Sample records for magnetic hyperfine fields

  1. Hyperfine Fields of 181Ta in UFe4Al8

    NASA Astrophysics Data System (ADS)

    Marques, J. G.; Barradas, N. P.; Alves, E.; Ramos, A. R.; Gonçalves, A. P.; da Silva, M. F.; Soares, J. C.

    2001-11-01

    The γ γ Perturbed Angular Correlation technique was used to study the hyperfine interaction of 181Ta at the Hf site(s) in UFe4Al8 at room temperature and 12 K. The data at room temperature are well described by two electric field gradients, while at low temperature two combined hyperfine interactions have to be considered, one with the magnetic hyperfine field collinear with the c-axis and another with the magnetic hyperfine field in the basal plane. The results are compared with previous Mössbauer and neutron diffraction experiments and the lattice site of Hf is discussed.

  2. Hyperfine structure of the hydroxyl free radical (OH) in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Maeda, Kenji; Wall, Michael L.; Carr, Lincoln D.

    2015-05-01

    We investigate single-particle energy spectra of the hydroxyl free radical (OH) in the lowest electronic and rovibrational level under combined static electric and magnetic fields, as an example of heteronuclear polar diatomic molecules. In addition to the fine-structure interactions, the hyperfine interactions and centrifugal distortion effects are taken into account to yield the zero-field spectrum of the lowest 2Π3 / 2 manifold to an accuracy of less than 2kHz. We also examine level crossings and repulsions in the hyperfine structure induced by applied electric and magnetic fields. Compared to previous work, we found more than 10 percent reduction of the magnetic fields at level repulsions in the Zeeman spectrum subjected to a perpendicular electric field. In addition, we find new level repulsions, which we call Stark-induced hyperfine level repulsions, that require both an electric field and hyperfine structure. It is important to take into account hyperfine structure when we investigate physics of OH molecules at micro-Kelvin temperatures and below. This research was supported in part by AFOSR Grant No.FA9550-11-1-0224 and by the NSF under Grants PHY-1207881 and NSF PHY-1125915. We appreciate the Aspen Center for Physics, supported in part by the NSF Grant No.1066293, for hospitality.

  3. Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Ogura, Masako

    2015-03-01

    High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  4. Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties

    NASA Astrophysics Data System (ADS)

    Agzamova, P. A.; Leskova, Yu. V.; Nikiforov, A. E.

    2013-05-01

    Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions 139La and 89Y in LaTiO3 and YTiO3, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.

  5. Laser pumping Cs atom magnetometer of theory research based on gradient tensor measuring

    NASA Astrophysics Data System (ADS)

    Yang, Zhang; Chong, Kang; Wang, Qingtao; Lei, Cheng; Zheng, Caiping

    2011-02-01

    At present, due to space exploration, military technology, geological exploration, magnetic navigation, medical diagnosis and biological magnetic fields study of the needs of research and development, the magnetometer is given strong driving force. In this paper, it will discuss the theoretical analysis and system design of laser pumping cesium magnetometer, cesium atomic energy level formed hyperfine structure with the I-J coupling, the hyperfine structure has been further split into Zeeman sublevels for the effects of magnetic field. To use laser pump and RF magnetic field make electrons transition in the hyperfine structure to produce the results of magneto-optical double resonance, and ultimately through the resonant frequency will be able to achieve accurate value of the external magnetic field. On this basis, we further have a discussion about magnetic gradient tensor measuring method. To a large extent, it increases the magnetic field measurement of information.

  6. Local magnetic moment formation at 119Sn Mössbauer impurity in RCo2 (R=Gd,Tb,Dy,Ho,Er) Laves phase compounds

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. L.; de Oliveira, N. A.; Troper, A.

    2008-04-01

    In this work, we theoretically study the local magnetic moment formation and the systematics of the magnetic hyperfine fields at a Mösbauer Sn119 impurity diluted at the R site (R=Gd,Tb,Dy,Ho,Er) of the cubic Laves phase intermetallic compounds RCo2. One considers that the magnetic hyperfine fields have two contributions, (i) the contribution from R ions, calculated via an extended Daniel-Friedel [J. Phys. Chem. Solids 24, 1601 (1963)] model, and (ii) the contribution from the induced magnetic moments arising from the Co neighboring sites. Our calculated self-consistent total magnetic hyperfine fields are in a good agreement with recent experimental data.

  7. Hyperfine Fields in Nanocrystalline Fe0.48Al0.52

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.; Voronina, E.; Yelsukov, E. P.

    2004-12-01

    Mössbauer measurements with circularly polarized radiation were performed on a nanocrystalline, disordered Fe48Al52 alloy. The analysis of the data for various polarization states resulted in the characterization of the hyperfine magnetic field distribution and the dependence of the average z-component of hyperfine field on the chemical environment. An increasing number of Al in the first coordination shell causes not only a decrease of magnetic moments but also introduces noncollinearity.

  8. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    NASA Astrophysics Data System (ADS)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  9. Iron Atoms in Cr-Mn Antiferromagnetic Matrix

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.; Biernacka, M.; Perzyńska, K.; Zaleski, P.

    2002-06-01

    The results of the Mössbauer effect measurements on bcc Cr rich Cr-Fe-Mn alloys in temperature range 12-296 K in zero- and in applied magnetic fields are reported. Monochromatic, circularly polarized radiation was used for investigation of iron moments alignment. Strong enhancement of internal hyperfine magnetic field induced by the applied magnetic field was detected and explained as due to dynamical effects. At high temperatures alignment of iron moments in antiferromagnetic phase is weakly magnetic field-dependent. At low temperatures the average hyperfine magnetic field is antiparallel to the net magnetization showing that iron moments are partly ordered by the applied field.

  10. Hyperfine field and magnetic structure in the B phase of CeCoIn5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Matthias J; Curro, Nicholas J; Young, Ben - Li

    2009-01-01

    We re-analyze Nuclear Magnetic Resonance (NMR) spectra observed at low temperatures and high magnetic fields in the field-induced B-phase of CeCoIn{sub 5}. The NMR spectra are consistent with incommensurate antiferromagnetic order of the Ce magnetic moments. However, we find that the spectra of the In(2) sites depend critically on the direction of the ordered moments, the ordering wavevector and the symmetry of the hyperfine coupling to the Ce spins. Assuming isotropic hyperfine coupling, the NMR spectra observed for H {parallel} [100] are consistent with magnetic order with wavevector Q = {pi}(1+{delta}/a, 1/a, 1/c) and Ce moments ordered antiferromagnetically along themore » [100] direction in real space. If the hyperfine coupling has dipolar symmetry, then the NMR spectra require Ce moments along the [001] direction. The dipolar scenario is also consistent with recent neutron scattering measurements that find an ordered moment of 0.15{micro}{sub B} along [001] and Q{sub n} = {pi}(1+{delta}/a, 1+{delta}c, 1/c) with incommensuration {delta} = 0.12 for field H {parallel} [1{bar 1}0]. Using these parameters, we find that the hyperfine field is consistent with both experiments. We speculate that the B phase of CeCoIn{sub 5} represents an intrinsic phase of modulated superconductivity and antiferromagnetism that can only emerge in a highly clean system.« less

  11. Characterization of the hyperfine interaction of the excited D50 state of Eu3 +:Y2SiO5

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Emmanuel Zambrini; Etesse, Jean; Tiranov, Alexey; Bourdel, Pierre-Antoine; Fröwis, Florian; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael

    2018-03-01

    We characterize the europium (Eu3 +) hyperfine interaction of the excited state (D50) and determine its effective spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method is used to measure all hyperfine splittings under a weak external magnetic field (up to 10 mT) for various field orientations. On the basis of the determined Hamiltonian, we discuss the possibility to predict optical transition probabilities between hyperfine levels for the F70⟷D50 transition. The obtained results provide necessary information to realize an optical quantum memory scheme which utilizes long spin coherence properties of 3 + 151Eu :Y2SiO5 material under external magnetic fields.

  12. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.

    PubMed

    Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A

    2001-05-28

    Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.

  13. Angular Distribution of Hyperfine Magnetic Field in Fe3O4 and Fe66Ni34 from Mössbauer Polarimetry

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.

    2004-12-01

    Experimental determination of some angular averages of hyperfine field is demonstrated. The averages relates to magnetic structure. Exemplary results of the measurements for Fe3O4 and Fe66Ni34 show that it is possible to obtain valuable information about the field magnitudes and orientations even when distributions of fields are present in the system under study.

  14. Anomalous behavior of the magnetic hyperfine field at 140Ce impurities at La sites in LaMnSi2

    NASA Astrophysics Data System (ADS)

    Domienikan, C.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2018-05-01

    Magnetic hyperfine field has been measured in the orthorhombic intermetallic compound LaMnSi2 with perturbed angular correlation (PAC) spectroscopy using radioactive 140La(140Ce) nuclear probes. Magnetization measurements were also carried out in this compound with MPSM-SQUID magnetometer. Samples of LaMnSi2 compound were prepared by arc melting the component metals with high purity under argon atmosphere followed by annealing at 1000°C for 60 h under helium atmosphere and quenching in water. X-ray analysis confirmed the samples to be in a single phase with correct crystal structure expected for LaMnSi2 compound. The radioactive 140La (T1/2 = 40 h) nuclei were produced by direct irradiation of the sample with neutrons in the IEA-R1 nuclear research reactor at IPEN with a flux of ˜ 1013 n cm-2s-1 for about 3 - 4 min. The PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 10 K and 400 K. Temperature dependence of the hyperfine field, Bhf was found to be anomalous. A modified two-state model explained this anomalous behavior where the effective magnetic hyperfine field at 140Ce is believed to have two contributions, one from the unstable localized spins at Ce impurities and another from the magnetic Mn atoms of the host. The competition of these two contributions explains the anomalous behavior observed for the temperature dependence of the magnetic hyperfine field at 140Ce. The ferromagnetic transition temperature (TC) of LaMnSi2 was determined to be 400(1) K confirming the magnetic measurements.

  15. Magnetic moment of {sup 104}Ag{sup m} and the hyperfine magnetic field of Ag in Fe using nuclear magnetic resonance on oriented nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovko, V. V.; Kraev, I. S.; Phalet, T.

    2010-05-15

    Nuclear magnetic resonance (NMR/ON) measurements with beta- and gamma-ray detection have been performed on oriented {sup 104}Ag{sup g,m} nuclei with the NICOLE {sup 3}He-{sup 4}He dilution refrigerator setup at ISOLDE/CERN. For {sup 104}Ag{sup g} (I{sup p}i=5{sup +}) the gamma-NMR/ON resonance signal was found at nu=266.70(5) MHz. Combining this result with the known magnetic moment for this isotope, the magnetic hyperfine field of Ag impurities in an Fe host at low temperature (<1 K) is found to be |B{sub hf}(AgFe)|=44.709(35) T. A detailed analysis of other relevant data available in the literature yields three more values for this hyperfine field. Averagingmore » all four values yields a new and precise value for the hyperfine field of Ag in Fe; that is, |B{sub hf}(AgFe)|=44.692(30) T. For {sup 104}Ag{sup m} (I{sup p}i=2{sup +}), the anisotropy of the beta particles provided the NMR/ON resonance signal at nu=627.7(4) MHz. Using the new value for the hyperfine field of Ag in Fe, this frequency corresponds to the magnetic moment mu({sup 104m}Ag)=+3.691(3) mu{sub N}, which is significantly more precise than previous results. The magnetic moments of the even-A {sup 102-110}Ag isotopes are discussed in view of the competition between the (pig{sub 9/2}){sub 7/2}{sup +-3}(nud{sub 5/2}nug{sub 7/2}){sub 5/2}{sup +} and the (pig{sub 9/2}){sub 9/2}{sup +-3}(nud{sub 5/2}nug{sub 7/2}){sub 5/2}{sup +} configurations. The magnetic moments of the ground and isomeric states of {sup 104}Ag can be explained by an almost complete mixing of these two configurations.« less

  16. Molecular hyperfine fields in organic magnetoresistance devices

    NASA Astrophysics Data System (ADS)

    Giro, Ronaldo; Rosselli, Flávia P.; dos Santos Carvalho, Rafael; Capaz, Rodrigo B.; Cremona, Marco; Achete, Carlos A.

    2013-03-01

    We calculate molecular hyperfine fields in organic magnetoresistance (OMAR) devices using ab initio calculations. To do so, we establish a protocol for the accurate determination of the average hyperfine field Bhf and apply it to selected molecular ions: NPB, TPD, and Alq3. Then, we make devices with precisely the same molecules and perform measurements of the OMAR effect, in order to address the role of hole-transport layer in the characteristic magnetic field B0 of OMAR. Contrary to common belief, we find that molecular hyperfine fields are not only caused by hydrogen nuclei. We also find that dipolar contributions to the hyperfine fields can be comparable to the Fermi contact contributions. However, such contributions are restricted to nuclei located in the same molecular ion as the charge carrier (intramolecular), as extramolecular contributions are negligible.

  17. Collisional relaxation of MnH (X7Σ+) in a magnetic field: effect of the nuclear spin of Mn.

    PubMed

    Stoecklin, T; Halvick, Ph

    2011-11-14

    In the present study we investigate the role played by the hyperfine structure of manganese in the cooling and magnetic trapping of MnH((7)Σ(+)). The effect of the hyperfine structure of Mn on the relaxation of the magnetically trappable maximally stretched low-field seeking state of MnH((7)Σ(+)) in collisions with (3)He is deduced from comparison between the results of the present approach and our previous nuclear spin free calculations. We show that our previous results are unchanged at the temperature of the buffer gas cooling experiment but find a new resonance at very low collision energy. The role played by the different contributions to the hyperfine diatomic Hamiltonian considered in this work as well as the effect of an applied magnetic field on this resonance are also analyzed.

  18. Hyperfine interaction mechanism of magnetic field effects in sequential fluorophore and exciplex fluorescence.

    PubMed

    Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I

    2013-03-28

    The magnetic field effect on the fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is theoretically explored in the framework of Integral Encounter Theory. It is assumed that the excited fluorophore is equilibrated with the exciplex that reversibly dissociates into the radical-ion pair. The magnetic field sensitive stage is the spin conversion in the resulting geminate radical-ion pair, (1, 3)[D(+)...A(-)] that proceeds due to hyperfine interaction. We confirm our earlier conclusion (obtained with a rate description of spin conversion) that in the model with a single nucleus spin 1/2 the magnitude of the Magnetic Field Effect (MFE) also vanishes in the opposite limits of low and high dielectric permittivity of the solvent. Moreover, it is shown that MFE being positive at small hyperfine interaction A, first increases with A but approaching the maximum starts to decrease and even changes the sign.

  19. Hyperfine spin interactions between polarons and nuclei in organic light emitting diodes: Magneto-EL measurements

    NASA Astrophysics Data System (ADS)

    Crooker, S. A.; Kelley, M. R.; Martinez, N.; Nie, W.; Mohite, A. D.; Smith, D. L.; Tretiak, S.; Ruden, P. P.

    2014-03-01

    Considerable attention in recent years has focused on the effects of applied magnetic fields on the conductance, photocurrent, electroluminescence (EL), and photoluminescence of nominally nonmagnetic organic semiconductor materials and devices. These magnetic field effects have proven useful in revealing the underlying physical mechanisms and relevant spin interactions that influence the electrical and optical properties in these organic systems (e.g., hyperfine coupling, exchange interactions, and spin-orbit coupling). Here we study the field-dependent properties of organic light-emitting diode (OLEDs) based on MTDATA/LiF/Bphen layered structures, in which exciplex recombination at the interface dominates the EL spectra. Small applied magnetic fields (~10 mT) are found to boost the net EL yield by up to 10%, due to a suppression of the mixing between singlet and triplet polaron pairs which, in turn, arises from hyperfine spin coupling of the polarons to the underlying nuclei of the host molecules. We discuss the dependence of these field-induced effects on the LiF barrier thickness, device bias, and on the orientation of the applied magnetic field, as well as the mechanisms responsible.

  20. Magnetism of the 35 K superconductor CsEuFe4As4

    NASA Astrophysics Data System (ADS)

    Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han

    2018-04-01

    The results of ab initio hyperfine-interaction parameters calculations, and of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy study of the new 35 K superconductor CsEuFe4As4 are reported. The superconductor crystallizes in the tetragonal space group P4/mmm with the lattice parameters a = 3.8956(1) Å and c = 13.6628(5) Å. It is demonstrated unequivocally that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated with the Eu magnetic moments. The Curie temperature TC = 15.97(8) K determined from the temperature dependence of the hyperfine magnetic field at 151Eu nuclei is shown to be compatible with the temperature dependence of the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are shown to be perpendicular to the crystallographic c-axis. The temperature dependence of the principal component of the electric field gradient tensor, both at Fe and Eu sites, is well described by a T 3/2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of CsEuFe4As4 is found to be 295(3) K.

  1. Local magnetic moment formation at 119Sn Mössbauer impurity in RFe2 ( R=rare-earth metals) Laves phases compounds

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. L.; de Oliveira, N. A.; Troper, A.

    2010-05-01

    The purpose of the present work is to theoretically study the local magnetic moment formation and the systematics of the magnetic hyperfine fields at a non-magnetic s-p Mössbauer 119Sn impurity diluted on R sites ( R=rare-earth metals) of the cubic Laves phases intermetallic compounds RFe2. One considers that the magnetic hyperfine field has two contributions (i) the contribution from R ions, calculated via an extended Daniel-Friedel [J. Phys. Chem. Solids 24 (1963) 1601] model and (ii) the contribution from the induced magnetic moments arising from the Fe neighboring sites. We have in this case a two-center Blandin-Campbell-like [Phys. Rev. Lett. 31 (1973) 51; J. Magn. Magn. Mater. 1 (1975) 1] problem, where a magnetic 3d-element located at a distance from the 119Sn impurity gives an extra magnetization to a polarized electron gas which is strongly charge perturbed at the 119Sn impurity site. We also include in the model, the nearest-neighbor perturbation due to the translational invariance breaking introduced by the impurity. Our self-consistent total magnetic hyperfine field calculations are in a very good agreement with recent experimental data.

  2. Muon contact hyperfine field in metals: A DFT calculation

    NASA Astrophysics Data System (ADS)

    Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto

    2018-05-01

    In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.

  3. Mössbauer spectroscopy measurements on the 35.5 K superconductor Rb1 -δEuFe4As4

    NASA Astrophysics Data System (ADS)

    Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han

    2018-04-01

    The results of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy measurements, supplemented with ab initio hyperfine-interaction parameter calculations, on the new 35.5 K superconductor Rb1 -δEuFe4As4 are presented. The superconductor crystallizes in the tetragonal space group P 4 /m m m with the lattice parameters a =3.8849 (1 ) Å and c =13.3370 (3 ) Å. It is shown that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated solely with the Eu magnetic moments. The Curie temperature TC=16.54 (8 ) K is determined from the temperature dependence of both the hyperfine magnetic field at 151Eu nuclei and the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are demonstrated to be perpendicular to the crystallographic c axis. The temperature dependence of the principal component of the electric field gradient tensor, at both Fe and Eu sites, is well described by a T3 /2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of Rb1 -δEuFe4As4 is found to be 391(8) K.

  4. Hyperfine field and electronic structure of magnetite below the Verwey transition

    NASA Astrophysics Data System (ADS)

    Řezníček, R.; Chlan, V.; Štěpánková, H.; Novák, P.

    2015-03-01

    Magnetite represents a prototype compound with a mixed valence of iron cations. Its structure and electron ordering below the Verwey transition have been studied for decades. A recently published precise crystallographic structure [Senn et al., Nature (London) 481, 173 (2012), 10.1038/nature10704] accompanied by a suggestion of a "trimeron" model has given a new impulse to magnetite research. Here we investigate hyperfine field anisotropy in the C c phase of magnetite by quantitative reanalysis of published measurements of the dependences of the 57Fe nuclear magnetic resonance frequencies on the external magnetic field direction. Further, ab initio density-functional-theory-based calculations of hyperfine field depending on the magnetization direction using the recently reported crystal structure are carried out, and analogous hyperfine anisotropy data linked to particular crystallographic sites are determined. These two sets of data are compared, and mutually matching groups of the iron B sites in the 8:5:3 ratio are found. Moreover, information on electronic structure is obtained from the ab initio calculations. Our results are compared with the trimeron model and with an alternative analysis [Patterson, Phys. Rev. B 90, 075134 (2014), 10.1103/PhysRevB.90.075134] as well.

  5. Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb

    NASA Astrophysics Data System (ADS)

    Brown, Natalie C.; Brown, Kenneth R.

    2018-05-01

    Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herojit Singh, L.; Govindaraj, R., E-mail: govind@igcar.gov.in; Rajagopalan, S.

    Mössbauer spectroscopic studies have been carried out at different temperatures across ferromagnetic to paramagnetic transition in Ni{sub 50}Fe{sub 35}Co{sub 15} and the evolution of hyperfine parameters such as centre shift and magnetic hyperfine fields with temperature has been studied. Mössbauer spectrum obtained at 300 K in Ni{sub 50}Fe{sub 35}Co{sub 15} exhibiting fcc crystal structure is a six line pattern with the mean value of the hyperfine field close to 33 Tesla. Ferromagnetic to paramagnetic transition has been observed to occur in this system around 895 K matching with that of magnetization results. Debye temperature of this nickel rich alloy ismore » deduced to be around 470 K matching with that of Ni. Effect of prolonged annealing at 750 K on the magnetic property is also investigated with respect to the thermal stability of the alloy.« less

  7. 238U Mössbauer study on the magnetic properties of uranium-based heavy fermion superconductors

    NASA Astrophysics Data System (ADS)

    Tsutsui, Satoshi; Nakada, Masami; Nasu, Saburo; Haga, Yoshinori; Honma, Tetsuo; Yamamoto, Etsuji; Ohkuni, Hitoshi; Ōnuki, Yoshichika

    2000-07-01

    We have performed 238U Mössbauer spectroscopy of uranium-based heavy fermion superconductors, UPd2Al3 and URu2Si2, in order to investigate their physical properties, mainly their magnetic properties. The slow relaxation of magnetic hyperfine interaction in a paramagnetic state and the static hyperfine field has been observed in an antiferromagnetic ordered state for each compound. The line-widths have maximum at their characteristic temperatures where their magnetic susceptibilities have maximum values.

  8. Enzymatic mechanisms of biological magnetic sensitivity.

    PubMed

    Letuta, Ulyana G; Berdinskiy, Vitaly L; Udagawa, Chikako; Tanimoto, Yoshifumi

    2017-10-01

    Primary biological magnetoreceptors in living organisms is one of the main research problems in magnetobiology. Intracellular enzymatic reactions accompanied by electron transfer have been shown to be receptors of magnetic fields, and spin-dependent ion-radical processes can be a universal mechanism of biological magnetosensitivity. Magnetic interactions in intermediate ion-radical pairs, such as Zeeman and hyperfine (HFI) interactions, in accordance with proposed strict quantum mechanical theory, can determine magnetic-field dependencies of reactions that produce biologically important molecules needed for cell growth. Hyperfine interactions of electrons with nuclear magnetic moments of magnetic isotopes can explain the most important part of biomagnetic sensitivities in a weak magnetic field comparable to the Earth's magnetic field. The theoretical results mean that magnetic-field dependencies of enzymatic reaction rates in a weak magnetic field that can be independent of HFI constant a, if H < a, and are determined by the rate constant of chemical transformations in the enzyme active site. Both Zeeman and HFI interactions predict strong magnetic-field dependence in weak magnetic fields and magnetic-field independence of enzymatic reaction rate constants in strong magnetic fields. The theoretical results can explain the magnetic sensitivity of E. coli cell and demonstrate that intracellular enzymatic reactions are primary magnetoreceptors in living organisms. Bioelectromagnetics. 38:511-521, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Billowes, J.; Bissell, M. L.; Blaum, K.; Garcia Ruiz, R. F.; Heylen, H.; Malbrunot-Ettenauer, S.; Neyens, G.; Nörtershäuser, W.; Plunien, G.; Sailer, S.; Shabaev, V. M.; Skripnikov, L. V.; Tupitsyn, I. I.; Volotka, A. V.; Yang, X. F.

    2018-04-01

    The hyperfine structure splitting in the 6p3 3/2 4S → 6p2 7 s 1/2 4P transition at 307 nm in atomic 208Bi was measured with collinear laser spectroscopy at ISOLDE, CERN. The hyperfine A and B factors of both states were determined with an order of magnitude improved accuracy. Based on these measurements, theoretical input for the hyperfine structure anomaly, and results from hyperfine measurements on hydrogen-like and lithium-like 209Bi80+,82+, the nuclear magnetic moment of 208Bi has been determined to μ (208Bi) = + 4.570 (10)μN. Using this value, the transition energy of the ground-state hyperfine splitting in hydrogen-like and lithium-like 208Bi80+,82+ and their specific difference of -67.491(5)(148) meV are predicted. This provides a means for an experimental confirmation of the cancellation of nuclear structure effects in the specific difference in order to exclude such contributions as the cause of the hyperfine puzzle, the recently reported 7-σ discrepancy between experiment and bound-state strong-field QED calculations of the specific difference in the hyperfine structure splitting of 209Bi80+,82+.

  10. POLARIZED SCATTERING OF LIGHT FOR ARBITRARY MAGNETIC FIELDS WITH LEVEL-CROSSINGS FROM THE COMBINATION OF HYPERFINE AND FINE STRUCTURE SPLITTINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowmya, K.; Nagendra, K. N.; Sampoorna, M.

    2015-12-01

    Interference between magnetic substates of the hyperfine structure states belonging to different fine structure states of the same term influences the polarization for some of the diagnostically important lines of the Sun's spectrum, like the sodium and lithium doublets. The polarization signatures of this combined interference contain information on the properties of the solar magnetic fields. Motivated by this, in the present paper, we study the problem of polarized scattering on a two-term atom with hyperfine structure by accounting for the partial redistribution in the photon frequencies arising due to the Doppler motions of the atoms. We consider the scatteringmore » atoms to be under the influence of a magnetic field of arbitrary strength and develop a formalism based on the Kramers–Heisenberg approach to calculate the scattering cross section for this process. We explore the rich polarization effects that arise from various level-crossings in the Paschen–Back regime in a single scattering case using the lithium atomic system as a concrete example that is relevant to the Sun.« less

  11. A review of atomic clock technology, the performance capability of present spaceborne and terrestrial atomic clocks, and a look toward the future

    NASA Technical Reports Server (NTRS)

    Vessot, Robert F. C.

    1989-01-01

    Clocks have played a strong role in the development of general relativity. The concept of the proper clock is presently best realized by atomic clocks, whose development as precision instruments has evolved very rapidly in the last decades. To put a historical prospective on this progress since the year AD 1000, the time stability of various clocks expressed in terms of seconds of time error over one day of operation is shown. This stability of operation must not be confused with accuracy. Stability refers to the constancy of a clock operation as compared to that of some other clocks that serve as time references. Accuracy, on the other hand, is the ability to reproduce a previously defined frequency. The issues are outlined that must be considered when accuracy and stability of clocks and oscillators are studied. In general, the most widely used resonances result from the hyperfine interaction of the nuclear magnetic dipole moment and that of the outermost electron, which is characteristic of hydrogen and the alkali atoms. During the past decade hyperfine resonances of ions have also been used. The principal reason for both the accuracy and the stability of atomic clocks is the ability of obtaining very narrow hyperfine transition resonances by isolating the atom in some way so that only the applied stimulating microwave magnetic field is a significant source of perturbation. It is also important to make resonance transitions among hyperfine magnetic sublevels where separation is independent, at least to first order, of the magnetic field. In the case of ions stored in traps operating at high magnetic fields, one selects the trapping field to be consistent with a field-independent transition of the trapped atoms.

  12. Structural and magnetic properties of FeCoC system obtained by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Rincón Soler, A. I.; Rodríguez Jacobo, R. R.; Medina Barreto, M. H.; Cruz-Muñoz, B.

    2017-11-01

    Fe96-XCoXC4 (x = 0, 10, 20, 30, 40 at. %) alloys were obtained by mechanical alloying of Fe, C and Co powders using high-energy milling. The structural and magnetic properties of the alloy system were analyzed by X-ray diffraction, Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and Mössbauer Spectrometry at room temperature. The X-ray diffraction patterns showed a BCC-FeCoC structure phase for all samples, as well as a lattice parameter that slightly decreases with Co content. The saturation magnetization and coercive field were analyzed as a function of Co content. The Mössbauer spectra were fitted with a hyperfine magnetic field distribution showing the ferromagnetic behavior and the disordered character of the samples. The mean hyperfine magnetic field remained nearly constant (358 T) with Co content.

  13. Diamond nitrogen vacancy electronic and nuclear spin-state anti-crossings under weak transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Clevenson, Hannah; Chen, Edward; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle

    2016-05-01

    We report on detailed studies of electronic and nuclear spin states in the diamond nitrogen vacancy (NV) center under moderate transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV ground state hyperfine anti-crossing occurring at magnetic bias fields as low as tens of Gauss - two orders of magnitude lower than previously reported hyperfine anti-crossings at ~ 510 G and ~ 1000 G axial magnetic fields. We then discuss how this regime can be optimized for magnetometry and other sensing applications and propose a method for how the nitrogen-vacancy ground state Hamiltonian can be manipulated by small transverse magnetic fields to polarize the nuclear spin state. Acknowlegement: The Lincoln Laboratory portion of this work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

  14. The Zeeman effect in astrophysical water masers and the observation of strong magnetic fields in regions of star formation

    NASA Technical Reports Server (NTRS)

    Nedoluha, Gerald E.; Watson, William D.

    1992-01-01

    The present study solves the transfer equations for the polarized radiation of astrophysical 22-GHz water masers in the presence of a magnetic field which causes a Zeeman splitting that is much smaller than the spectral line breadth. The emphasis is placed on the relationship between the recently detected circular polarization in this maser radiation and the strength of the magnetic field. When the observed spectral line breadth is smaller than about 0.8 km/s (FWHM), it is calculated that the uncertainty is less than a factor of about 2. The accuracy is improved significantly when the angle between the line of sight and the direction of the magnetic field does not exceed about 45 deg. Uncertainty in the strength of the magnetic field due to lack of knowledge about which hyperfine transition is the source of the 22-GHz masers is removed. The 22-GHz maser feature is found to be the result of a merger of the three strongest hyperfine components.

  15. In situ study of electric field controlled ion transport in the Fe/BaTiO3 interface

    NASA Astrophysics Data System (ADS)

    Merkel, D. G.; Bessas, D.; Bazsó, G.; Jafari, A.; Rüffer, R.; Chumakov, A. I.; Khanh, N. Q.; Sajti, Sz; Celse, J.-P.; Nagy, D. L.

    2018-01-01

    Electric field controlled ion transport and interface formation of iron thin films on a BaTiO3 substrate have been investigated by in situ nuclear resonance scattering and x-ray reflectometry techniques. At early stage of deposition, an iron-II oxide interface layer was observed. The hyperfine parameters of the interface layer were found insensitive to the evaporated layer thickness. When an electric field was applied during growth, a 10 Å increase of the nonmagnetic/magnetic thickness threshold and an extended magnetic transition region was measured compared to the case where no field was applied. The interface layer was found stable under this threshold when further evaporation occurred, contrary to the magnetic layer where the magnitude and orientation of the hyperfine magnetic field vary continuously. The obtained results of the growth mechanism and of the electric field effect of the Fe/BTO system will allow the design of novel applications by creating custom oxide/metallic nanopatterns using laterally inhomogeneous electric fields during sample preparation.

  16. Modulated magnetic structure of F e3P O7 as seen by 57Fe Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Sobolev, A. V.; Akulenko, A. A.; Glazkova, I. S.; Pankratov, D. A.; Presniakov, I. A.

    2018-03-01

    The paper reports results of the 57Fe Mössbauer measurements on an F e3P O4O3 powder sample recorded at various temperatures, including the point of magnetic phase transition TN≈163 K . The spectra measured above TN consist of a quadrupole doublet with high quadrupole splitting of Δ300 K≈1.10 mm /s , emphasizing that F e3 + ions are located in crystal positions with a strong electric-field gradient (EFG). To predict the sign and orientation of the main components of the EFG tensor, we calculated the EFG using the density-functional-theory approach. In the temperature range T

  17. Microstructure, hyperfine interaction and magnetic transition of Fe-25%Ni-5%Si-x%Co alloys

    NASA Astrophysics Data System (ADS)

    Gungunes, H.

    2016-12-01

    Morphological and magnetic properties in Fe-25%Ni-5%Si-x%Co (x = 0, 10, 15) alloys are investigated. Scanning electron microscopy (SEM), Mössbauer spectroscopy and AC magnetic susceptibility measurements are used to determine the physical properties of alloys. The martensite morphology changed depending on the Co content. The Mössbauer study shows that the volume fraction and hyperfine field of martensite increases while isomer shift values decrease with increasing Co content. On the other hand; AC susceptibility results showed that; Co is an effective element which can be used to control both the magnetic transition and martensitic transformation temperatures.

  18. Magnetic properties and hyperfine interactions in Cr{sub 8}, Cr{sub 7}Cd, and Cr{sub 7}Ni molecular rings from {sup 19}F-NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordonali, L.; Borsa, F.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze

    2014-04-14

    A detailed experimental investigation of the {sup 19}F nuclear magnetic resonance is made on single crystals of the homometallic Cr{sub 8} antiferromagnetic molecular ring and heterometallic Cr{sub 7}Cd and Cr{sub 7}Ni rings in the low temperature ground state. Since the F{sup −} ion is located midway between neighboring magnetic metal ions in the ring, the {sup 19}F-NMR spectra yield information about the local electronic spin density and {sup 19}F hyperfine interactions. In Cr{sub 8}, where the ground state is a singlet with total spin S{sub T} = 0, the {sup 19}F-NMR spectra at 1.7 K and low external magnetic fieldmore » display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the {sup 19}F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S{sub T} = 1. In the heterometallic rings, Cr{sub 7}Cd and Cr{sub 7}Ni, whose ground state is magnetic with S{sub T} = 3/2 and S{sub T} = 1/2, respectively, the {sup 19}F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the {sup 19}F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F{sup −}-Ni{sup 2+} and the F{sup −}-Cd{sup 2+} bonds. The values of the hyperfine constants compare well to the ones known for F{sup −}-Ni{sup 2+} in KNiF{sub 3} and NiF{sub 2} and for F{sup −}-Cr{sup 3+} in K{sub 2}NaCrF{sub 6}. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F{sup −} ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.« less

  19. Hyperfine field, electric field gradient, quadrupole coupling constant and magnetic properties of challenging actinide digallide

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar

    2017-12-01

    In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.

  20. Correlation effects in fcc-Fe(x)Ni(1-x) alloys investigated by means of the KKR-CPA.

    PubMed

    Minár, J; Mankovsky, S; Šipr, O; Benea, D; Ebert, H

    2014-07-09

    The electronic structure and magnetic properties of the disordered alloy system fcc-FexNi1-x (fcc: face centered cubic) have been investigated by means of the KKR-CPA (Korringa-Kohn-Rostoker coherent potential approximation) band structure method. To investigate the impact of correlation effects, the calculations have been performed on the basis of the LSDA (local spin density approximation), the LSDA + U as well as the LSDA + DMFT (dynamical mean field theory). It turned out that the inclusion of correlation effects hardly changed the spin magnetic moments and the related hyperfine fields. The spin-orbit induced orbital magnetic moments and hyperfine fields, on the other hand, show a pronounced and element-specific enhancement. These findings are in full accordance with the results of a recent experimental study.

  1. Ground-State Hyperfine Structure of Heavy Hydrogen-Like Ions

    NASA Astrophysics Data System (ADS)

    Kühl, T.; Borneis, S.; Dax, A.; Engel, T.; Faber, S.; Gerlach, M.; Holbrow, C.; Huber, G.; Marx, D.; Merz, P.; Quint, W.; Schmitt, F.; Seelig, P.; Tomaselli, M.; Winter, H.; Wuertz, M.; Beckert, K.; Franzke, B.; Nolden, F.; Reich, H.; Steck, M.

    Contributions of quantum electrodynamics (QED) to the combined electric and magnetic interaction between the electron and the nucleus can be studied by optical spectroscopy in high-Z hydrogen-like heavy ions. The transition studied is the ground-state hyperfine structure transition, well known from the 21 cm line in atomic hydrogen. The hyperfine splitting of the is ground state of hydrogen-like systems constitutes the simplest and most basic magnetic interaction in atomic physics. The Z3-increase leads to a transition energy in the UV-region of the optical spectrum for the case of Bi82+. At the same time, the QED correction rises to nearly 1 fraction of higher order contributions. This situation is particularly useful for a comparison with non-perturbative QED calculations. The combination of exceptionally intense electric and magnetic fields electric and magnetic fields is unique. This transition has become accessible to precision laser spectroscopy at the high-energy heavy-ion storage ring at GSI-Darmstadt in the hydrogen-like 209Bi82+ and 207Pb81+. In the meantime, 165Ho66+ and 185,187Re74+ were also studied with reduced resolution by conventional optical spectroscopy at the SuperEBIT ion trap at Lawrence Livermore National Laboratory.

  2. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles.

    PubMed

    El-Ella, Haitham A R; Ahmadi, Sepehr; Wojciechowski, Adam M; Huck, Alexander; Andersen, Ulrik L

    2017-06-26

    Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.

  3. Spin Biochemistry Modulates Reactive Oxygen Species (ROS) Production by Radio Frequency Magnetic Fields

    PubMed Central

    Usselman, Robert J.; Hill, Iain; Singel, David J.; Martino, Carlos F.

    2014-01-01

    The effects of weak magnetic fields on the biological production of reactive oxygen species (ROS) from intracellular superoxide (O2 •−) and extracellular hydrogen peroxide (H2O2) were investigated in vitro with rat pulmonary arterial smooth muscle cells (rPASMC). A decrease in O2 •− and an increase in H2O2 concentrations were observed in the presence of a 7 MHz radio frequency (RF) at 10 μTRMS and static 45 μT magnetic fields. We propose that O2 •− and H2O2 production in some metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH•) enzymes and O2 •− spin-correlated radical pairs. Spin-radical pair products are modulated by the 7 MHz RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in an increase of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects cellular proliferation. This study demonstrates the interplay between O2 •− and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth. PMID:24681944

  4. Characterization of methanol as a magnetic field tracer in star-forming regions

    NASA Astrophysics Data System (ADS)

    Lankhaar, Boy; Vlemmings, Wouter; Surcis, Gabriele; van Langevelde, Huib Jan; Groenenboom, Gerrit C.; van der Avoird, Ad

    2018-02-01

    Magnetic fields play an important role during star formation1. Direct magnetic field strength observations have proven particularly challenging in the extremely dynamic protostellar phase2-4. Because of their occurrence in the densest parts of star-forming regions, masers, through polarization observations, are the main source of magnetic field strength and morphology measurements around protostars2. Of all maser species, methanol is one of the strongest and most abundant tracers of gas around high-mass protostellar disks and in outflows. However, as experimental determination of the magnetic characteristics of methanol has remained largely unsuccessful5, a robust magnetic field strength analysis of these regions could hitherto not be performed. Here, we report a quantitative theoretical model of the magnetic properties of methanol, including the complicated hyperfine structure that results from its internal rotation6. We show that the large range in values of the Landé g factors of the hyperfine components of each maser line lead to conclusions that differ substantially from the current interpretation based on a single effective g factor. These conclusions are more consistent with other observations7,8 and confirm the presence of dynamically important magnetic fields around protostars. Additionally, our calculations show that (nonlinear) Zeeman effects must be taken into account to further enhance the accuracy of cosmological electron-to-proton mass ratio determinations using methanol9-12.

  5. High-precision optical measurement of the 2S hyperfine interval in atomic hydrogen.

    PubMed

    Kolachevsky, N; Fischer, M; Karshenboim, S G; Hänsch, T W

    2004-01-23

    We have applied an optical method to the measurement of the 2S hyperfine interval in atomic hydrogen. The interval has been measured by means of two-photon spectroscopy of the 1S-2S transition on a hydrogen atomic beam shielded from external magnetic fields. The measured value of the 2S hyperfine interval is equal to 177 556 860(16) Hz and represents the most precise measurement of this interval to date. The theoretical evaluation of the specific combination of 1S and 2S hyperfine intervals D21 is in fair agreement (within 1.4 sigma) with the value for D21 deduced from our measurement.

  6. [Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue].

    PubMed

    Schröder, Leif

    2007-01-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the A MX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed.

  7. Electronic structure and magnetic properties of dilute U impurities in metals

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Cottenier, S.; Mishra, S. N.

    2016-05-01

    The electronic structure and magnetic moment of dilute U impurity in metallic hosts have been calculated from first principles. The calculations have been performed within local density approximation of the density functional theory using Augmented plane wave+local orbital (APW+lo) technique, taking account of spin-orbit coupling and Coulomb correlation through LDA+U approach. We present here our results for the local density of states, magnetic moment and hyperfine field calculated for an isolated U impurity embedded in hosts with sp-, d- and f-type conduction electrons. The results of our systematic study provide a comprehensive insight on the pressure dependence of 5f local magnetism in metallic systems. The unpolarized local density of states (LDOS), analyzed within the frame work of Stoner model suggest the occurrence of local moment for U in sp-elements, noble metals and f-block hosts like La, Ce, Lu and Th. In contrast, U is predicted to be nonmagnetic in most transition metal hosts except in Sc, Ti, Y, Zr, and Hf consistent with the results obtained from spin polarized calculation. The spin and orbital magnetic moments of U computed within the frame of LDA+U formalism show a scaling behavior with lattice compression. We have also computed the spin and orbital hyperfine fields and a detail analysis has been carried out. The host dependent trends for the magnetic moment, hyperfine field and 5f occupation reflect pressure induced change of electronic structure with U valency changing from 3+ to 4+ under lattice compression. In addition, we have made a detailed analysis of the impurity induced host spin polarization suggesting qualitatively different roles of f-band electrons on moment stability. The results presented in this work would be helpful towards understanding magnetism and spin fluctuation in U based alloys.

  8. Semiclassical description of hyperfine interaction in calculating chemically induced dynamic nuclear polarization in weak magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purtov, P.A.; Salikhov, K.M.

    1987-09-01

    Semiclassical HFI description is applicable to calculating the integral CIDNP effect in weak fields. The HFI has been calculated for radicals with sufficiently numerous magnetically equivalent nuclei (n greater than or equal to 5) in satisfactory agreement with CIDNP calculations based on quantum-mechanical description of radical-pair spin dynamics.

  9. Interface influence on the properties of Co90Fe10 films on soft magnetic underlayers - Magnetostrictive and Mössbauer spectrometry studies

    NASA Astrophysics Data System (ADS)

    Szumiata, Tadeusz; Gzik-Szumiata, Małgorzata; Brzózka, Katarzyna; Górka, Bogumił; Gawroński, Michał; Caruana Finkel, Anastasia; Reeves-McLaren, Nik; Morley, Nicola A.

    2016-03-01

    The main aim of the work was to show the correlation between magnetostrictive properties and microstructure of 25 nm thick Co90Fe10 films deposited on soft magnetic underlayers. A special attention was paid to the role of the interface region. In the case of Co90Fe10 on 25 nm and 35 nm thick METGLAS underlayers one can resolve in conversion electron Mössbauer spectra two hyperfine field distributions (high-field and medium-field ones) corresponding to both constituents of bilayers. Analogical distributions describe the spectra of Co90Fe10 on 25 nm and 35 nm thick Ni81Fe19 underlayers, however an additional low-field, smeared component has been observed. It has been attributed to the interface layer (of partially disordered structure) between magnetostrictive layer and soft magnetic layer. Such interpretation is backed up by the obtained strong correlation between mean hyperfine field value and magnetostriction constant of the films. The investigated bilayers are good candidates for MRAM devices.

  10. The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Varberg, Thomas D.; Evenson, Kenneth M.; Cooksy, Andrew L.

    1994-01-01

    The far-infrared laser magnetic resonance spectra associated with both fine-structure transitions in (N-14)+ in its ground P-3 state have been recorded. This is the first laboratory observation of the J = 1 left arrow 0 transition and its frequency has been determined two orders of magnitude more accurately than previously. The remeasurement of the J = 2 left arrow 1 spectrum revealed a small error in the previous laboratory measurements. The fine-structure splittings (free of hyperfine interactions) determined in this work are (delta)E(sub 10) = 1461.13190 (61) GHz, (delta)E(sub 21) = 2459.38006 (37) GHz. Zero-field transition frequencies which include the effects of hyperfine structure have also been calculated. Refined values for the hyperfine constants and the g(sub J) factors have been obtained.

  11. Multiple magnetic transitions in EuNiSi3

    NASA Astrophysics Data System (ADS)

    Patil, Sujata M.; Paulose, P. L.

    2018-04-01

    EuNiSi3 undergoes multiple magnetic transitions below 50K. We have studied this system using low field ac susceptibility and 151Eu Mössbauer spectroscopy to understand the nature of multiple magnetic transitions. The estimated hyperfine field (hf) at Eu site at 5K is 45 Tesla which is unusually large compared to the normal observed hf of 33T in most of the Eu intermetallics.

  12. Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    NASA Astrophysics Data System (ADS)

    Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Smith, Darryl L.

    2014-12-01

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solution using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. To validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. These observations are consistent with the model.

  13. Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics

    NASA Astrophysics Data System (ADS)

    Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.

    2018-04-01

    Gd_2Fe_{17-x}Si_x (x = 0.25 , 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17} -type structure (space group R\\bar{3}m ). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R-R, M-M and R-M (R—rare earth, M—transition metal) have been determined from M(T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6c, 9d, 18f, and 18h of the R\\bar{3} m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h} . The mean hyperfine field decreases with the Si content.

  14. Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics

    NASA Astrophysics Data System (ADS)

    Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.

    2018-07-01

    Gd_2Fe_{17-x}Si_x (x = 0.25, 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17}-type structure (space group R\\bar{3}m). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R- R, M- M and R- M ( R—rare earth, M—transition metal) have been determined from M( T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6 c, 9 d, 18 f, and 18 h of the R\\bar{3}m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h}. The mean hyperfine field decreases with the Si content.

  15. Structure and magnetic behaviors of melt-spun SmFeSiB ribbons and their nitrides

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhang, K.; Li, K. S.; Yu, D. B.; Ling, J. J.; Men, K.; Dou, Q. Y.; Yan, W. L.; Xie, J. J.; Yang, Y. F.

    2016-05-01

    SmFe9.3+xSi0.2B0.1 (x=0, 0.5, 1.0) ribbons and their nitrides were prepared by melt-spinning, followed by annealing and subsequent nitriding. The structure and magnetic properties have been investigated by means of powder X-ray diffraction, vibrating sample magnetometer and Mossbauer spectroscopy. Rietveld analysis shows that the augment of Fe content gives rise to an increase of the c/a ratio and cell volume. The increasing amount of Fe atoms occupying the 2e sites results in the change of initial structure. It is indicated that the isomer shift of 3g and 6l atom remains quasi-constant while the 2e atom shows a noticeable increase with the increase of iron content, which further conforms the preferential occupation of excessive Fe atoms at this site. Consistent with Tc, the mean hyperfine field 〈Bhf〉 has the highest value of 25.7 T when x=0.5. The hyperfine fields at different Fe sites follow the order H2e>H3g>H6l. The highest curie temperature of 477.68 K and the hyperfine field of 25.7 T in the as-quenched ribbons were obtained when x=0.5. Meanwhile, the highest magnetic properties of Hcj=4.31 kOe, (BH)m=3.5 MGOe in the nitride powders were found.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez, A. M., E-mail: amgomezl-1@uqvirtual.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co

    The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.

  17. Magnetic interactions in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr, Nd and Gd) studied by time differential perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Mishra, S N

    2009-03-18

    Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the (111)Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values B(hf)(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component V(zz) in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 10(21) V m(-2), 5.5 × 10(21) V m(-2) and 5.6 × 10(21) V m(-2), respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μ(B) in CeScGe to ≈0.3 μ(B) in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in RScGe compounds.

  18. NMR studies of field induced magnetism in CeCoIn5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Matthias; Curro, Nicholas J; Young, Ben - Li

    2009-01-01

    Recent Nuclear Magnetic Resonance and elastic neutron scattering experiments have revealed conclusively the presence of static incommensurate magnetism in the field-induced B phase of CeCoIns, We analyze the NMR data assuming the hyperfine coupling to the 1n(2) nuclei is anisotropic and simulate the spectra for several different magnetic structures, The NMR data are consistent with ordered Ce moments along the [001] direction, but are relatively insensitive to the direction of the incommensurate wavevector.

  19. New probe of magnetic fields in the prereionization epoch. I. Formalism

    NASA Astrophysics Data System (ADS)

    Venumadhav, Tejaswi; Oklopčić, Antonija; Gluscevic, Vera; Mishra, Abhilash; Hirata, Christopher M.

    2017-04-01

    We propose a method of measuring extremely weak magnetic fields in the intergalactic medium prior to and during the epoch of cosmic reionization. The method utilizes the Larmor precession of spin-polarized neutral hydrogen in the triplet state of the hyperfine transition. This precession leads to a systematic change in the brightness temperature fluctuations of the 21-cm line from the high-redshift universe, and thus the statistics of these fluctuations encode information about the magnetic field the atoms are immersed in. The method is most suited to probing fields that are coherent on large scales; in this paper, we consider a homogenous magnetic field over the scale of the 21-cm fluctuations. Due to the long lifetime of the triplet state of the 21-cm transition, this technique is naturally sensitive to extremely weak field strengths, of order 10-19 G at a reference redshift of ˜20 (or 10-21 G if scaled to the present day). Therefore, this might open up the possibility of probing primordial magnetic fields just prior to reionization. If the magnetic fields are much stronger, it is still possible to use this method to infer their direction, and place a lower limit on their strength. In this paper (Paper I in a series on this effect), we perform detailed calculations of the microphysics behind this effect, and take into account all the processes that affect the hyperfine transition, including radiative decays, collisions, and optical pumping by Lyman-α photons. We conclude with an analytic formula for the brightness temperature of linear-regime fluctuations in the presence of a magnetic field, and discuss its limiting behavior for weak and strong fields.

  20. Magnetic interactions in NiO at ultrahigh pressure

    DOE PAGES

    Potapkin, Vasily; Dubrovinsky, Leonid; Sergueev, I.; ...

