency alternating magnetic field (HFAMF; prepared in-house device). The DOX release rate has also been tailored by on-demand application of HFAMF.

  12. Molten metal feed system controlled with a traveling magnetic field

    DOEpatents

    Praeg, Walter F.

    1991-01-01

    A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

  13. The rate of separation of magnetic lines of force in a random magnetic field.

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1973-01-01

    The mixing of magnetic lines of force, as represented by their rate of separation, as a function of distance along the magnetic field, is considered with emphasis on neighboring lines of force. This effect is particularly important in understanding the transport of charged particles perpendicular to the average magnetic field. The calculation is carried out in the approximation that the separation changes by an amount small compared with the correlation scale normal to the field, in a distance along the field of a few correlation scales. It is found that the rate of separation is very sensitive to the precise form of the power spectrum. Application to the interplanetary and interstellar magnetic fields is discussed, and it is shown that in some cases field lines, much closer together than the correlation scale, separate at a rate which is effectively as rapid as if they were many correlation lengths apart.

  14. Software for System for Controlling a Magnetically Levitated Rotor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor)

    2004-01-01

    In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a 'bounce' mode in which the rotor axis is displaced from the principal axis defined between the bearings and a 'tilt' mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the 'bounce' or 'tilt' modes.

  15. Influence of repeated insertion-removal cycles on the force and magnetic flux leakage of magnetic attachments: an in vitro study.

    PubMed

    Hao, Zhichao; Chao, Yonglie; Meng, Yukun; Yin, Hongmin

    2014-08-01

    Magnetic attachments are widely used in overdentures and maxillofacial prostheses. Because the patient will routinely have to insert and remove a removable prosthesis, the retentive force and magnetic flux leakage of the magnetic attachments after repeated insertion and removal must be evaluated to assess their clinical performance. The purpose of this in vitro study was to investigate the retentive force and flux leakage of magnetic attachments after repeated insertion and removal. Magfit EX600W magnet-keeper combinations (n=5) were used in this study. After 5000, 10,000, and 20,000 insertion-removal cycles, the retentive force of the magnetic attachments was measured 5 times at a crosshead speed of 5 mm/min with a universal testing machine. Magnetic flux leakage at 3 positions (P1, the upper surface of the magnet; P2, the lower surface of the keeper; and P3, the lateral side of the magnetic attachment set) was evaluated with a gaussmeter. Data were statistically analyzed by 1-way ANOVA (α=.05). The morphology of the abraded surfaces for both the magnet and the keeper was observed with an optical microscope (5×). The mean retentive force decreased significantly after 5000, 10,000, and 20,000 insertion-removal movements (P<.05). Significant differences of flux leakage were also observed at P1 after 5000 cycles and 10,000 cycles, at P2 after 5000 cycles, and at P3 after 5000, 10,000, and 20,000 insertion-removal cycles (P < .05). However, no significant differences in flux leakage were evident after 20,000 cycles at P1 and 10,000 cycles and 20,000 cycles at P2. Repeated insertion and removal influenced the retentive force and magnetic flux leakage of the magnetic attachments. Retentive force decreased significantly after repeated insertion-removal cycles, whereas the variation of magnetic flux leakage depended on refitting cycles and positions of the magnetic attachments. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by

  16. Nonlinear Force-free Coronal Magnetic Stereoscopy

    NASA Astrophysics Data System (ADS)

    Chifu, Iulia; Wiegelmann, Thomas; Inhester, Bernd

    2017-03-01

    Insights into the 3D structure of the solar coronal magnetic field have been obtained in the past by two completely different approaches. The first approach are nonlinear force-free field (NLFFF) extrapolations, which use photospheric vector magnetograms as boundary condition. The second approach uses stereoscopy of coronal magnetic loops observed in EUV coronal images from different vantage points. Both approaches have their strengths and weaknesses. Extrapolation methods are sensitive to noise and inconsistencies in the boundary data, and the accuracy of stereoscopy is affected by the ability of identifying the same structure in different images and by the separation angle between the view directions. As a consequence, for the same observational data, the 3D coronal magnetic fields computed with the two methods do not necessarily coincide. In an earlier work (Paper I) we extended our NLFFF optimization code by including stereoscopic constrains. The method was successfully tested with synthetic data, and within this work, we apply the newly developed code to a combined data set from SDO/HMI, SDO/AIA, and the two STEREO spacecraft. The extended method (called S-NLFFF) contains an additional term that monitors and minimizes the angle between the local magnetic field direction and the orientation of the 3D coronal loops reconstructed by stereoscopy. We find that when we prescribe the shape of the 3D stereoscopically reconstructed loops, the S-NLFFF method leads to a much better agreement between the modeled field and the stereoscopically reconstructed loops. We also find an appreciable decrease by a factor of two in the angle between the current and the magnetic field. This indicates the improved quality of the force-free solution obtained by S-NLFFF.

  17. Study on magnetic force of electromagnetic levitation circular knitting machine

    NASA Astrophysics Data System (ADS)

    Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.

    2018-06-01

    The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.

  18. Dynamic characteristics of triaxial active control magnetic bearing with asymmetric structure

    NASA Astrophysics Data System (ADS)

    Nakajima, Atsushi; Hirata, Katsuhiro; Niguchi, Noboru; Kato, Masayuki

    2018-03-01

    Supporting forces of magnetic bearings are lower than those of mechanical bearings. In order to solve these problems, this paper proposes a new three-axis active control magnetic bearing (3-axis AMB) with an asymmetric structure where its rotor is attracted only in one axial direction due to a negative pressure of fluid. Our proposed 3-axis AMB can generate a large suspension force in one axial direction due to the asymmetric structure. The performances of our proposed 3-axis AMB are computed through 3-D finite element analysis.

  19. [A functional orthodontic magnetic appliance (FOMA) after Vardimon. 1. A three-dimensional analysis of the force system of the attractive magnets].

    PubMed

    Bourauel, C; Vardimon, A D; Drescher, D; Schmuth, G P

    1995-09-01

    The functional magnetic system (FMS) is a removable functional appliance which induces mandibular advance by means of mandibular and maxillary magnets in an attracting configuration. The maxillary and mandibular plates are each equipped with 2 cylindrically shaped cobalt-samarium magnets, 4 mm in diameter and 3 mm in height, which are welded into stainless steel housings. The force system of this magnetic configuration was analyzed using the orthodontic measurement and simulation system (OMSS). OMSS simulated the mandibular jaw movements by separating the installed magnets vertically, corresponding to a mouth opening of X = -10 mm, transversally (right excursion, +/left excursion, -) at Y = +/- 10 mm and sagittally (anterior displacement, +/posterior displacement, -) at Z = +/- 10 mm. The resulting 2D and 3D force/displacement diagrams elucidate the outstanding centripetal-spatial orientation characteristics of the functional magnetic appliance in reference to the full overlap brought about by the attraction of the mandibular magnet by the maxillary magnet. The maximum centripetal forces reached a value of approximately FY, max = 0.65 N for the vertical attracting force at full overlap of the mandibular and maxillary magnets (X = 0.55 mm, Y = Z = 0 mm), a value of FY, max = 0.65 N for the medial shearing force at a partial transversal overlap Z = 0, Y = +/- 2 mm and Y = +/- 6 mm), and for the sagittal shearing force a value of FZ, max = 1.2 N at a partial sagittal overlap of the magnets (Y = 0 mm, Z = +/- 2 mm).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Force reflection with compliance control

    NASA Technical Reports Server (NTRS)

    Kim, Won S. (Inventor)

    1993-01-01

    Two types of systems for force-reflecting control, which enables high force-reflection gain, are presented: position-error-based force reflection and low-pass-filtered force reflection. Both of the systems are combined with shared compliance control. In the position-error-based class, the position error between the commanded and the actual position of a compliantly controlled robot is used to provide force reflection. In the low-pass-filtered force reflection class, the low-pass-filtered output of the compliance control is used to provide force reflection. The increase in force reflection gain can be more than 10-fold as compared to a conventional high-bandwidth pure force reflection system, when high compliance values are used for the compliance control.

  1. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  2. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  3. Active control and synchronization chaotic satellite via the geomagnetic Lorentz force

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Yehia

    2016-07-01

    The use of geomagnetic Lorentz force is considered in this paper for the purpose of satellite attitude control. A satellite with an electrostatic charge will interact with the Earth's magnetic field and experience the Lorentz force. An analytical attitude control and synchronization two identical chaotic satellite systems with different initial condition Master/ Slave are proposed to allows a charged satellite remains near the desired attitude. Asymptotic stability for the closed-loop system are investigated by means of Lyapunov stability theorem. The control feasibility depend on the charge requirement. Given a significantly and sufficiently accurate insertion, a charged satellite could maintains the desired attitude orientation without propellant. Simulations is performed to prove the efficacy of the proposed method.

  4. Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.

    2004-01-01

    A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.

  5. New measuring system for the distribution of a magnetic force by using an optical fiber

    NASA Astrophysics Data System (ADS)

    Ishigaki, H.; Oya, T.; Itoh, M.; Hida, A.; Iwata, K.

    1993-01-01

    A new measuring system using an optical fiber and a position sensing photodetector was developed to measure a three-dimensional distribution of a magnetic force. A steel ball attached to a cantilever made of an optical fiber generated force in a magnetic field. The displacement of the ball due to the force was detected by a position-sensing photodetector with the capability of detecting two-directional coordinates of the position. By scanning the sensing system in a magnetic field, we obtained distributions of two-directional component of the magnetic force vector. The component represents the gradient of a squared magnetic field. The usefulness of the system for measuring the magnetic field distribution in a narrow clearance and for evaluating superconducting machine components such as magnetic bearings was verified experimentally.

  6. Effects of pulsed electromagnetic field vibration on tooth movement induced by magnetic and mechanical forces: a preliminary study.

    PubMed

    Darendeliler, M Ali; Zea, A; Shen, G; Zoellner, H

    2007-12-01

    This study was designed to determine whether or not high-frequency and low-magnitude vibration affects orthodontic tooth movement caused by magnetic or/and mechanical forces. Forty-four 7-week-old Wistar rats were randomly divided into four groups, with each group further divided into experimental and control subgroups. Neodymium-Iron-Boron (Nd-Fe-B) magnets and Sentalloy closed coil springs were placed between maxillary or mandibular first molars and incisors to activate tooth movement. The animals of experimental subgroups were exposed to the vibration induced by pulsed electromagnetic fields (PEMF) whilst the control subgroups were under normal atmosphere. The experiment lasted for 14 days and all of the animals were sacrificed for examination. The changes in the space between the molar and incisor were measured to indicate the amount of tooth movement. The coil springs, either with sham or active magnets, move molar much more than magnets alone, regardless of absence or presence of PEMF (p < 0.001). Under PEMF, the coil spring moved significantly more amount of tooth movement than that of coil-magnet combination (p < 0.01), as did the magnets compared to sham magnets (p < 0.019). Under a non-PEMF scenario, there was no significant difference in tooth movement between coil spring and coil-magnets combination, nor was there difference between magnets and sham magnets. It is suggested that the PEMF-induced vibration may enhance the effect of mechanical and magnetic forces on tooth movement.

  7. Magnetic force microscopy study on wide adjacent track erasure in perpendicular magnetic write heads

    NASA Astrophysics Data System (ADS)

    Ruksasakchai, P.; Saengkaew, K.; Cheowanish, I.; Damrongsak, B.

    2017-09-01

    We used a phase-contrast magnetic force microscopy (MFM) to observe and analyze the failure of magnetic write heads due to the WATEr problem, which limits the off-track performance. During MFM imaging, the magnetic write head was energized by a DC current. The induced out-of-plane magnetic field was then detected by scanning a MFM probe across the surface of the magnetic write head. MFM images were then mapped with WATEr measured results from a spin stand method. Results showed that WATEr effect can be generated by several factors, i.e. the structure of magnetic domains and walls from material discontinuities and the magnetic field leakage at different locations on magnetic write heads. Understanding WATEr mechanisms is useful for design and process development engineers.

  8. [Measurements of the flux densities of static magnetic fields generated by two types of dental magnetic attachments and their retentive forces].

    PubMed

    Xu, Chun; Chao, Yong-lie; Du, Li; Yang, Ling

    2004-05-01

    To measure and analyze the flux densities of static magnetic fields generated by two types of commonly used dental magnetic attachments and their retentive forces, and to provide guidance for the clinical application of magnetic attachments. A digital Gaussmeter was used to measure the flux densities of static magnetic fields generated by two types of magnetic attachments, under four circumstances: open-field circuit; closed-field circuit; keeper and magnet slid laterally for a certain distance; and existence of air gap between keeper and magnet. The retentive forces of the magnetic attachments in standard closed-field circuit, with the keeper and magnet sliding laterally for a certain distance or with a certain air gap between keeper and magnet were measured by a tensile testing machine. There were flux leakages under both the open-field circuit and closed-field circuit of the two types of magnetic attachments. The flux densities on the surfaces of MAGNEDISC 800 (MD800) and MAGFIT EX600W (EX600) magnetic attachments under open-field circuit were 275.0 mT and 147.0 mT respectively. The flux leakages under closed-field circuit were smaller than those under open-field circuit. The respective flux densities on the surfaces of MD800 and EX600 magnetic attachments decreased to 11.4 mT and 4.5 mT under closed-field circuit. The flux density around the magnetic attachment decreased as the distance from the surface of the attachment increased. When keeper and magnet slid laterally for a certain distance or when air gap existed between keeper and magnet, the flux leakage increased in comparison with that under closed-field circuit. Under the standard closed-field circuit, the two types of magnetic attachments achieved the largest retentive forces. The retentive forces of MD800 and EX600 magnetic attachments under the standard closed-field circuit were 6.20 N and 4.80 N respectively. The retentive forces decreased with the sliding distance or with the increase of air gap

  9. Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, S. Baris; Coskun, Elvan

    2015-03-01

    Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.

  10. Force-free magnetic fields - The magneto-frictional method

    NASA Technical Reports Server (NTRS)

    Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.

    1986-01-01

    The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.

  11. Multimodal chemo-magnetic control of self-propelling microbots

    NASA Astrophysics Data System (ADS)

    Singh, Amit Kumar; Dey, Krishna Kanti; Chattopadhyay, Arun; Mandal, Tapas Kumar; Bandyopadhyay, Dipankar

    2014-01-01

    We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical-magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment.We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ~25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of

  12. Expanded Equations for Torque and Force on a Cylindrical Permanent Magnet Core in a Large-Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1997-01-01

    The expanded equations for torque and force on a cylindrical permanent magnet core in a large-gap magnetic suspension system are presented. The core is assumed to be uniformly magnetized, and equations are developed for two orientations of the magnetization vector. One orientation is parallel to the axis of symmetry, and the other is perpendicular to this axis. Fields and gradients produced by suspension system electromagnets are assumed to be calculated at a point in inertial space which coincides with the origin of the core axis system in its initial alignment. Fields at a given point in the core are defined by expanding the fields produced at the origin as a Taylor series. The assumption is made that the fields can be adequately defined by expansion up to second-order terms. Examination of the expanded equations for the case where the magnetization vector is perpendicular to the axis of symmetry reveals that some of the second-order gradient terms provide a method of generating torque about the axis of magnetization and therefore provide the ability to produce six-degree-of-freedom control.

  13. Evaluation of the attractive force of different types of new-generation magnetic attachment systems.

    PubMed

    Akin, Hakan; Coskun, M Emre; Akin, E Gulsah; Ozdemir, A Kemal

    2011-03-01

    Rare earth magnets have been used in prosthodontics, but their tendency for corrosion in the oral cavity and insufficient attractive forces limit long-term clinical application. The purpose of this study was to evaluate the attractive force of different types of new-generation magnetic attachment systems. The attractive force of the neodymium-iron-boron (Nd-Fe-B) and samarium-cobalt (Sm-Co) magnetic attachment systems, including closed-field (Hilop and Hicorex) and open-field (Dyna and Steco) systems, was measured in a universal testing machine (n=5). The data were statistically evaluated with 1-way ANOVA and post hoc Tukey-Kramer multiple comparison test (α=.05). The closed-field systems exhibited greater (P<.001) attractive force than the open-field systems. Moreover, there was a statistically significant difference in attractive force between Nd-Fe-B and Sm-Co magnets (P<.001). The strongest attractive force was found with the Hilop system (9.2 N), and the lowest force was found with the Steco system (2.3 N). The new generation of Nd-Fe-B closed-field magnets, along with improved technology, provides sufficient denture retention for clinical application. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  14. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force.

    PubMed

    Shimizu, Kazunori; Ito, Akira; Yoshida, Tatsuro; Yamada, Yoichi; Ueda, Minoru; Honda, Hiroyuki

    2007-08-01

    An in vitro reconstruction of three-dimensional (3D) tissues without the use of scaffolds may be an alternative strategy for tissue engineering. We have developed a novel tissue engineering strategy, termed magnetic force-based tissue engineering (Mag-TE), in which magnetite cationic liposomes (MCLs) with a positive charge at the liposomal surface, and magnetic force were used to construct 3D tissue without scaffolds. In this study, human mesenchymal stem cells (MSCs) magnetically labeled with MCLs were seeded onto an ultra-low attachment culture surface, and a magnet (4000 G) was placed on the reverse side. The MSCs formed multilayered sheet-like structures after a 24-h culture period. MSCs in the sheets constructed by Mag-TE maintained an in vitro ability to differentiate into osteoblasts, adipocytes, or chondrocytes after a 21-day culture period using each induction medium. Using an electromagnet, MSC sheets constructed by Mag-TE were harvested and transplanted into the bone defect in the crania of nude rats. Histological observation revealed that new bone surrounded by osteoblast-like cells was formed in the defect area 14 days after transplantation with MSC sheets, whereas no bone formation was observed in control rats without the transplant. These results indicated that Mag-TE could be used for the transplantation of MSC sheets using magnetite nanoparticles and magnetic force, providing novel methodology for bone tissue engineering.

  15. Implementation of a six-degree-of-freedom manual controller with passive force feedback

    NASA Astrophysics Data System (ADS)

    Will, Carol C.; Crane, Carl D., III; Adsit, Phillip

    1995-12-01

    Force reflective controllers can be divided into two classes; active and passive with the most common being active. Active force-feedback controllers are prone to self-actuation which can generate unintended commands and may injure the user. A six-degree-of-freedom positional input device was designed and constructed that was capable of providing force-feedback passively through the use of six magnetic hysteresis brakes. Special hardware and control strategies were developed to account for some of the limitations of a passive system and the characteristics of hysteresis brakes. The force-feedback input device has been interfaced to a six-degree-of-freedom robot to perform a variety of tasks. Initial research was conducted with a peg-in-hole task. Future research is to include contour following and bead-on-wire tests. Initial results indicated that force-feedback may only be an improvement in situations where visual cues are not clear, and may actually be a hindrance when a clear line of sight exists.

  16. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    PubMed

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.

  17. Force measurements of a magnetic micro actuator proposed for a microvalve array

    NASA Astrophysics Data System (ADS)

    Chang, Pauline J.; Chang, Frank W.; Yuen, Michelle C.; Otillar, Robert; Horsley, David A.

    2014-03-01

    Low-cost, easily-fabricated and power-efficient microvalves are necessary for many microfluidic lab-on-a-chip applications. In this study, we present a simple, low-power, scalable, CMOS-compatible magnetic actuator for microvalve applications composed of a paramagnetic bead as the ball valve over a picoliter reaction well etched into a silicon substrate. The paramagnetic bead, composed of either pure FeSi or magnetite in a SiO2 matrix, is actuated by the local magnetic field gradient generated by a microcoil in an aqueous environment, and the reaction well is situated at the microcoil center. A permanent magnet beneath the microvalve device provides an external magnetic biasing field that magnetizes the bead, enabling bidirectional actuation and reducing the current required to actuate the bead to a level below 10 mA. The vertical and radial magnetic forces exerted on the bead by the microcoil were measured for both pure FeSi and composite beads and agree well with the predictions of 2D axisymmetric finite element method models. Vertical forces were within a range of 13-80 nN, and radial forces were 11-60 nN depending on the bead type. The threshold current required to initiate bead actuation was measured as a function of bead diameter and is found to scale inversely with volume for small beads, as expected based on the magnetic force model. To provide an estimate of the stiction force acting between the bead and the passivation layer on the substrate, repeated actuation trials were used to study the bead throw distance for substrates coated with silicon dioxide, Parylene-C, and photoresist. The stiction observed was lowest for a photoresist-coated substrate, while silicon dioxide and Parylene-C coated substrates exhibited similar levels of stiction.

  18. Magnetic resonance force microscopy with a paramagnetic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  19. Magnetic resonance force microscopy with a paramagnetic probe

    NASA Astrophysics Data System (ADS)

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    We consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  20. Magnetic resonance force microscopy with a paramagnetic probe

    DOE PAGES

    Berman, G. P.; Gorshkov, V. N.; Tsifrinovich, V. I.

    2017-04-01

    Here, we consider theoretically extension of magnetic resonance force microscopy (MRFM) replacing a ferromagnetic probe on a cantilever tip (CT) with a paramagnetic one (PMRFM). The dynamics of the interaction between the paramagnetic probe and a local magnetic moment in a sample is analyzed, using a quasi-classical approach. We show that the application of a proper sequence of electromagnetic pulses provides a significant deflection of the CT from the initial equilibrium position. Periodic application of these sequences of pulses results in quasi-periodic CT deflections from the equilibrium, which can be used for detection of the magnetic moment in a sample.

  1. Magnetic Force and Work: An Accessible Example

    ERIC Educational Resources Information Center

    Gates, Joshua

    2014-01-01

    Despite their physics instructors' arguments to the contrary, introductory students can observe situations in which there seems to be compelling evidence for magnetic force doing work. The counterarguments are often highly technical and require physics knowledge beyond the experience of novice students, however. A simple example is presented…

  2. Graphene levitation and orientation control using a magnetic field

    NASA Astrophysics Data System (ADS)

    Niu, Chao; Lin, Feng; Wang, Zhiming M.; Bao, Jiming; Hu, Jonathan

    2018-01-01

    This paper studies graphene levitation and orientation control using a magnetic field. The torques in all three spatial directions induced by diamagnetic forces are used to predict stable conditions for different shapes of millimeter-sized graphite plates. We find that graphite plates, in regular polygon shapes with an even number of sides, will be levitated in a stable manner above four interleaved permanent magnets. In addition, the orientation of micrometer-sized graphene flakes near a permanent magnet is studied in both air and liquid environments. Using these analyses, we are able to simulate optical transmission and reflection on a writing board and thereby reveal potential applications using this technology for display screens. Understanding the control of graphene flake orientation will lead to the discovery of future applications using graphene flakes.

  3. Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals

    NASA Astrophysics Data System (ADS)

    Zou, Jibin; Li, Xuehui; Lu, Yongping; Hu, Jianhui

    2002-11-01

    The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively.

  4. Magnetic force micropiston: an integrated force/microfluidic device for the application of compressive forces in a confined environment.

    PubMed

    Fisher, J K; Kleckner, N

    2014-02-01

    Cellular biology takes place inside confining spaces. For example, bacteria grow in crevices, red blood cells squeeze through capillaries, and chromosomes replicate inside the nucleus. Frequently, the extent of this confinement varies. Bacteria grow longer and divide, red blood cells move through smaller and smaller passages as they travel to capillary beds, and replication doubles the amount of DNA inside the nucleus. This increase in confinement, either due to a decrease in the available space or an increase in the amount of material contained in a constant volume, has the potential to squeeze and stress objects in ways that may lead to changes in morphology, dynamics, and ultimately biological function. Here, we describe a device developed to probe the interplay between confinement and the mechanical properties of cells and cellular structures, and forces that arise due to changes in a structure's state. In this system, the manipulation of a magnetic bead exerts a compressive force upon a target contained in the confining space of a microfluidic channel. This magnetic force microfluidic piston is constructed in such a way that we can measure (a) target compliance and changes in compliance as induced by changes in buffer, extract, or biochemical composition, (b) target expansion force generated by changes in the same parameters, and (c) the effects of compression stress on a target's structure and function. Beyond these issues, our system has general applicability to a variety of questions requiring the combination of mechanical forces, confinement, and optical imaging.

  5. Magnetic force micropiston: An integrated force/microfluidic device for the application of compressive forces in a confined environment

    NASA Astrophysics Data System (ADS)

    Fisher, J. K.; Kleckner, N.

    2014-02-01

    Cellular biology takes place inside confining spaces. For example, bacteria grow in crevices, red blood cells squeeze through capillaries, and chromosomes replicate inside the nucleus. Frequently, the extent of this confinement varies. Bacteria grow longer and divide, red blood cells move through smaller and smaller passages as they travel to capillary beds, and replication doubles the amount of DNA inside the nucleus. This increase in confinement, either due to a decrease in the available space or an increase in the amount of material contained in a constant volume, has the potential to squeeze and stress objects in ways that may lead to changes in morphology, dynamics, and ultimately biological function. Here, we describe a device developed to probe the interplay between confinement and the mechanical properties of cells and cellular structures, and forces that arise due to changes in a structure's state. In this system, the manipulation of a magnetic bead exerts a compressive force upon a target contained in the confining space of a microfluidic channel. This magnetic force microfluidic piston is constructed in such a way that we can measure (a) target compliance and changes in compliance as induced by changes in buffer, extract, or biochemical composition, (b) target expansion force generated by changes in the same parameters, and (c) the effects of compression stress on a target's structure and function. Beyond these issues, our system has general applicability to a variety of questions requiring the combination of mechanical forces, confinement, and optical imaging.

  6. Fabrication of cobalt magnetic nanostructures using atomic force microscope lithography.

    PubMed

    Chu, Haena; Yun, Seonghun; Lee, Haiwon

    2013-12-01

    Cobalt nanopatterns are promising assemblies for patterned magnetic storage applications. The fabrication of cobalt magnetic nanostructures on n-tridecylamine x hydrochloride (TDA x HCl) self-assembled monolayer (SAM) modified silicon surfaces using direct writing atomic force microscope (AFM) lithography for localized electrochemical reduction of cobalt ions was demonstrated. The ions were reduced to form metal nanowires along the direction of the electricfield between the AFM tip and the substrate. In this lithography process, TDA x HCI SAMs play an important role in the lithography process for improving the resolution of cobalt nanopatterns by preventing nonspecific reduction of cobalt ions on the unwritten background. Cobalt nanowires and nanodots with width of 225 +/- 26 nm and diameter of 208 +/- 28 nm were successfully fabricated. Platinium-coated polydimethylsiloxane (PDMS) stamp was used fabricating bulk cobalt structures which can be detected by energy dispersive X-ray spectroscopy for element analysis and the physical and magnetic properties of these cobalt nanopatterns were characterized using AFM and magnetic force microscope.

  7. Magnetic force microscopy studies in bulk polycrystalline iron

    NASA Astrophysics Data System (ADS)

    Abuthahir, J.; Kumar, Anish

    2018-02-01

    The paper presents magnetic force microscopy (MFM) studies on the effect of crystallographic orientation and external magnetic field on magnetic microstructure in a bulk polycrystalline iron specimen. The magneto crystalline anisotropic effect on the domain structure is characterized with the support of electron backscatter diffraction study. The distinct variations in magnetic domain structure are observed based on the crystallographic orientation of the grain surface normal with respect to the cube axis i.e. the easy axis of magnetization. Further, the local magnetization behavior is studied in-situ by MFM in presence of external magnetic field in the range of -2000 to 2000 Oe. Various micro-magnetization phenomena such as reversible and irreversible domain wall movements, expansion and contraction of domains, Barkhausen jump, bowing of a pinned domain wall and nucleation of a spike domain are visualized. The respective changes in the magnetic microstructure are compared with the bulk magnetization obtained using vibrating sample magnetometer. Bowing of a domain wall, pinned at two points, upon application of magnetic field is used to estimate the domain wall energy density. The MFM studies in presence of external field applied in two perpendicular directions are used to reveal the influence of the crystalline anisotropy on the local micro-magnetization.

  8. Tethered satellite system control using electromagnetic forces and reaction wheels

    NASA Astrophysics Data System (ADS)

    Alandi Hallaj, Mohammad Amin; Assadian, Nima

    2015-12-01

    In this paper a novel non-rotating space tethered configuration is introduced which its relative positions controlled using electromagnetic forces. The attitude dynamics is controlled by three reaction wheels in the body axes. The nonlinear coupled orbital dynamics of a dumbbell tethered satellite formation flight are derived through a constrained Lagrangian approach. These equations are presented in the leader satellite orbital frame. The tether is assumed to be mass-less and straight, and the J2 perturbation is included to the analysis. The forces and the moments of the electromagnetic coils are modeled based on the far-filed model of the magnetic dipoles. A guidance scheme for generating the desired positions as a function of time in Cartesian form is presented. The satellite tethered formation with variable length is controlled utilizing a linear controller. This approach is applied to a specified scenario and it is shown that the nonlinear guidance method and the linear controller can control the nonlinear system of the tethered formation and the results are compared with optimal control approach.

  9. Detecting the magnetic response of iron oxide capped organosilane nanostructures using magnetic sample modulation and atomic force microscopy.

    PubMed

    Li, Jie-Ren; Lewandowski, Brian R; Xu, Song; Garno, Jayne C

    2009-06-15

    A new imaging strategy using atomic force microscopy (AFM) is demonstrated for mapping magnetic domains at size regimes below 100 nm. The AFM-based imaging mode is referred to as magnetic sample modulation (MSM), since the flux of an AC-generated electromagnetic field is used to induce physical movement of magnetic nanomaterials on surfaces during imaging. The AFM is operated in contact mode using a soft, nonmagnetic tip to detect the physical motion of the sample. By slowly scanning an AFM probe across a vibrating area of the sample, the frequency and amplitude of vibration induced by the magnetic field is tracked by changes in tip deflection. Thus, the AFM tip serves as a force and motion sensor for mapping the vibrational response of magnetic nanomaterials. Essentially, MSM is a hybrid of contact mode AFM combined with selective modulation of magnetic domains. The positional feedback loop for MSM imaging is the same as that used for force modulation and contact mode AFM; however, the vibration of the sample is analyzed using channels of a lock-in amplifier. The investigations are facilitated by nanofabrication methods combining particle lithography with organic vapor deposition and electroless deposition of iron oxide, to prepare designed test platforms of magnetic materials at nanometer length scales. Custom test platforms furnished suitable surfaces for MSM characterizations at the level of individual metal nanostructures.

  10. A magnetic gradient induced force in NMR restricted diffusion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magneticmore » properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.« less

  11. Magnetic Control of Convection during Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    force counteract terrestrial gravity. The genera1 objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the experimental results using paramagentic salts and solutions in magnetic fields and compare them to analyticalprctions.

  12. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  13. Numerical studies on the force characteristic of superconducting linear synchronous motor with HTS bulk magnet

    NASA Astrophysics Data System (ADS)

    Tang, Junjie; Li, Jing; Li, Xiang; Han, Le

    2018-03-01

    High temperature superconductor (HTS) bulks have significant potential use in linear motor application act as quasi-permanent magnet to replace traditional magnets. Force characteristic between HTS bulk magnet and traveling magnetic field was investigated with numerical simulation and experimental measurement in this paper. Influences of bulk height and number on the force characteristic were studied by the finite element model considering the nonlinear E-J relationship. Study was also made on addition of a back iron plate to the bulk magnet. Besides, force characteristic of bulk was compared with the permanent magnet results. The small initial decrease of the thrust could be explained by inside superconducting current redistribution. It was found that efficiency of linear motor did not increase by adding more bulk magnets. The bulk magnet will be remagnetized instead of erasing trapped field with the increase of the traveling magnetic field strength. The conclusions are helpful in prediction and design the linear motor with HTS bulk magnet.

  14. Design and damping force characterization of a new magnetorheological damper activated by permanent magnet flux dispersion

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hoon; Han, Chulhee; Choi, Seung-Bok

    2018-01-01

    This work proposes a novel type of tunable magnetorheological (MR) damper operated based solely on the location of a permanent magnet incorporated into the piston. To create a larger damping force variation in comparison with the previous model, a different design configuration of the permanent-magnet-based MR (PMMR) damper is introduced to provide magnetic flux dispersion in two magnetic circuits by utilizing two materials with different magnetic reluctance. After discussing the design configuration and some advantages of the newly designed mechanism, the magnetic dispersion principle is analyzed through both the formulated analytical model of the magnetic circuit and the computer simulation based on the magnetic finite element method. Sequentially, the principal design parameters of the damper are determined and fabricated. Then, experiments are conducted to evaluate the variation in damping force depending on the location of the magnet. It is demonstrated that the new design and magnetic dispersion concept are valid showing higher damping force than the previous model. In addition, a curved structure of the two materials is further fabricated and tested to realize the linearity of the damping force variation.

  15. A repulsive magnetic force driven translation micromirror

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; Zuo, Hui; He, Siyuan

    2017-10-01

    This paper presents a repulsive magnetic force driven micromirror with large displacement and high surface quality which well solves the limitation of the previous design, i.e. large variation in translation starting position and low repeatability, caused by the touching points between the moving film and substrate before and in operation. The new design utilizes a driving mechanism, i.e. permanent magnet ring above and electromagnet underneath the moving film, to lift the moving film from touching the substrate and generate a repulsive magnetic force (instead of attractive force in the previous design) to push the moving film up and away from the substrate for translation. Due to the touching, the previous design has to pre-oscillate for 20-30 min at 1 Hz before usage (after resting for a few hours) to reduce the starting position variation from ~15 µm to 3-4 µm. Even after the pre-oscillation, the repeatability is still low, which is 14.2% because of the touching in operation. In the design presented in this paper, the touching between the moving film and the substrate is completely eliminated before and in operation. As a result, the starting position of the translating mirror is constant each time and the repeatability is  <1%. In addition, this design does not need the residual stress gradient to curve up the moving film. The maximum displacement of 144 µm can be achieved when 140 mA current is applied on the electromagnet. As an application, the micromirror is used as the movable mirror in a Michelson interferometer to measure the wavelength of a laser beam. The result shows a measurement accuracy of 2.19% for a 532 nm laser beam.

  16. Drag and Lift Forces Between a Rotating Conductive Sphere and a Cylindrical Magnet

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Youngquist, Robert C.