    2016-05-24

    Here, magnetic properties of NiO have been studied in the multimegabar pressure range by nuclear forward scattering of synchrotron radiation using the 67.4 keV M ssbauer transition of 61Ni. The observed magnetic hyperfine splitting confirms the antiferromagnetic state of NiO up to 280 GPa, the highest pressure where magnetism has been observed so far, in any material. Remarkably, the hyperfine field increases from 8.47 T at ambient pressure to ~24 T at the highest pressure, ruling out the possibility of a magnetic collapse. A joint x-ray diffraction and extended x-ray-absorption fine structure investigation reveals that NiO remains in a distortedmore » sodium chloride structure in the entire studied pressure range. Ab initio calculations support the experimental observations, and further indicate a complete absence of Mott transition in NiO up to at least 280 GPa.« less

  1. Electronic and Magnetic Structures, Magnetic Hyperfine Fields and Electric Field Gradients in UX3 (X = In, Tl, Pb) Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, Majid; Jalali-Asadabadi, Saeid; Farooq, Muhammad Bilal; Ahmad, Iftikhar

    2018-02-01

    Cubic uranium compounds such as UX3 (X is a non-transition element of groups IIIA or IVA) exhibit highly diverse magnetic properties, including Pauli paramagnetism, spin fluctuation and anti-ferromagnetism. In the present paper, we explore the structural, electronic and magnetic properties as well as the hyperfine fields (HFFs) and electric field gradients (EFGs) with quadrupole coupling constant of UX3 (X = In, Tl, Pb) compounds using local density approximation, Perdew-Burke-Ernzerhof parametrization of generalized gradient approximation (PBE-GGA) including the Hubbard U parameter (GGA + U), a revised version of PBE-GGA that improves equilibrium properties of densely packed solids and their surfaces (PBEsol-GGA), and a hybrid functional (HF-PBEsol). The spin orbit-coupling calculations have been added to investigate the relativistic effect of electrons in these materials. The comparison between the experimental parameters and our calculated structural parameters we confirm the consistency and effectiveness of our theoretical tools. The computed magnetic moments show that magnetic moment increases from indium to lead in the UX3 family, and all these compounds are antiferromagnetic in nature. The EFGs and HFFs, as well as the quadrupole coupling constant of UX3 (X = In, Tl, Pb), are discussed in detail. These properties primarily originate from f and p states of uranium and post-transition sites.

  2. LOCAL MAGNETIC BEHAVIOR OF 54Fe in EuFe2As2 AND Eu0.5K0.5Fe2As2: MICROSCOPIC STUDY USING TIME DIFFERENTIAL PERTURBED ANGULAR DISTRIBUTION (TDPAD) SPECTROSCOPY

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Mishra, S. N.; Davane, S. M.; Layek, S.; Hossain, Z.

    2013-12-01

    In this paper, we report the time differential perturbed angular distribution measurements of 54Fe on a polycrystalline EuFe2As2 and Eu0.5K0.5Fe2As2. The hyperfine field and nuclear spin-relaxation rate are strongly temperature dependent in the paramagnetic state suggesting strong spin fluctuation in the parent compound. The local susceptibility show Curie-Weiss-like temperature dependence and Korringa-like relaxation in the tetragonal phase indicating the presence of local moment. In the orthorhombic phase, the hyperfine field behavior suggesting quasi two-dimensional magnetic ordering. The experimental results are in a good agreement with first-principle calculations based on density functional theory.

  3. Nuclear spin noise in the central spin model

    NASA Astrophysics Data System (ADS)

    Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail

    2018-05-01

    We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.

  4. Electron-nuclear coherent spin oscillations probed by spin-dependent recombination

    NASA Astrophysics Data System (ADS)

    Azaizia, S.; Carrère, H.; Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Kalevich, V. K.; Ivchenko, E. L.; Bakaleinikov, L. A.; Marie, X.; Amand, T.; Kunold, A.; Balocchi, A.

    2018-04-01

    We demonstrate the triggering and detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction in Ga deep paramagnetic centers in GaAsN by band-to-band photoluminescence without an external magnetic field. In contrast to other point defects such as Cr4 + in SiC, Ce3 + in yttrium aluminum garnet crystals, nitrogen-vacancy centers in diamond, and P atoms in silicon, the bound-electron spin in Ga centers is not directly coupled to the electromagnetic field via the spin-orbit interaction. However, this apparent drawback can be turned into an advantage by exploiting the spin-selective capture of conduction band electrons to the Ga centers. On the basis of a pump-probe photoluminescence experiment we measure directly in the temporal domain the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of an electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillation amplitude decay and the long-time-delay behavior.

  5. Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    DOE PAGES

    Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; ...

    2014-12-22

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solutionmore » using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. In order to validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. Furthermore, these observations are consistent with the model.« less

  6. High-Pressure Phase Transition of Iron: A Combined Magnetic Remanence and Mössbauer Study

    NASA Astrophysics Data System (ADS)

    Wei, Qingguo; McCammon, Catherine; Gilder, Stuart Alan

    2017-12-01

    We measured Mössbauer spectra and the acquisition of saturation isothermal remanent magnetization in alternating steps on the same sample of polycrystalline, multidiron metal powder in a diamond anvil cell across the body centered cubic (bcc) to hexagonal closed packed (hcp) phase transition at room temperature up to 19.2 GPa. Within the bcc stability field indicated by the presence of magnetic hyperfine splitting, saturation remanent magnetization and sextet area were well correlated during compression and decompression. The areas and dips of the outer (first and sixth) and middle (second and fifth) components of the sextet changed in relative proportion as a function of pressure, which was attributed to rotation of the magnetization direction perpendicular to the gamma-ray source. Sextet peaks disappeared above ˜15 GPa, yet magnetic remanence persisted. Magnetic remanence intensity divided by the fractional area of the sextet, taken to represent bcc Fe, attained maxima at pressures near the boundaries of the hysteretic transition, which we attribute to strain-related magnetostriction effects associated with a distorted bcc-hcp phase. Magnetic remanence observed within the hcp stability field, as defined by the absence of sextet peaks, could be due to a previously described, distorted bcc-hcp phase whose hyperfine field was below detection limits of Mössbauer spectroscopy. Our study suggests that distorted bcc-hcp Fe holds magnetic remanence and leaves open the possibility that this phase carries magnetic remanence into the pressure range where only pure hcp Fe is considered stable.

  7. Observation of the hyperfine spectrum of antihydrogen.

    PubMed

    Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Johnson, M A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Mathers, M; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stracka, S; Stutter, G; So, C; Tharp, T D; Thompson, J E; Thompson, R I; van der Werf, D P; Wurtele, J S

    2017-08-02

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 10 13 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger's relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10 4 . This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  8. Observation of the hyperfine spectrum of antihydrogen

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2017-08-01

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  9. Modification of structural and magnetic properties of soft magnetic multi-component metallic glass by 80 MeV 16O6+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Kane, S. N.; Shah, M.; Satalkar, M.; Gehlot, K.; Kulriya, P. K.; Avasthi, D. K.; Sinha, A. K.; Modak, S. S.; Ghodke, N. L.; Reddy, V. R.; Varga, L. K.

    2016-07-01

    Effect of 80 MeV 16O6+ ion irradiation in amorphous Fe77P8Si3C5Al2Ga1B4 alloy is reported. Electronic energy loss induced modifications in the structural and, magnetic properties were monitored by synchrotron X-ray diffraction (SXRD), Mössbauer and, magnetic measurements. Broad amorphous hump seen in SXRD patterns reveals the amorphous nature of the studied specimens. Mössbauer measurements suggest that: (a) alignment of atomic spins within ribbon plane, (b) changes in average hyperfine field suggests radiation-induced decrease in the inter atomic distance around Mössbauer (Fe) atom, (c) hyperfine field distribution confirms the presence of non-magnetic elements (e.g. - B, P, C) in the first near-neighbor shell of the Fe atom, thus reducing its magnetic moment, and (d) changes in isomer shift suggests variation in average number of the metalloid near neighbors and their distances. Minor changes in soft magnetic behavior - watt loss and, coercivity after an irradiation dose of 2 × 1013 ions/cm2 suggests prospective application of Fe77P8Si3C5Al2Ga1B4 alloy as core material in accelerators (radio frequency cavities).

  10. Scanning nuclear resonance imaging of a hyperfine-coupled quantum Hall system.

    PubMed

    Hashimoto, Katsushi; Tomimatsu, Toru; Sato, Ken; Hirayama, Yoshiro

    2018-06-07

    Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.

  11. 53Cr NMR study of CuCrO2 multiferroic

    NASA Astrophysics Data System (ADS)

    Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Yakubovskii, A. Yu.; Kumagai, K.; Furukawa, Y.; Sadykov, A. F.; Piskunov, Yu. V.; Gerashchenko, A. P.; Barilo, S. N.; Shiryaev, S. V.

    2015-11-01

    The magnetically ordered phase of the CuCrO2 single crystal has been studied by the nuclear magnetic resonance (NMR) method on 53Cr nuclei in the absence of an external magnetic field. The 53Cr NMR spectrum is observed in the frequency range νres = 61-66 MHz. The shape of the spectrum depends on the delay tdel between pulses in the pulse sequence τπ/2- t del-τπ- t del-echo. The spin-spin and spin-lattice relaxation times have been measured. Components of the electric field gradient, hyperfine fields, and the magnetic moment on chromium atoms have been estimated.

  12. Structural and magnetic study of Al{sup 3+} doped Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} nanoferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Rai, B.K.; Mishra, S.R.

    2015-05-15

    Graphical abstract: Hyperfine field of individual sites (inset) and weighted average hyperfine field as a function of Al{sup 3+} content for Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4}. - Highlights: • Grain size reduction with Al{sup 3+} substitution. • Preferred occupancy of Al{sup 3+} at B site for higher Al{sup 3+} content. • Reduction in Ms, Tc, and hyperfine field with increasing Al{sup 3+} content. • Size dependent variation in coercivity. • Changes in isomer shift due to competing effect of volume and substitution. - Abstract: Nanostructured Al{sup 3+} doped Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} (x = 0.0, 0.2, 0.4,more » 0.6, 0.8, and 1.0) ferrites were synthesized via the wet chemical method. X-ray diffraction, transmission electron microscopy, and magnetization measurements have been used to investigate the structural and magnetic properties of spinel ferrites calcined at 950 °C. With the doping of Al{sup 3+}, the particle size of Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} first increased to 47 nm at x = 0.4 and then decreased down to 37 nm at x = 1. The main two absorption bands in IR spectra were observed around 600 cm{sup −1} and 400 cm{sup −1} corresponding to stretching vibration of tetrahedral and octahedral group Fe{sup 3+}–O{sup 2−}. Saturation magnetization and hyperfine field values decreased linearly with Al{sup 3+} due to magnetic dilution and the relative strengths of Fe–O–Me (Me = Fe, Ni, Zn, and Al) superexchanges. The coercive field showed an inverse dependence on ferrite particle size with minimum value of 82 Oe for x = 0.4. A continuous drop in Curie temperature was observed with the Al{sup 3+} substitution. From the Moessbauer spectral analysis and X-ray diffraction analysis, it is deduced that Al{sup 3+} for x < 0.4 has no obvious preference for either tetrahedral or octahedral site but has a greater preference for the B site for x > 0.4. In nutshell the study presents detailed structural and magnetic, and Moessbauer analysis of Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} ferrites.« less

  13. An EPR investigation of the dynamic Jahn-Teller effect in SrCl2:y(2 plus) and SrCl2:Sc(2 plus)

    NASA Technical Reports Server (NTRS)

    Herrington, J. R.; Estle, T. L.; Boatner, L. A.

    1972-01-01

    EPR spectra have been observed for SrCl2:Y(2+) and SrCl2:Sc(2+) at liquid helium temperatures. At 1.2 K the spectra were dominated by anisotropic hyperfine patterns whose lineshapes and angular dependences were explained using second order solutions of the effective Hamiltonian for an isolated 2Eg state split by large random internal strains. Pronounced asymmetries in some of the strin produced lineshapes for Srcl2:Sc(2+) are shown to result from second order terms in the solution of the effective Hamiltonian. Coexisting with the anisotropic hyperfine patterns are weak nearly isotropic hyperfine patterns with typical lineshapes. Variations in the apparent intensity of lines in these weak hyperfine patterns as functions of the applied magnetic field direction and temperature imply that these lines result from averaging by vibronic relaxation of a portion of the anisotropic pattern. The effective Hamiltonian parameters for SrCl2:La(2+), SrCl2:y(2+), and SrCl2:SC(2+) are analyzed in terms of crystal field theory modified to include a dynamic Jahn-Teller effect.

  14. Coherent manipulation of mononuclear lanthanide-based single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Datta, Saiti; Ghosh, Sanhita; Krzystek, Jurek; Hill, Stephen; Del Barco, Enrique; Cardona-Serra, Salvador; Coronado, Eugenio

    2010-03-01

    Using electron spin echo (ESE) spectroscopy, we report measurements of the longitudinal (T1) and transverse (T2) relaxation times of diluted single-crystals containing recently discovered mononuclear lanthanide-based single-molecule magnets (SMMs) encapsulated in polyoxometallate cages [AlDamen et al. J. Am. Chem. Soc. 130, 8874 -- 8875 (2008)]. This encapsulation offers the potential for preserving bulk SMM properties outside of a crystal, e.g. in molecular spintronic devices. The magnetic anisotropy in these complexes arises from the spin-orbit splitting of the ground state J multiplet of the lanthanide ion in the presence of a ligand field. At low frequencies only hyperfine-split transitions within the lowest ground state ±mJ doublet are observed. Spin relaxation times were measured for a holmium complex, and the results were compared for different hyperfine transitions and crystal dilutions. Clear Rabi oscillations were also observed, indicating that one can manipulate the spin coherently in these complexes.

  15. NMR study of the paramagnetic state of low-dimensional magnets LiCu{sub 2}O{sub 2} and NaCu{sub 2}O{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadykov, A. F., E-mail: sadykov@imp.uran.ru; Piskunov, Yu. V.; Gerashchenko, A. P.

    A comprehensive NMR study of the magnetic properties of single crystal LiCu{sub 2}O{sub 2} (LCO) and NaCu{sub 2}O{sub 2} (NCO) is carried out in the paramagnetic region of the compounds for various orientations of single crystals in an external magnetic field. The values of the electric-field gradient (EFG) tensor, as well as the dipole and transferred hyperfine magnetic fields for {sup 63,65}Cu, {sup 7}Li, and {sup 23}Na nuclei are determined. The results are compared with the data obtained in previous NMR studies of the magnetically ordered state of LCO/NCO cuprates.

  16. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    NASA Astrophysics Data System (ADS)

    Crooker, S. A.; Liu, F.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Ruden, P. P.

    2014-10-01

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ˜ 11%) than at the low-energy red end (˜4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  17. Nuclear magnetic shielding in boronlike ions

    NASA Astrophysics Data System (ADS)

    Volchkova, A. M.; Varentsova, A. S.; Zubova, N. A.; Agababaev, V. A.; Glazov, D. A.; Volotka, A. V.; Shabaev, V. M.; Plunien, G.

    2017-10-01

    The relativistic treatment of the nuclear magnetic shielding effect in boronlike ions is presented. The leading-order contribution of the magnetic-dipole hyperfine interaction is calculated. Along with the standard second-order perturbation theory expression, the solutions of the Dirac equation in the presence of magnetic field are employed. All methods are found to be in agreement with each other and with the previous calculations for hydrogenlike and lithiumlike ions. The effective screening potential is used to account approximately for the interelectronic interaction.

  18. Hyperfine fields and anisotropy of the orbital moment in epitaxial Mn5Ge3 films studied by 55Mn NMR

    NASA Astrophysics Data System (ADS)

    Kalvig, R.; Jedryka, E.; Wojcik, M.; Allodi, G.; De Renzi, R.; Petit, M.; Michez, L.

    2018-05-01

    55Mn NMR was used to perform the atomic-scale study of the anisotropic properties of Mn5Ge3 /Ge(111) epitaxial films with thicknesses between 9 and 300 nm. The NMR spectra have been recorded as a function of strong external magnetic field applied in the film plane and perpendicular to it. Two 55Mn NMR resonances have been observed, corresponding to the two manganese sites 4 d and 6 g , in the hexagonal D 88 structure; in zero field their frequency is centered around 207.5 and 428 MHz, respectively. The anisotropy of 55Mn hyperfine fields between the hexagonal c direction and the c plane at both Mn sites was evidenced and attributed to the anisotropic term due to the unquenched Mn orbital momentum. The anisotropy of the orbital contribution to hyperfine fields was determined as 1.52 T in the 4 d site and up to 2.77 T in the 6 g site. The 4 d site reveals a quadrupolar interaction due to the strong electric field gradient: Vz z=5.3 ×1019V/m2 in this site, which is shown to be oriented along the hexagonal c axis.

  19. Mössbauer spectra of iron (III) sulfide particles

    NASA Astrophysics Data System (ADS)

    Kubono, I.; Nishida, N.; Kobayashi, Y.; Yamada, Y.

    2017-11-01

    Trivalent iron sulfide (Fe2 S 3) particles were synthesized using a modified polyol method. These particles exhibited a needle-like shape (diameter = 10-50 nm, length = 350-1000 nm) and generated a clear XRD pattern. Mössbauer spectra of the product showed a paramagnetic doublet at room temperature and distributed hyperfine magnetic splitting at low temperature. The Curie temperature of this material was determined to be approximately 60 K. The data suggest that the Fe2 S 3 had a structure similar to that of maghemite ( γ-Fe2 O 3) with a lattice constant of a = 10.6 Å. The XRD pattern calculated from this structure was in agreement with the experimental pattern and the calculated hyperfine magnetic field was also equivalent to that observed in the experimental Mössbauer spectrum.

  20. Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.

    2017-09-01

    The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.

  1. Direct observation of electronic and nuclear ground state splitting in external magnetic field by inelastic neutron scattering on oxidized ferrocene and ferrocene containing polymers

    NASA Astrophysics Data System (ADS)

    Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd

    2015-01-01

    The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.

  2. Hyperfine interaction in K 2Ba[Fe(NO 2) 6

    NASA Astrophysics Data System (ADS)

    Padmakumar, K.; Manoharan, P. T.

    2000-04-01

    Magnetic hyperfine splitting observed in the low temperature Mössbauer spectrum of potassium barium hexanitro ferrate(II), in the absence of any external field, is attributed to the 5T 2g state of the central metal atom further split into a ground 5E g state and a first excited 5B 2g state under a distorted octahedral symmetry in contrast to the earlier prediction of 1A 1g ground state on the basis of room temperature Mössbauer spectral and other properties. The central iron atom is co-ordianted to six nitrito groups (NO 2-), having an oxidation state of +2. The temperature dependence of Mössbauer spectra is explained on the basis of electronic relaxation among the spin-orbit coupled levels of the 5E g ground state. Various kinds of electronic relaxation mechanisms have been compared to explain the proposed mechanism. The observed temperature dependent spectra with varying internal magnetic field and line width can be explained by simple spin lattice relaxation.

  3. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    NASA Astrophysics Data System (ADS)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave radiation. Here, the laser pulse merely defines the beginning of the microwave-induced coherent time evolution. This second mechanism appears the most consistent with current experimental observations.

  4. 57Fe Mössbauer study of unusual magnetic structure of multiferroic 3R-AgFeO2

    NASA Astrophysics Data System (ADS)

    Sobolev, A.; Rusakov, V.; Moskvin, A.; Gapochka, A.; Belik, A.; Glazkova, I.; Akulenko, A.; Demazeau, G.; Presniakov, I.

    2017-07-01

    We report new results of a 57Fe Mössbauer study of hyperfine magnetic interactions in the layered multiferroic 3R-AgFeO2 demonstrating two magnetic phase transitions at T N1 and T N2. The asymptotic value β *  ≈  0.34 for the critical exponent obtained from the temperature dependence of the hyperfine field H hf(T) at 57Fe the nuclei below T N1  ≈  14 K indicates that 3R-AgFeO2 shows quasi-3D critical behavior. The spectra just above T N1 (T N1  <  T  <  T  *  ≈  41 K) demonstrate a relaxation behavior due to critical spin fluctuations which indicates the occurrence of short-range correlations. At the intermediate temperature range, T N2  <  T  <  T N1, the 57Fe Mössbauer spectra are described in terms of collinear spin-density-waves (SDW) with the inclusion of many high-order harmonics, indicating that the real magnetic structure of the ferrite appears to be more complicated than a pure sinusoidally modulated SDW. Below T  <  T N2  ≈  9 K, the hyperfine field H hf reveals a large spatial anisotropy (ΔH anis  ≈  30 kOe) which is related with a local intra-cluster (FeO6) spin-dipole term that implies a conventional contribution of the polarized oxygen ions. We proposed a simple two-parametric formula to describe the dependence of H anis on the distortions of the (FeO6) clusters. Analysis of different mechanisms of spin and hyperfine interactions in 3R-AgFeO2 and its structural analogue CuFeO2 points to a specific role played by the topology of the exchange coupling and the oxygen polarization in the delafossite-like structures.

  5. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

    NASA Astrophysics Data System (ADS)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-01

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  6. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    PubMed

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  7. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

    PubMed Central

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-01-01

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction. PMID:28508892

  8. Magnetic field affects enzymatic ATP synthesis.

    PubMed

    Buchachenko, Anatoly L; Kuznetsov, Dmitry A

    2008-10-01

    The rate of ATP synthesis by creatine kinase extracted from V. xanthia venom was shown to depend on the magnetic field. The yield of ATP produced by enzymes with 24Mg2+ and 26Mg2+ ions in catalytic sites increases by 7-8% at 55 mT and then decreases at 80 mT. For enzyme with 25Mg2+ ion in a catalytic site, the ATP yield increases by 50% and 70% in the fields 55 and 80 mT, respectively. In the Earth field the rate of ATP synthesis by enzyme, in which Mg2+ ion has magnetic nucleus 25Mg, is 2.5 times higher than that by enzymes, in which Mg2+ ion has nonmagnetic, spinless nuclei 24Mg or 26Mg. Both magnetic field effect and magnetic isotope effect demonstrate that the ATP synthesis is an ion-radical process, affected by Zeeman interaction and hyperfine coupling in the intermediate ion-radical pair.

  9. Electrical detection of proton-spin motion in a polymer device at room temperature

    NASA Astrophysics Data System (ADS)

    Boehme, Christoph

    With the emergence of spintronics concepts based on organic semiconductors there has been renewed interest in the role of both, electron as well as nuclear spin states for the magneto-optoelectronic properties of these materials. In spite of decades of research on these molecular systems, there is still much need for an understanding of some of the fundamental properties of spin-controlled charge carrier transport and recombination processes. This presentation focuses on mechanisms that allow proton spin states to influence electronic transition rates in organic semiconductors. Remarkably, even at low-magnetic field conditions and room temperature, nuclear spin states with energy splittings orders of magnitude below thermal energies are able to influence observables like magnetoresistance and fluorescence. While proton spins couple to charge carrier spins via hyperfine interaction, there has been considerable debate about the nature of the electronic processes that are highly susceptible to these weak hyperfine fields. Here, experiments are presented which show how the magnetic resonant manipulation of electron and nuclear spin states in a π-conjugated polymer device causes changes of the device current. The experiments confirm the extraordinary sensitivity of electronic transitions to very weak magnetic field changes and underscore the potential significance of spin-selection rules for highly sensitive absolute magnetic fields sensor concepts. However, the relevance of these magnetic-field sensitive spin-dependent electron transitions is not just limited to semiconductor materials but also radical pair chemistry and even avian magnetoreceptors This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0000909. The Utah NSF - MRSEC program #DMR 1121252 is acknowledged for instrumentation support.

  10. Hyperfine-induced spin relaxation of a diffusively moving carrier in low dimensions: Implications for spin transport in organic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2015-08-24

    The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d=1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, whichmore » occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d=1 versus d=3). We investigate in detail the coordinate dependence of the time-integrated spin polarization σ(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We also demonstrate that, while σ(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.« less

  11. Storage rings for spin-polarized hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, D.; Lovelace, R.V.E.; Lee, D.

    1989-11-01

    A strong-focusing storage ring is proposed for the long-term magnetic confinement of a collisional gas of neutral spin-polarized hydrogen atoms in the Za{l arrow} and Zb{l arrow} hyperfine states. The trap uses the interaction of the magnetic moments of the gas atoms with a static magnetic field. Laser cooling and evaporative cooling can be utilized to enhance the confinement and to offset the influence of viscous heating. An important application of the trap is to the attainment of Bose--Einstein condensation.

  12. Hg-201 (+) CO-Magnetometer for HG-199(+) Trapped Ion Space Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric A. (Inventor); Taghavi, Shervin (Inventor); Tjoelker, Robert L. (Inventor)

    2011-01-01

    Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes. The second isotope's Zeeman transition provides the measure of magnetic field strength, and the measurement is used to compensate the first isotope's clock transition or to adjust the applied C-field to reduce the effects of ambient magnetic field perturbations.

  13. Influence of Fe-substitution on structural, magnetic and magnetocaloric properties of Nd2Fe17-xCox solid solutions

    NASA Astrophysics Data System (ADS)

    Bouchaala, N.; Jemmali, M.; Bartoli, T.; Nouri, K.; Hentech, I.; Walha, S.; Bessais, L.; Salah, A. Ben

    2018-02-01

    Nd2Fe17-xCox (x = 0 , 1 , 2 , 3 , 4) intermetallic compounds, obtained under arc-melting conditions, have been investigated by means of X-ray diffraction analysis (XRD), Mössbauer spectrometry and magnetic measurements. The Rietveld refinement revealed that the sample is a pure compound with rhombohedral Th2Zn17-type structure (R 3 bar m space group) with the following lattice parameters: a = 8.5792 (2) Å, c = 12.4615 (2) Å. Using Mössbauer spectrometry analysis coupled with structural consideration we have unambiguously determined the cobalt atoms preferred inequivalent crystallographic site. Nd2Fe17 show an increase of 3.5 T in their weighted average hyperfine fields upon cobalt substitution. Whatever the cobalt content, the hyperfine field of these compounds follow this sequence Hhf { 6 c } >Hhf { 9 d } >Hhf { 18 f } >Hhf { 18 h }. The magnetic measurements showed that the Curie temperature increases with the Co content. The magnetic entropy change (ΔSM) was estimated from isothermal magnetization curves and it increases from 3.35 J/Kg K for x = 0 to 5.83 J/Kg K for x = 2 at μ0 H = 1.6 T . The relative cooling power (RCP) is in the range of 11.6 J/kg (x = 0) and 16 J/kg (x = 2).

  14. Theoretical model for a Faraday anomalous dispersion optical filter

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1991-01-01

    A model for the Faraday anomalous dispersion optical filter is presented. The model predicts a bandwidth of 0.6 GHz and a transmission peak of 0.98 for a filter operating on the Cs (D2) line. The model includes hyperfine effects and is valid for arbitrary magnetic fields.

  15. Manipulation of the electroluminescence of organic light-emitting diodes via fringe fields from patterned magnetic domains

    NASA Astrophysics Data System (ADS)

    Harmon, N. J.; Wohlgenannt, M.; Flatté, M. E.

    2016-12-01

    We predict very large changes in the room-temperature electroluminescence of thermally-activated delayed fluorescence organic light emitting diodes near patterned ferromagnetic films. These effects exceed the changes in a uniform magnetic field by as much as a factor of two. We describe optimal ferromagnetic film patterns for enhancing the electroluminescence. A full theory of the spin-mixing processes in exciplex recombination and how they are affected by hyperfine fields, spin-orbit effects, and ferromagnetic fringe field effects is introduced. These spin-mixing processes are used to describe the effect of magnetic domain structures on the luminescence in various regimes. This provides a method of enhancing light emission rates from exciplexes and also a means of efficiently coupling information encoded in the magnetic domains to organic light emitting diode emission.

  16. Manipulation of the electroluminescence of organic light-emitting diodes via fringe fields from patterned magnetic domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, N. J.; Wohlgenannt, M.; Flatté, M. E.

    We predict very large changes in the room-temperature electroluminescence of thermally-activated delayed fluorescence organic light emitting diodes near patterned ferromagnetic films. These effects exceed the changes in a uniform magnetic field by as much as a factor of two. We describe optimal ferromagnetic film patterns for enhancing the electroluminescence. A full theory of the spin-mixing processes in exciplex recombination and how they are affected by hyperfine fields, spin-orbit effects, and ferromagnetic fringe field effects is introduced. These spin-mixing processes are used to describe the effect of magnetic domain structures on the luminescence in various regimes. This provides a method ofmore » enhancing light emission rates from exciplexes and also a means of efficiently coupling information encoded in the magnetic domains to organic light emitting diode emission« less

  17. Manipulation of the electroluminescence of organic light-emitting diodes via fringe fields from patterned magnetic domains

    DOE PAGES

    Harmon, N. J.; Wohlgenannt, M.; Flatté, M. E.

    2016-12-12

    We predict very large changes in the room-temperature electroluminescence of thermally-activated delayed fluorescence organic light emitting diodes near patterned ferromagnetic films. These effects exceed the changes in a uniform magnetic field by as much as a factor of two. We describe optimal ferromagnetic film patterns for enhancing the electroluminescence. A full theory of the spin-mixing processes in exciplex recombination and how they are affected by hyperfine fields, spin-orbit effects, and ferromagnetic fringe field effects is introduced. These spin-mixing processes are used to describe the effect of magnetic domain structures on the luminescence in various regimes. This provides a method ofmore » enhancing light emission rates from exciplexes and also a means of efficiently coupling information encoded in the magnetic domains to organic light emitting diode emission« less

  18. Hyperfine Level Interactions of Diamond Nitrogen Vacancy Ensembles Under Transverse Magnetic Fields

    DTIC Science & Technology

    2015-10-06

    eigenvalues 0, ±h̄, corresponding to ms = 0,±1 [18]. Figure 1 shows the calculated energy levels as a function of axial field for a fixed transverse...Progress in 5 Physics 77, 056503 (2014). [9] G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo , H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, Nature 500

  19. The gj factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Beier, Thomas

    2000-12-01

    The comparison between theory and experiment of the hyperfine structure splitting and the electronic gj factor in heavy highly charged ions provides a unique testing ground for quantum electrodynamics in the presence of strong electric and magnetic fields. A theoretical evaluation is presented of all quantum electrodynamical contributions to the ground-state hfs splitting in hydrogenlike and lithiumlike atoms as well as to the gj factor. Binding and nuclear effects are discussed as well. A comparison with the available experimental data is performed, and a detailed discussion of theoretical sources of uncertainty is included which is mainly due to insufficiently known nuclear properties.

  20. A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.

    PubMed

    Halse, Meghan E; Callaghan, Paul T

    2008-12-01

    Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.

  1. First determination of ground state electromagnetic moments of Fe 53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  2. First determination of ground state electromagnetic moments of Fe 53

    DOE PAGES

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; ...

    2017-11-16

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  3. ENDOR/ESR of Mn atoms and MnH molecules in solid argon

    NASA Astrophysics Data System (ADS)

    van Zee, R. J.; Garland, D. A.; Weltner, W., Jr.

    1986-09-01

    Mn atoms and MnH molecules, the latter formed by reaction between metal and hydrogen atoms, were trapped in solid argon and their ESR/ENDOR spectra measured at 4 K. At each pumping magnetic field two ENDOR lines were observed for 55Mn(I=5/2) atoms, corresponding to hyperfine transitions within the MS =±1/2 levels. Values of the hyperfine interaction constant and nuclear moment of 55Mn were derived from the six sets of data. For MnH, three sets of signals were detected: a proton ``matrix ENDOR'' line, transitions in the MS =0,±1 levels involving MI (55Mn)=1/2, 3/2, 5/2 levels, and proton transitions corresponding to νH and νH±aH. Analysis yielded the hyperfine constant aH =6.8(1) MHz and the nuclear quadrupole coupling constant Q'(55Mn)=-11.81(2) MHz. The latter compared favorably with a theoretical value derived earlier by Bagus and Schaefer. A higher term in the spin Hamiltonian appeared to be necessary to fit the proton hyperfine data.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalal, M.; Mallick, A.; Mahapatra, A.S.

    Highlights: • Cation distribution in tetrahedral and octahedral sites of spinel Ni{sub 0.4}Zn{sub 0.4}Co{sub 0.2}Fe{sub 2}O{sub 4}. • Structural analysis of observed X-ray diffraction pattern using Rietveld method. • Study of hyperfine behaviour using Mössbauer spectroscopy. • Static and dynamic magnetic measurements. • Correlation of cation distributions obtained from Rietveld analysis with the results of magnetic and Mössbauer effect measurements. - Abstract: Nanoparticles of Ni{sub 0.4}Zn{sub 0.4}Co{sub 0.2}Fe{sub 2}O{sub 4} are prepared by a simple co-precipitation method. The as dried sample is heat treated at 400, 500, 600, 700 and 800 °C to obtain different sizes of nanoparticles. The crystallographicmore » phase of the samples is confirmed analyzing observed X-ray diffraction (XRD) by Rietveld method. Hyperfine parameters of the samples are derived from room temperature (RT) Mössbauer spectra of the samples. Magnetic properties of the samples are investigated by static and dynamic hysteresis loops. Different magneto-crystalline parameters are calculated from the variation of magnetization with temperature (M–T curve) under zero field cooled (ZFC) and field cooled (FC) conditions of the as dried sample. The cation distribution estimated from Rietveld analysis are correlated with the results of magnetic and Mössbauer effect measurements. The observed high value of saturation magnetization (72.7 emu/g at RT) of the sample annealed at 800 °C would be interesting for applications in different electromagnetic devices.« less

  5. Stochastic hyperfine interactions modeling library

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When interactions fluctuate at rates comparable to the time scale of a hyperfine method, there is a loss in signal coherence, and spectra are damped. The degree of damping can be used to determine fluctuation rates, provided that theoretical expressions for spectra can be derived for relevant physical models of the fluctuations. SHIML provides routines to help researchers quickly develop code to incorporate stochastic models of fluctuating hyperfine interactions in calculations of hyperfine spectra. Solution method: Calculations are based on the method for modeling stochastic hyperfine interactions for PAC by Winkler and Gerdau [5]. The method is extended to include other hyperfine methods following the work of Dattagupta [6]. The code provides routines for reading model information from text files, allowing researchers to develop new models quickly without the need to modify computer code for each new model to be considered. Restrictions: In the present version of the code, only methods that measure the hyperfine interaction on one probe spin state, such as PAC, μSR, and NMR, are supported. Running time: Varies

  6. Moessbauer Study of Reduced Putidaredoxin in Zero and Intermediate Applied Fields.

    NASA Astrophysics Data System (ADS)

    Valentine, Mark

    An ('57)Fe Mossbauer investigation of the reduced (S = 1/2) active center of the redox and effector protein, putidaredoxin, is reported. Putidaredoxin is a prototype of a 2Fe-2S protein; it functions as an electron shuttle in a bacterial enzyme system. Several 2Fe-2S proteins, including putidaredoxin, have already been subjected to numerous Mossbauer and magnetic resonance studies, but current understanding of the active center is still very incomplete, and the mechanism of electron transfer is not known. Previous Mossbauer experiments on reduced putidaredoxin, as on most Kramers systems, were restricted to the applied field range .01 - 4T. The intermediate field region 0 - .01T is included here, and a primary goal of this work is to demonstrate the feasibility of those experiments. The analysis of zero field spectra differs from that in applied fields in the following respects: (i) The spectra consist of 64 discrete lines. (ii) The average over all molecular orientations is done explicitly, not numerically. (iii) No generality is lost by taking the magnetic hyperfine terms for both sites to be symmetric and in their principal axis systems. (iv) The spectra are sensitive to weak coupling of S with nearby nuclear moments that become negligible as the applied field is increased. Skew-symmetric contributions to the magnetic hyperfine and electronic Zeeman interactions are often ignored in the literature without justification. Either g or A can be symmetrized by an S transformation, but both g and A can be simultaneously symmetrized if and only if the invariants. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). are equal.

  7. New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.

    PubMed

    Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V

    2018-03-02

    A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  8. New Nuclear Magnetic Moment of 209Bi: Resolving the Bismuth Hyperfine Puzzle

    NASA Astrophysics Data System (ADS)

    Skripnikov, Leonid V.; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F.; Scheibe, Benjamin; Shabaev, Vladimir M.; Vogel, Michael; Volotka, Andrey V.

    2018-03-01

    A recent measurement of the hyperfine splitting in the ground state of Li-like 80+208Bi has established a "hyperfine puzzle"—the experimental result exhibits a 7 σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017), 10.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017), 10.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209ipts>) and combine it with nuclear magnetic resonance measurements of Bi (NO3 )3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF6- ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  9. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Xu, C.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Wang, Y. T.; Helm, M.; Zhou, Shengqiang; Kühne, H.

    2017-11-01

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by 13C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the 13C nuclear spin-lattice relaxation rate 1/T1 by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of 1/T1 below about 10 K can well be described by a thermally activated form, \

  10. Artificial magnetic-field quenches in synthetic dimensions

    NASA Astrophysics Data System (ADS)

    Yılmaz, F.; Oktel, M. Ö.

    2018-02-01

    Recent cold atom experiments have realized models where each hyperfine state at an optical lattice site can be regarded as a separate site in a synthetic dimension. In such synthetic ribbon configurations, manipulation of the transitions between the hyperfine levels provide direct control of the hopping in the synthetic dimension. This effect was used to simulate a magnetic field through the ribbon. Precise control over the hopping matrix elements in the synthetic dimension makes it possible to change this artificial magnetic field much faster than the time scales associated with atomic motion in the lattice. In this paper, we consider such a magnetic-flux quench scenario in synthetic dimensions. Sudden changes have not been considered for real magnetic fields as such changes in a conducting system would result in large induced currents. Hence we first study the difference between a time varying real magnetic field and an artificial magnetic field using a minimal six-site model. This minimal model clearly shows the connection between gauge dependence and the lack of on-site induced scalar potential terms. We then investigate the dynamics of a wave packet in an infinite two- or three-leg ladder following a flux quench and find that the gauge choice has a dramatic effect on the packet dynamics. Specifically, a wave packet splits into a number of smaller packets moving with different velocities. Both the weights and the number of packets depend on the implemented gauge. If an initial packet, prepared under zero flux in an n -leg ladder, is quenched to Hamiltonian with a vector potential parallel to the ladder, it splits into at most n smaller wave packets. The same initial wave packet splits into up to n2 packets if the vector potential is implemented to be along the rungs. Even a trivial difference in the gauge choice such as the addition of a constant to the vector potential produces observable effects. We also calculate the packet weights for arbitrary initial and final fluxes. Finally, we show that edge states in a thick ribbon are robust under the quench only when the same gap supports an edge state for the final Hamiltonian.

  11. Electromagnetically induced absorption and transparency in degenerate two level systems of metastable Kr atoms and measurement of Landé g-factor

    NASA Astrophysics Data System (ADS)

    Kale, Y. B.; Tiwari, V. B.; Mishra, S. R.; Singh, S.; Rawat, H. S.

    2016-12-01

    We report electromagnetically induced absorption (EIA) and transparency (EIT) resonances of sub-natural linewidth in degenerate two level systems (DTLSs) of metastable 84Kr (84Kr*) and 83Kr (83Kr*) atoms. Using the spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition 4p55s[3/2]2(F=13/2) to 4p55p[5/2]3(F‧ = 15 / 2) in 83Kr* atom, we have measured the Landé g-factor (gF) for the lower hyperfine level involved in this transition by application of small values of magnetic field of few Gauss.

  12. Dark state polarizing a nuclear spin in the vicinity of a nitrogen-vacancy center

    NASA Astrophysics Data System (ADS)

    Wang, Yang-Yang; Qiu, Jing; Chu, Ying-Qi; Zhang, Mei; Cai, Jianming; Ai, Qing; Deng, Fu-Guo

    2018-04-01

    The nuclear spin in the vicinity of a nitrogen-vacancy (NV) center possesses long coherence time and convenient manipulation assisted by the strong hyperfine interaction with the NV center. It is suggested for the subsequent quantum information storage and processing after appropriate initialization. However, current experimental schemes are either sensitive to the inclination and magnitude of the magnetic field or require thousands of repetitions to achieve successful realization. Here, we propose a method to polarize a 13C nuclear spin in the vicinity of an NV center via a dark state. We demonstrate theoretically and numerically that it is robust to polarize various nuclear spins with different hyperfine couplings and noise strengths.

  13. Hyperfine structure measurements of neutral vanadium by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm

    NASA Astrophysics Data System (ADS)

    Başar, Gü.; Güzelçimen, F.; Öztürk, I. K.; Er, A.; Bingöl, D.; Kröger, S.; Başar, Gö.

    2017-11-01

    The hyperfine structure of 57 spectral lines of neutral vanadium has been investigated using a hollow cathode lamp by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm. New magnetic dipole hyperfine structure constants A have been determined for 14 atomic energy levels and new electric quadrupole hyperfine structure constants B for two levels. Additionally previously published hyperfine structure constants A of 56 levels have been measured again. In five cases, the old A values have been rejected and replaced by improved values.

  14. Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.

    2014-03-01

    A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.

  15. Optical Magnetometer Incorporating Photonic Crystals

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  16. Structure and nature of manganese(II) imidazole complexes in frozen aqueous solutions.

    PubMed

    Un, Sun

    2013-04-01

    A common feature of a large majority of the manganese metalloenzymes, as well as many synthetic biomimetic complexes, is the bonding between the manganese ion and imidazoles. This interaction was studied by examining the nature and structure of manganese(II) imidazole complexes in frozen aqueous solutions using 285 GHz high magnet-field continuous-wave electron paramagnetic resonance (cw-HFEPR) and 95 GHz pulsed electron-nuclear double resonance (ENDOR) and pulsed electron-double resonance detected nuclear magnetic resonance (PELDOR-NMR). The (55)Mn hyperfine coupling and isotropic g values of Mn(II) in frozen imidazole solutions continuously decreased with increasing imidazole concentration. ENDOR and PELDOR-NMR measurements demonstrated that the structural basis for this behavior arose from the imidazole concentration-dependent distribution of three six-coordinate and two four-coordinate species: [Mn(H2O)6](2+), [Mn(imidazole)(H2O)5](2+), [Mn(imidazole)2(H2O)4](2+), [Mn(imidazole)3(H2O)](2+), and [Mn(imidazole)4](2+). The hyperfine and g values of manganese proteins were also fully consistent with this imidazole effect. Density functional theory methods were used to calculate the structures, spin and charge densities, and hyperfine couplings of a number of different manganese imidazole complexes. The use of density functional theory with large exact-exchange admixture calculations gave isotropic (55)Mn hyperfine couplings that were semiquantitative and of predictive value. The results show that the covalency of the Mn-N bonds play an important role in determining not only magnetic spin parameters but also the structure of the metal binding site. The relationship between the isotropic (55)Mn hyperfine value and the number of imidazole ligands provides a quick and easy test for determining whether a protein binds an Mn(II) ion using histidine residues and, if so, how many are involved. Application of this method shows that as much as 40% of the Mn(II) ions in Deinococcus radiodurans are ligated to two histidines (Tabares, L. C.; Un, S. J. Biol. Chem 2013, in press).

  17. Research investigation directed toward extending the useful range of the electromagnetic spectrum

    NASA Technical Reports Server (NTRS)

    Hartmann, S. R.

    1971-01-01

    The lifetimes and fine structure of He(-) were studied using time-of-flight techniques and quenching by a static axial magnetic field. Using level-crossing spectroscopy the hyperfine constants A and B and the lifetime of the 3 2P3/2 state of Li-7 were measured. Polarization of the Ru 7S level was created as a first step in determining the hyperfine structure of the alkali excited S state. The parametric interaction between light and microwaves in optically pumped Rb-87 vapor were investigated. Measurements and analyses of transitions in formaldehyde and its isotopic species and in the lowest two excited vibrational states of H2CO were also made, as well as of transitions in furan, pyrrole, formic acid, and cyanoacetylene. The Hanle effect was studied in the NO molecule, and RF oscillators were developed with flat, wideband output to observe excited state hyperfine transitions at zero field. Data was generated on the time-dependent behavior of photon echoes in ruby. Stimulated Raman scattering was studied in atomic Tl vapor. A Q switched, temperature-tuned ruby laser was developed which operates between 6934 and 6938 A. The frequency shift due to resonant interaction between identical radiating atoms was calculated.

  18. Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields

    NASA Astrophysics Data System (ADS)

    Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.

    2009-11-01

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  19. Spin-orbit qubits of rare-earth-metal ions in axially symmetric crystal fields.

    PubMed

    Bertaina, S; Shim, J H; Gambarelli, S; Malkin, B Z; Barbara, B

    2009-11-27

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several micros) and the Rabi frequency Omega(R) is anisotropic. Here, we present a study of the variations of Omega(R)(H(0)) with the magnitude and direction of the static magnetic field H(0) for the odd 167Er isotope in a single crystal CaWO(4):Er(3+). The hyperfine interactions split the Omega(R)(H(0)) curve into eight different curves which are fitted numerically and described analytically. These "spin-orbit qubits" should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  20. Quantum coherence and entanglement in the avian compass.

    PubMed

    Pauls, James A; Zhang, Yiteng; Berman, Gennady P; Kais, Sabre

    2013-06-01

    The radical-pair mechanism is one of two distinct mechanisms used to explain the navigation of birds in geomagnetic fields, however little research has been done to explore the role of quantum entanglement in this mechanism. In this paper we study the lifetime of radical-pair entanglement corresponding to the magnitude and direction of magnetic fields to show that the entanglement lasts long enough in birds to be used for navigation. We also find that the birds appear to not be able to orient themselves directly based on radical-pair entanglement due to a lack of orientation sensitivity of the entanglement in the geomagnetic field. To explore the entanglement mechanism further, we propose a model in which the hyperfine interactions are replaced by local magnetic fields of similar strength. The entanglement of the radical pair in this model lasts longer and displays an angular sensitivity in weak magnetic fields, both of which are not present in previous models.

  1. Paschen-Back effects and Rydberg-state diamagnetism in vapor-cell electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Ma, L.; Anderson, D. A.; Raithel, G.

    2017-06-01

    We report on rubidium vapor-cell Rydberg electromagnetically induced transparency (EIT) in a 0.7 T magnetic field where all involved levels are in the hyperfine Paschen-Back regime, and the Rydberg state exhibits a strong diamagnetic interaction. Signals from both 85Rb and 87Rb are present in the EIT spectra. Isotope-mixed Rb cells allow us to measure the field strength to within a ±0.12 % relative uncertainty. The measured spectra are in excellent agreement with the results of a Monte Carlo calculation and indicate unexpectedly large Rydberg-level dephasing rates. Line shifts and broadenings due to magnetic-field inhomogeneities are included in the model.

  2. Moessbauer studies in zinc-manganese ferrites for use in measuring small velocities and accelerations with great precision

    NASA Technical Reports Server (NTRS)

    Escue, W. T.; Gupta, R. G.; Mendiratta, R. G.

    1975-01-01

    Mossbauer spectroscopy was used for a systematic study of the magnetic behavior of manganese and zinc in mixed ferrites. It was observed that Zn2+ has preference to substitute Mn2+ at interstitial sites where the metal ions are tetrahedrally coordinated with four oxygen neighbors. The internal magnetic hyperfine field at the tetrahedral iron site is larger than that at the octahedral site. The relaxation effects were observed to play an important role as the zinc contents were increased, while the spin-correlation time and the magnetic field were observed to decrease in strength. It is concluded that Mossbauer effect data on complex materials, when used in conjunction with other data, can provide useful insight into the origin of the microscopic properties of magnetic materials.

  3. The effect of fringe fields from patterned magnetic domains on the electroluminescence of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Harmon, Nicholas J.; Wohlgennant, Markus; Flatté, Michael E.

    2016-10-01

    Large magnetic field effects, either in conduction or luminescence, have been observed in organic light-emitting diodes (OLEDs) for over a decade now. The physical processes are largely understood when exciton formation and recombination lead to the magnetic field effects. Recently, magnetic field effects in some co-evaporated blends have shown that exciplexes deliver even larger responses. In either case, the magnetic field effects arise from some spin-mixing mechanism and spin-selective processes in either the exciton formation or the exciplex recombination. Precise control of light output is not possible when the spin mixing is either due to hyper-fine fields or differences in the Lande g-factor. We theoretically examine the optical output when a patterned magnetic film is deposited near the OLED. The fringe fields from the magnetic layers supply an additionally source of spin mixing that can be easily controlled. In the absence of other spin mixing mechanisms, the luminescence from exciplexes can be modified by 300%. When other spin-mixing mechanisms are present, fringe fields from remanent magnetic states act as a means to either boost or reduce light emission from those mechanisms. Lastly, we examine the influence of spin decoherence on the optical output.

  4. Experimental investigation of vector static magnetic field detection using an NV center with a single first-shell 13C nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Jiang, Feng-Jian; Ye, Jian-Feng; Jiao, Zheng; Jiang, Jun; Ma, Kun; Yan, Xin-Hu; Lv, Hai-Jiang

    2018-05-01

    We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy (NV) color center with a nearest neighbor 13C nuclear spin in diamond to detect the strength and direction (including both polar and azimuth angles) of a static vector magnetic field by optical detection magnetic resonance (ODMR) technique. With the known hyperfine coupling tensor between an NV center and a nearest neighbor 13C nuclear spin, we show that the information of static vector magnetic field could be extracted by observing the pulsed continuous wave (CW) spectrum. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), and the Education Department Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09).

  5. First determination of ground state electromagnetic moments of 53Fe

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Brown, B. A.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Müller, P.; Nörtershäuser, W.; Pearson, M. R.; Sumithrarachchi, C.

    2017-11-01

    The hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum of the 3 d64 s25D4↔3 d64 s 4 p 5F5 transition, measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ =-0.65 (1 ) μN and Q =+35 (15 ) e2fm2 , respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental values agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full f p shell model space, which support the soft nature of the 56Ni nucleus.

  6. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1990-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for O = to or less than 0.3 and in the temperature range 1.6 + 450 K are analyzed in terms of Cu(++) magnetic correlations and dynamics. It is described how the magnetic correlations that would result from Cu-Cu exchange are reduced by mobile charge defects related to x-doping. A comprehensive picture is given which explains satisfactorily the x and T dependence of the correlation time, of the correlation length and of the Neel temperature T(sub n)(x) as well as being consistent with known electrical resistivity and magnetic susceptibility measurements. It is discussed how, in the superconducting samples, the mobile defects also cause the decrease, for T yields T(sub c)(+) of the hyperfine Cu electron-nucleus effective interaction, leading to the coexistence of quasi-localized, reduced magnetic moments from 3d Cu electrons and mobile oxygen p-hole carriers. The temperature dependence of the effective hyperfine field around the superconducting transition yields an activation energy which could be related to the pairing energy. New specific heat measurements are also presented and discussed in terms of the above picture.

  7. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.

    PubMed

    Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A

    2012-05-11

    Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.

  8. Ion beam synthesis of Fe nanoparticles in MgO and yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Potzger, K.; Reuther, H.; Zhou, Shengqiang; Mücklich, A.; Grötzschel, R.; Eichhorn, F.; Liedke, M. O.; Fassbender, J.; Lichte, H.; Lenk, A.

    2006-04-01

    To form embedded Fe nanoparticles, MgO(001) and YSZ(001) single crystals have been implanted at elevated temperatures with Fe ions at energies of 100 keV and 110 keV, respectively. The ion fluence was fixed at 6×1016 cm-2. As a result, γ- and α-phase Fe nanoparticles were synthesized inside MgO and YSZ, respectively. A synthesis efficiency of 100% has been achieved for implantation at 1273 K into YSZ. The ferromagnetic behavior of the α-Fe nanoparticles is reflected by a magnetic hyperfine field of 330 kOe and a hysteretic magnetization reversal. Electron holography showed a fringing magnetic field around some, but not all of the particles.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davaasuren, Bambar; Dashjav, Enkhtsetseg; Kreiner, Guido

    The carboferrates RE{sub 15}[Fe{sub 8}C{sub 25}] (RE=Dy, Ho) were prepared from mixtures of the elements by arc-melting followed with subsequent annealing at 1373 K. The crystal structures were determined from single crystal X-ray diffraction data and revealed an isotypic relationship to Er{sub 15}[Fe{sub 8}C{sub 25}] (hP48, P321). The main feature of the crystal structure is given by Fe{sub 6} cluster units characterized by covalent Fe–Fe bonding interactions. {sup 57}Fe Mössbauer spectra of Dy{sub 15}[Fe{sub 8}C{sub 25}] were fitted by three subspectra with relative spectral weights of about 3:3:2 which is in general agreement with the crystal structure. Below 50 K,more » an onset of magnetic hyperfine fields at the three iron sites is observed which is supposed to be caused by dipolar fields arising from neighboring, slowly relaxing Dy magnetic moments. - Graphical abstract: Fe{sub 6}-cluster in the crystal structure of RE{sub 15}[Fe{sub 8}C{sub 25}], RE=Dy, Ho. - Highlights: • New carboferrates RE{sub 15}[Fe{sub 8}C{sub 25}] with RE=Dy, Ho have been synthesized. • The crystal structures were refined using single crystal X-ray data. • An orientational relationship between Fe{sub 6}-clusters and Fe in γ-Fe is outlined. • {sup 57}Fe Mössbauer spectra are in agreement with structural data from X-rays. • Magnetic hyperfine fields below 50 K are explained by dipolar fields from Dy atoms.« less

  10. Practical method for transversely measuring the spin polarization of optically pumped alkali atoms

    NASA Astrophysics Data System (ADS)

    Ding, Zhichao; Yuan, Jie; Long, Xingwu

    2018-06-01

    A practical method to measure the spin polarization of optically pumped alkali atoms is demonstrated. In order to realize transverse measurement, the transverse spin component of spin-polarized alkali atoms is created by a rotating exciting magnetic field, and detected using the optical rotation of a near-resonant probe beam for realizing a high detection sensitivity. The dependency of the optical rotation on the spin polarization of 133Cs atoms is derived theoretically and verified experimentally. By changing the direction of the rotating magnetic field, we realize the transverse measurement of the spin polarization of 133Cs atoms in either ground-state hyperfine level.

  11. Surface functionalization of magnetite nanoparticle: A new approach using condensation of alkoxysilanes

    NASA Astrophysics Data System (ADS)

    Rodriguez, A. F. R.; Costa, T. P.; Bini, R. A.; Faria, F. S. E. D. V.; Azevedo, R. B.; Jafelicci, M.; Coaquira, J. A. H.; Martínez, M. A. R.; Mantilla, J. C.; Marques, R. F. C.; Morais, P. C.

    2017-09-01

    In this study we report on successful production of two samples (BR15 and BR16) comprising magnetite (Fe3O4) nanoparticles ( 10 nm) surface-functionalized via hydrolysis and condensation of alkoxysilane agents, namely 3-aminopropyl-trimethoxisilane (APTS) and N-propyl-trimethoxisilane (NPTS). The as-produced samples were characterized using transmission electron microscopy (TEM), x-ray diffraction (XRD), magnetization measurements (5 K and 300 K hysteresis cycles and zero field-cooled/field-cooled measurements), and Mössbauer spectroscopy (77 and 297 K). The Mössbauer data supported the model picture of a core-shell magnetite-based system. This material system shows shell properties influenced by the surface-coating design, either APTS-coated (BR15) or APTS+NPTS-coated (sample BR16). Analyses of the Mössbauer spectra indicates that the APTS-coated sample presents Fe(III)-rich core and Fe(II)-rich shell with strong hyperfine field; whereas, the APTS+NPTS-coated sample leads to a mixture of two main nanostructures, one essentially surface-terminated with APTS whereas the other surface-terminated with NPTS, both presenting weak hyperfine fields compared with the single surface-coated sample. Magnetization measurements support the core-shell picture built from the analyses of the Mössbauer data. Our findings emphasize the capability of the Mössbauer spectroscopy in assessing subtle differences in surface-functionalized iron-based core-shell nanostructures.

  12. Muon spin rotation research program

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1980-01-01

    Data from cyclotron experiments and room temperature studies of dilute iron alloys and iron crystals under strain were analyzed. The Fe(Mo) data indicate that the effect upon the contact hyperfine field in Fe due to the introduction of Mo is considerably less than that expected from pure dilution, and the muon (+) are attracted to the Mo impurity sites. There is a significant change in the interstitial magnetic field with Nb concentration. The Fe(Ti) data, for which precession could clearly be observed early only at 468K and above, show that the Ti impurities are attractive to muon (+), and the magnitude of B(hf) is reduced far beyond the amount expected from pure dilution. Changes in the intersitital magnetic field with the introduction of Cr, W, Ge, and Si are also discussed. When strained to the elastic limit, the interstitial magnetic field in Fe crystals is reduced by 33 gauss, and the relaxation rate of the precession signal increases by 47%.

  13. Power spectra and auto correlation analysis of hyperfine-induced long period oscillations in the tunneling current of coupled quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harack, B.; Leary, A.; Coish, W. A.

    2013-12-04

    We outline power spectra and auto correlation analysis performed on temporal oscillations in the tunneling current of coupled vertical quantum dots. The current is monitored for ∼2325 s blocks as the magnetic field is stepped through a high bias feature displaying hysteresis and switching: hallmarks of the hyperfine interaction. Quasi-periodic oscillations of ∼2 pA amplitude and of ∼100 s period are observed in the current inside the hysteretic feature. Compared to the baseline current outside the hysteretic feature the power spectral density is enhanced by up to three orders of magnitude and the auto correlation displays clear long lived oscillationsmore » about zero.« less

  14. Electron paramagnetic resonance study of alinement induced by magnetic fields in two smectic-A liquid crystals not exhibiting nematic phases

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Gelerinter, E.

    1972-01-01

    Using vanadyl acetylacetonate (VAAC) as a paramagnetic probe, the molecular ordering in two smectic-A liquid crystals that do not display nematic phases were studied. Reproducible alinement was attained by slow cooling throughout the isotropic smectic-A transition in dc magnetic fields of 1.1 and 2.15 teslas. The degree of order attained is small for a smectic-A liquid crystal. Measurements were made of the variation of the average hyperfine splitting of the alined samples as a function of orientation relative to the dc magnetic field of the spectrometer. This functional dependence is in agreement with the theoretical prediction except where the viscosity of the liquid crystal becomes large enough to slow the tumbling of the VAAC, as indicated by asymmetry in the end lines of the spectrum.

  15. Elucidation of electronic structure by the analysis of hyperfine interactions: The MnH A 7Π-X 7Sigma + (0,0) band

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1991-08-01

    We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.

  16. Microwave ac Zeeman force for ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, C. T.; Pyle, A. J.; Rotunno, A. P.; Aubin, S.

    2018-04-01

    We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved.

  17. Hyperfine structure of electronic levels and the first measurement of the nuclear magnetic moment of 63Ni

    NASA Astrophysics Data System (ADS)

    D'yachkov, A. B.; Firsov, V. A.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Saperstein, E. E.; Tolokonnikov, S. V.; Tsvetkov, G. O.; Panchenko, V. Y.

    2017-01-01

    Laser resonant photoionization spectroscopy was used to study the hyperfine structure of the optical 3d84s2 {}3F4→ 3d84s4p {}3G^o3 and 3d94s {}3D3→ 3d84s4p {}3G^o3 transitions of 63Ni and 61Ni isotopes. Experimental spectra allowed us to derive hyperfine interaction constants and determine the magnetic dipole moment of the nuclear ground state of 63Ni for the first time: μ=+0.496(5)μ_N. The value obtained agrees well with the prediction of the self-consistent theory of finite Fermi systems.

  18. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    PubMed

    Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water.

  19. Electronic structure and magnetic properties of disordered Co{sub 2}FeAl Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Vishal, E-mail: vjain045@gmail.com; Jain, Vivek, E-mail: vjain045@gmail.com; Sudheesh, V. D., E-mail: vjain045@gmail.com

    The effects of disorder on the magnetic properties of Co{sub 2}FeAl alloy are reported. X-ray diffraction exhibit A2-type disordered structure. Room temperature Mössbauer studies show the presence of two sextets with hyperfine field values of 31T and 30T along with a nonmagnetic singlet. The electronic structure of ordered and disordered Co{sub 2}FeAl alloys, investigated by means of the KKR Green's-function method shows that the magnetic moment of the ordered structure is 5.08μ{sub B} and is 5.10μ{sub B} when disordered. However, a much higher magnetic moment of 5.74μ{sub B} is observed experimentally.

  20. High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves.

    PubMed

    Harty, T P; Sepiol, M A; Allcock, D T C; Ballance, C J; Tarlton, J E; Lucas, D M

    2016-09-30

    We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated surface ion trap. We introduce a dynamically decoupled gate method, which stabilizes the qubits against fluctuating energy shifts and avoids the need to null the microwave field. We use the gate to produce a Bell state with fidelity 99.7(1)%, after accounting for state preparation and measurement errors. The gate is applied directly to ^{43}Ca^{+} hyperfine "atomic clock" qubits (coherence time T_{2}^{*}≈50  s) using the oscillating magnetic field gradient produced by an integrated microwave electrode.

  1. Revealing weak spin-orbit coupling effects on charge carriers in a π -conjugated polymer

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Miller, R.; Baird, D. L.; Jamali, S.; Joshi, G.; Bursch, M.; Grimme, S.; van Tol, J.; Lupton, J. M.; Boehme, C.

    2018-04-01

    We measure electrically detected magnetic resonance on organic light-emitting diodes made of the polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] at room temperature and high magnetic fields where spectral broadening of the resonance due to spin-orbit coupling (SOC) exceeds that due to the local hyperfine fields. Density-functional-theory calculations on an open-shell model of the material reveal g -tensors of charge-carrier spins in the lowest unoccupied (electron) and highest occupied (hole) molecular orbitals. These tensors are used for simulations of magnetic resonance line shapes. Besides providing the first quantification and direct observation of SOC effects on charge-carrier states in these weakly SO-coupled hydrocarbons, this procedure demonstrates that spin-related phenomena in these materials are fundamentally monomolecular in nature.

  2. Magnetic properties of Ni-Cu-Mn ferrite system

    NASA Astrophysics Data System (ADS)

    Roumaih, Kh.

    2011-10-01

    Three groups according to the substitution of Cu 2+ and Mn 3+ in the system Ni 1-xCu xFe 2-yMn yO 4 ferrite with x = 0.2, 0.5, 0.8, and y varying from 0.0 to 1.0 in steps of 0.25 are prepared by solid state reactions. The phases of the Ni 1-xCu xFe 2-yMn yO 4 ferrite have been confirmed by X-ray diffraction (XRD). The results demonstrate that all of the synthesized materials are spinel with cubic unit cell and the lattice constant increased with increases of the Cu and Mn ions for all samples. The hyperfine interaction was studied by the Mössbauer spectroscopy at room temperature for all samples. The spectra of all samples show two well-resolved Zeeman patterns corresponding to A- and B-sites. The hyperfine field decreases with increasing Cu and Mn ions concentration. The Curie temperature, TC, was calculated from the temperature dependence of magnetization curves. The hysteresis curve recorded at room temperature shows that the samples are ferrimagnetic materials. The cation distribution was estimated from the results of Mössbauer spectroscopy and magnetic measurements.

  3. Magnetic transition and sound velocities of Fe 3S at high pressure: implications for Earth and planetary cores

    NASA Astrophysics Data System (ADS)

    Lin, Jung-Fu; Fei, Yingwei; Sturhahn, Wolfgang; Zhao, Jiyong; Mao, Ho-kwang; Hemley, Russell J.

    2004-09-01

    Magnetic, elastic, thermodynamic, and vibrational properties of the most iron-rich sulfide, Fe3S, known to date have been studied with synchrotron Mössbauer spectroscopy (SMS) and nuclear resonant inelastic X-ray scattering (NRIXS) up to 57 GPa at room temperature. The magnetic hyperfine fields derived from the time spectra of the synchrotron Mössbauer spectroscopy show that the low-pressure magnetic phase displays two magnetic hyperfine field sites and that a magnetic collapse occurs at 21 GPa. The magnetic to non-magnetic transition significantly affects the elastic, thermodynamic, and vibrational properties of Fe3S. The magnetic collapse of Fe3S may also affect the phase relations in the iron-sulfur system, changing the solubility of sulfur in iron under higher pressures. Determination of the physical properties of the non-magnetic Fe3S phase is important for the interpretation of the amount and properties of sulfur present in the planetary cores. Sound velocities of Fe3S obtained from the measured partial phonon density of states (PDOS) for 57Fe incorporated in the alloy show that Fe3S has higher compressional and shear wave velocity than those of hcp-Fe and hcp-Fe0.92Ni0.08 alloy under high pressures, making sulfur a potential light element in the Earth's core based on geophysical arguments. The VP and VS of the non-magnetic Fe3S follow a Birch's law trend whereas the slopes decrease in the magnetic phase, indicating that the decrease of the magnetic moment significantly affects the sound velocities. If the Martian core is in the solid state containing 14.2 wt.% sulfur, it is likely that the non-magnetic Fe3S phase is a dominant component and that our measured sound velocities of Fe3S can be used to construct the corresponding velocity profile of the Martian core. It is also conceivable that Fe3P and Fe3C undergo similar magnetic phase transitions under high pressures.

  4. Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.

    PubMed

    Beloy, K

    2014-02-14

    We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.

  5. A source of antihydrogen for in-flight hyperfine spectroscopy

    PubMed Central

    Kuroda, N.; Ulmer, S.; Murtagh, D. J.; Van Gorp, S.; Nagata, Y.; Diermaier, M.; Federmann, S.; Leali, M.; Malbrunot, C.; Mascagna, V.; Massiczek, O.; Michishio, K.; Mizutani, T.; Mohri, A.; Nagahama, H.; Ohtsuka, M.; Radics, B.; Sakurai, S.; Sauerzopf, C.; Suzuki, K.; Tajima, M.; Torii, H. A.; Venturelli, L.; Wu¨nschek, B.; Zmeskal, J.; Zurlo, N.; Higaki, H.; Kanai, Y.; Lodi Rizzini, E.; Nagashima, Y.; Matsuda, Y.; Widmann, E.; Yamazaki, Y.

    2014-01-01

    Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy. PMID:24448273

  6. Studies of Landé gJ-factors of singly ionized lanthanum by laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Werbowy, S.; Güney, C.; Windholz, L.

    2016-08-01

    Laser-induced fluorescence spectroscopy, using a cooled hollow cathode discharge lamp as source of ions, was used to observe the Zeeman splitting of 18 lines of La II in the wavelength range 629.6-680.9 nm, in external intermediate magnetic fields up to 800 G. The recorded hyperfine-Zeeman patterns were analyzed in detail using already known accurate hyperfine structure A- and B-constants. From the recordings the Landé gJ-factors for some levels belonging to the 5d2, 5d6s, 5d6p, 4f5d, 4f6s and 4f6p configurations of La II were determined. The obtained experimental gJ-factors are compared with earlier measurements and theoretical calculations.

  7. International Conference on Quantum Chemical Calculations of NMR and EPR Parameters Held in Castle Smolenice, Slovak Republic on September 14-18 1998

    DTIC Science & Technology

    1998-10-21

    site. The electric-field- induced linear shift is also observed in the hyperfine splitting of nuclear quadrupole resonance ( NQR ) spectrum of a nucleus...located at a noncentrosymmetric site in a molecule or in crystal lattice. Thus, the linear electric field effect on the ESR and NQR hyperfine splitting...the electric field effects on ESR and NQR hyperfine couplings. Theoretical methods to calculate the electric field effects within Hartree-Fock

  8. Charge and Spin Currents in Open-Shell Molecules:  A Unified Description of NMR and EPR Observables.

    PubMed

    Soncini, Alessandro

    2007-11-01

    The theory of EPR hyperfine coupling tensors and NMR nuclear magnetic shielding tensors of open-shell molecules in the limit of vanishing spin-orbit coupling (e.g., for organic radicals) is analyzed in terms of spin and charge current density vector fields. The ab initio calculation of the spin and charge current density response has been implemented at the Restricted Open-Shell Hartree-Fock, Unrestricted Hartree-Fock, and unrestricted GGA-DFT level of theory. On the basis of this formalism, we introduce the definition of nuclear hyperfine coupling density, a scalar function of position providing a partition of the EPR observable over the molecular domain. Ab initio maps of spin and charge current density and hyperfine coupling density for small radicals are presented and discussed in order to illustrate the interpretative advantages of the newly introduced approach. Recent NMR experiments providing evidence for the existence of diatropic ring currents in the open-shell singlet pancake-bonded dimer of the neutral phenalenyl radical are directly assessed via the visualization of the induced current density.

  9. 133Cs-NMR study on aligned powder of competing spin chain compound Cs2Cu2Mo3O12

    NASA Astrophysics Data System (ADS)

    Yagi, A.; Matsui, K.; Goto, T.; Hase, M.; Sasaki, T.

    2018-03-01

    S = 1/2 competing spin chain compound Cs2Cu2Mo3O12 has two dominant exchange interactions of the nearest neighbouring ferromagnetic J 1 = 93 K and the second nearest neighbouring antiferromagnetic J 2 = +33 K, and is expected to show the nematic Tomonaga-Luttinger liquid (TLL) state under high magnetic field region. The recent theoretical study by Sato et al. has shown that in the nematic TLL state, the spin fluctuations are expected to be highly anisotropic, that is, its transverse component is suppressed. Our previous NMR study on the present system showed that the dominant contribution to nuclear spin relaxation comes from the longitudinal component. In order to conclude that the transverse component of spin fluctuations is suppressed, the knowledge of hyperfine coupling is indispensable. This article is solely devoted to investigate the hyperfine coupling of 133Cs-NMR site to prove that the anisotropic part of hyperfine coupling, which connects the nuclear spin relaxation with the transverse spin fluctuations is considerably large to be A an = +770 Oe/μB.

  10. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.

    PubMed

    Zhang, Z T; Xu, C; Dmytriieva, D; Molatta, S; Wosnitza, J; Wang, Y T; Helm, M; Zhou, Shengqiang; Kühne, H

    2017-10-20

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by 13 C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the 13 C nuclear spin-lattice relaxation rate [Formula: see text] by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of [Formula: see text] below about 10 K can well be described by a thermally activated form, [Formula: see text], yielding a singular Zeeman energy of ([Formula: see text]) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments.

  11. Hyperfine Structure Constants of Energetically High-lying Levels of Odd Parity of Atomic Vanadium

    NASA Astrophysics Data System (ADS)

    Güzelçimen, F.; Yapıcı, B.; Demir, G.; Er, A.; Öztürk, I. K.; Başar, Gö.; Kröger, S.; Tamanis, M.; Ferber, R.; Docenko, D.; Başar, Gü.

    2014-09-01

    High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm-1). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration 3d 34s4p and 55 to the configuration 3d 44p. Of these 90 constants, 67 have been determined for the first time, with 23 corresponding to the configuration 3d 34s4p and 44 to 3d 44p.

  12. Fluctuation in the Intermediate Magnetic Phase of Triangular Ising Antiferromagnet (CeS)1.16[Fe0.33(NbS2)2

    NASA Astrophysics Data System (ADS)

    Michioka, Chishiro; Suzuki, Kazuya; Mibu, Ko

    2002-10-01

    We applied 57Fe Mössbauer spectroscopy for investigating the Ising spin triangular lattice antiferromagnet (TLA) (CeS)1.16[Fe0.33(NbS2)2] between 2 and 300 K. The spectra revealed that the relaxation time of the hyperfine field markedly changes in the intermediate phase between TN1=22 K and TN2=15 K due to strong spin fluctuation. The relaxation of the hyperfine field is not sufficiently fast as a paramagnet even at 77 K, which is much higher than TN1, and the inverse susceptibility of (LaS)1.14[Fe0.33(NbS2)2] deviates from the Curie-Weiss law below 100 K. These results indicate that an unusual short-range order exists above TN1. The temperature dependence of the Mössbauer spectra can be explained by phase transition of the three-dimensional TLA model with weak interlayer exchange interactions.

  13. Stabilization of the electron-nuclear spin orientation in quantum dots by the nuclear quadrupole interaction.

    PubMed

    Dzhioev, R I; Korenev, V L

    2007-07-20

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  14. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    NASA Astrophysics Data System (ADS)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  15. Electromagnetically Induced Absorption (EIA) and a ``Twist'' on Nonlinear Magneto-optical Rotation (NMOR) with Cold Atoms

    NASA Astrophysics Data System (ADS)

    Kunz, Paul; Meyer, David; Quraishi, Qudsia

    2015-05-01

    Within the class of nonlinear optical effects that exhibit sub-natural linewidth features, electromagnetically induced transparency (EIT) and nonlinear magneto-optical rotation (NMOR) stand out as having made dramatic impacts on various applications including atomic clocks, magnetometry, and single photon storage. A related effect, known as electromagnetically induced absorption (EIA), has received less attention in the literature. Here, we report on the first observation of EIA in cold atoms using the Hanle configuration, where a single laser beam is used to both pump and probe the atoms while sweeping a magnetic field through zero along the beam direction. We find that, associated with the EIA peak, a ``twist'' appears in the corresponding NMOR signal. A similar twist has been previously noted by Budker et al., in the context of warm vapor optical magnetometry, and was ascribed to optical pumping through nearby hyperfine levels. By studying this feature through numerical simulations and cold atom experiments, thus rendering the hyperfine levels well resolved, we enhance the understanding of the optical pumping mechanism behind it, and elucidate its relation to EIA. Finally, we demonstrate a useful application of these studies through a simple and rapid method for nulling background magnetic fields within our atom chip apparatus.

  16. Spin-Orbit-Coupled Interferometry with Ring-Trapped Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Helm, J. L.; Billam, T. P.; Rakonjac, A.; Cornish, S. L.; Gardiner, S. A.

    2018-02-01

    We propose a method of atom interferometry using a spinor Bose-Einstein condensate with a time-varying magnetic field acting as a coherent beam splitter. Our protocol creates long-lived superpositional counterflow states, which are of fundamental interest and can be made sensitive to both the Sagnac effect and magnetic fields on the sub-μ G scale. We split a ring-trapped condensate, initially in the mf=0 hyperfine state, into superpositions of internal mf=±1 states and condensate superflow, which are spin-orbit coupled. After interrogation, the relative phase accumulation can be inferred from a population transfer to the mf=±1 states. The counterflow generation protocol is adiabatically deterministic and does not rely on coupling to additional optical fields or mechanical stirring techniques. Our protocol can maximize the classical Fisher information for any rotation, magnetic field, or interrogation time and so has the maximum sensitivity available to uncorrelated particles. Precision can increase with the interrogation time and so is limited only by the lifetime of the condensate.

  17. Hyperfine interaction and its effects on spin dynamics in organic solids

    NASA Astrophysics Data System (ADS)

    Yu, Z. G.; Ding, Feizhi; Wang, Haobin

    2013-05-01

    Hyperfine interaction (HFI) and spin-orbit coupling are two major sources that affect electron spin dynamics. Here we present a systematic study of the HFI and its role in organic spintronic applications. For electron spin dynamics in disordered π-conjugated organics, the HFI can be characterized by an effective magnetic field whose modular square is a weighted sum of contact and dipolar contributions. We determine the effective HFI fields of some common π-conjugated organics studied in the literature via first-principles calculations. Most of them are found to be less than 2 mT. While the H atoms are the major source of the HFI in organics containing only the C and H atoms, many organics contain other nuclear spins, such as Al and N in tris-(8-hydroxyquinoline) aluminum, that contribute to the total HFI. Consequently, the deuteration effect on the HFI in the latter may be much weaker than in the former. The HFI gives rise to multiple resonance peaks in electron spin resonance. In disordered organic solids, these individual resonances are unresolved, leading to a broad peak whose width is proportional to the effective HFI field. As electrons hop among adjacent organic molecules, they experience a randomly varying local HFI field, inducing electron spin relaxation and diffusion. This is analyzed rigorously based on master equations. Electron spin relaxation undergoes a crossover along the ratio between the electron hopping rate η¯ and the Larmor frequency Ω of the HFI field. The spin relaxation rate increases (decreases) with η¯ when η¯≪Ω (η¯≫Ω). A coherent beating of electron spin at Ω is possible when the external field is small compared to the HFI. In this regime, the magnetic field is found to enhance the spin relaxation.

  18. Mössbauer analysis of the magnetic structure of a high-carbon austenitic steel upon deformation and under pressure

    NASA Astrophysics Data System (ADS)

    Shabashov, V. A.; Korshunov, L. G.; Zamatovskii, A. E.; Litvinov, A. V.

    2007-10-01

    A large plastic deformation of Hadfield steel (frictional action, shear under pressure, filing, and rolling) leads to the growth of an internal effective field at 57Fe nuclei, magnetic-degeneracy removal in the spectra, and delay of the paraprocess up to room temperature. In the Mössbauer spectrum of the 120G13 Hadfield steel, the reversible formation of a hyperfine structure, which is supposedly connected with magnetic ordering, has been detected in situ upon quasi-hydrostatic compression to 26 GPa. The observed growth of magnetic characteristics upon deformation and under high pressure is explained by the deformation-induced redistribution of carbon with the formation of short-range ordering of oxygen and manganese.

  19. Matrix elements of hyperfine structure operators in the SL and jj representations for the s, p{sup N}, and d{sup N} configurations and the SL-jj transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, W.J.

    1997-09-01

    Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p{sup N}, and d{sub N} configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs.

  20. The hyperfine structure in the rotational spectra of D{sub 2}{sup 17}O and HD{sup 17}O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puzzarini, Cristina, E-mail: cristina.puzzarini@unibo.it; Cazzoli, Gabriele; Harding, Michael E.

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O andmore » HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].« less

  1. Phase analysis of Košice meteorite: Preliminary results

    NASA Astrophysics Data System (ADS)

    Sitek, J.; Dekan, J.; Degmová, J.; Sedlačková, K.

    2012-10-01

    Meteorite fall was observed by the Košice town in Slovakia in February 2010 and it was classified as an ordinary chondrite H5. The samples were prepared in powder form scratched from the surface. Mossbauer spectra were measured at room temperature and liquid nitrogen temperature. Spectra consist of components related to iron-bearing phases with different content. Non-magnetic part was fitted with three quadrupole doublets. According to its parameters, we identified olivine, pyroxene, and traces of Fe3+ phases. Magnetic part consists of an iron-rich Fe-Ni alloy with hyperfine magnetic field similar to kamacite α-Fe(Ni,Co) and troilite. Main elements were also determined by X-ray fluorescence spectroscopy.

  2. Pulsed dynamical decoupling for fast and robust two-qubit gates on trapped ions

    NASA Astrophysics Data System (ADS)

    Arrazola, I.; Casanova, J.; Pedernales, J. S.; Wang, Z.-Y.; Solano, E.; Plenio, M. B.

    2018-05-01

    We propose a pulsed dynamical decoupling protocol as the generator of tunable, fast, and robust quantum phase gates between two microwave-driven trapped-ion hyperfine qubits. The protocol consists of sequences of π pulses acting on ions that are oriented along an externally applied magnetic-field gradient. In contrast to existing approaches, in our design the two vibrational modes of the ion chain cooperate under the influence of the external microwave driving to achieve significantly increased gate speeds. Our scheme is robust against the dominant noise sources, which are errors on the magnetic-field and microwave pulse intensities, as well as motional heating, predicting two-qubit gates with fidelities above 99.9% in tens of microseconds.

  3. Heavy Ion Irradiated Ferromagnetic Films: The Cases of Cobalt and Iron

    NASA Astrophysics Data System (ADS)

    Lieb, K. P.; Zhang, K.; Müller, G. A.; Gupta, R.; Schaaf, P.

    2005-01-01

    Polycrystalline, e-gun deposited Co, Fe and Co/Fe films, tens of nanometers thick, have been irradiated with Ne, Kr, Xe and/or Fe ions to fluences of up to 5 × 1016 ions/cm2. Changes in the magnetic texture induced by the implanted ions have been measured by means of hyperfine methods, such as Magnetic Orientation Mössbauer Spectroscopy (Fe), and by Magneto-Optical Kerr Effect and Vibrating Sample Magnetometry. In Co and CoFe an hcp → fcc phase transition has been observed under the influence of Xe-ion implantation. For 1016 Xe-ions/cm2, ion beam mixing in the Co/Fe system produces a soft magnetic material with uniaxial anisotropy. The effects have been correlated with changes in the microstructure as determined via X-ray diffraction. The influences of internal and external strain fields, an external magnetic field and pre-magnetization have been studied. A comprehensive understanding of the various effects and underlying physical reasons for the modifications appears to emerge from these investigations.

  4. Investigation of Cr substitution in Co ferrite (CoCrxFe2-xO4) using Mossbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Krieble, K.; Lo, C. C. H.; Melikhov, Y.; Snyder, J. E.

    2006-04-01

    Substitution of other metals for Fe in cobalt ferrite has been proposed as a method to tailor the magnetic and magnetoelastic properties for sensor and actuator applications [H. Zheng et al., Science 303, 661 (2004)]. However, to understand the effect of Cr substitution, one needs atomic-level information on the local environments and interactions of the transition-metal ions. In this study, Mossbauer spectroscopy was used to investigate the local environments of the Fe atoms in these materials. A series of five powder samples with compositions CoCrxFe2-xO4 (x=0.0 to 0.8) was investigated using transmission geometry. Results show two distinct six-line hyperfine patterns, indicating Fe in A and B spinel sites. Increasing Cr concentration is seen to decrease the hyperfine field strength for both A and B sites, as well as increasing the width of those distributions. Results for Cr substitution show generally similar behavior to a prior study using Mn; however, Cr substitution has more pronounced effects: the hyperfine fields decrease and distribution widths increase at greater rates for Cr substitution, and the differences between A and B site behavior are more pronounced. Results are consistent with a model in which Cr has an even stronger B-site preference than Mn, and displaces more of the Co from the B to the A sites.

  5. High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.

    PubMed

    Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar

    2011-04-21

    Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.

  6. Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+

    NASA Astrophysics Data System (ADS)

    Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.

    2017-12-01

    We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.

  7. EPR investigation of Ti2+ in SrCl2 single crystals.

    NASA Technical Reports Server (NTRS)

    Herrington, J. R.; Estle, T. L.; Boatner, L. A.

    1972-01-01

    The observation of 'double quantum' transitions which made it possible to determine the charge state of Ti as 2+ is reported. The EPR spectrum observed at 1.2 K is presented in a graph. The first derivative of the absorption is shown vs the magnetic field. The hyperfine patterns for the Ti-47 and Ti-49 isotopes are identified. Spin-Hamiltonian parameters for Ti(2+) in various cubic hosts are listed.

  8. Separating hyperfine from spin-orbit interactions in organic semiconductors by multi-octave magnetic resonance using coplanar waveguide microresonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, G.; Miller, R.; Ogden, L.

    2016-09-05

    Separating the influence of hyperfine from spin-orbit interactions in spin-dependent carrier recombination and dissociation processes necessitates magnetic resonance spectroscopy over a wide range of frequencies. We have designed compact and versatile coplanar waveguide resonators for continuous-wave electrically detected magnetic resonance and tested these on organic light-emitting diodes. By exploiting both the fundamental and higher-harmonic modes of the resonators, we cover almost five octaves in resonance frequency within a single setup. The measurements with a common π-conjugated polymer as the active material reveal small but non-negligible effects of spin-orbit interactions, which give rise to a broadening of the magnetic resonance spectrummore » with increasing frequency.« less

  9. Mechanism of 'GSI oscillations' in electron capture by highly charged hydrogen-like atomic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krainov, V. P., E-mail: vpkrainov@mail.ru

    2012-07-15

    We suggest a qualitative explanation of oscillations in electron capture decays of hydrogen-like {sup 140}Pr and {sup 142}Pm ions observed recently in an ion experimental storage ring (ESR) of Gesellschaft fuer Schwerionenforschung (GSI) mbH, Darmstadt, Germany. This explanation is based on the electron multiphoton Rabi oscillations between two Zeeman states of the hyperfine ground level with the total angular momentum F = 1/2. The Zeeman splitting is produced by a constant magnetic field in the ESR. Transitions between these states are produced by the second, sufficiently strong alternating magnetic field that approximates realistic fields in the GSI ESR. The Zeemanmore » splitting amounts to only about 10{sup -5} eV. This allows explaining the observed quantum beats with the period 7 s.« less

  10. The pure rotational spectra of the open-shell diatomic molecules PbI and SnI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Corey J., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Needham, Lisa-Maria E.; Walker, Nicholas R., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk

    2015-12-28

    Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X {sup 2}Π{sub 1/2} ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y{submore » 01}, Y{sub 02}, Y{sub 11}, and Y{sub 21}, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.« less

  11. Transient coherence of media under strong phase modulation exploiting electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Shwa, David; Katz, Nadav

    2014-08-01

    When quantum systems are shifted faster than their transition and coupling time scales, their susceptibility is dramatically modified. We measure the optical susceptibility of a strongly modulated electromagnetically induced transparency system. Time vs detuning plots for different pump modulation frequencies reveal a transition between an adiabatic regime where a series of smooth pulses are created and a nonadiabatic regime where a strong transient oscillating response is added. Applying a magnetic field lifts the hyperfine level degeneracy, revealing an interference effect between the different magnetic level transients. We explore the dynamics of the magnetic and nonmagnetic cases and discuss their coherent nature. We finally combine the global phase of the transmitted pulses with the transient interference to achieve broadband magnetic sensing without losing the sensitivity of a single electromagnetically induced transparency line.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavriliuk, A.G.; Struzhkin, V.V.; Lyubutin, I.S.

    The magnetic behavior of a Bi{sup 57}FeO{sub 3} powdered sample was studied at high pressures by the method of nuclear forward scattering (NFS) of synchrotron radiation. The NFS spectra from {sup 57}Fe nuclei were recorded at room temperature under high pressures up to 61.4 GPa, which were created in a diamond anvil cell. In the pressure interval 0 < P < 47 GPa, the magnetic hyperfine field H{sup Fe} at the {sup 57}Fe nuclei increased reaching a value of {approx}52.5 T at 30 GPa, and then it slightly decreased to {approx}49.6 T at P = 47 GPa. As the pressuremore » was increased further, the field H{sup Fe} abruptly dropped to zero testifying a transition from the antiferromagnetic to a nonmagnetic state (magnetic collapse). In the pressure interval 47 < P < 61.4 GPa, the value of H{sup Fe} remained zero. The field H{sup Fe} recovered to the low-pressure values during decompression.« less

  13. Crystallographic, hyperfine and magnetic characterization of a maraging-400 alloy

    NASA Astrophysics Data System (ADS)

    Alves, T. J. B.; Nunes, G. C. S.; Sarvezuk, P. W. C.; Ivashita, F. F.; de Andrade, A. M. H.; Viegas, A.; Paesano, A.

    2017-11-01

    Maraging400-like alloys were made by arc-melting iron with the alloy elements (i.e., Ni, Co, Ti and Mo), followed by a high temperature heat-treatment for solubilization. The solubilized alloys were further heat-treated (480 °C and 580 °C, by 3 h), for aging. The samples were finely characterized by X-ray diffraction (Rietveld refinement), Mössbauer spectroscopy and magnetization techniques. The results revealed that the as-solubilized sample is martensitic and ferromagnetic. Its residual induction and coercive field increase monotonically with the maximum applied field of a magnetization minor loop and both curves presented very similar shapes. The area of the minor loops varies parabolically with this maximum applied field. The aging induced an atomic rearrangement in the martensite phase, involving change in the composition and lattice parameters, reversion of austenite and the formation of the Fe 3 Mo 2 intermetallic compound. Comparisons are presented between the results obtained by us for these alloys and those obtained for Maraging-350 steel samples.

  14. Mossbauer Study of Low Temperature Magnetic and magnetooptic Properties of Amorphous Tb/Fe Multilayers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ataur

    Magnetic and magnetooptic properties of multilayers critically depend on detailed magnetic and structural ordering of the interface. To study these properties in Tb/Fe multilayers, samples with varying layer thicknesses were fabricated by planar magnetic sputtering on polyester substrates. Mossbauer effect spectra were recorded at different temperatures ranging between 20 K and 300 K. The results show that perpendicular magnetic anisotropy (PMA) increases as temperature decreases for samples that show parallel anisotropy at room temperature, and for samples that show strong PMA at room temperature, no significant change in PMA is observed at low temperature (<100 K). Hyperfine field of samples that display parallel anisotropy at room temperature shows oscillatory behavior, reminiscent of RKKY oscillations, at low temperatures (<100 K). Plausible causes of these properties will be discussed in the paper.

  15. EPR study of a gamma-irradiated (2-hydroxyethyl)triphenylphosphonium chloride single crystal

    NASA Astrophysics Data System (ADS)

    Karakaş, E.; Türkkan, E.; Dereli, Ö.; Sayιn, Ü.; Tapramaz, R.

    2011-12-01

    In this study, gamma-irradiated single crystals of (2-hydroxyethyl)triphenylphosphonium chloride [CH2CH2OH P(C6H5)3Cl] were investigated with electron paramagnetic resonance (EPR) spectroscopy at room temperature for different orientations in the magnetic field. The single crystals were irradiated with a 60Co-γ-ray source at 0.818 kGy/h for about 36 h. Taking the chemical structure and the experimental spectra of the irradiated single crystal of the title compound into consideration, a paramagnetic species was produced with the unpaired electron delocalized around 31P and several 1H nuclei. The anisotropic hyperfine values due to the 31P nucleus, slightly anisotropic hyperfine values due to the 1H nuclei and the g-tensor of the radical were measured from the spectra. Depending on the molecular structure and measured parameters, three possible radicals were modeled using the B3LYP/6-31+G(d) level of density-functional theory, and EPR parameters were calculated for modeled radicals using the B3LYP/TZVP method/basis set combination. The calculated hyperfine coupling constants were found to be in good agreement with the observed EPR parameters. The experimental and theoretically simulated spectra for each of the three crystallographic axes were well matched with one of the modeled radicals (discussed in the text). We thus identified the radical C˙H2CH2 P(C 6H5)3 Cl as a paramagnetic species produced in a single crystal of the title compound in two magnetically distinct sites. The experimental g-factor and hyperfine coupling constants of the radical were found to be anisotropic, with the isotropic values g iso = 2.0032, ? G, ? G, ? G and ? G for site 1 and g iso=2.0031, ? G, ? G ? G and ? G for site 2.

  16. Quantum Spin Gyroscope

    DTIC Science & Technology

    2015-07-15

    performing optically detected CW ESR and on-resonance Rabi nutation of the elec- tronic spins (see figure 5). We observed increased homogeneity (as...different crystal axes. Here the magnetic field applied was ∼ 100G. Right: Rabi nutations 2.3 Sensitivity In order to test the performance of this first...resonant driving, which are strongly dependent on the hyperfine interaction. 5 Fig. 6: 14N Rabi oscillations at B = 450G, B1 ≈ 3.3G in the three NV

  17. Laser-sodium interaction for the polychromatic laser guide star project

    NASA Astrophysics Data System (ADS)

    Bellanger, Veronique; Petit, Alain D.

    2002-02-01

    We developed a code aimed at determining the laser parameters leading to the maximum return flux of photons at 0.33 micrometers for a polychromatic sodium Laser Guide Star. This software relies upon a full 48-level collisionless and magnetic-field-free density-matrix description of the hyperfine structure of Na and includes Doppler broadening and Zeeman degeneracy. Experimental validation of BEACON was conducted on the SILVA facilities and will also be discussed in this paper.

  18. Material science and solid state physics studies with positive muon spin precession. [fe(a1) alloys

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1979-01-01

    The hyperfine field on the muon, B sub hf, at interstitial sites in dilute Fe(Al) alloys was measured for four different concentrations of Al and as a function of temperature by the muon spin rotation method. The magnitude of B sub hf, which is negative, decreases at rates ranging from 0.09 + or - 0.03% per at.% Al at 200 K to an asymptotic limit of 0.35 + or - far above 440 K. This behavior shows that sites near the Al impurity are weakly repulsive to the muon, with an interaction potential of 13 + or - 3 meV. In order to fit the temperature dependence of the hyperfine field, it is necessary to hypothesize the existence of a small concentration of unidentified defects, possibly dislocations, which are attractive to the muon. Although the Al impurity acts as a non-magnetic hole in the Fe lattice, the observed decrease in B sub hf is only 35% of the decrease in the bulk magnetization. It is concluded that B sub hf is determined mainly by the enhanced screening of conduction electrons in Fe and Fe(Al). Since the influence of the Al impurity on the neighboring Fe monents is very small, most of the change in B sub hf is therefore attributed to the increase in conduction electron polarization of the Al impurity.

  19. Combined multifrequency EPR and DFT study of dangling bonds in a-Si:H

    NASA Astrophysics Data System (ADS)

    Fehr, M.; Schnegg, A.; Rech, B.; Lips, K.; Astakhov, O.; Finger, F.; Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Bittl, R.; Teutloff, C.

    2011-12-01

    Multifrequency pulsed electron paramagnetic resonance (EPR) spectroscopy using S-, X-, Q-, and W-band frequencies (3.6, 9.7, 34, and 94 GHz, respectively) was employed to study paramagnetic coordination defects in undoped hydrogenated amorphous silicon (a-Si:H). The improved spectral resolution at high magnetic field reveals a rhombic splitting of the g tensor with the following principal values: gx=2.0079, gy=2.0061, and gz=2.0034, and shows pronounced g strain, i.e., the principal values are widely distributed. The multifrequency approach furthermore yields precise 29Si hyperfine data. Density functional theory (DFT) calculations on 26 computer-generated a-Si:H dangling-bond models yielded g values close to the experimental data but deviating hyperfine interaction values. We show that paramagnetic coordination defects in a-Si:H are more delocalized than computer-generated dangling-bond defects and discuss models to explain this discrepancy.

  20. Effect of hyperfine-induced spin mixing on the defect-enabled spin blockade and spin filtering in GaNAs

    NASA Astrophysics Data System (ADS)

    Puttisong, Y.; Wang, X. J.; Buyanova, I. A.; Chen, W. M.

    2013-03-01

    The effect of hyperfine interaction (HFI) on the recently discovered room-temperature defect-enabled spin-filtering effect in GaNAs alloys is investigated both experimentally and theoretically based on a spin Hamiltonian analysis. We provide direct experimental evidence that the HFI between the electron and nuclear spin of the central Ga atom of the spin-filtering defect, namely, the Gai interstitials, causes strong mixing of the electron spin states of the defect, thereby degrading the efficiency of the spin-filtering effect. We also show that the HFI-induced spin mixing can be suppressed by an application of a longitudinal magnetic field such that the electronic Zeeman interaction overcomes the HFI, leading to well-defined electron spin states beneficial to the spin-filtering effect. The results provide a guideline for further optimization of the defect-engineered spin-filtering effect.

  1. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.

    PubMed

    Zhang, Zhi Tao; Xu, C; Dmytriieva, Daryna; Molatta, Sebastian; Wosnitza, J; Wang, Y T; Helm, Manfred; Zhou, Shengqiang; Kuehne, Hannes

    2017-09-18

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by $^{13}$C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the $^{13}$C nuclear spin-lattice relaxation rate $1/T_{1}$ by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of $1/T_{1}$ below about 10 K can well be described by a thermally activated form, $1/T_{1}\\propto\\exp(-\\Delta/k_{B}T)$, yielding a singular Zeeman energy of ($0.41\\pm0.01$) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments. © 2017 IOP Publishing Ltd.

  2. Room-temperature coupling between electrical current and nuclear spins in OLEDs

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.

    2014-09-01

    The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.

  3. On-line nuclear orientation of the deformed neutron-deficient Eu, Sm and Pm isotopes

    NASA Astrophysics Data System (ADS)

    Singleton, B. D. D.; Walker, P. M.; Bhagwat, A.; Al-Ghamdi, S. S.; Barham, C. G.; Grant, I. S.; Griffiths, A. G.; Rikovska, J.; Stone, N. J.

    1992-11-01

    Low-temperature nuclear orientation measurements made on-line at the SERC Daresbury Laboratory on142 m Eu,141 m Sm, and141Pm, with known magnetic dipole moments, have yielded the magnitude of the hyperfine fields of these isotopes in an iron host lattice. Thus measurements for the isotopes139, 138Eu,139 m Sm, and138Pm yielded values for the respective magnetic moments. Limits on the thermal relaxation times of Eu and Sm isotopes in Fe were also deduced. The results for138Eu appear to contradict the earlier πh11/2⊗νh11/2 ground-state configuration assignment.

  4. Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    NASA Astrophysics Data System (ADS)

    Herlitschke, M.; Disch, S.; Sergueev, I.; Schlage, K.; Wetterskog, E.; Bergström, L.; Hermann, R. P.

    2016-04-01

    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4 nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization to 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.

  5. Structure and magnetic properties of Sm1-xZrx Fe10Si2 (x=0.2-0.6) alloys

    NASA Astrophysics Data System (ADS)

    Gjoka, M.; Sarafidis, C.; Psycharis, V.; Devlin, E.; Niarchos, D.; Hadjipanayis, G.

    2017-10-01

    Structure and magnetic properties of Sm1-xZrxFe10Si2 (0.1 ≤ x ≤ 0.6) alloys have been characterized using X-ray diffraction, thermomagnetic analysis and Mössbauer spectroscopy. The formation of the tetragonal ThMn12 -type structure was been observed in all alloys, without further annealing. The Curie temperature decreases linearly with Zr substitution from 322 °C for x=0.1 to 395 °C for x=0.6. Mössbauer spectroscopy showed the iron hyperfine field values decrease with increasing Zr content, and also confirmed changes to the magnetic anisotropy with increasing Zr content observed by XRD on oriented samples.

  6. Extending the electron spin coherence time of atomic hydrogen by dynamical decoupling.

    PubMed

    Mitrikas, George; Efthimiadou, Eleni K; Kordas, George

    2014-02-14

    We study the electron spin decoherence of encapsulated atomic hydrogen in octasilsesquioxane cages induced by the (1)H and (29)Si nuclear spin bath. By applying the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence we significantly suppress the low-frequency noise due to nuclear spin flip-flops up to the point where a maximum T2 = 56 μs is observed. Moreover, dynamical decoupling with the CPMG sequence reveals the existence of two other sources of decoherence: first, a classical magnetic field noise imposed by the (1)H nuclear spins of the cage organic substituents, which can be described by a virtual fluctuating magnetic field with the proton Larmor frequency, and second, decoherence due to anisotropic hyperfine coupling between the electron and the inner (29)Si spins of the cage.

  7. Nuclear spin warm up in bulk n -GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Jouault, B.; Korenev, V. L.; Kavokin, K. V.

    2016-08-01

    We show that the spin-lattice relaxation in n -type insulating GaAs is dramatically accelerated at low magnetic fields. The origin of this effect, which cannot be explained in terms of well-known diffusion-limited hyperfine relaxation, is found in the quadrupole relaxation, induced by fluctuating donor charges. Therefore, quadrupole relaxation, which governs low field nuclear spin relaxation in semiconductor quantum dots, but was so far supposed to be harmless to bulk nuclei spins in the absence of optical pumping, can be studied and harnessed in the much simpler model environment of n -GaAs bulk crystal.

  8. Electron electric dipole moment and hyperfine interaction constants for ThO

    NASA Astrophysics Data System (ADS)

    Fleig, Timo; Nayak, Malaya K.

    2014-06-01

    A recently implemented relativistic four-component configuration interaction approach to study P- and T-odd interaction constants in atoms and molecules is employed to determine the electron electric dipole moment effective electric field in the Ω=1 first excited state of the ThO molecule. We obtain a value of Eeff=75.2GV/cm with an estimated error bar of 3% and 10% smaller than a previously reported result (Skripnikov et al., 2013). Using the same wavefunction model we obtain an excitation energy of TvΩ=1=5410 (cm), in accord with the experimental value within 2%. In addition, we report the implementation of the magnetic hyperfine interaction constant A|| as an expectation value, resulting in A||=-1339 (MHz) for the Ω=1 state in ThO. The smaller effective electric field increases the previously determined upper bound (Baron et al., 2014) on the electron electric dipole moment to |de|<9.7×10-29e cm and thus mildly mitigates constraints to possible extensions of the Standard Model of particle physics.

  9. 29Si-NMR study of magnetic anisotropy and hyperfine interactions in the uranium-bsed ferromagnet UNiSi2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Hironori; Baek, Seung H; Bauer, Eric D

    2009-01-01

    UNiSi{sub 2} orders ferromagnetically below T{sub Curie} = 95 K. This material crystallizes in the orthorhombic CeNiSi{sub 2}-type structure. The uranium atoms form double-layers, which are stacked along the crystallographic b axis (the longest axis). From magnetization measurement the easy (hard) magnetization axis is found to be the c axis (b axis). {sup 29}Si-NMR measurements have been performed in the paramagnetic state. In UNiSi{sub 2}, two crystallographic Si sites exist with orthorhombic local symmetry. The Knight shifts on each Si site have been estimated from the spectra of random and oriented powders. The transferred hyperfine couplings have been also derived.more » It is found that the transferred hyperfine coupling constants on each Si site are nearly isotropic, and that their Knight shift anisotropy comes from that of the bulk susceptibility. The nuclear-spin lattice relaxation rate 1/T{sub 1} shows temperature-independent behavior, which indicates the existence of localized 5f electron.« less

  10. Magnetically aligned phospholipid bilayers in weak magnetic fields: optimization, mechanism, and advantages for X-band EPR studies.