    2017-01-01

    Modeling the interaction between a non-uniform magnetic field and a rotating conductive object allows study of the drag force which is used in applications such as eddy current braking and linear induction motors as well as the transition to a repulsive force that is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two step mathematics process is developed to find a closed form solution in terms of only two eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.

  17. Drag and lift forces between a rotating conductive sphere and a cylindrical magnet

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.

    2018-06-01

    Modeling the interaction between a non-uniform magnetic field and a rotating conductive object provides insight into the drag force, which is used in applications such as eddy current braking and linear induction motors, as well as the transition to a repulsive force, which is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two-step mathematical process is developed to find a closed-form solution in terms of only three eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate-level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.

  18. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.

    2001-01-01

    The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.

  19. Using Magnetic Forces to Probe the Gravi-response of Swimming Paramecium

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Valles, James M., Jr.

    2004-03-01

    Paramecium Caudatum, a single celled ciliate, alters its swimming behavior when subjected to different gravity environments (e.g. centrifugation and micro-gravity). To dissect the mechanisms behind this gravi-response and that of other biological systems, we are developing the use of magnetic body forces as a means of creating a rapidly tunable, simulated variable gravity environment. Since biological materials are weakly diamagnetic, we must subject them to intense inhomogeneous magnetic fields with characteristic field-field gradient products on the order of 16 T^2/cm. We will describe experiments on Paramecium Caudatum in which we adjust their net buoyancy with magnetic forces and measure the resulting changes in their swimming behavior.

  20. Self-induced pinning of vortices in the presence of ac driving force in magnetic superconductors

    NASA Astrophysics Data System (ADS)

    Bulaevskii, Lev N.; Lin, Shi-Zeng

    2012-12-01

    We derive the response of the magnetic superconductors in the vortex state to the ac Lorentz force, FL(t)=Facsin(ωt), taking into account the interaction of vortices with the magnetic moments described by the relaxation dynamics (polaronic effect). At low amplitudes of the driving force Fac the dissipation in the system is suppressed due to the enhancement of the effective viscosity at low frequencies and due to formation of the magnetic pinning at high frequencies ω. In the adiabatic limit with low frequencies ω and high amplitude of the driving force Fac, the vortex and magnetic polarization form a vortex polaron when FL(t) is small. When FL increases, the vortex polaron accelerates and at a threshold driving force, the vortex polaron dissociates and the motion of vortex and the relaxation of magnetization are decoupled. When FL decreases, the vortex is retrapped by the background of remnant magnetization and they again form vortex polaron. This process repeats when FL(t) increases in the opposite direction. Remarkably, after dissociation, decoupled vortices move in the periodic potential induced by magnetization which remains for some periods of time due to retardation after the decoupling. At this stage vortices oscillate with high frequencies determined by the Lorentz force at the moment of dissociation. We derive also the creep rate of vortices and show that magnetic moments suppress creep rate.

  1. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    NASA Astrophysics Data System (ADS)

    Valenzuela, S. O.; Jorge, G. A.; Rodríguez, E.

    1999-11-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give rise to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction, which represents a promising field with regard to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.

  2. Embedding Circular Force-Free Flux Ropes in Potential Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Torok, T.; Mikic, Z.; Linker, J.

    2013-12-01

    We propose a method for constructing approximate force-free equilibria in active regions that locally have a potential bipolar-type magnetic field with a thin force-free flux rope embedded inside it. The flux rope has a circular-arc axis and circular cross-section in which the interior magnetic field is predominantly toroidal (axial). Its magnetic pressure is balanced outside by that of the poloidal (azimuthal) field created at the boundary by the electric current sheathing the flux rope. To facilitate the implementation of the method in our numerical magnetohydrodynamic (MHD) code, the entire solution is described in terms of the vector potential of the magnetic field. The parameters of the flux rope can be chosen so that a subsequent MHD relaxation of the constructed configuration under line-tied conditions at the boundary provides a numerically exact equilibrium. Such equilibria are an approximation for the magnetic configuration preceding solar eruptions, which can be triggered in our model by imposing suitable photospheric flows beneath the flux rope. The proposed method is a useful tool for constructing pre-eruption magnetic fields in data-driven simulations of solar active events. Research supported by NASA's Heliophysics Theory and LWS Programs, and NSF/SHINE and NSF/FESD.

  3. Calculation of forces on magnetized bodies using COSMIC NASTRAN

    NASA Technical Reports Server (NTRS)

    Sheerer, John

    1987-01-01

    The methods described may be used with a high degree of confidence for calculations of magnetic traction forces normal to a surface. In this circumstance all models agree, and test cases have resulted in theoretically correct results. It is shown that the tangential forces are in practice negligible. The surface pole method is preferable to the virtual work method because of the necessity for more than one NASTRAN run in the latter case, and because distributed forces are obtained. The derivation of local forces from the Maxwell stress method involves an undesirable degree of manipulation of the problem and produces a result in contradiction of the surface pole method.

  4. The local stability of the magnetized advection-dominated discs with the radial viscous force

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, S. M.; Shadmehri, M.

    2018-06-01

    We study local stability of the advection-dominated optically thick (slim) and optically thin discs with purely toroidal magnetic field and the radial viscous force using a linear perturbation analysis. Our dispersion relation indicates that the presence of magnetic fields and radial viscous force cannot give rise to any new mode of the instability. We find, however, that growth rate of the thermal mode in the slim discs and that of the acoustic modes in the slim and optically thin discs are dramatically affected by the radial viscous force. This force tends to strongly decrease the growth rate of the outward-propagating acoustic mode (O-mode) in the short-wavelength limit, but it causes a slim disc to become thermally more unstable. This means that growth rate of the thermal mode increases in the presence of radial viscous force. This enhancement is more significant when the viscosity parameter is large. The growth rates of the thermal and acoustic modes depend on the magnetic field. Although the instability of O-mode for a stronger magnetic field case has a higher growth rate, the thermal mode of the slim discs can be suppressed when the magnetic field is strong. The inertial-acoustic instability of a magnetized disc may explain the quasi-periodic oscillations (QPOs) from the black holes.

  5. Harmonic Fluxes and Electromagnetic Forces of Concentric Winding Brushless Permanent Magnet Motor

    NASA Astrophysics Data System (ADS)

    Ishibashi, Fuminori; Takemasa, Ryo; Matsushita, Makoto; Nishizawa, Takashi; Noda, Shinichi

    Brushless permanent magnet motors have been widely used in home applications and industrial fields. These days, high efficiency and low noise motors are demanded from the view point of environment. Electromagnetic noise and iron loss of the motor are produced by the harmonic fluxes and electromagnetic forces. However, order and space pattern of these have not been discussed in detail. In this paper, fluxes, electromagnetic forces and magneto-motive forces of brushless permanent magnet motors with concentric winding were analyzed analytically, experimentally and numerically. Time harmonic fluxes and time electromagnetic forces in the air gap were measured by search coils on the inner surface of the stator teeth and analyzed by FEM. Space pattern of time harmonic fluxes and time electromagnetic forces were worked out with experiments and FEM. Magneto motive forces due to concentric winding were analyzed with equations and checked by FEM.

  6. Design framework of a teleoperating system for a magnetically levitated robot with force feedback

    NASA Astrophysics Data System (ADS)

    Tsuda, Naoaki; Kato, Norihiko; Nomura, Yoshihiko; Matsui, Hirokazu

    2002-02-01

    Precise works and manipulating micro objects are tough jobs for operators both mentally and physically. To execute these jobs smoothly without feeling wrongness, use of master-slave system is preferable because position and force are able to be scaled up and down as well under the system. In this study we develop a master-slave system where the size of a slave robot is very small and the slave robot is levitated by magnetic forces. In distinction from ordinary master- slave systems, the levitated robot does not get any other contact forces from outside. Thus we introduce a method using an impedance model for constructing the master-slave system. We confirmed the effectiveness of the positioning control algorithm through experiments.

  7. Fully Suspended, Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig With Forced Excitation

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Montague, Gerald; Duffy, Kirsten; Mehmed, Oral; Johnson, Dexter; Jansen, Ralph

    2004-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig, a significant advancement in the Dynamic Spin Rig (DSR), is used to perform vibration tests of turbomachinery blades and components under rotating and nonrotating conditions in a vacuum. The rig has as its critical components three magnetic bearings: two heteropolar radial active magnetic bearings and a magnetic thrust bearing. The bearing configuration allows full vertical rotor magnetic suspension along with a feed-forward control feature, which will enable the excitation of various natural blade modes in bladed disk test articles. The theoretical, mechanical, electrical, and electronic aspects of the rig are discussed. Also presented are the forced-excitation results of a fully levitated, rotating and nonrotating, unbladed rotor and a fully levitated, rotating and nonrotating, bladed rotor in which a pair of blades was arranged 180 degrees apart from each other. These tests include the bounce mode excitation of the rotor in which the rotor was excited at the blade natural frequency of 144 Hz. The rotor natural mode frequency of 355 Hz was discerned from the plot of acceleration versus frequency. For nonrotating blades, a blade-tip excitation amplitude of approximately 100 g/A was achieved at the first-bending critical (approximately 144 Hz) and at the first-torsional and second-bending blade modes. A blade-tip displacement of 70 mils was achieved at the first-bending critical by exciting the blades at a forced-excitation phase angle of 908 relative to the vertical plane containing the blades while simultaneously rotating the shaft at 3000 rpm.

  8. Distinguishing ferritin from apoferritin using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Nocera, Tanya M.; Zeng, Yuzhi; Agarwal, Gunjan

    2014-11-01

    Estimating the amount of iron-replete ferritin versus iron-deficient apoferritin proteins is important in biomedical and nanotechnology applications. This work introduces a simple and novel approach to quantify ferritin by using magnetic force microscopy (MFM). We demonstrate how high magnetic moment probes enhance the magnitude of MFM signal, thus enabling accurate quantitative estimation of ferritin content in ferritin/apoferritin mixtures in vitro. We envisage MFM could be adapted to accurately determine ferritin content in protein mixtures or in small aliquots of clinical samples.

  9. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong

    2016-05-01

    Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this

  10. Flux-Feedback Magnetic-Suspension Actuator

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1990-01-01

    Flux-feedback magnetic-suspension actuator provides magnetic suspension and control forces having linear transfer characteristics between force command and force output over large range of gaps. Hall-effect devices used as sensors for electronic feedback circuit controlling currents flowing in electromagnetic windings to maintain flux linking suspended element at substantially constant value independent of changes in length of gap. Technique provides effective method for maintenance of constant flux density in gap and simpler than previous methods. Applications include magnetic actuators for control of shapes and figures of antennas and of precise segmented reflectors, magnetic suspensions in devices for storage of angular momentum and/or kinetic energy, and systems for control, pointing, and isolation of instruments.

  11. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  12. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  13. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.

    PubMed

    Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H

    2011-12-06

    Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.

  14. Study on magnetic properties of magnetic minerals in the quartzofeldspathic schist by using magnetic force microscope

    NASA Astrophysics Data System (ADS)

    Ni, C. H.; Chen, Y. H.

    2016-12-01

    The pseudotachylyte generated from the fault sliding during an earthquake plays an important role in the geology. In general, the pseudotachylyte vein has a magnetic susceptibility which is higher than wall rocks attributed by the fine-grained magnetic minerals. In this study, the fault pseudotachylyte formed by frictional melting in quartzofeldspathic schist rocks from Alpine Fault, New Zealand, was investigated. The scanning electron microscopy (SEM) was used to obtain the morphology of magnetic minerals and magnetic force microscopy (MFM) was utilized to observe magnetic domain structures. We want to realize how the growth process of magnetic minerals affects magnetic structures and magnetic properties. It was observed exsoluted-titanomagnetite was especially around outer edge of pseudotachylyte. These titanomagnetite had a single domain (SD) and distributed paralleling to the direction of exsolution. In contrast, the magnetic minerals (magnetite) in the pseudotachylyte vein had two different magnetic structures: one is the detrital magnetite showed multiple domains (MD) without regular arrangement, which may be indicated the thermal remanent magnetization (TRM). One the other is neoformed fine-grained magnetite scattering in the matrix and showed SD to pseudo-single-domain (PSD) and their magnetic direction was perpendicular to the direction of pseudotachylyte veins, suggesting the chemical remanent magnetization (CRM). However, the macroscopic magnetic property, based on Day's plot, measured from superconducting quantum interference device (SQUID) was shown the sample belonged to MD structures. These results indicated that MFM is a more powerful and precise tool to figure out the magnetic structure. The related studies will be further investigated.

  15. A Miniature Magnetic-Force-Based Three-Axis AC Magnetic Sensor with Piezoelectric/Vibrational Energy-Harvesting Functions.

    PubMed

    Hung, Chiao-Fang; Yeh, Po-Chen; Chung, Tien-Kan

    2017-02-08

    In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic-mechanical-piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect) to convert x -axis and y -axis in-plane and z -axis magnetic fields into piezoelectric voltage outputs. Under the x -axis magnetic field (sine-wave, 100 Hz, 0.2-3.2 gauss) and the z -axis magnetic field (sine-wave, 142 Hz, 0.2-3.2 gauss), the voltage output with the sensitivity of the sensor are 1.13-26.15 mV with 8.79 mV/gauss and 1.31-8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x -axis vibration (sine-wave, 100 Hz, 3.5 g) and z -axis vibration (sine-wave, 142 Hz, 3.8 g), the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on.

  16. The relationship between the force and separation of miniature magnets used in dentistry.

    PubMed

    Darvell, Brian W; Gilding, Brian H

    2018-06-01

    Miniature magnets are used in dentistry, principally for the retention of prosthetic devices. The relationship between force and separation of a magnet and its keeper, or, equivalently, two such magnets, has been neither defined theoretically nor described practically in any detail suitable for these applications. The present paper addresses this lacuna. A magnet is considered as a conglomeration of magnetic poles distributed over a surface or a solid in three-dimensional space, with the interaction of poles governed by the Coulomb law. This leads to a suite of mathematical models. These models are analysed for their description of the relationship between the force and the separation of two magnets. It is shown that at a large distance of separation, an inverse power law must apply. The power is necessarily integer and at least two. All possibilities are exhausted. Complementarily, under reasonable assumptions, it is shown that at a small distance of separation, the force remains finite. The outcome is in accordance with practical experience, and at odds with the use of simple conceptual models. Consequences relevant to the usage of magnets in dentistry are discussed. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  17. Vertically polarizing undulator with dynamic compensation of magnetic forces

    DOE PAGES

    Strelnikov, N.; Vasserman, I.; Xu, J.; ...

    2017-01-20

    As part of the R&D program of the LCLS-II project, a novel 3.4-meter-long undulator prototype with horizontal magnetic field and dynamic force compensation has recently been developed at the Advanced Photon Source (APS). Some previous steps in this development were the shorter 0.8-meter-long and 2.8-meter-long prototypes. Extensive mechanical and magnetic testing was carried out for each prototype, and each prototype was magnetically tuned using magnetic shims. Furthermore, the resulting performance of the 3.4-meter-long undulator prototype meets all requirements for the LCLS-II insertion device, including limits on the field integrals, phase errors, higher-order magnetic moments, and electron-beam trajectory for all operationalmore » gaps, as well as the reproducibility and accuracy of the gap settings.« less

  18. Forced three-dimensional magnetic reconnection due to linkage of magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Otto, A.

    1995-01-01

    During periods of southward interplanetary magnetic field (IMF) orientation the magnetic field geometry at the dayside magnetopause is susceptible to magnetic reconnection. It has been suggested that reconnection may occur in a localized manner at several patches on the magnetopause. A major problem with this picture is the interaction of magnetic flux ropes which are generated by different reconnection processes. An individual flux rope is bent elbowlike where it intersects the magnetopause and the magnetic field changes from magnetospheric to interplanetary magnetic field orientation. Multiple patches of reconnection can lead to the formation of interlinked magnetic flux tubes. Although the corresponding flux is connected to the IMF the northward and southward connected branches are hooked into each other and cannot develop independently. We have studied this problem in the framework of three-dimensional magnetohydrodynamic simulations. The results indicate that a singular current sheet forms at the interface of two interlinked flux tubes if no resistivity is present in the simulation. This current sheet is strongly tilted compared to the original current sheet. In the presence of resistivity the interaction of the two flux tubes forces a fast reconnection process which generates helically twisted closed magnetospheric flux. This linkage induced reconnection generates a boundary layer with layers of open and closed magnetospheric flux and may account for the brightening of auroral arcs poleward of the boundary between open and closed magnetic flux.

  19. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Technical Reports Server (NTRS)

    Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

    2003-01-01

    At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

  20. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE Data Explorer

    Myers, Clayton E. [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); ] (ORCID:0000000345398406); Yamada, Maasaki [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000349961649); Ji, Hantao [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China] (ORCID:0000000196009963); Yoo, Jongsoo [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000338811995); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:000000016289858X); Jara-Almonte, Jonathan [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); ] (ORCID:0000000307606198); Savcheva, Antonia [Harvard†“ Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA] (ORCID:000000025598046X); DeLuca, Edward E. [Harvard†“ Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA] (ORCID:0000000174162895)

    2015-12-11

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun’s corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such ‘failed torus’ events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.

  1. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  2. Observation of force-detected nuclear magnetic resonance in a homogeneous field

    PubMed Central

    Madsen, L. A.; Leskowitz, G. M.; Weitekamp, D. P.

    2004-01-01

    We report the experimental realization of BOOMERANG (better observation of magnetization, enhanced resolution, and no gradient), a sensitive and general method of magnetic resonance. The prototype millimeter-scale NMR spectrometer shows signal and noise levels in agreement with the design principles. We present 1H and 19F NMR in both solid and liquid samples, including time-domain Fourier transform NMR spectroscopy, multiple-pulse echoes, and heteronuclear J spectroscopy. By measuring a 1H-19F J coupling, this last experiment accomplishes chemically specific spectroscopy with force-detected NMR. In BOOMERANG, an assembly of permanent magnets provides a homogeneous field throughout the sample, while a harmonically suspended part of the assembly, a detector, is mechanically driven by spin-dependent forces. By placing the sample in a homogeneous field, signal dephasing by diffusion in a field gradient is made negligible, enabling application to liquids, in contrast to other force-detection methods. The design appears readily scalable to μm-scale samples where it should have sensitivity advantages over inductive detection with microcoils and where it holds great promise for application of magnetic resonance in biology, chemistry, physics, and surface science. We briefly discuss extensions of the BOOMERANG method to the μm and nm scales. PMID:15326302

  3. Magnetic Control in Crystal Growth from a Melt

    NASA Astrophysics Data System (ADS)

    Huang, Yue

    Control of bulk melt crystal growth techniques is desirable for producing semiconductors with the highest purity and ternary alloys with tunable electrical properties. Because these molten materials are electrically conducting, external magnetic fields are often employed to regulate the flow in the melt. However, complicated by the coupled flow, thermal, electromagnetic and chemical physics, such magnetic control is typically empirical or even an educated guess. Two magnetic flow control mechanisms: flow damping by steady magnetic fields, and flow stirring by alternating magnetic fields, are investigated numerically. Magnetic damping during optically-heated float-zone crystal growth is modeled using a spectral collocation method. The Marangoni convection at the free melt-gas interface is suppressed when exposed to a steady axial magnetic field, measured by the Hartmann number Ha. As a result, detrimental flow instabilities are suppressed, and an almost quiescent region forms in the interior, ideal for single crystal growth. Using normal mode linear stability analyses, dominant flow instabilities are determined in a range applicable to experiments (up to Ha = 300 for Pr = 0.02, and up to Ha = 500 for Pr = 0.001). The hydrodynamic nature of the instability for small Prandtl number Pr liquid bridges is confirmed by energy analyses. Magnetic stirring is modeled for melt crystal growth in an ampule exposed to a transverse rotating magnetic field. Decoupled from the flow field at small magnetic Reynolds number, the electromagnetic field is first solved via finite element analysis. The flow field is then solved using the spectral element method. At low to moderate AC frequencies (up to a few kHz), the electromagnetic body force is dominant in the azimuthal direction, which stirs a steady axisymmetric flow primarily in the azimuthal direction. A weaker secondary flow develops in the meridional plane. However, at high AC frequencies (on the order of 10 kHz and higher), only

  4. Effective force control by muscle synergies

    PubMed Central

    Berger, Denise J.; d'Avella, Andrea

    2014-01-01

    Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG) activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4–5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control) on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control) we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control). Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor coordination. PMID

  5. Effective force control by muscle synergies.

    PubMed

    Berger, Denise J; d'Avella, Andrea

    2014-01-01

    Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG) activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4-5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control) on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control) we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control). Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor coordination.

  6. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  7. Levitation force of small clearance superconductor-magnet system under non-coaxial condition

    NASA Astrophysics Data System (ADS)

    Xu, Jimin; Jin, Yingze; Yuan, Xiaoyang; Miao, Xusheng

    2017-03-01

    A novel superconducting tilting-pad bearing was proposed for the advanced research of reusable liquid hydrogen turbopump in liquid rocket. The bearing is a combination of superconducting magnetic bearing and hydrodynamic fluid-film bearing. Since the viscosity of cryogenic fuel to activate superconducting state and form hydrodynamic fluid-film is very low, bearing clearance will be very small. This study focuses on the investigation of superconducting levitation force in this kind of small clearance superconductor-magnet system. Based on Bean critical state model and three-dimensional finite element method, an analysis method is presented to obtain the levitation force under such situation. Since the complicated operational conditions and structural arrangement for application in liquid rocket, center lines of bulk superconductor and magnet rotor will usually be in non-coaxial state. Superconducting levitation forces in axial direction and radial direction under non-coaxial situation are also analyzed by the presented method.

  8. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation.

    PubMed

    Vrijsen, N H; Jansen, J W; Compter, J C; Lomonova, E A

    2013-07-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.

  9. Temperature and field direction dependences of first-order reversal curve (FORC) diagrams of hot-deformed Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Yomogita, Takahiro; Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Sepehri-Amin, Hossein; Ohkubo, Tadakatsu; Hono, Kazuhiro; Akiya, Takahiro; Hioki, Keiko; Hattori, Atsushi

    2018-02-01

    First-order reversal curve (FORC) diagram has been previously adopted for the analyses of magnetization reversal process and/or quantitative evaluation of coercivity and interaction field dispersions in various magnetic samples. Although these kinds of information are valuable for permanent magnets, previously reported FORC diagrams of sintered Nd-Fe-B magnets exhibit very complicated patterns. In this paper, we have studied the FORC diagrams of hot-deformed Nd-Fe-B magnets under various conditions. Contrary to the previous reports on sintered Nd-Fe-B magnets, the FORC diagram of the hot-deformed Nd-Fe-B magnet exhibits a very simple pattern consisting of a strong spot and a weak line. From this FORC diagram pattern, it is revealed that the coercivity dispersion of the hot-deformed Nd-Fe-B magnets is surprisingly small. Moreover, this feature of the FORC diagram pattern is very robust and unaffected by changes in various conditions such as grain boundary diffusion process, temperature, and field direction, whereas these conditions significantly change the coercivity and the shape of magnetization curve. This fact indicates that the magnetization reversal process of the hot-deformed Nd-Fe-B magnets is almost unchanged against these conditions.

  10. First order reversal curves (FORC) analysis of individual magnetic nanostructures using micro-Hall magnetometry

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Eibisch, Paul; Akbari, Maryam; Porrati, Fabrizio; Huth, Michael; Müller, Jens

    2016-11-01

    Alongside the development of artificially created magnetic nanostructures, micro-Hall magnetometry has proven to be a versatile tool to obtain high-resolution hysteresis loop data and access dynamical properties. Here we explore the application of First Order Reversal Curves (FORC)—a technique well-established in the field of paleomagnetism for studying grain-size and interaction effects in magnetic rocks—to individual and dipolar-coupled arrays of magnetic nanostructures using micro-Hall sensors. A proof-of-principle experiment performed on a macroscopic piece of a floppy disk as a reference sample well known in the literature demonstrates that the FORC diagrams obtained by magnetic stray field measurements using home-built magnetometers are in good agreement with magnetization data obtained by a commercial vibrating sample magnetometer. We discuss in detail the FORC diagrams and their interpretation of three different representative magnetic systems, prepared by the direct-write Focused Electron Beam Induced Deposition (FEBID) technique: (1) an isolated Co-nanoisland showing a simple square-shaped hysteresis loop, (2) a more complex CoFe-alloy nanoisland exhibiting a wasp-waist-type hysteresis, and (3) a cluster of interacting Co-nanoislands. Our findings reveal that the combination of FORC and micro-Hall magnetometry is a promising tool to investigate complex magnetization reversal processes within individual or small ensembles of nanomagnets grown by FEBID or other fabrication methods. The method provides sub-μm spatial resolution and bridges the gap of FORC analysis, commonly used for studying macroscopic samples and rather large arrays, to studies of small ensembles of interacting nanoparticles with the high moment sensitivity inherent to micro-Hall magnetometry.

  11. First order reversal curves (FORC) analysis of individual magnetic nanostructures using micro-Hall magnetometry.

    PubMed

    Pohlit, Merlin; Eibisch, Paul; Akbari, Maryam; Porrati, Fabrizio; Huth, Michael; Müller, Jens

    2016-11-01

    Alongside the development of artificially created magnetic nanostructures, micro-Hall magnetometry has proven to be a versatile tool to obtain high-resolution hysteresis loop data and access dynamical properties. Here we explore the application of First Order Reversal Curves (FORC)-a technique well-established in the field of paleomagnetism for studying grain-size and interaction effects in magnetic rocks-to individual and dipolar-coupled arrays of magnetic nanostructures using micro-Hall sensors. A proof-of-principle experiment performed on a macroscopic piece of a floppy disk as a reference sample well known in the literature demonstrates that the FORC diagrams obtained by magnetic stray field measurements using home-built magnetometers are in good agreement with magnetization data obtained by a commercial vibrating sample magnetometer. We discuss in detail the FORC diagrams and their interpretation of three different representative magnetic systems, prepared by the direct-write Focused Electron Beam Induced Deposition (FEBID) technique: (1) an isolated Co-nanoisland showing a simple square-shaped hysteresis loop, (2) a more complex CoFe-alloy nanoisland exhibiting a wasp-waist-type hysteresis, and (3) a cluster of interacting Co-nanoislands. Our findings reveal that the combination of FORC and micro-Hall magnetometry is a promising tool to investigate complex magnetization reversal processes within individual or small ensembles of nanomagnets grown by FEBID or other fabrication methods. The method provides sub-μm spatial resolution and bridges the gap of FORC analysis, commonly used for studying macroscopic samples and rather large arrays, to studies of small ensembles of interacting nanoparticles with the high moment sensitivity inherent to micro-Hall magnetometry.

  12. Digital control of magnetic bearings in a cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Feeley, J.; Law, A.; Lind, F.

    1990-01-01

    This paper describes the design of a digital control system for control of magnetic bearings used in a spaceborne cryogenic cooler. The cooler was developed by Philips Laboratories for the NASA Goddard Space Flight Center. Six magnetic bearing assemblies are used to levitate the piston, displacer, and counter-balance of the cooler. The piston and displacer are driven by linear motors in accordance with Stirling cycle thermodynamic principles to produce the desired cooling effect. The counter-balance is driven by a third linear motor to cancel motion induced forces that would otherwise be transmitted to the spacecraft. An analog control system is currently used for bearing control. The purpose of this project is to investigate the possibilities for improved performance using digital control. Areas for potential improvement include transient and steady state control characteristics, robustness, reliability, adaptability, alternate control modes, size, weight, and cost. The present control system is targeted for the Intel 80196 microcontroller family. The eventual introduction of application specific integrated circuit (ASIC) technology to this problem may produce a unique and elegant solution both here and in related industrial problems.

  13. Three-axis force actuator for a magnetic bearing

    NASA Technical Reports Server (NTRS)

    Gondhalekar, Vijay (Inventor)

    1998-01-01

    This invention features a three-axis force actuator that axially, radially and rotatably supports a bearing member for frictionless rotation about an axis of rotation generally coincident with a Z-axis. Also featured is a magnetic bearing having such an actuator. The actuator includes an inner member, a magnetic member and a pole assembly having a ring member and four pole extending therefrom. The poles are equi-angular spaced from each other and radially spaced about the Z-axis. The inner member extends along the Z-axis and is a highly magnetic permeable material. The magnetic member is formed about the inner member outer surface, extends along the Z-axis and is configured so one magnetic pole polarity is located at its outer surface and the other polarity pole is located at its inner surface. Preferably, the magnetic member is a radially magnetized permanent magnet. The inner surface of the ring member is magnetically coupled to the magnetic member and a face of each pole is coupled to the bearing member. The magnetic member, the pole assembly, the inner member and the bearing member cooperate to generate a magnetic field that radially and rotatably supports a rotating member secured to the bearing member. The actuator further includes a plurality of electromagnetic coils. Preferably, a coil is formed about each pole and at least 2 coils are formed about the inner member. When energized, the electromagnetic coils generate a modulated magnetic field that stabilizes the rotating member in the desired operational position.

  14. Kinesin-microtubule interactions during gliding assays under magnetic force

    NASA Astrophysics Data System (ADS)

    Fallesen, Todd L.

    Conventional kinesin is a motor protein capable of converting the chemical energy of ATP into mechanical work. In the cell, this is used to actively transport vesicles through the intracellular matrix. The relationship between the velocity of a single kinesin, as it works against an increasing opposing load, has been well studied. The relationship between the velocity of a cargo being moved by multiple kinesin motors against an opposing load has not been established. A major difficulty in determining the force-velocity relationship for multiple motors is determining the number of motors that are moving a cargo against an opposing load. Here I report on a novel method for detaching microtubules bound to a superparamagnetic bead from kinesin anchor points in an upside down gliding assay using a uniform magnetic field perpendicular to the direction of microtubule travel. The anchor points are presumably kinesin motors bound to the surface which microtubules are gliding over. Determining the distance between anchor points, d, allows the calculation of the average number of kinesins, n, that are moving a microtubule. It is possible to calculate the fraction of motors able to move microtubules as well, which is determined to be ˜ 5%. Using a uniform magnetic field parallel to the direction of microtubule travel, it is possible to impart a uniform magnetic field on a microtubule bound to a superparamagnetic bead. We are able to decrease the average velocity of microtubules driven by multiple kinesin motors moving against an opposing force. Using the average number of kinesins on a microtubule, we estimate that there are an average 2-7 kinesins acting against the opposing force. By fitting Gaussians to the smoothed distributions of microtubule velocities acting against an opposing force, multiple velocities are seen, presumably for n, n-1, n-2, etc motors acting together. When these velocities are scaled for the average number of motors on a microtubule, the force

  15. Using Strong Magnetic Fields to Control Solutal Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the experimental results using paramagnetic salts and solutions in magnetic fields and compare them to analytical predictions.

  16. Effective method to control the levitation force and levitation height in a superconducting maglev system

    NASA Astrophysics Data System (ADS)

    Yang, Peng-Tao; Yang, Wan-Min; Wang, Miao; Li, Jia-Wei; Guo, Yu-Xia

    2015-11-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001 and 50872079), the Key-grant Project of Chinese Ministry of Education (Grant No. 311033), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001 and GK201305014), and the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University, China (Grant Nos. X2011YB08 and X2012YB05).

  17. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has notmore » yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.« less

  18. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE PAGES

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; ...

    2015-12-23

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has notmore » yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.« less

  19. Quantum control of topological defects in magnetic systems

    NASA Astrophysics Data System (ADS)

    Takei, So; Mohseni, Masoud

    2018-02-01

    Energy-efficient classical information processing and storage based on topological defects in magnetic systems have been studied over the past decade. In this work, we introduce a class of macroscopic quantum devices in which a quantum state is stored in a topological defect of a magnetic insulator. We propose noninvasive methods to coherently control and read out the quantum state using ac magnetic fields and magnetic force microscopy, respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three-level rf-SQUID qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a domain wall size of 10-100 nm and reasonable material parameters, we estimate qubit operating temperatures in the range of 0.1-1 K, a decoherence time of about 0.01-1 μ s , and the number of Rabi flops within the coherence time scale in the range of 102-104 .

  20. Visco-Resistive MHD Modeling Benchmark of Forced Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Hegna, C. C.; Sovinec, C. R.; Callen, J. D.; Ferraro, N. M.

    2016-10-01

    The presence of externally-applied 3D magnetic fields can affect important phenomena in tokamaks, including mode locking, disruptions, and edge localized modes. External fields penetrate into the plasma and can lead to forced magnetic reconnection (FMR), and hence magnetic islands, on resonant surfaces if the local plasma rotation relative to the external field is slow. Preliminary visco-resistive MHD simulations of FMR in a slab geometry are consistent with theory. Specifically, linear simulations exhibit proper scaling of the penetrated field with resistivity, viscosity, and flow, and nonlinear simulations exhibit a bifurcation from a flow-screened to a field-penetrated, magnetic island state as the external field is increased, due to the 3D electromagnetic force. These results will be compared to simulations of FMR in a circular cross-section, cylindrical geometry by way of a benchmark between the NIMROD and M3D-C1 extended-MHD codes. Because neither this geometry nor the MHD model has the physics of poloidal flow damping, the theory of will be expanded to include poloidal flow effects. The resulting theory will be tested with linear and nonlinear simulations that vary the resistivity, viscosity, flow, and external field. Supported by OFES DoE Grants DE-FG02-92ER54139, DE-FG02-86ER53218, DE-AC02-09CH11466, and the SciDAC Center for Extended MHD Modeling.

  1. Magnetically-induced forces on a ferromagnetic HT-9 first wall/blanket module

    NASA Astrophysics Data System (ADS)

    Lechtenberg, T. A.; Dahms, C. F.; Attaya, H.

    1984-05-01

    A model of the Starfire commercial tokamak reactor was used as the basis for calculating magnetic loads induced on typical fusion reactor first wall components fabricated of ferromagnetic material. The component analyzed was the first wall/blanket module because this structure experiences the greatest neutron fluence level and is the component for which the low swelling ferromagnetic Sandvik alloy, HT-9, may have the greatest benefit. The magnitudes of the magnetic body forces calculated were consistent with analyses performed on structures within other types of reactors. The loads generated within the module structure by the magnetic forces were found to be of the same order of magnitude as those arising from other sources such as pressure differential, dead weight, temperature distribution. Only small structural design modifications would be required if the magnetic alloy, Sandvik HT-9 were utilized.