    PubMed

    Cardon, Thomas B; Tiburu, Elvis K; Lorigan, Gary A

    2003-03-01

    Our lab is developing a spin-labeled EPR spectroscopic technique complementary to solid-state NMR studies to study the structure, orientation, and dynamics of uniaxially aligned integral membrane proteins inserted into magnetically aligned discotic phospholipid bilayers, or bicelles. The focus of this study is to optimize and understand the mechanisms involved in the magnetic alignment process of bicelle disks in weak magnetic fields. Developing experimental conditions for optimized magnetic alignment of bicelles in low magnetic fields may prove useful to study the dynamics of membrane proteins and its interactions with lipids, drugs, steroids, signaling events, other proteins, etc. In weak magnetic fields, the magnetic alignment of Tm(3+)-doped bicelle disks was thermodynamically and kinetically very sensitive to experimental conditions. Tm(3+)-doped bicelles were magnetically aligned using the following optimized procedure: the temperature was slowly raised at a rate of 1.9K/min from an initial temperature being between 298 and 307K to a final temperature of 318K in the presence of a static magnetic field of 6300G. The spin probe 3beta-doxyl-5alpha-cholestane (cholestane) was inserted into the bicelle disks and utilized to monitor bicelle alignment by analyzing the anisotropic hyperfine splitting for the corresponding EPR spectra. The phases of the bicelles were determined using solid-state 2H NMR spectroscopy and compared with the corresponding EPR spectra. Macroscopic alignment commenced in the liquid crystalline nematic phase (307K), continued to increase upon slowly raising the temperature, and was well-aligned in the liquid crystalline lamellar smectic phase (318K).

  11. Probing a chemical compass: novel variants of low-frequency reaction yield detected magnetic resonance.

    PubMed

    Maeda, Kiminori; Storey, Jonathan G; Liddell, Paul A; Gust, Devens; Hore, P J; Wedge, C J; Timmel, Christiane R

    2015-02-07

    We present a study of a carotenoid-porphyrin-fullerene triad previously shown to function as a chemical compass: the photogenerated carotenoid-fullerene radical pair recombines at a rate sensitive to the orientation of an applied magnetic field. To characterize the system we develop a time-resolved Low-Frequency Reaction Yield Detected Magnetic Resonance (tr-LF-RYDMR) technique; the effect of varying the relative orientation of applied static and 36 MHz oscillating magnetic fields is shown to be strongly dependent on the strength of the oscillating magnetic field. RYDMR is a diagnostic test for involvement of the radical pair mechanism in the magnetic field sensitivity of reaction rates or yields, and has previously been applied in animal behavioural experiments to verify the involvement of radical-pair-based intermediates in the magnetic compass sense of migratory birds. The spectroscopic selection rules governing RYDMR are well understood at microwave frequencies for which the so-called 'high-field approximation' is valid, but at lower frequencies different models are required. For example, the breakdown of the rotating frame approximation has recently been investigated, but less attention has so far been given to orientation effects. Here we gain physical insights into the interplay of the different magnetic interactions affecting low-frequency RYDMR experiments performed in the challenging regime in which static and oscillating applied magnetic fields as well as internal electron-nuclear hyperfine interactions are of comparable magnitude. Our observations aid the interpretation of existing RYDMR-based animal behavioural studies and will inform future applications of the technique to verify and characterize further the biological receptors involved in avian magnetoreception.

  12. Determining the Topology of Integral Membrane Peptides Using EPR Spectroscopy

    PubMed Central

    Inbaraj, Johnson J.; Cardon, Thomas B.; Laryukhin, Mikhail; Grosser, Stuart M.

    2008-01-01

    This paper reports on the development of a new structural biology technique for determining the membrane topology of an integral membrane protein inserted into magnetically aligned phospholipid bilayers (bicelles) using EPR spectroscopy. The nitroxide spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) was attached to the pore-lining transmembrane domain (M2δ) of the nicotinic acetylcholine receptor (AChR) and incorporated into a bicelle. The corresponding EPR spectra revealed hyperfine splittings that were highly dependent on the macroscopic orientation of the bicelles with respect to the static magnetic field. The helical tilt of the peptide can be easily calculated using the hyperfine splittings gleaned from the orientational dependent EPR spectra. A helical tilt of 14° was calculated for the M2δ peptide with respect to the bilayer normal of the membrane, which agrees well with previous 15N solid-state NMR studies. The helical tilt of the peptide was verified by simulating the corresponding EPR spectra using the standardized MOMD approach. This new method is advantageous because: (1) bicelle samples are easy to prepare, (2) the helical tilt can be directly calculated from the orientational-dependent hyperfine splitting in the EPR spectra, and (3) EPR spectroscopy is approximately 1000 fold more sensitive than 15N solid-state NMR spectroscopy; thus, the helical tilt of an integral membrane peptide can be determined with only 100 μg of peptide. The helical tilt can be determined more accurately by placing TOAC spin labels at several positions with this technique. PMID:16848493

  13. Iron oxide nanoparticles in NaA zeolite cages

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, S. K.; Vijayalakshmi, R.; Sudarsan, V.; Salunke, H. G.; Bhargava, S. C.

    2013-07-01

    Zeolite NaA samples with varying concentration of Fe3+ ions have been prepared by wet chemical method. Based on powder X-ray diffraction, 29Si and 27Al MAS NMR and Fe3+ EPR investigations, the formation of nano-sized ferric oxide particles inside the larger α-cages of zeolite NaA has been established. Both Mössbauer effect and magnetization measurements carried out down to 4.5 K established the superparamagnetic behaviour of these Fe2O3 particles with a blocking temperature of ≈20 K, where the magnetization values showed deviation for the zero field cooled and field cooled samples and the appearance of a very narrow magnetic hysteresis loop below this temperature. For all Fe3+ containing samples the room temperature Mössbauer spectrum is a broad quadrupole doublet with chemical shift, δ ≈ 0.33 mm/s and quadrupole splitting, ΔEq ≈ 0.68 mm/s. Variable temperature 57Fe Mössbauer effect measurements exhibited magnetic features below the blocking temperature and at 4.5 K, the observed spectrum is a broad magnetic sextet characterized by an internal hyperfine field value of ≈504 kOe along with a very weak central superparamagnetic quadrupole doublet.

  14. Survival of Verwey transition in gadolinium-doped ultrasmall magnetite nanoparticles.

    PubMed

    Yeo, Sunmog; Choi, Hyunkyung; Kim, Chul Sung; Lee, Gyeong Tae; Seo, Jeong Hyun; Cha, Hyung Joon; Park, Jeong Chan

    2017-09-28

    We have demonstrated that the Verwey transition, which is highly sensitive to impurities, survives in anisotropic Gd-doped magnetite nanoparticles. Transmission electron microscopy analysis shows that the nanoparticles are uniformly distributed. X-ray photoelectron spectroscopy and EDS mapping analysis confirm Gd-doping on the nanoparticles. The Verwey transition of the Gd-doped magnetite nanoparticles is robust and the temperature dependence of the magnetic moment (zero field cooling and field cooling) shows the same behaviour as that of the Verwey transition in bulk magnetite, at a lower transition temperature (∼110 K). In addition, irregularly shaped nanoparticles do not show the Verwey transition whereas square-shaped nanoparticles show the transition. Mössbauer spectral analysis shows that the slope of the magnetic hyperfine field and the electric quadrupole splitting change at the same temperature, meaning that the Verwey transition occurs at ∼110 K. These results would provide new insights into understanding the Verwey transition in nano-sized materials.

  15. Photochemical primary process of photo-Fries rearrangement reaction of 1-naphthyl acetate as studied by MFE probe.

    PubMed

    Gohdo, Masao; Takamasu, Tadashi; Wakasa, Masanobu

    2011-01-14

    Photo-Fries rearrangement reactions of 1-naphthyl acetate (NA) in n-hexane and in cyclohexane were studied by the magnetic field effect probe (MFE probe) under magnetic fields (B) of 0 to 7 T. Transient absorptions of the 1-naphthoxyl radical, T-T absorption of NA, and a short-lifetime intermediate (τ = 24 ns) were observed by a nanosecond laser flash photolysis technique. In n-hexane, the yield of escaped 1-naphthoxyl radicals dropped dramatically upon application of a 3 mT field, but then the yield increased with increasing B for 3 mT < B≤ 7 T. These observed MFEs can be explained by the hyperfine coupling and the Δg mechanisms through the singlet radical pair. The fact that MFEs were observed for the present photo-Fries rearrangement reaction indicates the presence of a singlet radical pair intermediate with a lifetime as long as several tens of nanoseconds.

  16. Laser magnetic resonance in supersonic plasmas - The rotational spectrum of SH(+)

    NASA Technical Reports Server (NTRS)

    Hovde, David C.; Saykally, Richard J.

    1987-01-01

    The rotational spectrum of v = 0 and v = 1X3Sigma(-)SH(+) was measured by laser magnetic resonance. Rotationally cold (Tr = 30 K), vibrationally excited (Tv = 3000 K) ions were generated in a corona excited supersonic expansion. The use of this source to identify ion signals is described. Improved molecular parameters were obtained; term values are presented from which astrophysically important transitions may be calculated. Accurate hyperfine parameters for both vibrational levels were determined and the vibrational dependence of the Fermi contact interaction was resolved. The hyperfine parameters agree well with recent many-body perturbation theory calculations.

  17. The Submillimeter Spectrum of MnH and MnD (X7Σ+)

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Ziurys, L. M.

    2008-01-01

    The submillimeter-wave spectrum of the MnH and MnD radicals in their 7Σ+ ground states has been measured in the laboratory using direct absorption techniques. These species were created in the gas phase by the reaction of manganese vapor, produced in a Broida-type oven, with either H2 or D2 gas in the presence of a DC discharge. The N = 0 → 1 transition of MnH near 339 GHz was recorded, which consisted of multiple hyperfine components arising from both the manganese and hydrogen nuclear spins. The N = 2 → 3 transition of MnD near 517 GHz was measured as well, but in this case only the manganese hyperfine interactions were resolved. Both data sets were analyzed with a Hund's case b Hamiltonian, and rotational, fine structure, magnetic hyperfine, and electric quadrupole constants have been determined for the two manganese species. An examination of the magnetic hyperfine constants shows that MnH is primarily an ionic species, but has more covalent character than MnF. MnH is a good candidate species for astronomical searches with Herschel, particularly toward material associated with luminous blue variable stars.

  18. Circular dichroism of magnetically induced transitions for D2 lines of alkali atoms

    NASA Astrophysics Data System (ADS)

    Tonoyan, A.; Sargsyan, A.; Klinger, E.; Hakhumyan, G.; Leroy, C.; Auzinsh, M.; Papoyan, A.; Sarkisyan, D.

    2018-03-01

    In this letter we study magnetic circular dichroism in alkali atoms exhibiting asymmetric behaviour of magnetically induced transitions. The magnetic field \\textbf{B}\\parallel\\textbf{k} induces transitions between Δ F = +/-2 hyperfine levels of alkali atoms and in the range of ∼0.1{\\text{--}}3 \\text{kG} magnetic field, the intensities of these transitions experience significant enhancement. We have inferred a general rule applicable for the D 2 lines of all alkali atoms, that is the transition intensity enhancement is around four times larger for the case of σ+ than for σ- excitation for Δ F = +2 , whereas it is several hundreds of thousand times larger in the case of σ- than that for σ+ polarization for Δ F = -2 . This asymmetric behaviour results in circular dichroism. For experimental verification we employed half-wavelength-thick atomic vapor nanocells using a derivative of the selective reflection technique, which provides a sub-Doppler spectroscopic linewidth (∼50 \\text{MHz} ). The presented theoretical curves well describe the experimental results. This effect can find applications particularly in parity violation experiments.

  19. Evidence for Nuclear Tensor Polarization of Deuterium Molecules in Storage Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van den Brand, J.; Bulten, H.; Zhou, Z.

    1997-02-01

    Deuterium molecules were obtained by recombination, on a copper surface, of deuterium atoms prepared in specific hyperfine states. The molecules were stored for about 5ms in an open-ended cylindrical cell, placed in a 23mT magnetic field, and their tensor polarization was measured by elastic scattering of 704MeV electrons. The results of the measurements are consistent with the deuterium molecules retaining the tensor polarization of the initial atoms. {copyright} {ital 1997} {ital The American Physical Society}

  20. Cooling flexural modes of a mechanical oscillator by magnetically trapped Bose-Einstein-condensate atoms

    NASA Astrophysics Data System (ADS)

    Xu, Donghong; Xue, Fei

    2017-12-01

    We theoretically study cooling of flexural modes of a mechanical oscillator by Bose-Einstein-condensate (BEC) atoms (Rb87) trapped in a magnetic trap. The mechanical oscillator with a tiny magnet attached on one of its free ends produces an oscillating magnetic field. When its oscillating frequency matches certain hyperfine Zeeman energy of Rb87 atoms, the trapped BEC atoms are coupled out of the magnetic trap by the mechanical oscillator, flying away from the trap with stolen energy from the mechanical oscillator. Thus the mode temperature of the mechanical oscillator is reduced. The mode temperature of the steady state of mechanical oscillator, measured by the mean steady-state phonon number in the flexural mode of the mechanical oscillator, is analyzed. It is found that ground state (phonon number less than 1) may be accessible with optimal parameters of the hybrid system of mechanical oscillator and trapped BEC atoms.

  1. Analysis of Košice Meteorite by Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sitek, Jozef; Dekan, Július; Sedlačková, Katarína

    2016-07-01

    The 57Fe Mössbauer spectroscopy method was used to investigate iron-containing compounds in town Košice meteorite fallen on the territory of Slovakia in February 2010. The results showed that the Mössbauer spectra consisted of magnetic and non-magnetic components related to different iron-bearing phases. The non-magnetic phase includes olivine, pyroxene and traces of Fe3+ phase and the magnetic component comprises troilite (FeS) and iron-rich Fe-Ni alloy with hyperfine magnetic field typical for kamacite. Samples from meteorite were obtained in powder from different depths to inspect its heterogeneous composition. The content of kamacite increases to the detriment of troilite from the surface toward the centre of the sample. Measurements at liquid nitrogen temperature confirmed phase composition of investigated meteorite. Main constituent elements of studied samples were also determined by X-ray fluorescence analysis.

  2. Hyperfine coupling of the iodine {\\boldsymbol{D}}{0}_{{\\boldsymbol{u}}}^{+} and β1 g ion-pair states

    NASA Astrophysics Data System (ADS)

    Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Petrov, A. N.; Poretsky, S. A.; Pravilov, A. M.

    2018-05-01

    Detailed studies of I2(β1 g , v β = 13, J β ∼ D{0}u+, v D = 12, J D and D, 48, J D ∼ β, 47, J β ) rovibronic state coupling have been carried out using two-step two-color, hν 1 + hν 2 and hν 1 + 2hν 2, optical–optical double resonance excitation schemes, respectively. The hyperfine interaction satisfying the | {{Δ }}J| = 0, 1 selection rules (magnetic-dipole interaction) has been observed. No electric-quadrupole hyperfine coupling (| {{Δ }}J| = 2) has been found. The dependences of ratios of luminescence intensities from the rovibronic states populated due to the hyperfine coupling to those from optically populated ones on energy gaps between these states have been experimentally determined. The matrix elements as well as the hyperfine structure constant have been obtained using these dependences. It is shown that they increase slightly with the vibrational quantum number of the states.

  3. Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    DOE PAGES

    Herlitschke, Marcus; Disch, Sabrina; Sergueev, I.; ...

    2016-05-11

    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization tomore » 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.« less

  4. Collaborative Research: Polymeric Multiferroics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Shenqiang

    2017-04-20

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamentalmore » understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.« less

  5. Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herlitschke, Marcus; Disch, Sabrina; Sergueev, I.

    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization tomore » 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.« less

  6. Theoretical study of the hyperfine-interaction constants and the isotope-shift factors for the 3 s21S0-3 s 3 p 3,1P1o transitions in Al+

    NASA Astrophysics Data System (ADS)

    Zhang, Tingxian; Xie, Luyou; Li, Jiguang; Lu, Zehuang

    2017-07-01

    We calculated the magnetic dipole and the electric quadrupole hyperfine interaction constants of 3 s 3 p 3,1P1o states and the isotope shift, including mass and field shift, factors for transitions from these two states to the ground state 3 s 2 1S0 in Al+ ions using the multiconfiguration Dirac-Hartree-Fock method. The effects of the electron correlations and the Breit interaction on these physical quantities were investigated in detail based on the active space approach. It is found that the core-core and the higher order correlations are considerable for evaluating the uncertainties of the atomic parameters concerned. The uncertainties of the hyperfine interaction constants in this work are less than 1.6%. Although the isotope shift factors are highly sensitive to the electron correlations, reasonable uncertainties were obtained by exploring the effects of the electron correlations. Moreover, we found that the relativistic nuclear recoil corrections to the mass shift factors are very small and insensitive to the electron correlations for Al+. These atomic parameters present in this work are valuable for extracting the nuclear electric quadrupole moments and the mean-square charge radii of Al isotopes.

  7. Hyperfine interactions and electric dipole moments in the [16.0]1.5(v = 6), [16.0]3.5(v = 7), and X2Δ(5/2) states of iridium monosilicide, IrSi.

    PubMed

    Le, Anh; Steimle, Timothy C; Morse, Michael D; Garcia, Maria A; Cheng, Lan; Stanton, John F

    2013-12-19

    The (6,0)[16.0]1.5-X(2)Δ(5/2) and (7,0)[16.0]3.5-X(2)Δ(5/2) bands of IrSi have been recorded using high-resolution laser-induced fluorescence spectroscopy. The field-free spectra of the (191)IrSi and (193)IrSi isotopologues were modeled to generate a set of fine, magnetic hyperfine, and nuclear quadrupole hyperfine parameters for the X(2)Δ(5/2)(v = 0), [16.0]1.5(v = 6), and [16.0]3.5 (v = 7) states. The observed optical Stark shifts for the (193)IrSi and (191)IrSi isotopologues were analyzed to produce the permanent electric dipole moments, μ(el), of -0.414(6) D and 0.782(6) D for the X(2)Δ(5/2) and [16.0]1.5 (v = 6) states, respectively. Properties of the X(2)Δ(5/2) state computed using relativistic coupled-cluster methods clearly indicate that electron correlation plays an essential role. Specifically, inclusion of correlation changes the sign of the dipole moment and is essential for achieving good accuracy for the nuclear quadrupole coupling parameter eQq0.

  8. Magnetic structures and magnetocaloric effect in R VO4 (R =Gd , Nd )

    NASA Astrophysics Data System (ADS)

    Palacios, E.; Evangelisti, M.; Sáez-Puche, R.; Dos Santos-García, A. J.; Fernández-Martínez, F.; Cascales, C.; Castro, M.; Burriel, R.; Fabelo, O.; Rodríguez-Velamazán, J. A.

    2018-06-01

    We report the magnetic properties and magnetic structure of the zircon-type compound GdVO4, together with the magnetic structure of the isostructural NdVO4. At T ≃2.5 K, GdVO4 undergoes a phase transition to antiferromagnetic Gz, driven mainly by the exchange interactions, while the magnetic anisotropy and dipolar interactions are minor contributions. Near the liquid-helium boiling temperature, the magnetocaloric effect of GdVO4 is nearly as large as that of the structurally closely related GdPO4. It is noteworthy that GdVO4 has been recently proposed as a good passive regenerator in Gifford-McMahon cryocoolers, since adding a magnetization-demagnetization stage to the cryocooler refrigeration cycle would increase its efficiency for liquefying helium. NdVO4 is a canted Gz-type antiferromagnet and shows enhancement of the magnetic reflections in neutron diffraction below ca. 500 mK, due to the polarization of the Nd nuclei by the hyperfine field.

  9. Magnetic ordering in TmGa.

    PubMed

    Cadogan, J M; Stewart, G A; Muñoz Pérez, S; Cobas, R; Hansen, B R; Avdeev, M; Hutchison, W D

    2014-03-19

    We have determined the magnetic structure of the intermetallic compound TmGa by high-resolution neutron powder diffraction and (169)Tm Mössbauer spectroscopy. This compound crystallizes in the orthorhombic (Cmcm) CrB-type structure and its magnetic structure is characterized by magnetic order of the Tm sublattice along the a-axis. The initial magnetic ordering occurs at 15(1) K and yields an incommensurate antiferromagnetic structure described by the propagation vector k1 = [0 0.275(2) 0]. At 12 K the dominant ferromagnetic ordering of the Tm sublattice along the a-axis develops in what appears to be a first-order transition. At 3 K the magnetic structure of TmGa is predominantly ferromagnetic but a weakened incommensurate component remains. The ferromagnetic Tm moment reaches 6.7(2) μB at 3 K and the amplitude of the remaining incommensurate component is 2.7(4) μB. The (169)Tm hyperfine magnetic field at 5 K is 631(1) T.

  10. Hyperfine structure investigations for the odd-parity configuration system in atomic holmium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Furmann, B.

    2018-02-01

    In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.

  11. Mössbauer spectroscopy and the structure of interfaces on the atomic scale in metallic nanosystems

    NASA Astrophysics Data System (ADS)

    Uzdin, V. M.

    2007-10-01

    A microscopic model of the formation of an alloy on the interface has been constructed, which takes into account the exchange of atoms with the substrate atoms and the “floating up” of the latter into the upper layers in the process of epitaxial growth. The self-consistent calculations of atomic magnetic moments of spatially inhomogeneous structures obtained in this case are used for the interpretation of data of Mössbauer spectroscopy. The proposed scenario of mixing leads to the appearance of a preferred direction in the sample and the asymmetry of interfaces in the direction of epitaxial growth. In the multilayer M 1/ M 2 ( M 1,2 = Fe, Cr, V, Sn, or Ag) systems, this asymmetry makes it possible to understand the difference in the magnetic behavior of M 1-on M 2 and M 2-on- M 1 interfaces which has been observed experimentally. The correlation between the calculated distributions of magnetic moments and the measured distributions of hyperfine fields at iron atoms confirms the assumption about their proportionality for a broad class of metallic multilayer systems. However, a linear decrease of hyperfine fields at the 57Fe nuclei with increasing number of impurity atoms among the nearest and next-nearest neighbors is not confirmed for Fe/Cr systems, although is correct in Fe/V superlattices. In the Fe/Cr multilayer systems, the experimentally measured value of magnetoresistance grows with increasing fraction of the “floated up” atoms of 57Fe. Thus, it is the bulk scattering by impurity atoms that gives the basic contribution to the effect of giant magnetoresistance. The problem of the influence of mixing and adsorption of hydrogen in the vanadium layers on the state of the spin-density wave in V/Cr superlattices has been considered.

  12. Approaches to Measuring Entanglement in Chemical Magnetometers

    PubMed Central

    2013-01-01

    Chemical magnetometers are radical pair systems such as solutions of pyrene and N,N-dimethylaniline (Py–DMA) that show magnetic field effects in their spin dynamics and their fluorescence. We investigate the existence and decay of quantum entanglement in free geminate Py–DMA radical pairs and discuss how entanglement can be assessed in these systems. We provide an entanglement witness and propose possible observables for experimentally estimating entanglement in radical pair systems with isotropic hyperfine couplings. As an application, we analyze how the field dependence of the entanglement lifetime in Py–DMA could in principle be used for magnetometry and illustrate the propagation of measurement errors in this approach. PMID:24372396

  13. Systematic effects in the HfF+-ion experiment to search for the electron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Petrov, A. N.

    2018-05-01

    The energy splittings for J =1 , F =3 /2 , | mF|=3 /2 hyperfine levels of the 3Δ1 electronic state of 180Hf+19F ion are calculated as functions of the external variable electric and magnetic fields within two approaches. In the first one, the transition to the rotating frame is performed, whereas in the second approach, the quantization of rotating electromagnetic field is performed. Calculations are required for understanding possible systematic errors in the experiment to search for the electron electric dipole moment (e EDM ) with the 180Hf+19F ion.

  14. Bichromatic laser cooling in a three-level system

    NASA Astrophysics Data System (ADS)

    Gupta, R.; Xie, C.; Padua, S.; Batelaan, H.; Metcalf, H.

    1993-11-01

    We report a 1D study of optical forces on atoms in a two-frequency laser field. The light couples two ground state hyperfine structure levels to a common excited state of 85Rb, thus forming a Λ system. We observe a new type of sub-Doppler coupling with blue-tuned light that uses neither polarization gradients nor magnetic fields, efficient heating with red tuning, and the spatial phase dependence of these. We observed deflection from a rectified dipole force and determined its velocity dependence and capture range. We report velocity selective resonances associated with Raman transitions. A simplified semiclassical calculation agrees qualitatively with our measurements.

  15. HYPERFINE STRUCTURES AND NUCLEAR MOMENTS OF Lu$sup 176$m, Br$sup 80$, Br$sup 80$m, AND I$sup 132$ (thesis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.B.

    1962-09-01

    The method of atomic-beam radiofrequency spectroscopy was used to determine some nuclear and atomic properties of Lu/sup 176m/, Br/sup 80/, Br/sup 80m/, and I/sup 132/. Hyperfine structure me asurements were raade to determine the magnetic dipole interaction constants and the electric quadrupole interaction constants of all these isotopes. Also the nuclear spin and the electronic g/sub J/ factor were measured for Lu/sup 176m/, and the nuclear magnetic dipole moments and the electric quadrupole moments for the isotopes were calculated. All results are listed. 62 references. (auth)

  16. High frequency permeability of Fe-Cu-Nb-Si-B nanocrystalline flakes with the distribution of shape anisotropy fields

    NASA Astrophysics Data System (ADS)

    Luo, Xing; Wu, Yanhui; Han, Mangui; Deng, Longjiang

    2018-04-01

    Fe-Cu-Nb-Si-B flakes with multiphase nanostructures have been obtained by annealing the amorphous ribbon and subsequently ball milled for 30 h. The crystal structures have been examined by X-ray diffraction pattern and Mössbauer spectrum. The results show that the particles annealed at 900 °C are made up of amorphous ferromagnetic phase, α-Fe3Si ferromagnetic phase and Fe2B phase, and the average hyperfine magnetic field (HBhf) of particles is 24.02 T. Meanwhile, the relationships between the structure and the high frequency permeability have been studied. Compared with particles annealed at 600 °C, particles annealed at 900 °C exhibit higher saturation magnetization, which is evidenced by the larger HBhf. Also, three magnetic loss peaks in a permeability spectrum have been observed for the particles annealed at 900 °C. The natural resonance frequencies are calculated, which are in good agreement with the experimental resonance peaks. The origin of the multiple magnetic loss peaks can be explained from the perspective of the distribution of shape anisotropy fields which is caused by multiple phase structure.

  17. Identification of the Ga interstitial in Al(x)Ga(1-x)As by optically detected magnetic resonance

    NASA Technical Reports Server (NTRS)

    Kennedy, T. A.; Spencer, M. G.

    1986-01-01

    A new optically detected magnetic resonance spectrum in Al(x)Ga(1-x)As is reported and assigned to native Ga interstitials. Luminescence-quenching signals were observed over the energy region from 0.75 to 1.1 eV. The optically detected magnetic resonance is nearly isotropic, with spin-Hamiltonian parameters g = 2.025 + or - 0.006, central hyperfine splitting A(Ga-69) = 0.050 + or - 0.001/cm, and A(Ga-71) = 0.064 + or - 0.001/cm for H near the 001 line. The strong hyperfine coupling denotes an electronic state of A1 symmetry, which current theories predict for the Ga interstitial but not the Ga antisite. The slight anisotropy probably indicates that the Ga(i) is paired with a second, unknown defect.

  18. Photoassociation of ultracold LiRb molecules with short pulses near a Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Ghosal, Subhas; Byrd, Jason; Côté, Robin

    2014-05-01

    Ultracold diatomic molecules prepared in the lowest ro-vibrational state are a required first step in many experimental studies aimed at investigating the properties of cold quantum matter. We propose a novel approach to produce such molecules in a two-color photoassociation experiment with short pulses performed near a Feshbach resonance. Specifically, we report the results of a theoretical investigation of formation of 6Li87Rb molecules in a magnetic field. We show that the molecular formation rate can be significantly increased if the pump step is performed near a magnetic Feshbach resonance due to the strong coupling between the energetically open and closed hyperfine states. In addition, the dependence of the nodal structure of the total wave function on the magnetic field allows for enhanced control over the shape and position of the wave packet. The proposed approach is applicable to different systems that have accessible Feshbach resonances. Partially supported by ARO(MG), DOE(SG), AFOFR(JB), NSF(RC).

  19. Magnetic studies of melt spun NdFeAl-C alloys

    NASA Astrophysics Data System (ADS)

    Rodríguez Torres, C. E.; Cabrera, A. F.; Sánchez, F. H.; Billoni, O. V.; Urreta, S. E.; Fabietti, L. M.

    2004-12-01

    Alloys with compositions Nd 60-xC xFe 30Al 10 ( x=0, 1, 5 and 10) were processed by melt spinning at a tangential speed of 5 m/s. The as-cast ribbons were characterized by X-ray diffraction, Mössbauer Effect spectroscopy and their room temperature hysteresis loops. The substitution of Nd by C is found to affect the phase selection, from mainly DHCP-Nd for x=0 to DHCP-Nd /FCC-Nd for the other ones. Mössbauer spectra of all the as-cast samples indicate that Fe is present in crystalline magnetic phases as well as in a paramagnetic one. The major crystalline phase was identified as a μ-type (or A1) metastable phase, which is reported to have a large anisotropy field and a relatively high saturation polarization. Interstitial C stabilizes the μ-type phase and improves its average hyperfine field. The magnetic measurements display an increase of coercivity and remanence with the C concentration.

  20. Study of a magnetorheological fluid submitted to a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Fonseca, H. A.; Gonzalez, E.; Restrepo, J.

    2017-12-01

    In this work, the rheological and hyperfine properties of a magnetorheological fluid (MRF) under the action of a uniform external magnetic field are analysed. Powders of native mineral magnetite of micrometric particle size, after a pulverization process, form the solute of these fluids. The sizes of these samples are selected by sieving in order to obtain sizes of around 20µm and 45µm. The powders are characterized by means of Mössbauer spectroscopy to analyse their stoichiometry giving rise to a non-stoichiometric magnetite Fe2.96O4 in addition to a hematite component. Result of viscosity and shear stress in the low-speed regime were analysed using the Hershel Buckley method. In particular, the case of surface tension it decreases with the application of a uniform magnetic flux density, which is understood in terms of a phase separation due to the formation of mesoscopic structures, thus decreasing the cohesion force and increasing the adhesion force.

  1. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampoorna, M.; Nagendra, K. N.; Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we presentmore » a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.« less

  2. Frustration of square cupola in Sr(TiO)Cu4(PO4)4

    NASA Astrophysics Data System (ADS)

    Islam, S. S.; Ranjith, K. M.; Baenitz, M.; Skourski, Y.; Tsirlin, A. A.; Nath, R.

    2018-05-01

    The structural and magnetic properties of the square-cupola antiferromagnet Sr (TiO ) Cu4(PO4)4 are investigated via x-ray diffraction, magnetization, heat capacity, and 31P nuclear magnetic resonance experiments on polycrystalline samples, as well as density-functional band-structure calculations. The temperature-dependent unit-cell volume could be described well using the Debye approximation with a Debye temperature of θD≃ 550 K. Magnetic response reveals a pronounced two-dimensionality with a magnetic long-range order below TN≃6.2 K. High-field magnetization exhibits a kink at about 1 /3 of the saturation magnetization. Asymmetric 31P NMR spectra clearly suggest strong in-plane anisotropy in the magnetic susceptibility, as anticipated from the crystal structure. From the 31P NMR shift versus bulk susceptibility plot, the isotropic and axial parts of the hyperfine coupling between the 31P nuclei and the Cu2 + spins are calculated to be Ahfiso≃6539 and Ahfax≃952 Oe/μB, respectively. The low-temperature and low-field 31P NMR spectra indicate a commensurate antiferromagnetic ordering. The frustrated nature of the compound is inferred from the temperature-dependent 31P NMR spin-lattice relaxation rate and confirmed by our microscopic analysis, which reveals strong frustration of the square cupola by next-nearest-neighbor exchange couplings.

  3. Magnetometer Based on Optoelectronic Microwave Oscillator

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Strekalov, Dmitry; Matsko, Andrey

    2005-01-01

    proposed instrument, intended mainly for use as a magnetometer, would include an optoelectronic oscillator (OEO) stabilized by an atomic cell that could play the role of a magnetically tunable microwave filter. The microwave frequency would vary with the magnetic field in the cell, thereby providing an indication of the magnetic field. The proposed magnetometer would offer a combination of high accuracy and high sensitivity, characterized by flux densities of less than a picotesla. In comparison with prior magnetometers, the proposed magnetometer could, in principle, be constructed as a compact, lightweight instrument: It could fit into a package of about 10 by 10 by 10 cm and would have a mass <0.5 kg. As described in several prior NASA Tech Briefs articles, an OEO is a hybrid of photonic and electronic components that generates highly spectrally pure microwave radiation, and optical radiation modulated by the microwave radiation, through direct conversion between laser light and microwave radiation in an optoelectronic feedback loop. As used here, "atomic cell" signifies a cell containing a vapor, the constituent atoms of which can be made to undergo transitions between quantum states, denoted hyperfine levels, when excited by light in a suitable wavelength range. The laser light must be in this range. The energy difference between the hyperfine levels defines the microwave frequency. In the proposed instrument (see figure), light from a laser would be introduced into an electro-optical modulator (EOM). Amplitude-modulated light from the exit port of the EOM would pass through a fiber-optic splitter having two output branches. The light in one branch would be sent through an atomic cell to a photodiode. The light in the other branch would constitute the microwave-modulated optical output. Part of the light leaving the atomic cell could also be used to stabilize the laser at a frequency in the vicinity of the desired hyperfine or other quantum transition. The microwave signal from the output of the photodiode would be amplified (if necessary, as explained below) and fed back into the EOM. This system would oscillate if the amplification in the closed loop exceeded the linear absorption of the loop. The microwave amplifier may be unnecessary to sustain stable oscillations, depending on the power of the laser radiation at the photodetector and on particular features of the modulator and optical delay line.

  4. Local spin structure of the α -RuCl3 honeycomb-lattice magnet observed via muon spin rotation/relaxation

    NASA Astrophysics Data System (ADS)

    Yamauchi, Ichihiro; Hiraishi, Masatoshi; Okabe, Hirotaka; Takeshita, Soshi; Koda, Akihiro; Kojima, Kenji M.; Kadono, Ryosuke; Tanaka, Hidekazu

    2018-04-01

    We report a muon spin rotation/relaxation (μ SR ) study of single-crystalline samples of the α -RuCl3 honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibility and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures TN with decreasing temperature, eventually falling into the TN=7 K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via μ SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different TN's. We also perform μ SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zigzag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.

  5. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.

    PubMed

    Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir

    2015-07-17

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.

  6. Estimation of vector static magnetic field by a nitrogen-vacancy center with a single first-shell 13C nuclear (NV–13C) spin in diamond

    NASA Astrophysics Data System (ADS)

    Jiang, Feng-Jian; Ye, Jian-Feng; Jiao, Zheng; Huang, Zhi-Yong; Lv, Hai-Jiang

    2018-05-01

    We suggest an experimental scheme that a single nitrogen-vacancy (NV) center coupled to a nearest neighbor 13C nucleus as a sensor in diamond can be used to detect a static vector magnetic field. By means of optical detection magnetic resonance (ODMR) technique, both the strength and the direction of the vector field could be determined by relevant resonance frequencies of continuous wave (CW) and Ramsey spectrums. In addition, we give a method that determines the unique one of eight possible hyperfine tensors for an (NV–13C) system. Finally, we propose an unambiguous method to exclude the symmetrical solution from eight possible vector fields, which correspond to nearly identical resonance frequencies due to their mirror symmetry about 14N–Vacancy–13C (14N–V–13C) plane. Protect supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), and the Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09).

  7. Electron paramagnetic resonance of gamma-irradiated single crystals of 3-nitroacetanilide

    NASA Astrophysics Data System (ADS)

    Aşik, Biray

    2008-06-01

    The electron paramagnetic resonance of single crystals of 3-nitroacetanilide has been observed and analyzed for different orientations of the crystal in the magnetic field, after being damaged at 300 K by γ-irradiation. The crystals have been investigated between 123 and 300 K. The spectra were found to be temperature independent. The irradiation of 3-nitroacetanilide by γ-rays produces radicals at the nitrogen atoms in the molecule. The principal values of the hyperfine coupling tensor of the unpaired electron and the principal values of the g-tensor were determined.

  8. Mössbauer spectroscopy of MgxCu0.5-xZn0.5Fe2O4 (x = 0.0, 0.2 and 0.5) ferrites system irradiated by γ-rays

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Hassan, H. E.; Eltabey, M. M.; Latka, K.; Tatarchuk, T. R.

    2018-02-01

    The effect of the Mg-content on the cation distribution of cubic MgxCu0.5-xZn0.5Fe2O4(x = 0.0, 0.2, 0.3, 0.5) prepared by conventional ceramic method was investigated using Mössbauer spectroscopy at room temperature. We aimed to estimate the enhanced changes in the inversion parameter of MgxCu0.5-xZn0.5Fe2O4 system due to γ-ray irradiation as a function of the Mg-content in the range 0.5 ≥ x ≥ 0.0. The samples were irradiated by 1173 keV + 1332.5 keV γ-rays emitted from 60Co radioactive source. The total absorbed dose was 1.9 MGy with dose rate 5 kGy/h. The observed superposition of more than one sextet that belong to either octahedral [B] or tetrahedral (A) sites in the Mössbauer spectra before and after γ-irradiation was interpreted by the effect of spin canting. Moreover, there is an evidence on the presence of the Fe2+ charge state at A-sites in the irradiated samples. The quadrupole splittings showed that the orientation of the magnetic hyperfine field with respect to the principle axes of the electric field gradient was random. The magnetic hyperfine field values indicated also that the A sites had more A-O-B super exchange interactions than the B sites. New antistructure modeling for the pristine and irradiated MgxCu0.5-xZn0.5Fe2O4 samples at different γ-doses was used for describing of the lattice defects and surface centers.

  9. Spin noise spectroscopy of donor-bound electrons in ZnO

    NASA Astrophysics Data System (ADS)

    Horn, H.; Balocchi, A.; Marie, X.; Bakin, A.; Waag, A.; Oestreich, M.; Hübner, J.

    2013-01-01

    We investigate the intrinsic spin dynamics of electrons bound to Al impurities in bulk ZnO by optical spin noise spectroscopy. Spin noise spectroscopy enables us to investigate the longitudinal and transverse spin relaxation time with respect to nuclear and external magnetic fields in a single spectrum. On one hand, the spin dynamic is dominated by the intrinsic hyperfine interaction with the nuclear spins of the naturally occurring 67Zn isotope. We measure a typical spin dephasing time of 23 ns, in agreement with the expected theoretical values. On the other hand, we measure a third, very high spin dephasing rate which is attributed to a high defect density of the investigated ZnO material. Measurements of the spin dynamics under the influence of transverse as well as longitudinal external magnetic fields unambiguously reveal the intriguing connections of the electron spin with its nuclear and structural environment.

  10. Ultrafast Study of Dynamic Exchange Coupling in Ferromagnet/Oxide/Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Ou, Yu-Sheng

    Spintronics is the area of research that aims at utilizing the quantum mechanical spin degree of freedom of electrons in solid-state materials for information processing and data storage application. Since the discovery of the giant magnetoresistance, the field of spintronics has attracted lots of attention for its numerous potential advantages over contemporary electronics, such as less power consumption, high integration density and non-volatility. The realization of a spin battery, defined by the ability to create spin current without associated charge current, has been a long-standing goal in the field of spintronics. The demonstration of pure spin current in ferromagnet/nonmagnetic material hybrid structures by ferromagnetic resonance spin pumping has defined a thrilling direction for this field. As such, this dissertation targets at exploring the spin and magnetization dynamics in ferromagnet/oxide/semiconductor heterostructures (Fe/MgO/GaAs) using time-resolved optical pump-probe spectroscopy with the long-range goal of understanding the fundamentals of FMR-driven spin pumping. Fe/GaAs heterostructures are complex systems that contain multiple spin species, including paramagnetic spins (GaAs electrons), nuclear spins (Ga and As nuclei) and ferromagnetic spins (Fe). Optical pump-probe studies on their interplay have revealed a number of novel phenomena that has not been explored before. As such they will be the major focus of this dissertation. First, I will discuss the effect of interfacial exchange coupling on the GaAs free-carrier spin relaxation. Temperature- and field-dependent spin-resolved pump-probe studies reveal a strong correlation of the electron spin relaxation with carrier freeze-out, in quantitative agreement with a theoretical interpretation that at low temperatures the free-carrier spin lifetime is dominated by inhomogeneity in the local hyperfine field due to carrier localization. Second, we investigate the impact of tunnel barrier thickness on GaAs electron spin dynamics in Fe/MgO/GaAs heterostructures. Comparison of the Larmor frequency between samples with thick and thin MgO barriers reveals a four-fold variation in exchange coupling strength, and investigation of the spin lifetimes argues that inhomogeneity in the local hyperfine field dominates free-carrier spin relaxation across the entire range of barrier thickness. These results provide additional evidence to support the theory of hyperfine-dominated spin relaxation in GaAs. Third, we investigated the origin and dynamics of an emergent spin population by pump power and magnetic field dependent spin-resolved pump-probe studies. Power dependent study confirms its origin to be filling of electronic states in GaAs, and further field dependent studies reveal the impact of contact hyperfine coupling on the dynamics of electron spins occupying distinct electronic states. Beyond above works, we also pursue optical detection of dynamic spin pumping in Fe/MgO/GaAs heterostructures in parallel. I will discuss the development and progress that we have made toward this goal. This project can be simply divided into two phases. In the first phase, we focused on microwave excitation and optical detection of spin pumping. In the second phase, we focused on all-optical excitation and detection of spin pumping. A number of measurement strategies have been developed and executed in both stages to hunt for a spin pumping signal. I will discuss the preliminary data based upon them.

  11. Coherent manipulation of quantum spin states in a single molecular nanomagnet

    NASA Astrophysics Data System (ADS)

    Wernsdorfer, Wolfgang

    The endeavour of quantum electronics is driven by one of the most ambitious technological goals of today's scientists: the realization of an operational quantum computer (http://qurope.eu). We started to address this goal by the new research field of molecular quantum spintronics. The building blocks are magnetic molecules, i.e. well-defined spin qubits. We will discuss this still largely unexplored field and present our first results: For example, using a molecular spin-transistor, we achieved the electronic read-out of the nuclear spin of an individual metal atom embedded in an SMM. We could show very long spin lifetimes (>10 s). Using the hyperfine Stark effect, which transforms electric fields into local effective magnetic fields, we could not only tune the resonance frequency by several MHz, but also perform coherent quantum manipulations on a single nuclear qubit faster than a μs by means of electrical fields only, establishing the individual addressability of identical nuclear qubits. Using three different microwave frequencies, we could implement a simple four-level Grover algorithm. S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, Science 344, 1135 (2014).

  12. Revised energy levels of singly ionized lanthanum

    NASA Astrophysics Data System (ADS)

    Güzelçimen, Feyza; Tonka, Mehdi; Uddin, Zaheer; Bhatti, Naveed Anjum; Windholz, Laurentius; Kröger, Sophie; Başar, Gönül

    2018-05-01

    Based on the experimental wavenumbers of 344 spectral lines from calibrated Fourier transform (FT) spectra as well as wavenumbers of 81 lines from the wavelength tables from literature, the energy of 115 fine structure levels of singly ionized lanthanum has been revised by weighted global fits. The classifications of the lines are provided by numerous previous investigations of lanthanum by different spectroscopic methods and authors. For the high accurate determination of the center of gravity wavenumbers from the experimental spectrum, the hyperfine constants of the involved levels have been taken into account, if possible. For the 94 levels with known hyperfine constants the accuracy of energy values is better than 0.01 cm-1. For 34 levels the magnetic dipole hyperfine constants A have been determined from FT spectra as part of this work. For four of these 34 levels even electric quadrupole hyperfine constants B could be estimated. For levels, which have experimentally unknown hyperfine constants and which are connected only by lines not found in the FT spectra but taken from literature, the uncertainties of energy values are about a factor of 10 higher. A list of all revised level energies together with a compilation of hyperfine structure data is given as well as a list of all lines used.

  13. Accurate determination of the fine-structure intervals in the 3P ground states of C-13 and C-12 by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Cooksy, A. L.; Saykally, R. J.; Brown, J. M.; Evenson, K. M.

    1986-01-01

    Accurate values are presented for the fine-structure intervals in the 3P ground state of neutral atomic C-12 and C-13 as obtained from laser magnetic resonance spectroscopy. The rigorous analysis of C-13 hyperfine structure, the measurement of resonant fields for C-12 transitions at several additional far-infrared laser frequencies, and the increased precision of the C-12 measurements, permit significant improvement in the evaluation of these energies relative to earlier work. These results will expedite the direct and precise measurement of these transitions in interstellar sources and should assist in the determination of the interstellar C-12/C-13 abundance ratio.

  14. Investigation of giant magnetoconductance in organic devices based on hopping mechanism

    NASA Astrophysics Data System (ADS)

    Yang, F. J.; Qin, W.; Xie, S. J.

    2014-04-01

    We suggest a spin-dependent hopping mechanism which includes the effect of the external magnetic field as well as hyperfine interaction (HFI) to explain the observed giant magnetoconductance (MC) in non-magnetic organic devices. Based on the extended Marcus theory, we calculate the MC by using the master equation. It is found that a MC value as large as 91% is obtained under a low driving voltage. For suitable parameters, the theoretical results are in good agreement with the experimental data. Influences of the carrier density, HFI, and the carrier localization on the MC value are investigated. Especially, it is found that a low-dimensional structure of the organic materials is favorable to get a large MC value.

  15. Investigation of giant magnetoconductance in organic devices based on hopping mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F. J.; Qin, W.; Xie, S. J., E-mail: xsj@sdu.edu.cn

    2014-04-14

    We suggest a spin-dependent hopping mechanism which includes the effect of the external magnetic field as well as hyperfine interaction (HFI) to explain the observed giant magnetoconductance (MC) in non-magnetic organic devices. Based on the extended Marcus theory, we calculate the MC by using the master equation. It is found that a MC value as large as 91% is obtained under a low driving voltage. For suitable parameters, the theoretical results are in good agreement with the experimental data. Influences of the carrier density, HFI, and the carrier localization on the MC value are investigated. Especially, it is found thatmore » a low-dimensional structure of the organic materials is favorable to get a large MC value.« less

  16. Spin-dependent polarizabilities of hydrogenic atoms in magnetic fields of arbitrary strength

    NASA Astrophysics Data System (ADS)

    Castner, T. G.; Dexter, D. L.; Druger, S. D.

    1981-12-01

    Utilizing the magnetic field-dependent spin-orbit interaction, the relativistic correction to the Zeeman energy, and the usual diamagnetic interaction, we have calculated spin-dependent electrical polarizabilities of hydrogenic atoms using the Hassé variational approach. The polarizabilities α(↑) and α(↓) for the two spin directions have been obtained for the electric field both parallel and perpendicular to the magnetic field Hz in the weak-field (γ<<1), intermediate-field (γ~1), and strong-field (γ>>1) limits, where γ=(ɛ2ℏ3Hzm*2e3c), with ɛ a static dielectric constant and m* an isotropic effective mass. The results for hydrogen atoms (ɛ=1 and m*=m) in the weak-field limit yield [α(↓)-α(↑)]α(0)~2.31α2fsγ (αfs=1137) with a negligible anisotropy. In the strong-field limit [α⊥(↓)-α⊥(↑)] falls precipitously while [α∥(↓)-α∥(↑)] continues to increase up to at least γ=104, but more slowly than linearly with γ. The spin-independent quantities [α∥(↓)+α∥(↑)] and [α⊥(↓)+α⊥(↑)] are discussed in the intermediate- and high-field limits and represent an extension of the earlier low-field results obtained by Dexter. The implications of these results for shallow-donor impurity atoms in semiconductors and for hydrogen-atom atmospheres of magnetic white dwarfs and neutron stars are briefly considered. The effects of the dramatic shrinkage of the electron's wave function on the spin Zeeman energy and the electron-proton hyperfine interaction are also discussed.

  17. Polarized radiation diagnostics of stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Mathys, Gautier

    The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the geometric structure of these fields. How this can possibly be achieved is briefly discussed. An overview of the current status of polarimetric studies of magnetic fields in non-degenerate stars of other types is presented. The final section is devoted to magnetic fields of white dwarfs. Current knowledge of magnetic fields of isolated white dwarfs is briefly reviewed. Diagnostic techniques are discussed, with particular emphasis on the variety of physical processes to be considered for understanding of spectral line formation over the broad range of magnetic field strengths encountered in these stars.

  18. Time-resolved luminescence measurements of the magnetic field effect on paramagnetic photosensitizers in photodynamic reactions

    NASA Astrophysics Data System (ADS)

    Mermut, O.; Bouchard, J.-P.; Cormier, J.-F.; Desroches, P.; Diamond, K. R.; Fortin, M.; Gallant, P.; Leclair, S.; Marois, J.-S.; Noiseux, I.; Morin, J.-F.; Patterson, M. S.; Vernon, M.

    2008-02-01

    The development of multimodal molecular probes and photosensitizing agents for use in photodynamic therapy (PDT) is vital for optimizing and monitoring cytotoxic responses. We propose a combinatorial approach utilizing photosensitizing molecules that are both paramagnetic and luminescent with multimodal functionality to perturb, control, and monitor molecular-scale reaction pathways in PDT. To this end, a time-domain single photon counting lifetime apparatus with a 400 nm excitation source has been developed and integrated with a variable low field magnet (0- 350mT). The luminescence lifetime decay function was measured in the presence of a sweeping magnetic field for a custom designed photosensitizing molecule in which photoinduced electron transfer was studied The photosensitizer studied was a donor-acceptor complex synthesized using a porphyrin linked to a fullerene molecule. The magneto-optic properties were investigated for the free-base photosensitizer complex as well as those containing either diamagnetic (paired electron) or paramagnetic (unpaired electron) metal centers, Zn(II) and Cu(II). The magnetic field was employed to affect and modify the spin states of radical pairs of the photosensitizing agents via magnetically induced hyperfine and Zeeman effects. Since the Type 1 reaction pathway of an excited triplet state photosensitizer involves the production of radical species, lifetime measurements were conducted at low dissolved oxygen concentration (0.01ppm) to elucidate the dependence of the magnetic perturbation on the photosensitization mechanistic pathway. To optimize the magnetic response, a solvent study was performed examining the dependence of the emission properties on the magnetic field in solutions of varying dielectric constants. Lastly, the cytotoxicity in murine tumor cell suspensions was investigated for the novel porphyrin-fullerene complex by inducing photodynamic treatments and determining the associated cell survival.

  19. Nuclear spin circular dichroism.

    PubMed

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  20. Measurement of the 1s Hyperfine Transition of Two Tl^80+ Isotopes

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Utter, S. B.; Wong, K. L.; Crespo López-Urrutia, J. R.; Britten, J. A.; Chen, H.; Thoe, R. S.; Thorn, D. B.; Träbert, E.; Gustavsson, M. G. H.; Forssén, C.; Mårtenson-Pendrill, A.-M.; Harris, C. L.

    2001-05-01

    The hyperfine splitting of the 1s ground state has been measured for the two stable isotopes of hydrogen-like Tl using emission spectroscopy in the SuperEBIT electron beam ion trap. The results are 3858.22± 0.30 Åfor ^203Tl^80+ and 3821.84± 0.34 Åfor ^205Tl^80+. These differ by about 60 Å from recent and about 19 Å from very recent calculations, illustrating unsolved issues affecting these transitions in hydrogen-like ions. The wavelength difference Δλ = 36.38± 0.35 Å is consistent with estimates based on hyperfine anomaly data for neutral Tl. By using previously determined nuclear magnetic moments and applying appropriate corrections for the nuclear charge distribution and radiative effects, the experimental splittings can be interpreted in terms of nuclear magnetization radii < r^2_m>^1/2= 5.83(14) fm for ^203Tl and < r^2_m>^1/2= 5.89(14) fm for ^205Tl. These values are 10% larger than derived from single-particle nuclear magnetization models, and are slightly larger than the corresponding charge distributions. *Work performed under the auspices of DOE by UCLLNL under contract W-7405-ENG-48 and supported by the Office of Basic Energy Sciences.

  1. Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field

    NASA Astrophysics Data System (ADS)

    Hummel, Frederic; Fey, Christian; Schmelcher, Peter

    2018-04-01

    We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.

  2. Magneto-photocurrent in organic photovoltaic cells; the effect of short-lived charge transfer states

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Eitan; Devir-Wolfman, A.; Khachatryan, B.; Gautam, B.; Tessler, N.; Vardeny, Z. V.

    2014-03-01

    The spin degrees of freedom are responsible for the magnetic field effects in organic devices at low magnetic fields. The MFE is formed via a variety of spin-mixing mechanisms, such as the hyperfine (typical strength: Bhf<0.003 T), triplet-polaron or triplet-triplet (Btrip<0.1 T) interactions, that limit the response by their respective strength. We report on magneto-photocurrent (MPC) response of bulk hetero-junction organic photovoltaic cells in an extended field range B =0.00005 - 8 Tesla, and found that spin mixing mechanisms are still operative even at the highest fields. In fact, the response MPC(B) can be divided into three main regions, each with a different sign: sharp response that increases with B up to B1 ~ 0.04 T; broad response that decreases with B in the range from B1 to B2 ~ 0.3-0.7 T; and even broader response that increases above B2; this response does not saturate even at 8.5 T. We attribute the latter MPC component to short-lived charge transfer excitons (CTE) where spin-mixing is caused by the difference of the donor/acceptor g factors; a mechanism that is increasingly more effective at high magnetic field. Supported by the US-Israel BSF.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van den Berg, R.; Brandino, G. P.; El Araby, O.

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  4. Competing interactions in semiconductor quantum dots

    DOE PAGES

    van den Berg, R.; Brandino, G. P.; El Araby, O.; ...

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  5. A portable version of the program of nettar and villafranca for the simulation of electron paramagnetic resonance spectra of powders

    NASA Astrophysics Data System (ADS)

    Soulié, Edgar; Gaugenot, Jacques

    1995-04-01

    Nettar and Villafranca wrote in the FORTRAN programming language a computer program which simulates the electron paramagnetic resonance (EPR) spectra of powders (Journal of Magnetic Resonance, vol. 64 (1985) pp. 61-65). The spin Hamiltonian which their program can handle includes the Zeeman electronic interaction, the fine interaction up to the sixth order in the electron spin, a general hyperfine interaction, an isotropic nuclear Zeeman term; anisotropic ligand hyperfine terms are treated to first order in perturbation. The above Hamiltonian, without the ligand hyperfine terms, is treated exactly, i.e. the resonance equation for a transition between states labeled i and j is solved numerically: h.ν=Ei(H)-Ej(H).

  6. Probing the magnetic field dependence of the light hole transition in GaAs/AlGaAs quantum wells using optically pumped NMR

    NASA Astrophysics Data System (ADS)

    Willmering, Matthew M.; Sesti, Erika L.; Hayes, Sophia E.; Wood, Ryan M.; Bowers, Clifford R.; Thapa, Sunil K.; Stanton, Christopher J.; Reyes, Arneil P.; Kuhns, Philip; McGill, Stephen

    2018-02-01

    Optically pumped NMR (OPNMR) of the NMR-active Ga/7169 species has been shown to be a unique method to probe electronic energy bands in GaAs, with sensitivity to the light hole-to-conduction band transition. This transition is often obscured in other optical measurements such as magnetoabsorption. Using OPNMR, we exploit the hyperfine interaction between conduction band electrons (and their spin states) and nuclear spins, which are detected through phase-sensitive radio-frequency (NMR) spectroscopy. Measurements were made over a range of external magnetic fields (B0) in two different labs with separate experimental setups to obtain the magnetic field dependence of the light hole-to-conduction band transition energy. In addition, k .p theory was used to interpret the experimental results, mapping out this specific transition's magnetic field dependence in an AlGaAs/GaAs quantum well. The combination of theory and experiment point to a mixing of valence bands at a field of approximately B0=4.7 T, swapping the dominant character of the absorption transition and, thus, explaining the magnetic field dependence. Lastly, the experimental dependence of the light hole-to-conduction band transition energy on B0 is found to be less steep compared to the calculated trend, indicating that inclusion of additional effects may be necessary to accurately model the spin-split band structure. The additional insight gained by Ga/7169 OPNMR about the light hole states will facilitate future testing of more complex band structure models.

  7. Pulsed-High Field/High-Frequency EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  8. Simulation of a 3D MOT-Optical Molasses Hybrid for Potassium-41 Atoms

    NASA Astrophysics Data System (ADS)

    Peterson, W. A.; Wrubel, Jonathan

    2017-04-01

    We report a design and numerical model for a 3D magneto-optical trap (MOT)-optical molasses hybrid for potassium-41 atoms. In this arrangement, the usual quadrupole magnetic field is replaced by an octupole field. The octupole field has a central region of very low magnetic field where our simulations show that the atoms experience an optical molasses, resulting in sub-doppler cooling not possible in a quadrupole MOT. The simulations also show that the presence of the magneto-optical trapping force at the edge of the cooling beams provides a restoring force which cycles atoms through the molasses region. We plan to use this hybrid trap to directly load a far off-resonance optical dipole trap. Because the atoms are recycled for multiple passes through the molasses, we expect a higher phase-space density of atoms loaded into the dipole trap. Similar hybrid cooling schemes should be relevant for lithium-6 and lithium-7, which also have poorly resolved D2 hyperfine structure. Research Corporation for Science Advancement, Cottrell College Science Award.

  9. Electrically Driving Donor Spin Qubits in Silicon Using Photonic Bandgap Resonators

    NASA Astrophysics Data System (ADS)

    Sigillito, A. J.; Tyryshkin, A. M.; Lyon, S. A.

    In conventional experiments, donor nuclear spin qubits in silicon are driven using radiofrequency (RF) magnetic fields. However, magnetic fields are difficult to confine at the nanoscale, which poses major issues for individually addressable qubits and device scalability. Ideally one could drive spin qubits using RF electric fields, which are easy to confine, but spins do not naturally have electric dipole transitions. In this talk, we present a new method for electrically controlling nuclear spin qubits in silicon by modulating the hyperfine interaction between the nuclear spin qubit and the donor-bound electron. By fabricating planar superconducting photonic bandgap resonators, we are able to use pulsed electron-nuclear double resonance (ENDOR) techniques to selectively probe both electrically and magnetically driven transitions for 31P and 75As nuclear spin qubits. The electrically driven spin resonance mechanism allows qubits to be driven at either their transition frequency, or at one-half their transition frequency, thus reducing bandwidth requirements for future quantum devices. Moreover, this form of control allows for higher qubit densities and lower power requirements compared to magnetically driven schemes. In our proof-of-principle experiments we demonstrate electrically driven Rabi frequencies of approximately 50 kHz for widely spaced (10 μm) gates which should be extendable to MHz for nanoscale devices.

  10. Photoreaction of thioxanthone with indolic and phenolic derivatives of biological relevance: magnetic field effect study.

    PubMed

    Das, Doyel; Nath, Deb Narayan

    2008-11-20

    The photoinduced reaction of thioxanthone (TX) with various indolic and phenolic derivatives and amino acids like tryptophan and tyrosine has been monitored in sodium dodecyl sulfate micellar medium. Laser flash photolysis and magnetic field effect (MFE) experiments have been used to study the dynamics of the radical pairs. The quenching rate constant with different quenchers in SDS micellar solution has been measured. For indoles the electron-transfer reaction has been found to be followed by proton transfer from the donor molecule, which gives rise to the TX ketyl radical. On the other hand, the electron-transfer reaction in the case of phenols is preceded with formation of a hydrogen-bonded exciplex. The extent of the MFE and magnitude of the magnetic field corresponding to one-half of the saturation value of MFE ( B 1/2) support the fact that hyperfine mechanism plays the primary role. Quenching of MFE in the presence of gadolinium ions confirms that the radical pair is located near the micellar interface. MFE study has been further extended to protein-like bovine serum albumin in micellar solution. The results indicate loss in mobililty of radical pairs in the protein surfactant complex.

  11. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya

    2016-05-01

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.

  12. {sup 75}As NMR study of the oriented pnictide superconducting compound NdFeAsO{sub 0.83}F{sub 0.17}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahari, Bholanath

    Magnetization and {sup 75}As nuclear magnetic resonance (NMR) measurements in the superconductor NdFeAsO{sub 0.83}F{sub 0.17} (T{sub C}~46 K) are performed in order to investigate the effect of the Nd 4f electrons in the superconducting property. The magnetization curve displays a Nd 4f moments generated Curie-Weiss signal in the field of 7 T. {sup 75}As NMR spectra in the oriented sample (H{sub 0}‖ab) are recorded at 7 T in the temperature range 10–300 K and temperature dependent {sup 75}As NMR shift, K{sub ab} has been obtained. The K{sub ab} curve shows a Curie-Weiss type contribution. The magnitude of hyperfine field, H{submore » hf} (4.4 kOe/μ{sub B}) estimated from the K{sub ab} vs χ plot indicates a non-negligible RKKY-type interaction between localized Nd 4f moments mediated by itinerant Fe 3d electrons.« less

  13. Magnetic properties of Mn0.1Mg0.2TM0.7Fe2O4 (TM = Zn, Co, or Ni) prepared by hydrothermal processes: The effects of crystal size and chemical composition

    NASA Astrophysics Data System (ADS)

    Nhlapo, T. A.; Msomi, J. Z.; Moyo, T.

    2018-02-01

    Nano-crystalline Zn-, Co-, and Ni-substituted Mn-Mg ferrites were prepared by hydrothermal process and annealed at 1100 °C. Annealing conditions are critical on the crystalline phase. TEM and XRD data reveal particle sizes between 8 nm and 15 nm for the as-prepared fine powders, which increase to about 73 nm after sintering at 1100 °C. Mӧssbauer spectra show well resolved magnetic splitting in bulk samples. The as-prepared fine powders show weak hyperfine splitting and broad central doublets associated with fine particles. Magnetization data reveal a high coercive field at about 300 K of about 945 Oe in the Co-based nanosized oxide, which reduces to about 360 Oe after thermal annealing at 1100 °C. The magnetization curves of Zn- and Ni-based samples show much lower coercive fields indicative of superparamagnetic nanoparticles. The crystallite size and chemical composition have significant effects on the properties of Mn0.1Mg0.2(Zn,Co,Ni)0.7Fe2O4 investigated.

  14. First principles calculations of the magnetic and hyperfine properties of Fe/N/Fe and Fe/O/Fe multilayers in the ground state of cohesive energy

    NASA Astrophysics Data System (ADS)

    dos Santos, A. V.; Samudio Pérez, C. A.; Muenchen, D.; Anibele, T. P.

    2015-01-01

    The ground state properties of Fe/N/Fe and Fe/O/Fe multilayers were investigated using the first principles calculations. The calculations were performed using the Linearized Augmented Plane Wave (LAPW) method implemented in the Wien2k code. A supercell consisting of one layer of nitride (or oxide) between two layers of Fe in the bcc structure was used to model the structure of the multilayer. The research in new materials also stimulated theoretical and experimental studies of iron-based nitrides due to their variety of structural and magnetic properties for the potential applications as in high strength steels and for high corrosion resistance. It is obvious from many reports that magnetic iron nitrides such as γ-Fe4N and α-Fe16N2 have interesting magnetic properties, among these a high magnetisation saturation and a high density crimp. However, although Fe-N films and multilayers have many potential applications, they can be produced in many ways and are being extensively studied from the theoretical point of view there is no detailed knowledge of their electronic structure. Clearly, efforts to understand the influence of the nitrogen atoms on the entire electronic structure are needed as to correctly interpret the observed changes in the magnetic properties when going from Fe-N bulk compounds to multilayer structures. Nevertheless, the N atoms are not solely responsible for electronics alterations in solid compounds. Theoretical results showed that Fe4X bulk compounds, where X is a variable atom with increasing atomic number (Z), the nature of bonding between X and adjacent Fe atoms changes from more covalent to more ionic and the magnetic moments of Fe also increase for Z=7, i.e. N. This is an indicative that atoms with a Z number higher than 7, i.e., O, can produce several new alterations in the entire magnetic properties of Fe multilayers. This paper presents the first results of an ab-initio electronic structure calculations, performed for Fe-N and Fe-O multilayers. Firstly, the formation energy and the cohesive energy of the multilayers are discussed. For optimised values, the cohesive energy of the multilayers to obtain the lattice parameters at the equilibrium ground state was used, i.e. a new methodology for this calculus was applied. Secondly, the magnetic properties and hyperfine interactions (magnetic field, electric field gradient and the isomer shift) of the iron atoms of the multilayers are discussed.

  15. Transient response of nonlinear magneto-optic rotation in a paraffin-coated Rb vapor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momeen, M. Ummal; Rangarajan, G.; Natarajan, Vasant

    2010-01-15

    We study resonant nonlinear magneto-optic rotation (NMOR) in a paraffin-coated Rb vapor cell as the magnetic field is swept. At low sweep rates, the nonlinear rotation appears as a narrow resonance signal with a linewidth of about '300 muG' (2pix420 Hz). At high sweep rates, the signal shows transient response with an oscillatory decay. The decay time constant is of order 100 ms. The behavior is different for transitions starting from the lower or the upper hyperfine level of the ground state because of optical pumping effects.

  16. Nanoscale cluster dynamics in the martensitic phase of Ni-Mn-Sn shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Hoch, Michael; Yuan, Shaojie; Kuhns, Phillip; Reyes, Arneil; Brooks, James; Phelan, Daniel; Srivastava, Vijay; James, Richard; Leighton, Chris

    2015-03-01

    The martensitic phases of Ni-Mn-Sn magnetic shape memory alloys exhibit interesting low temperature magnetic properties, including intrinsic superparamagnetism and exchange bias effects, which have previously been rationalized in terms of spin clusters. We show here that spin-echo NMR, involving 55Mn hyperfine fields, permits ferromagnetic and antiferromagnetic nanoregions to be directly identified in these materials and yields estimates of their size distributions. Nuclear relaxation rate measurements, made as a function of temperature, provide information on both the dynamics and on the electronic structure of the nanoregions. The relaxation rates are analyzed using a combination of Redfield and Korringa mechanisms, the Korringa procedure providing information on the density of states at the Fermi level. Results will be presented for a number of these alloys. DMR-1309463.

  17. Local structure study of Fe dopants in Ni-deficit Ni 3Al alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor V zz=1.6 10 21Vm -2 matches well with the resultsmore » of Mössbauer spectroscopy and indicates that the Fe atoms occupy Ni sites.« less

  18. Determination of Lande gJ - factors of La I levels using laser spectroscopic methods: Complementary investigations

    NASA Astrophysics Data System (ADS)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-11-01

    Laser Induced Fluorescence Spectroscopy (LIF) and Optogalvanic Spectroscopy (OG) were used for the investigation of the Zeeman hyperfine structures of 26 spectral lines of La I in the wavelength range between 569.7 and 665.4 nm. As a source of free La atoms a hollow cathode discharge lamp was used. The spectra were recorded in the presence of a magnetic field of about 800G produced by a permanent magnet for two linear polarizations of the exciting laser light. As a result of the study, we determined for the first time the Landé gJ- factors of 20 levels of La I. For several other levels the Landé gJ- factors were re-investigated and determined with higher precision.

  19. Zeeman structure of red lines of lanthanum observed by laser spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-11-01

    Laser Induced Fluorescence (LIF) Spectroscopy and Optogalvanic (OG) Spectroscopy were used for the investigation of the Zeeman hyperfine (hf) structures of 27 spectral lines of La I in the wavelength range between 633.86 and 667.54 nm. As a source of free La atoms a hollow cathode discharge lamp was used. Spectra were recorded in the presence of a relatively weak magnetic field (about 800G) produced by a permanent magnet, for two linear polarization directions of the exciting laser beam. As a result of the measurements, we determined for the first time the Landé gJ- factors of 18 levels of La I. The Landé gJ- factors of 12 other levels were re-investigated and determined with higher accuracy.

  20. Properties of Gd{sub 2}O{sub 3} nanoparticles studied by hyperfine interactions and magnetization measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correa, E. L., E-mail: eduardo.correa@usp.br; Bosch-Santos, B.; Cavalcante, F. H. M.

    2016-05-15

    The magnetic behavior of Gd{sub 2}O{sub 3} nanoparticles, produced by thermal decomposition method and subsequently annealed at different temperatures, was investigated by magnetization measurements and, at an atomic level, by perturbed γ − γ angular correlation (PAC) spectroscopy measuring hyperfine interactions at {sup 111}In({sup 111}Cd) probe nuclei. Nanoparticle structure, size and shape were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Magnetization measurements were carried out to characterize the paramagnetic behavior of the samples. XRD results show that all samples crystallize in the cubic-C form of the bixbyite structure with space group Ia3. TEM images showed that particlesmore » annealed at 873 K present particles with highly homogeneous sizes in the range from 5 nm to 10 nm and those annealed at 1273 K show particles with quite different sizes from 5 nm to 100 nm, with a wide size distribution. PAC and magnetization results show that samples annealed at 873 and 1273 K are paramagnetic. Magnetization measurements show no indication of blocking temperatures for all samples down to 2 K and the presence of antiferromagnetic correlations.« less

  1. La 139 NMR investigation of the charge and spin order in a La 1.885 Sr 0.115 CuO 4 single crystal

    DOE PAGES

    Arsenault, A.; Takahashi, S. K.; Imai, T.; ...

    2018-02-14

    139La NMR is suited for investigations into magnetic properties of La 2CuO 4 -based cuprates in the vicinity of their magnetic instabilities, owing to the modest hyperfine interactions between 139La nuclear spins and Cu electron spins. We report comprehensive 139La NMR measurements on a single-crystal sample of high-T c superconductor La 1.885 Sr 0.115 CuO 4 in a broad temperature range across the charge and spin order transitions (T charge ≃ 80 K, T neutron spin ≃ T c = 30 K). From the high-precision measurements of the linewidth for the nuclear spin I z = + 1 / 2 to -1/2 central transition, we show that paramagnetic line broadening sets in precisely at T charge due to enhanced spin correlations within the CuO 2 planes. Additional paramagnetic line broadening ensues below ~35 K, signaling that Cu spins in some segments of CuO 2 planes are on the verge of three-dimensional magnetic order. A static hyperfine magnetic field arising from ordered Cu moments along the ab plane, however, begins to develop only below Tmore » $$μSR\\atop{spin}$$ = 15 – 20 K, where earlier muon spin rotation measurements detected Larmor precession for a small volume fraction (~20 % ) of the sample. Based on the measurement of 139 La nuclear-spin-lattice relaxation rate 1/T 1, we also show that charge order triggers enhancement of low-frequency Cu spin fluctuations inhomogeneously; a growing fraction of 139 La sites is affected by enhanced low-frequency spin fluctuations toward the eventual magnetic order, whereas a diminishing fraction continues to exhibit a behavior analogous to the optimally superconducting phase even below T charge. In conclusion, these 139La NMR results corroborate our recent 63Cu NMR observation that a very broad, anomalous winglike signal gradually emerges below T charge, whereas the normally behaving, narrower main peak is gradually wiped out [T. Imai et al., Phys. Rev. B 96, 224508 (2017)]. Furthermore, we show that the enhancement of low-energy spin excitations in the low-temperature regime below Tneutron spin (≃ Tc) depends strongly on the magnitude and orientation of the applied magnetic field.« less

  2. La 139 NMR investigation of the charge and spin order in a La 1.885 Sr 0.115 CuO 4 single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenault, A.; Takahashi, S. K.; Imai, T.

    139La NMR is suited for investigations into magnetic properties of La 2CuO 4 -based cuprates in the vicinity of their magnetic instabilities, owing to the modest hyperfine interactions between 139La nuclear spins and Cu electron spins. We report comprehensive 139La NMR measurements on a single-crystal sample of high-T c superconductor La 1.885 Sr 0.115 CuO 4 in a broad temperature range across the charge and spin order transitions (T charge ≃ 80 K, T neutron spin ≃ T c = 30 K). From the high-precision measurements of the linewidth for the nuclear spin I z = + 1 / 2 to -1/2 central transition, we show that paramagnetic line broadening sets in precisely at T charge due to enhanced spin correlations within the CuO 2 planes. Additional paramagnetic line broadening ensues below ~35 K, signaling that Cu spins in some segments of CuO 2 planes are on the verge of three-dimensional magnetic order. A static hyperfine magnetic field arising from ordered Cu moments along the ab plane, however, begins to develop only below Tmore » $$μSR\\atop{spin}$$ = 15 – 20 K, where earlier muon spin rotation measurements detected Larmor precession for a small volume fraction (~20 % ) of the sample. Based on the measurement of 139 La nuclear-spin-lattice relaxation rate 1/T 1, we also show that charge order triggers enhancement of low-frequency Cu spin fluctuations inhomogeneously; a growing fraction of 139 La sites is affected by enhanced low-frequency spin fluctuations toward the eventual magnetic order, whereas a diminishing fraction continues to exhibit a behavior analogous to the optimally superconducting phase even below T charge. In conclusion, these 139La NMR results corroborate our recent 63Cu NMR observation that a very broad, anomalous winglike signal gradually emerges below T charge, whereas the normally behaving, narrower main peak is gradually wiped out [T. Imai et al., Phys. Rev. B 96, 224508 (2017)]. Furthermore, we show that the enhancement of low-energy spin excitations in the low-temperature regime below Tneutron spin (≃ Tc) depends strongly on the magnitude and orientation of the applied magnetic field.« less

  3. Niobium hyperfine structure in crystal calcium tungstate

    NASA Technical Reports Server (NTRS)

    Tseng, D. L.; Kikuchi, C.

    1972-01-01

    A study of the niobium hyperfine structure in single crystal calcium tungstate was made by the combination of the technique of electron paramagnetic resonance and electron nuclear double resonance (EPR/ENDOR). The microwave frequency was about 9.4 GHz and the radio frequency from 20MHz to 70 MHz. The rare earth ions Nd(3+), U(3+), or Tm(3+) were added as the charge compensator for Nb(5+). To create niobium paramagnetic centers, the sample was irradiated at 77 deg K with a 10 thousand curie Co-60 gamma source for 1 to 2 hours at a dose rate of 200 K rads per hour and then transferred quickly into the cavity. In a general direction of magnetic field, the spectra showed 4 sets of 10 main lines corresponding to 4 nonequivalent sites of niobium with I = 9/2. These 4 sets of lines coalesced into 2 sets of 10 in the ab-plane and into a single set of 10 along the c-axis. This symmetry suggested that the tungsten ions are substituted by the niobium ions in the crystal.

  4. New Precise Measurement of the Hyperfine Splitting of Positronium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, A., E-mail: ishida@icepp.s.u-tokyo.ac.jp

    Positronium (Ps) is an ideal system for precision test of bound state quantum electrodynamics. The hyperfine splitting (HFS) of the ground state of Ps, which is one of the most precisely tested quantity, has a large discrepancy of 16 ppm (4.5 σ) between previous experiments and theoretical calculation up to O(α{sup 3}lnα{sup −1}) and part of O(α{sup 3}) corrections. A new experiment which reduces possible systematic uncertainties of Ps thermalization effect and nonuniformity of magnetic field was performed. It revealed that the Ps thermalization effect was as large as 10 ± 2 ppm. Treating the thermalization effect correctly, a newmore » result of 203.3942 ± 0.0016(stat., 8.0 ppm) ± 0.0013(sys., 6.4 ppm) GHz was obtained. This result is consistent with theory within 1.1 σ, whereas it disfavors the previous experimental result by 2.6 σ. It shows that the Ps thermalization effect is crucial for precision measurement of HFS. Future prospects for improved precision are briefly discussed.« less

  5. The Mössbauer Parameters of the Proximal Cluster of Membrane-Bound Hydrogenase Revisited: A Density Functional Theory Study.

    PubMed

    Tabrizi, Shadan Ghassemi; Pelmenschikov, Vladimir; Noodleman, Louis; Kaupp, Martin

    2016-01-12

    An unprecedented [4Fe-3S] cluster proximal to the regular [NiFe] active site has recently been found to be responsible for the ability of membrane-bound hydrogenases (MBHs) to oxidize dihydrogen in the presence of ambient levels of oxygen. Starting from proximal cluster models of a recent DFT study on the redox-dependent structural transformation of the [4Fe-3S] cluster, (57)Fe Mössbauer parameters (electric field gradients, isomer shifts, and nuclear hyperfine couplings) were calculated using DFT. Our results revise the previously reported correspondence of Mössbauer signals and iron centers in the [4Fe-3S](3+) reduced-state proximal cluster. Similar conflicting assignments are also resolved for the [4Fe-3S](5+) superoxidized state with particular regard to spin-coupling in the broken-symmetry DFT calculations. Calculated (57)Fe hyperfine coupling (HFC) tensors expose discrepancies in the experimental set of HFC tensors and substantiate the need for additional experimental work on the magnetic properties of the MBH proximal cluster in its reduced and superoxidized redox states.

  6. The 68mCu/68Cu isotope as a new probe for hyperfine studies: The nuclear moments

    NASA Astrophysics Data System (ADS)

    Fenta, A. S.; Pallada, S.; Correia, J. G.; Stachura, M.; Johnston, K.; Gottberg, A.; Mokhles Gerami, A.; Röder, J.; Grawe, H.; Brown, B. A.; Köster, U.; Mendonça, T. M.; Ramos, J. P.; Marsh, B. A.; Day Goodacre, T.; Amaral, V. S.; Pereira, L. M. C.; Borge, M. J. G.; Haas, H.

    2016-09-01

    Time Differential Perturbed Angular Correlation of γ-rays (TDPAC) experiments were performed for the first time in the decay of 68m Cu (6-, 721 \\text{keV}, 3.75 \\text{min}) produced at the ISOLDE facility at CERN. Due to the short half-life of the source isotope, the measurements were carried out online. The intermediate state (2+, 84.1 \\text{keV}, 7.84 \\text{ns}) offers the unique opportunity to study the electromagnetic fields acting at a copper probe in condensed matter via hyperfine interactions. The present work allowed determination of the nuclear moments for this state. The electric quadrupole moment |Q(2+,84.1 \\text{keV})|=0.110(3) \\text{b} was obtained from an experiment performed in Cu2O and the magnetic dipole moment |μ|=2.857(6) μ_\\text{N} from measurements in cobalt and nickel foils. The results are discussed in the framework of shell model calculations and the additivity rule for nuclear moments with respect to the robustness of the N = 40 sub-shell.

  7. Integration of optically active Neodymium ions in Niobium devices (Nd:Nb): quantum memory for hybrid quantum entangled systems

    NASA Astrophysics Data System (ADS)

    Nayfeh, O. M.; Chao, D.; Djapic, N.; Sims, P.; Liu, B.; Sharma, S.; Lerum, L.; Fahem, M.; Dinh, V.; Zlatanovic, S.; Lynn, B.; Torres, C.; Higa, B.; Moore, J.; Upchurch, A.; Cothern, J.; Tukeman, M.; Barua, R.; Davidson, B.; Ramirez, A. D.; Rees, C. D.; Anant, V.; Kanter, G. S.

    2017-08-01

    Optically active rare-earth Neodymium (Nd) ions are integrated in Niobium (Nb) thin films forming a new quantum memory device (Nd:Nb) targeting long-lived coherence times and multi-functionality enabled by both spin and photon storage properties. Nb is implanted with Nd spanning 10-60 keV energy and 1013-1014 cm-2 dose producing a 1- 3% Nd:Nb concentration as confirmed by energy-dispersive X-ray spectroscopy. Scanning confocal photoluminescence (PL) at 785 nm excitation are made and sharp emission peaks from the 4F3/2 -< 4I11/2 Nd3+ transition at 1064-1070 nm are examined. In contrast, un-implanted Nb is void of any peaks. Line-shapes at room temperature are fit with Lorentzian profiles with line-widths of 4-5 nm and 1.3 THz bandwidth and the impacts of hyperfine splitting via the metallic crystal potential are apparent and the co-contribution of implant induced defects. With increasing Nd from 1% to 3%, there is a 0.3 nm red shift and increased broadening to a 4.8 nm linewidth. Nd:Nb is photoconductive and responds strongly to applied fields. Furthermore, optically detected magnetic resonance (ODMR) measurements are presented spanning near-infrared telecom band. The modulation of the emission intensity with magnetic field and microwave power by integration of these magnetic Kramer type Nd ions is quantified along with spin echoes under pulsed microwave π-π/2 excitation. A hybrid system architecture is proposed using spin and photon quantum information storage with the nuclear and electron states of the Nd3+ and neighboring Nb atoms that can couple qubit states to hyperfine 7/2 spin states of Nd:Nb and onto NIR optical levels excitable with entangled single photons, thus enabling implementation of computing and networking/internet protocols in a single platform.

  8. Magnetic field in IRC+10216 and other C-rich evolved stars

    NASA Astrophysics Data System (ADS)

    Duthu, A.; Herpin, F.; Wiesemeyer, H.; Baudry, A.; Lèbre, A.; Paubert, G.

    2017-07-01

    Context. During the transition from the asymptotic giant branch (AGB) to planetary nebulae (PN), the circumstellar geometry and morphology change dramatically. Another characteristic of this transition is the high mass-loss rate, that can be partially explained by radiation pressure and a combination of various factors, such as the stellar pulsation, the dust grain condensation, and opacity in the upper atmosphere. The magnetic field can also be one of the main ingredients that shapes the stellar upper atmosphere and envelope. Aims: Our main goal is to investigate for the first time the spatial distribution of the magnetic field in the envelope of IRC+10216. More generally we intend to determine the magnetic field strength in the circumstellar envelope (CSE) of C-rich evolved stars, compare this field with previous studies for O-rich stars, and constrain the variation of the magnetic field with r the distance to the star's centre. Methods: We use spectropolarimetric observations of the Stokes V parameter, collected with Xpol on the IRAM-30 m radiotelescope, observing the Zeeman effect in seven hyperfine components of the CN J = 1-0 line. We use the Crutcher et al. (1996, ApJ, 456, 217) method to estimate the magnetic field. For the first time, the instrumental contamination is investigated, through dedicated studies of the power patterns in Stokes V and I in detail. Results: For C-rich evolved stars, we derive a magnetic field strength (B) between 1.6 and 14.2 mG while B is estimated to be 6 mG for the proto-PN (PPN) AFGL618, and an upper value of 8 mG is found for the PN NGC 7027. These results are consistent with a decrease of B as 1/r in the environment of AGB objects, that is, with the presence of a toroidal field. But this is not the case for PPN and PN stars. Our map of IRC+10216 suggests that the magnetic field is not homogeneously strong throughout or aligned with the envelope and that the morphology of the CN emission might have changed with time.

  9. Study of CPO resonances on the intercombination line in 173Yb

    NASA Astrophysics Data System (ADS)

    Kumar, Pushpander; Singh, Alok K.; Bharti, Vineet; Natarajan, Vasant; Pandey, Kanhaiya

    2018-02-01

    We study coherent population oscillations in an odd isotope of the two-electron atom Yb. The experiments are done using magnetic sublevels of the {F}g=5/2\\to {F}e=3/2 hyperfine transition in 173Yb of the {}1{{{S}}}0\\to {}3{{{P}}}1 intercombination line. The experiments are done both with and without an applied magnetic field. In the absence of an applied field, the complicated sublevel structure along with the saturated fluorescence effect causes the linewidth to be larger than the 190 kHz natural linewidth of the transition. In the presence of a field (of magnitude 330 mG), a well-defined quantization axis is present which results in the formation of two M-type systems. The total fluorescence is then limited by spin coherence among the ground sublevels. In addition, the pump beam gets detuned from resonance which results in a reduced scattering rate from the {}3{{{P}}}1 state. Both of these effects result in a reduction of the linewidth to a subnatural value of about 100 kHz.

  10. Effect of boron additions on phase formation and magnetic properties of TbCu7-type melt spun SmFe ribbons

    NASA Astrophysics Data System (ADS)

    Zheng, Chuanjiang; Yu, Dunbo; Li, Kuoshe; Luo, Yang; Jin, Jinling; Lu, Shuo; Li, Hongwei; Mao, Yongjun; Quan, Ningtao

    2016-08-01

    Melt spun ribbons of a series of SmFe12Bx (x=0.0, 0.5, 0.75, 1.0, 1.25, and 1.5) have been prepared by the melt spinning technique. Sm-Fe-B melt spun ribbons with single phase TbCu7-type structure were prepared from the SmFe12Bx (x=0.5, 0.75, and 1.0) alloys at the surface velocity around 40 m/s. The addition of boron not only inhibits the appearance of soft magnetic phase α-Fe, but also enhances the ability of amorphous formation for melt spun Sm-Fe ribbons. The concentration of boron atoms, however, exceeds the limit of the solubility (x>1.0) of Sm-Fe alloys, which does not impede the appearance of α-Fe but accelerates the formation of metastable phase Sm2Fe23B3 that is unfavorable to their magnetic properties. Moreover, it is found that the addition of boron whose concentration is 0.0≤x≤0.75 can stabilize the metastable TbCu7-type structure because of the increase of the lattice parameter ratio c/a. The magnetic properties of as-annealed SmFe12B1.0 melt spun ribbons with an energy product of 2.19MGOe, a coercivity of 2.36 kOe and a remanence of 4.8 kGs have been achieved. The microstructural characteristics of as-annealed melt spun SmFe12 and SmFe12B1.0 ribbons have been discussed as well. The following sequence of the hyperfine field H(6l)

  11. Inhomogeneous ensembles of radical pairs in chemical compasses

    PubMed Central

    Procopio, Maria; Ritz, Thorsten

    2016-01-01

    The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity. PMID:27804956

  12. Possibility of New Precise Measurements of Muonic Helium Atom HFS at J-PARC MUSE

    NASA Astrophysics Data System (ADS)

    Strasser, P.; Shimomura, K.; Torii, H. A.

    We propose the next generation of precision microwave spectroscopy measurements of the ground state hyperfine structure (HFS) of the muonic helium atom. The HFS interval is a sensitive tool to test three-body atomic system and bound-state QED theory as well as precise direct determination of the negative muon magnetic moment and hence its mass. Previous measurements performed in 1980s at PSI and LAMPF had uncertainties dominated by statistical errors. The new high-intensity pulsed negative muon beam at J-PARC MUSE give an opportunity to improve these measurements by nearly two orders of magnitude for the HFS interval, and almost tenfold for the negative muon mass, thus providing a more precise test of CPT invariance and determination of the negative counterpart of the anomalous g-factor for the existing BNL muon g-2 experiment. Both measurements at zero field and at high magnetic field are considered. An overview of the different aspects of these new muonic helium HFS measurements is presented.

  13. Inhomogeneous ensembles of radical pairs in chemical compasses

    NASA Astrophysics Data System (ADS)

    Procopio, Maria; Ritz, Thorsten

    2016-11-01

    The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.

  14. The effect of temperature on the structure and magnetic properties of Co0.5Ni0.5Fe2O4 spinel nanoferrite

    NASA Astrophysics Data System (ADS)

    Abdallah, Hafiz M. I.; Moyo, Thomas; Ngema, Nokwanda

    2015-11-01

    Nanocrystalline Co0.5Ni05Fe2O4 ferrite with average crystallite size of 7.6 nm and lattice constant of 0.8372 nm was synthesized via a glycol-thermal process. The structure parameters and morphology of the as-synthesized sample and annealed samples were characterized by XRD, EDX, FTIR, HRSEM and HRTEM. The hyperfine interactions, iron distribution on the tetrahedral and octahedral sites for the as-synthesized sample and samples annealed at 500 °C were deduced by Mössbauer spectroscopy measurements at 300 K. The magnetization measurements for the as-synthesized and annealed samples (300-900 °C) were obtained by a vibrating sample magnetometer on a cryogen free measurement system at different isothermal temperatures (4-300 K) in external applied magnetic fields of ±5 T. The temperature dependence of the magnetic properties such as coercive field, saturation magnetization, remanent magnetization and squareness of hysteresis loops were investigated. The sample transformed from single-domain to multi-domain configuration at particle size of about 31 nm. At 300 K, the sample annealed at 700 °C exhibits a maximum coercivity. The as-prepared sample shows a substantial increase in coercivity from 0.182 kOe at 300 K to 6.018 kOe at 4 K.

  15. Magneto-optical properties of BaCryFe12-yO19 (0.0 ≤ y ≤ 1.0) hexaferrites

    NASA Astrophysics Data System (ADS)

    Asiri, S.; Güner, S.; Korkmaz, A. D.; Amir, Md.; Batoo, K. M.; Almessiere, M. A.; Gungunes, H.; Sözeri, H.; Baykal, A.

    2018-04-01

    In this study, nanocrystalline BaCryFe12-yO19 (0.0 ≤ y ≤ 1.0) hexaferrite powders were prepared by sol-gel auto combustion method and the effect of Cr3+ ion substitution on morphology, structure, optic and magnetic properties of Barium hexaferrite were investigated. X-ray powder diffraction (XRD) analyses confirmed the purity of all samples. The XRD data shows that the average crystallite size lies between 60.95 nm and 50.10 nm and same was confirmed by Transmission electron microscopy. Transmission electron and scanning electron microscopy analyses presented the hexagonal morphology of all products. The characteristic hysteresis (σ-H) curves proved the ferromagnetic feature of as grown nanoparticle samples. Specific saturation magnetization (σs) drops from 46.59 to 34.89 emu/g with increasing Cr content while the coercive field values lie between 770 and 1652 Oe. The large magnitude of the magnetocrystalline (intrinsic) anisotropy field, (Ha) between 11.0 and 12.6 kOe proves that all products are magnetically hard. The energy band gap values decrease from 2.0 eV to 1.84 eV with increasing Cr content. From 57Fe Mössbauer spectroscopy, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values were determined and discussed.

  16. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarizedmore » electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of {sup 75}As, {sup 69}Ga and {sup 71}Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.« less

  17. Conventional electron paramagnetic resonance of Mn2+ in synthetic hydroxyapatite at different concentrations of the doped manganese

    NASA Astrophysics Data System (ADS)

    Murzakhanov, F.; Mamin, G.; Voloshin, A.; Klimashina, E.; Putlyaev, V.; Doronin, V.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.

    2018-05-01

    Powders of synthetic hydroxyapatite doped with Mn2+ ions in concentrations from 0.05 till 5 wt. % were investigated by conventional electron paramagnetic resonance (EPR). The parameters of the spin-Hamiltonian are derived. Partially resolved hyperfine structure in the magnetic fields corresponding to g ≈ 4.3 and g ≈ 9.4 is observed. The narrowing of the central peak with concentration is reported. A possibility to use the linewidth and intensity of the central peak for concentration measurements are discussed. The results could be used for the identification and qualification of Mn2+ in oil, mining and ore formations.

  18. Design and expected performance of a compact and continuous nuclear demagnetization refrigerator for sub-mK applications

    NASA Astrophysics Data System (ADS)

    Toda, Ryo; Murakawa, Satoshi; Fukuyama, Hiroshi

    2018-03-01

    Sub-mK temperatures are achievable by a copper nuclear demagnetization refrigerator (NDR). Recently, research demands for such an ultra-low temperature environment are increasing not only in condensed matter physics but also in astrophysics. A standard NDR requires a specially designed room, a high-field superconducting magnet, and a high-power dilution refrigerator (DR). And it is a one-shot cooling apparatus. To reduce these requirements, we are developing a compact and continuous NDR with two PrNi5 nuclear stages which occupies only a small space next to an appropriate pre-cooling stage such as DR. PrNi5 has a large magnetic-field enhancement on Pr3+ nuclei due to the strong hyperfine coupling. This enables us to enclose each stage in a miniature superconducting magnet and to locate two such sets in close proximity by surrounding them with high-permeability magnetic shields. The two stages are thermally connected in series to the pre-cooling stage by two Zn superconducting heat switches. A numerical analysis taking account of thermal resistances of all parts and an eddy current heating shows that the lowest sample temperature of 0.8 mK can be maintained continuously under a 10 nW ambient heat leak.

  19. Fluctuating hyperfine interactions: an updated computational implementation

    NASA Astrophysics Data System (ADS)

    Zacate, M. O.; Evenson, W. E.

    2015-04-01

    The stochastic hyperfine interactions modeling library (SHIML) is a set of routines written in the C programming language designed to assist in the analysis of stochastic models of hyperfine interactions. The routines read a text-file description of the model, set up the Blume matrix, upon which the evolution operator of the quantum mechanical system depends, and calculate the eigenvalues and eigenvectors of the Blume matrix, from which theoretical spectra of experimental techniques can be calculated. The original version of SHIML constructs Blume matrices applicable for methods that measure hyperfine interactions with only a single nuclear spin state. In this paper, we report an extension of the library to provide support for methods such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation, which are sensitive to interactions with two nuclear spin states. Examples will be presented that illustrate the use of this extension of SHIML to generate Mössbauer spectra for polycrystalline samples under a number of fluctuating hyperfine field models.

  20. Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yiquing; Roder, H.; Englander, S.W.

    1990-04-10

    Proton nuclear magnetic resonance assignments for reduced and oxidized equine cytochrome c show that many individual protons exhibit different chemical shifts in the two protein forms, reflecting diamagnetic shift effects due to structure change, and in addition contact and pseudocontact shifts that occur only in the paramagnetic oxidized form. To evaluate the chemical shift differences for structure change, the authors removed the pseudocontact shift contribution by a calculation based on knowledge of the electron spin g tensor. The g-tensor calculation, when repeated using only 12 available C{sub {alpha}}H proton resonances for cytochrom c from tuna, proved to be remarkably stable.more » The derived g tensor was then used together with spatial coordinates for the oxidized form to calculate the pseudocontact shift contribution to proton resonances at 400 identifiable sites throughout the protein, so that the redox-dependent chemical shift discrepancy, could be evaluated. Large residual changes in chemical shift define the Fermi contact shifts, where are found as expected to be limited to the immediate covalent structure of the heme and its ligands and to be asymmetrically distributed over the heme. The chemical shift discrepancies observed appear in the main to reflect structure-dependent diamagnetic shifts rather than hyperfine effects due to displacements in the pseudocontact shift field. Although 51 protons in 29 different residues exhibit significant chemical shift changes, the general impressions one of small structural adjustments to redox-dependent strain rather than sizeable structural displacements or rearrangements.« less

  1. Electrical detection of nuclear spins in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.

    2014-03-01

    We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.

  2. Fine- and hyperfine structure investigations of the even-parity configuration system of the atomic holmium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.

    2018-04-01

    In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.

  3. Magnetic interactions at Ce impurities in REMn2Ge2 (RE = La, Ce, Pr, Nd) compounds

    NASA Astrophysics Data System (ADS)

    Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Burimova, A. N.; Carbonari, A. W.

    2018-05-01

    In the work reported in this paper, the temperature dependence of the magnetic hyperfine field (Bh f) at 140Ce nuclei replacing Pr atoms in PrMn2Ge2 compound was measured by the perturbed angular correlation technique to complete the sequence of measurements in REMn2Ge2 (RE = La, Ce, Pr, Nd). Results show an anomalous behavior different from the expected Brillouin curve. A model was used to fit the data showing that the Ce impurity contribution (Bhfimp) to Bhf is negative for NdMn2Ge2 below 210 K. The impurity contribution (Bhfimp) at 0 K for all compounds is much smaller than that for the free Ce3+, showing that the 4f band of Ce is more likely highly hybridized with 5d band of the host. Results show that direction of the localized magnetic moment at Mn atoms strongly affects the exchange interaction at Ce impurities.

  4. Observation of the Forbidden Magnetic Dipole Transition 6{sup 2}P{sub ?} --> 7{sup 2}P{sub ?} in Atomic Thallium

    DOE R&D Accomplishments Database

    Chu, S.

    1976-10-01

    A measurement of the 6{sup 2}P{sub ?} --> 7{sup 2}P{sub ?} forbidden magnetic dipole matrix element in atomic thallium is described. A pulsed, linearly polarized dye laser tuned to the transition frequency is used to excite the thallium vapor from the 6{sup 2}P{sub ?} ground state to the 7{sup 2}P{sub ?} excited state. Interference between the magnetic dipole M1 amplitude and a static electric field induced E1 amplitude results in an atomic polarization of the 7{sup 2}P{sub ?} state, and the subsequent circular polarization of 535 nm fluorescence. The circular polarization is seen to be proportional to / as expected, and measured for several transitions between hyperfine levels of the 6{sup 2}P{sub ?} and 7{sup 2}P{sub ?} states. The result is = -(2.11 +- 0.30) x 10{sup -5} parallel bar e parallel bar dirac constant/2mc, in agreement with theory.

  5. A computer program for analyzing unresolved Mossbauer hyperfine spectra

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Singh, J. J.

    1978-01-01

    The program for analyzing unresolved Mossbauer hyperfine spectra was written in FORTRAN 4 language for the Control Data CYBER 170 series digital computer system with network operating system 1.1. With the present dimensions, the program requires approximately 36,000 octal locations of core storage. A typical case involving two innermost coordination shells in which the amplitudes and the peak positions of all three components were estimated in 25 iterations requires 30 seconds on CYBER 173. The program was applied to determine the effects of various near neighbor impurity shells on hyperfine fields in dilute FeAl alloys.

  6. Stochastic hyperfine interactions modeling library-Version 2

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2016-02-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized. The original version of SHIML constructed and solved Blume matrices for methods that measure hyperfine interactions of nuclear probes in a single spin state. Version 2 provides additional support for methods that measure interactions on two different spin states such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation. Example codes are provided to illustrate the use of SHIML to (1) generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A22 can be neglected and (2) generate Mössbauer spectra for polycrystalline samples for pure dipole or pure quadrupole transitions.

  7. Hyperfine induced transition probabilities from 4{f}^{14}5s5p{}^{3}{{\\rm{P}}}_{0,2}^{o} states in Sm-like ions

    NASA Astrophysics Data System (ADS)

    Zhou, Fuyang; Li, Jiguang; Qu, Yizhi; Wang, Jianguo

    2017-11-01

    The hyperfine induced 4{f}145s5p{}3{{{P}}}0,2o-4{f}145{s}2{}1{{{S}}}0 transition probabilities for highly charged Sm-like ions are calculated within the framework of the multiconfiguration Dirac-Hartree-Fock method. Electron correlation, the Breit interaction and quantum electrodynamical effects are taken into account. For ions ranging from Z = 79 to Z=94,4{f}145s5p{}3{{{P}}}0o is the first excited state, and the hyperfine induced transition (HIT) is a dominant decay channel. For the 4{f}145s5p{}3{{{P}}}2o state, the HIT rates of Sm-like ions with Z=82-94 are reported as well as the magnetic dipole (M1) {}3{{{P}}}2o-{}3{{{P}}}1o, the electric quadrupole (E2) {}3{{{P}}}2o-{}3{{{P}}}0,1o, and the magnetic quadrupole (M2) {}3{{{P}}}2o-{}1{{{S}}}0 transition probabilities. It is found that M1 transition from the 4{f}145s5p{}3{{{P}}}2o state is the most important decay channel in this range on Z≥slant 82.

  8. The magnetic structure of EuCu 2Sb 2

    DOE PAGES

    Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; ...

    2015-05-06

    Antiferromagnetic ordering of EuCu 2Sb 2 which forms in the tetragonal CaBe 2Ge 2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mössbauer spectroscopy. The room temperature 151Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (B hf) reaches 28.7(2) T at 2.1 K, indicating a full Eu 2+ magnetic moment. B hf(T) follows a smoothmore » $$S=\\frac{7}{2}$$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μ B which is the full free-ion moment expected for the Eu 2+ ion with $$S=\\frac{7}{2}$$ and a spectroscopic splitting factor of g = 2.« less

  9. Multinuclear Detection of Nuclear Spin Optical Rotation at Low Field.

    PubMed

    Zhu, Yue; Gao, Yuheng; Rodocker, Shane; Savukov, Igor; Hilty, Christian

    2018-06-06

    We describe the multinuclear detection of nuclear spin optical rotation (NSOR), an effect dependent on the hyperfine interaction between nuclear spins and electrons. Signals of 1 H and 19 F are discriminated by frequency in a single spectrum acquired at sub-millitesla field. The simultaneously acquired optical signal along with the nuclear magnetic resonance signal allows the calculation of the relative magnitude of the NSOR constants corresponding to different nuclei within the sample molecules. This is illustrated by a larger NSOR signal measured at the 19 F frequency despite a smaller corresponding spin concentration. Second, it is shown that heteronuclear J-coupling is observable in the NSOR signal, which can be used to retrieve chemical information. Multinuclear frequency and J resolution can localize optical signals in the molecule. Properties of electronic states at multiple sites in a molecule may therefore ultimately be determined by frequency-resolved NSOR spectroscopy at low field.

  10. The ASACUSA antihydrogen and hydrogen program: results and prospects

    NASA Astrophysics Data System (ADS)

    Malbrunot, C.; Amsler, C.; Arguedas Cuendis, S.; Breuker, H.; Dupre, P.; Fleck, M.; Higaki, H.; Kanai, Y.; Kolbinger, B.; Kuroda, N.; Leali, M.; Mäckel, V.; Mascagna, V.; Massiczek, O.; Matsuda, Y.; Nagata, Y.; Simon, M. C.; Spitzer, H.; Tajima, M.; Ulmer, S.; Venturelli, L.; Widmann, E.; Wiesinger, M.; Yamazaki, Y.; Zmeskal, J.