  2. A Miniature Magnetic-Force-Based Three-Axis AC Magnetic Sensor with Piezoelectric/Vibrational Energy-Harvesting Functions

    PubMed Central

    Hung, Chiao-Fang; Yeh, Po-Chen; Chung, Tien-Kan

    2017-01-01

    In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic–mechanical–piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect) to convert x-axis and y-axis in-plane and z-axis magnetic fields into piezoelectric voltage outputs. Under the x-axis magnetic field (sine-wave, 100 Hz, 0.2–3.2 gauss) and the z-axis magnetic field (sine-wave, 142 Hz, 0.2–3.2 gauss), the voltage output with the sensitivity of the sensor are 1.13–26.15 mV with 8.79 mV/gauss and 1.31–8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x-axis vibration (sine-wave, 100 Hz, 3.5 g) and z-axis vibration (sine-wave, 142 Hz, 3.8 g), the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on. PMID:28208693

  3. Automated force controller for amplitude modulation atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollablemore » drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.« less

  4. Large-stroke convex micromirror actuated by electromagnetic force for optical power control.

    PubMed

    Hossain, Md Mahabub; Bin, Wu; Kong, Seong Ho

    2015-11-02

    This paper contributes a novel design and the corresponding fabrication process to research on the unique topic of micro-electro-mechanical systems (MEMS) deformable convex micromirror used for focusing-power control. In this design, the shape of a thin planar metal-coated polymer-membrane mirror is controlled electromagnetically by using the repulsive force between two magnets, a permanent magnet and a coil solenoid, installed in an actuator system. The 5 mm effective aperture of a large-stroke micromirror showed a maximum center displacement of 30.08 µm, which enabled control of optical power across a wide range that could extend up to around 20 diopters. Specifically, utilizing the maximum optical power of 20 diopter by applying a maximum controlling current of 0.8 A yielded consumption of at most 2 W of electrical power. It was also demonstrated that this micromirror could easily be integrated in miniature tunable optical imaging systems.

  5. Iron in the Fire: Searching for Fire's Magnetic Fingerprint using Controlled Heating Experiments, High-Resolution FORCs, IRM Coercivity Spectra, and Low-Temperature Remanence Experiments

    NASA Astrophysics Data System (ADS)

    Lippert, P. C.; Reiners, P. W.

    2014-12-01

    Evidence for recent climate-wildfire linkages underscores the need for better understanding of relationships between wildfire and major climate shifts in Earth history, which in turn offers the potential for prognoses for wildfire and human adaptations to it. In particular, what are the links between seasonality and wildfire frequency and severity, and what are the feedbacks between wildfire, landscape evolution, and biogeochemical cycles, particularly the carbon and iron cycles? A key first step in addressing these questions is recovering well-described wildfire records from a variety of paleolandscapes and paleoclimate regimes. Although charcoal and organic biomarkers are commonly used indicators of fire, taphonomic processes and time-consuming analytical preparations often preclude their routine use in some environments and in high-stratigraphic resolution paleowildfire surveying. The phenomenological relationship between fire and magnetic susceptibility can make it a useful surveying tool, but increased magnetic susceptibility in sediments is not unique to fire, and thus limits its diagnostic power. Here we utilize component-specific rock magnetic methods and analytical techniques to identify the rock magnetic fingerprint of wildfire. We use a custom-designed air furnace, a series of iron-free laboratory soils, natural saprolites and soils, and fuels from Arizona Ponderosa pine forests and grasslands to simulate wildfire in a controlled and monitored environment. Soil-ash residues and soil and fuel controls were then characterized using First Order Reversal Curve (FORC) patterns, DC backfield IRM coercivity spectra, low-temperature SIRM demagnetization behavior, and low-temperature cycling of room-temperature SIRM behavior. We will complement these magnetic analyses with high-resolution TEM of magnetic extracts. Here we summarize the systematic changes to sediment magnetism as pyrolitized organic matter is incorporated into artificial and natural soils. These

  6. A portable Halbach magnet that can be opened and closed without force: The NMR-CUFF

    NASA Astrophysics Data System (ADS)

    Windt, Carel W.; Soltner, Helmut; Dusschoten, Dagmar van; Blümler, Peter

    2011-01-01

    Portable equipment for nuclear magnetic resonance (NMR) is becoming increasingly attractive for use in a variety of applications. One of the main scientific challenges in making NMR portable is the design of light-weight magnets that possess a strong and homogeneous field. Existing NMR magnets can provide such magnetic fields, but only for small samples or in small regions, or are rather heavy. Here we show a simple yet elegant concept for a Halbach-type permanent magnet ring, which can be opened and closed with minimal mechanical force. An analytical solution for an ideal Halbach magnet shows that the magnetic forces cancel if the structure is opened at an angle of 35.3° relative to its poles. A first prototype weighed only 3.1 kg, and provided a flux density of 0.57 T with a homogeneity better than 200 ppm over a spherical volume of 5 mm in diameter without shimming. The force needed to close it was found to be about 20 N. As a demonstration, intact plants were imaged and water (xylem) flow measured. Magnets of this type (NMR-CUFF = Cut-open, Uniform, Force Free) are ideal for portable use and are eminently suited to investigate small or slender objects that are part of a larger or immobile whole, such as branches on a tree, growing fruit on a plant, or non-metallic tubing in industrial installations. This new concept in permanent-magnet design enables the construction of openable, yet strong and homogeneous magnets, which aside from use in NMR or MRI could also be of interest for applications in accelerators, motors, or magnetic bearings.

  7. Variable force, eddy-current or magnetic damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E. (Inventor)

    1985-01-01

    An object of the invention is to provide variable damping for resonant vibrations which may occur at different rotational speeds in the range of rpms in which a rotating machine is operated. A variable force damper in accordance with the invention includes a rotating mass carried on a shaft which is supported by a bearing in a resilient cage. The cage is attached to a support plate whose rim extends into an annular groove in a housing. Variable damping is effected by tabs of electrically conducting nonmagnetic material which extend radially from the cage. The tabs at an index position lie between the pole face of respective C shaped magnets. The magnets are attached by cantilever spring members to the housing.

  8. Concurrent use of magnetic bearings for rotor support and force sensing for the nondestructive evaluation of manufacturing processes

    NASA Astrophysics Data System (ADS)

    Kasarda, Mary; Imlach, Joseph; Balaji, P. A.; Marshall, Jeremy T.

    2000-06-01

    Active magnetic bearings are a proven technology in turbomachinery applications and they offer considerable promise for improving the performance of manufacturing processes. The Active Magnetic Bearing (AMB) is a feedback mechanism that supports a spinning shaft by levitating it in a magnetic field. AMBs have significantly higher surface speed capability than rolling element bearings and they eliminate the potential for product contamination by eliminating the requirement for bearing lubrication. In addition, one of the most promising capabilities for manufacturing applications is the ability of the AMB to act concurrently as both a support bearing and non-invasive force sensor. The feedback nature of the AMB allows for its use as a load cell to continuously measure shaft forces necessary for levitation based on information about the magnetic flux density in the air gaps. This measurement capability may be exploited to improve the process control of such products as textile fibers and photographic films where changes in shaft loads may indicate changes in product quality. This paper discusses the operation of AMBs and their potential benefits in manufacturing equipment along with results from research addressing accurate AMB force sensing performance in field applications. Specifically, results from the development of enhanced AMB measurement algorithms to better account for magnetic fringing and leakage effects to improve the accuracy of this technique are presented. Results from the development of a new on-line calibration procedure for robust in-situ calibration of AMBs in a field application such as a manufacturing plant scenario are also presented including results of Magnetic Finite Element Analysis (MFEA) verification of the procedure.

  9. Nonlinear control of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Pradeep, A. K.; Gurumoorthy, R.

    1994-01-01

    In this paper we present a variety of nonlinear controllers for the magnetic bearing that ensure both stability and robustness. We utilize techniques of discontinuous control to design novel control laws for the magnetic bearing. We present in particular sliding mode controllers, time optimal controllers, winding algorithm based controllers, nested switching controllers, fractional controllers, and synchronous switching controllers for the magnetic bearing. We show existence of solutions to systems governed by discontinuous control laws, and prove stability and robustness of the chosen control laws in a rigorous setting. We design sliding mode observers for the magnetic bearing and prove the convergence of the state estimates to their true values. We present simulation results of the performance of the magnetic bearing subject to the aforementioned control laws, and conclude with comments on design.

  10. Two-Dimensional Lorentz Force Image Reconstruction for Magnetoacoustic Tomography with Magnetic Induction

    NASA Astrophysics Data System (ADS)

    Li, Yi-Ling; Liu, Zhen-Bo; Ma, Qing-Yu; Guo, Xia-Sheng; Zhang, Dong

    2010-08-01

    Magnetoacoustic tomography with magnetic induction has shown potential applications in imaging the electrical impedance for biological tissues. We present a novel methodology for the inverse problem solution of the 2-D Lorentz force distribution reconstruction based on the acoustic straight line propagation theory. The magnetic induction and acoustic generation as well as acoustic detection are theoretically provided as explicit formulae and also validated by the numerical simulations for a multilayered cylindrical phantom model. The reconstructed 2-D Lorentz force distribution reveals not only the conductivity configuration in terms of shape and size but also the amplitude value of the Lorentz force in the examined layer. This study provides a basis for further study of conductivity distribution reconstruction of MAT-MI in medical imaging.

  11. Control of parallel manipulators using force feedback

    NASA Technical Reports Server (NTRS)

    Nanua, Prabjot

    1994-01-01

    Two control schemes are compared for parallel robotic mechanisms actuated by hydraulic cylinders. One scheme, the 'rate based scheme', uses the position and rate information only for feedback. The second scheme, the 'force based scheme' feeds back the force information also. The force control scheme is shown to improve the response over the rate control one. It is a simple constant gain control scheme better suited to parallel mechanisms. The force control scheme can be easily modified for the dynamic forces on the end effector. This paper presents the results of a computer simulation of both the rate and force control schemes. The gains in the force based scheme can be individually adjusted in all three directions, whereas the adjustment in just one direction of the rate based scheme directly affects the other two directions.

  12. On some properties of force-free magnetic fields in infinite regions of space

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1984-01-01

    Techniques for solving boundary value problems (BVP) for a force free magnetic field (FFF) in infinite space are presented. A priori inequalities are defined which must be satisfied by the force-free equations. It is shown that upper bounds may be calculated for the magnetic energy of the region provided the value of the magnetic normal component at the boundary of the region can be shown to decay sufficiently fast at infinity. The results are employed to prove a nonexistence theorem for the BVP for the FFF in the spatial region. The implications of the theory for modeling the origins of solar flares are discussed.

  13. Laboratory study of low-β forces in arched, line-tied magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Ji, H.; Yoo, J.; Jara-Almonte, J.; Fox, W.

    2016-11-01

    The loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be applied to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruptions [Myers et al., Nature 528, 526 (2015)]. The verification of magnetic force balance also confirms the low-β assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical

  14. Laboratory study of low- β forces in arched, line-tied magnetic flux ropes

    DOE PAGES

    Myers, C. E.; Yamada, M.; Ji, H.; ...

    2016-11-04

    Here, the loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be appliedmore » to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruption. The verification of magnetic force balance also confirms the low-beta assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co

  15. Laboratory study of low- β forces in arched, line-tied magnetic flux ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, C. E.; Yamada, M.; Ji, H.

    Here, the loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be appliedmore » to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruption. The verification of magnetic force balance also confirms the low-beta assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co

  16. Magnetic tweezers: micromanipulation and force measurement at the molecular level.

    PubMed Central

    Gosse, Charlie; Croquette, Vincent

    2002-01-01

    Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness approximately 10(-7) N/m. Thus, they can be manipulated in three dimensions at a speed of approximately 10 microm/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators. PMID:12023254

  17. Enhancing and targeting nucleic acid delivery by magnetic force.

    PubMed

    Plank, Christian; Anton, Martina; Rudolph, Carsten; Rosenecker, Joseph; Krötz, Florian

    2003-08-01

    Insufficient contact of inherently highly active nucleic acid delivery systems with target cells is a primary reason for their often observed limited efficacy. Physical methods of targeting can overcome this limitation and reduce the risk of undesired side effects due to non-target site delivery. The authors and others have developed a novel means of physical targeting, exploiting magnetic force acting on nucleic acid vectors associated with magnetic particles in order to mediate the rapid contact of vectors with target cells. Here, the principles of magnetic drug and nucleic acid delivery are reviewed, and the facts and potentials of the technique for research and therapeutic applications are discussed. Magnetically enhanced nucleic acid delivery - magnetofection - is universally applicable to viral and non-viral vectors, is extraordinarily rapid, simple and yields saturation level transfection at low dose in vitro. The method is useful for site-specific vector targeting in vivo. Exploiting the full potential of the technique requires an interdisciplinary research effort in magnetic field physics, magnetic particle chemistry, pharmaceutical formulation and medical application.

  18. Spot Surface Labeling of Magnetic Microbeads and Application in Biological Force Measurements

    NASA Astrophysics Data System (ADS)

    Estes, Ashley; O'Brien, E. Tim; Hill, David; Superfine, Richard

    2006-11-01

    Biological force measurements on single molecules and macromolecular structures often use microbeads for the application of force. These techniques are often complicated by multiple attachments and nonspecific binding. In one set of experiments, we are applying a magnetic force microscope that allows us to pull on magnetic beads attached to ciliated human bronchial epithelial cells. These experiments provide a means to measure the stall force of cilia and understand how cilia propel fluids. However, because we are using beads with diameters of one and 2.8 microns, and the diameter of human airway cilia is approximately 200 nm, we cannot be assured that the bead is bound to a single cilium. To address this, we have developed a sputter coating technique to block the biotin binding capability of the streptavidin labeled bead over its entire surface except for a small spot. These beads may also have applications in other biological experiments such as DNA force experiments in which binding of a single target to an individual bead is critical.

  19. Microprocessor controlled force actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1986-01-01

    The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.

  20. A new scheme of force reflecting control

    NASA Technical Reports Server (NTRS)

    Kim, Won S.

    1992-01-01

    A new scheme of force reflecting control has been developed that incorporates position-error-based force reflection and robot compliance control. The operator is provided with a kinesthetic force feedback which is proportional to the position error between the operator-commanded and the actual position of the robot arm. Robot compliance control, which increases the effective compliance of the robot, is implemented by low pass filtering the outputs of the force/torque sensor mounted on the base of robot hand and using these signals to alter the operator's position command. This position-error-based force reflection scheme combined with shared compliance control has been implemented successfully to the Advanced Teleoperation system consisting of dissimilar master-slave arms. Stability measurements have demonstrated unprecedentedly high force reflection gains of up to 2 or 3, even though the slave arm is much stiffer than operator's hand holding the force reflecting hand controller. Peg-in-hole experiments were performed with eight different operating modes to evaluate the new force-reflecting control scheme. Best task performance resulted with this new control scheme.

  1. Optical pulling and pushing forces exerted on silicon nanospheres with strong coherent interaction between electric and magnetic resonances.

    PubMed

    Liu, Hongfeng; Panmai, Mingcheng; Peng, Yuanyuan; Lan, Sheng

    2017-05-29

    We investigated theoretically and numerically the optical pulling and pushing forces acting on silicon (Si) nanospheres (NSs) with strong coherent interaction between electric and magnetic resonances. We examined the optical pulling and pushing forces exerted on Si NSs by two interfering waves and revealed the underlying physical mechanism from the viewpoint of electric- and magnetic-dipole manipulation. As compared with a polystyrene (PS) NS, it was found that the optical pulling force for a Si NS with the same size is enlarged by nearly two orders of magnitude. In addition to the optical pulling force appearing at the long-wavelength side of the magnetic dipole resonance, very large optical pushing force is observed at the magnetic quadrupole resonance. The correlation between the optical pulling/pushing force and the directional scattering characterized by the ratio of the forward to backward scattering was revealed. More interestingly, it was found that the high-order electric and magnetic resonances in large Si NSs play an important role in producing optical pulling force which can be generated by not only s-polarized wave but also p-polarized one. Our finding indicates that the strong coherent interaction between the electric and magnetic resonances existing in nanoparticles with large refractive indices can be exploited to manipulate the optical force acting on them and the correlation between the optical force and the directional scattering can be used as guidance. The engineering and manipulation of optical forces will find potential applications in the trapping, transport and sorting of nanoparticles.

  2. Magnetic forces and localized resonances in electron transfer through quantum rings.

    PubMed

    Poniedziałek, M R; Szafran, B

    2010-11-24

    We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.

  3. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    PubMed Central

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  4. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy.

    PubMed

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-18

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  5. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  6. Magnetic Force Microscopy Investigation of Magnetic Domains in Nd2Fe14B

    NASA Astrophysics Data System (ADS)

    Talari, Mahesh Kumar; Markandeyulu, G.; Rao, K. Prasad

    2010-07-01

    Remenance and coercivity in Nd2Fe14B materials are strongly dependent on the microstructural aspects like phases morphology and grain size. The coercivity (Hc) of a magnetic material varies inversely with the grain size (D) and there is a critical size below which Hc∝D6. Domain wall pinning by grain boundaries and foreign phases is the important mechanism in explaining the improvement in coercivity and remenance. Nd2Fe14B intermetallic compound with stochiometric composition was prepared from pure elements (Nd -99.5%, Fe—99.95%, B -99.99%) by arc melting in argon atmosphere. Magnetic Force Microscope (MFM) gives high-resolution magnetic domain structural information of ferromagnetic samples. DI-3100 Scanning Probe Microscope with MESP probes was used For MFM characterization of the samples. Magnetic domains observed in cast ingots were very long (up to 40 μm were observed) and approximately 1-5 μm wide due to high anisotropy of the compounds. Magnetic domains have displayed different image contrast and morphologies at different locations of the samples. The domain morphologies and image contrast obtained in this analysis were explained in this paper.

  7. Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms.

    PubMed

    Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M

    2017-08-01

    Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.

  8. Dynamic performance analysis of permanent magnet contactor with a flux-weakening control strategy

    NASA Astrophysics Data System (ADS)

    Wang, Xianbing; Lin, Heyun; Fang, Shuhua; Jin, Ping; Wang, Junhua; Ho, S. L.

    2011-04-01

    A new flux-weakening control strategy for permanent magnet contactors is proposed. By matching the dynamic attraction force and the antiforce, the terminal velocity and collision energy of the movable iron in the closing process are significantly reduced. The movable iron displacement is estimated by detecting the closing voltage and current with the proposed control. A dynamic mathematical model is also established under four kinds of excitation scenarios. The attraction force and flux linkage are predicted by finite element method and the dynamics of the closing process is simulated using the 4th-order Runge-Kutta algorithm. Experiments are carried out on a 250A prototype with an intelligent control unit to verify the proposed control strategy.

  9. Evidence of protein-free homology recognition in magnetic bead force-extension experiments

    NASA Astrophysics Data System (ADS)

    O'Lee, D. J.; Danilowicz, C.; Rochester, C.; Kornyshev, A. A.; Prentiss, M.

    2016-07-01

    Earlier theoretical studies have proposed that the homology-dependent pairing of large tracts of dsDNA may be due to physical interactions between homologous regions. Such interactions could contribute to the sequence-dependent pairing of chromosome regions that may occur in the presence or the absence of double-strand breaks. Several experiments have indicated the recognition of homologous sequences in pure electrolytic solutions without proteins. Here, we report single-molecule force experiments with a designed 60 kb long dsDNA construct; one end attached to a solid surface and the other end to a magnetic bead. The 60 kb constructs contain two 10 kb long homologous tracts oriented head to head, so that their sequences match if the two tracts fold on each other. The distance between the bead and the surface is measured as a function of the force applied to the bead. At low forces, the construct molecules extend substantially less than normal, control dsDNA, indicating the existence of preferential interaction between the homologous regions. The force increase causes no abrupt but continuous unfolding of the paired homologous regions. Simple semi-phenomenological models of the unfolding mechanics are proposed, and their predictions are compared with the data.

  10. Design of a magnetic force exciter for a small-scale windmill using a piezo-composite generating element

    NASA Astrophysics Data System (ADS)

    Luong, Hung Truyen; Goo, Nam Seo

    2011-03-01

    We introduce a design for a magnetic force exciter that applies vibration to a piezo-composite generating element (PCGE) for a small-scale windmill to convert wind energy into electrical energy. The windmill can be used to harvest wind energy in urban regions. The magnetic force exciter consists of exciting magnets attached to the device's input rotor, and a secondary magnet that is fixed at the tip of the PCGE. Under an applied wind force, the input rotor rotates to create a magnetic force interaction to excite the PCGE. Deformation of the PCGE enables it to generate the electric power. Experiments were performed to test power generation and battery charging capabilities. In a battery charging test, the charging time for a 40 mAh battery is approximately 1.5 hours for a wind speed of 2.5 m/s. Our experimental results show that the prototype can harvest energy in urban areas with low wind speeds, and convert the wasted wind energy into electricity for city use.

  11. Dynamic-force spectroscopy measurement with precise force control using atomic-force microscopy probe

    NASA Astrophysics Data System (ADS)

    Takeuchi, Osamu; Miyakoshi, Takaaki; Taninaka, Atsushi; Tanaka, Katsunori; Cho, Daichi; Fujita, Machiko; Yasuda, Satoshi; Jarvis, Suzanne P.; Shigekawa, Hidemi

    2006-10-01

    The accuracy of dynamic-force spectroscopy (DFS), a promising technique of analyzing the energy landscape of noncovalent molecular bonds, was reconsidered in order to justify the use of an atomic-force microscopy (AFM) cantilever as a DFS force probe. The advantages and disadvantages caused, for example, by the force-probe hardness were clarified, revealing the pivotal role of the molecular linkage between the force probe and the molecular bonds. It was shown that the feedback control of the loading rate of tensile force enables us a precise DFS measurement using an AFM cantilever as the force probe.

  12. Magnetothermal Convection of Water with the Presence or Absence of a Magnetic Force Acting on the Susceptibility Gradient

    PubMed Central

    Maki, Syou

    2016-01-01

    Heat transfer of magnetothermal convection with the presence or absence of the magnetic force acting on the susceptibility gradient (fsc) was examined by three-dimensional numerical computations. Thermal convection of water enclosed in a shallow cylindrical vessel (diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The momentum equations of convection were nondimensionalized, which involved the term of fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computations resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged velocity components U, V, and W, and the isothermal distributions and flow patterns were almost completely the same, regardless of the presence or absence of the term of fsc. As a result, we found that the effect of fsc was extremely small, although much previous research emphasized the effect with paramagnetic solutions under an unsteady state. The magnitude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility and magnetic flux density), but also on the thermal properties of the solution (thermal conductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on the magnetothermal convection. Active control over the density gradient with temperature will be required to advance heat transfer with the effect of fsc. PMID:27606823

  13. Magnetothermal Convection of Water with the Presence or Absence of a Magnetic Force Acting on the Susceptibility Gradient.

    PubMed

    Maki, Syou

    2016-01-01

    Heat transfer of magnetothermal convection with the presence or absence of the magnetic force acting on the susceptibility gradient (fsc) was examined by three-dimensional numerical computations. Thermal convection of water enclosed in a shallow cylindrical vessel (diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The momentum equations of convection were nondimensionalized, which involved the term of fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computations resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged velocity components U, V, and W, and the isothermal distributions and flow patterns were almost completely the same, regardless of the presence or absence of the term of fsc. As a result, we found that the effect of fsc was extremely small, although much previous research emphasized the effect with paramagnetic solutions under an unsteady state. The magnitude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility and magnetic flux density), but also on the thermal properties of the solution (thermal conductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on the magnetothermal convection. Active control over the density gradient with temperature will be required to advance heat transfer with the effect of fsc.

  14. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  15. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, M.L.; Mueller, F.M.; Smith, J.L.

    1991-04-09

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency. 15 figures.

  16. Three-dimensional control of crystal growth using magnetic fields

    NASA Astrophysics Data System (ADS)

    Dulikravich, George S.; Ahuja, Vineet; Lee, Seungsoo

    1993-07-01

    Two coupled systems of partial differential equations governing three-dimensional laminar viscous flow undergoing solidification or melting under the influence of arbitrarily oriented externally applied magnetic fields have been formulated. The model accounts for arbitrary temperature dependence of physical properties including latent heat release, effects of Joule heating, magnetic field forces, and mushy region existence. On the basis of this model a numerical algorithm has been developed and implemented using central differencing on a curvilinear boundary-conforming grid and Runge-Kutta explicit time-stepping. The numerical results clearly demonstrate possibilities for active and practically instantaneous control of melt/solid interface shape, the solidification/melting front propagation speed, and the amount and location of solid accrued.

  17. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  18. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections atmore » the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.« less

  19. Strain control of giant magnetic anisotropy in metallic perovskite SrCoO3-δ thin films.

    PubMed

    Hu, Songbai; Cazorla, Claudio; Xiang, Feixiang; Ma, Hongfei; Wang, Jianyuan; Wang, Jianbo; Wang, Xiaolin; Ulrich, Clemens; Chen, Lang; Seidel, Jan

    2018-06-08

    Magnetic materials with large magnetic anisotropy are essential for workaday applications such as permanent magnets and magnetic data storage. There is widespread interest in finding efficient ways of controlling magnetic anisotropy, among which strain control has proven to be a very powerful technique. Here we demonstrate strain-mediated magnetic anisotropy in SrCoO3-δ thin film, a perovskite oxide that is metallic and adopts a cubic structure at δ ≤ 0.25. We find that the easy-magnetization axis in SrCoO3-δ can be rotated by 90º upon application of moderate epitaxial strains ranging from -1.2% to +1.8%. The magnetic anisotropy in compressive SrCoO3-δ thin films is giant as shown by magnetic hysteresis loops rendering an anisotropy energy density of ~106 erg/cm3. The local variance of magnetic force microscopy (MFM) upon temperature and magnetic field reveals that the evolution of magnetic domains in SCO thin film is strongly dependent on the magnetic anisotropy.

  20. Conductive atomic force microscopy measurements of nanopillar magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Evarts, E. R.; Hogg, C.; Bain, J. A.; Majetich, S. A.

    2009-03-01

    Magnetic tunnel junctions have been studied extensively for their magnetoresistance and potential uses in magnetic logic and data storage devices, but little is known about how their performance will scale with size. Here we examined the electronic behavior of 12 nm diameter magnetic tunnel junctions fabricated by a novel nanomasking process. Scanning electron microscopy images indicated feature diameter of 12 nm, and atomic force microscopy showed a height of 5 nm suggesting that unmasked regions have been milled on average to the oxide barrier layer, and areas should have the remnants of the free layer exposed with no remaining nanoparticle. Electrical contact was made to individual nanopillars using a doped-diamond-coated atomic force microscopy probe with a 40 nm radius of curvature at the tip. Off pillar we observed a resistance of 8.1 x 10^5 φ, while on pillar we found a resistance of 2.85 x 10^6 φ. Based on the RA product for this film, 120 φ-μm^2, a 12 nm diameter cylinder with perfect contact would have a resistance of 1.06 x 10^6 φ. The larger experimental value is consistent with a smaller contact area due to damaging the pillar during the ion milling process. The magnetoresistance characteristics of these magnetic tunnel junctions will be discussed.

  1. Feedforward compensation control of rotor imbalance for high-speed magnetically suspended centrifugal compressors using a novel adaptive notch filter

    NASA Astrophysics Data System (ADS)

    Zheng, Shiqiang; Feng, Rui

    2016-03-01

    This paper introduces a feedforward control strategy combined with a novel adaptive notch filter to solve the problem of rotor imbalance in high-speed Magnetically Suspended Centrifugal Compressors (MSCCs). Unbalance vibration force of rotor in MSCC is mainly composed of current stiffness force and displacement stiffness force. In this paper, the mathematical model of the unbalance vibration with the proportional-integral-derivative (PID) control laws is presented. In order to reduce the unbalance vibration, a novel adaptive notch filter is proposed to identify the synchronous frequency displacement of the rotor as a compensation signal to eliminate the current stiffness force. In addition, a feedforward channel from position component to control output is introduced to compensate displacement stiffness force to achieve a better performance. A simplified inverse model of power amplifier is included in the feedforward channel to reject the degrade performance caused by its low-pass characteristic. Simulation and experimental results on a MSCC demonstrate a significant effect on the synchronous vibration suppression of the magnetically suspended rotor at a high speed.

  2. Transport of particles by magnetic forces and cellular blood flow in a model microvessel

    NASA Astrophysics Data System (ADS)

    Freund, J. B.; Shapiro, B.

    2012-05-01

    The transport of particles (diameter 0.56 μm) by magnetic forces in a small blood vessel (diameter D = 16.9 μm, mean velocity U = 2.89 mm/s, red cell volume fraction Hc = 0.22) is studied using a simulation model that explicitly includes hydrodynamic interactions with realistically deformable red blood cells. A biomedical application of such a system is targeted drug or hyperthermia delivery, for which transport to the vessel wall is essential for localizing therapy. In the absence of magnetic forces, it is seen that interactions with the unsteadily flowing red cells cause lateral particle velocity fluctuations with an approximately normal distribution with variance σ = 140 μm/s. The resulting dispersion is over 100 times faster than expected for Brownian diffusion, which we neglect. Magnetic forces relative to the drag force on a hypothetically fixed particle at the vessel center are selected to range from Ψ = 0.006 to 0.204. The stronger forces quickly drive the magnetic particles to the vessel wall, though in this case the red cells impede margination; for weaker forces, many of the particles are marginated more quickly than might be predicted for a homogeneous fluid by the apparently chaotic stirring induced by the motions of the red cells. A corresponding non-dimensional parameter Ψ', which is based on the characteristic fluctuation velocity σ rather than the centerline velocity, explains the switch-over between these behaviors. Forces that are applied parallel to the vessel are seen to have a surprisingly strong effect due to the streamwise-asymmetric orientation of the flowing blood cells. In essence, the cells act as low-Reynolds number analogs of turning vanes, causing streamwise accelerated particles to be directed toward the vessel center and streamwise decelerated particles to be directed toward the vessel wall.

  3. Forces on a current-carrying wire in a magnetic field: the macro-micro connection

    NASA Astrophysics Data System (ADS)

    Karam, R.; Kneubil, F. B.; Robilotta, M. R.

    2017-09-01

    The classic problem of determining the force on a current-carrying wire in a magnetic field is critically analysed. A common explanation found in many introductory textbooks is to represent the force on the wire as the sum of the forces on charge carriers. In this approach neither the nature of the forces involved nor their application points are fully discussed. In this paper we provide an alternative microscopic explanation that is suitable for introductory electromagnetism courses at university level. By considering the wire as a superposition of a positive and a negative cylindrical charge distributions, we show that the electrons are subject to both magnetic and electric forces, whereas the ionic lattice of the metal is dragged by an electric force. Furthermore, an analysis of the orders of magnitude involved in the problem gives counterintuitive results with valuable educational potential. We argue that this approach allows one to discuss different aspects of the physical knowledge, which are relevant in physics education.

  4. Nonlinear generation of large-scale magnetic fields in forced spherical shell dynamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livermore, P. W.; Hughes, D. W.; Tobias, S. M.

    2010-03-15

    In an earlier paper [P. W. Livermore, D. W. Hughes, and S. M. Tobias, ''The role of helicity and stretching in forced kinematic dynamos in a spherical shell'', Phys. Fluids 19, 057101 (2007)], we considered the kinematic dynamo action resulting from a forced helical flow in a spherical shell. Although mean field electrodynamics suggests that the resulting magnetic field should have a significant mean (axisymmetric) component, we found no evidence for this; the dynamo action was distinctly small scale. Here we extend our investigation into the nonlinear regime in which the magnetic field reacts back on the velocity via themore » Lorentz force. Our main result is somewhat surprising, namely, that nonlinear effects lead to a considerable change in the structure of the magnetic field, its final state having a significant mean component. By investigating the dominant flow-field interactions, we isolate the dynamo mechanism and show schematically how the generation process differs between the kinematic and nonlinear regimes. In addition, we are able to calculate some components of the transport coefficient {alpha} and thus discuss our results within the context of mean field electrodynamics.« less

  5. An Overview on Aerospatiale Magnetic Bearing Products for Spacecraft Attitude Control and for Industry

    NASA Technical Reports Server (NTRS)

    Samuel, Alain; Lechable, Bernard

    1996-01-01

    Aerospatiale magnetic bearings are based on the use of permanent magnets and on the control of the rotor around a zero force equilibrium point. The present developments of magnetic bearing wheels for space applications focus on the versatility of a basic design which leads to a family of reaction and momentum wheels with tailored torque and kinetic momentum, leading to competitive mass and cost. The present industrial applications concern kinetic energy accumulators, medical x-ray rotating devices, avionics equipment, cryotechnic compressors and vacuum pumps.

  6. Non-inverse-square force-distance law for long thin magnets-revisited.

    PubMed

    Darvell, Brian W; Gilding, Brian H

    2012-05-01

    It had previously been shown that the inverse-square law does not apply to the force-distance relationship in the case of a long, thin magnet with one end in close proximity to its image in a permeable plane when simple point-like poles are assumed. Treating the system instead as having a 'polar disc', arising from an assumed bundle of dipoles, led to a double integral that could only be evaluated numerically, and a relationship that still did not match observed behavior. Using an elaborate 'stretched' exponential polynomial to represent the position of an 'elastic' polar disc resulted in a fair representation of the physical response, but this was essentially merely the fitting of an arbitrary function. The present purpose was therefore to find an explicit formula for the force-distance relationship in the polar-disc problem and assess its fit to the previously obtained experimental data. Starting from Coulomb's law a corrected integral formula for the force-distance relationship was derived. The integral in this formula was evaluated explicitly using rescaling, changes of order of integration, reduction by symmetry, and change of variables. The resulting formula was then fitted to data that had been obtained for the force exerted by eighty-five rod-shaped magnets (Alnico V, 3 mm diameter, 170 mm long) perpendicular to a large steel plate, as a function of distance, at small separations (<5 mm). Subsequently, the fit of alternative functions was explored. An explicit formula in terms of elliptic integrals was obtained for the polar-disc problem. Despite the greater fidelity, this too was found not to fit the observed physical behavior. Given that failure, nevertheless a simple formula that conforms closely and parsimoniously to the actual magnet data was found. A key feature remains the marked departure from inverse-square behavior. The failure of the explicit formula to fit the data indicates an inadequate model of the physical system. Nonetheless it constitutes

  7. Magnetic force driven magnetoelectric effect in bi-cantilever composites

    NASA Astrophysics Data System (ADS)

    Zhang, Ru; Wu, Gaojian; Zhang, Ning

    2017-12-01

    The magnetic force driven magnetoelectric (ME) effect in bi-cantilever Mn-Zn-Ferrite /PZT composites is presented. Compared with single cantilever, the ME voltage coefficient in bi-cantilever composite is a little lower and the resonance frequency is higher, but the bi-cantilever structure is advantageous for integration. When the magnetic gap is 3 mm, the ME voltage coefficient can achieve 6.2 Vcm-1Oe-1 at resonance under optimum bias field Hm=1030 Oe; when the magnetic gap is 1.5 mm, the ME voltage coefficient can get the value as high as 4.4 Vcm-1Oe-1 under much lower bias field H=340 Oe. The stable ME effect in bi-cantilever composites has important potential application in the design of new type ME device.

  8. Force reflecting hand controller for manipulator teleoperation

    NASA Technical Reports Server (NTRS)

    Bryfogle, Mark D.

    1991-01-01

    A force reflecting hand controller based upon a six degree of freedom fully parallel mechanism, often termed a Stewart Platform, has been designed, constructed, and tested as an integrated system with a slave robot manipulator test bed. A force reflecting hand controller comprises a kinesthetic device capable of transmitting position and orientation commands to a slave robot manipulator while simultaneously representing the environmental interaction forces of the slave manipulator back to the operator through actuators driving the hand controller mechanism. The Stewart Platform was chosen as a novel approach to improve force reflecting teleoperation because of its inherently high ratio of load generation capability to system mass content and the correspondingly high dynamic bandwidth. An additional novelty of the program was to implement closed loop force and torque control about the hand controller mechanism by equipping the handgrip with a six degree of freedom force and torque measuring cell. The mechanical, electrical, computer, and control systems are discussed and system tests are presented.

  9. Parameter estimation and statistical analysis on frequency-dependent active control forces

    NASA Astrophysics Data System (ADS)

    Lim, Tau Meng; Cheng, Shanbao

    2007-07-01

    The active control forces of an active magnetic bearing (AMB) system are known to be frequency dependent in nature. This is due to the frequency-dependent nature of the AMB system, i.e. time lags in sensors, digital signal processing, amplifiers, filters, and eddy current and hysteresis losses in the electromagnetic coils. The stiffness and damping coefficients of these control forces can be assumed to be linear for small limit of perturbations within the air gap. Numerous studies have also attempted to estimate these coefficients directly or indirectly without validating the model and verifying the results. This paper seeks to address these issues, by proposing a one-axis electromagnetic suspension system to simplify the measurement requirements and eliminate the possibility of control force cross-coupling capabilities. It also proposes an on-line frequency domain parameter estimation procedure with statistical information to provide a quantitative measure for model validation and results verification purposes. This would lead to a better understanding and a design platform for optimal vibration control scheme for suspended system. This is achieved by injecting Schroeder Phased Harmonic Sequences (SPHS), a multi-frequency test signal, to persistently excite all possible suspended system modes. By treating the system as a black box, the parameter estimation of the "actual" stiffness and damping coefficients in the frequency domain are realised experimentally. The digitally implemented PID controller also facilitated changes on the feedback gains, and this allowed numerous system response measurements with their corresponding estimated stiffness and damping coefficients.

  10. Skilful force control in expert pianists.

    PubMed

    Oku, Takanori; Furuya, Shinichi

    2017-05-01

    Dexterous object manipulation in skilful behaviours such as surgery, craft making, and musical performance involves fast, precise, and efficient control of force with the fingers. A challenge in playing musical instruments is the requirement of independent control of the magnitude and rate of force production, which typically vary in relation to loudness and tempo. However, it is unknown how expert musicians skilfully control finger force to elicit tones with a wide range of loudness and tempi. Here, we addressed this issue by comparing the variation of spatiotemporal characteristics of force during repetitive and simultaneous piano keystrokes in relation to the loudness and tempo between pianists and musically untrained individuals. While the peak key-descending velocity varied with loudness but not with tempo in both groups, the peak and impulse of the key-depressing force were smaller in pianists than in the non-musicians, specifically when eliciting loud tones, suggesting superior energetic efficiency in the trained individuals. The key-depressing force was more consistent across strikes in pianists than in the non-musicians at all loudness levels but only at slow tempi, confirming expertise-dependency of precise force control. A regression analysis demonstrated that individual differences in the keystroke rates when playing at the fastest tempo across the trained pianists were negatively associated with the force impulse during the key depression but not with the peak force only at the loudest tone. This suggests that rapid reductions of force following the key depression plays a role in considerably fast performance of repetitive piano keystrokes.

  11. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads.

    PubMed

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm(2), a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  12. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    NASA Astrophysics Data System (ADS)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm2, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  13. Composite Reinforcement by Magnetic Control of Fiber Density and Orientation.

    PubMed

    Goldberg, Omri; Greenfeld, Israel; Wagner, H Daniel

    2018-05-08

    The flexural rigidity of cylindrical specimens, composed of epoxy reinforced by short, magnetized glass fibers, was enhanced using weak magnetic fields (<100 mT). By spatially controlling the magnitude and direction of the field, and thereby the torques and forces acting locally on the fibers, the orientation and concentration of the fillers in the matrix could be tuned prior to curing. Unidirectional alignment of the fibers, achieved using an air-core solenoid, improved the contribution of the fibers to the flexure modulus by a factor of 3. When a ring-shaped permanent magnet was utilized, the glass fibers were migrated preferentially near the rod boundary, and as a result, the contribution of the fibers to the flexure modulus doubled. The fiber length, density, and orientation distributions were extracted by μCT image analysis, allowing comparison of the experimental flexure modulus to a modified rule of mixtures prediction. The ability to magnetically control the fiber distribution in reinforced composites demonstrated in this study may be applied in the fabrication of complex micro- and macroscale structures with spatially variable anisotropy, allowing features such as crack diversion, strengthening of highly loaded regions, as well as economic management of materials and weight.

  14. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    NASA Astrophysics Data System (ADS)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  15. Magnetic switch for reactor control rod

    DOEpatents

    Germer, John H.

    1986-01-01

    A magnetic reed switch assembly for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electromagnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  16. Student understanding of the direction of the magnetic force on a charged particle

    NASA Astrophysics Data System (ADS)

    Scaife, Thomas M.; Heckler, Andrew F.

    2010-08-01

    We study student understanding of the direction of the magnetic force experienced by a charged particle moving through a homogeneous magnetic field in both the magnetic pole and field line representations of the magnetic field. In five studies, we administer a series of simple questions in either written or interview format. Our results indicate that although students begin at the same low level of performance in both representations, they answer correctly more often in the field line representation than in the pole representation after instruction. This difference is due in part to more students believing that charges are attracted to magnetic poles than believing that charges are pushed along magnetic field lines. Although traditional instruction is fairly effective in teaching students to answer correctly up to a few weeks following instruction, especially for the field line representation, some students revert to their initial misconceptions several months after instruction. The responses reveal persistent and largely random sign errors in the direction of the force. The sign errors are largely nonsystematic and due to confusion about the direction of the magnetic field and the execution and choice of the right-hand rule and lack of recognition of the noncommutativity of the cross product.

  17. Elastic actuator for precise force control

    DOEpatents

    Pratt, G.A.; Williamson, M.M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  18. Elastic actuator for precise force control

    DOEpatents

    Pratt, Gill A.; Williamson, Matthew M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  19. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range

    NASA Astrophysics Data System (ADS)

    Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  20. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range.

    PubMed

    Çelik, Ümit; Karcı, Özgür; Uysallı, Yiğit; Özer, H Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ∼500 μW, and ∼141.8 nm pp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  1. Nonholonomic Closed-loop Velocity Control of a Soft-tethered Magnetic Capsule Endoscope.

    PubMed

    Taddese, Addisu Z; Slawinski, Piotr R; Obstein, Keith L; Valdastri, Pietro

    2016-10-01

    In this paper, we demonstrate velocity-level closed-loop control of a tethered magnetic capsule endoscope that is actuated via serial manipulator with a permanent magnet at its end-effector. Closed-loop control (2 degrees-of-freedom in position, and 2 in orientation) is made possible with the use of a real-time magnetic localization algorithm that utilizes the actuating magnetic field and thus does not require additional hardware. Velocity control is implemented to create smooth motion that is clinically necessary for colorectal cancer diagnostics. Our control algorithm generates a spline that passes through a set of input points that roughly defines the shape of the desired trajectory. The velocity controller acts in the tangential direction to the path, while a secondary position controller enforces a nonholonomic constraint on capsule motion. A soft nonholonomic constraint is naturally imposed by the lumen while we enforce a strict constraint for both more accurate estimation of tether disturbance and hypothesized intuitiveness for a clinician's teleoperation. An integrating disturbance force estimation control term is introduced to predict the disturbance of the tether. This paper presents the theoretical formulations and experimental validation of our methodology. Results show the system's ability to achieve a repeatable velocity step response with low steady-state error as well as ability of the tethered capsule to maneuver around a bend.

  2. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karcı, Özgür; Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara; Dede, Münir

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hardmore » disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.« less

  3. H Infinity Control of Magnetic Bearings to Ensure Both System and External Periodic Disturbance Robustness

    NASA Technical Reports Server (NTRS)

    Jiang, Yuhong; Zmood, R. B.

    1996-01-01

    Both self-excited and forced disturbances often lead to severe rotor vibrations in a magnetic bearing systems with long slender shafts. This problem has been studied using the H-infinity method, and stability with good robustness can be achieved for the linearized model of a magnetic bearing when small transient disturbances are applied. In this paper, the H-infinity control method for self-excited and forced disturbances is first reviewed. It is then applied to the control of a magnetic bearing rotor system. In modelling the system, the shaft is first discretized into 18 finite elements and then three levels of condensation are applied. This leads to a system with three masses and three compliant elements which can be described by six state variable coordinates. Simulation of the resultant system design has been performed at speeds up to 10,000 rpm. Disturbances in terms of different initial displacements, initial impulses, and external periodic inputs have been imposed. The simulation results show that good stability can be achieved under these different transient disturbances using the proposed controller while at the same time reducing the sensitivity to external periodic disturbances.

  4. Direct current force sensing device based on compressive spring, permanent magnet, and coil-wound magnetostrictive/piezoelectric laminate.

    PubMed

    Leung, Chung Ming; Or, Siu Wing; Ho, S L

    2013-12-01

    A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.

  5. Bioactive films of zein/magnetite magnetically stimuli-responsive for controlled drug release

    NASA Astrophysics Data System (ADS)

    Marín, Tíffany; Montoya, Paula; Arnache, Oscar; Pinal, Rodolfo; Calderón, Jorge

    2018-07-01

    The Zein films in two configurations with magnetite nanoparticles (zein/NPs) and magnetite-acetaminophen (zein/NPs/Drug) were used as magnetically stimuli-responsive systems to propose a model of controlled release by dissolution and diffusion mechanism. Composite material films of zein/NPs and zein/NPs/Drug were made by dispersion of magnetite nanoparticles into zein solution then solvent casting of the solution on a flat Teflon substrate. The properties of composite films were analyzed by magnetization curves of (MvsH) and measurements of magnetic force microscopy (MFM). Drug release from the zein/NPs/Drug composite films was determined using a type II dissolution apparatus for a period of 2 h under applied magnetic field conditions. In addition, the diffusion mechanism was tested with zein/NPs films into diffusion cell containing acetaminophen solution for 24 h and using a permanent magnet as a remote trigger device. The results showed that the magnetite nanoparticles contained in the zein/NPs and zein/NPs/Drug composite films are stable, i.e., they do not undergo sufficiently high levels of oxidation as to alter their magnetic properties. Furthermore, the dissolution and diffusion results lead us to conclude that zein composite films effectively behave as stimuli-responsive systems triggered by an external magnetic field applied. The result is a model controlled release system whereby drug release can be controlled by adjusting the magnitude of the applied magnetic field.

  6. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Jiajia; Shi, Zongqian; Jia, Shenli; Zhang, Pengbo

    2017-04-01

    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system.

  7. MEMS-Based Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Butler, Mark C.; Elgammal, Ramez A.; George, Thomas; Hunt, Brian; Weitekamp, Daniel P.

    2006-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy allows assignment of molecular structure by acquiring the energy spectrum of nuclear spins in a molecule, and by interpreting the symmetry and positions of resonance lines in the spectrum. As such, NMR has become one of the most versatile and ubiquitous spectroscopic methods. Despite these tremendous successes, NMR experiments suffer from inherent low sensitivity due to the relatively low energy of photons in the radio frequency (rt) region of the electromagnetic spectrum. Here, we describe a high-resolution spectroscopy in samples with diameters in the micron range and below. We have reported design and fabrication of force-detected nuclear magnetic resonance (FDNMR).

  8. Force determination in lateral magnetic tweezers combined with TIRF microscopy.

    PubMed

    Madariaga-Marcos, J; Hormeño, S; Pastrana, C L; Fisher, G L M; Dillingham, M S; Moreno-Herrero, F

    2018-03-01

    Combining single-molecule techniques with fluorescence microscopy has attracted much interest because it allows the correlation of mechanical measurements with directly visualized DNA : protein interactions. In particular, its combination with total internal reflection fluorescence microscopy (TIRF) is advantageous because of the high signal-to-noise ratio this technique achieves. This, however, requires stretching long DNA molecules across the surface of a flow cell to maximize polymer exposure to the excitation light. In this work, we develop a module to laterally stretch DNA molecules at a constant force, which can be easily implemented in regular or combined magnetic tweezers (MT)-TIRF setups. The pulling module is further characterized in standard flow cells of different thicknesses and glass capillaries, using two types of micrometer size superparamagnetic beads, long DNA molecules, and a home-built device to rotate capillaries with mrad precision. The force range achieved by the magnetic pulling module was between 0.1 and 30 pN. A formalism for estimating forces in flow-stretched tethered beads is also proposed, and the results compared with those of lateral MT, demonstrating that lateral MT achieve higher forces with lower dispersion. Finally, we show the compatibility with TIRF microscopy and the parallelization of measurements by characterizing DNA binding by the centromere-binding protein ParB from Bacillus subtilis. Simultaneous MT pulling and fluorescence imaging demonstrate the non-specific binding of BsParB on DNA under conditions restrictive to condensation.

  9. Electric contributions to magnetic force microscopy response from graphene and MoS{sub 2} nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lu Hua, E-mail: luhua.li@deakin.edu.au; Chen, Ying

    Magnetic force microscopy (MFM) signals have recently been detected from whole pieces of mechanically exfoliated graphene and molybdenum disulfide (MoS{sub 2}) nanosheets, and magnetism of the two nanomaterials was claimed based on these observations. However, non-magnetic interactions or artefacts are commonly associated with MFM signals, which make the interpretation of MFM signals not straightforward. A systematic investigation has been done to examine possible sources of the MFM signals from graphene and MoS{sub 2} nanosheets and whether the MFM signals can be correlated with magnetism. It is found that the MFM signals have significant non-magnetic contributions due to capacitive and electrostaticmore » interactions between the nanosheets and conductive cantilever tip, as demonstrated by electric force microscopy and scanning Kevin probe microscopy analyses. In addition, the MFM signals of graphene and MoS{sub 2} nanosheets are not responsive to reversed magnetic field of the magnetic cantilever tip. Therefore, the observed MFM response is mainly from electric artefacts and not compelling enough to correlate with magnetism of graphene and MoS{sub 2} nanosheets.« less

  10. The influence of inhomogeneous magnetic field over a NdFeB guideway on levitation force of the HTS bulk maglev system

    NASA Astrophysics Data System (ADS)

    Zhao, Lifeng; Deng, Jiangtao; Li, Linbo; Feng, Ning; Wei, Pu; Lei, Wei; Jiang, Jing; Wang, Xiqin; Zhang, Yong; Zhao, Yong

    2018-04-01

    Dynamic responses of high temperature superconducting bulk to inhomogeneous magnetic field distribution of permanent magnet guideway, as well as enlarged amplitude of magnetic field obtained by partially covering the permanent magnet guideway (PMG) with iron sheets in different thickness, are investigated. Experiments show that the instantaneous levitation force increases with the increase of the variation rate of magnetic field (dB/dt). Meanwhile, inhomogeneous magnetic field from PMG causes the decay of levitation force. The decay of levitation force almost increases linearly with the increase of alternating magnetic field amplitude. It should be very important for the application of high-speed maglev system.

  11. Report of the Task Force on SSC Magnet System Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1984-10-01

    The Task Force on SSC Magnet Systems test Site was appointed by Maury Tigner, Director of the SSC, Phase 1 in August 1984. In brief, the charge asked the Task Force to make a critical evaluation of potential test sites for a major SSC magnet System Test Facility (STF) with regard to: (1) availability of the needed space, utilities, staff and other requirements on the desired time scale; and (2) the cost of preparing the sites for the tests and for operating the facilities during the test period. The charge further suggests that, by virtue of existing facilities and availabilitymore » of experienced staff, BNL and FNAL are the two best candidate sites and that is therefore appears appropriate to restrict the considerations of the Task Force to these sites. During the subsequent deliberations of the Task Force, no new facts were revealed that altered the assumptions of the charge in this regard. The charge does not ask for a specific site recommendation for the STF. Indeed, an agreement on such a recommendation would be difficult to achieve considering the composition of the Task Force, wherein a large fraction of the membership is drawn from the two contending laboratories. Instead, we have attempted to describe the purpose of the facility, outline a productive test program, list the major facilities required, carefully review the laboratories` responses to the facility requirements, and make objective comparisons of the specific features and capabilities offered.« less

  12. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOEpatents

    Jiles, David C.

    1991-04-16

    A multiparameter magnetic inspection system for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material.

  13. Measurement of the adhesion force between particles for high gradient magnetic separation of pneumatic conveyed powder products

    NASA Astrophysics Data System (ADS)

    Senkawa, K.; Nakai, Y.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    In the industrial plants such as foods, medicines or industrial materials, there are big amount of issues on contamination by metallic wear debris originated from pipes of manufacturing lines. In this study, we developed a high gradient magnetic separation system (HGMS) under the dry process by using superconducting magnet to remove the ferromagnetic particles. One of the major problems of dry HGMS systems is, however, the blockage of magnetic filter caused by particle coagulation or deposition. In order to actualize the magnetic separation without blockage, we introduced pneumatic conveyance system as a new method to feed the powder. It is important to increase the drag force acting on the sufficiently dispersed particles, which require strong magnetic fields. To generate the strong magnetic fields, HGMS technique was examined which consists of a magnetic filter and a superconducting solenoid magnet. As a result of the magnetic separation experiment, it was shown that the separation efficiency changes due to the difference of the cohesive property of the particles. On the basis of the result, the adhesion force which acts between the ferromagnetic particles and the medium particles used for the magnetic separation was measured by Atomic Force Microscope (AFM), and cohesion of particles was studied from the aspect of interparticle interaction. We assessed a suitable flow velocity for magnetic separation according to the cohesive property of each particle based on the result.

  14. Magnetically Controlled Variable Transformer

    NASA Technical Reports Server (NTRS)

    Kleiner, Charles T.

    1994-01-01

    Improved variable-transformer circuit, output voltage and current of which controlled by use of relatively small current supplied at relatively low power to control windings on its magnetic cores. Transformer circuits of this type called "magnetic amplifiers" because ratio between controlled output power and power driving control current of such circuit large. This ratio - power gain - can be as large as 100 in present circuit. Variable-transformer circuit offers advantages of efficiency, safety, and controllability over some prior variable-transformer circuits.

  15. Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Chengshan

    2017-12-01

    Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM) above a cylindrical high temperature superconductor (HTS) moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC), however, the lateral stiffness in field cooling (FC) and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.

  16. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-15

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented amore » bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm{sup 2}, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle’s position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.« less

  17. Examining the Magnetic Properties of LaCoO3 Thin Films Using Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Berg, Morgann; Posadas, Agham; de Lozanne, Alex; Demkov, Alexander

    2011-03-01

    In contrast to the non-magnetic ground state of bulk LaCo O3 (LCO) at low temperatures, ferromagnetism has been observed in elastically strained thin film specimens. The origins of ferromagnetism in strained LCO thin films have been obscured by conflicting experimental results. Pulsed laser deposition (PLD) is the current standard of preparation techniques used to grow thin films of LCO, but results from thin film LCO samples prepared by PLD have been questioned on the basis of chemical inhomogeneity and film defects. Using magnetic force microscopy, we investigate the microscale magnetic properties of strained thin films of LCO prepared by molecular beam epitaxy and deposited on lanthanum aluminate and strontium titanate substrates. We observe these properties across a temperature range surrounding the Curie temperature (Tc ~ 80 K) and compare our results to global magnetic characteristics of these films as measured by a SQUID magnetometer. Supported by NSF-DMR and NSF-IGERT.

  18. Nonlinear control of magnetic signatures

    NASA Astrophysics Data System (ADS)

    Niemoczynski, Bogdan

    Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and

  19. Nonlinear Modeling of Forced Magnetic Reconnection with Transient Perturbations

    NASA Astrophysics Data System (ADS)

    Beidler, Matthew T.; Callen, James D.; Hegna, Chris C.; Sovinec, Carl R.

    2017-10-01

    Externally applied 3D magnetic fields in tokamaks can penetrate into the plasma and lead to forced magnetic reconnection, and hence magnetic islands, on resonant surfaces. Analytic theory has been reasonably successful in describing many aspects of this paradigm with regard to describing the time asymptotic-steady state. However, understanding the nonlinear evolution into a low-slip, field-penetrated state, especially how MHD events such as sawteeth and ELMs precipitate this transition, is in its early development. We present nonlinear computations employing the extended-MHD code NIMROD, building on previous work by incorporating a temporally varying external perturbation as a simple model for an MHD event that produces resonant magnetic signals. A parametric series of proof-of-principle computations and accompanying analytical theory characterize the transition into a mode-locked state with an emphasis on detailing the temporal evolution properties. Supported by DOE OFES Grants DE-FG02-92ER54139, DE-FG02-86ER53218, and the U.S. DOE FES Postdoctoral Research program administered by ORISE and managed by ORAU under DOE contract DE-SC0014664.

  20. Influence of experimental methods on crossing in magnetic force-gap hysteresis curve of HTS maglev system

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Qin, Yujie; Dang, Qiaohong; Wang, Jiasu

    2010-12-01

    The crossing in magnetic levitation force-gap hysteresis curve of melt high-temperature superconductor (HTS) vs. NdFeB permanent magnet (PM) was experimentally studied. One HTS bulk and PM was used in the experiments. Four experimental methods were employed combining of high/low speed of movement of PM with/without heat insulation materials (HIM) enclosed respectively. Experimental results show that crossing of the levitation force-gap curve is related to experimental methods. A crossing occurs in the magnetic force-gap curve while the PM moves approaching to and departing from the sample with high or low speed of movement without HIM enclosed. When the PM is enclosed with HIM during the measurement procedures, there is no crossing in the force-gap curve no matter high speed or low speed of movement of the PM. It was found experimentally that, with the increase of the moving speed of the PM, the maximum magnitude of levitation force of the HTS increases also. The results are interpreted based on Maxwell theories and flux flow-creep models of HTS.

  1. Motion and force control for multiple cooperative manipulators

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz, Kenneth

    1989-01-01

    The motion and force control of multiple robot arms manipulating a commonly held object is addressed. A general control paradigm that decouples the motion and force control problems is introduced. For motion control, there are three natural choices: (1) joint torques, (2) arm-tip force vectors, and (3) the acceleration of a generalized coordinate. Choice (1) allows a class of relatively model-independent control laws by exploiting the Hamiltonian structure of the open-loop system; (2) and (3) require the full model information but produce simpler problems. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, the allocation of the desired end-effector control force to the joint actuators can be optimized; otherwise the internal force can be controlled about some set point. It is shown that effective force regulation can be achieved even if little model information is available.

  2. On the numerical computation of nonlinear force-free magnetic fields. [from solar photosphere

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Sun, M. T.; Chang, H. M.; Hagyard, M. J.; Gary, G. A.

    1990-01-01

    An algorithm has been developed to extrapolate nonlinear force-free magnetic fields from the photosphere, given the proper boundary conditions. This paper presents the results of this work, describing the mathematical formalism that was developed, the numerical techniques employed, and comments on the stability criteria and accuracy developed for these numerical schemes. An analytical solution is used for a benchmark test; the results show that the computational accuracy for the case of a nonlinear force-free magnetic field was on the order of a few percent (less than 5 percent). This newly developed scheme was applied to analyze a solar vector magnetogram, and the results were compared with the results deduced from the classical potential field method. The comparison shows that additional physical features of the vector magnetogram were revealed in the nonlinear force-free case.

  3. Controlled Waveform Magnets

    NASA Astrophysics Data System (ADS)

    Campbell, L. J.; Schlllig, J. B.

    Issues for the design and operation of high field controlled waveform magnets and their power supplies are discussed. The basic technical elements are reviewed and applied to problems specific to this class of magnets. Examples are given along with a guide to the literature.

  4. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    NASA Technical Reports Server (NTRS)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active-magnetic

  5. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOEpatents

    Jiles, D.C.

    1991-04-16

    A multiparameter magnetic inspection system is disclosed for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material. 1 figure.

  6. Stability Limits of a PD Controller for a Flywheel Supported on Rigid Rotor and Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Brown, Gerald V.; Jansen, Ralph H.; Dever, TImothy P.

    2006-01-01

    Active magnetic bearings are used to provide a long-life, low-loss suspension of a high-speed flywheel rotor. This paper describes a modeling effort used to understand the stability boundaries of the PD controller used to control the active magnetic bearings on a high speed test rig. Limits of stability are described in terms of allowable stiffness and damping values which result in stable levitation of the nonrotating rig. Small signal stability limits for the system is defined as a nongrowth in vibration amplitude of a small disturbance. A simple mass-force model was analyzed. The force resulting from the magnetic bearing was linearized to include negative displacement stiffness and a current stiffness. The current stiffness was then used in a PD controller. The phase lag of the control loop was modeled by a simple time delay. The stability limits and the associated vibration frequencies were measured and compared to the theoretical values. The results show a region on stiffness versus damping plot that have the same qualitative tendencies as experimental measurements. The resulting stability model was then extended to a flywheel system. The rotor dynamics of the flywheel was modeled using a rigid rotor supported on magnetic bearings. The equations of motion were written for the center of mass and a small angle linearization of the rotations about the center of mass. The stability limits and the associated vibration frequencies were found as a function of nondimensional magnetic bearing stiffness and damping and nondimensional parameters of flywheel speed and time delay.

  7. Imaging Local Magnetic Domain Rearrangement in Strained LaCoO3 Thin Films Using Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Berg, Morgann; Leon, Neliza; Posadas, Agham; Lee, Alfred; Kim, Jeehoon; de Lozanne, Alex; Demkov, Alex

    2012-02-01

    Previous studies we have conducted on thin films of lanthanum cobaltate (LCO) under tensile strain have revealed a tendency toward local magnetic domain rearrangement into streak-like configurations near the ferromagnetic to paramagnetic phase transition. Moreover, the persistence of these streak-like characteristics to lower temperatures after field-cooling appears to be linked to the strength of the applied magnetic field in which these films are field-cooled. This tendency has not yet been verified for thin films of LCO under compressive strain which could indicate whether this magnetic domain rearrangement is intrinsic to thin film samples of LCO or is merely an effect of tensile strain. Using magnetic force microscopy, we investigate the microscale magnetic properties of a thin film of LCO under compressive strain, prepared by molecular beam epitaxy and deposited on a lanthanum aluminate substrate. We observe these properties across a wide temperature range and compare our results to global magnetic characteristics of this film as measured by a SQUID magnetometer.

  8. Simultaneous Single-Molecule Force and Fluorescence Sampling of DNA Nanostructure Conformations Using Magnetic Tweezers.

    PubMed

    Kemmerich, Felix E; Swoboda, Marko; Kauert, Dominik J; Grieb, M Svea; Hahn, Steffen; Schwarz, Friedrich W; Seidel, Ralf; Schlierf, Michael

    2016-01-13

    We present a hybrid single-molecule technique combining magnetic tweezers and Förster resonance energy transfer (FRET) measurements. Through applying external forces to a paramagnetic sphere, we induce conformational changes in DNA nanostructures, which are detected in two output channels simultaneously. First, by tracking a magnetic bead with high spatial and temporal resolution, we observe overall DNA length changes along the force axis. Second, the measured FRET efficiency between two fluorescent probes monitors local conformational changes. The synchronized orthogonal readout in different observation channels will facilitate deciphering the complex mechanisms of biomolecular machines.

  9. Motion and force control of multiple robotic manipulators

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz-Delgado, Kenneth

    1992-01-01

    This paper addresses the motion and force control problem of multiple robot arms manipulating a cooperatively held object. A general control paradigm is introduced which decouples the motion and force control problems. For motion control, different control strategies are constructed based on the variables used as the control input in the controller design. There are three natural choices; acceleration of a generalized coordinate, arm tip force vectors, and the joint torques. The first two choices require full model information but produce simple models for the control design problem. The last choice results in a class of relatively model independent control laws by exploiting the Hamiltonian structure of the open loop system. The motion control only determines the joint torque to within a manifold, due to the multiple-arm kinematic constraint. To resolve the nonuniqueness of the joint torques, two methods are introduced. If the arm and object models are available, an optimization can be performed to best allocate the desired and effector control force to the joint actuators. The other possibility is to control the internal force about some set point. It is shown that effective force regulation can be achieved even if little model information is available.

  10. Single axis controlled hybrid magnetic bearing for left ventricular assist device: hybrid core and closed magnetic circuit.

    PubMed

    da Silva, Isaias; Horikawa, Oswaldo; Cardoso, Jose R; Camargo, Fernando A; Andrade, Aron J P; Bock, Eduardo G P

    2011-05-01

    In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of São Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  11. Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill

    NASA Astrophysics Data System (ADS)

    Truyen Luong, Hung; Goo, Nam Seo

    2012-02-01

    A piezocomposite generating element (PCGE) can be used to convert ambient vibrations into electrical energy that can be stored and used to power other devices. This paper introduces a design of a magnetic force exciter for a small-scale windmill that vibrates a PCGE to convert wind energy into electrical energy. A small-scale windmill was designed to be sensitive to low-speed wind in urban regions for the purpose of collecting wind energy. The magnetic force exciter consists of exciting magnets attached to the device’s input rotor and a secondary magnet fixed at the tip of the PCGE. The PCGE is fixed to a clamp that can be adjusted to slide on the windmill’s frame in order to change the gap between exciting and secondary magnets. Under an applied wind force, the input rotor rotates to create a magnetic force interaction that excites the PCGE. The deformation of the PCGE enables it to generate electric power. Experiments were performed with different numbers of exciting magnets and different gaps between the exciting and secondary magnets to determine the optimal configuration for generating the peak voltage and harvesting the maximum wind energy for the same range of wind speeds. In a battery-charging test, the charging time for a 40 mA h battery was approximately 3 h for natural wind in an urban region. The experimental results show that the prototype can harvest energy in urban regions with low wind speeds and convert the wasted wind energy into electricity for city use.

  12. Remodeling Air Force Cyber Command and Control

    DTIC Science & Technology

    2017-10-10

    AIR FORCE CYBERWORX REPORT: REMODELING AIR FORCE CYBER COMMAND & CONTROL COURSE DESIGN PROJECT CONDUCTED 5 Jan – 5 May 17 Produced...For the Air Force Cyber Command and Control (C2) Design Project, CyberWorx brought together 25 cadets from the United States Air Force Academy...warfighting based upon the findings of the design teams. Participants The design course was attended by a diverse group of civilians from industry

  13. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  14. Magnetic switch for reactor control rod. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-09-30

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  15. Lateral-deflection-controlled friction force microscopy

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Kenji; Hamaoka, Satoshi; Shikida, Mitsuhiro; Itoh, Shintaro; Zhang, Hedong

    2014-08-01

    Lateral-deflection-controlled dual-axis friction force microscopy (FFM) is presented. In this method, an electrostatic force generated with a probe-incorporated micro-actuator compensates for friction force in real time during probe scanning using feedback control. This equivalently large rigidity can eliminate apparent boundary width and lateral snap-in, which are caused by lateral probe deflection. The method can evolve FFM as a method for quantifying local frictional properties on the micro/nanometer-scale by overcoming essential problems to dual-axis FFM.

  16. Bimanual Force Variability and Chronic Stroke: Asymmetrical Hand Control

    PubMed Central

    Kang, Nyeonju; Cauraugh, James H.

    2014-01-01

    The purpose of this study was to investigate force variability generated by both the paretic and non-paretic hands during bimanual force control. Nine chronic stroke individuals and nine age-matched individuals with no stroke history performed a force control task with both hands simultaneously. The task involved extending the wrist and fingers at 5%, 25%, and 50% of maximum voluntary contraction. Bimanual and unimanual force variability during bimanual force control was determined by calculating the coefficient of variation. Analyses revealed two main findings: (a) greater bimanual force variability in the stroke group than the control group and (b) increased force variability by the paretic hands during bimanual force control in comparison to the non-paretic hands at the 5% and 25% force production conditions. A primary conclusion is that post stroke bimanual force variability is asymmetrical between hands. PMID:25000185

  17. Comparison of forcing functions in magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    McKay, Mairi E.; Linkmann, Moritz; Clark, Daniel; Chalupa, Adam A.; Berera, Arjun

    2017-11-01

    Results are presented of direct numerical simulations of incompressible, homogeneous magnetohydrodynamic turbulence without a mean magnetic field, subject to different mechanical forcing functions commonly used in the literature. Specifically, the forces are negative damping (which uses the large-scale velocity field as a forcing function), a nonhelical random force, and a nonhelical static sinusoidal force (analogous to helical ABC forcing). The time evolution of the three ideal invariants (energy, magnetic helicity, and cross helicity), the time-averaged energy spectra, the energy ratios, and the dissipation ratios are examined. All three forcing functions produce qualitatively similar steady states with regard to the time evolution of the energy and magnetic helicity. However, differences in the cross-helicity evolution are observed, particularly in the case of the static sinusoidal method of energy injection. Indeed, an ensemble of sinusoidally forced simulations with identical parameters shows significant variations in the cross helicity over long time periods, casting some doubt on the validity of the principle of ergodicity in systems in which the injection of helicity cannot be controlled. Cross helicity can unexpectedly enter the system through the forcing function and must be carefully monitored.