    2018-03-01

    The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of `cold' antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10-9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  11. The ASACUSA antihydrogen and hydrogen program: results and prospects

    PubMed Central

    Amsler, C.; Arguedas Cuendis, S.; Breuker, H.; Dupre, P.; Fleck, M.; Higaki, H.; Kanai, Y.; Kolbinger, B.; Kuroda, N.; Leali, M.; Mäckel, V.; Mascagna, V.; Massiczek, O.; Matsuda, Y.; Nagata, Y.; Simon, M. C.; Spitzer, H.; Tajima, M.; Venturelli, L.; Widmann, E.; Wiesinger, M.; Yamazaki, Y.; Zmeskal, J.

    2018-01-01

    The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of ‘cold’ antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10−9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed. This article is part of the Theo Murphy meeting issue ‘Antiproton physics in the ELENA era’. PMID:29459412

  12. Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique

    NASA Astrophysics Data System (ADS)

    Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew

    2013-05-01

    Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.

  13. Laser Induced Optical Pumping Measurements of Cross Sections for Fine and Hyperfine Structure Transitions in Sodium Induced by Collisions with Helium Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1998-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections for (Delta)F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), (Delta)F cross sections. The hyperfine cross sections measured using this method, which is thought to be novel, are compared with cross sections for transitions involving polarized magnetic substates, m(sub F), measured previously using polarization sensitive absorption. Also, fine structure transition ((Delta)J) cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  14. Laser-Induced Optical Pumping Measurements of Cross Section for Fine- and Hyperfine-Structure Transitions in Sodium Induced by Collisions with Helium and Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1999-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  15. Mössbauer and XRD study of novel quaternary Sn-Fe-Co-Ni electroplated alloy

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Sziráki, L.; Stichleutner, S.; Homonnay, Z.; Lak, G. B.; El-Sharif, M.; Chisholm, C. U.

    2017-11-01

    Constant current electrochemical deposition technique was used to obtain quaternary alloys of Sn-Fe-Co-Ni from a gluconate electrolyte, which to date have not been reported in the literature. For the characterization of electroplated alloys, 57Fe and 119Sn Conversion Electron Mössbauer Spectroscopy (CEMS), XRD and SEM/EDAX were used. XRD revealed the amorphous character of the novel Sn-Fe-Co-Ni electrodeposited alloys. 57Fe Mössbauer spectrum of quaternary deposit with composition of 37.0 at% Sn, 38.8 at% Fe, 16.8 at% Co and 7.4 at% Ni displayed a magnetically split sextet (B = 28.9T) with broad lines typical of iron bearing ferromagnetic amorphous alloys. Magnetically split 119Sn spectra reflecting a transferred hyperfine field (B = 2.3T) were also observed. New quaternary Sn-Fe-Co-Ni alloys were successfully prepared.

  16. Effect of synthesis methods with different annealing temperatures on micro structure, cations distribution and magnetic properties of nano-nickel ferrite

    NASA Astrophysics Data System (ADS)

    El-Sayed, Karimat; Mohamed, Mohamed Bakr; Hamdy, Sh.; Ata-Allah, S. S.

    2017-02-01

    Nano-crystalline NiFe2O4 was synthesized by citrate and sol-gel methods at different annealing temperatures and the results were compared with a bulk sample prepared by ceramic method. The effect of methods of preparation and different annealing temperatures on the crystallize size, strain, bond lengths, bond angles, cations distribution and degree of inversions were investigated by X-ray powder diffraction, high resolution transmission electron microscope, Mössbauer effect spectrometer and vibrating sample magnetometer. The cations distributions were determined at both octahedral and tetrahedral sites using both Mössbauer effect spectroscopy and a modified Bertaut method using Rietveld method. The Mössbauer effect spectra showed a regular decrease in the hyperfine field with decreasing particle size. Saturation magnetization and coercivity are found to be affected by the particle size and the cations distribution.

  17. The ferromagnetic monolayer Fe(110) on W(110)

    NASA Astrophysics Data System (ADS)

    Gradmann, U.; Liu, G.; Elmers, H. J.; Przybylski, M.

    1990-07-01

    Ferromagnetic order in the pseudomorphic monolayer Fe(110) on W(110) was analyzed experimentally using Conversion Electron Mössbauer Spectroscopy (CEMS) and Torsion Oscillation Magnetometry (TOM). The monolayer is thermodynamically stable, crystallizes to large monolayer patches at elevated temperatures and therefore forms an excellent approximation to the ideal monolayer structure. It is ferromagnetic below a Curie-temperature T c,mono, which is given by (282±3) K for the Ag-coated layer, (290±10) K for coating by Cu, Ag or Au and ≈210 K for the free monolayer. For the Ag-coated monolayer, ground state hyperfine field B hf (0)=(11.9±0.3) T and magnetic moment per atom μ=2.53 μB could be determined, in fair agreement with theoretical predictions. Unusual properties of the phase transition are detected by the combination of both experimental techniques. Strong magnetic anisotropies, which are essential for ferromagnetic order, are determined by CEMS.

  18. Mossbauer investigation of some layered Fe(II)Cl compounds

    NASA Astrophysics Data System (ADS)

    Mostafa, M. F.; Atallah, A. S.; Emrick, R.

    1997-04-01

    Mossbauer effect studies (ME) for members of the alkylene-diammonium series, (CH2)n(NH3)2Fe(II)Cl4, where n=3, 4, 5, and 6 are presented. At 78 K the ME spectra reveal similar general features showing an 8 line well split hyperfine spectra; the effective magnetic field is in the range 18.5-20 T. Fitting the magnetization curves to the theoretical models showed that all compounds are best fitted to a 2d Ising system with β values in the range of 0.124-0.151, D=1.05-1.12, and TN=102.2-105.2 K for n=3 to n=6, respectively. Structural phase transitions have been found for the n=3 and 6 compounds at Ts=230 and 242 K, respectively. Electric permittivity of two members of the series is presented and related to the ME results.

  19. Magnetic properties of single crystal alpha-benzoin oxime: An EPR study

    NASA Astrophysics Data System (ADS)

    Sayin, Ulku; Dereli, Ömer; Türkkan, Ercan; Ozmen, Ayhan

    2012-02-01

    The electron paramagnetic resonance (EPR) spectra of gamma irradiated single crystals of alpha-benzoinoxime (ABO) have been examined between 120 and 440 K. Considering the dependence on temperature and the orientation of the spectra of single crystals in the magnetic field, we identified two different radicals formed in irradiated ABO single crystals. To theoretically determine the types of radicals, the most stable structure of ABO was obtained by molecular mechanic and B3LYP/6-31G(d,p) calculations. Four possible radicals were modeled and EPR parameters were calculated for the modeled radicals using the B3LYP method and the TZVP basis set. Calculated values of two modeled radicals were in strong agreement with experimental EPR parameters determined from the spectra. Additional simulated spectra of the modeled radicals, where calculated hyperfine coupling constants were used as starting points for simulations, were well matched with experimental spectra.

  20. Selective Reflection of Potassium Vapor Nanolayers in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Tonoyan, A.; Keaveney, J.; Hughes, I. G.; Adams, C. S.; Sarkisyan, D.

    2018-03-01

    The selective reflection of laser radiation from the interface between a dielectric window and the atomic vapors confined in a nanocell of thickness L ≈ 350 nm is used to develop effective Doppler-broadening- free spectroscopy of potassium atoms. A small atomic line width and a relation between the signal intensity and the transition probability allowed us to resolve four lines of atomic transitions responsible for the D1 lines of the 39K and 41K isotopes. Two groups containing four atomic transitions form in an applied magnetic field upon pumping by radiation with circular polarization σ+ or σ-. Different intensities (probabilities) of transitions for the σ+ and σ- excitations are detected in magnetic field B 0 ≈ A hfs /μB ≈ 165 G ( A hfs is the magnetic dipole constant for the ground state and μB is the Bohr magneton). A substantially different situation is observed at B ≫ B 0, since high symmetry appears for the two groups formed by radiation with circular polarization σ+ or σ-. Each group is the mirror image of the other group with respect to the frequency of the 42 S 1/2-42 P 1/2 transition, which additionally proves the occurrence of the complete Paschen-Back regime of the hyperfine structure at B ≈ 2.5 kG. A developed theoretical model well reproduces the experimental results. Possible practical applications are described. The results obtained can also be applied to the D 1 lines of 87Rb and 23Na.

  1. Effects of annealing temperature on structure and magnetic properties of CoAl0.2Fe1.8O4/SiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, L.; Li, J.; Liu, M.; Zhang, Y. M.; Lu, J. B.; Li, H. B.

    2012-12-01

    CoAl0.2Fe1.8O4/SiO2 nanocomposites were prepared by sol-gel method. The effects of annealing temperature on the structure and magnetic properties of the samples were studied by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and Mössbauer spectroscopy. The results show that the CoAl0.2Fe1.8O4 in the samples exhibits a spinel structure after being annealed. As annealing temperature increases from 800 to 1200 °C, the average grain size of CoAl0.2Fe1.8O4 in the nanocomposites increases from 5 to 41 nm while the lattice constant decreases from 0.8397 to 0.8391 nm, the saturation magnetization increases from 21.96 to 41.53 emu/g. Coercivity reaches a maximum of 1082 Oe for the sample annealed at 1100 °C, and thereafter decreases with further increasing annealing temperature. Mössbauer spectra show that the isomer shift decreases, hyperfine field increases and the samples transfer from mixed state of superparamagnetic and magnetic order to the completely magnetic order with annealing temperature increasing from 800 to 1200 °C.

  2. Search for variation of fundamental constants and violations of fundamental symmetries using isotope comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berengut, J. C.; Flambaum, V. V.; Kava, E. M.

    2011-10-15

    Atomic microwave clocks based on hyperfine transitions, such as the caesium standard, tick with a frequency that is proportional to the magnetic moment of the nucleus. This magnetic moment varies strongly between isotopes of the same atom, while all atomic electron parameters remain the same. Therefore the comparison of two microwave clocks based on different isotopes of the same atom can be used to constrain variation of fundamental constants. In this paper, we calculate the neutron and proton contributions to the nuclear magnetic moments, as well as their sensitivity to any potential quark-mass variation, in a number of isotopes ofmore » experimental interest including {sup 201,199}Hg and {sup 87,85}Rb, where experiments are underway. We also include a brief treatment of the dependence of the hyperfine transitions to variation in nuclear radius, which in turn is proportional to any change in quark mass. Our calculations of expectation values of proton and neutron spin in nuclei are also needed to interpret measurements of violations of fundamental symmetries.« less

  3. Magnetoconductivity and magnetoluminescence studies in bipolar and almost hole-only sandwich devices made from films of a π-conjugated molecule

    PubMed Central

    Duc Nguyen, Tho; Sheng, Yugang; Rybicki, James E; Wohlgenannt, Markus

    2008-01-01

    We present magnetoconductivity and magnetoluminescence measurements in sandwich devices made from films of a π-conjugated molecule and demonstrate effects of more than 30 and 50% magnitude, respectively, in fields of 100 mT at room-temperature. It has previously been recognized that the effect is caused by hyperfine coupling, and that it is phenomenologically similar to other magnetic field effects that act on electron–hole pairs, which are well-known in spin-chemistry. However, we show that the very large magnitude of the effect contradicts present knowledge of the electron–hole pair recombination processes in electroluminescent π-conjugated molecules, and that the effect persists even in almost hole-only devices. Therefore, this effect is likely caused by the interaction of radical pairs of equal charge. PMID:27877957

  4. Cobalt spin states and hyperfine interactions in LaCoO3 investigated by LDA+U calculations

    NASA Astrophysics Data System (ADS)

    Hsu, Han; Blaha, Peter; Wentzcovitch, Renata M.; Leighton, C.

    2010-09-01

    With a series of local-density approximation plus Hubbard U calculations, we have demonstrated that for lanthanum cobaltite (LaCoO3) , the electric field gradient at the cobalt nucleus can be used as a fingerprint to identify the spin state of the cobalt ion. Therefore, in principle, the spin state of the cobalt ion can be unambiguously determined from nuclear magnetic resonance spectra. Our calculations also suggest that a crossover from the low-spin to intermediate-spin state in the temperature range of 0-90 K is unlikely, based on the half-metallic band structure associated with isolated IS Co ions, which is incompatible with the measured conductivity.

  5. Gate-defined Quantum Confinement in Suspended Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Allen, Monica

    2013-03-01

    Quantum confined devices in carbon-based materials offer unique possibilities for applications ranging from quantum computation to sensing. In particular, nanostructured carbon is a promising candidate for spin-based quantum computation due to the ability to suppress hyperfine coupling to nuclear spins, a dominant source of spin decoherence. Yet graphene lacks an intrinsic bandgap, which poses a serious challenge for the creation of such devices. We present a novel approach to quantum confinement utilizing tunnel barriers defined by local electric fields that break sublattice symmetry in suspended bilayer graphene. This technique electrostatically confines charges via band structure control, thereby eliminating the edge and substrate disorder that hinders on-chip etched nanostructures to date. We report clean single electron tunneling through gate-defined quantum dots in two regimes: at zero magnetic field using the energy gap induced by a perpendicular electric field and at finite magnetic fields using Landau level confinement. The observed Coulomb blockade periodicity agrees with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates quantum confinement with pristine device quality and access to vibrational modes, enabling wide applications from electromechanical sensors to quantum bits. More broadly, the ability to externally tailor the graphene bandgap over nanometer scales opens a new unexplored avenue for creating quantum devices.

  6. Organic-inorganic proximity effect in the magneto-conductance of vertical organic field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, B.; Devir-Wolfman, A. H.; Ehrenfreund, E., E-mail: eitane@technion.ac.il

    Vertical organic field effect transistors having a patterned source electrode and an a-SiO{sub 2} insulation layer show high performance as a switching element with high transfer characteristics. By measuring the low field magneto-conductance under ambient conditions at room temperature, we show here that the proximity of the inorganic a-SiO{sub 2} insulation to the organic conducting channel affects considerably the magnetic response. We propose that in n-type devices, electrons in the organic conducting channel and spin bearing charged defects in the inorganic a-SiO{sub 2} insulation layer (e.g., O{sub 2} = Si{sup +·}) form oppositely charged spin pairs whose singlet-triplet spin configurations are mixedmore » through the relatively strong hyperfine field of {sup 29}Si. By increasing the contact area between the insulation layer and the conducting channel, the ∼2% magneto-conductance response may be considerably enhanced.« less

  7. Radiative improvement of the lattice nonrelativistic QCD action using the background field method and application to the hyperfine splitting of quarkonium states.

    PubMed

    Hammant, T C; Hart, A G; von Hippel, G M; Horgan, R R; Monahan, C J

    2011-09-09

    We present the first application of the background field method to nonrelativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner. The coefficients of the σ·B term in the NRQCD action and the four-fermion spin-spin interaction are computed at the one-loop level; the resulting shift of the hyperfine splitting of bottomonium is found to bring the lattice predictions in line with experiment.

  8. Mössbauer studies of iron hydride at high pressure

    NASA Astrophysics Data System (ADS)

    Choe, I.; Ingalls, R.; Brown, J. M.; Sato-Sorensen, Y.; Mills, R.

    1991-07-01

    We have measured in situ Mössbauer spectra of iron hydride made in a diamond anvil cell at high pressure and room temperature. The spectra show a sudden change at 3.5+/-0.5 GPa from a single hyperfine pattern to a superposition of three. The former pattern results from normal α-iron with negligible hydrogen content, and the latter from residual α-iron plus newly formed iron hydride. Between 3.5 and 10.4 GPa, the extra hydride pattern have hyperfine fields for one ranging from 276 to 263 kOe, and the other, from 317 to 309 kOe. Both have isomer shifts of about 0.4 mm/sec, and negligible quadrupole splittings. X-ray studies on quenched samples have shown that iron hydride is of double hexagonal close-packed structure, whose two nonequivalent iron sites may account for the observation of two different patterns. Even allowing for the effect of volume expansion, the observed isomer shifts for the hydride are considerably more positive than those of other metallic phases of iron. At the same time, the hyperfine fields are slightly smaller than that of α-iron. As a possible explanation, one may expect a bonding of hydrogen with iron, which would result in a small reduction of 4s electrons, possibly accompanied by a small increase of 3d electrons compared with the neutral atom in metallic iron. The difference between the hyperfine fields in the two spectra are presumably due to the different symmetry at the two iron sites.

  9. Structural, multiferroic, dielectric and magnetoelectric properties of (1-x)Ba0.85Ca0.15Ti0.90Zr0.10O3-(x)CoFe2O4 lead-free composites

    NASA Astrophysics Data System (ADS)

    Negi, N. S.; Kumar, Rakesh; Sharma, Hakikat; Shah, J.; Kotnala, R. K.

    2018-06-01

    High performance lead-free multiferroic composites with strong magnetoelectric coupling effect are desired to replace lead-based ceramics in multifunctional device applications due to increasing environmental issues. We report crystal structure, ferroelectric, magnetic, dielectric and magnetoelectric properties of (1-x)Ba0.85Ca0.15Ti0.90Zr0.10O3-(x)CoFe2O4 (BCTZ-CFO) lead-free composites with x = 0.1, 0.3, 0.5, 0.7 and 0.9 synthesized by chemical solution method. BCTZ power was synthesized by sol-gel method while CFO was prepared by metallo-organic decomposition (MOD) method. The XRD results confirm successful formation of the BCTZ-CFO composites without presence of any impurity phase. At room temperature, the BCTZ-CFO composites show multiferroic behavior characterized by ferroelectric and ferromagnetic hysteresis curves. The composite having 10 wt% of CFO exhibited maximum polarization, remnant polarization and coercive field of Ps ∼ 5.1 μC/cm2, Pr ∼ 1.4 μC/cm2 and Ec ∼ 11.6 kV/cm respectively. The BCTZ-CFO composite with 90 wt% of CFO incorporation exhibits improved ferromagnetic properties with Ms ∼ 32 emu/g, Mr ∼ 11.7 emu/g and Hc ∼ 504 Oe. Mӧssbauer spectra analysis show two sets of six-line hyperfine patterns for BCTZ-CFO composites, indicating the presence of Fe3+ ions in both A and B sites. Increasing BCTZ content was found to decrease the hyperfine field strength at both sites and is consistent with the decreasing magnetic moment observed for the samples. The maximum dielectric constant value ε‧ ∼ 678 is obtained at 1 MHz for composite with 10 wt% of CFO phase. The results indicate that the BCTZ-CFO composites are potential lead-free room temperature multiferroic systems.

  10. Interpreting the Effects of Pulse Remagnetization on Animal Behavior

    NASA Astrophysics Data System (ADS)

    Kirschvink, J. L.; Wang, C. X.; Golash, H. N.; Hilburn, I. A.; Wu, D. A.; Crucilla, S. J.; Badal, Y. D.; Shimojo, S.

    2017-12-01

    Observations of geomagnetic sensitivity by migratory and homing animals have puzzled biophysicists for over 70 years. Widely dismissed as biophysically implausible due to the lack of physiological ferromagnetic materials [e.g., D.R. Griffin, 1944, 1952], clear and reproducible responses to earth-strength magnetic fields is now firmly established in organisms ranging from Bacteria, Protists, and Animals from numerous phyla, including mollusks, arthropods, and the chordates. Behavior demands sensory transduction, as external stimuli only `get into the nervous system' through sensory cells specialized to transduce the physical stimulus into a modulated stream of action potentials in neurons. Three basic biophysical mechanisms could plausibly explain the biophysical transduction of geomagnetic cues, including electrical induction, hyperfine magnetic field effects on photo-activated free radicals (the `Quantum Compass'), or receptor cells containing biologically-precipitated crystals of a ferromagnetic mineral like magnetite (Fe3O4). The definitive test of a ferromagnetic receptor is the pulse-remagnetization experiment, in which you apply a brief, unidirectional magnetic pulse of about 1 mS in duration, configured to exceed the coercive force of the SD particles and reverse the orientation of the magnetic moment wrt to the crystal axis (typically, a pulse few tens of mT is adequate). A pulse configured in this fashion can be well below the dB/dt level needed to fire a sensory nerve through the induced electric fields. The pulse produces a permanent flip in magnetization direction, the same way information is coded on magnetic tape. Magnetotactic bacteria, exposed to such a pulse, reverse their magnetic swimming directions passively. There are now over 16 peer-reviewed papers in which this experiment has been applied to animals, including birds, all of which show clear and long-lasting effects of the pulse. Such a pulse would have no lasting effect on a quantum compass. Initial experiments with a magnetic pulse of 70 mT on a large primate show a clear effect, although the results are … complex!

  11. Hyperfine interaction in the Autler-Townes effect: The formation of bright, dark, and chameleon states

    NASA Astrophysics Data System (ADS)

    Kirova, T.; Cinins, A.; Efimov, D. K.; Bruvelis, M.; Miculis, K.; Bezuglov, N. N.; Auzinsh, M.; Ryabtsev, I. I.; Ekers, A.

    2017-10-01

    This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., "laser-dressed") states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983), 10.1103/PhysRevA.27.906] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ΩS. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as a perturbation in the total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling of the 3 p3 /2 and 4 d5 /2 states by the strong laser field and probed by a weak laser field on the 3 s1 /2-3 p3 /2 transition yielded two important conclusions. Firstly, the perturbation introduced by the HF interaction leads to the observation of what we term "chameleon" states—states that change their appearance in the AT spectrum, behaving as bright states at small to moderate ΩS, and fading from the spectrum similarly to dark states when ΩS is much larger than the HF splitting of the 3 p3 /2 state. Secondly, excitation by the probe field from two different HF levels of the ground state allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of ΩS and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels in excited electronic states.

  12. Transport-related triplet states and hyperfine couplings in organic tandem solar cells probed by pulsed electrically detected magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraffert, Felix; Bahro, Daniel; Meier, Christoph; Denne, Maximilian; Colsmann, Alexander; Behrends, Jan

    2017-09-01

    Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant 13C nuclei coupled to the observer spins.

  13. Topological vortex formation in a Bose-Einstein condensate under gravitational field

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yuki; Nakahara, Mikio; Ohmi, Tetsuo

    2004-10-01

    Topological phase imprinting is a unique technique for vortex formation in a Bose-Einstein condensate (BEC) of an alkali-metal gas, in that it does not involve rotation: the BEC is trapped in a quadrupole field with a uniform bias field which is reversed adiabatically leading to vortex formation at the center of the magnetic trap. The scenario has been experimentally verified by Leanhardt employing Na23 atoms. Recently similar experiments have been conducted by Hirotani in which a BEC of Rb87 atoms was used. In the latter experiments the authors found that fine-tuning of the field reverse time Trev is required to achieve stable vortex formation. Otherwise, they often observed vortex fragmentation or a condensate without a vortex. It is shown in this paper that this behavior can be attributed to the heavy mass of the Rb atom. The confining potential, which depends on the eigenvalue mB of the hyperfine spin F along the magnetic field, is now shifted by the gravitational field perpendicular to the vortex line. Then the positions of two weak-field-seeking states with mB=1 and 2 deviate from each other. This effect is more prominent for BECs with a heavy atomic mass, for which the deviation is greater and, moreover, the Thomas-Fermi radius is smaller. We found, by solving the Gross-Pitaevskii equation numerically, that two condensates interact in a very complicated way leading to fragmentation of vortices, unless Trev is properly tuned.

  14. Coherence time of over a second in a telecom-compatible quantum memory storage material

    NASA Astrophysics Data System (ADS)

    Rančić, Miloš; Hedges, Morgan P.; Ahlefeldt, Rose L.; Sellars, Matthew J.

    2018-01-01

    Quantum memories for light will be essential elements in future long-range quantum communication networks. These memories operate by reversibly mapping the quantum state of light onto the quantum transitions of a material system. For networks, the quantum coherence times of these transitions must be long compared to the network transmission times, approximately 100 ms for a global communication network. Due to a lack of a suitable storage material, a quantum memory that operates in the 1,550 nm optical fibre communication band with a storage time greater than 1 μs has not been demonstrated. Here we describe the spin dynamics of 167Er3+: Y2SiO5 in a high magnetic field and demonstrate that this material has the characteristics for a practical quantum memory in the 1,550 nm communication band. We observe a hyperfine coherence time of 1.3 s. We also demonstrate efficient spin pumping of the entire ensemble into a single hyperfine state, a requirement for broadband spin-wave storage. With an absorption of 70 dB cm-1 at 1,538 nm and Λ transitions enabling spin-wave storage, this material is the first candidate identified for an efficient, broadband quantum memory at telecommunication wavelengths.

  15. Incommensurate to commensurate antiferromagnetism in CeRhAl 4 Si 2 : An Al 27 NMR study

    DOE PAGES

    Sakai, Hironori; Hattori, T.; Tokunaga, Y.; ...

    2016-01-04

    27Al nuclear magnetic resonance (NMR) experiments have been performed on a single crystal of CeRhAl 4Si 2, which is an antiferromagnetic Kondo-lattice compound with successive antiferromagnetic transitions of T N1 = 14 K and T N2 = 9 K at zero external field. In the paramagnetic state, the Knight shifts, quadrupolar frequency, and asymmetric parameter of electrical field gradient on the Al sites have been determined, which have local orthorhombic symmetry. The transferred hyperfine coupling constants are also determined. Here, analysis of the NMR spectra indicates that a commensurate antiferromagnetic structure exists below T N2, but an incommensurate modulation ofmore » antiferromagnetic moments is present in the antiferromagnetic state between T N1 and T N2. The spin-lattice relaxation rate suggests that the 4f electrons behave as local moments at temperatures above T N1.« less

  16. Higher order Stark effect and transition probabilities on hyperfine structure components of hydrogen like atoms

    NASA Astrophysics Data System (ADS)

    Pal'Chikov, V. G.

    2000-08-01

    A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.

  17. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

    PubMed Central

    Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.

    2015-01-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131

  18. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    PubMed

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Nuclear forward scattering and first-principles studies of the iron oxide phase Fe4O5

    NASA Astrophysics Data System (ADS)

    Kothapalli, Karunakar; Kim, Eunja; Kolodziej, Tomasz; Weck, Philippe F.; Alp, Ercan E.; Xiao, Yuming; Chow, Paul; Kenney-Benson, C.; Meng, Yue; Tkachev, Sergey; Kozlowski, Andrzej; Lavina, Barbara; Zhao, Yusheng

    2014-07-01

    57Fe-enriched Fe4O5 samples were synthesized in a laser-heated diamond anvil cell at a pressure of about 15 GPa and a temperature of about 2000 K. Nuclear forward scattering (NFS) spectra were collected in the range 0-40 GPa and were combined with first-principles calculations to provide insights into the magnetic properties of Fe4O5. NFS spectra show that strong magnetic interactions persist up to 40 GPa and that they are generated by a single magnetic contribution. The hyperfine magnetic field (Bhf) and quadrupole splitting (QS) are in the ranges 51-53 T and 0.40-1.2 mm s-1, respectively. The QS shows an intriguing evolution with pressure, with a fast increase from 0.4 to 1.0 mm s-1 between 0 and 10 GPa and a slow increase up to 1.2 mm s-1 in the range 10-40 GPa. First-principles calculations suggest an antiferromagnetic ordering for the three sites, and similar magnetic moments in the range ˜3.6-3.8 μB/Fe. These values, typical of strongly correlated Fe magnetic systems, are in agreement with the experimental estimated average moment of ˜3.8 μB/Fe. The single contribution to the NFS spectrum and the similar calculated magnetic moments suggest that the iron atoms at the three crystallographic sites have similar electronic arrangements.

  20. ANTIHYDROGEN PRODUCTION AND PRECISION SPECTROSCOPY WITH ATHENA/AD-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. HOLZSCHEITER; C. AMSLER; ET AL

    2000-11-01

    CPT invariance is a fundamental property of quantum field theories in flat space-time. Principal consequences include the predictions that particles and their antiparticles have equal masses and lifetimes, and equal and opposite electric charges and magnetic moments. It also follows that the fine structure, hyperfine structure, and Lamb shifts of matter and antimatter bound systems should be identical. It is proposed to generate new stringent tests of CPT using precision spectroscopy on antihydrogen atoms. An experiment to produce antihydrogen at rest has been approved for running at the Antiproton Decelerator (AD) at CERN. We describe the fundamental features of thismore » experiment and the experimental approach to the first phase of the program, the formation and identification of low energy antihydrogen.« less

  1. Magnetic Trapping and Coherent Control of Laser-Cooled Molecules

    NASA Astrophysics Data System (ADS)

    Williams, H. J.; Caldwell, L.; Fitch, N. J.; Truppe, S.; Rodewald, J.; Hinds, E. A.; Sauer, B. E.; Tarbutt, M. R.

    2018-04-01

    We demonstrate coherent microwave control of the rotational, hyperfine, and Zeeman states of ultracold CaF molecules, and the magnetic trapping of these molecules in a single, selectable quantum state. We trap about 5 ×103 molecules for almost 2 s at a temperature of 70 (8 ) μ K and a density of 1.2 ×105 cm-3. We measure the state-specific loss rate due to collisions with background helium.

  2. Quantitative analysis of dinuclear manganese(II) EPR spectra

    NASA Astrophysics Data System (ADS)

    Golombek, Adina P.; Hendrich, Michael P.

    2003-11-01

    A quantitative method for the analysis of EPR spectra from dinuclear Mn(II) complexes is presented. The complex [(Me 3TACN) 2Mn(II) 2(μ-OAc) 3]BPh 4 ( 1) (Me 3TACN= N, N', N''-trimethyl-1,4,7-triazacyclononane; OAc=acetate 1-; BPh 4=tetraphenylborate 1-) was studied with EPR spectroscopy at X- and Q-band frequencies, for both perpendicular and parallel polarizations of the microwave field, and with variable temperature (2-50 K). Complex 1 is an antiferromagnetically coupled dimer which shows signals from all excited spin manifolds, S=1 to 5. The spectra were simulated with diagonalization of the full spin Hamiltonian which includes the Zeeman and zero-field splittings of the individual manganese sites within the dimer, the exchange and dipolar coupling between the two manganese sites of the dimer, and the nuclear hyperfine coupling for each manganese ion. All possible transitions for all spin manifolds were simulated, with the intensities determined from the calculated probability of each transition. In addition, the non-uniform broadening of all resonances was quantitatively predicted using a lineshape model based on D- and r-strain. As the temperature is increased from 2 K, an 11-line hyperfine pattern characteristic of dinuclear Mn(II) is first observed from the S=3 manifold. D- and r-strain are the dominate broadening effects that determine where the hyperfine pattern will be resolved. A single unique parameter set was found to simulate all spectra arising for all temperatures, microwave frequencies, and microwave modes. The simulations are quantitative, allowing for the first time the determination of species concentrations directly from EPR spectra. Thus, this work describes the first method for the quantitative characterization of EPR spectra of dinuclear manganese centers in model complexes and proteins. The exchange coupling parameter J for complex 1 was determined ( J=-1.5±0.3 cm-1; H ex=-2J S1· S2) and found to be in agreement with a previous determination from magnetization. The phenomenon of exchange striction was found to be insignificant for 1.

  3. INTERNAL FIELDS AT LOW TEMPERATURES IN CoPd ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagle, D.E.; Craig, P.P.; Barrett, P.

    1962-01-15

    The hyperfine splitting of the 14.4-kev gamma line in Fe/sup 57/ was measured for a series of sources, each containing Co/sup 57/ activity doped into a host lattice of CoPd. Although Pd itself is not ferromagnetic, the alloys with Co are all ferromagnetic, with Curie temperatures ranging from 1404 deg K for pure Co down to 130 deg K for a 3% Co alloy. The internal field associated with the hyperfine splitting is a function of temperature for a given alloy; however, at temperatures small compared to the Curie temperature, each source shows very nearly the same internal field, namelymore » - 308 kgauss. The relationship of this behavior to current theories of the internal field in Fe and to the nature of ferromagnetism in CoPd is discussed. (auth)« less

  4. Modified ferrite core-shell nanoparticles magneto-structural characterization

    NASA Astrophysics Data System (ADS)

    Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-06-01

    In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.

  5. Cation distribution, magnetic properties and cubic-perovskite phase transition in bismuth-doped nickel ferrite

    NASA Astrophysics Data System (ADS)

    Gore, Shyam K.; Jadhav, Santosh S.; Tumberphale, Umakant B.; Shaikh, Shoyeb M.; Naushad, Mu; Mane, Rajaram S.

    2017-12-01

    The phase transition of bismuth-substituted nickel ferrite, synthesized by using a simple sol-gel autocombustion method, from cubic to perovskite is confirmed from the X-ray diffraction spectrums. The changes in isomer shift, hyperfine field and cation distribution are obtained from the Mossbauer spectroscopy analysis. The cation distribution demonstrates Ni2+ cations occupy tetrahedral sites, while Fe3+ and Bi3+ occupy both tetrahedral as well as octahedral sites. For higher concentrations of bismuth, saturation magnetization is increased whereas, coercivity is decreased which is related to phase change. The variations of dielectric constant, tangent loss and conductivity (ac) with frequency (10 Hz-5 MHz) have been explored with Bi3+-doping i.e. 'x'. According to Maxwell-Wagener model, there is an involvement of electron hopping kinetics as both dielectric constant and tangent loss are decreased with increasing frequency. Increase of conductivity with frequency (measured at room temperature, 27 °C) is attributed to increase of number of carriers and mobility.

  6. Influence of Molecular Oxygen on Ortho-Para Conversion of Water Molecules

    NASA Astrophysics Data System (ADS)

    Valiev, R. R.; Minaev, B. F.

    2017-07-01

    The mechanism of influence of molecular oxygen on the probability of ortho-para conversion of water molecules and its relation to water magnetization are considered within the framework of the concept of paramagnetic spin catalysis. Matrix elements of the hyperfine ortho-para interaction via the Fermi contact mechanism are calculated, as well as the Maliken spin densities on water protons in H2O and O2 collisional complexes. The mechanism of penetration of the electron spin density into the water molecule due to partial spin transfer from paramagnetic oxygen is considered. The probability of ortho-para conversion of the water molecules is estimated by the quantum chemistry methods. The results obtained show that effective ortho-para conversion of the water molecules is possible during the existence of water-oxygen dimers. An external magnetic field affects the ortho-para conversion rate given that the wave functions of nuclear spin sublevels of the water protons are mixed in the complex with oxygen.

  7. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiteng; Kais, Sabre; Berman, Gennady Petrovich

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence ofmore » product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.« less

  8. Single ferromagnetic fluctuations in UCoGe revealed by 73Ge- and 59Co-NMR studies

    NASA Astrophysics Data System (ADS)

    Manago, Masahiro; Ishida, Kenji; Aoki, Dai

    2018-02-01

    73Ge and 59Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements have been performed on a 73Ge-enriched single-crystalline sample of the ferromagnetic superconductor UCoGe in the paramagnetic state. The 73Ge NQR parameters deduced from NQR and NMR are close to those of another isostructural ferromagnetic superconductor URhGe. The Knight shifts of the Ge and Co sites are well scaled to each other when the magnetic field is parallel to the b or c axis. The hyperfine coupling constants of Ge are estimated to be close to those of Co. The large difference of spin susceptibilities between the a and b axes could lead to the different response of the superconductivity and ferromagnetism with the field parallel to these directions. The temperature dependence of the nuclear spin-lattice relaxation rates 1 /T1 at the two sites is similar to each other above 5 K. These results indicate that the itinerant U-5 f electrons are responsible for the ferromagnetism in this compound, consistent with previous studies. The similarities and differences in the three ferromagnetic superconductors are discussed.

  9. Synthesis and magnetic properties of LiFePO4 substitution magnesium

    NASA Astrophysics Data System (ADS)

    Choi, Hyunkyung; Kim, Min Ji; Hahn, Eun Joo; Kim, Sam Jin; Kim, Chul Sung

    2017-06-01

    LiFe0.9Mg0.1PO4 sample was prepared by using a solid-state reaction method, and the temperature-dependent magnetic properties of the sample were studied. The X-ray diffraction (XRD) pattern showed an olivine-type orthorhombic structure with space group Pnma based on Rietveld refinement method. The effect of Mg substitution in antiferromagnetic LiFe0.9Mg0.1PO4 was investigated using a vibrating sample magnetometer (VSM) and Mössbauer spectroscopy. The temperature-dependence of the magnetization curves of LiFe0.9Mg0.1PO4 shows abnormal antiferromagnetic behavior with ordering temperature. Sudden changes in both the magnetic hyperfine field (Hhf) and its slope below 15 K suggest that magnetic phase transition associated to the abrupt occurrence of spin-reorientation. The Néel temperature (TN) and spin-reorientation temperature (TS) of LiFe0.9Mg0.1PO4 are lower than those of pure LiFePO4 (TN = 51 K, TS = 23 K). This is due to the Fe-O-Fe superexchange interaction being larger than that of the Fe-O-Mg link. Also, we have confirmed a change in the electric quadrupole splitting (ΔEQ) by the spin-orbit coupling effect and the shape of Mössbauer spectrum has provided the evidence for TS and a strong crystalline field. We have found that Mg ions in LiFe0.9Mg0.1PO4 induce an asymmetric charge density due to the presence of Mg2+ ions at the FeO6 octahedral sites.

  10. Formation of Ni3Fe nanoparticles as studied using Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Parvathy, N. S.; Govindaraj, R.; Vinod, K.; Amarendra, G.

    2018-05-01

    Nickel and iron in the ratio of 3:1 have been taken and subjected to high energy ball milling and systematic post annealing treatments to obtain Ni3Fe. Structural and bulk magnetic properties have been deduced using XRD and magnetization studies, while the results of Mössbauer studies are used to deduce distinct 57Fe sites based on the hyperfine parameters. Formation of disordered Ni3Fe has been elucidated based on this study.

  11. Ultra-soft magnetic properties and correlated phase analysis by 57Fe Mössbauer spectroscopy of Fe74Cu0.8Nb2.7Si15.5B7 alloy

    NASA Astrophysics Data System (ADS)

    Manjura Hoque, S.; Liba, S. I.; Anirban, A.; Choudhury, Shamima; Akhter, Shireen

    2016-02-01

    A detailed study of magnetic softness has been performed on FINEMENT type of ribbons by investigating the BH loop with maximum applied field of 960 A/m. The ribbon with the composition of Fe74Cu0.8Nb2.7Si15.5B7 was synthesized by rapid solidification technique and the compositions volume fraction was controlled by changing the annealing condition. Detail phase analysis was performed through X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Vibrating sample magnetometer (VSM) and Mössbauer spectroscopy in order to correlate the ultrasoft magnetic properties with the volume fraction of amorphous and α-Fe(Si) soft nano composites. Bright (BF) and dark field (DF) image with selective area diffraction (SAD) patterns by the transmission electron microscopy (TEM) of the sample annealed for the optimized annealed condition at 853 K for 3 min reveals nanocrystals with an average size between 10-15 nm possessing the bcc structure which matches with the grain size revealed by the X-ray diffraction. Kinetics of crystallization of α-Fe(Si) phases has been determined by DSC curves. Extremely small coercivity of 30.9 A/m and core loss of 2.5 W/Kg for the sample annealed at 853 K for 3 min was found. Similar values for other crystalline conditions were determined by using BH loop tracer with a maximum applied field of around 960 A/m. Mössbauer spectroscopy was used to determine chemical shift, hyperfine field distribution (HFD), and peak width of different phases. The volume fractions of the relative amount of amorphous and crystalline phases are also determined by Mössbauer spectroscopy. High saturation magnetization along with ultrasoft magnetic properties exhibits very high potentials technological applications.

  12. Optical, electrical, and magnetic field studies of organic materials for light emitting diodes and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Basel, Tek Prasad

    We studied optical, electrical, and magnetic field responses of films and devices based on organic semiconductors that are used for organic light emitting diodes (OLEDs) and photovoltaic (OPV) solar cell applications. Our studies show that the hyperfine interaction (HFI)-mediated spin mixing is the key process underlying various magnetic field effects (MFE) and spin transport in aluminum tris(8-hydroxyquinoline)[Alq3]-based OLEDs and organic spin-valve (OSV). Conductivity-detected magnetic resonance in OLEDs and magneto-resistance (MR) in OSVs show substantial isotope dependence. In contrast, isotope-insensitive behavior in the magneto-conductance (MC) of same devices is explained by the collision of spin ½ carriers with triplet polaron pairs. We used steady state optical spectroscopy for studying the energy transfer dynamics in films and OLEDs based on host-guest blends of the fluorescent polymer and phosphorescent molecule. We have also studied the magnetic-field controlled color manipulation in these devices, which provide a strong proof for the `polaron-pair' mechanism underlying the MFE in organic devices. The critical issue that hampers organic spintronics device applications is significant magneto-electroluminescence (MEL) at room temperature (RT). Whereas inorganic spin valves (ISVs) show RT magneto-resistance, MR>80%, however, the devices do not exhibit electroluminescence (EL). In contrast, OLEDs show substantive EL emission, and are particularly attractive because of their flexibility, low cost, and potential for multicolor display. We report a conceptual novel hybrid organic/inorganic spintronics device (h-OLED), where we employ both ISV with large MR at RT, and OLED that has efficient EL emission. We investigated the charge transfer process in an OPV solar cell through optical, electrical, and magnetic field measurements of thin films and devices based on a low bandgap polymer, PTB7 (fluorinated poly-thienothiophene-benzodithiophene). We found that one of the major losses that limit the power conversion efficiency of OPV devices is the formation of triplet excitons in the polymer through recombination of charge-transfer (CT) excitons at the interface, and presented a method to suppress the dissociation of CT states by incorporating the spin ½ additive, galvinoxyl in the bulk heterojunction architecture of the active organic blend layer.

  13. Structural phase transition of as-synthesized Sr-Mn nanoferrites by annealing temperature

    NASA Astrophysics Data System (ADS)

    Amer, M. A.; Meaz, T. M.; Attalah, S. S.; Ghoneim, A. I.

    2015-11-01

    The Sr0.2Mn0.8Fe2O4 nanoparticle ferrites were synthesized by the co-precipitation method and annealed at different temperatures T. XRD, TEM, FT-IR, VSM and Mössbauer techniques were used to characterize the samples. This study proved that the structural phase of nanoferrites was transformed from cubic spinel for T≤500 °C to Z-type hexagonal for T≥700 °C. The structural transformation was attributed to Jahn-Teller effect of the Mn3+ ions and/or atomic disorder existed in the crystal lattice. The obtained spectra and parameters for the samples were affected by the transformation process. The lattice constant a showed a splitting to a and c for T>500 °C. The lattice constant c, grain and crystallite size R, strain, octahedral B-site band position and force constant, Debye temperature, coercivity Hc, remnant magnetization, squareness and magnetic moment, spontaneous magnetization and hyperfine magnetic fields showed increase against T. The lattice constant a, distortion and dislocation parameters, specific surface area, tetrahedral A-site band position and force constant, threshold frequency, Young's and bulk moduli, saturation magnetization Ms, area ratio of B-/A-sites, A-site line width were decreased with T. Experimental and theoretical densities, porosity, Poison ratio, stiffness constants, rigidity modulus, B-site line width and spontaneous magnetization showed dependence on T, whereas Ms and Hc proved dependence on R.

  14. An analysis of the rotational, fine and hyperfine effects in the (0, 0) band of the A7Π- X7Σ + transition of manganese monohydride, MnH

    NASA Astrophysics Data System (ADS)

    Gengler, Jamie J.; Steimle, Timothy C.; Harrison, Jeremy J.; Brown, John M.

    2007-02-01

    High-resolution (±0.003 cm -1), laser induced fluorescence (LIF) spectra of a supersonic molecular beam sample of manganese monohydride, MnH, have been recorded in the 17500-17800 cm -1 region of the (0, 0) band of the A7Π- X7Σ + system. The low- N branch features were modeled successfully by inclusion of the magnetic hyperfine mixings of spin components within a given low- N rotational level using a traditional 'effective' Hamiltonian approach. An improved set of spectroscopic constants has been extracted and compared with those from previous analyses. The optimum optical features for future optical Stark and Zeeman measurements are identified.

  15. Structural, magnetic, magneto-caloric and Mössbauer spectral study of Tb{sub 2}Fe{sub 17} compound synthesized by arc melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charfeddine, S.; LVMU, Centre National de Recherches en Sciences des Matériaux, Technopole de Borj-Cédria, BP 73 Soliman 8027; Zehani, K.

    We have synthesized the intermetallic Tb{sub 2}Fe{sub 17} compound in hexagonal crystal structure by arc-melting without annealing. X-ray diffraction pattern has been refined by Rietveld method. The crystal structure is hexagonal with P6{sub 3}/mmc space group (Th{sub 2}Ni{sub 17}-type). The Mössbauer spectrum of Tb{sub 2}Fe{sub 17} compound has been analyzed with seven magnetic sextets assigned to the inequivalent crystallographic sites. The temperature dependence of magnetization data revealed that Tb{sub 2}Fe{sub 17} exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of Curie temperature (T{sub C}=412 K). The relative cooling power around the magnetic transition and the Arrott plotsmore » are also reported. - Graphical abstract: A 3D surface showing the temperature and applied magnetic field dependencies of the magnetization for Tb{sub 2}Fe{sub 17} compound (left). Rietveld analysis of the XRD pattern (right). Crystal structure for the hexagonal P6{sub 3}/mmc Tb{sub 2}Fe{sub 17} (bottom). Display Omitted - Highlights: • Tb{sub 2}Fe{sub 17} single-phase synthesized by simple arc-melting without any heat treatment. • The crystal structure is hexagonal with P6{sub 3}/mmc space group. • The magnetic entropy change of the sample was determined by Maxwell relation. • Hyperfine parameters, magnetic and magnetocaloric properties were studied.« less

  16. Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method

    NASA Astrophysics Data System (ADS)

    Kurian, Jessyamma; Mathew, M. Jacob

    2018-04-01

    In this paper we report the structural, optical and magnetic studies of three spinel ferrites namely CuFe2O4, MgFe2O4 and ZnFe2O4 prepared in an autoclave under the same physical conditions but with two different liquid medium and different surfactant. We use water as the medium and trisodium citrate as the surfactant for one method (Hydrothermal method) and ethylene glycol as the medium and poly ethylene glycol as the surfactant for the second method (solvothermal method). The phase identification and structural characterization are done using XRD and morphological studies are carried out by TEM. Cubical and porous spherical morphologies are obtained for hydrothermal and solvothermal process respectively without any impurity phase. The optical studies are carried out using FTIR and UV-Vis reflectance spectra. In order to elucidate the nonlinear optical behaviour of the prepared nanomaterial, open aperture z-scan technique is used. From the fitted z-scan curves nonlinear absorption coefficient and the saturation intensity are determined. The magnetic characterization of the samples is performed at room temperature using vibrating sample magnetometer measurements. The M-H curves obtained are fitted using theoretical equation and the different components of magnetization are determined. Nanoparticles with high saturation magnetization are obtained for MgFe2O4 and ZnFe2O4 prepared under solvothermal reaction. The magnetic hyperfine parameters and the cation distribution of the prepared materials are determined using room temperature Mössbauer spectroscopy. The fitted spectra reveal the difference in the magnetic hyperfine parameters owing to the change in size and morphology.

  17. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field

    NASA Astrophysics Data System (ADS)

    Thurber, Kent R.; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J. R.

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower magnetic field. Another conclusion from the calculations is that a verdazyl-nitroxide bi-radical would be expected to be slightly better for cross-effect DNP than the nitroxide-nitroxide bi-radicals commonly used now, assuming the same spin-spin coupling constants.

  18. Local moment formation and magnetic coupling of Mn dopants in Bi2Se3: A low-temperature ferromagnetic resonance study

    NASA Astrophysics Data System (ADS)

    Savchenko, D.; Tarasenko, R.; Vališka, M.; Kopeček, J.; Fekete, L.; Carva, K.; Holý, V.; Springholz, G.; Sechovský, V.; Honolka, J.

    2018-05-01

    We compare the magnetic and electronic configuration of single Mn atoms in molecular beam epitaxy (MBE) grown Bi2Se3 thin films, focusing on electron paramagnetic (ferromagnetic) resonance (EPR and FMR, respectively) and superconducting quantum interference device (SQUID) techniques. X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) reveal the expected increase of disorder with increasing concentration of magnetic guest atoms, however, Kikuchi patterns show that disorder consists majorly of μm-scale 60° twin domains in the hexagonal Bi2Se3 structure, which are promoted by the presence of single unclustered Mn impurities. Ferromagnetism below TC (5.4±0.3) K can be well described by critical scaling laws M (T) (1 - T /TC) β with a critical exponent β = (0.34 ± 0.2) , suggesting 3D Heisenberg class magnetism instead of e.g. 2D-type coupling between Mn-spins in van der Waals gap sites. From EPR hyperfine structure data we determine a Mn2+ (d5, S = 5/2) electronic configuration with a g-factor of 2.002 for -1/2 → +1/2 transitions. In addition, from the strong dependence of the low temperature FMR fields and linewidth on the field strength and orientation with respect to the Bi2Se3 (0001) plane, we derive magnetic anisotropy energies of up to K1 = -3720 erg/cm3 in MBE-grown Mn-doped Bi2Se3, reflecting the first order magneto-crystalline anisotropy of an in-plane magnetic easy plane in a hexagonal (0001) crystal symmetry. We observe an increase of K1 with increasing Mn concentration, which we interpret to be correlated to a Mn-induced in-plane lattice contraction. Across the ferromagnetic-paramagnetic transition the FMR intensity is suppressed and resonance fields converge the paramagnetic limit of Mn2+ (d5, S = 5/2).

  19. Iron films deposited on porous alumina substrates

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Tanabe, Kenichi; Nishida, Naoki; Kobayashi, Yoshio

    2016-12-01

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 - 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  20. Martensitic phase transformations in the nanostructured surface layers induced by mechanical attrition treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni Zhichun; Wang Xiaowei; Wu Erdong

    2005-12-01

    Conversion electron Moessbauer spectroscopy (CEMS) and x-ray diffraction (XRD) analysis have been used to investigate the relationship between characteristics of phase transformation and the treatment time in surface nanocrystallized 316L stainless steel induced by surface mechanical attrition treatment (SMAT). A similar trend of development of the martensitic phase upon the treatment time has been observed from both CEMS and XRD measurements. However, in the CEMS measurement, two types of martensite phase with different magnetic hyperfine fields are revealed. Based on a random distribution of the non-iron coordinating atoms, a three-element theoretical model is developed to illustrate the difference of twomore » types of martensite phase. The calculated results indicate the segregation of the non-iron atoms associated with SMAT treatment.« less

  1. The high-power iodine laser

    NASA Astrophysics Data System (ADS)

    Brederlow, G.; Fill, E.; Witte, K. J.

    The book provides a description of the present state of the art concerning the iodine laser, giving particular attention to the design and operation of pulsed high-power iodine lasers. The basic features of the laser are examined, taking into account aspects of spontaneous emission lifetime, hyperfine structure, line broadening and line shifts, stimulated emission cross sections, the influence of magnetic fields, sublevel relaxation, the photodissociation of alkyl iodides, flashlamp technology, excitation in a direct discharge, chemical excitation, and questions regarding the chemical kinetics of the photodissociation iodine laser. The principles of high-power operation are considered along with aspects of beam quality and losses, the design and layout of an iodine laser system, the scalability and prospects of the iodine laser, and the design of the single-beam Asterix III laser.

  2. Mechanically - induced disorder in CaFe2As2: a 57Fe Mössbauer study

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; Bud'Ko, Sergey L.

    57 Fe Mössbauer spectroscopy was used to study an extremely pressure and strain sensitive compound, CaFe2As2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe2As2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe2As2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe2As2 can be inhomogeneously suppressed by the grinding induced strain to such an extent that the antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. The quadrupole shift in the magnetic phase approachs zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position. Supported by US DOE under the Contract No. DE-AC02-07CH11358 and by the China Scholarship Council.

  3. Magnetic nanoparticles coated with polyaniline to stabilize immobilized trypsin

    NASA Astrophysics Data System (ADS)

    Maciel, J. C.; D. Mercês, A. A.; Cabrera, M.; Shigeyosi, W. T.; de Souza, S. D.; Olzon-Dionysio, M.; Fabris, J. D.; Cardoso, C. A.; Neri, D. F. M.; C. Silva, M. P.; Carvalho, L. B.

    2016-12-01

    It is reported the synthesis of magnetic nanoparticles via the chemical co-precipitation of Fe 3+ ions and their preparation by coating them with polyaniline. The electronic micrograph analysis showed that the mean diameter for the nanoparticles is ˜15 nm. FTIR, powder X-ray diffraction and Mössbauer spectroscopy were used to understand the chemical, crystallographic and 57Fe hyperfine structures for the two samples. The nanoparticles, which exhibited magnetic behavior with relatively high spontaneous magnetization at room temperature, were identified as being mainly formed by maghemite ( γFe2O3). The coated magnetic nanoparticles (sample labeled "mPANI") presented a real ability to bind biological molecules such as trypsin, forming the magnetic enzyme derivative (sample "mPANIG-Trypsin"). The amount of protein and specific activity of the immobilized trypsin were found to be 13±5 μg of protein/mg of mPANI (49.3 % of immobilized protein) and 24.1±0.7 U/mg of immobilized protein, respectively. After 48 days of storage at 4 ∘C, the activity of the immobilized trypsin was found to be 89 % of its initial activity. This simple, fast and low-cost procedure was revealed to be a promising way to prepare mPANI nanoparticles if technological applications addressed to covalently link biomolecules are envisaged. This route yields chemically stable derivatives, which can be easily recovered from the reaction mixture with a magnetic field and recyclable reused.

  4. Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Zunger, Alex

    1985-06-01

    We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.

  5. Revealing the Cu(2+) ions localization at low symmetry Bi sites in photorefractive Bi12GeO20 crystals doped with Cu and V by high frequency EPR.

    PubMed

    Nistor, Sergiu V; Stefan, Mariana; Goovaerts, Etienne; Ramaz, François; Briat, Bernard

    2015-10-01

    The sites of incorporation of Cu(2+) impurity ions in Bi12GeO20 single crystals co-doped with copper and vanadium have been investigated by electron paramagnetic resonance (EPR). While the X-band EPR spectra consist of a simple broad (ΔB ∼50 mT) line with anisotropic lineshape, the W-band EPR spectra exhibit well resolved, strongly anisotropic lines, due to transitions within the 3d(9)-(2)D ground manifold of the Cu(2+) ions. The most intense group of lines, attributed to the dominant Cu(2+)(I) center, displays a characteristic four components hyperfine structure for magnetic field orientations close to a 〈110〉 direction. The g and A tensor main axes are very close to one of the 12 possible sets of orthogonal 〈1-10〉, 〈00-1〉 and 〈110〉 crystal directions. Several less intense lines, with unresolved hyperfine structure and similar symmetry properties, mostly overlapped by the Cu(2+)(I) spectrum, were attributed to Cu(2+)(II) centers. The two paramagnetic centers are identified as substitutional Cu(2+) ions at Bi(3+) sites with low C1 symmetry, very likely resulting from different configurations of neighboring charge compensating defects. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Kananen, B. E.; Halliburton, L. E.; Scherrer, E. M.; Stevens, K. T.; Foundos, G. K.; Chang, K. B.; Giles, N. C.

    2017-08-01

    Electron paramagnetic resonance (EPR) is used to directly observe and characterize neutral Mg acceptors ( M gGa0 ) in a β-Ga2O3 crystal. These acceptors, best considered as small polarons, are produced when the Mg-doped crystal is irradiated at or near 77 K with x rays. During the irradiation, neutral acceptors are formed when holes are trapped at singly ionized Mg acceptors ( M gGa- ). Unintentionally present Fe3+ (3d5) and Cr3+ (3d3) transition-metal ions serve as the corresponding electron traps. The hole is localized in a nonbonding p orbital on a threefold-coordinated oxygen ion adjacent to an Mg ion at a sixfold-coordinated Ga site. These M gGa0 acceptors (S = 1/2) have a slightly anisotropic g matrix (principal values are 2.0038, 2.0153, and 2.0371). There is also partially resolved 69Ga and 71Ga hyperfine structure resulting from unequal interactions with the two Ga ions adjacent to the hole. With the magnetic field along the a direction, hyperfine parameters are 2.61 and 1.18 mT for the 69Ga nuclei at the two inequivalent neighboring Ga sites. The M gGa0 acceptors thermally convert back to their nonparamagnetic M gGa- charge state when the temperature of the crystal is raised above approximately 250 K.

  7. Topological vortex formation in a Bose-Einstein condensate under gravitational field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawaguchi, Yuki; Ohmi, Tetsuo; Nakahara, Mikio

    2004-10-01

    Topological phase imprinting is a unique technique for vortex formation in a Bose-Einstein condensate (BEC) of an alkali-metal gas, in that it does not involve rotation: the BEC is trapped in a quadrupole field with a uniform bias field which is reversed adiabatically leading to vortex formation at the center of the magnetic trap. The scenario has been experimentally verified by Leanhardt et al. employing {sup 23}Na atoms. Recently similar experiments have been conducted by Hirotani et al. in which a BEC of {sup 87}Rb atoms was used. In the latter experiments the authors found that fine-tuning of the fieldmore » reverse time T{sub rev} is required to achieve stable vortex formation. Otherwise, they often observed vortex fragmentation or a condensate without a vortex. It is shown in this paper that this behavior can be attributed to the heavy mass of the Rb atom. The confining potential, which depends on the eigenvalue m{sub B} of the hyperfine spin F along the magnetic field, is now shifted by the gravitational field perpendicular to the vortex line. Then the positions of two weak-field-seeking states with m{sub B}=1 and 2 deviate from each other. This effect is more prominent for BECs with a heavy atomic mass, for which the deviation is greater and, moreover, the Thomas-Fermi radius is smaller. We found, by solving the Gross-Pitaevskii equation numerically, that two condensates interact in a very complicated way leading to fragmentation of vortices, unless T{sub rev} is properly tuned.« less

  8. Mixed valent stannide EuRuSn 3 - Structure, magnetic properties, and Mössbauer spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Harmening, Thomas; Hermes, Wilfried; Eul, Matthias; Pöttgen, Rainer

    2010-02-01

    The stannide EuRuSn 3 was synthesized by induction melting of the elements in a sealed tantalum tube in a water-cooled quartz glass sample chamber. The structure was refined on the basis of single crystal X-ray diffractometer data (LaRuSn 3 type, Pm3¯n, a = 976.0(1) pm, wR2 = 0.0399, 317 F2 values, and 13 variables). EuRuSn 3 shows modified Curie-Weiss behaviour in the temperature range 50-305 K with an experimental magnetic moment of 7.34(1) μB per formula unit. Thus, the europium atoms are not in a purely divalent state. Low field susceptibility measurement indicates a ferro- or ferrimagnetic ordering at TC = 11.2(2) K and magnetization measurements indicate EuRuSn 3 as a non-collinear ferro- or ferrimagnet. 151Eu Mössbauer spectroscopic measurements suggested one europium site to be static mixed valent with a Eu 2+/Eu 3+ ratio close to one and the other site purely divalent. This was supported by substituting the Eu 3+ atoms with Y 3+ in a sample with a composition of Eu 0.7Y 0.3RuSn 3 ( a = 971.24(8) pm, wR2 = 0.0485, 313 F2 values, 14 variables). The 119Sn Mössbauer spectra show a pronounced Gol'danskii-Karyagin effect in the paramagnetic range and a magnetic hyperfine field distribution at 4.2 K, due to the complex magnetic structure. The influence of the valence electron concentration on the europium valence was tested via Ru/Pd substitution. A EuRu 0.8Pd 0.2Sn 3 sample shows almost purely divalent europium.

  9. High-efficiency optical pumping of nuclear polarization in a GaAs quantum well

    NASA Astrophysics Data System (ADS)

    Mocek, R. W.; Korenev, V. L.; Bayer, M.; Kotur, M.; Dzhioev, R. I.; Tolmachev, D. O.; Cascio, G.; Kavokin, K. V.; Suter, D.

    2017-11-01

    The dynamic polarization of nuclear spins by photoexcited electrons is studied in a high quality GaAs/AlGaAs quantum well. We find a surprisingly high efficiency of the spin transfer from the electrons to the nuclei as reflected by a maximum nuclear field of 0.9 T in a tilted external magnetic field of 1 T strength only. This high efficiency is due to a low leakage of spin out of the polarized nuclear system, because mechanisms of spin relaxation other than the hyperfine interaction are strongly suppressed, leading to a long nuclear relaxation time of up to 1000 s. A key ingredient to that end is the low impurity concentration inside the heterostructure, while the electrostatic potential from charged impurities in the surrounding barriers becomes screened through illumination by which the spin relaxation time is increased compared to keeping the system in the dark. This finding indicates a strategy for obtaining high nuclear spin polarization as required for long-lasting carrier spin coherence.

  10. The electric dipole moment of cobalt monoxide, CoO.

    PubMed

    Zhuang, Xiujuan; Steimle, Timothy C

    2014-03-28

    A number of low-rotational lines of the E(4)Δ7/2 ← X(4)Δ7/2 (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h7/2, and the electron quadrupole parameter, eQq0, for the E(4)Δ7/2(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ(→)(el), for the X(4)Δ7/2 (υ = 0) and E(4)Δ7/2 (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F' = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F' = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  11. Development of a collinear laser spectrometer facility at VECC: First test result

    NASA Astrophysics Data System (ADS)

    Ali, Md Sabir; Ray, Ayan; Raja, Waseem; Bandyopadhyay, Arup; Naik, Vaishali; Polley, Asish; Chakrabarti, Alok

    2018-04-01

    We report here the development of collinear laser spectroscopy (CLS) system at VECC for the study of hyperfine spectrum and isotopic shift of stable and unstable isotopes. The facility is first of its kind in the country allowing measurement of hyperfine splitting of atomic levels using atomic beams. The CLS system is installed downstream of the focal plane of the existing isotope separator online (ISOL) facility at VECC and is recently commissioned by successfully resolving the fluorescence spectrum of the hyperfine levels in ^{85,87}Rb. The atomic beams of Rb were produced by charge exchange of 8 keV Rb ion beam which were produced, extracted and transported to the charge exchange cell using the ion sources, extractor and the beam-line magnets of the ISOL facility. The laser propagating opposite to the ion / atom beam direction was allowed to interact with the atom beam and fluorescence spectrum was recorded. The experimental set-up and the experiment conducted are reported in detail. The measures needed to be carried out for improving the sensitivity to a level necessary for studying short-lived exotic nuclei have also been discussed.

  12. Hyperfine rather than spin splittings dominate the fine structure of the B (4)Σ(-)-X (4)Σ(-) bands of AlC.

    PubMed

    Clouthier, Dennis J; Kalume, Aimable

    2016-01-21

    Laser-induced fluorescence and wavelength resolved emission spectra of the B (4)Σ(-)-X (4)Σ(-) band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming bβS magnetic hyperfine coupling in the excited state, due to a substantial Fermi contact interaction of the unpaired electron in the aluminum 3s orbital. Rotational analysis has yielded ground and excited state equilibrium bond lengths in good agreement with the literature and our own ab initio values. Small discrepancies in the calculated intensities of the hyperfine lines suggest that the upper state spin-spin constant λ' is of the order of ≈ 0.025-0.030 cm(-1).

  13. Hyperfine structure parametrisation in Maple

    NASA Astrophysics Data System (ADS)

    Gaigalas, G.; Scharf, O.; Fritzsche, S.

    2006-02-01

    In hyperfine structure examinations, routine high resolution spectroscopy methods have to be combined with exact fine structure calculations. The so-called magnetic A and electric B factor of the fine structure levels allow to check for a correct fine structure analysis, to find errors in the level designation, to find new levels and to probe the electron wavefunctions and its mixing coefficients. This is done by parametrisation of these factors into different contributions of the subshell electrons, which are split further into their radial and spin-angular part. Due to the routine with which hyperfine structure measurements are done, a tool for keeping the necessary information together, performing checks online with the experiment and deriving standard quantities is of great help. MAPLE [Maple is a registered trademark of Waterloo Maple Inc.] is a highly-developed symbolic programming language, often referred to as the pocket calculator of the future. Packages for theoretical atomic calculation exist ( RACAH and JUCYS) and the language meets all the requirements to keep and present information accessible for the user in a fast and practical way. We slightly extended the RACAH package [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51] and set up an environment for experimental hyperfine structure calculations, the HFS package. Supplying the fine structure and nuclear data, one is in the position to obtain information about the hyperfine spectrum, the different contributions to the splitting and to perform a least square fit of the radial parameters based on the semiempirical method. Experimentalist as well as theoretical physicist can do a complete hyperfine structure analysis using MAPLE. Program summaryTitle of program: H FS Catalogue number: ADXD Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXD Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers for which the program is designed: All computers with a license of the computer algebra package MAPLE Installations: University of Kassel (Germany) Operating systems under which the program has been tested: Linux 9.0 Program language used:MAPLE, Release 7, 8 and 9 Memory required to execute with typical data: 5 MB No. of lines in distributed program, including test data, etc.: 34 300 No. of bytes in distributed program, including test data, etc.: 954 196 Distribution format: tar.gz Nature of the physical problem: Atomic state functions of an many configuration many electron atom with several open shells are defined by a number of quantum numbers, by their coupling and selection rules such as the Pauli exclusion principal or parity conservation. The matrix elements of any one-particle operator acting on these wavefunctions can be analytically integrated up to the radial part [G. Gaigalas, O. Scharf, S. Fritzsche, Central European J. Phys. 2 (2004) 720]. The decoupling of the interacting electrons is general, the obtained submatrix element holds all the peculiarities of the operator in question. These so-called submatrix elements are the key to do hyperfine structure calculations. The interaction between the electrons and the atomic nucleus leads to an additional splitting of the fine structure lines, the hyperfine structure. The leading components are the magnetic dipole interaction defining the so-called A factor and the electric quadrupole interaction, defining the so-called B factor. They express the energetic splitting of the spectral lines. Moreover, they are obtained directly by experiments and can be calculated theoretically in an ab initio approach. A semiempirical approach allows the fitting of the radial parts of the wavefunction to the experimentally obtained A and B factors. Method of solution: Extending the existing csf_LS() and asf_LS() to several open shells and implementing a data structure level_LS() for the fine structure level, the atomic environment is defined in MAPLE. It is used in a general approach to decouple the interacting shells for any one-particle operator. Further submatrix elements for the magnetic dipole and electric quadrupole interaction are implemented, allowing to calculate the A and B factors up to the radial part. Several procedures for standard quantities of the hyperfine structure are defined, too. The calculations are accelerated by using a hyper-geometric approach for three, six and nine symbols. Restrictions onto the complexity of the problem: Only atomic state functions in nonrelativistic LS-coupling with states having l⩽3 are supported. Typical running time: The program replies promptly on most requests. The least square fit depends heavily on the number of levels and can take a few minutes.

  14. Ultra-soft magnetic properties and correlated phase analysis by {sup 57}Fe Mössbauer spectroscopy of Fe{sub 74}Cu{sub 0.8}Nb{sub 2.7}Si{sub 15.5}B{sub 7} alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjura Hoque, S.; Liba, S. I.; Akhter, Shireen

    2016-02-15

    A detailed study of magnetic softness has been performed on FINEMENT type of ribbons by investigating the BH loop with maximum applied field of 960 A/m. The ribbon with the composition of Fe{sub 74}Cu{sub 0.8}Nb{sub 2.7}Si{sub 15.5}B{sub 7} was synthesized by rapid solidification technique and the compositions volume fraction was controlled by changing the annealing condition. Detail phase analysis was performed through X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Vibrating sample magnetometer (VSM) and Mössbauer spectroscopy in order to correlate the ultrasoft magnetic properties with the volume fraction of amorphous and α-Fe(Si) soft nano composites. Bright (BF) and dark fieldmore » (DF) image with selective area diffraction (SAD) patterns by the transmission electron microscopy (TEM) of the sample annealed for the optimized annealed condition at 853 K for 3 min reveals nanocrystals with an average size between 10-15 nm possessing the bcc structure which matches with the grain size revealed by the X-ray diffraction. Kinetics of crystallization of α-Fe(Si) phases has been determined by DSC curves. Extremely small coercivity of 30.9 A/m and core loss of 2.5 W/Kg for the sample annealed at 853 K for 3 min was found. Similar values for other crystalline conditions were determined by using BH loop tracer with a maximum applied field of around 960 A/m. Mössbauer spectroscopy was used to determine chemical shift, hyperfine field distribution (HFD), and peak width of different phases. The volume fractions of the relative amount of amorphous and crystalline phases are also determined by Mössbauer spectroscopy. High saturation magnetization along with ultrasoft magnetic properties exhibits very high potentials technological applications.« less

  15. Quantum Magnetism Applied to the Iron-Pnictides and Rare Earth Pyrochlores

    NASA Astrophysics Data System (ADS)

    Applegate, Ryan

    This dissertation presents computational studies of two families of magnetic materials of significant current interest. The iron pnictides are new high temperature superconductors with interesting parent compound antiferromagnetism. The rare earth pyrochlore material Yb2Ti2O7 is a candidate quantum spin ice. The magnetic and structural phases of individual iron pnictides have both many common features and material specific differences. In an attempt to unify these behaviors as instances of a larger theoretical picture, we use Monte Carlo simulations of a two-dimensional Hamiltonian with coupled Heisenberg-spin and Ising-orbital degrees of freedom. We introduce spin-space and single-ion anisotropies and study the finite temperature transitions in our model. We develop a phase diagram and propose that the interplay of spin and orbital physics in the presence of anisotropy could explain how material details affect the transitions of the pnictide materials. Nuclear magnetic resonance (NMR) can study magnetic materials via the hyperfine interaction and the coupling between the nuclear moment and the field produced by the samples local moment environment. Recent measurements suggest that Zn doped BaFe2As2 may have quantum fluctuations about the striped phase that produce a distribution of fields at As nuclear sites. The non-magnetic ion Zn replaces Fe and can be treated as an impurity which can be studied by a zero-temperature Ising Series expansion method. We propose a Heisenberg-like J1a-J 1b-J2 model which has small ferromagnetic exchanges along the b axis and strong antiferromagnetic exchanges along the a axis. In our impurity model we find that the magnetic moments are everywhere reduced by quantum fluctuations, except on the nearest neighbor site in the AFM direction. We suggest that the presented impurity model may provide an explanation for the experimental measurements. Based on a recently proposed quantum spin ice model, we use numerical linked cluster (NLC) expansions to study thermodynamic properties of Yb 2Ti2O7. We show that high field fitting of inelastic neutron scattering experiments is an excellent method in determining the exchange constants of these materials. We calculate the heat capacity, entropy and magnetization as a function of temperature and field along a few high symmetry field directions. We compare our theoretical predictions to experiments and find remarkable agreement. These studies highlight the importance of localized model Hamiltonians in understanding magnetic properties of complex materials.

  16. Hierarchically structured nanowires on and nanosticks in ZnO microtubes

    PubMed Central

    Rivaldo-Gómez, C. M.; Cabrera-Pasca, G. A.; Zúñiga, A.; Carbonari, A. W.; Souza, J. A.

    2015-01-01

    We report both coaxial core-shell structured microwires and ZnO microtubes with growth of nanosticks in the inner and nanowires on the outer surface as a novel hierarchical micro/nanoarchitecture. First, a core-shell structure is obtained—the core is formed by metallic Zn and the semiconducting shell is comprised by a thin oxide layer covered with a high density of nanowires. Such Zn/ZnO core-shell array showed magnetoresistance effect. It is suggested that magnetic moments in the nanostructured shell superimposes to the external magnetic field enhancing the MR effect. Second, microtubes decorated with nanowires on the external surface are obtained. In an intermediate stage, a hierarchical morphology comprised of discrete nanosticks in the inner surface of the microtube has been found. Hyperfine interaction measurements disclosed the presence of confined metallic Zn regions at the interface between linked ZnO grains forming a chain and a ZnO thicker layer. Surprisingly, the metallic clusters form highly textured thin flat regions oriented parallel to the surface of the microtube as revealed by the electrical field gradient direction. The driving force to grow the internal nanosticks has been ascribed to stress-induced migration of Zn ions due to compressive stress caused by the presence of these confined regions. PMID:26456527

  17. Spin coherence and 14N ESEEM effects of nitrogen-vacancy centers in diamond with X-band pulsed ESR

    NASA Astrophysics Data System (ADS)

    Rose, B. C.; Weis, C. D.; Tyryshkin, A. M.; Schenkel, T.; Lyon, S. A.

    2017-02-01

    Pulsed ESR experiments are reported for ensembles of negatively-charged nitrogen-vacancy centers (NV$^-$) in diamonds at X-band magnetic fields (280-400 mT) and low temperatures (2-70 K). The NV$^-$ centers in synthetic type IIb diamonds (nitrogen impurity concentration $<1$~ppm) are prepared with bulk concentrations of $2\\cdot 10^{13}$ cm$^{-3}$ to $4\\cdot 10^{14}$ cm$^{-3}$ by high-energy electron irradiation and subsequent annealing. We find that a proper post-radiation anneal (1000$^\\circ$C for 60 mins) is critically important to repair the radiation damage and to recover long electron spin coherence times for NV$^-$s. After the annealing, spin coherence times of T$_2 = 0.74$~ms at 5~K are achieved, being only limited by $^{13}$C nuclear spectral diffusion in natural abundance diamonds. At X-band magnetic fields, strong electron spin echo envelope modulation (ESEEM) is observed originating from the central $^{14}$N nucleus. The ESEEM spectral analysis allows for accurate determination of the $^{14}$N nuclear hypefine and quadrupole tensors. In addition, the ESEEM effects from two proximal $^{13}$C sites (second-nearest neighbor and fourth-nearest neighbor) are resolved and the respective $^{13}$C hyperfine coupling constants are extracted.

  18. Molecular order and T1-relaxation, cross-relaxation in nitroxide spin labels

    NASA Astrophysics Data System (ADS)

    Marsh, Derek

    2018-05-01

    Interpretation of saturation-recovery EPR experiments on nitroxide spin labels whose angular rotation is restricted by the orienting potential of the environment (e.g., membranes) currently concentrates on the influence of rotational rates and not of molecular order. Here, I consider the dependence on molecular ordering of contributions to the rates of electron spin-lattice relaxation and cross relaxation from modulation of N-hyperfine and Zeeman anisotropies. These are determined by the averages and , where θ is the angle between the nitroxide z-axis and the static magnetic field, which in turn depends on the angles that these two directions make with the director of uniaxial ordering. For saturation-recovery EPR at 9 GHz, the recovery rate constant is predicted to decrease with increasing order for the magnetic field oriented parallel to the director, and to increase slightly for the perpendicular field orientation. The latter situation corresponds to the usual experimental protocol and is consistent with the dependence on chain-labelling position in lipid bilayer membranes. An altered dependence on order parameter is predicted for saturation-recovery EPR at high field (94 GHz) that is not entirely consistent with observation. Comparisons with experiment are complicated by contributions from slow-motional components, and an unexplained background recovery rate that most probably is independent of order parameter. In general, this analysis supports the interpretation that recovery rates are determined principally by rotational diffusion rates, but experiments at other spectral positions/field orientations could increase the sensitivity to order parameter.

  19. Electrically detected magnetic resonance of carbon dangling bonds at the Si-face 4H-SiC/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Gruber, G.; Cottom, J.; Meszaros, R.; Koch, M.; Pobegen, G.; Aichinger, T.; Peters, D.; Hadley, P.

    2018-04-01

    SiC based metal-oxide-semiconductor field-effect transistors (MOSFETs) have gained a significant importance in power electronics applications. However, electrically active defects at the SiC/SiO2 interface degrade the ideal behavior of the devices. The relevant microscopic defects can be identified by electron paramagnetic resonance (EPR) or electrically detected magnetic resonance (EDMR). This helps to decide which changes to the fabrication process will likely lead to further increases of device performance and reliability. EDMR measurements have shown very similar dominant hyperfine (HF) spectra in differently processed MOSFETs although some discrepancies were observed in the measured g-factors. Here, the HF spectra measured of different SiC MOSFETs are compared, and it is argued that the same dominant defect is present in all devices. A comparison of the data with simulated spectra of the C dangling bond (PbC) center and the silicon vacancy (VSi) demonstrates that the PbC center is a more suitable candidate to explain the observed HF spectra.

  20. Electron Spin Polarization Transfer to ortho-H2 by Interaction of para-H2 with Paramagnetic Species: A Key to a Novel para → ortho Conversion Mechanism.

    PubMed

    Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel

    2015-05-07

    We report that at ambient temperature and with 100% enriched para-hydrogen (p-H2) dissolved in organic solvents, paramagnetic spin catalysis of para → ortho hydrogen conversion is accompanied at the onset by a negative ortho-hydrogen (o-H2) proton NMR signal. This novel finding indicates an electron spin polarization transfer, and we show here that this can only occur if the H2 molecule is dissociated upon its transient adsorption by the paramagnetic catalyst. Following desorption, o-H2 is created until the thermodynamic equilibrium is reached. A simple theory confirms that in the presence of a static magnetic field, the hyperfine coupling between unpaired electrons and nuclear spins is responsible for the observed polarization transfer. Owing to the negative electron gyromagnetic ratio, this explains the experimental results and ascertains an as yet unexplored mechanism for para → ortho conversion. Finally, we show that the recovery of o-H2 magnetization toward equilibrium can be simply modeled, leading to the para → ortho conversion rate.

  1. Advanced ion trap structures with integrated tools for qubit manipulation

    NASA Astrophysics Data System (ADS)

    Sterk, J. D.; Benito, F.; Clark, C. R.; Haltli, R.; Highstrete, C.; Nordquist, C. D.; Scott, S.; Stevens, J. E.; Tabakov, B. P.; Tigges, C. P.; Moehring, D. L.; Stick, D.; Blain, M. G.

    2012-06-01

    We survey the ion trap fabrication technologies available at Sandia National Laboratories. These include four metal layers, precision backside etching, and low profile wirebonds. We demonstrate loading of ions in a variety of ion traps that utilize these technologies. Additionally, we present progress towards integration of on-board filtering with trench capacitors, photon collection via an optical cavity, and integrated microwave electrodes for localized hyperfine qubit control and magnetic field gradient quantum gates. [4pt] This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) Program and the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Examination of the magnetic hyperthermia and other magnetic properties of CoFe2O4@MgFe2O4 nanoparticles using external field Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jeongho; Choi, Hyunkyung; Kim, Sam Jin; Kim, Chul Sung

    2018-05-01

    CoFe2O4@MgFe2O4 core/shell nanoparticles were synthesized by high temperature thermal decomposition with seed-mediated growth. The crystal structure and magnetic properties of the nanoparticles were investigated using X-ray diffractometry (XRD), vibrating sample magnetometry (VSM), and Mössbauer spectrometry. The magnetic hyperthermia properties were investigated using a MagneTherm device. Analysis of the XRD patterns showed that CoFe2O4@MgFe2O4 had a cubic spinel crystal structure with space group Fd-3m and a lattice constant (a0) of 8.3686 Å. The size and morphology of the CoFe2O4@MgFe2O4 nanoparticles were confirmed by HR-TEM. The VSM measurements showed that the saturation magnetization (MS) of CoFe2O4@MgFe2O4 was 77.9 emu/g. The self-heating temperature of CoFe2O4@MgFe2O4 was 37.8 °C at 112 kHz and 250 Oe. The CoFe2O4@MgFe2O4 core/shell nanoparticles showed the largest saturation magnetization value, while their magnetic hyperthermia properties were between those of the CoFe2O4 and MgFe2O4 nanoparticles. In order to investigate the hyperfine interactions of CoFe2O4, MgFe2O4, and CoFe2O4@MgFe2O4, we performed Mössbauer spectrometry at various temperatures. In addition, Mössbauer spectrometry of CoFe2O4@MgFe2O4 was performed at 4.2 K with applied fields of 0-4.5 T, and the results were analyzed with sextets for the tetrahedral A-site and sextets for the octahedral B-site.

  3. Fine- and hyperfine structure investigations of even configuration system of atomic terbium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.

    2017-03-01

    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  4. Hyperfine structure of atomic fluorine (F I)

    NASA Astrophysics Data System (ADS)

    Huo, Xiaoxue; Deng, Lunhua; Windholz, L.; Mu, Xiuli; Wang, Hailing

    2018-01-01

    A high resolution absorption spectrum of neutral fluorine(F I) was observed around 800 nm using concentration modulation absorption spectroscopy with a tunable Ti : Sapphire laser. The fluorine atoms were produced by discharging the mixed gases of helium and sulfur hexafluoride (SF6) in a glass tube. Thirty four hyperfine structure (hfs) resolved transitions were analyzed to obtain 23 magnetic dipole hfs constants A for 2p4(3P)3s, 2p4(3P)3p and 2p4(3P)3d configurations. The hfs constants in 2p4(3P)3s and 2p4(3P)3p configurations were compared with those obtained from experiments and calculations. Fifteen constants in 2p4(3P)3d configuration were reported - to our knowledge - for the first time.

  5. Mossbauer effect in dilute iron alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1975-01-01

    The effects of variable concentration, x, of Aluminum, Germanium, and Lanthanum atoms in Iron lattice on various Mossbauer parameters was studied. Dilute binary alloys of (Fe-Al), (Fe-Ge), (Fe-Al) containing up to x = 2 a/o of the dilute constituent were prepared in the form of ingots and rolled to a thickness of 0.001 in. Mossbauer spectra of these targets were then studied in transmission geometry to measure changes in the hyperfine field, peak widths isomer shifts as well as the ratio of the intensities of peaks (1,6) to the intensities of peaks (2,5). It was shown that the concept of effective hyperfine structure field in very dilute alloys provides a useful means of studying the effects of progressively increasing the solute concentration on host lattice properties.

  6. Calculations with spectroscopic accuracy for energies, transition rates, hyperfine interaction constants, and Landé gJ-factors in nitrogen-like Kr XXX

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, S.; Jönsson, P.; Fu, N.; Dang, W.; Guo, X. L.; Chen, C. Y.; Yan, J.; Chen, Z. B.; Si, R.

    2017-01-01

    Extensive self-consistent multi-configuration Dirac-Fock (MCDF) calculations and second-order many-body perturbation theory (MBPT) calculations are performed for the lowest 272 states belonging to the 2s22p3, 2s2p4, 2p5, 2s22p23l, and 2s2p33l (l=s, p, d) configurations of N-like Kr XXX. Complete and consistent data sets of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, AJ, BJ hyperfine interaction constants, Landé gJ-factors, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates among all these levels are given. The present MCDF and MBPT results are compared with each other and with other available experimental and theoretical results. The mean relative difference between our two sets of level energies is only about 0.003% for these 272 levels. The accuracy of the present calculations are high enough to facilitate identification of many observed spectral lines. These accurate data can be served as benchmark for other calculations and can be useful for fusion plasma research and astrophysical applications.

  7. Mössbauer and X-ray Diffraction Investigations of Sn-containing Binary and Ternary Electrodeposited Alloys from a Gluconate Bath

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Stichleutner, S.; Doyle, O.; Chisholm, C. U.; El-Sharif, M.; Homonnay, Z.; Vértes, A.

    2005-04-01

    Constant current technique was applied to electrodeposit tin-containing coatings such as tin-cobalt (Sn-Co), tin-iron (Sn-Fe) and a novel tin-cobalt-iron (Sn-Co-Fe) from a gluconate bath. The effect of plating parameters (current density, deposition time at an electrolyte temperature of 60°C and pH=7.0) on phase composition, crystal structure and magnetic anisotropy of alloy deposits has been investigated mainly by 57Fe CEMS, 119Sn CEMS and transmission Mössbauer Spectroscopy as well as XRD. 57Fe and 119Sn CEM spectra and XRD reflect that the dominant phases of the deposits are orthorhombic Co3Sn2, tetragonal FeSn2 or amorphous Fe-Sn and amorphous Sn-Co-Fe in Sn-Co, Sn-Fe and Sn-Co-Fe coatings, respectively. Furthermore, the relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases decreases continuously with increasing current density in all Fe-containing deposits. At the same time, no essential change in the magnetic anisotropy can be found with the plating time. 119Sn spectra reveal the presence of small amount of β-Sn besides the main phases in Sn-Fe and in the Sn-Co coatings. Magnetically split 119Sn spectra reflecting transferred hyperfine field were observed in the case of Co-Sn-Fe coatings.

  8. Self-trapped holes in β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Kananen, B. E.; Giles, N. C.; Halliburton, L. E.; Foundos, G. K.; Chang, K. B.; Stevens, K. T.

    2017-12-01

    We have experimentally observed self-trapped holes (STHs) in a β-Ga2O3 crystal using electron paramagnetic resonance (EPR). These STHs are an intrinsic defect in this wide-band-gap semiconductor and may serve as a significant deterrent to producing usable p-type material. In our study, an as-grown undoped n-type β-Ga2O3 crystal was initially irradiated near room temperature with high-energy neutrons. This produced gallium vacancies (acceptors) and lowered the Fermi level. The STHs (i.e., small polarons) were then formed during a subsequent irradiation at 77 K with x rays. Warming the crystal above 90 K destroyed the STHs. This low thermal stability is a strong indicator that the STH is the correct assignment for these new defects. The S = 1/2 EPR spectrum from the STHs is easily observed near 30 K. A holelike angular dependence of the g matrix (the principal values are 2.0026, 2.0072, and 2.0461) suggests that the defect's unpaired spin is localized on one oxygen ion in a nonbonding p orbital aligned near the a direction in the crystal. The EPR spectrum also has resolved hyperfine structure due to equal and nearly isotropic interactions with 69,71Ga nuclei at two neighboring Ga sites. With the magnetic field along the a direction, the hyperfine parameters are 0.92 mT for the 69Ga nuclei and 1.16 mT for the 71Ga nuclei.

  9. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field.

    PubMed

    Thurber, Kent R; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J R

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13 C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T 1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14 N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower magnetic field. Another conclusion from the calculations is that a verdazyl-nitroxide bi-radical would be expected to be slightly better for cross-effect DNP than the nitroxide-nitroxide bi-radicals commonly used now, assuming the same spin-spin coupling constants. Published by Elsevier Inc.

  10. Perovskites Bi0.8La0.2FeO3 and Bi0.8La0.2Fe0.95Cr0.05O3: Crystal structure and magnetic and charge states of iron ions

    NASA Astrophysics Data System (ADS)

    Sigov, A. S.; Pokatilov, V. S.; Makarova, A. O.; Pokatilov, V. V.

    2014-06-01

    Perovskites of the Bi0.8La0.2Fe1 - x Cr x O3 system ( x = 0, 0.05) were investigated by Mössbauer spectroscopy in the temperature range of 298-800 K. The samples were fabricated by solid-state synthesis and had a rhombic structure. Iron ions in Bi0.8La0.2FeO3 and Bi0.8La0.2Fe0.95Cr0.05O3 are situated in trivalent states. The magnetic transition temperatures (the Néel temperatures T N ) T N = 677.5 ± 2.5 K for Bi0.8La0.2FeO3 and T N = 647.6 ± 2.5 K for Bi0.8La0.2Fe0.95Cr0.05O3 are measured. The substitution of trivalent iron ions from trivalent chromium ions in the amount x = 0.05 in Bi0.8La0.2Fe0.95Cr0.05O3 perovskite decreases the hyperfine magnetic field at nuclei 57Fe in Fe+3-O-Cr+3 chains by 30 kOe.

  11. Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators

    PubMed Central

    Koumoulis, Dimitrios; Morris, Gerald D.; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D.; Wang, Kang L.; Fiete, Gregory A.; Kanatzidis, Mercouri G.; Bouchard, Louis-S.

    2015-01-01

    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive 8Li+ ions that can provide “one-dimensional imaging” in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the 8Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron–nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. PMID:26124141

  12. Magnetic anisotropy on the single crystal UNi4B probed by 11B NMR

    NASA Astrophysics Data System (ADS)

    Kishimoto, Yasuki; Matsuno, Haruki; Kotegawa, Hisashi; Tou, Hideki; Saito, Hiraku; Amitsuka, Hiroshi; Homma, Yoshiya; Nakamura, Ai; Li, Dexin; Honda, Fuminori; Aoki, Dai

    2018-05-01

    We have performed a susceptibility M / H and 11B NMR measurements to investigate the static magnetic anisotropy of a single crystal UNi4B. The Knight shift 11K and the hyperfine coupling constant Ahf evaluated by 11K- M / H plot show anisotropic behavior between H ∥ [ 11 2 bar 0 ] and H ∥ [ 0001 ] , reflecting the bulk susceptibility. The evaluated transferred term Atr of Ahf for H ∥ [ 11 2 bar 0 ] is much larger than the one for H ∥ [ 0001 ] . The strong hybridization in the [0001]-plane due to a itinerant 5f-electron is strongly associated with the unique magnetic structure in this compound.

  13. Paramagnetic species on catalytic surfaces--DFT investigations into structure sensitivity of the hyperfine coupling constants.

    PubMed

    Sojka, Zbigniew; Pietrzyk, Piotr

    2004-05-01

    Structure sensitivity of the hyperfine coupling constants was investigated by means of DFT calculations for selected surface paramagnetic species. A *CH2OH radical trapped on silica and intrazeolite copper nitrosyl adducts encaged in ZSM-5 were taken as the examples. The surface of amorphous silica was modeled with a [Si5O8H10] cluster, whereas the zeolite hosting sites were epitomized by [Si4AlO5(OH)10]- cluster. Three different coordination modes of the *CH2OH radical were considered and the isotropic 13C and 1H hyperfine constants of the resultant van der Waals complexes, calculated with B3LYP/6-311G(d), were discussed in terms of the angular deformations caused by hydrogen bonds with the cluster. The magnetic parameters of the eta1-N[CuNO]11 and eta1-O[CuNO]11 linkage isomers were calculated at the BPW91/LanL2DZ and 6-311G(df) level. For the most stable eta1-N adduct a clear dependence of the spin density distribution within the Cu-NO moiety on changes in the Cu-N-O angle and the Cu-N bond distance was observed and accounted for by varying spin polarization and delocalization contributions.

  14. Spin-dependent transport phenomena in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Bergeson, Jeremy D.

    Thin-film organic semiconductors transport can have an anomalously high sensitivity to low magnetic fields. Such a response is unexpected considering that thermal fluctuation energies are greater than the energy associated with the intrinsic spin of charge carriers at a modest magnetic field of 100 Oe by a factor of more than 104 at room temperature and is still greater by 102 even at liquid helium temperatures. Nevertheless, we report experimental characterization of (1) spin-dependent injection, detection and transport of spin-polarized current through organic semiconductors and (2) the influence of a magnetic field on the spin dynamics of recombination-limited transport. The first focus of this work was accomplished by fabricating basic spin-valve devices consisting of two magnetic layers spatially separated by a nonmagnetic organic semiconductor. The spin-valve effect is a change in electrical resistance due to the magnetizations of the magnetic layers changing from parallel to antiparallel alignment, or vice versa. The conductivities of the metallic contacts and that of the semiconductor differed by many orders of magnitude, which inhibited the injection of a spin-polarized current from the magnet into the nonmagnet. We successfully overcame the problem of conductivity mismatch by inserting ultra-thin tunnel barriers at the metal/semiconductor interfaces which aided in yielding a ˜20% spin-valve effect at liquid helium temperatures and the effect persisted up to 150 K. We built on this achievement by constructing spin valves where one of the metallic contacts was replaced by the organic-based magnetic semiconductor vanadium tetracyanoethylene (V[TCNE]2). At 10 K these devices produced the switching behavior of the spin-valve effect. The second focus of this work was the bulk magnetoresistance (MR) of small molecule, oligomer and polymer organic semiconductors in thin-film structures. At room temperature the resistance can change up to 8% at 100 Oe and 15% at 1000 Oe. Depending on parameters such as temperature, layer thickness, or applied voltage, the resistance of these materials may increase or decrease as a function of field. A model for this phenomenon, termed magnetoresistance by the interconversion of singlets and triplets (MIST), is developed to account for this anomalous behavior. This model predicts that increasing the spin-orbit coupling in the organic semiconductor should decrease the magnitude of the MR. In an experiment where the small molecule Alq3 was doped with phosphorescent sensitizers, to increase the spin-orbit coupling, the MR was observed to decrease by an order of magnitude or more, depending on the doping. In addition to low-magnetic-field effects, we show the experimental observation of high-field MR in devices with and without magnetic contacts. To the best of our knowledge, we are the first to report (1) a tunnel-barrier-assisted spin-valve effect into an organic semiconductor using partially polarized metallic magnetic electrodes and (2) an experimental characterization of the central impact of the hyperfine interaction and spin-orbit coupling on MR in organic semiconductors.

  15. Confinement and Diffusion Effects in Dynamical Nuclear Polarization in Low Dimensional Nanostructures

    NASA Astrophysics Data System (ADS)

    Henriksen, Dan; Tifrea, Ionel

    2012-02-01

    We investigate the dynamic nuclear polarization as it results from the hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. The natural confinement provided by low dimensional nanostructures is responsible for an efficient nuclear spin - electron spin hyperfine coupling [1] and for a reduced value of the nuclear spin diffusion constant [2]. In the case of optical pumping, the induced nuclear spin polarization is position dependent even in the presence of nuclear spin diffusion. This effect should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for the case of GaAs quantum well structures.[4pt] [1] I. Tifrea and M. E. Flatt'e, Phys. Rev. B 84, 155319 (2011).[0pt] [2] A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).

  16. Structural and Mössbauer analysis of pure and Ce-Dy doped cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Meena, Sher Singh; Kumar, Shalendra; Ahmed, Ateeq; Bhatt, Pramod

    2018-05-01

    Ce and Dy doped Cobalt ferrites with the chemical composition CoCexDyxFe2-2xO4 (x = 0.00 and 0.04) were synthesized via the chemical route using citrate-gel auto-combustion method. The structural analysis has been carried out with the help of x-ray diffraction (XRD). Formation of spinel cubic structure of the ferrites was confirmed by XRD analysis. Mössbauer spectra were recorded for both samples at room temperature. Presence of the well resolved sextet spectra corresponding to A and B sub-lattice clearly shows that both the samples have ferrimagnetic ordering at room temperature. Isomer shift observed from fitting of the Mössbauer spectra infers that Fe3+ ions are in high valence state. The decrease in the hyperfine field due to the doping of Ce and Dy clearly showed that magnetic interactions diluted due to the doping of Ce and Dy ions.

  17. An electron paramagnetic resonance study on irradiated triphenylphosphinselenid single crystal

    NASA Astrophysics Data System (ADS)

    Aras, Erdal; Karatas, Ozgul; Meric, Yasemin; Abbass, Hind Kh; Birey, Mehmet; Kilic, Ahmet

    2014-09-01

    The single crystals of triphenylphosphinselenid [C18H15PSe] were produced by slow evaporation of concentrated ethyl acetate solutions. These single crystals were exposed to 60Co gamma (γ) rays with a dose speed of 0.980 kGy/h at the room temperature for 72 h. The free radical over the sample was observed using electron paramagnetic resonance (EPR)-X band spectrometer. The EPR spectra were recorded between 120 and 400 K. Furthermore, the sample irradiated was rotated in steps of 10° and analyzed for different orientations of the crystal in the magnetic field. Only one radical structure was determined on the molecule. The hyperfine constants of the sample were found to be anisotropic. The average values of these constants and value of g were calculated as following: g=2.007656, aSe=37.47 G, aP=27.44 G, aHa=17.28 G, and aHb=18.16 G.

  18. Proton electron nuclear double resonance from nitrosyl horse heart myoglobin: the role of His-E7 and Val-E11.

    PubMed Central

    Flores, M; Wajnberg, E; Bemski, G

    2000-01-01

    Electron nuclear double resonance (ENDOR) spectroscopy has been used to study protons in nitrosyl horse heart myoglobin (MbNO). (1)H ENDOR spectra were recorded for different settings of the magnetic field. Detailed analysis of the ENDOR powder spectra, using computer simulation, based on the "orientation-selection" principle, leads to the identification of the available protons in the heme pocket. We observe hyperfine interactions of the N(HisF8)-Fe(2+)-N(NO) complex with five protons in axial and with eight protons in the rhombic symmetry along different orientations, including those of the principal axes of the g-tensor. Protons from His-E7 and Val-E11 residues are identified in the two symmetries, rhombic and axial, exhibited by MbNO. Our results indicate that both residues are present inside the heme pocket and help to stabilize one particular conformation. PMID:10733988

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin

    Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less

  20. Spin-dependent recombination probed through the dielectric polarizability

    PubMed Central

    Bayliss, Sam L.; Greenham, Neil C.; Friend, Richard H.; Bouchiat, Hélène; Chepelianskii, Alexei D

    2015-01-01

    Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana–Brossel resonances observed in atomic physics experiments. PMID:26439933

  1. THEORETICAL RESEARCH OF THE OPTICAL SPECTRA AND EPR PARAMETERS FOR Cs2NaYCl6:Dy3+ CRYSTAL

    NASA Astrophysics Data System (ADS)

    Dong, Hui-Ning; Dong, Meng-Ran; Li, Jin-Jin; Li, Deng-Feng; Zhang, Yi

    2013-09-01

    The calculated EPR parameters are in reasonable agreement with the observed values. The important material Cs2NaYCl6 doped with rare earth ions have received much attention because of its excellent optical and magnetic properties. Based on the superposition model, in this paper the crystal field energy levels, the electron paramagnetic resonance parameters g factors of Dy3+ and hyperfine structure constants of 161Dy3+ and 163Dy3+ isotopes in Cs2NaYCl6 crystal are studied by diagonalizing the 42 × 42 energy matrix. In the calculations, the contributions of various admixtures and interactions such as the J-mixing, the mixtures among the states with the same J-value, and the covalence are all considered. The calculated results are in reasonable agreement with the observed values. The results are discussed.

  2. Pulsed electron nuclear double resonance studies of the photoexcited triplet state of pentacene in p-terphenyl crystals at room temperature.

    PubMed

    Yago, Tomoaki; Link, Gerhard; Kothe, Gerd; Lin, Tien-Sung

    2007-09-21

    Pulsed electron nuclear double resonance (ENDOR) using a modified Davies-type [Phys. Lett. 47A, 1 (1974)] sequence is employed to study the hyperfine (HF) structure of the photoexcited triplet state of pentacene dispersed in protonated and deuterated p-terphenyl single crystals. The strong electron spin polarization and long phase memory time of triplet pentacene enable us to perform the ENDOR measurements on the S=1 spin system at room temperature. Proton HF tensor elements and spin density values of triplet pentacene are extracted from a detailed angular-dependent study in which the orientation of the magnetic field is varied systematically in two different pentacene planes. Analysis reveals that the pentacene molecule is no longer planar in the p-terphenyl host lattice. The distortion is more pronounced in the deuterated crystal where the unit cell dimensions are slightly smaller than those of the protonated crystal.

  3. EPR study of copper(II) ions in zinc 1-malate trihydrate

    NASA Astrophysics Data System (ADS)

    Bonomo, Raffaele P.; Di Bilio, Angel J.; Riggi, Francesco

    1988-10-01

    The EPR spectrum of Cu 2+ ions in zinc 1-malate trihydrate has been measured at 150 K for a large number of orientations of the applied magnetic field. Analysis yields the following spin Hamiltonian parameters: g x=2.0894±0.0009, A x=-12.0±1.5, g y=2.0879±0.0005, A y=-8.7±1.0, R=-0.7±1.5, g z=2.4249±0.0005, A z=-120.1±0.9, P=9.9±0.5, where the units of A and P are 10 4 cm -1. The Zeeman and hyperfine coupling tensors are coincident within 2°. The spectrum shows forbidden transitions with abnormal intensity due to a large quadrupolar interaction. The direction of g z points towards the hydroxyl oxygen while the g x and g y directions lie approximately along the metal-carboxylate oxygen bond.

  4. Spin-orbit signatures in the dynamics of singlet-triplet qubits in double quantum dots

    NASA Astrophysics Data System (ADS)

    Rolon, Juan E.; Cota, Ernesto; Ulloa, Sergio E.

    2017-05-01

    We characterize numerically and analytically the signatures of the spin-orbit interaction in a two-electron GaAs double quantum dot in the presence of an external magnetic field. In particular, we obtain the return probability of the singlet state by simulating Landau-Zener voltage detuning sweeps which traverse the singlet-triplet (S -T+ ) resonance. Our results indicate that non-spin-conserving interdot tunneling processes arising from the spin-orbit interaction have well defined signatures. These allow direct access to the spin-orbit interaction scales and are characterized by a frequency shift and Fourier amplitude modulation of the Rabi flopping dynamics of the singlet-triplet qubits S -T0 and S -T+ . By applying the Bloch-Feshbach projection formalism, we demonstrate analytically that the aforementioned effects originate from the interplay between spin-orbit interaction and processes driven by the hyperfine interaction between the electron spins and those of the GaAs nuclei.