  18. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOEpatents

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  19. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOEpatents

    Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.

    1995-11-07

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.

  20. Passive Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1983-01-01

    Magnetic bearing for limited rotation devices requires no feedback control system to sense and correct shaft position. Passive Magnetic Torsion Bearing requires no power supply and has no rubbing parts. Torsion wire restrains against axial instability. Magnetic flux geometry chosen to assure lateral stability with radial restoring force that maintains alignment.

  1. Direct Measurements of the Penetration Depth in a Superconducting Film using Magnetic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Nazaretski; J Thibodaux; I Vekhter

    2011-12-31

    We report the local measurements of the magnetic penetration depth in a superconducting Nb film using magnetic force microscopy (MFM). We developed a method for quantitative extraction of the penetration depth from single-parameter simultaneous fits to the lateral and height profiles of the MFM signal, and demonstrate that the obtained value is in excellent agreement with that obtained from the bulk magnetization measurements.

  2. Enhancement of Feedback Efficiency by Active Galactic Nucleus Outflows via the Magnetic Tension Force in the Inhomogeneous Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahina, Yuta; Ohsuga, Ken; Nomura, Mariko, E-mail: asahina@cfca.jp

    By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tensionmore » force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.« less

  3. Voltage-controlled interlayer coupling in perpendicularly magnetized magnetic tunnel junctions

    DOE PAGES

    Newhouse-Illige, Ty; Liu, Yaohua; Xu, M.; ...

    2017-05-16

    Magnetic interlayer coupling is one of the central phenomena in spintronics. It has been predicted that the sign of interlayer coupling can be manipulated by electric fields, instead of electric currents, thereby offering a promising low energy magnetization switching mechanism. Here we present the experimental demonstration of voltage-controlled interlayer coupling in a new perpendicular magnetic tunnel junction system with a GdO x tunnel barrier, where a large perpendicular magnetic anisotropy and a sizable tunnelling magnetoresistance have been achieved at room temperature. Owing to the interfacial nature of the magnetism, the ability to move oxygen vacancies within the barrier, and amore » large proximity-induced magnetization of GdO x, both the magnitude and the sign of the interlayer coupling in these junctions can be directly controlled by voltage. Lastly, these results pave a new path towards achieving energy-efficient magnetization switching by controlling interlayer coupling.« less

  4. Voltage-controlled interlayer coupling in perpendicularly magnetized magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newhouse-Illige, Ty; Liu, Yaohua; Xu, M.

    Magnetic interlayer coupling is one of the central phenomena in spintronics. It has been predicted that the sign of interlayer coupling can be manipulated by electric fields, instead of electric currents, thereby offering a promising low energy magnetization switching mechanism. Here we present the experimental demonstration of voltage-controlled interlayer coupling in a new perpendicular magnetic tunnel junction system with a GdO x tunnel barrier, where a large perpendicular magnetic anisotropy and a sizable tunnelling magnetoresistance have been achieved at room temperature. Owing to the interfacial nature of the magnetism, the ability to move oxygen vacancies within the barrier, and amore » large proximity-induced magnetization of GdO x, both the magnitude and the sign of the interlayer coupling in these junctions can be directly controlled by voltage. Lastly, these results pave a new path towards achieving energy-efficient magnetization switching by controlling interlayer coupling.« less

  5. A Computer-Controlled Classroom Model of an Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.

    2015-12-01

    The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale—reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use a tactile probe to map the topography or some other property of a sample, the rastering of the probe over the sample is manually controlled, which is both tedious and potentially inaccurate. Other groups have used simulation or tele-operation of an AFM probe. In this paper we describe a teaching AFM with complete computer control to map out topographic and magnetic properties of a "crystal" consisting of two-dimensional arrays of spherical marble "atoms." Our AFM is well suited for lessons on the "Big Ideas of Nanoscale" such as tools and instrumentation, as well as a pre-teaching activity for groups with remote access AFM or mobile AFM. The principle of operation of our classroom AFM is the same as that of a real AFM, excepting the nature of the force between sample and probe.

  6. Micromotors with Step-Motor Characteristics by Controlled Magnetic Interactions among Assembled Components

    PubMed Central

    2015-01-01

    In this study, we investigated the control of the rotation dynamics of an innovative type of rotary micromotors with desired performances by tuning the magnetic interactions among the assembled micro/nanoscale components. The micromotors are made of metallic nanowires as rotors, patterned magnetic nanodisks as bearings and actuated by external electric fields. The magnetic forces for anchoring the rotors on the bearings play an essential role in the rotation dynamics of the micromotors. By varying the moment, orientation, and dimension of the magnetic components, distinct rotation behaviors can be observed, including repeatable wobbling and rolling in addition to rotation. We understood the rotation behaviors by analytical modeling, designed and realized micromotors with step-motor characteristics. The outcome of this research could inspire the development of high-performance nanomachines assembled from synthetic nanoentities, relevant to nanorobotics, microfluidics, and biomedical research. PMID:25536023

  7. Robot vibration control using inertial damping forces

    NASA Technical Reports Server (NTRS)

    Lee, Soo Han; Book, Wayne J.

    1991-01-01

    This paper concerns the suppression of the vibration of a large flexible robot by inertial forces of a small robot which is located at the tip of the large robot. A controller for generating damping forces to a large robot is designed based on the two time scale model. The controller does not need to calculate the quasi-steady variables and is efficient in computation. Simulation results show the effectiveness of the inertial forces and the controller designed.

  8. Robot vibration control using inertial damping forces

    NASA Technical Reports Server (NTRS)

    Lee, Soo Han; Book, Wayne J.

    1989-01-01

    The suppression is examined of the vibration of a large flexible robot by inertial forces of a small robot which is located at the tip of the large robot. A controller for generating damping forces to a large robot is designed based on the two time scale mode. The controller does not need to calculate the quasi-steady state variables and is efficient in computation. Simulation results show the effectiveness of the inertial forces and the controller designed.

  9. Left and right ventricular hemodynamic forces in healthy volunteers and elite athletes assessed with 4D flow magnetic resonance imaging.

    PubMed

    Arvidsson, Per M; Töger, Johannes; Carlsson, Marcus; Steding-Ehrenborg, Katarina; Pedrizzetti, Gianni; Heiberg, Einar; Arheden, Håkan

    2017-02-01

    Intracardiac blood flow is driven by hemodynamic forces that are exchanged between the blood and myocardium. Previous studies have been limited to 2D measurements or investigated only left ventricular (LV) forces. Right ventricular (RV) forces and their mechanistic contribution to asymmetric redirection of flow in the RV have not been measured. We therefore aimed to quantify 3D hemodynamic forces in both ventricles in a cohort of healthy subjects, using magnetic resonance imaging 4D flow measurements. Twenty five controls, 14 elite endurance athletes, and 2 patients with LV dyssynchrony were included. 4D flow data were used as input for the Navier-Stokes equations to compute hemodynamic forces over the entire cardiac cycle. Hemodynamic forces were found in a qualitatively consistent pattern in all healthy subjects, with variations in amplitude. LV forces were mainly aligned along the apical-basal longitudinal axis, with an additional component aimed toward the aortic valve during systole. Conversely, RV forces were found in both longitudinal and short-axis planes, with a systolic force component driving a slingshot-like acceleration that explains the mechanism behind the redirection of blood flow toward the pulmonary valve. No differences were found between controls and athletes when indexing forces to ventricular volumes, indicating that cardiac force expenditures are tuned to accelerate blood similarly in small and large hearts. Patients' forces differed from controls in both timing and amplitude. Normal cardiac pumping is associated with specific force patterns for both ventricles, and deviation from these forces may be a sensitive marker of ventricular dysfunction. Reference values are provided for future studies. NEW & NOTEWORTHY Biventricular hemodynamic forces were quantified for the first time in healthy controls and elite athletes (n = 39). Hemodynamic forces constitute a slingshot-like mechanism in the right ventricle, redirecting blood flow toward the

  10. Task specific grip force control in writer's cramp.

    PubMed

    Schneider, A S; Fürholzer, W; Marquardt, C; Hermsdörfer, J

    2014-04-01

    Writer's cramp is defined as a task specific focal dystonia generating hypertonic muscle co-contractions during handwriting resulting in impaired writing performance and exaggerated finger force. However, little is known about the generalisation of grip force across tasks others than writing. The aim of the study was to directly compare regulation of grip forces during handwriting with force regulation in other fine-motor tasks in patients and control subjects. Handwriting, lifting and cyclic movements of a grasped object were investigated in 21 patients and 14 controls. The applied forces were registered in all three tasks and compared between groups and tasks. In addition, task-specific measures of fine-motor skill were assessed. As expected, patients generated exaggerated forces during handwriting compared to control subjects. However there were no statistically significant group differences during lifting and cyclic movements. The control group revealed a generalisation of grip forces across manual tasks whereas in patients there was no such correlation. We conclude that increased finger forces during handwriting are a task-specific phenomenon that does not necessarily generalise to other fine-motor tasks. Force control of patients with writer's cramp in handwriting and other fine-motor tasks is characterised by individualised control strategies. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Magnetic resonance force microscopy quantum computer with tellurium donors in silicon.

    PubMed

    Berman, G P; Doolen, G D; Hammel, P C; Tsifrinovich, V I

    2001-03-26

    We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations.

  12. Results of telerobotic hand controller study using force information and rate control

    NASA Technical Reports Server (NTRS)

    Willshire, Kelli F.; Harrison, F. W.; Hogge, Edward F.; Williams, Robert L.; Soloway, Donald

    1992-01-01

    To increase quantified information about the effectiveness and subjective workload of force information relayed through manipulator input control devices, a space related task was performed by eight subjects with kinesthetic force feedback and/or local force accommodation through three different input control devices (i.e., hand controllers) operating in rate control mode. Task completion time, manipulator work, and subjective responses were measured. Results indicated a difference among the hand controllers. For the Honeywell six degree-of-freedom hand controller, the overall task completion times were shortest, the amount of work exerted was the least, and was the most preferred by test subjects. Neither force accommodation with or without reflection resulted in shorter task completion times or reduced work although those conditions were better than no force information for some aspects. Comparisons of results from previous studies are discussed.

  13. New thermodynamical force in plasma phase space that controls turbulence and turbulent transport.

    PubMed

    Itoh, Sanae-I; Itoh, Kimitaka

    2012-01-01

    Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated.

  14. New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport

    NASA Astrophysics Data System (ADS)

    Itoh, Sanae-I.; Itoh, Kimitaka

    2012-11-01

    Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated.

  15. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-07

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  16. Force feedback requirements for efficient laparoscopic grasp control.

    PubMed

    Westebring-van der Putten, Eleonora P; van den Dobbelsteen, John J; Goossens, Richard H M; Jakimowicz, Jack J; Dankelman, Jenny

    2009-09-01

    During laparoscopic grasping, tissue damage may occur due to use of excessive grasp forces and tissue slippage, whereas in barehanded grasping, humans control their grasp to prevent slippage and use of excessive force (safe grasp). This study investigates the differences in grasp control during barehanded and laparoscopic lifts. Ten novices performed lifts in order to compare pinch forces under four conditions: barehanded; using tweezers; a low-efficient grasper; and a high-efficient grasper. Results showed that participants increased their pinch force significantly later during a barehanded lift (at a pull-force level of 2.63 N) than when lifting laparoscopically (from pull-force levels of 0.77 to 1.08 N). In barehanded lifts all participants could accomplish a safe grasp, whereas in laparoscopic lifts excessive force (up to 7.9 N) and slippage (up to 38% of the trials) occurred frequently. For novices, it can be concluded that force feedback (additional to the hand-tool interface), as in skin-tissue contact, is a prerequisite to maintain a safe grasp. Much is known about grasp control during barehanded object manipulation, especially the control of pinch forces to changing loading, whereas little is known about force perception and grasp control during tool usage. This knowledge is a prerequisite for the ergonomic design of tools that are used to manipulate objects.

  17. A shared position/force control methodology for teleoperation

    NASA Technical Reports Server (NTRS)

    Lee, Jin S.

    1987-01-01

    A flexible and computationally efficient shared position/force control concept and its implementation in the Robot Control C Library (RCCL) are presented form the point of teleoperation. This methodology enables certain degrees of freedom to be position-controlled through real time manual inputs and the remaining degrees of freedom to be force-controlled by computer. Functionally, it is a hybrid control scheme in that certain degrees of freedom are designated to be under position control, and the remaining degrees of freedom to be under force control. However, the methodology is also a shared control scheme because some degrees of freedom can be put under manual control and the other degrees of freedom put under computer control. Unlike other hybrid control schemes, which process position and force commands independently, this scheme provides a force control loop built on top of a position control inner loop. This feature minimizes the computational burden and increases disturbance rejection. A simple implementation is achieved partly because the joint control servos that are part of most robots can be used to provide the position control inner loop. Along with this control scheme, several menus were implemented for the convenience of the user. The implemented control scheme was successfully demonstrated for the tasks of hinged-panel opening and peg-in-hole insertion.

  18. Quantitative Determination on Ionic-Liquid-Gating Control of Interfacial Magnetism

    DOE PAGES

    Zhao, Shishun; Zhou, Ziyao; Peng, Bin; ...

    2017-03-03

    Ionic-liquid gating on a functional thin film with a low voltage has drawn a lot of attention due to rich chemical, electronic, and magnetic phenomena at the interface. A key challenge in quantitative determination of voltage-controlled magnetic anisotropy (VCMA) in Au/[DEME] +[TFSI] -/Co field-effect transistor heterostructures is addressed. The magnetic anisotropy change as response to the gating voltage is precisely detected by in situ electron spin resonance measurements. Furthermore, a reversible change of magnetic anisotropy up to 219 Oe is achieved with a low gating voltage of 1.5 V at room temperature, corresponding to a record high VCMA coefficient ofmore » ≈146 Oe V -1. Two gating effects, the electrostatic doping and electrochemical reaction, are distinguished at various gating voltage regions, as confirmed by X-ray photoelectron spectroscopy and atomic force microscopy experiments. Our work shows a unique ionic-liquid-gating system for strong interfacial magnetoelectric coupling with many practical advantages, paving the way toward ion-liquid-gating spintronic/electronic devices.« less

  19. Quantitative Determination on Ionic-Liquid-Gating Control of Interfacial Magnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shishun; Zhou, Ziyao; Peng, Bin

    Ionic-liquid gating on a functional thin film with a low voltage has drawn a lot of attention due to rich chemical, electronic, and magnetic phenomena at the interface. A key challenge in quantitative determination of voltage-controlled magnetic anisotropy (VCMA) in Au/[DEME] +[TFSI] -/Co field-effect transistor heterostructures is addressed. The magnetic anisotropy change as response to the gating voltage is precisely detected by in situ electron spin resonance measurements. Furthermore, a reversible change of magnetic anisotropy up to 219 Oe is achieved with a low gating voltage of 1.5 V at room temperature, corresponding to a record high VCMA coefficient ofmore » ≈146 Oe V -1. Two gating effects, the electrostatic doping and electrochemical reaction, are distinguished at various gating voltage regions, as confirmed by X-ray photoelectron spectroscopy and atomic force microscopy experiments. Our work shows a unique ionic-liquid-gating system for strong interfacial magnetoelectric coupling with many practical advantages, paving the way toward ion-liquid-gating spintronic/electronic devices.« less

  20. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  1. Numerical study of the magnetized friction force

    NASA Astrophysics Data System (ADS)

    Fedotov, A. V.; Bruhwiler, D. L.; Sidorin, A. O.; Abell, D. T.; Ben-Zvi, I.; Busby, R.; Cary, J. R.; Litvinenko, V. N.

    2006-07-01

    Fundamental advances in experimental nuclear physics will require ion beams with orders of magnitude luminosity increase and temperature reduction. One of the most promising particle accelerator techniques for achieving these goals is electron cooling, where the ion beam repeatedly transfers thermal energy to a copropagating electron beam. The dynamical friction force on a fully ionized gold ion moving through magnetized and unmagnetized electron distributions has been simulated, using molecular dynamics techniques that resolve close binary collisions. We present a comprehensive examination of theoretical models in use by the electron cooling community. Differences in these models are clarified, enabling the accurate design of future electron cooling systems for relativistic ion accelerators.

  2. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, J.M.; Peuron, A.U.

    1980-07-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  3. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramírez-Salgado, J.; Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx; Castro-Domínguez, B.

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite wasmore » detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.« less

  4. Magnetic force study for the helical afterburner for the European XFEL

    NASA Astrophysics Data System (ADS)

    Li, Peng; Wei, Tao; Li, Yuhui; Pflueger, Joachim

    2017-05-01

    At present the SASE3 undulator line at the European XFEL is using a planar undulator producing linear polarized soft Xray radiation only. In order to satisfy the demand for circular polarized radiation a helical undulator system, the so-called afterburner is in construction. It will be operated as a radiator using the pre-bunched beam of the SASE3 undulator system. Among several options for the magnetic structure the Apple-X geometry was chosen. This is a pure permanent magnet undulator using NdFeB material. Four magnet arrays are arranged symmetrically the beam axis. Polarization can be changed by adjusting the phase shift (PS) between the two orthogonal structures. The field strength can be adjusted either by gap adjustment or alternatively by the amplitude shift (AS) scheme. For an engineering design the maximum values of forces and torques on each of the components under worst case operational conditions are important. The superposition principle is used to reduce calculation time. It is found that the maximum forces Fx, Fy and Fz for a 2m long Apple-X undulator are 1.8*104N, 2.4*104N and 2.3*104N, respectively. More results are presented in this paper.

  5. Elastic properties of a magnetic fluid with an air cavity retained by levitation forces

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Boev, M. L.; Tan, Myo Min; Karpova, G. V.; Roslyakova, L. I.

    2013-01-01

    The paper describes the process of an air cavity rising in a magnetic fluid filling a tube with a bottom, transport, and retention of the cavity by magnetic levitation forces. The elastic and dissipative properties of a vibratory system with an inertial element that is a column of a magnetic fluid over an air cavity are considered. The possibility of using a transported air cavity as a movable reflector for a sound wave is evaluated.

  6. Grip force control in individuals with multiple sclerosis.

    PubMed

    Iyengar, Veena; Santos, Marcio J; Ko, Michael; Aruin, Alexander S

    2009-10-01

    Appropriate regulation of grip force is essential in performance of various activities of daily living such as drinking, eating, buttoning a shirt, and so on. The extent to which individuals with multiple sclerosis (MS) are able to regulate grip forces while performing elements of the activities of daily living is largely unknown. . To investigate how individuals with MS control grip force during performance of functional tasks. . This study evaluated the grip force control in selected individuals with MS (n = 9) and healthy control subjects (n = 9) while they performed the task of lifting and placing an instrumented object on a shelf and the task of lifting the object and bringing it close to the mouth to mimic drinking. The grip forces, object acceleration, force ratio, and time lag were recorded and analyzed. . The individuals with MS used significantly larger peak grip force and force ratio than control subjects while performing both tasks and for both hands. In addition, the time lag between the peaks of grip and load forces was significantly longer in individuals with MS. . The application of excessive grip force could predispose individuals with MS to additional fatigue and musculoskeletal overuse trauma. Rehabilitation protocols for the MS population may need to account for increased levels of grip force applied during the performance of functional tasks.

  7. Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure

    PubMed Central

    Murapaka, C.; Sethi, P.; Goolaup, S.; Lew, W. S.

    2016-01-01

    An all-magnetic logic scheme has the advantages of being non-volatile and energy efficient over the conventional transistor based logic devices. In this work, we present a reconfigurable magnetic logic device which is capable of performing all basic logic operations in a single device. The device exploits the deterministic trajectory of domain wall (DW) in ferromagnetic asymmetric branch structure for obtaining different output combinations. The programmability of the device is achieved by using a current-controlled magnetic gate, which generates a local Oersted field. The field generated at the magnetic gate influences the trajectory of the DW within the structure by exploiting its inherent transverse charge distribution. DW transformation from vortex to transverse configuration close to the output branch plays a pivotal role in governing the DW chirality and hence the output. By simply switching the current direction through the magnetic gate, two universal logic gate functionalities can be obtained in this device. Using magnetic force microscopy imaging and magnetoresistance measurements, all basic logic functionalities are demonstrated. PMID:26839036

  8. Grip force control during virtual object interaction: effect of force feedback,accuracy demands, and training.

    PubMed

    Gibo, Tricia L; Bastian, Amy J; Okamura, Allison M

    2014-03-01

    When grasping and manipulating objects, people are able to efficiently modulate their grip force according to the experienced load force. Effective grip force control involves providing enough grip force to prevent the object from slipping, while avoiding excessive force to avoid damage and fatigue. During indirect object manipulation via teleoperation systems or in virtual environments, users often receive limited somatosensory feedback about objects with which they interact. This study examines the effects of force feedback, accuracy demands, and training on grip force control during object interaction in a virtual environment. The task required subjects to grasp and move a virtual object while tracking a target. When force feedback was not provided, subjects failed to couple grip and load force, a capability fundamental to direct object interaction. Subjects also exerted larger grip force without force feedback and when accuracy demands of the tracking task were high. In addition, the presence or absence of force feedback during training affected subsequent performance, even when the feedback condition was switched. Subjects' grip force control remained reminiscent of their employed grip during the initial training. These results motivate the use of force feedback during telemanipulation and highlight the effect of force feedback during training.

  9. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, John M.; Peuron, Unto A.

    1982-01-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  10. EXOS research on force-reflecting controllers

    NASA Astrophysics Data System (ADS)

    Eberman, Brian S.; An, Bin

    1993-03-01

    EXOS has developed two state of the art prototype master controllers for controlling robot hands and manipulators under the Small Business Innovation Research (SBIR) program with NASA. One such device is a two degree-of-freedom Sensing and Force Reflecting Exoskeleton (SAFiRE) worn on the operator's hand. The device measures the movement of the index finger and reflects the interaction forces between the slave robot and the environment to the human finger. The second device is a position sensing Exoskeleton ArmMaster (EAM) worn by a human operator. The device simultaneously tracks the motions of the operator's three DOF shoulder and two DOF elbow. Both of these devices are currently used to control robots at NASA. We are currently developing a full fingered SAFiRE and a position sensing and force reflecting EAM under two second phase SBIR grants with NASA. This paper will include discussions of: (1) the design of the current prototypes, (2) kinematics of the EAM and force control of the SAFiRE, (3) design issues that must be addressed in developing more advanced versions, and (4) our progress to date in addressing these issues.

  11. 14 CFR 23.155 - Elevator control force in maneuvers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Elevator control force in maneuvers. 23.155 Section 23.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Controllability and Maneuverability § 23.155 Elevator control force in maneuvers. (a) The elevator control force...

  12. 14 CFR 23.155 - Elevator control force in maneuvers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Elevator control force in maneuvers. 23.155 Section 23.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Controllability and Maneuverability § 23.155 Elevator control force in maneuvers. (a) The elevator control force...

  13. 14 CFR 23.155 - Elevator control force in maneuvers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Elevator control force in maneuvers. 23.155 Section 23.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Controllability and Maneuverability § 23.155 Elevator control force in maneuvers. (a) The elevator control force...

  14. 14 CFR 23.155 - Elevator control force in maneuvers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Elevator control force in maneuvers. 23.155 Section 23.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Controllability and Maneuverability § 23.155 Elevator control force in maneuvers. (a) The elevator control force...

  15. 14 CFR 23.155 - Elevator control force in maneuvers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Elevator control force in maneuvers. 23.155 Section 23.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Controllability and Maneuverability § 23.155 Elevator control force in maneuvers. (a) The elevator control force...

  16. A comparative study of dynamically expanding force-free, constant-alpha magnetic configurations with applications to magnetic clouds

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Burlaga, L. F.; Osherovich, V. A.; Lepping, R. P.

    1992-01-01

    We contrast two different solutions of the constant alpha, force-free MHD equation, both of which have been suggested as models for magnetic clouds: a solution in cylindrical coordinates and one in spherical coordinates. In line with the observation that magnetic clouds expand, we generalize these static models and construct their expanding counterparts. We find that expansion introduces in both cases a large asymmetry in the field strength signature which is in the same sense as that seen the the data, i.e. towards the leading edge of the cloud. We then do a least squares fit of the respective models to one-spacecraft data on a magnetic cloud. We find that the fitting routine converges in both cases. However, while purely formally we cannot distinguish between the two models using data from one spacecraft, the field components in the 'spherical' model have features not compatible with data on magnetic clouds.

  17. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions

    NASA Astrophysics Data System (ADS)

    Qiu, Yongzhi; Tong, Sheng; Zhang, Linlin; Sakurai, Yumiko; Myers, David R.; Hong, Lin; Lam, Wilbur A.; Bao, Gang

    2017-06-01

    The vascular endothelium presents a major transport barrier to drug delivery by only allowing selective extravasation of solutes and small molecules. Therefore, enhancing drug transport across the endothelial barrier has to rely on leaky vessels arising from disease states such as pathological angiogenesis and inflammatory response. Here we show that the permeability of vascular endothelium can be increased using an external magnetic field to temporarily disrupt endothelial adherens junctions through internalized iron oxide nanoparticles, activating the paracellular transport pathway and facilitating the local extravasation of circulating substances. This approach provides a physically controlled drug delivery method harnessing the biology of endothelial adherens junction and opens a new avenue for drug delivery in a broad range of biomedical research and therapeutic applications.

  18. New Thermodynamical Force in Plasma Phase Space that Controls Turbulence and Turbulent Transport

    PubMed Central

    Itoh, Sanae-I.; Itoh, Kimitaka

    2012-01-01

    Physics of turbulence and turbulent transport has been developed on the central dogma that spatial gradients constitute the controlling parameters, such as Reynolds number and Rayleigh number. Recent experiments with the nonequilibrium plasmas in magnetic confinement devices, however, have shown that the turbulence and transport change much faster than global parameters, after an abrupt change of heating power. Here we propose a theory of turbulence in inhomogeneous magnetized plasmas, showing that the heating power directly influences the turbulence. New mechanism, that an external source couples with plasma fluctuations in phase space so as to affect turbulence, is investigated. A new thermodynamical force in phase-space, i.e., the derivative of heating power by plasma pressure, plays the role of new control parameter, in addition to spatial gradients. Following the change of turbulence, turbulent transport is modified accordingly. The condition under which this new effect can be observed is also evaluated. PMID:23155481

  19. Switching in Feedforward Control of Grip Force During Tool-Mediated Interaction With Elastic Force Fields

    PubMed Central

    White, Olivier; Karniel, Amir; Papaxanthis, Charalambos; Barbiero, Marie; Nisky, Ilana

    2018-01-01

    Switched systems are common in artificial control systems. Here, we suggest that the brain adopts a switched feedforward control of grip forces during manipulation of objects. We measured how participants modulated grip force when interacting with soft and rigid virtual objects when stiffness varied continuously between trials. We identified a sudden phase transition between two forms of feedforward control that differed in the timing of the synchronization between the anticipated load force and the applied grip force. The switch occurred several trials after a threshold stiffness level in the range 100–200 N/m. These results suggest that in the control of grip force, the brain acts as a switching control system. This opens new research questions as to the nature of the discrete state variables that drive the switching. PMID:29930504

  20. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor

    PubMed Central

    Dennis, John Ojur; Ahmad, Farooq; Khir, M. Haris Bin Md; Hamid, Nor Hisham Bin

    2015-01-01

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972

  1. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.

    PubMed

    Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham

    2015-07-27

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.

  2. A Method for Implementing Force-Limited Vibration Control

    NASA Technical Reports Server (NTRS)

    Worth, Daniel B.

    1997-01-01

    NASA/GSFC has implemented force-limited vibration control on a controller which can only accept one profile. The method uses a personal computer based digital signal processing board to convert force and/or moment signals into what appears to he an acceleration signal to the controller. This technique allows test centers with older controllers to use the latest force-limited control techniques for random vibration testing. The paper describes the method, hardware, and test procedures used. An example from a test performed at NASA/GSFC is used as a guide.

  3. Implementation of robotic force control with position accommodation

    NASA Technical Reports Server (NTRS)

    Ryan, Michael J.

    1992-01-01

    As the need for robotic manipulation in fields such as manufacturing and telerobotics increases, so does the need for effective methods of controlling the interaction forces between the manipulators and their environment. Position Accommodation (PA) is a form of robotic force control where the nominal path of the manipulator is modified in response to forces and torques sensed at the tool-tip of the manipulator. The response is tailored such that the manipulator emulates a mechanical impedance to its environment. PA falls under the category of position-based robotic force control, and may be viewed as a form of Impedance Control. The practical implementations are explored of PA into an 18 degree-of-freedom robotic testbed consisting of two PUMA 560 arms mounted on two 3 DOF positioning platforms. Single and dual-arm architectures for PA are presented along with some experimental results. Characteristics of position-based force control are discussed, along with some of the limitations of PA.

  4. Implementation and control of a 3 degree-of-freedom, force-reflecting manual controller

    NASA Astrophysics Data System (ADS)

    Kim, Whee-Kuk; Bevill, Pat; Tesar, Delbert

    1991-02-01

    Most available manual controllers which are used in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size heavy weight high cost low magnitude of reflecting-force lack of smoothness insufficient transparency and simplified architectures. A compact smooth lightweight portable universal manual controller could provide a markedly improved level of transparency and be able to drive a broad spectrum of slave manipulators. This implies that a single stand-off position could be used for a diverse population of remote systems and that a standard environment for training of operators would result in reduced costs and higher reliability. In the implementation presented in this paper a parallel 3 degree-of-freedom (DOF) spherical structure (for compactness and reduced weight) is combined with high gear-ratio reducers using a force control algorithm to produce a " power steering" effect for enhanced smoothness and transparency. The force control algorithm has the further benefit of minimizing the effect of the system friction and non-linear inertia forces. The fundamental analytical description for the spherical force-reflecting manual controller such as forward position analysis reflecting-force transformation and applied force control algorithm are presented. Also a brief description of the system integration its actual implementation and preliminary test results are presented in the paper.

  5. Magnetic properties of electrical iron sheet under controlled magnetization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takada, Shunji; Sasaki, Tadashi

    1993-11-01

    Power losses of electrical iron sheet were measured under the controlled magnetizing condition in which magnetic induction changes at a constant time rate for a fixed time and pauses at a certain induction for a varied time in every half magnetizing cycle. Considerable increase of losses per magnetizing cycle with a pause time has been found only in the case of magnetization pause at the maximum induction. The increase of losses is considered from magnetostriction measurements to be caused by internal magnetization rearrangement accompanied with flux reversal after the pause period.

  6. Effect of unbalanced magnetic pull and hydraulic seal force on the vibration of large rotor-bearing systems

    NASA Astrophysics Data System (ADS)

    Song, Z.; Guo, P.; Liu, Y.

    2014-03-01

    The influence of unbalanced magnetic pull (UMP) and hydraulic seal force on the vibration of large rotor-bearing systems is studied. The UMP caused by rotor eccentricity imposes important effects on rotating machinery, especially for large generators such as water turbine generator sets, because these machines operate above their first critical speed in some instances and are supported by oil film bearings. A magnetic stiffness matrix for studying the effects of the UMP is proposed. The magnetic stiffness matrix can be generated by decomposing the expression of air gap magnetic field energy. Two vibration models are constructed using the Lagrange equation. The difference between the two models lies in the boundary support condition: one has rigid support and the other has elastic bearing support. The influence of the magnetic stiffness and elastic support on the critical speed of the rotor is studied using Lyapunov nonlinear vibration stability theory. The vibration amplitude of the rotor is calculated, taking the magnetic stiffness and horizontal centrifugal force into account. The unbalanced hydraulic seal force is produced because of the asymmetry of seal clearance. This imbalance is one of the factors that causes self-excited vibration in rotating machinery, and is as important as the UMP for large water turbine generator sets. The rotor-bearing system is supported by an oil film journal bearing, whose characteristic also impose considerable influence on vibration. On the basis of the above-mentioned conditions, a three-dimensional finite element model of the rotating system that includes the oil film journal bearing is constructed. The effect of the UMP and unbalanced hydraulic seal force is considered in the construction, and studied in relation to the magnetic parameters, seal parameters, journal bearing stiffness, and outer diameter of the rotating machine critical speed. Conclusions may benefit the dynamic design and optimized operation of large rotating

  7. Hybrid position/force control of multi-arm cooperating robots

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    1986-01-01

    This paper extends the theory of hybrid position/force control to the case of multi-arm cooperating robots. Cooperation between n robot arms is achieved by controlling each arm such that the burden of actuation is shared between the arms in a nonconflicting way as they control the position of and force on a designated point on an object. The object, which may or may not be in contact with a rigid environment, is assumed to be held rigidly by n robot end-effectors. Natural and artificial position and force constraints are defined for a point on the object and two selection matrices are obtained to control the arms. The position control loops are designed based on each manipulator's Cartesian space dynamic equations. In the position control subspace, a feature is provided which allows the robot arms to exert additional forces/torques to achieve compression, tension, or torsion in the object without affecting the execution of the motion trajectories. In the force control subspace, a method is introduced to minimize the total force/torque magnitude square while realizing the net desired force/torque on the environment.

  8. High Temperature, Permanent Magnet Biased, Fault Tolerant, Homopolar Magnetic Bearing Development

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan; Tucker, Randall; Kenny, Andrew; Kang, Kyung-Dae; Ghandi, Varun; Liu, Jinfang; Choi, Heeju; Provenza, Andrew

    2008-01-01

    This paper summarizes the development of a magnetic bearing designed to operate at 1,000 F. A novel feature of this high temperature magnetic bearing is its homopolar construction which incorporates state of the art high temperature, 1,000 F, permanent magnets. A second feature is its fault tolerance capability which provides the desired control forces with over one-half of the coils failed. The construction and design methodology of the bearing is outlined and test results are shown. The agreement between a 3D finite element, magnetic field based prediction for force is shown to be in good agreement with predictions at room and high temperature. A 5 axis test rig will be complete soon to provide a means to test the magnetic bearings at high temperature and speed.

  9. Strain-controlled nonvolatile magnetization switching

    NASA Astrophysics Data System (ADS)

    Geprägs, S.; Brandlmaier, A.; Brandt, M. S.; Gross, R.; Goennenwein, S. T. B.

    2014-11-01

    We investigate different approaches towards a nonvolatile switching of the remanent magnetization in single-crystalline ferromagnets at room temperature via elastic strain using ferromagnetic thin film/piezoelectric actuator hybrids. The piezoelectric actuator induces a voltage-controllable strain along different crystalline directions of the ferromagnetic thin film, resulting in modifications of its magnetization by converse magnetoelastic effects. We quantify the magnetization changes in the hybrids via ferromagnetic resonance spectroscopy and superconducting quantum interference device magnetometry. These measurements demonstrate a significant strain-induced change of the magnetization, limited by an inefficient strain transfer and domain formation in the particular system studied. To overcome these obstacles, we address practicable engineering concepts and use a model to demonstrate that a strain-controlled, nonvolatile magnetization switching should be possible in appropriately engineered ferromagnetic/piezoelectric actuator hybrids.

  10. Force characteristics in continuous path controlled crankpin grinding

    NASA Astrophysics Data System (ADS)

    Zhang, Manchao; Yao, Zhenqiang

    2015-03-01

    Recent research on the grinding force involved in cylindrical plunge grinding has focused mainly on steady-state conditions. Unlike in conventional external cylindrical plunge grinding, the conditions between the grinding wheel and the crankpin change periodically in path controlled grinding because of the eccentricity of the crankpin and the constant rotational speed of the crankshaft. The objective of this study is to investigate the effects of various grinding conditions on the characteristics of the grinding force during continuous path controlled grinding. Path controlled plunge grinding is conducted at a constant rotational speed using a cubic boron nitride (CBN) wheel. The grinding force is determined by measuring the torque. The experimental results show that the force and torque vary sinusoidally during dry grinding and load grinding. The variations in the results reveal that the resultant grinding force and torque decrease with higher grinding speeds and increase with higher peripheral speeds of the pin and higher grinding depths. In path controlled grinding, unlike in conventional external cylindrical plunge grinding, the axial grinding force cannot be disregarded. The speeds and speed ratios of the workpiece and wheel are also analyzed, and the analysis results show that up-grinding and down-grinding occur during the grinding process. This paper proposes a method for describing the force behavior under varied process conditions during continuous path controlled grinding, which provides a beneficial reference for describing the material removal mechanism and for optimizing continuous controlled crankpin grinding.

  11. Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.

    2017-05-01

    The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.

  12. Influence of Waiting Time on the Levitation Force Between a Permanent Magnet and a Superconductor

    NASA Astrophysics Data System (ADS)

    Zhang, Xing-Yi; Zhou, You-He; Zhou, Jun

    This paper describes the experimental results of the levitation force of single-grained YBaCuO bulk superconductors preparing by the top-seeded melt-growth method with different waiting time tw below an NdFeB permanent magnet. It was found that waiting time has large effects on the zero-field-cooled (ZFC) and field-cooled (FC) levitation force, and the levitation force shows aging characteristics at the liquid nitrogen temperature.

  13. Control of Thermal Convection in Layered Fluids Using Magnetic fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Immiscible fluid layers are found in a host of applications ranging from materials processing, for example the use of encapsulants in float zone crystal growth technique and a buffer layer in industrial Czochralski growth of crystals to prevent Marangoni convection, to heat transfer phenomena in day-to-day processes like the presence of air pockets in heat exchangers. In the microgravity and space processing realm, the exploration of other planets requires the development of enabling technologies in several fronts. The reduction in the gravity level poses unique challenges for fluid handling and heat transfer applications. The present work investigates the efficacy of controlling thermal convective flow using magnetic fluids and magnetic fields. The setup is a two-layer immiscible liquids system with one of the fluids being a diluted ferrofluid (super paramagnetic nano particles dispersed in carrier fluid). Using an external magnetic field one can essentially dial in a volumetric force - gravity level, on the magnetic fluid and thereby affect the system thermo-fluid behavior. The paper will describe the experimental and numerical modeling approach to the problem and discuss results obtained to date.

  14. Influence of the surface magnetic field of a cylindrical permanent magnet on the maximum levitation force in high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Xian-Feng; Liu, Yuan

    2006-06-01

    In this paper we present the dependence of the maximum levitation force (FzMax) of a high-Tc superconductor on the surface magnetic field (Bs) of a cylindrical permanent magnet, based on the Bean critical state model and Ampère's law. A transition point of Bs is found at which the relation between FzMax and Bs changes: while the surface magnetic field is less than the transition point the dependence is subjected to a nonlinear function, otherwise it is a linear one. The two different relations are estimated to correspond to partial penetration of the shielding currents in the interior of the superconductor below the transition point and complete penetration above it, respectively. Furthermore, the influence of the geometrical properties of superconductors on the transition point of Bs is discussed, which shows a quadratic polynomial function between the transition points and the radii and the thickness of superconductors. Some optimum contours of the transition point of Bs are presented in order to achieve large levitation forces.

  15. Controlling Force and Depth in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Loftus, Zachary; McCormac, Nathan; Venable, Richard

    2005-01-01

    Feedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints. Prior to this discovery, depths of penetration in friction stir welding were controlled by hard-tooled roller assemblies or by depth actuators controlled by feedback from such external sensors as linear variable-differential transformers or laser-based devices. These means of control are limited: A hard-tooled roller assembly confines a pin tool to a preset depth that cannot be changed easily during the welding process. A measurement by an external sensor is only an indirect indicative of the depth of penetration, and computations to correlate such a measurement with a depth of penetration are vulnerable to error. The present force-feedback approach exploits the proportionality between the depth and the force of penetration Unlike a depth measurement taken by an external sensor, a force measurement can be direct because it can be taken by a sensor coupled directly to the pin tool. The reading can be processed through a modern electronic servo control system to control an actuator to keep the applied penetration force at the desired level. In comparison with the older depth-control methods described above, this method offers greater sensitivity to plasticizing of the workpiece metal and is less sensitive to process noise, resulting in a more consistent process. In an experiment, a tapered panel was friction stir welded while controlling the force of penetration according to this method. The figure is a plot of measurements taken during the experiment, showing that force was controlled with a variation of 200 lb (890 N), resulting in control of the depth of penetration with a variation of 0.004 in. (0.1 mm).

  16. Motor control differs for increasing and releasing force

    PubMed Central

    Park, Seoung Hoon; Kwon, MinHyuk; Solis, Danielle; Lodha, Neha

    2016-01-01

    Control of the motor output depends on our ability to precisely increase and release force. However, the influence of aging on force increase and release remains unknown. The purpose of this study, therefore, was to determine whether force control differs while increasing and releasing force in young and older adults. Sixteen young adults (22.5 ± 4 yr, 8 females) and 16 older adults (75.7 ± 6.4 yr, 8 females) increased and released force at a constant rate (10% maximum voluntary contraction force/s) during an ankle dorsiflexion isometric task. We recorded the force output and multiple motor unit activity from the tibialis anterior (TA) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) mean discharge rate and variability of discharge rate of multiple motor units; and 3) power spectrum of the multiple motor units from 0–4, 4–10, 10–35, and 35–60 Hz. Participants exhibited greater force variability while releasing force, independent of age (P < 0.001). Increased force variability during force release was associated with decreased modulation of multiple motor units from 35 to 60 Hz (R2 = 0.38). Modulation of multiple motor units from 35 to 60 Hz was further correlated to the change in mean discharge rate of multiple motor units (r = 0.66) and modulation from 0 to 4 Hz (r = −0.64). In conclusion, these findings suggest that force control is altered while releasing due to an altered modulation of the motor units. PMID:26961104

  17. Electromotive force and large-scale magnetic dynamo in a turbulent flow with a mean shear.

    PubMed

    Rogachevskii, Igor; Kleeorin, Nathan

    2003-09-01

    An effect of sheared large-scale motions on a mean electromotive force in a nonrotating turbulent flow of a conducting fluid is studied. It is demonstrated that in a homogeneous divergence-free turbulent flow the alpha effect does not exist, however a mean magnetic field can be generated even in a nonrotating turbulence with an imposed mean velocity shear due to a "shear-current" effect. A mean velocity shear results in an anisotropy of turbulent magnetic diffusion. A contribution to the electromotive force related to the symmetric parts of the gradient tensor of the mean magnetic field (the kappa effect) is found in nonrotating turbulent flows with a mean shear. The kappa effect and turbulent magnetic diffusion reduce the growth rate of the mean magnetic field. It is shown that a mean magnetic field can be generated when the exponent of the energy spectrum of the background turbulence (without the mean velocity shear) is less than 2. The shear-current effect was studied using two different methods: the tau approximation (the Orszag third-order closure procedure) and the stochastic calculus (the path integral representation of the solution of the induction equation, Feynman-Kac formula, and Cameron-Martin-Girsanov theorem). Astrophysical applications of the obtained results are discussed.

  18. Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2010-01-01

    power for magnetic field switching device can be achieved in order to deflect the rotor magnet in transit. The Wiegand effect itself (bistable FeCoV wire called "Vicalloy") invented by John Wiegand (Switchable Magnetic Device, US Patent ♯4,247,601), utilizing Barkhausen jumps of magnetic domains, is also applied for a similar achievement (Dilatush, 1977). Conventional approaches for spiral magnetic gradient force production have not been adequate for magnetostatic motors to perform useful work. It is proposed that integrating a magnetic force control device with a spiral stator inhomogeneous axial magnetic field motor is a viable approach to add a sufficient nonlinear boundary shift to apply the angular momentum and potential energy gained in 315 degrees of the motor cycle.

  19. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  20. A new type of magnetism-controllable Mn-based single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Cui, Yan; Zhu, Huiping; Wang, Lei; Li, Bo; Han, Zhengsheng; Luo, Jiajun

    2018-07-01

    The flexibility and diversity of organic chemistry have yielded many materials in which magnetism can be varied. However, most methods used for changing magnetism are inefficient or destructive to the magnetic material. Here we report high-performance magnetic control of a gas-responsive single-molecule magnet (SMM). The results exhibit that the magnetic properties of the SMM can be significantly changed according to the gas environment it is in and some of the magnetic states can be reversibly transformed or coexistent in the SMM through artificial control. More importantly, the single crystalline structure of the SMM is almost the same during the transformation process except for slight change of the lattice constant. Thus, this work opens up new insights into the stimuli-responsive magnetic materials which have great prospects for application in artificial design magnetic network and also highlight their potential as smart materials.

  1. G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics

    DOE PAGES

    Collins, Liam; Belianinov, Alex; Proksch, Roger; ...

    2016-05-09

    We develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Also, 3 G-Mode MFM is implemented and compared to traditional heterodyne based MFM on model systems including domain structures in ferromagnetic Yttrium Iron Garnet (YIG) and electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstratemore » its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode coupling phenomena. Finally we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any AFM platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties as well as their mutual interactions.« less

  2. Dynamic analysis of a magnetic bearing system with flux control

    NASA Technical Reports Server (NTRS)

    Knight, Josiah; Walsh, Thomas; Virgin, Lawrence

    1994-01-01

    Using measured values of two-dimensional forces in a magnetic actuator, equations of motion for an active magnetic bearing are presented. The presence of geometric coupling between coordinate directions causes the equations of motion to be nonlinear. Two methods are used to examine the unbalance response of the system: simulation by direct integration in time; and determination of approximate steady state solutions by harmonic balance. For relatively large values of the derivative control coefficient, the system behaves in an essentially linear manner, but for lower values of this parameter, or for higher values of the coupling coefficient, the response shows a split of amplitudes in the two principal directions. This bifurcation is sensitive to initial conditions. The harmonic balance solution shows that the separation of amplitudes actually corresponds to a change in stability of multiple coexisting solutions.

  3. A Comprehensive C++ Controller for a Magnetically Supported Vertical Rotor. 1.0

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.

    2001-01-01

    This manual describes the new FATMaCC (Five-Axis, Three-Magnetic-Bearing Control Code). The FATMaCC (pronounced "fat mak") is a versatile control code that possesses many desirable features that were not available in previous in-house controllers. The ultimate goal in designing this code was to achieve full rotor levitation and control at a loop time of 50 microsec. Using a 1-GHz processor, the code will control a five-axis system in either a decentralized or a more elegant centralized (modal control) mode at a loop time of 56 microsec. In addition, it will levitate and control (with only minor modification to the input/output wiring) a two-axis and/or a four-axis system. Stable rotor levitation and control of any of the systems mentioned above are accomplished through appropriate key presses to modify parameters, such as stiffness, damping, and bias. A signal generation block provides 11 excitation signals. An excitation signal is then superimposed on the radial bearing x- and y-control signals, thus producing a resultant force vector. By modulating the signals on the bearing x- and y-axes with a cosine and a sine function, respectively, a radial excitation force vector is made to rotate 360 deg. about the bearing geometric center. The rotation of the force vector is achieved manually by using key press or automatically by engaging the "one-per-revolution" feature. Rotor rigid body modes can be excited by using the excitation module. Depending on the polarities of the excitation signal in each radial bearing, the bounce or tilt mode will be excited.

  4. Controlling Casimir force via coherent driving field

    NASA Astrophysics Data System (ADS)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  5. Meta-Stable Magnetic Domain States That Prevent Reliable Absolute Palaeointensity Experiments Revealed By Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    de Groot, L. V.; Fabian, K.; Bakelaar, I. A.; Dekkers, M. J.

    2014-12-01

    Obtaining reliable estimates of the absolute palaeointensity of the Earth's magnetic field is notoriously difficult. Many methods to obtain paleointensities from suitable records such as lavas and archeological artifacts involve heating the samples. These heating steps are believed to induce 'magnetic alteration' - a process that is still poorly understood but prevents obtaining correct paleointensity estimates. To observe this magnetic alteration directly we imaged the magnetic domain state of titanomagnetite particles - a common carrier of the magnetic remanence in samples used for paleointensity studies. We selected samples from the 1971-flow of Mt. Etna from a site that systematically yields underestimates of the known intensity of the paleofield - in spite of rigorous testing by various groups. Magnetic Force Microscope images were taken before and after a heating step typically used in absolute palaeointensity experiments. Before heating, the samples feature distinct, blocky domains that sometimes seem to resemble a classical magnetite domain structure. After imparting a partial thermo-remanent magnetization at a temperature often critical to paleointensity experiments (250 °C) the domain state of the same titanomagnetite grains changes into curvier, wavy domains. Furthermore, these structures appeared to be unstable over time: after one-year storage in a magnetic field-free environment the domain states evolved into a viscous remanent magnetization state. Our observations may qualitatively explain reported underestimates from technically successful paleointensity experiments for this site and other sites reported previously. Furthermore the occurrence of intriguing observations such as 'the drawer storage effect' by Shaar et al (EPSL, 2011), and viscous magnetizations observed by Muxworthy and Williams (JGR, 2006) may be (partially) explained by our observations. The major implications of our study for all palaeointensity methods involving heating may be

  6. Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy.

    PubMed

    Gan, Tiansheng; Gong, Xiangjun; Schönherr, Holger; Zhang, Guangzhao

    2016-12-01

    Microrheology of growing biofilms provides insightful information about its structural evolution and properties. In this study, the authors have investigated the microrheology of Escherichia coli (strain HCB1) biofilms at different indentation depth (δ) by using magnetic force modulation atomic force microscopy as a function of disturbing frequency (f). As δ increases, the dynamic stiffness (k s ) for the biofilms in the early stage significantly increases. However, it levels off when the biofilms are matured. The facts indicate that the biofilms change from inhomogeneous to homogeneous in structure. Moreover, k s is scaled to f, which coincides with the rheology of soft glasses. The exponent increases with the incubation time, indicating the fluidization of biofilms. In contrast, the upper layer of the matured biofilms is solidlike in that the storage modulus is always larger than the loss modulus, and its viscoelasticity is slightly influenced by the shear stress.

  7. The effect of the Coriolis force on the stability of rotating magnetic stars

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    The effect of the Coriolis force on the stability of rotating magnetic stars in hydrostatic equilibrium is investigated by using the method of the energy principle. It is shown that this effect is to inhibit the onset of instability.

  8. The effect of the Coriolis force on the stability of rotating magnetic stars.

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    The effect of the Coriolis force on the stability of rotating magnetic stars in hydrostatic equilibrium is investigated by using the method of the energy principle. It is shown that this effect is to inhibit the onset of instability.

  9. Friction-Controlled Traction Force in Cell Adhesion

    PubMed Central

    Pompe, Tilo; Kaufmann, Martin; Kasimir, Maria; Johne, Stephanie; Glorius, Stefan; Renner, Lars; Bobeth, Manfred; Pompe, Wolfgang; Werner, Carsten

    2011-01-01

    The force balance between the extracellular microenvironment and the intracellular cytoskeleton controls the cell fate. We report a new (to our knowledge) mechanism of receptor force control in cell adhesion originating from friction between cell adhesion ligands and the supporting substrate. Adherent human endothelial cells have been studied experimentally on polymer substrates noncovalently coated with fluorescent-labeled fibronectin (FN). The cellular traction force correlated with the mobility of FN during cell-driven FN fibrillogenesis. The experimental findings have been explained within a mechanistic two-dimensional model of the load transfer at focal adhesion sites. Myosin motor activity in conjunction with sliding of FN ligands noncovalently coupled to the surface of the polymer substrates is shown to result in a controlled traction force of adherent cells. We conclude that the friction of adhesion ligands on the supporting substrate is important for mechanotransduction and cell development of adherent cells in vitro and in vivo. PMID:22004739

  10. Magnetothermal Convection of Air in a Shallow Vessel under the Application of an Axisymmetric Magnetic Force

    NASA Astrophysics Data System (ADS)

    Maki, Syou; Tanaka, Keito; Morimoto, Shotaro

    2017-02-01

    We examined, by three-dimensional numerical computations, the magnetothermal convection of air (a paramagnetic substance) enclosed in a cylindrical vessel with a Rayleigh-Benard model under the application of an axisymmetric magnetic force at the center of a solenoidal superconducting magnet. Axisymmetric steady convective flows were induced when the magnitude of the radial component of the magnetic force (fmR) was 1.0 and 5.0 times that of the gravitational force at the vessel sidewall; e.g., the hot air was concentrated at the vessel center and the cold air was driven to the vicinity of the vessel sidewall. This flow pattern was similar to the case of water (a diamagnetic substance), although the axisymmetric arrangements of hot and cold water were the reverse of the present convection of air. When fmR was 0.5 times that of the gravitational force, the axisymmetric flows appeared only in the vicinity of the vessel sidewall. Unsteady convective rolls simultaneously occurred in the vessel center, and they repeatedly combined and separated from each other. When fmR was 0.1 times that of the gravitational force, there were barely any axisymmetric flows in the close vicinity of the vessel sidewall, while the initial convective flows remained in most other parts of the vessel. Thus, we varied the magnitude of fmR and clarified the transitional processes of isothermal and velocity distributions of magnetothermal convection. We discuss those convective flows with the magnitude and direction of fmR.

  11. Visualization and quantification of magnetic nanoparticles into vesicular systems by combined atomic and magnetic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, C.; Department of Physics, SAPIENZA University of Rome, Piazzale A. Moro 5, 00185, Rome; Corsetti, S.

    2015-06-23

    We report a phenomenological approach for the quantification of the diameter of magnetic nanoparticles (MNPs) incorporated in non-ionic surfactant vesicles (niosomes) using magnetic force microscopy (MFM). After a simple specimen preparation, i.e., by putting a drop of solution containing MNPs-loaded niosomes on flat substrates, topography and MFM phase images are collected. To attempt the quantification of the diameter of entrapped MNPs, the method is calibrated on the sole MNPs deposited on the same substrates by analyzing the MFM signal as a function of the MNP diameter (at fixed tip-sample distance) and of the tip-sample distance (for selected MNPs). After calibration,more » the effective diameter of the MNPs entrapped in some niosomes is quantitatively deduced from MFM images.« less

  12. Switched Fuzzy-PD Control of Contact Forces in Robotic Microbiomanipulation.

    PubMed

    Zhang, Weize; Dong, Xianke; Liu, Xinyu

    2017-05-01

    Force sensing and control are of paramount importance in robotic micromanipulation. A contact force regulator capable of accurately applying mechanical stimuli to a live Drosophila larva could greatly facilitate mechanobiology research on Drosophila and may eventually lead to novel discoveries in mechanotransduction mechanisms of neuronal circuitries. In this paper, we present a novel contact force control scheme implemented in an automated Drosophila larvae micromanipulation system, featuring a switched fuzzy to proportional-differential (PD) controller and a noise-insensitive extended high gain observer (EHGO). The switched fuzzy-PD control law inherits the fast convergence of fuzzy control and overcomes its drawbacks such as large overshoot and steady-state oscillation. The noise-insensitive EHGO can reliably estimate system modeling errors and is robust to force measurement noises, which is advantageous over conventional high gain observers (sensitive to signal noises). Force control experiments show that, compared to a proportional-integral-differential (PID) controller, this new force control scheme significantly enhances the system dynamic performance in terms of rising time, overshoot, and oscillation. The developed robotic system and the force control scheme will be applied to mechanical stimulation and fluorescence imaging of Drosophila larvae for identifying new mechanotransduction mechanisms.

  13. Design considerations of electromagnetic force in a direct drive permanent magnet brushless motor

    NASA Astrophysics Data System (ADS)

    Chen, H. S.; Tsai, M. C.

    2008-04-01

    In this paper, a numerical study of electromagnetic force associated with the width of stator teeth, width of rotor back iron, and slot opening for a ten-pole nine-slot direct drive permanent magnet brushless motor is presented. The study calculates the amplitude of the electromagnetic force on the rotating rotor by using the finite-element method. The results show that the amplitude of electromagnetic force, which may cause the noise and vibration of motors, changes with the variation of these above mentioned three factors. The relationship between the considerations of output torque and the minimization of noise and vibration is also established in this paper.

  14. Control of dynamical self-assembly of strongly Brownian nanoparticles through convective forces induced by ultrafast laser

    NASA Astrophysics Data System (ADS)

    Ilday, Serim; Akguc, Gursoy B.; Tokel, Onur; Makey, Ghaith; Yavuz, Ozgun; Yavuz, Koray; Pavlov, Ihor; Ilday, F. Omer; Gulseren, Oguz

    We report a new dynamical self-assembly mechanism, where judicious use of convective and strong Brownian forces enables effective patterning of colloidal nanoparticles that are almost two orders of magnitude smaller than the laser beam. Optical trapping or tweezing effects are not involved, but the laser is used to create steep thermal gradients through multi-photon absorption, and thereby guide the colloids through convective forces. Convective forces can be thought as a positive feedback mechanism that helps to form and reinforce pattern, while Brownian motion act as a competing negative feedback mechanism to limit the growth of the pattern, as well as to increase the possibilities of bifurcation into different patterns, analogous to the competition observed in reaction-diffusion systems. By steering stochastic processes through these forces, we are able to gain control over the emergent pattern such as to form-deform-reform of a pattern, to change its shape and transport it spatially within seconds. This enables us to dynamically initiate and control large patterns comprised of hundreds of colloids. Further, by not relying on any specific chemical, optical or magnetic interaction, this new method is, in principle, completely independent of the material type being assembled.

  15. Micro magnetic tweezers for nanomanipulation inside live cells.

    PubMed

    de Vries, Anthony H B; Krenn, Bea E; van Driel, Roel; Kanger, Johannes S

    2005-03-01

    This study reports the design, realization, and characterization of a multi-pole magnetic tweezers that enables us to maneuver small magnetic probes inside living cells. So far, magnetic tweezers can be divided into two categories: I), tweezers that allow the exertion of high forces but consist of only one or two poles and therefore are capable of only exerting forces in one direction; and II), tweezers that consist of multiple poles and allow exertion of forces in multiple directions but at very low forces. The magnetic tweezers described here combines both aspects in a single apparatus: high forces in a controllable direction. To this end, micron scale magnetic structures are fabricated using cleanroom technologies. With these tweezers, magnetic flux gradients of nablaB = 8 x 10(3) T m(-1) can be achieved over the dimensions of a single cell. This allows exertion of forces up to 12 pN on paramagnetic probes with a diameter of 350 nm, enabling us to maneuver them through the cytoplasm of a living cell. It is expected that with the current tweezers, picoNewton forces can be exerted on beads as small as 100 nm.

  16. Hybrid force-velocity sliding mode control of a prosthetic hand.

    PubMed

    Engeberg, Erik D; Meek, Sanford G; Minor, Mark A

    2008-05-01

    Four different methods of hand prosthesis control are developed and examined experimentally. Open-loop control is shown to offer the least sensitivity when manipulating objects. Force feedback substantially improves upon open-loop control. However, it is shown that the inclusion of velocity and/or position feedback in a hybrid force-velocity control scheme can further improve the functionality of hand prostheses. Experimental results indicate that the sliding mode controller with force, position, and velocity feedback is less prone to unwanted force overshoot when initially grasping objects than the other controllers.

  17. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    DOEpatents

    Huber, Dale L [Albuquerque, NM

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  18. A dynamic method for magnetic torque measurement

    NASA Technical Reports Server (NTRS)

    Lin, C. E.; Jou, H. L.

    1994-01-01

    In a magnetic suspension system, accurate force measurement will result in better control performance in the test section, especially when a wider range of operation is required. Although many useful methods were developed to obtain the desired model, however, significant error is inevitable since the magnetic field distribution of the large-gap magnetic suspension system is extremely nonlinear. This paper proposed an easy approach to measure the magnetic torque of a magnetic suspension system using an angular photo encoder. Through the measurement of the velocity change data, the magnetic torque is converted. The proposed idea is described and implemented to obtain the desired data. It is useful to the calculation of a magnetic force in the magnetic suspension system.

  19. External force/velocity control for an autonomous rehabilitation robot

    NASA Astrophysics Data System (ADS)

    Saekow, Peerayuth; Neranon, Paramin; Smithmaitrie, Pruittikorn

    2018-01-01

    Stroke is a primary cause of death and the leading cause of permanent disability in adults. There are many stroke survivors, who live with a variety of levels of disability and always need rehabilitation activities on daily basis. Several studies have reported that usage of rehabilitation robotic devices shows the better improvement outcomes in upper-limb stroke patients than the conventional therapy-nurses or therapists actively help patients with exercise-based rehabilitation. This research focuses on the development of an autonomous robotic trainer designed to guide a stroke patient through an upper-limb rehabilitation task. The robotic device was designed and developed to automate the reaching exercise as mentioned. The designed robotic system is made up of a four-wheel omni-directional mobile robot, an ATI Gamma multi-axis force/torque sensor used to measure contact force and a microcontroller real-time operating system. Proportional plus Integral control was adapted to control the overall performance and stability of the autonomous assistive robot. External force control was successfully implemented to establish the behavioral control strategy for the robot force and velocity control scheme. In summary, the experimental results indicated satisfactorily stable performance of the robot force and velocity control can be considered acceptable. The gain tuning for proportional integral (PI) velocity control algorithms was suitably estimated using the Ziegler-Nichols method in which the optimized proportional and integral gains are 0.45 and 0.11, respectively. Additionally, the PI external force control gains were experimentally tuned using the trial and error method based on a set of experiments which allow a human participant moves the robot along the constrained circular path whilst attempting to minimize the radial force. The performance was analyzed based on the root mean square error (E_RMS) of the radial forces, in which the lower the variation in radial

  20. Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.

    2004-01-01

    Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing

  1. Current sheet formation in a sheared force-free-magnetic field. [in sun

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard

    1989-01-01

    This paper presents the results of a study showing how continuous shearing motion of magnetic footpoints in a tenuous, infinitely conducting plasma can lead to the development of current sheets, despite the absence of such sheets or even of neutral points in the initial state. The calculations discussed here verify the earlier suggestion by Low and Wolfson (1988) that extended current sheets should form due to the shearing of a force-free quadrupolar magnetic field. More generally, this work augments earlier studies suggesting that the appearance of discontinuities - current sheets - may be a necessary consequence of the topological invariance imposed on the magnetic field geometry of an ideal MHD system by virtue of its infinite conductivity. In the context of solar physics, the work shows how the gradual and continuous motion of magnetic footpoints at the solar photosphere may lead to the buildup of magnetic energy that can then be released explosively when finite conductivity effects become important and lead to the rapid dissipation of current sheets. Such energy release may be important in solar flares, coronal mass ejections, and other eruptive events.

  2. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control.

    PubMed

    Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang

    2017-03-01

    This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.

  3. Magnetic fluid control for viscous loss reduction of high-speed MRF brakes and clutches with well-defined fail-safe behavior

    NASA Astrophysics Data System (ADS)

    Güth, Dirk; Schamoni, Markus; Maas, Jürgen

    2013-09-01

    No-load losses within brakes and clutches based on magnetorheological fluids are unavoidable and represent a major barrier towards their wide-spread commercial adoption. Completely torque free rotation is not yet possible due to persistent fluid contact within the shear gap. In this paper, a novel concept is presented that facilitates the controlled movement of the magnetorheological fluid from an active, torque-transmitting region into an inactive region of the shear gap. This concept enables complete decoupling of the fluid engaging surfaces such that viscous drag torque can be eliminated. In order to achieve the desired effect, motion in the magnetorheological fluid is induced by magnetic forces acting on the fluid, which requires an appropriate magnetic circuit design. In this investigation, we propose a methodology to determine suitable magnetic circuit designs with well-defined fail-safe behavior. The magnetically induced motion of magnetorheological fluids is modeled by the use of the Kelvin body force, and a multi-physics domain simulation is performed to elucidate various transitions between an engaged and disengaged operating mode. The modeling approach is validated by captured high-speed video frames which show the induced motion of the magnetorheological fluid due to the magnetic field. Finally, measurements performed with a prototype actuator prove that the induced viscous drag torque can be reduced significantly by the proposed magnetic fluid control methodology.

  4. Apparatus having reduced mechanical forces for supporting high magnetic fields

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of supporting extremely high magnetic fields suitable for plasma confinement, wherein forces experienced by the conducting elements are significantly reduced over those which are present as a result of the generation of such high fields by conventional techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  5. Telerobotic hand controller study of force reflection with position control mode

    NASA Technical Reports Server (NTRS)

    Willshire, Kelli F.; Hankins, Walter W.; Morris, A. Terry; Mixon, Randolph W.

    1992-01-01

    To gain further information about the effectiveness of kinesthetic force feedback or force reflection in position control mode for a telerobot, two Space Station related tasks were performed by eight subjects with and without the use of force reflection. Both time and subjective responses were measured. No differences due to force were found, however, other differences were found, e.g., gender. Comparisons of these results with other studies are discussed.

  6. The vectorial control of magnetization by light.

    PubMed

    Kanda, Natsuki; Higuchi, Takuya; Shimizu, Hirokatsu; Konishi, Kuniaki; Yoshioka, Kosuke; Kuwata-Gonokami, Makoto

    2011-06-21

    Application of coherent light-matter interactions has recently been extended to the ultrafast control of magnetization. An important but unrealized technique is the manipulation of magnetization vector motion to make it follow an arbitrarily designed multidimensional trajectory. Here we demonstrate a full manipulation of two-dimensional magnetic oscillations in antiferromagnetic NiO with a pair of polarization-twisted femtosecond laser pulses. We employ Raman-type nonlinear optical processes, wherein magnetic oscillations are impulsively induced with a controlled initial phase. Their azimuthal angle follows well-defined selection rules that have been determined by the symmetries of the materials. We emphasize that the temporal variation of the laser-pulse polarization angle enables us to control the phase and amplitude of the two degenerate modes, independently. These results lead to a new concept of the vectorial control of magnetization by light.

  7. Electric Field Controlled Magnetism in BiFeO3/Ferromagnet Films

    NASA Astrophysics Data System (ADS)

    Barry, M.; Lee, K.; Chu, Y. H.; Yang, P. L.; Martin, L. W.; Jenkins, C. A.; Ramesh, R.; Scholl, A.; Doran, A.

    2007-03-01

    BiFeO3 is the only single phase room temperature multiferroic that is currently known. Not only does it have applications as a lead-free replacement for ferroelectric memory cells and piezoelectric sensors, but its interactions with other materials are now attracting a great deal of attention. Its multiferroic nature has potential in the field of exchange bias, where it could allow electric-field control of the ferromagnetic (FM) magnetization. In order to understand this coupling, an understanding of the magnetization in BiFeO3 is necessary. X-ray linear and circular dichroism images were obtained using a high spatial resolution photoelectron emission microscope (PEEM), allowing elemental specificity and surface sensitivity. A piezoelectric force microscope (PFM) was used to map the ferroelectric state in micron-sized regions of the films, which were then probed using crystallographic measurements and temperature dependent PEEM measurements. Temperature dependent structural measurements allow decoupling of the two order parameters, ferroelectric and magnetic, contributing to the photoemission signal. Careful analysis of linear and circular dichroism images allows determination of magnetic directions in BiFeO3 and FM layers.

  8. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.

    PubMed

    Kim, Sung Hoon; Shin, Kyoosik; Hashi, Shuichiro; Ishiyama, Kazushi

    2012-09-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities.

  9. A new atomic force microscope force ramp technique using digital force feedback control reveals mechanically weak protein unfolding events.

    PubMed

    Kawakami, M; Smith, D A

    2008-12-10

    We have developed a new force ramp modification of the atomic force microscope (AFM) which can control multiple unfolding events of a multi-modular protein using software-based digital force feedback control. With this feedback the force loading rate can be kept constant regardless the length of soft elastic linkage or number of unfolded polypeptide domains. An unfolding event is detected as a sudden drop in force, immediately after which the feedback control reduces the applied force to a low value of a few pN by lowering the force set point. Hence the remaining folded domains can relax and the subsequent force ramp is applied to relaxed protein domains identically in each case. We have applied this technique to determine the kinetic parameters x(u), which is the distance between the native state and transition state, and α(0), which is the unfolding rate constant at zero force, for the mechanical unfolding of a pentamer of I27 domains of titin. In each force ramp the unfolding probability depends on the number of folded domains remaining in the system and we had to take account of this effect in the analysis of unfolding force data. We obtained values of x(u) and α(0) to be 0.28 nm and 1.02 × 10(-3) s(-1), which are in good agreement with those obtained from conventional constant velocity experiments. This method reveals unfolding data at low forces that are not seen in constant velocity experiments and corrects for the change in stiffness that occurs with most mechanical systems throughout the unfolding process to allow constant force ramp experiments to be carried out. In addition, a mechanically weak structure was detected, which formed from the fully extended polypeptide chain during a force quench. This indicates that the new technique will allow studies of the folding kinetics of previously hidden, mechanically weak species.

  10. Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field.

    PubMed

    Guo, Qing-Hua; Zhang, Chen-Jie; Wei, Chao; Xu, Min-Min; Yuan, Ya-Xian; Gu, Ren-Ao; Yao, Jian-Lin

    2016-01-05

    A large surface-enhanced Raman scattering (SERS) effect is critically dependent on the gap distance of adjacent nanostructures, i.e., "hot spots". However, the fabrication of dynamically controllable hot spots still remains a remarkable challenge. In the present study, we employed an external magnetic field to dynamically control the interparticle spacing of a two-dimensional monolayer film of Fe3O4@Au nanoparticles at a hexane/water interface. SERS measurements were performed to monitor the expansion and shrinkage of the nanoparticles gaps, which produced an obvious effect on SERS activities. The balance between the electrostatic repulsive force, surface tension, and magnetic attractive force allowed observation of the magnetic-field-responsive SERS effect. Upon introduction of an external magnetic field, a very weak SERS signal appeared initially, indicating weak enhancement due to a monolayer film with large interparticle spacing. The SERS intensity reached maximum after 5s and thereafter remained almost unchanged. The results indicated that the observed variations in SERS intensities were fully reversible after removal of the external magnetic field. The reduction of interparticle spacing in response to a magnetic field resulted in about one order of magnitude of SERS enhancement. The combined use of the monolayer film and external magnetic field could be developed as a strategy to construct hot spots both for practical application of SERS and theoretical simulation of enhancement mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  12. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  13. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  14. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  15. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  16. Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2013-12-01

    One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.

  17. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere: Rice convection model simulations combined with modified Dungey force-balanced magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, Matina; Wang, Chih-Ping; Lyons, Larry R.

    2011-12-01

    Transport of plasma sheet particles into the inner magnetosphere is crucial to the development of the region 2 (R2) field-aligned current system (FAC), which results in the shielding of the penetration electric field and the formation of subauroral polarization streams (SAPS) and the Harang reversal, phenomena closely associated with storms and substorms. In addition to the electric field, this transport is also strongly affected by the magnetic field, which changes with plasma pressure and is distinctly different from the dipole field in the inner plasma sheet. To determine the feedback of force-balanced magnetic field to the transport, we have integrated the Rice convection model (RCM) with a modified Dungey magnetic field solver to obtain the required force balance in the equatorial plane. Comparing our results with those from a RCM run using a T96 magnetic field, we find that transport under a force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-Earth region and weaker shielding of the penetration electric field. As a result, plasma sheet protons and electrons penetrate farther earthward, and their inner edges become closer together and more azimuthally symmetric than in the T96 case. The Harang reversal extends farther dawnward, and the SAPS become more confined in radial and latitudinal extents. The magnitudes of azimuthal pressure gradient, the inner edges of thermal protons and electrons, the latitudinal range of the Harang reversal, and the radial and latitudinal widths of the SAPS from the force-balanced run are found to be more consistent with observations.

  18. A novel 3D-printed mechanical actuator using centrifugal force for magnetic resonance elastography.

    PubMed

    Neumann, Wiebke; Schad, Lothar R; Zollner, Frank G

    2017-07-01

    Magnetic resonance elastography (MRE) is a technique for the quantification of tissue stiffness during MR examinations. It requires consistent methods for mechanical shear wave induction to the region of interest in the human body to reliably quantify elastic properties of soft tissues. This work proposes a novel 3D-printed mechanical actuator using the principle of centrifugal force for wave induction. The driver consists of a 3D-printed turbine vibrator powered by compressed air (located inside the scanner room) and an active driver controlling the pressure of inflowing air (placed outside the scanner room). The generated force of the proposed actuator increases for higher actuation frequencies as opposed to conventionally used air cushions. There, the displacement amplitude decreases with increasing actuation frequency resulting in a smaller signal-to-noise ratio. An initial phantom study is presented which demonstrates the feasibility of the actuator for MRE. The wave-actuation frequency was regulated in a range between 15 Hz and 60 Hz for force measurements and proved sufficiently stable (± 0.3 Hz) for any given nominal frequency. The generated forces depend on the weight of the eccentric unbalance within the turbine and ranged between 0.67 N to 2.70 N (for 15 Hz) and 3.09 N to 7.77 N (for 60 Hz). Therefore, the generated force of the presented actuator increases with rotational speed of the turbine and offers an elegant solution for sufficiently large wave actuation at higher frequencies. In future work, we will investigate an optimal ratio of the weight of unbalance to the size of turbine for appropriately large but tolerable wave actuation for a given nominal frequency.

  19. Contact position sensor using constant contact force control system

    NASA Technical Reports Server (NTRS)

    Sturdevant, Jay (Inventor)

    1995-01-01

    A force control system (50) and method are provided for controlling a position contact sensor (10) so as to produce a constant controlled contact force therewith. The system (50) includes a contact position sensor (10) which has a contact probe (12) for contacting the surface of a target to be measured and an output signal (V.sub.o) for providing a position indication thereof. An actuator (30) is provided for controllably driving the contact position sensor (10) in response to an actuation control signal (I). A controller (52) receives the position indication signal (V.sub.o) and generates in response thereto the actuation control signal (I) so as to provide a substantially constant selective force (F) exerted by the contact probe (12). The actuation drive signal (I) is generated further in response to substantially linear approximation curves based on predetermined force and position data attained from the sensor (10) and the actuator (30).

  20. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells.

    PubMed

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-07-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.

  1. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells

    PubMed Central

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-01-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. Three dimensional-Magnetic Twisting Cytometry (3D-MTC) is a technique for applying local mechanical stresses on living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real time acquisition of a living cell’s mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC – microscopy platform takes around 20 days to construct and the experimental procedures require ~4 days when carried out by a life sciences graduate student. PMID:28686583

  2. Combination radial and thrust magnetic bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor)

    2002-01-01

    A combination radial and thrust magnetic bearing is disclosed that allows for both radial and thrust axes control of an associated shaft. The combination radial and thrust magnetic bearing comprises a rotor and a stator. The rotor comprises a shaft, and first and second rotor pairs each having respective rotor elements. The stator comprises first and second stator elements and a magnet-sensor disk. In one embodiment, each stator element has a plurality of split-poles and a corresponding plurality of radial force coils and, in another embodiment, each stator element does not require thrust force coils, and radial force coils are replaced by double the plurality of coils serving as an outer member of each split-pole half.

  3. Radiation pressure excitation of Low Temperature Atomic Force & Magnetic Force Microscope (LT-AFM/MFM) for Imaging

    NASA Astrophysics Data System (ADS)

    Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team

    2015-03-01

    We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.

  4. Hand controller study of force and control mode

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1992-01-01

    The objectives are to compare and evaluate the utility and effectiveness of various input control devices, e.g., hand controllers, with respect to the relative importance of force and operation control mode (rate or position) for Space Station Freedom (SSF) related tasks. The topics are presented in viewgraph form and include the: Intelligent Research Systems Lab (ISRL) experimental design; Telerobotic Systems Research Laboratory (TSRL) final experimental design; and factor analysis summary of results.

  5. Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid

    NASA Astrophysics Data System (ADS)

    Hoof, Sebastian; Nand Gosvami, Nitya; Hoogenboom, Bart W.

    2012-12-01

    Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here, we show that a high-quality resonance (Q >20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity—as expressed via the minimum detectable force gradient—is hardly affected, because of the enhanced quality factor. Through the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up that includes magnetic actuation of the cantilevers and that can be easily implemented in any AFM system that is compatible with an inverted optical microscope.

  6. A single-phase axially-magnetized permanent-magnet oscillating machine for miniature aerospace power sources

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi

    2017-05-01

    A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.

  7. Development of magnet configurations for magnetic immunostaining

    NASA Astrophysics Data System (ADS)

    Kaneko, Miki; Chikaki, Shinichi; Matsuda, Sachiko; Kuwahata, Akihiro; Namita, Masayuki; Saito, Itsuro; Sakamoto, Satoshi; Kusakabe, Moriaki; Sekino, Masaki

    2018-05-01

    Magnetic immunostaining using a magnet and antibody-labeled fluorescent ferrite (FF) beads is established as a rapid immunostaining. In this study, we proposed the novel configuration of magnets with the large magnetic field gradient and the strong magnetic force for magnetic immunostaining. To confirm the usefulness of the proposed magnet configuration, we performed numerical analysis of the magnetic characteristics of the proposed magnets, and the magnetic immunostaining with FF beads. It was revealed that the proposed magnets generated the strong magnetic force and promoted the immunoreaction rapidly.

  8. Workspace Safe Operation of a Force- or Impedance-Controlled Robot

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E. (Inventor); Hargrave, Brian (Inventor); Strawser, Philip A. (Inventor); Yamokoski, John D. (Inventor)

    2013-01-01

    A method of controlling a robotic manipulator of a force- or impedance-controlled robot within an unstructured workspace includes imposing a saturation limit on a static force applied by the manipulator to its surrounding environment, and may include determining a contact force between the manipulator and an object in the unstructured workspace, and executing a dynamic reflex when the contact force exceeds a threshold to thereby alleviate an inertial impulse not addressed by the saturation limited static force. The method may include calculating a required reflex torque to be imparted by a joint actuator to a robotic joint. A robotic system includes a robotic manipulator having an unstructured workspace and a controller that is electrically connected to the manipulator, and which controls the manipulator using force- or impedance-based commands. The controller, which is also disclosed herein, automatically imposes the saturation limit and may execute the dynamic reflex noted above.

  9. Emergence of nonwhite noise in Langevin dynamics with magnetic Lorentz force

    NASA Astrophysics Data System (ADS)

    Chun, Hyun-Myung; Durang, Xavier; Noh, Jae Dong

    2018-03-01

    We investigate the low mass limit of Langevin dynamics for a charged Brownian particle driven by a magnetic Lorentz force. In the low mass limit, velocity variables relaxing quickly are coarse-grained out to yield effective dynamics for position variables. Without the Lorentz force, the low mass limit is equivalent to the high friction limit. Both cases share the same Langevin equation that is obtained by setting the mass to zero. The equivalence breaks down in the presence of the Lorentz force. The low mass limit cannot be achieved by setting the mass to zero. The limit is also distinct from the large friction limit. We derive the effective equations of motion in the low mass limit. The resulting stochastic differential equation involves a nonwhite noise whose correlation matrix has antisymmetric components. We demonstrate the importance of the nonwhite noise by investigating the heat dissipation by a driven Brownian particle, where the emergent nonwhite noise has a physically measurable effect.

  10. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel

    NASA Astrophysics Data System (ADS)

    Tang, Jiqiang; Sun, Jinji; Fang, Jiancheng; Shuzhi Sam, Ge

    2013-03-01

    For a magnetically suspended momentum flywheel (MSMF), the spinning rotor can be tilted by a pair of the presented axial hybrid magnetic bearing (AHMB) with eight poles and rotates around the radial axes to generate a large torque to maneuver the spacecraft. To improve the control performance and gimballing control ability of the AHMB, characteristics such as magnetic suspension force, angular stiffness and tilting momentum are researched. These segmented stator poles cause the magnetic density in the thrust rotor plate to be uneven unavoidably and the rotational loss is large at high speed, but we optimized the stator poles configuration and caused the thrust rotor plate formed by bulk DT4C and laminated material to make the magnetic density in the thrust rotor plate change less and be smoother. Laminated material such as 1J50 film with a thickness of 0.1 mm can make the variation of the magnetic density in DT4C become very small and the eddy loss of it be negligible, but the stress produced in the “O” shape stacks by reeling has a bad effect on its power loss. Nanocrystalline can reduce eddy losses and is not affected by the reeling process. Based on the AHBM consisting of the stator with eight improved poles and the presented thrust rotor plate with DT4 and nanocrystalline, the rotational loss of 5-DOF magnetically suspended momentum flywheel with angular momentum of 15 N m s at 5000 rpm has reduced from 23.4 W to 3.2 W, which proved that this AHMB has low eddy loss for the gimballing control ability.

  11. The Use of Magnets for Introducing Primary School Students to Some Properties of Forces through Small-Group Pedagogy

    ERIC Educational Resources Information Center

    Carruthers, Rebecca; de Berg, Kevin

    2010-01-01

    Seventeen Grade Six students were divided into small groups to study the concept of forces in the context of magnets and their properties. The researcher, a pre-service primary school teacher, encouraged the students into conversation about magnets and it was found that, without hesitation, they talked about their prior experience of magnets. The…

  12. Magnetodynamic stability of a fluid cylinder under the Lundquist force-free magnetic field

    NASA Astrophysics Data System (ADS)

    Radwan, Ahmed E.; Halawa, Mohamed A.

    1990-04-01

    The magnetodynamic (in)stability of a conducting fluid cylinder subject to the capillarity and electromagnetic forces has been developed. The cylinder is pervaded by a uniform magnetic field but embedded in the Lundquist force-free varying field that allows for flowing a current surrounding the fluid. A general eigenvalue relation is derived based on a study of the equilibrium and perturbed states. The stability criterion is discussed analytically in general terms. The surface tension is destabilizing for small axisymmetric mode and stable for all others. The principle of the exchange of stability is allowed for the present problem due to the non-uniform behavior of the force-free field. Each of the axial and transverse force-free fields separately exerts a stabilizing influence in the most dangerous mode but the combined contribution of them is strongly destabilizing. Whether the model is acted upon the electromagnetic force (with the Lundquist field) the stability restrictions or/and the capillarity force are identified. Several reported works can be recovered as limiting cases with appropriate simplifications.

  13. Tunable rotating-mode density measurement using magnetic levitation

    NASA Astrophysics Data System (ADS)

    Gao, Qiu-Hua; Zhang, Wen-Ming; Zou, Hong-Xiang; Liu, Feng-Rui; Li, Wen-Bo; Peng, Zhi-Ke; Meng, Guang

    2018-04-01

    In this letter, a density measurement method by magnetic levitation using the rotation mechanism is presented. By rotating the entire magnetic levitation device that consists of four identical magnets, the horizontal centrifugal force and gravity can be balanced by the magnetic forces in the x-direction and the z-direction, respectively. The controllable magnified centripetal acceleration is investigated as a means to improve the measurement sensitivity without destabilization. Theoretical and experimental results show that the density measurement method can be flexible in characterizing small differences in density by tuning the eccentric distance or rotating speed. The rotating-mode density measurement method using magnetic levitation has prospects of providing an operationally simple way in separations and quality control of objects with arbitrary shapes in materials science and industrial fields.

  14. Magnetic force driven magnetoelectric effect in Mn-Zn-ferrite/PZT composites

    NASA Astrophysics Data System (ADS)

    Zhang, Ru; Jin, Lei; Wu, Gaojian; Zhang, Ning

    2017-03-01

    Several magnetoelectric devices with different structures were prepared using Mn-Zn-ferrite/PZT composite. Its magnetoelectric effect, which arose from piezoelectric effects driven by magnetic force between ferromagnets, has been studied. Experiments showed that the magnetoelectric effects in these devices are much stronger than that observed from the samples relied on magnetostrictive effect. Additionally, the magnetoelectric effect obtained from the devices based on bending piezoelectric effect at resonant point is about one order of magnitude larger than that resulted from ones that rely on stretch mode. Furthermore, magnetoelectric voltage coefficient as high as 7 V cm-1 Oe-1 with zero bias magnetic field was observed in the device with cantilever structure, which was also based on bending piezoelectric effect.

  15. Measurement and calculation of levitation forces between magnets and granular superconductors

    NASA Technical Reports Server (NTRS)

    Johansen, T. H.; Bratsberg, H.; Baziljevich, M.; Hetland, P. O.; Riise, A. B.

    1995-01-01

    Recent developments indicate that exploitation of the phenomenon of magnetic levitation may become one of the most important near-term applications of high-T(sub c) superconductivity. Because of this, the interaction between a strong permanent magnet(PM) and bulk high-T(sub c) superconductor (HTSC) is currently a subject of much interest. We have studied central features of the mechanics of PM-HTSC systems of simple geometries. Here we report experimental results for the components of the levitation force, their associated stiffness and mechanical ac-loss. To analyze the observed behavior a theoretical framework based on critical-state considerations is developed. It will be shown that all the mechanical properties can be explained consistently at a quantitative level wing a minimum of model parameters.

  16. A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage.

    PubMed

    Choi, Young-Man; Lee, Moon G; Gweon, Dae-Gab; Jeong, Jaehwa

    2009-04-01

    Next-generation lithography requires a high precision stage, which is compatible with a high vacuum condition. A magnetic levitation stage with six degrees-of-freedom is considered state-of-the-art technology for a high vacuum condition. The noncontact characteristic of magnetic levitation enables high precision positioning as well as no particle generation. To position the stage against gravity, z-directional electromagnetic levitation mechanisms are widely used. However, if electromagnetic actuators for levitation are used, heat is inevitably generated, which deforms the structures and degrades accuracy of the stage. Thus, a gravity compensator is required. In this paper, we propose a new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. The novel Halbach magnetic bearing exerts a force four times larger than a conventional magnetic bearing with the same volume. We also discuss the complementary characteristics of the two magnetic bearings. By modifying the height of the center magnet in a Halbach magnetic bearing, a performance compromise between levitating force density and force uniformity is obtained. The Halbach linear active magnetic bearing can be a good solution for magnetic levitation stages because of its large and uniform levitation force.

  17. Implementation of a three degree of freedom, motor/brake hybrid force output device for virtual environment control tasks

    NASA Technical Reports Server (NTRS)

    Russo, Massimo; Tadros, Alfred; Flowers, Woodie; Zeltzer, David

    1991-01-01

    The advent of high resolution, physical model based computer graphics has left a gap in the design of input/output technology appropriate for interacting with such complex virtual world models. Since virtual worlds consist of physical models, it is appropriate to output the inherent force information necessary for the simulation to the user. The detailed design, construction, and control of a three degree freedom force output joystick will be presented. A novel kinematic design allows all three axes to be uncoupled, so that the system inertia matrix is diagonal. The two planar axes are actuated through an offset gimbal, and the third through a sleeved cable. To compensate for friction and inertia effects, this transmission is controlled by a force feedforward and a closed force feedback proportional loop. Workspace volume is a cone of 512 cubic inches, and the device bandwidth is maximized at 60 Hz for the two planar and 30 Hz for the third axis. Each axis is controlled by a motor/proportional magnetic particle brake combination fixed to the base. The innovative use of motors and brakes allows objects with high resistive torque requirements to be simulated without the stability and related safety issues involved with high torque, energy storing motors alone. Position, velocity, and applied endpoint force are sensed directly. Different control strategies are discussed and implemented, with an emphasis on how virtual environment force information, generated by the MIT Media Lab Computer Graphics and Animation Group BOLIO system, is transmitted to the device controller. The design constraints for a kinesthetic force feedback device can be summarized as: How can the symbiosis between the sense of presence in the virtual environment be maximized without compromising the interaction task under the constraints of the mechanical device limitations? Research in this field will yield insights to the optimal human sensory feedback mix for a wide spectrum of control and

  18. Parametric Amplification Protocol for Frequency-Modulated Magnetic Resonance Force Microscopy Signals

    NASA Astrophysics Data System (ADS)

    Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John

    2011-03-01

    We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.

  19. Alternating Magnetic Field Forces for Satellite Formation Flying

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stnaley O.

    2012-01-01

    Selected future space missions, such as large aperture telescopes and multi-component interferometers, will require the precise positioning of a number of isolated satellites, yet many of the suggested approaches for providing satellites positioning forces have serious limitations. In this paper we propose a new approach, capable of providing both position and orientation forces, that resolves or alleviates many of these problems. We show that by using alternating fields and currents that finely-controlled forces can be induced on the satellites, which can be individually selected through frequency allocation. We also show, through analysis and experiment, that near field operation is feasible and can provide sufficient force and the necessary degrees of freedom to accurately position and orient small satellites relative to one another. In particular, the case of a telescope with a large number of free mirrors is developed to provide an example of the concept. We. also discuss the far field extension of this concept.

  20. Magnetic Amplifier-Based Power-Flow Controller

    DOE PAGES

    Dimitrovski, Aleksandar; Li, Zhi; Ozpineci, Burak

    2015-02-05

    The concept of the magnetic amplifier, a common electromagnetic device in electronic applications in the past, has seldom been used in power systems. In this paper, we introduce the magnetic amplifier-based power-flow controller (MAPFC), an innovative low-cost device that adopts the idea of the magnetic amplifier for power-flow control applications. The uniqueness of MAPFC is in the use of the magnetization of the ferromagnetic core, shared by an ac and a dc winding, as the medium to control the ac winding reactance inserted in series with the transmission line to be controlled. Large power flow in the line can bemore » regulated by the small dc input to the dc winding. Moreover, a project on the R&D of an MAPFC has been funded by the U.S. Department of Energy (DOE) and conducted by the Oak Ridge National Laboratory (ORNL), the University of Tennessee-Knoxville, and Waukesha Electric Systems, Inc. since early 2012. Findings from the project are presented along with some results obtained in a laboratory environment.« less

  1. Novel Integration Radial and Axial Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth; Brown, Gary

    2000-01-01

    Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics; separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and magnetic field modeling results will be presented.

  2. Magnetic susceptibility variations in Loess sequences and their relationship to astronomical forcing

    NASA Technical Reports Server (NTRS)

    Verosub, Kenneth L.; Singer, Michael J.

    1992-01-01

    The long, well-exposed and often continuous sequences of loess found throughout the world are generally thought to provide an excellent opportunity for studying long-term, large-scale environmental change during the last few million years. In recent years, the most fruitful loess studies have been those involving the deposits of the loess in China. One of the most intriguing results of that work has been the discovery of an apparent correlation between variations in the magnetic susceptibility of the loess sequence and the oxygen isotope record of the deep sea. This correlation implies that magnetic susceptibility variations are being driven by astronomical parameters. However, the basic data have been interpreted in various ways by different authors, most of whom assumed that the magnetic minerals in the loess have not been affected by post-depositional processes. Using a chemical extraction procedure that allows us to separate the contribution of secondary pedogenic magnetic minerals from primary inherited magnetic minerals, we have found that the magnetic susceptibility of the Chinese paleosols is largely due to a pedogenic component which is present to a lesser degree in the loess. We have also found that the smaller inherited component of the magnetic susceptibility is about the same in the paleosols and the loess. These results demonstrate the need for additional study of the processes that create magnetic susceptibility variations in order to interpret properly the role of astronomical forcing in producing these variations.

  3. A Lorentz force actuated magnetic field sensor with capacitive read-out

    NASA Astrophysics Data System (ADS)

    Stifter, M.; Steiner, H.; Kainz, A.; Keplinger, F.; Hortschitz, W.; Sauter, T.

    2013-05-01

    We present a novel design of a resonant magnetic field sensor with capacitive read-out permitting wafer level production. The device consists of a single-crystal silicon cantilever manufactured from the device layer of an SOI wafer. Cantilevers represent a very simple structure with respect to manufacturing and function. On the top of the structure, a gold lead carries AC currents that generate alternating Lorentz forces in an external magnetic field. The free end oscillation of the actuated cantilever depends on the eigenfrequencies of the structure. Particularly, the specific design of a U-shaped structure provides a larger force-to-stiffness-ratio than standard cantilevers. The electrodes for detecting cantilever deflections are separately fabricated on a Pyrex glass-wafer. They form the counterpart to the lead on the freely vibrating planar structure. Both wafers are mounted on top of each other. A custom SU-8 bonding process on wafer level creates a gap which defines the equilibrium distance between sensing electrodes and the vibrating structure. Additionally to the capacitive read-out, the cantilever oscillation was simultaneously measured with laser Doppler vibrometry through proper windows in the SOI handle wafer. Advantages and disadvantages of the asynchronous capacitive measurement configuration are discussed quantitatively and presented by a comprehensive experimental characterization of the device under test.

  4. Constraints on magnetic energy and mantle conductivity from the forced nutations of the earth

    NASA Technical Reports Server (NTRS)

    Buffett, Bruce A.

    1992-01-01

    The possibility of a presence of a conducting layer at the base of the mantle, as suggested by Knittle and Jeanloz (1986, 1989), was examined using observations of the earth's nutations. Evidence favoring the presence of a conducting layer is found in the effect of ohmic dissipation, which can cause the amplitude of the earth's nutation to be out-of-phase with tidal forcings. It is shown that the earth's magnetic field can produce observable signatures in the forced nutations of the earth when a thin conducting layer is located at the base of the mantle. The present theoretical calculations are compared with VLBI determinations of forced nutations.

  5. Force-controlled automatic microassembly of tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Zhao, Guoyong; Teo, Chee Leong; Hutmacher, Dietmar Werner; Burdet, Etienne

    2010-03-01

    This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.

  6. A magnetic bearing control approach using flux feedback

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1989-01-01

    A magnetic bearing control approach using flux feedback is described and test results for a laboratory model magnetic bearing actuator are presented. Test results were obtained using a magnetic bearing test fixture, which is also described. The magnetic bearing actuator consists of elements similar to those used in a laboratory test model Annular Momentum Control Device (AMCD).

  7. Study of Fluid Flow Control In Protein Crystallization Using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.; Ciszak, E.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined.

  8. Quantitative modeling of forces in electromagnetic tweezers

    NASA Astrophysics Data System (ADS)

    Bijamov, Alex; Shubitidze, Fridon; Oliver, Piercen M.; Vezenov, Dmitri V.

    2010-11-01

    This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.

  9. Novel Integrated Radial and Axial Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A.; Brown, Gary L.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics, separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and analysis results will be presented.

  10. Magneto-ionic control of interfacial magnetism

    NASA Astrophysics Data System (ADS)

    Bauer, Uwe; Yao, Lide; Tan, Aik Jun; Agrawal, Parnika; Emori, Satoru; Tuller, Harry L.; van Dijken, Sebastiaan; Beach, Geoffrey S. D.

    2015-02-01

    In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O2- migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm-2 at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.

  11. Cogging force investigation of a free piston permanent magnet linear generator

    NASA Astrophysics Data System (ADS)

    Abdalla, I. I.; Zainal, A. E. Z.; Ramlan, N. A.; Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2017-10-01

    Better performance and higher efficiency of the vehicles can be achieved by using free piston engine, in which the piston is connected directly to the linear generator and waiving of any mechanical means. The free piston engine has the ability to overcome or reduce many of the challenges, such as the carbon dioxide (CO2) emission and fossil fuel consumption. The cogging force produces undesired vibration and acoustic noise in the generator. However, the cogging force must be minimized as much as possible, in order to have a high performance. This paper studies the effects of ferromagnetic materials on the cogging force of the permanent magnet linear generator (PMLG) to be used in a free piston engine using nonlinear finite-element analysis (FEA) under ANSYS Maxwell. The comparisons have been established for the cogging force of the PMLG under various translator velocities and three different ferromagnetic materials for the stator core, namely, Silicon Steel laminations, Mild Steel and Somaloy. It has been shown that the PMLG with a stator core made of Somaloy has a lower cogging force among them. Furthermore, the induced voltage of the PMLG at different accelerations has been studied. It is found that the PMLG with Mild Steel and Somaloy, respectively give larger induced voltage. Moreover, as the translator speed increase the induced voltage increased.

  12. Real-time changes in corticospinal excitability related to motor imagery of a force control task.

    PubMed

    Tatemoto, Tsuyoshi; Tsuchiya, Junko; Numata, Atsuki; Osawa, Ryuji; Yamaguchi, Tomofumi; Tanabe, Shigeo; Kondo, Kunitsugu; Otaka, Yohei; Sugawara, Kenichi

    2017-09-29

    To investigate real-time excitability changes in corticospinal pathways related to motor imagery in a changing force control task, using transcranial magnetic stimulation (TMS). Ten healthy volunteers learnt to control the contractile force of isometric right wrist dorsiflexion in order to track an on-screen sine wave form. Participants performed the trained task 40 times with actual muscle contraction in order to construct the motor image. They were then instructed to execute the task without actual muscle contraction, but by imagining contraction of the right wrist in dorsiflexion. Motor evoked potentials (MEPs), induced by TMS in the right extensor carpi radialis muscle (ECR) and flexor carpi radialis muscle (FCR), were measured during motor imagery. MEPs were induced at five time points: prior to imagery, during the gradual generation of the imaged wrist dorsiflexion (Increasing phase), the peak value of the sine wave, during the gradual reduction (Decreasing phase), and after completion of the task. The MEP ratio, as the ratio of imaged MEPs to resting-state, was compared between pre- and post-training at each time point. In the ECR muscle, the MEP ratio significantly increased during the Increasing phase and at the peak force of dorsiflexion imagery after training. Moreover, the MEP ratio was significantly greater in the Increasing phase than in the Decreasing phase. In the FCR, there were no significant consistent changes. Corticospinal excitability during motor imagery in an isometric contraction task was modulated in relation to the phase of force control after image construction. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Tuning bacterial hydrodynamics with magnetic fields

    NASA Astrophysics Data System (ADS)

    Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.

    2017-06-01

    Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.

  14. Meltable magnetic biocomposites for controlled release

    NASA Astrophysics Data System (ADS)

    Müller, R.; Zhou, M.; Dellith, A.; Liebert, T.; Heinze, T.

    2017-06-01

    New biocompatible composites with adjustable melting point in the range of 30-140 °C, consisting of magnetite nanoparticles embedded into a matrix of meltable dextran fatty acid ester are presented which can be softened under an induced alternating magnetic field (AMF). The chosen thermoplastic magnetic composites have a melting range close to human body temperature and can be easily shaped into disk or coating film under melting. The composite disks were loaded with green fluorescent protein (GFP) as a model protein. Controlled release of the protein was realized with high frequent alternating magnetic field of 20 kA/m at 400 kHz. These results showed that under an AMF the release of GFP from magnetic composite was accelerated compared to the control sample without exposure to AMF. Furthermore a texturing of particles in the polymer matrix by a static magnetic field was investigated.

  15. Magnetically actuated and controlled colloidal sphere-pair swimmer

    NASA Astrophysics Data System (ADS)

    Ran, Sijie; Guez, Allon; Friedman, Gary

    2016-12-01

    Magnetically actuated swimming of microscopic objects has been attracting attention partly due to its promising applications in the bio-medical field and partly due to interesting physics of swimming in general. While colloidal particles that are free to move in fluid can be an attractive swimming system due it its simplicity and ability to assemble in situ, stability of their dynamics and the possibility of stable swimming behavior in periodically varying magnetic fields has not been considered. Dynamic behavior of two magnetically interacting colloidal particles subjected to rotating magnetic field of switching frequency is analyzed here and is shown to result in stable swimming without any stabilizing feedback. A new mechanism of swimming that relies only on rotations of the particles themselves and of the particle pair axis is found to dominate the swimming dynamics of the colloidal particle pair. Simulation results and analytical arguments demonstrate that this swimming strategy compares favorably to dragging the particles with an external magnetic force when colloidal particle sizes are reduced.

  16. Effect of defects, magnetocrystalline anisotropy, and shape anisotropy on magnetic structure of iron thin films by magnetic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ke; Schreiber, Daniel K.; Li, Yulan

    Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM) thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB) to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, amore » 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.« less

  17. Effect of defects, magnetocrystalline anisotropy, and shape anisotropy on magnetic structure of iron thin films by magnetic force microscopy

    DOE PAGES

    Xu, Ke; Schreiber, Daniel K.; Li, Yulan; ...

    2017-02-10

    Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM) thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB) to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, amore » 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.« less

  18. Iron-platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging.

    PubMed

    Chen, I-Chen; Chen, Li-Han; Gapin, Andrew; Jin, Sungho; Yuan, Lu; Liou, Sy-Hwang

    2008-02-20

    High coercivity iron-platinum-coated carbon nanocones (CNCs) have been fabricated for magnetic force microscopy (MFM) by direct-current plasma-enhanced chemical vapor deposition growth of nanocones on tipless cantilevers followed by sputtering and annealing of the FePt film. The FePt-coated CNC probe has many localized magnetic stray fields due to the high-aspect-ratio geometry and small radius of the tip. The MFM imaging on magnetic recording media was performed using CNC probes and compared with the imaging by FePt-coated silicon probes. An image with 20 nm lateral resolution has been demonstrated.

  19. Electromagnetic miniactuators using thin magnetic layers

    NASA Astrophysics Data System (ADS)

    Kube, H.; Zoeppig, V.; Hermann, R.; Hoffmann, A.; Kallenbach, E.

    2000-06-01

    This paper presents two examples of miniactuators based on the electromagnetic and electrodynamic force generation principle respectively. They use modern high-energy polymer-bonded permanent magnetic layers basing on NdFeB. The first example is a linear drive with an integrated magnetic bearing. It generates electrodynamic forces to lift and move a lightweight platen. The position of the platen is measured and controlled. The second example is a miniature pneumatic valve with a fully integrated polarized electromagnetic actuator. The valve consumes power only when the armature position is changed. The holding force is generated without consumption of power.

  20. Bilateral transfer for learning to control timing but not for learning to control fine force.

    PubMed

    Yao, Wan X; Cordova, Alberto; Huang, Yufei; Wang, Yan; Lu, Xing

    2014-04-01

    This study examined the characteristics of bilateral transfer of learning to control timing and fine force from a dominant limb to a nondominant limb. 20 right-handed college students (12 women, 8 men; M age = 21.5 yr., SD = 2.3) learned a sequential task consisting of timing and force control. Each participant completed a pre-test of the task with both hands and then performed 100 practice trials with the dominant hand. A post-test was conducted 1 hr. later. The results showed that after training, participants learned to control the timing and force. Nevertheless, only the time-control learning was transferred to the untrained hand, whereas the force-control learning did not transfer to the untrained hand.

  1. Magnetic Nanotweezers for Interrogating Biological Processes in Space and Time.

    PubMed

    Kim, Ji-Wook; Jeong, Hee-Kyung; Southard, Kaden M; Jun, Young-Wook; Cheon, Jinwoo

    2018-04-17

    The ability to sense and manipulate the state of biological systems has been extensively advanced during the past decade with the help of recent developments in physical tools. Unlike standard genetic and pharmacological perturbation techniques-knockdown, overexpression, small molecule inhibition-that provide a basic on/off switching capability, these physical tools provide the capacity to control the spatial, temporal, and mechanical properties of the biological targets. Among the various physical cues, magnetism offers distinct advantages over light or electricity. Magnetic fields freely penetrate biological tissues and are already used for clinical applications. As one of the unique features, magnetic fields can be transformed into mechanical stimuli which can serve as a cue in regulating biological processes. However, their biological applications have been limited due to a lack of high-performance magnetism-to-mechanical force transducers with advanced spatiotemporal capabilities. In this Account, we present recent developments in magnetic nanotweezers (MNTs) as a useful tool for interrogating the spatiotemporal control of cells in living tissue. MNTs are composed of force-generating magnetic nanoparticles and field generators. Through proper design and the integration of individual components, MNTs deliver controlled mechanical stimulation to targeted biomolecules at any desired space and time. We first discuss about MNT configuration with different force-stimulation modes. By modulating geometry of the magnetic field generator, MNTs exert pulling, dipole-dipole attraction, and rotational forces to the target specifically and quantitatively. We discuss the key physical parameters determining force magnitude, which include magnetic field strength, magnetic field gradient, magnetic moment of the magnetic particle, as well as distance between the field generator and the particle. MNTs also can be used over a wide range of biological time scales. By simply

  2. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1989-01-01

    The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.

  3. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-11-01

    positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed

  4. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. Once the basic understanding is obtained, the study will focus on testing the hypothesis on proteins of pyruvate dehydrogenase complex (PDC), proteins E1 and E3. Obtaining high crystal quality of these proteins is of great importance to structural biologists since their structures need to be determined. Specific goals for the investigation are: 1. To develop an understanding of convection control in diamagnetic fluids with concentration gradients through experimentation and numerical modeling. Specifically solutal buoyancy driven convection due to crystal growth will be considered. 2. To develop predictive measures for successful crystallization in a magnetic field using analyses and numerical modeling for use in future protein crystal growth experiments. This will establish criteria that can be used to estimate the efficacy of magnetic field flow damping on crystallization of candidate proteins. 3. To demonstrate the understanding of convection damping by high magnetic fields to a class of proteins that is of interest and whose structure is as yet not determined. 4. To compare quantitatively, the quality of the grown crystals with and without a magnetic field. X-ray diffraction techniques will be used for the comparative studies. In a preliminary set of experiments, we studied crystal dissolution effects in a 5 Tesla magnet available at NASA Marshall Space Flight Center (MSFC). Using a Schlieren setup, a 1mm crystal of Alum (Aluminum-Potassium Sulfate) was introduced in a 75% saturated solution and the resulting dissolution plume was observed

  5. Manipulating motions of targeted single cells in solution by an integrated double-ring magnetic tweezers imaging microscope.

    PubMed

    Wu, Meiling; Yadav, Rajeev; Pal, Nibedita; Lu, H Peter

    2017-07-01

    Controlling and manipulating living cell motions in solution hold a high promise in developing new biotechnology and biological science. Here, we developed a magnetic tweezers device that employs a combination of two permanent magnets in up-down double-ring configuration axially fitting with a microscopic objective, allowing a picoNewton (pN) bidirectional force and motion control on the sample beyond a single upward pulling direction. The experimental force calibration and magnetic field simulation using finite element method magnetics demonstrate that the designed magnetic tweezers covers a linear-combined pN force with positive-negative polarization changes in a tenability of sub-pN scale, which can be utilized to further achieve motion manipulation by shifting the force balance. We demonstrate an application of the up-down double-ring magnetic tweezers for single cell manipulation, showing that the cells with internalized paramagnetic beads can be selectively picked up and guided in a controlled fine motion.

  6. Manipulating motions of targeted single cells in solution by an integrated double-ring magnetic tweezers imaging microscope

    NASA Astrophysics Data System (ADS)

    Wu, Meiling; Yadav, Rajeev; Pal, Nibedita; Lu, H. Peter

    2017-07-01

    Controlling and manipulating living cell motions in solution hold a high promise in developing new biotechnology and biological science. Here, we developed a magnetic tweezers device that employs a combination of two permanent magnets in up-down double-ring configuration axially fitting with a microscopic objective, allowing a picoNewton (pN) bidirectional force and motion control on the sample beyond a single upward pulling direction. The experimental force calibration and magnetic field simulation using finite element method magnetics demonstrate that the designed magnetic tweezers covers a linear-combined pN force with positive-negative polarization changes in a tenability of sub-pN scale, which can be utilized to further achieve motion manipulation by shifting the force balance. We demonstrate an application of the up-down double-ring magnetic tweezers for single cell manipulation, showing that the cells with internalized paramagnetic beads can be selectively picked up and guided in a controlled fine motion.

  7. Fuzzy control of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Feeley, J. J.; Niederauer, G. M.; Ahlstrom, D. J.

    1991-01-01

    The use of an adaptive fuzzy control algorithm implemented on a VLSI chip for the control of a magnetic bearing was considered. The architecture of the adaptive fuzzy controller is similar to that of a neural network. The performance of the fuzzy controller is compared to that of a conventional controller by computer simulation.

  8. Age-related differences in finger force control are characterized by reduced force production.

    PubMed

    Vieluf, Solveig; Godde, Ben; Reuter, Eva-Maria; Voelcker-Rehage, Claudia

    2013-01-01

    It has been repeatedly shown that precise finger force control declines with age. The tasks and evaluation parameters used to reveal age-related differences vary between studies. In order to examine effects of task characteristics, young adults (18-25 years) and late middle-aged adults (55-65 years) performed precision grip tasks with varying speed and force requirements. Different outcome variables were used to evaluate age-related differences. Age-related differences were confirmed for performance accuracy (TWR) and variability (relative root mean square error, rRMSE). The task characteristics, however, influenced accuracy and variability in both age groups: Force modulation performance at higher speed was poorer than at lower speed and at fixed force levels than at force levels adjusted to the individual maximum forces. This effect tended to be stronger for older participants for the rRMSE. A curve fit confirmed the age-related differences for both spatial force tracking parameters (amplitude and intercept) and for one temporal parameter (phase shift), but not for the temporal parameter frequency. Additionally, matching the timing parameters of the sine wave seemed to be more important than matching the spatial parameters in both young adults and late middle-aged adults. However, the effect was stronger for the group of late middle-aged, even though maximum voluntary contraction was not significantly different between groups. Our data indicate that changes in the processing of fine motor control tasks with increasing age are caused by difficulties of late middle-aged adults to produce a predefined amount of force in a short time.

  9. Magnetic-field-controlled reconfigurable semiconductor logic.

    PubMed

    Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

    2013-02-07

    Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices.

  10. Foot force direction control during a pedaling task in individuals post-stroke

    PubMed Central

    2014-01-01

    Background Appropriate magnitude and directional control of foot-forces is required for successful execution of locomotor tasks. Earlier evidence suggested, following stroke, there is a potential impairment in foot-force control capabilities both during stationary force generation and locomotion. The purpose of this study was to investigate the foot-pedal surface interaction force components, in non-neurologically-impaired and stroke-impaired individuals, in order to determine how fore/aft shear-directed foot/pedal forces are controlled. Methods Sixteen individuals with chronic post-stroke hemiplegia and 10 age-similar non-neurologically-impaired controls performed a foot placement maintenance task under a stationary and a pedaling condition, achieving a target normal pedal force. Electromyography and force profiles were recorded. We expected generation of unduly large magnitude shear pedal forces and reduced participation of multiple muscles that can contribute forces in appropriate directions in individuals post-stroke. Results We found lower force output, inconsistent modulation of muscle activity and reduced ability to change foot force direction in the paretic limbs, but we did not observe unduly large magnitude shear pedal surface forces by the paretic limbs as we hypothesized. Conclusion These findings suggested the preservation of foot-force control capabilities post-stroke under minimal upright postural control requirements. Further research must be conducted to determine whether inappropriate shear force generation will be revealed under non-seated, postural demanding conditions, where subjects have to actively control for upright body suspension. PMID:24739234

  11. Intraoral conversion of occlusal force to electricity and magnetism by biting of piezoelectric elements.

    PubMed

    Kameda, Takashi; Ohkuma, Kazuo; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto

    2012-01-01

    Very weak electrical, magnetic and ultrasound signal stimulations are known to promote the formation, metabolism, restoration and stability of bone and surrounding tissues after treatment and operations. We have therefore investigated the possibility of intraoral generation of electricity and magnetism by occlusal force in an in vitro study. Biting bimorph piezoelectric elements with lead zirconate titanate (PZT) using dental models generated appropriate magnetism for bone formation, i. e. 0.5-0.6 gauss, and lower electric currents and higher voltages, i. e. 2.0-6.0 μA at 10-22 V (appropriate levels are 30 μA and 1.25 V), as observed by a universal testing machine. The electric currents and voltages could be changed using amplifier circuits. These results show that intraoral generation of electricity and magnetism is possible and could provide post-operative stabilization and activation of treated areas of bone and the surrounding tissues directly and/or indirectly by electrical, magnetic and ultrasound stimulation, which could accelerate healing.

  12. Transformable ferroelectric control of dynamic magnetic permeability

    NASA Astrophysics Data System (ADS)

    Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng

    2018-02-01

    Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.

  13. Determination of forces in a magnetic bearing actuator - Numerical computation with comparison to experiment

    NASA Technical Reports Server (NTRS)

    Knight, J. D.; Xia, Z.; Mccaul, E.; Hacker, H., Jr.

    1992-01-01

    Calculations of the forces exerted on a journal by a magnetic bearing actuator are presented, along with comparisons to experimentally measured forces. The calculations are based on two-dimensional solutions for the flux distribution in the metal parts and free space, using finite but constant permeability in the metals. Above a relative permeability of 10,000 the effects of changes in permeability are negligible, but below 10,000 decreases in permeability cause significant decreases in the force. The calculated forces are shown to depend on the metal permeability more strongly when the journal is displaced from its centered position. The predicted forces in the principal attractive direction are in good agreement with experiment when a relatively low value of permeability is chosen. The forces measured normal to the axis of symmetry when the journal is displaced from that axis, however, are significantly higher than predicted by theory, even with a value of relative permeability larger than 5000. These results indicate a need for further work including nonlinear permeability distributions.

  14. Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump.

    PubMed

    Ren, Zhaohui; Jahanmir, Said; Heshmat, Hooshang; Hunsberger, Andrew Z; Walton, James F

    2009-01-01

    A hybrid magnetic bearing system was designed for a rotary centrifugal blood pump being developed to provide long-term circulatory support for heart failure patients. This design consists of two compact bearings to suspend the rotor in five degrees-of-freedom with single axis active control. Permanent magnets are used to provide passive radial support and electromagnets to maintain axial stability of the rotor. Characteristics of the passive radial and active thrust magnetic bearing system were evaluated by the electromagnetic finite element analysis. A proportional-integral-derivative controller with force balance algorithm was implemented for closed loop control of the magnetic thrust bearing. The control position is continuously adjusted based on the electrical energy in the bearing coils, and thus passive magnetic forces carry static thrust loads to minimize the bearing current. Performance of the magnetic bearing system with associated control algorithm was evaluated at different operating conditions. The bearing current was significantly reduced with the force balance control method and the power consumption was below 0.5 W under various thrust loads. The bearing parameters predicted by the analysis were validated by the experimental data.

  15. Force-sensed interface for control and training space robot

    NASA Astrophysics Data System (ADS)

    Moiseev, O. S.; Sarsadskikh, A. S.; Povalyaev, N. D.; Gorbunov, V. I.; Kulakov, F. M.; Vasilev, V. V.

    2018-05-01

    A method of positional and force-torque control of robots is proposed. Prototypes of the system and the master handle have been created. Algorithm of bias estimation and gravity compensation for force-torque sensor and force-torque trajectory correction are described.

  16. Passive magnetic bearing system

    DOEpatents

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  17. Lorentz force electrical impedance tomography using magnetic field measurements.

    PubMed

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  18. Lorentz force electrical impedance tomography using magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  19. Field Balancing of Magnetically Levitated Rotors without Trial Weights

    PubMed Central

    Fang, Jiancheng; Wang, Yingguang; Han, Bangcheng; Zheng, Shiqiang

    2013-01-01

    Unbalance in magnetically levitated rotor (MLR) can cause undesirable synchronous vibrations and lead to the saturation of the magnetic actuator. Dynamic balancing is an important way to solve these problems. However, the traditional balancing methods, using rotor displacement to estimate a rotor's unbalance, requiring several trial-runs, are neither precise nor efficient. This paper presents a new balancing method for an MLR without trial weights. In this method, the rotor is forced to rotate around its geometric axis. The coil currents of magnetic bearing, rather than rotor displacement, are employed to calculate the correction masses. This method provides two benefits when the MLR's rotation axis coincides with the geometric axis: one is that unbalanced centrifugal force/torque equals the synchronous magnetic force/torque, and the other is that the magnetic force is proportional to the control current. These make calculation of the correction masses by measuring coil current with only a single start-up precise. An unbalance compensation control (UCC) method, using a general band-pass filter (GPF) to make the MLR spin around its geometric axis is also discussed. Experimental results show that the novel balancing method can remove more than 92.7% of the rotor unbalance and a balancing accuracy of 0.024 g mm kg−1 is achieved.

  20. Autonomous spacecraft attitude control using magnetic torquing only

    NASA Technical Reports Server (NTRS)

    Musser, Keith L.; Ebert, Ward L.

    1989-01-01

    Magnetic torquing of spacecraft has been an important mechanism for attitude control since the earliest satellites were launched. Typically a magnetic control system has been used for precession/nutation damping for gravity-gradient stabilized satellites, momentum dumping for systems equipped with reaction wheels, or momentum-axis pointing for spinning and momentum-biased spacecraft. Although within the small satellite community there has always been interest in expensive, light-weight, and low-power attitude control systems, completely magnetic control systems have not been used for autonomous three-axis stabilized spacecraft due to the large computational requirements involved. As increasingly more powerful microprocessors have become available, this has become less of an impediment. These facts have motivated consideration of the all-magnetic attitude control system presented here. The problem of controlling spacecraft attitude using only magnetic torquing is cast into the form of the Linear Quadratic Regulator (LQR), resulting in a linear feedback control law. Since the geomagnetic field along a satellite trajectory is not constant, the system equations are time varying. As a result, the optimal feedback gains are time-varying. Orbit geometry is exploited to treat feedback gains as a function of position rather than time, making feasible the onboard solution of the optimal control problem. In simulations performed to date, the control laws have shown themselves to be fairly robust and a good candidate for an onboard attitude control system.

  1. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil.

    PubMed

    Ha, Yong H; Han, Byung H; Lee, Soo Y

    2010-02-01

    We introduce a square coil system for remote magnetic navigation of a magnetic device without any physical movements of the coils. We used three square-Helmholtz coils and a square-Maxwell coil for magnetic propulsion of a small magnet along the desired path. All the square coils are mountable on a cubic frame that has an opening to accommodate a living subject. The square-Helmholtz coils control the magnetic propulsion direction by generating uniform magnetic field along the desired direction while the square-Maxwell coil controls the propulsion force by generating magnetic gradient field. We performed magnetic propulsion experiments with a down-scaled coil set and a three-channel coil driver. Experimental results demonstrate that we can use the square coil set for magnetic navigation of a magnetic device without any physical movements of the coils.

  2. New LMI based gain-scheduling control for recovering contact-free operation of a magnetically levitated rotor

    NASA Astrophysics Data System (ADS)

    Wang, M.; Cole, M. O. T.; Keogh, P. S.

    2017-11-01

    A new approach for the recovery of contact-free levitation of a rotor supported by active magnetic bearings (AMB) is assessed through control strategy design, system modelling and experimental verification. The rotor is considered to make contact with a touchdown bearing (TDB), which may lead to entrapment in a bi-stable nonlinear response. A linear matrix inequality (LMI) based gain-scheduling H∞ control technique is introduced to recover the rotor to a contact-free state. The controller formulation involves a time-varying effective stiffness parameter, which can be evaluated in terms of forces transmitted through the TDB. Rather than measuring these forces directly, an observer is introduced with a model of the base structure to transform base acceleration signals using polytopic coordinates for controller adjustment. Force transmission to the supporting base structure will occur either through an AMB alone without contact, or through the AMB and TDB with contact and this must be accounted for in the observer design. The controller is verified experimentally in terms of (a) non-contact robust stability and vibration suppression performance; (b) control action for contact-free recovery at typical running speeds with various unbalance and TDB misalignment conditions; and (c) coast-down experimental tests. The results demonstrate the effectiveness of the AMB control action whenever it operates within its dynamic load capacity.

  3. Effects of force load, muscle fatigue and extremely low frequency magnetic stimulation on EEG signals during side arm lateral raise task.

    PubMed

    Wang, Ying; Cao, Liu; Hao, Dongmei; Rong, Yao; Yang, Lin; Zhang, Song; Chen, Fei; Zheng, Dingchang

    2017-05-01

    This study was to quantitatively investigate the effects of force load, muscle fatigue and extremely low frequency (ELF) magnetic stimulation on electroencephalography (EEG) signal features during side arm lateral raise task. EEG signals were recorded by a BIOSEMI Active Two system with Pin-Type active-electrodes from 18 healthy subjects when they performed the right arm side lateral raise task (90° away from the body) with three different loads (0 kg, 1 kg and 3 kg; their order was randomized among the subjects) on the forearm. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as non-fatigue status and the last 10 s before the subject was exhausted as fatigue status. The subject was then given a 5 min resting between different loads. Two days later, the same experiment was performed on each subject except that ELF magnetic stimulation was applied to the subject's deltoid muscle during the 5 min resting period. EEG features from C3 and C4 electrodes including the power of alpha, beta and gamma and sample entropy were analyzed and compared between different loads, non-fatigue/fatigue status, and with/without ELF magnetic stimulation. The key results were associated with the change of the power of alpha band. From both C3-EEG and C4-EEG, with 1 kg and 3 kg force loads, the power of alpha band was significantly smaller than that from 0 kg for both non-fatigue and fatigue periods (all p  <  0.05). However, no significant difference of the power in alpha between 1 kg and 3 kg was observed (p  >  0.05 for all the force loads except C4-EEG with ELF simulation). The power of alpha band at fatigue status was significantly increased for both C3-EEG and C4-EEG when compared with the non-fatigue status (p  <  0.01 for all the force loads except 3 kg force from C4-EEG). With magnetic stimulation, the powers of alpha from C3-EEG and C4-EEG were significantly

  4. Flow-controlled magnetic particle manipulation

    DOEpatents

    Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV

    2011-02-22

    Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

  5. Precise computer controlled positioning of robot end effectors using force sensors

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Mcinnis, B. C.; Wang, J. C.

    1988-01-01

    A thorough study of combined position/force control using sensory feedback for a one-dimensional manipulator model, which may count for the spacecraft docking problem or be extended to the multi-joint robot manipulator problem, was performed. The additional degree of freedom introduced by the compliant force sensor is included in the system dynamics in the design of precise position control. State feedback based on the pole placement method and with integral control is used to design the position controller. A simple constant gain force controller is used as an example to illustrate the dependence of the stability and steady-state accuracy of the overall position/force control upon the design of the inner position controller. Supportive simulation results are also provided.

  6. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    PubMed

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  7. Electricity and Magnetism

    NASA Astrophysics Data System (ADS)

    Glazebrook, R. T.

    2016-10-01

    1. Electrostatics: fundamental facts; 2. Electricity as a measurable quantity; 3. Measurement of electric force and potential; 4. Condensers; 5. Electrical machines; 6. Measurement of potential and electric force; 7. Magnetic attraction and repulsion; 8. Laws of magnetic force; 9. Experiments with magnets; 10. Magnetic calculations; 11. Magnetic measurements; 12. Terrestrial magnetism; 13. The electric current; 14. Relation between electromagnetic force and current; 15. Measurement of current; 16. Measurement of resistance and electromotive force; 17. Measurement of quantity of electricity, condensers; 18. Thermal activity of a current; 19. The voltaic cell (theory); 20. Electromagnetism; 21. Magnetisation of iron; 22. Electromagnetic instruments; 23. Electromagnetic induction; 24. Applications of electromagnetic induction; 25. Telegraphy and telephony; 26. Electric waves; 27. Transference of electricity through gases: corpuscles and electrons; Answers to examples; Index.

  8. A New 1000 F Magnetic Bearing Test Rig

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Montague, Gerald T.; Brown, Gerald V.; Palazzolo, Alan B.

    1997-01-01

    NASA and the Army are currently exploring the possibility of using magnetic bearings in gas turbine engines. The use of magnetic bearings in gas turbine engines could increase the reliability by eliminating the lubrication system. The use of magnetic bearings could also increase the speed and the size of the shafts in the engine, thus reducing vibrations and possibly eliminating third bearings. Magnetic bearings can apply forces to the shafts and move them so that blade tips and seals do not rub. This could be part of an active vibration cancellation system. Also, whirling (displacing the shaft center line) may delay rotating stall and increase the stall margin of the engine. Magnetic bearings coupled with an integral starter generator could result in a more efficient 'more electric' engine. The IHPTET program, a joint DOD-industry program, has identified a need for a high temperature, (as high as 1200 F), magnetic bearing that could be demonstrated in a phase m engine. A magnetic bearing is similar to an electric motor. The magnetic bearing has a laminated rotor and stator made out of cobalt steel. The stator has a series of coils of wire wound around it. These coils f u. a series of electromagnets around the circumference. These magnets exert a force on the rotor to keep the rotor in the center of the cavity. The centering force is commanded by a controller based on shaft position, (measured by displacement probes). The magnetic bearing can only pull and is basically unstable before active control is applied The engine shafts, bearings, and case form a flexible structure which contain a large number of modes. A controller is necessary to stabilize these modes. A power amplifier is also necessary to provide the current prescribed by the controller to the magnetic bearings. In case of very high loads, a conventional back up bearing will engage and stop the rotor and stator from rubbing.

  9. Force reflecting hand controller

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas A. (Inventor); Snow, Edward R. (Inventor); Townsend, William T. (Inventor)

    1993-01-01

    A universal input device for interfacing a human operator with a slave machine such as a robot or the like includes a plurality of serially connected mechanical links extending from a base. A handgrip is connected to the mechanical links distal from the base such that a human operator may grasp the handgrip and control the position thereof relative to the base through the mechanical links. A plurality of rotary joints is arranged to connect the mechanical links together to provide at least three translational degrees of freedom and at least three rotational degrees of freedom of motion of the handgrip relative to the base. A cable and pulley assembly for each joint is connected to a corresponding motor for transmitting forces from the slave machine to the handgrip to provide kinesthetic feedback to the operator and for producing control signals that may be transmitted from the handgrip to the slave machine. The device gives excellent kinesthetic feedback, high-fidelity force/torque feedback, a kinematically simple structure, mechanically decoupled motion in all six degrees of freedom, and zero backlash. The device also has a much larger work envelope, greater stiffness and responsiveness, smaller stowage volume, and better overlap of the human operator's range of motion than previous designs.

  10. Experimental and Computational Studies of the Control of Convection of Non-Conducting Liquids During solidification by Means of a Magnetic Field Gradient

    NASA Technical Reports Server (NTRS)

    Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2001-01-01

    The elimination of convection is essential in experimental investigations of diffusive transport (of heat and matter) during solidification. One classical approach to damping convection in a conducting liquid is the application of a magnetic field. The damping phenomenon is the induction, by the motion of a conductor in a magnetic field, of currents which interact with the field to produce Lorentz forces that oppose the flow. However, there are many liquids which are not sufficiently conducting to exploit this phenomenon; examples include the transparent liquids (such as succinonitrile-acetone) that are used as "model alloys" in fundamental solidification studies. There have been several investigations of the solidification of these liquids that have been carried out in orbiting laboratories to eliminate natural convection. The paper describes an investigation of an alternative approach whereby a magnetic field gradient is applied to the liquid. A magnetic body force then arises which is dependent on the susceptibility of the liquid and thereby on the temperature and or concentration. With the field gradient aligned vertically and of correct magnitude, the variation of gravitational body force due to temperature/concentration dependent density can be counterbalanced by a variation in magnetic body force. Experiments have been carried out in a super-conducting magnet at Marshall Space Flight Center to measure velocities in an aqueous manganese chloride solution. The solution was contained in a chamber with temperature controlled end walls and glass side walls. Velocities were measured by particle image velocimetry. Starting from zero current in the magnet (zero field gradient) flow driven by the temperature difference between the end walls was measured. At a critical current the flow was halted. At higher currents the normal convection was reversed. The experiments included ones where the solution was solidified and were accompanied by solution of the flow

  11. Real-time cartesian force feedback control of a teleoperated robot

    NASA Technical Reports Server (NTRS)

    Campbell, Perry

    1989-01-01

    Active cartesian force control of a teleoperated robot is investigated. An economical microcomputer based control method was tested. Limitations are discussed and methods of performance improvement suggested. To demonstrate the performance of this technique, a preliminary test was performed with success. A general purpose bilateral force reflecting hand controller is currently being constructed based on this control method.

  12. Determination of the Maximum Control Forces and Attainable Quickness in the Operation of Airplane Controls

    NASA Technical Reports Server (NTRS)

    Hertel, Heinrich

    1930-01-01

    This report is intended to furnish bases for load assumptions in the designing of airplane controls. The maximum control forces and quickness of operation are determined. The maximum forces for a strong pilot with normal arrangement of the controls is taken as 1.25 times the mean value obtained from tests with twelve persons. Tests with a number of persons were expected to show the maximum forces that a man of average strength can exert on the control stick in operating the elevator and ailerons and also on the rudder bar. The effect of fatigue, of duration and of the nature (static or dynamic) of the force, as also the condition of the test subject (with or without belt) were also considered.

  13. Three degree-of-freedom force feedback control for robotic mating of umbilical lines

    NASA Technical Reports Server (NTRS)

    Fullmer, R. Rees

    1988-01-01

    The use of robotic manipulators for the mating and demating of umbilical fuel lines to the Space Shuttle Vehicle prior to launch is investigated. Force feedback control is necessary to minimize the contact forces which develop during mating. The objective is to develop and demonstrate a working robotic force control system. Initial experimental force control tests with an ASEA IRB-90 industrial robot using the system's Adaptive Control capabilities indicated that control stability would by a primary problem. An investigation of the ASEA system showed a 0.280 second software delay between force input commands and the output of command voltages to the servo system. This computational delay was identified as the primary cause of the instability. Tests on a second path into the ASEA's control computer using the MicroVax II supervisory computer show that time delay would be comparable, offering no stability improvement. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servosystem directly, allowing the robot to use force feedback control while in rigid contact with a moving three-degree-of-freedom target. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servo system directly. This method allowed the robot to use force feedback control while in rigid contact with moving three degree-of-freedom target. Tests on this approach indicated adequate force feedback control even under worst case conditions. A strategy to digitally-controlled vision system was developed. This requires switching between the digital controller when using vision control and the analog controller when using force control, depending on whether or not the mating plates are in contact.

  14. Formation of Maximum Eddy Current Force by Non Ferrous Materials

    NASA Astrophysics Data System (ADS)

    Kader, M. M. A.; Razali, Z. B.; Yasin, N. S. M.; Daud, M. H.

    2018-03-01

    This project is concerned with the study of eddy current effects on various materials such as aluminum, copper and magnesium. Two types of magnets used in this study; magnetic ferrite (ZnFe+2O4) and magnetic neodymium (NdFeBN42). Eddy current force will be exerted to these materials due to current flows along the magnet. This force depends on the type of magnet, type of material and the gap between the magnet and the material or between the two magnets. The results show that at constant magnet to material gap, the eddy current force decreases as the magnet to magnet gap increases. Similarly, at constant magnet to magnet gap, the eddy current force decreases as the magnet to material gap increases. The minimum force was achieved when the gap of magnet to material is maximum, similarly to the gap of magnet to magnet. The weakest force was between Copper and Neodymium at a magnet to material gap of 20 mm and magnet to magnet gap of 40 mm; the eddy current force was 0.00048 N. The strongest force (maximum) was between Magnesium and Ferrite and 0.42273 N at a magnet to material gap of 3 mm and magnet to magnet gap of 5 mm.

  15. Control of thumb force using surface functional electrical stimulation and muscle load sharing

    PubMed Central

    2013-01-01

    Background Stroke survivors often have difficulties in manipulating objects with their affected hand. Thumb control plays an important role in object manipulation. Surface functional electrical stimulation (FES) can assist movement. We aim to control the 2D thumb force by predicting the sum of individual muscle forces, described by a sigmoidal muscle recruitment curve and a single force direction. Methods Five able bodied subjects and five stroke subjects were strapped in a custom built setup. The forces perpendicular to the thumb in response to FES applied to three thumb muscles were measured. We evaluated the feasibility of using recruitment curve based force vector maps in predicting output forces. In addition, we developed a closed loop force controller. Load sharing between the three muscles was used to solve the redundancy problem having three actuators to control forces in two dimensions. The thumb force was controlled towards target forces of 0.5 N and 1.0 N in multiple directions within the individual’s thumb work space. Hereby, the possibilities to use these force vector maps and the load sharing approach in feed forward and feedback force control were explored. Results The force vector prediction of the obtained model had small RMS errors with respect to the actual measured force vectors (0.22±0.17 N for the healthy subjects; 0.17±0.13 N for the stroke subjects). The stroke subjects showed a limited work range due to limited force production of the individual muscles. Performance of feed forward control without feedback, was better in healthy subjects than in stroke subjects. However, when feedback control was added performances were similar between the two groups. Feedback force control lead, especially for the stroke subjects, to a reduction in stationary errors, which improved performance. Conclusions Thumb muscle responses to FES can be described by a single force direction and a sigmoidal recruitment curve. Force in desired direction can be

  16. Development of atomic force microscope with wide-band magnetic excitation for study of soft matter dynamics

    NASA Astrophysics Data System (ADS)

    Kageshima, Masami; Chikamoto, Takuma; Ogawa, Tatsuya; Hirata, Yoshiki; Inoue, Takahito; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2009-02-01

    In order to probe dynamical properties of mesoscopic soft matter systems such as polymers, structured liquid, etc., a new atomic force microscopy apparatus with a wide-band magnetic cantilever excitation system was developed. Constant-current driving of an electromagnet up to 1 MHz was implemented with a closed-loop driver circuit. Transfer function of a commercial cantilever attached with a magnetic particle was measured in a frequency range of 1-1000 kHz in distilled water. Effects of the laser spot position, distribution of the force exerted on the cantilever, and difference in the detection scheme on the obtained transfer function are discussed in comparison with theoretical predictions by other research groups. A preliminary result of viscoelasticity spectrum measurement of a single dextran chain is shown and is compared with a recent theoretical calculation.

  17. Tuning coercive force by adjusting electric potential in solution processed Co/Pt(111) and the mechanism involved

    PubMed Central

    Chang, Cheng-Hsun-Tony; Kuo, Wei-Hsu; Chang, Yu-Chieh; Tsay, Jyh-Shen; Yau, Shueh-Lin

    2017-01-01

    A combination of a solution process and the control of the electric potential for magnetism represents a new approach to operating spintronic devices with a highly controlled efficiency and lower power consumption with reduced production cost. As a paradigmatic example, we investigated Co/Pt(111) in the Bloch-wall regime. The depression in coercive force was detected by applying a negative electric potential in an electrolytic solution. The reversible control of coercive force by varying the electric potential within few hundred millivolts is demonstrated. By changing the electric potential in ferromagnetic layers with smaller thicknesses, the efficiency for controlling the tunable coercive force becomes higher. Assuming that the pinning domains are independent of the applied electric potential, an electric potential tuning-magnetic anisotropy energy model was derived and provided insights into our knowledge of the relation between the electric potential tuning coercive force and the thickness of the ferromagnetic layer. Based on the fact that the coercive force can be tuned by changing the electric potential using a solution process, we developed a novel concept of electric-potential-tuned magnetic recording, resulting in a stable recording media with a high degree of writing ability. PMID:28255160

  18. Payload-Directed Control of Geophysical Magnetic Surveys

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Yeh, Yoo-Hsiu; Ippolito, Corey; Spritzer, John; Phelps, Geoffrey

    2010-01-01

    Using non-navigational (e.g. imagers, scientific) sensor information in control loops is a difficult problem to which no general solution exists. Whether the task can be successfully achieved in a particular case depends highly on problem specifics, such as application domain and sensors of interest. In this study, we investigate the feasibility of using magnetometer data for control feedback in the context of geophysical magnetic surveys. An experimental system was created and deployed to (a) assess sensor integration with autonomous vehicles, (b) investigate how magnetometer data can be used for feedback control, and (c) evaluate the feasibility of using such a system for geophysical magnetic surveys. Finally, we report the results of our experiments and show that payload-directed control of geophysical magnetic surveys is indeed feasible.

  19. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  20. Novel System for Bite-Force Sensing and Monitoring Based on Magnetic Near Field Communication

    PubMed Central

    Lantada, Andres Diaz; Bris, Carlos González; Morgado, Pilar Lafont; Maudes, Jesús Sanz

    2012-01-01

    Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID) technology (NFC). The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient's dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system's operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials. PMID:23112669