  5. Theory of the neutral nitrogen-vacancy center in diamond and its application to the realization of a qubit

    NASA Astrophysics Data System (ADS)

    Gali, Adam

    2009-06-01

    The negatively charged nitrogen-vacancy defect (NV-) in diamond has attracted much attention in recent years in qubit and biological applications. The negative charge is donated from nearby nitrogen donors that could limit or stem the successful application of NV- . In this study, we identify the neutral nitrogen-vacancy defect (NV0) by ab initio supercell calculations through the comparison of the measured and calculated hyperfine tensors of the A42 excited state. Our analysis shows that (i) the spin state can be selectively occupied optically, (ii) the electron spin state can be manipulated by time-varying magnetic field, and (iii) the spin state may be read out optically. Based on this NV0 is a hope for realizing qubit in diamond without the need of nitrogen donors. In addition, we propose that NV0 may be more sensitive magnetometer than the ultrasensitive NV- .

  6. Radiative transfer of HCN: interpreting observations of hyperfine anomalies

    NASA Astrophysics Data System (ADS)

    Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.

    2016-07-01

    Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.

  7. Aggregate frequency width, nuclear hyperfine coupling and Jahn-Teller effect of Cu2+ impurity ion ESR in SrLaAlO4 dielectric resonator at 20 millikelvin

    NASA Astrophysics Data System (ADS)

    Hosain, M. A.; Le Floch, J.-M.; Krupka, J.; Tobar, M. E.

    2018-01-01

    The impurity paramagnetic ion, Cu2+ substitutes Al in the SrLaAlO4 single crystal lattice, this results in a CuO6 elongated octahedron, and the resulting measured g-factors satisfy four-fold axes variation condition. The aggregate frequency width of the electron spin resonance with the required minimum level of impurity concentration has been evaluated in this single crystal SrLaAlO4 at 20 millikelvin. Measured parallel hyperfine constants, A\\Vert Cu , were determined to be -155.7×10-4~cm-1, ~ -163.0×10-4~cm-1, ~ -178.3×10-4~cm-1 and -211.1×10-4~cm-1 at 9.072~GHz~(WGH4, 1, 1) for the nuclear magnetic quantum number M_I=+\\frac{3}{2}, +\\frac{1}{2}, -\\frac{1}{2} , and -\\frac{3}{2} respectively. The anisotropy of the hyperfine structure reveals the characteristics of the static Jahn-Teller effect. The second-order-anisotropy term, ˜ (\\fracspin{-orbit~coupling}{10D_q}){\\hspace{0pt}}2 , is significant and cannot be disregarded, with the local strain dominating over the observed Zeeman-anisotropy-energy difference. The Bohr electron magneton, β=9.23× 10-24 JT-1 , (within -0.43% so-called experimental error) has been found using the measured spin-Hamiltonian parameters. Measured nuclear dipolar hyperfine structure parameter P\\Vert=12.3×10-4~cm-1 shows that the mean inverse third power of the electron distance from the nucleus is < r-3_q>≃ 5.23 a.u. for Cu2+ ion in the substituted Al3+ ion site assuming nuclear electric quadruple moment Q=-0.211 barn.

  8. Computational Studies of Magnetically Doped Semiconductor Nanoclusters

    NASA Astrophysics Data System (ADS)

    Gutsev, Lavrenty Gennady

    Spin-polarized unrestricted density functional theory is used to calculate the molecular properties of magnetic semiconductor quantum dots doped with 3d-metal atoms. We calculate total energies of the low spin antiferromagnetically coupled states using a spin-flipping algorithm leading to the broken-symmetry states. Given the novel nature of the materials studied, we simulate experimental observables such as hyperfine couplings, ionization/ energies, electron affinities, first and second order polarizabilities, band gaps and exchange coupling constants. Specifically, we begin our investigation with pure clusters of (CdSe )16 and demonstrate the dependence of molecular observables on geometrical structures. We also show that the many isomers of this cluster are energetically quite closely spaced, and thus it would be necessary to employ a battery of tests to experimentally distinguish them. Next, we discuss Mn-doping into the cage (CdSe)9 cluster as well as the zinc-blende stacking type cluster (CdSe)36. We show that the local exchange coupling mechanism is ligand-mediated superexchange and simulate the isotropic hyperfine constants. Finally, we discuss a novel study where (CdSe)9 is doped with Mn or Fe up to a full replacement of all the Cd's and discuss the transition points for the magnetic behavior and specifically the greatly differing band-gap shifts. We also outline an unexpected pattern in the polarizability of the material as metals are added and compare our results with the results from theoretical studies of the bulk material.

  9. Probing Fe-V Bonding in a C3-Symmetric Heterobimetallic Complex.

    PubMed

    Greer, Samuel M; McKay, Johannes; Gramigna, Kathryn M; Thomas, Christine M; Stoian, Sebastian A; Hill, Stephen

    2018-04-30

    Direct metal-metal bonding of two distinct first-row transition metals remains relatively unexplored compared to their second- and third-row heterobimetallic counterparts. Herein, a recently reported Fe-V triply bonded species, [V( i PrNPPh 2 ) 3 FeI] (1; Kuppuswamy, S.; Powers, T. M.; Krogman, J. P.; Bezpalko, M. W.; Foxman, B. M.; Thomas, C. M. Vanadium-iron complexes featuring metal-metal multiple bonds. Chem. Sci. 2013, 4, 3557-3565), is investigated using high-frequency electron paramagnetic resonance, field- and temperature-dependent 57 Fe nuclear gamma resonance (Mössbauer) spectroscopy, and high-field electron-electron double resonance detected nuclear magnetic resonance. From the use of this suite of physical methods, we have assessed the electronic structure of 1. These studies allow us to establish the effective g̃ tensors as well as the Fe/V electro-nuclear hyperfine interaction tensors of the spin S = 1 / 2 ground state. We have rationalized these tensors in the context of ligand field theory supported by quantum chemical calculations. This theoretical analysis suggests that the S = 1 / 2 ground state originates from a single unpaired electron predominately localized on the Fe site.

  10. High-field/ high-frequency EPR study on stable free radicals formed in sucrose by gamma-irradiation.

    PubMed

    Georgieva, Elka R; Pardi, Luca; Jeschke, Gunnar; Gatteschi, Dante; Sorace, Lorenzo; Yordanov, Nicola D

    2006-06-01

    The EPR spectrum of sucrose irradiated by high-energy radiation is complex due to the presence of more than one radical species. In order to decompose the spectrum and elucidate the radical magnetic parameters a high-field (HF(-)EPR) study on stable free radicals in gamma-irradiated polycrystalline sucrose (table sugar) was performed at three different high frequencies--94, 190 and 285 GHz as well as at the conventional X-band. We suggest a presence of three stable radicals R1, R2 and R3 as the main radical species. Due to the increase of g-factor resolution at high fields the g-tensors of these radicals could be extracted by accurate simulations. The moderate g-anisotropy suggests that all three radicals are carbon-centred. Results from an earlier ENDOR study on X-irradiated sucrose single crystals (Vanhaelewyn et al., Appl Radiat Isot, 52, 1221 (2000)) were used for analyzing of the spectra in more details. It was confirmed that the strongest hyperfine interaction has a relatively small anisotropy, which indicates either the absence of alpha-protons or a strongly distorted geometry of the radicals.

  11. Supersonic Molecular Beam Optical Stark Spectroscopy of MnH.

    NASA Astrophysics Data System (ADS)

    Gengler, Jamie; Ma, Tongmei; Harrison, Jeremy; Steimle, Timothy

    2006-03-01

    The large moment of inertia, large magnetic moment, and possible large permanent electric dipole moment of manganese monohydride, MnH, makes it a prime candidate for ultra-cold molecule production via Stark deceleration and magnetic trapping. Here we report the first molecular beam production of MnH and the analysis of the Stark effect in the (0,0) A^7 π -- X^ 7σ^+ band. The sample was prepared by laser ablation of solid Mn in an H2 supersonic expansion. The low rotational temperature (<50 K) and near natural linewidth resolution (˜50 MHz) facilitated analysis of the ^55Mn (I=5/2) and ^1H (I=1/2) hyperfine structure. A comparison of the derived field-free parameters with those obtained from sub- Doppler optical measurements will be made. Progress on the analysis of the Stark effect will be given. J.R. Bochinski, E.R. Hudson, H.J. Lewandowski, and J. Ye, Phys. Rev. A 70, 043410 (2004). S.Y.T. van de Meerakker, R.T. Jongma, H.L. Bethlem, and G. Meijer, Phys. Rev. A 64, 041401(R) (2001) report the first molecular beam production of MnH and the analysis of T.D. Varberg, J.A. Gray, R.W. Field, and A.J. Merer, J. Mol. Spec. 156, 296-318 (1992). I.E. Gordon, D.R.T. Appadoo, A. Shayesteh, K.A. Walker, and P.F. Bernath, J. Mol. Spec., 229, 145-149 (2005).

  12. Communication: theoretical study of ThO for the electron electric dipole moment search.

    PubMed

    Skripnikov, L V; Petrov, A N; Titov, A V

    2013-12-14

    An experiment to search for the electron electric dipole moment (eEDM) on the metastable H(3)Δ1 state of ThO molecule was proposed and now prepared by the ACME Collaboration [http://www.electronedm.org]. To interpret the experiment in terms of eEDM and dimensionless constant kT, P characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction, an accurate theoretical study of an effective electric field on electron, Eeff, and a parameter of the T,P-odd pseudoscalar-scalar interaction, WT, P, in ThO is required. We report our results for Eeff (84 GV/cm) and WT, P (116 kHz) together with the hyperfine structure constant, molecule frame dipole moment, and H(3)Δ1 → X(1)Σ(+) transition energy, which can serve as a measure of reliability of the obtained Eeff and WT, P values. Besides, our results include a parity assignment and evaluation of the electric-field dependence for the magnetic g factors in the Ω-doublets of H(3)Δ1.

  13. Nuclear resonant forward scattering of synchrotron radiation by randomly oriented iron complexes which exhibit nuclear Zeeman interaction

    NASA Astrophysics Data System (ADS)

    Haas, M.; Realo, E.; Winkler, H.; Meyer-Klaucke, W.; Trautwein, A. X.; Leupold, O.; Rüter, H. D.

    1997-12-01

    An expression for the amplitude of a pulse of synchrotron radiation (SR) coherently scattered in forward direction by a randomly oriented Mössbauer absorber is derived from the theory of γ optics. It is assumed that the hyperfine splittings present in the Mössbauer nuclei can be described in the framework of the spin-Hamiltonian formalism. In the general case of a thick Mössbauer sample, which consists of randomly oriented paramagnetic iron-containing molecules (for example, a frozen solution of a 57Fe protein) in an applied magnetic field, the response of this sample on an incident monochromatic and fully polarized SR beam cannot be given analytically because of the integrations involved. The way to evaluate nuclear forward-scattering spectra for this general case numerically is outlined and results of calculations with a corresponding program package called SYNFOS are shown and compared with experimental results obtained by measurements of the high-spin iron (II) ``picket-fence'' porphyrin [Fe(CH3COO)TPpivP]- in an applied field of 6 T.

  14. Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation

    NASA Astrophysics Data System (ADS)

    Zhao, L. Z.; Deng, X. X.; Yu, H. Y.; Guan, H. J.; Li, X. Q.; Xiao, Z. Y.; Liu, Z. W.; Greneche, J. M.

    2017-12-01

    High-velocity compaction (HVC) has been proposed as an effective approach for the fabrication of nanocrystalline Nd-Fe-B magnets. In this work, the effect of powder size on the density of HVCed magnets has been studied and the anisotropic nanocrystalline Nd-Fe-B magnets were prepared by HVC followed by hot deformation (HD). It is found that a proper particle size range is beneficial to high density. The investigations on the microstructure, magnetic domain structure, and hyperfine structure, indicate that the deformed grain structure and the magnetic domain structure with uniform paramagnetic grain boundary phase give good magnetic properties of HVC + HDed magnets. These magnets also have good mechanical and anti-corrosion properties. The results indicate that HVC is not only a near-net-shape, room temperature and binder-free process but is also able to maintain uniform nanostructure and to achieve good magnetic properties in both isotropic and anisotropic magnets. As a result, HVC can be employed as an ideal alternative process for bonding or hot pressing for the conventional MQI, MQII and MQIII magnets.

  15. Methods of Ex Situ and In Situ Investigations of Structural Transformations: The Case of Crystallization of Metallic Glasses.

    PubMed

    Miglierini, Marcel B; Procházka, Vít; Vrba, Vlastimil; Švec, Peter; Janičkovič, Dušan; Matúš, Peter

    2018-06-07

    We demonstrate the use of two nuclear-based analytical methods that can follow the modifications of microstructural arrangement of iron-based metallic glasses (MGs). Despite their amorphous nature, the identification of hyperfine interactions unveils faint structural modifications. For this purpose, we have employed two techniques that utilize nuclear resonance among nuclear levels of a stable 57 Fe isotope, namely Mössbauer spectrometry and nuclear forward scattering (NFS) of synchrotron radiation. The effects of heat treatment upon (Fe2.85Co1)77Mo8Cu1B14 MG are discussed using the results of ex situ and in situ experiments, respectively. As both methods are sensitive to hyperfine interactions, information on structural arrangement as well as on magnetic microstructure is readily available. Mössbauer spectrometry performed ex situ describes how the structural arrangement and magnetic microstructure appears at room temperature after the annealing under certain conditions (temperature, time), and thus this technique inspects steady states. On the other hand, NFS data are recorded in situ during dynamically changing temperature and NFS examines transient states. The use of both techniques provides complementary information. In general, they can be applied to any suitable system in which it is important to know its steady state but also transient states.

  16. Delocalization of Coherent Triplet Excitons in Linear Rigid Rod Conjugated Oligomers.

    PubMed

    Hintze, Christian; Korf, Patrick; Degen, Frank; Schütze, Friederike; Mecking, Stefan; Steiner, Ulrich E; Drescher, Malte

    2017-02-02

    In this work, the triplet state delocalization in a series of monodisperse oligo(p-phenyleneethynylene)s (OPEs) is studied by pulsed electron paramagnetic resonance (EPR) and pulsed electron nuclear double resonance (ENDOR) determining zero-field splitting, optical spin polarization, and proton hyperfine couplings. Neither the zero-field splitting parameters nor the optical spin polarization change significantly with OPE chain length, in contrast to the hyperfine coupling constants, which showed a systematic decrease with chain length n according to a 2/(1 + n) decay law. The results provide striking evidence for the Frenkel-type nature of the triplet excitons exhibiting full coherent delocalization in the OPEs under investigation with up to five OPE repeat units and with a spin density distribution described by a nodeless particle in the box wave function. The same model is successfully applied to recently published data on π-conjugated porphyrin oligomers.

  17. Ab Initio Theory of Nuclear Magnetic Resonance Shifts in Metals

    NASA Astrophysics Data System (ADS)

    D'Avezac, Mayeul; Marzari, Nicola; Mauri, Francesco

    2005-03-01

    A comprehensive approach for the first-principles determination of all-electron NMR shifts in metallic systems is presented. Our formulation is based on a combination of density-functional perturbation theory and all-electron wavefunction reconstruction, starting from periodic-boundary calculations in the pseudopotential approximation. The orbital contribution to the NMR shift (the chemical shift) is obtained by combining the gauge-including projector augmented-wave approach (GIPAW), originally developed for the case of insulatorsootnotetextC. J. Pickard, Francesco Mauri, Phys. Rev. B, 63, 245101(2001), with the extension of linear-response theory to the case of metallic systemsootnotetextS. de Gironcoli, Phys. Rev. B, 51, 6773(1995). The spin contribution (the Knight shift) is obtained as a response to a finite uniform magnetic field, and through reconstructing the hyperfine interaction between the electron-spin density and the nuclear spins with the projector augmented-wave method (PAWootnotetextC. G. Van de Walle, P. E. Blöchl, Phys. Rev. B, 47, 4244(1993)). Our method is validated with applications to the case of the homogeneous electron gas and of simple metals. (Work supported by MURI grant DAAD 19-03-1-0169 and MIT-France)

  18. Studies of iron impurities in YxPr1-xBa2Cu3O7-delta

    NASA Technical Reports Server (NTRS)

    Swartzendruber, L. J.; Bennett, L. H.; Ritter, J.; Rubinstein, M.; Harford, M. Z.

    1990-01-01

    Pr is the only rare earth which, when substituted for Y in YBa2Cu3O7, significantly alters the superconducting transition temperature T(sub c) without changing the crystal structure. For YxPr1-xBa2Cu3O7-delta with delta approx. equal to 0, T(sub c) is reduced rapidly as x is increased, reaching zero for x about 0.5. For x above 0.5 the compound is antiferromagnetic with a Neel temperature that increases with increasing x, rising to above room temperature for x near 1. A similar behavior is observed when the oxygen deficit delta is increased from zero to 1 with x=0. For the case of Pr substitution, the drop in T(sub c) is believed due to magnetic interactions. For the case of varying delta with x=0, the drop can be attributed to a combination of magnetic interactions, band filling, and changes in crystal structure. To study these effects, the Mossbauer effect of 57 Fe atoms substituted for the Cu atoms has been observed as a function of delta, x, and temperature. The observed spectra are all well described by a two quadrupole-split pairs, a central singlet, and a six-line magnetic hyperfine field pattern. For several Pr compositions both delta and temperature were varied, and the results support the hypothesis that a magnetic interaction exists between the Fe in the Cu lattice and the substitutional Pr atoms.

  19. Mechanically-induced disorder in CaFe 2As 2: A 57Fe Mössbauer study

    DOE PAGES

    Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; ...

    2015-10-17

    57Fe Mössbauer spectroscopy was used to perform a microscopic study on the extremely pressure and strain sensitive compound, CaFe 2As 2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe 2As 2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe 2As 2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe 2As 2 can be inhomogeneously suppressed by the grindingmore » induced strain to such an extent that the antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. Additional electronic and asymmetry information was obtained from the isomer shift and quadrupole splitting. Similar isomer shift values in the magnetic phase for samples with different degrees of strain, indicate that the stain does not bring any significant variation of the electronic density at 57Fe nucleus position. As a result, the absolute values of quadrupole shift in the magnetic phase decrease and approach zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position.« less

  20. Measurement of Nitrogen Hyperfine Structure on the 53 CM (562 MHz) Butyronitrile Line

    NASA Astrophysics Data System (ADS)

    Dewberry, Christopher T.; Grubbs, Garry S. Grubbs, II; Raphelt, Andrew; Cooke, Stephen A.

    2009-06-01

    Recent improvements to our cavity-based Fourier transform radiofrequency spectrometer will be presented. Amongst other improvements use of Miteq amp, model AMF-6F-00100400-10-10P (0.1 GHz to 4 GHz, 65 dB gain minimum, 1 dB noise figure maximum) together with shielding from an improved Faraday cage have significantly helped us in this regard. Electromagnetic fields within our near-spherical cavity have been modeled and results will be presented. We have been able to easily resolve the nitrogen hyperfine structure on the ^aQ_{0,-1} transition 1_{1,0} ← 1_{1,1} located at 562 MHz. This result will be discussed.

  1. Chiral effective-field theory of the nucleon spin structure

    NASA Astrophysics Data System (ADS)

    Pascalutsa, Vladimir

    2017-01-01

    I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them - δLT - is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen. Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model].

  2. Study of the Induced Anisotropy in Field Annealed Hitperm Alloys by Mössbauer Spectroscopy and Kerr Microscopy

    NASA Astrophysics Data System (ADS)

    Blázquez, J. S.; Marcin, J.; Andrejka, F.; Franco, V.; Conde, A.; Skorvanek, I.

    2016-08-01

    Samples of Fe39Co39Nb6B15Cu1 alloy were nanocrystallized under zero field annealing (ZF) and transverse field annealing (TF) conditions. A reduction in coercivity for TF samples with respect to ZF sample (16 and 45 A/m, respectively) is observed. Kerr microscopy images show a well-defined parallel domain structure, transversally oriented to the ribbon axis for the TF sample unlike for the ZF sample, for which a complex pattern is observed with large and small domains at the surface of the ribbon. Although Mössbauer spectra are clearly different for the two studied samples, Mössbauer studies confirm that there is no significant difference between the hyperfine field distributions of TF and ZF samples but only the relative intensity of the 2nd and 3rd lines A 23 (related to the angle between the gamma radiation and the magnetic moments, α). However, for TF annealed samples α = 90 deg ( A 23 = 4), indicating that the magnetic moments lay on the plane of the ribbon in agreement with the well-defined domain structure observed by Kerr microscopy, ZF annealed samples show A 23 = 1.8. This value is close to that of a random orientation ( A 23 = 2) but smaller, indicating a slight preference for out of plane orientations. Moreover, it is clearly smaller than that of the as-cast amorphous samples A 23 = 2.8, with a preference to in-plane orientations. The application of the law of approach to saturation yields a larger effect of the inhomogeneities in ZF sample with respect to TF one.

  3. Magnetic Compensation for Second-Order Doppler Shift in LITS

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tjoelker, Robert

    2008-01-01

    The uncertainty in the frequency of a linear-ion-trap frequency standard (LITS) can be reduced substantially by use of a very small magnetic inhomogeneity tailored to compensate for the residual second-order Doppler shift. An effect associated with the relativistic time dilatation, one cause of the second-order Doppler shift, is ion motion that is attributable to the trapping radio-frequency (RF)electromagnetic field used to trap ions. The second-order Doppler shift is reduced by using a multi-pole trap; however it is still the largest source of systematic frequency shift in the latest generation of LITSs, which are among the most stable clocks in the world. The present compensation scheme reduces the frequency instability of the affected LITS to about a tenth of its previous value. The basic principles of prior generation LITSs were discussed in several prior NASA Tech Briefs articles. Below are recapitulated only those items of basic information necessary to place the present development in context. A LITS includes a microwave local oscillator, the frequency of which is stabilized by comparison with the frequency of the ground state hyperfine transition of 199Hg+ ions. The comparison involves a combination of optical and microwave excitation and interrogation of the ions in a linear ion trap in the presence of a nominally uniform magnetic field. In the current version of the LITS, there are two connected traps (see figure): (1) a quadrupole trap wherein the optical excitation and measurement take place and (2) a 12-pole trap (denoted the resonance trap), wherein the microwave interrogation takes place. The ions are initially loaded into the quadrupole trap and are thereafter shuttled between the two traps. Shuttling ions into the resonance trap allows sensitive microwave interrogation to take place well away from loading interference. The axial magnetic field for the resonance trap is generated by an electric current in a finely wound wire coil surrounded by magnetic shields. In the quadrupole and 12-pole traps, the potentials are produced by RF voltages applied to even numbers (4 and 12, respectively) of parallel rods equally spaced around a circle. The polarity of the voltage on each rod is opposite that of the voltage on the adjacent rod. As a result, the amplitude of the RF trapping field is zero along the centerline and increases, with radius, to a maximum value near the rods.

  4. Studies of defects in Bi2Fe4O9 using Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Panda, Alaka; Govindaraj, R.; Vinod, K.; Amarendra, G.

    2018-05-01

    Effect of oxygen vacancies on the stability and magnetic properties of Bi2Fe4O9 has been addressed in a detailed manner using Mössbauer spectroscopy along with magnetization studies. This is studied mainly based on the variations in Mössbauer hyperfine parameters due to the changes in the local structure and magnetic properties at 57Fe atoms in Bi2Fe4O9 which are observed to be significantly influenced due to vacuum annealing. Oxygen vacancies concomitantly result in the formation of iron associated antiferromagnetic phase preferably at the boundaries of the grains of Bi2Fe4O9. Growth of these phases is observed to be strongly dependent upon subsequent air annealing treatments of this system.

  5. First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engels, R.; Lorentz, B.; Prasuhn, D.

    2008-02-06

    For future few-nucleon interaction studies with polarized beams and targets at COSY-Juelich, a polarized internal storage-cell gas target was implemented at the magnet spectrometer ANKE in summer 2005. First commissioning of the polarized Atomic Beam Source (ABS) at ANKE was carried out and some improvements of the system have been done. Storage-cell tests to determine the COSY beam dimensions have been performed. Electron cooling combined with stacking and stochastic cooling have been studied. Experiments with N{sub 2} gas in the storage cell to simulate the background produced by beam interaction with the aluminum cell walls were performed to investigate themore » beam heating by the target gas. The analysis of the d-vector p-vector {yields}dp and d-vector p-vector{yields}(dp{sub sp}){pi}{sup 0} reactions showed that events from the extended target can be clearly identified in the ANKE detector system.The polarization of the atomic beam of the ABS, positioned close to the strong dipole magnet D2 of ANKE, was tuned with a Lamb-shift polarimeter (LSP) beneath the target chamber. With use of the known analyzing powers of the quasi-free np{yields}d{pi}{sup 0} reaction, the polarization in the storage cell was measured to be Q{sub y} = 0.79{+-}0.07 in the vertical stray field of the D2 magnet acting as a holding field. The achieved target thickness was 2x10{sup 13} atoms/cm{sup 2} for one hyperfine state populated in the ABS beam only. With a COSY beam intensity of 6x10{sup 9} stored polarized deuterons in the ring, the luminosity for double polarized experiments was 1x10{sup 29} cm{sup -2} s{sup -1}.« less

  6. First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engels, R.; Lorentz, B.; Prasuhn, D.

    2009-08-04

    For future few-nucleon interaction studies with polarized beams and targets at COSY-Juelich, a polarized internal storage-cell gas target was implemented at the magnet spectrometer ANKE. First commissioning of the polarized Atomic Beam Source (ABS) at ANKE was carried out and some improvements of the system have been done. Storage-cell tests to determine the COSY beam dimensions have been performed. Electron cooling combined with stacking and stochastic cooling have been studied. Experiments with N{sub 2} gas in the storage cell to simulate the background produced by beam interaction with the aluminum cell walls were performed to investigate the beam heating bymore » the target gas. The analysis of the d-vectorp-vector->dp and d-vectorp-vector->(dp{sub sp})pi{sup 0} reactions showed that events from different positions of the extended target can be clearly identified in the ANKE detector system. The polarization of the atomic beam of the ABS, positioned close to the strong dipole magnet D2 of ANKE, was tuned with a Lamb-shift polarimeter (LSP) beneath the target chamber. With use of the known analyzing powers of the quasi-free np->dpi{sup 0} reaction, the polarization in the storage cell was measured to be Q{sub y} = 0.79+-0.07 in the vertical stray field of the D2 magnet acting as a holding field. The target thickness achieved was 2x10{sup 13} atoms/cm{sup 2} for one hyperfine state populated in the ABS beam only. With a COSY beam intensity of 6x10{sup 9} stored polarized deuterons in the ring, the luminosity for double polarized experiments was 1x10{sup 29} cm{sup -2} s{sup -1}.« less

  7. Multi-resonance frequency spin dependent charge pumping and spin dependent recombination - applied to the 4H-SiC/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Anders, M. A.; Lenahan, P. M.; Lelis, A. J.

    2017-12-01

    We report on a new electrically detected magnetic resonance (EDMR) approach involving spin dependent charge pumping (SDCP) and spin dependent recombination (SDR) at high (K band, about 16 GHz) and ultra-low (360 and 85 MHz) magnetic resonance frequencies to investigate the dielectric/semiconductor interface in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs). A comparison of SDCP and SDR allows for a comparison of deep level defects and defects with energy levels throughout most of the bandgap. Additionally, a comparison of high frequency and ultra-low frequency measurements allows for (1) the partial separation of spin-orbit coupling and hyperfine effects on magnetic resonance spectra, (2) the observation of otherwise forbidden half-field effects, which make EDMR, at least, in principle, quantitative, and (3) the observation of Breit-Rabi shifts in superhyperfine measurements. (Observation of the Breit-Rabi shift helps in both the assignment and the measurement of superhyperfine parameters.) We find that, as earlier work also indicates, the SiC silicon vacancy is the dominating defect in n-MOSFETs with as-grown oxides and that post-oxidation NO anneals significantly reduce their population. In addition, we provide strong evidence that NO anneals result in the presence of nitrogen very close to a large fraction of the silicon vacancies. The results indicate that the presence of nearby nitrogen significantly shifts the silicon vacancy energy levels. Our results also show that the introduction of nitrogen introduces a disorder at the interface. This nitrogen induced disorder may provide at least a partial explanation for the relatively modest improvement in mobility after the NO anneals. Finally, we compare the charge pumping and SDCP response as a function of gate amplitude and charge pumping frequency.

  8. Discrimination between spin-dependent charge transport and spin-dependent recombination in π-conjugated polymers by correlated current and electroluminescence-detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Kavand, Marzieh; Baird, Douglas; van Schooten, Kipp; Malissa, Hans; Lupton, John M.; Boehme, Christoph

    2016-08-01

    Spin-dependent processes play a crucial role in organic electronic devices. Spin coherence can give rise to spin mixing due to a number of processes such as hyperfine coupling, and leads to a range of magnetic field effects. However, it is not straightforward to differentiate between pure single-carrier spin-dependent transport processes which control the current and therefore the electroluminescence, and spin-dependent electron-hole recombination which determines the electroluminescence yield and in turn modulates the current. We therefore investigate the correlation between the dynamics of spin-dependent electric current and spin-dependent electroluminescence in two derivatives of the conjugated polymer poly(phenylene-vinylene) using simultaneously measured pulsed electrically detected (pEDMR) and optically detected (pODMR) magnetic resonance spectroscopy. This experimental approach requires careful analysis of the transient response functions under optical and electrical detection. At room temperature and under bipolar charge-carrier injection conditions, a correlation of the pEDMR and the pODMR signals is observed, consistent with the hypothesis that the recombination currents involve spin-dependent electronic transitions. This observation is inconsistent with the hypothesis that these signals are caused by spin-dependent charge-carrier transport. These results therefore provide no evidence that supports earlier claims that spin-dependent transport plays a role for room-temperature magnetoresistance effects. At low temperatures, however, the correlation between pEDMR and pODMR is weakened, demonstrating that more than one spin-dependent process influences the optoelectronic materials' properties. This conclusion is consistent with prior studies of half-field resonances that were attributed to spin-dependent triplet exciton recombination, which becomes significant at low temperatures when the triplet lifetime increases.

  9. Magnetic field effect in organic films and devices

    NASA Astrophysics Data System (ADS)

    Gautam, Bhoj Raj

    In this work, we focused on the magnetic field effect in organic films and devices, including organic light emitting diodes (OLEDs) and organic photovoltaic (OPV) cells. We measured magnetic field effect (MFE) such as magnetoconductance (MC) and magneto-electroluminescence (MEL) in OLEDs based on several pi- conjugated polymers and small molecules for fields |B|<100 mT. We found that both MC(B) and MEL(B) responses in bipolar devices and MC(B) response in unipolar devices are composed of two B-regions: (i) an 'ultra-small' region at |B| < 1-2 mT, and (ii) a monotonic response region at |B| >˜2mT. Magnetic field effect (MFE) measured on three isotopes of Poly (dioctyloxy) phenylenevinylene (DOO-PPV) showed that both regular and ultra-small effects are isotope dependent. This indicates that MFE response in OLED is mainly due to the hyperfine interaction (HFI). We also performed spectroscopy of the MFE including magneto-photoinduced absorption (MPA) and magneto-photoluminescence (MPL) at steady state conditions in several systems. This includes pristine Poly[2-methoxy-5-(2-ethylhexyl-oxy)-1,4-phenylene-vinylene] (MEH-PPV) films, MEH-PPV films subjected to prolonged illumination, and MEH-PPV/[6,6]-Phenyl C61 butyric acid methyl ester (PCBM) blend, as well as annealed and pristine C60 thin films. For comparison, we also measured MC and MEL in organic diodes based on the same materials. By directly comparing the MPA and MPL responses in films to MC and MEL in organic diodes based on the same active layers, we are able to relate the MFE in organic diodes to the spin densities of the excitations formed in the device, regardless of whether they are formed by photon absorption or carrier injection from the electrodes. We also studied magneto-photocurrent (MPC) and power conversion efficiency (PCE) of a 'standard' Poly (3-hexylthiophene)/PCBM device at various Galvinoxyl radical wt%. We found that the MPC reduction with Galvinoxyl wt% follows the same trend as that of the PCE enhancement. In addition, we also measured the MPC response of a series of OPV cells. We attribute the observed broad MPC to short-lived charge transfer complex species, where spin mixing is caused by the difference, Deltag of the donor/acceptor g factors; whereas narrow MPC is due to HFI within long-lived polaron-pairs.

  10. Radical Cationic Pathway for the Decay of Ionized Glyme Molecules in Liquid Solution.

    PubMed

    Taletskiy, Konstantin S; Borovkov, Vsevolod I; Schegoleva, Lyudmila N; Beregovaya, Irina V; Taratayko, Andrey I; Molin, Yuriy N

    2015-11-12

    Chemical stability of primary radical cations (RCs) generated in irradiated matter determines substantially the radiation resistance of organic materials. Transformations of the RCs of the glyme molecules, R(-O-CH2-CH2-)nO-R (R = CH3, n = 1-4) has been studied on the nanosecond time scale by measuring the magnetic field effects in the recombination fluorescence from irradiated liquid solutions of the glymes. In all cases, the RCs observed were different from that expected for the primary ones and revealed very similar hyperfine couplings independent of the poly(ethylene oxide) chain length and of the substitution of terminal methyl groups by C2H5 or CH2CH2Cl, as has been shown with diglyme as an example. Quantum chemical analysis of possible chemical transformations for the monoglyme RC as a model system allowed us to discover the reaction pathway yielding the methyl vinyl ether RC. The pathway involves intramolecular proton transfer followed by C-O bond cleavage. Only one (-O-CH2-CH2-O-) fragment is involved in this transformation, which is nearly barrierless due to the catalytic effect of adjacent glyme molecules. The rapid formation of the methyl vinyl ether RC in the irradiated monoglyme was confirmed by the numerical simulation of the experimental curves of the time-resolved magnetic field effect. These findings suggest that the R'-O-CH═CH2(•+) formation is a typical decay pathway for the primary RCs in irradiated liquid glymes.

  11. Structural, magneto-optical properties and cation distribution of SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} (0.0 ≤ x ≤ 0.33) hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auwal, I.A.; Güngüneş, H.; Güner, S.

    Highlights: • SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} (0.0 ≤ x ≤ 0.33) hexaferrites have been prepared by sol-gel autocombustion. • XRD patterns show that SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} (0.0 ≤ x ≤ 0.33) hexaferrites exhibit hexagonal structure. • The intrinsic coercivity (H{sub ci}) above 15000 Oe reveals that all samples are magnetically hard materials. - Abstract: SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} (0.0 ≤ x ≤ 0.33) hexaferrites were produced via sol-gel auto combustion. XRD patterns show that all the samples are single-phase M-type strontium hexaferrite (SrM). The magnetic hysteresis (σ-H) loops revealed the ferromagnetic nature ofmore » nanoparticles (NPs). The coercive field decreases from 4740 Oe to 2720 Oe with increasing ion content. In particular, SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} NPs with x = 0.0, 0.1, 0.2 have suitable magnetic characteristics (σ{sub s} = 62.03–64.72 emu/g and H{sub c} = 3105–4740 Oe) for magnetic recording. The intrinsic coercivity (H{sub ci}) above 15000 Oe reveals that all samples are magnetically hard materials. Tauc plots were used to specify the direct optical energy band gap (E{sub g}) of NPs. The E{sub g} values are between 1.76 eV and 1.85 eV. {sup 57}Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting, relative area and hyperfine magnetic field values on Bi{sup 3+} La{sup 3+} and Y{sup 3+} substitutions have been determined.« less

  12. Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.

    PubMed

    Mondal, Arobendo; Gaultois, Michael W; Pell, Andrew J; Iannuzzi, Marcella; Grey, Clare P; Hutter, Jürg; Kaupp, Martin

    2018-01-09

    Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li 3 V 2 (PO 4 ) 3 , for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.

  13. Mössbauer effect studies of Fe-C combinatorially sputtered thin films

    NASA Astrophysics Data System (ADS)

    Al-Maghrabi, M. A.; Sanderson, R. J.; Dunlap, R. A.

    2013-08-01

    Alloys of Fe1- x C x were produced using combinatorial sputtering methods. The composition of the films as a function of position was determined using electron microprobe techniques and the results have shown that a composition range of about 0.35 < x < 0.75 was obtained. X-ray diffraction methods were employed to study the structure of the thin films and showed that all portions of the films were amorphous or nanostructured. Room temperature 57Fe Mössbauer spectroscopy was utilized to study the atomic environment around the Fe atoms. Hyperfine field distributions of ferromagnetic alloys, as extracted from the Mössbauer analysis, suggested the existence of two classes of Fe sites: (1) classes of Fe sites that have primarily Fe neighbours corresponding to a high-field component in the distribution and (2) classes of Fe sites that have a greater number of C neighbours, corresponding to a low-field component. The magnetic splitting decreased as a function of increasing carbon concentration and alloys with x greater than about 0.68 were primarily paramagnetic in nature. These spectra exhibited distributions of quadrupole splitting with mean splitting in excess of 1.0 mm/s. This indicates a higher degree of local asymmetry around the Fe sites than typically seen in other Fe-metalloid systems.

  14. Mössbauer characterization and in situ monitoring of thermal decomposition of potassium ferrate(VI), K2FeO4 in static air conditions.

    PubMed

    Machala, Libor; Zboril, Radek; Sharma, Virender K; Filip, Jan; Schneeweiss, Oldrich; Homonnay, Zoltán

    2007-04-26

    Solid orthorhombic crystals of potassium ferrate(VI) (K(2)FeO(4)) of a high-chemical purity (>99.0%) were characterized by low-temperature (1.5-5 K), high-temperature (463-863 K), and in-field (1.5 K/3 T) Mössbauer spectroscopy. Potassium ferrate(VI) reveals a Néel magnetic transition temperature (TN) of approximately 3.8 K and a saturation hyperfine magnetic field of 13.8 T at 1.5 K. Spectral line intensities recorded below TN in an external magnetic field of 3 T manifest a perfect antiferromagnetic ordering. For the in situ monitoring of the thermal behavior of K(2)FeO(4), high-temperature Mössbauer data were combined with those obtained from thermogravimetry, differential scanning calorimetry, and variable-temperature X-ray diffraction measurements. Such in situ approach allowed the identification of the reaction products and intermediates and yielded the first experimental evidence for the participation of CO2 in the decomposition process. As the primary conversion products, KFeO(2) and two potassium oxides in equivalent molar ratio, KO2 and K(2)O, were suggested. However, the KO2 phase is detectable with difficulty as it reacts very quickly with CO2 from air resulting in the formation of K(2)CO(3). The presented decomposition model is consistent with thermogravimetric data giving the mass loss of 8.0%, which corresponds to the participation of 1/6 mol of CO2 and liberation of 3/4 mol of O2 per 1 mol of K(2)FeO(4) (K(2)FeO(4) + 1/6CO2 --> KFeO(2) + 1/3K(2)O + 1/6K(2)CO(3) + 3/4O2). An explanation of the multistage reaction mechanism has an important practical impact for the optimization of the solid-state synthesis of potassium ferrate(VI).

  15. Influence of internal electric fields on bonding and properties of impurities in insulators: Mn2+ in LiBaF3 and normal perovskites

    NASA Astrophysics Data System (ADS)

    Trueba, A.; García-Lastra, J. M.; Barriuso, M. T.; Aramburu, J. A.; Moreno, M.

    2008-08-01

    Although in LiBaF3:Mn2+ the impurity replaces Li+ thus forming octahedral MnF64- units the experimental hyperfine and anisotropic superhyperfine constants and the energies of d-d optical transitions do not fit into the pattern observed for Mn2+ -doped normal perovskite lattices. Seeking to look into this relevant issue first-principles calculations in the framework of the density-functional theory have been carried out for MnF64- complexes embedded in both KMgF3 and LiBaF3 host lattices which display normal and inverted perovskite structures respectively. The present calculations lead to a value of the equilibrium Mn2+-F- distance, RI , which is the same for both host lattices within 0.015Å . Despite this fact and in agreement with experimental data the calculated values of both the anisotropic superhyperfine constant, Ap , and the cubic-field splitting parameter, 10Dq, for LiBaF3:Mn2+ are found to be higher than those for KMgF3:Mn2+ while Racah parameters are a bit higher for the latter case. All these results, and also the 3% reduction undergone by the hyperfine constant on passing from KMgF3:Mn2+ to LiBaF3:Mn2+ are shown to be connected with a parallel increase in the covalency. These surprising results, which cannot be ascribed to a different RI value, are shown to arise from the internal electric field, ER , due to all lattice ions lying outside the MnF64- complex. Although, according to symmetry, ER is null at Mn2+ site this is shown to be not true in the neighborhood of ligands for the LiBaF3 host lattice. The quite different shape of ER in normal and inverted perovskite lattices is shown to be already understood considering only the first two shells surrounding the MnF64- complex. The present results demonstrate that the traditional ligand field theory fails to understand the changes undergone by optical and magnetic parameters of a complex when a host lattice is replaced by another one which is not isomorphous. The relevance of present conclusions for understanding the color of Cr3+ -based gemstones is also underlined.

  16. Tuning of the Hanle effect from EIT to EIA using spatially separated probe and control beams.

    PubMed

    Bhattarai, Mangesh; Bharti, Vineet; Natarajan, Vasant

    2018-05-14

    We demonstrate a technique for continuous tuning of the Hanle effect from electromagnetically induced transparency (EIT) to electromagnetically induced absorption (EIA) by changing the polarization ellipticity of a control beam. In contrast to previous work in this field, we use spatially separated probe and control beams. The experiments are done using magnetic sublevels of the F g  = 4 → F e  = 5 closed hyperfine transition in the 852 nm D 2 line of 133 Cs. The atoms are contained in a room temperature vapor cell with anti-relaxation (paraffin) coating on the walls. The paraffin coating is necessary for the atomic coherence to be transported between the beams. The experimental results are supported by a density-matrix analysis of the system, which also explains the observed amplitude and zero-crossing of the resonances. Such continuous tuning of the sign of a resonance has important applications in quantum memory and other precision measurements.

  17. Disorder induced spin coherence in polyfluorene thin film semiconductors

    NASA Astrophysics Data System (ADS)

    Miller, Richard G.; van Schooten, Kipp; Malissa, Hans; Waters, David P.; Lupton, John M.; Boehme, Christoph

    2014-03-01

    Charge carrier spins in polymeric organic semiconductors significantly influence magneto-optoelectronic properties of these materials. In particular, spin relaxation times influence magnetoresistance and electroluminescence. We have studied the role of structural and electronic disorder in polaron spin-relaxation times. As a model polymer, we used polyfluorene, which can exist in two distinct morphologies: an amorphous (glassy) and an ordered (beta) phase. The phases can be controlled in thin films by preparation parameters and verified by photoluminescence spectroscopy. We conducted pulsed electrically detected magnetic resonance (pEDMR) measurements to determine spin-dephasing times by transient current measurements under bipolar charge carrier injection conditions and a forward bias. The measurements showed that, contrary to intuition, spin-dephasing times increase with material disorder. We attribute this behavior to a reduction in hyperfine field strength for carriers in the glassy phase due to increased structural disorder in the hydrogenated side chains, leading to longer spin coherence times. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.

  18. Coherent coupling between a quantum dot and a donor in silicon

    DOE PAGES

    Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin; ...

    2017-10-18

    Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less

  19. Single crystal X- and Q-band EPR spectroscopy of a binuclear Mn(2)(III,IV) complex relevant to the oxygen-evolving complex of photosystem II.

    PubMed

    Yano, Junko; Sauer, Kenneth; Girerd, Jean-Jacques; Yachandra, Vittal K

    2004-06-23

    The anisotropic g and hyperfine tensors of the Mn di-micro-oxo complex, [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN, were derived by single-crystal EPR measurements at X- and Q-band frequencies. This is the first simulation of EPR parameters from single-crystal EPR spectra for multinuclear Mn complexes, which are of importance in several metalloenzymes; one of them is the oxygen-evolving complex in photosystem II (PS II). Single-crystal [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN EPR spectra showed distinct resolved (55)Mn hyperfine lines in all crystal orientations, unlike single-crystal EPR spectra of other Mn(2)(III,IV) di-micro-oxo bridged complexes. We measured the EPR spectra in the crystal ab- and bc-planes, and from these spectra we obtained the EPR spectra of the complex along the unique a-, b-, and c-axes of the crystal. The crystal orientation was determined by X-ray diffraction and single-crystal EXAFS (Extended X-ray Absorption Fine Structure) measurements. In this complex, the three crystallographic axes, a, b, and c, are parallel or nearly parallel to the principal molecular axes of Mn(2)(III,IV)O(2)(phen)(4) as shown in the crystallographic data by Stebler et al. (Inorg. Chem. 1986, 25, 4743). This direct relation together with the resolved hyperfine lines significantly simplified the simulation of single-crystal spectra in the three principal directions due to the reduction of free parameters and, thus, allowed us to define the magnetic g and A tensors of the molecule with a high degree of reliability. These parameters were subsequently used to generate the solution EPR spectra at both X- and Q-bands with excellent agreement. The anisotropic g and hyperfine tensors determined by the simulation of the X- and Q-band single-crystal and solution EPR spectra are as follows: g(x) = 1.9887, g(y) = 1.9957, g(z) = 1.9775, and hyperfine coupling constants are A(III)(x) = |171| G, A(III)(y) = |176| G, A(III)(z) = |129| G, A(IV)(x) = |77| G, A(IV)(y) = |74| G, A(IV)(z) = |80| G.

  20. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot.

    PubMed

    Kawakami, E; Scarlino, P; Ward, D R; Braakman, F R; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K

    2014-09-01

    Nanofabricated quantum bits permit large-scale integration but usually suffer from short coherence times due to interactions with their solid-state environment. The outstanding challenge is to engineer the environment so that it minimally affects the qubit, but still allows qubit control and scalability. Here, we demonstrate a long-lived single-electron spin qubit in a Si/SiGe quantum dot with all-electrical two-axis control. The spin is driven by resonant microwave electric fields in a transverse magnetic field gradient from a local micromagnet, and the spin state is read out in the single-shot mode. Electron spin resonance occurs at two closely spaced frequencies, which we attribute to two valley states. Thanks to the weak hyperfine coupling in silicon, a Ramsey decay timescale of 1 μs is observed, almost two orders of magnitude longer than the intrinsic timescales in GaAs quantum dots, whereas gate operation times are comparable to those reported in GaAs. The spin echo decay time is ~40 μs, both with one and four echo pulses, possibly limited by intervalley scattering. These advances strongly improve the prospects for quantum information processing based on quantum dots.

  1. Development of a polarized 31Mg+ beam as a spin-1/2 probe for BNMR

    NASA Astrophysics Data System (ADS)

    Levy, C. D. P.; Pearson, M. R.; Dehn, M. H.; Karner, V. L.; Kiefl, R. F.; Lassen, J.; Li, R.; MacFarlane, W. A.; McFadden, R. M. L.; Morris, G. D.; Stachura, M.; Teigelhöfer, A.; Voss, A.

    2016-12-01

    A 28 keV beam of 31Mg+ ions was extracted from a uranium carbide, proton-beam-irradiated target coupled to a laser ion source. The ion beam was nuclear-spin polarized by collinear optical pumping on the 2it {S}_{1/2}-2it {P}_{1/2} transition at 280 nm. The polarization was preserved by an extended 1 mT guide field as the beam was transported via electrostatic bends into a 2.5 T longitudinal magnetic field. There the beam was implanted into a single crystal MgO target and the beta decay asymmetry was measured. Both hyperfine ground states were optically pumped with a single frequency light source, using segmentation of the beam energy, which boosted the polarization by approximately 50 % compared to pumping a single ground state. The total decay asymmetry of 0.06 and beam intensity were sufficient to provide a useful spin-1/2 beam for future BNMR experiments. A variant of the method was used previously to optically pump the full Doppler-broadened absorption profile of a beam of 11Be+ with a single-frequency light source.

  2. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structuremore » that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.« less

  3. NMR Shielding in Metals Using the Augmented Plane Wave Method

    PubMed Central

    2015-01-01

    We present calculations of solid state NMR magnetic shielding in metals, which includes both the orbital and the complete spin response of the system in a consistent way. The latter contains an induced spin-polarization of the core states and needs an all-electron self-consistent treatment. In particular, for transition metals, the spin hyperfine field originates not only from the polarization of the valence s-electrons, but the induced magnetic moment of the d-electrons polarizes the core s-states in opposite direction. The method is based on DFT and the augmented plane wave approach as implemented in the WIEN2k code. A comparison between calculated and measured NMR shifts indicates that first-principle calculations can obtain converged results and are more reliable than initially concluded based on previous publications. Nevertheless large k-meshes (up to 2 000 000 k-points in the full Brillouin-zone) and some Fermi-broadening are necessary. Our results show that, in general, both spin and orbital components of the NMR shielding must be evaluated in order to reproduce experimental shifts, because the orbital part cancels the shift of the usually highly ionic reference compound only for simple sp-elements but not for transition metals. This development paves the way for routine NMR calculations of metallic systems. PMID:26322148

  4. Clarification of the different roles of surface anisotropy for thermal spin waves and FMR modes

    NASA Astrophysics Data System (ADS)

    Rado, G. T.; Walker, J. C.

    1982-11-01

    Measurements by Mössbauer spectroscopy of the position dependence of the hyperfine field in monocrystalline iron films show that the fractional deviation of the spontaneous magnetization at temperature T from its value at T=0 K is larger by a factor of about two at a film surface than in the film's interior. This result agrees with an early theoretical prediction of a factor of exactly two which is based on the assumption that the surface anisotropy is zero. In contrast, the results of recent ferromagnetic resonance experiments on ultra-thin films of monocrystalline iron were shown to be dominated by a surface anistropy which is nonzero. This discrepancy is reconciled for measurements at T=300 K by making use of the general boundary condition which contains the exchange stiffness A and some component(s) of the surface anisotropy Ksurf. The crucial argument is that at 300 K the thermally excited spin wavelengths are so short that at the film surfaces the normal derivative 2A∂m↘/∂n of the oscillating magnetization m↘ is very much larger than Ksurfm↘. Thus Ksurfm↘ is neglible for thermal spin waves even though it is comparable to 2A∂m↘/∂n for the long decay distances (or wavelengths) occurring in ferromagnetic resonance.

  5. Rotational spectra of the X 2Sigma(+) states of CaH and CaD

    NASA Technical Reports Server (NTRS)

    Frum, C. I.; Oh, J. J.; Cohen, E. A.; Pickett, H. M.

    1993-01-01

    The rotational spectra of the 2Sigma(2+) ground states of calcium monohydride and monodeuteride have been recorded in absorption between 250 and 700 GHz. The gas phase free radicals have been produced in a ceramic furnace by the reaction of elemental calcium with molecular hydrogen or deuterium in the presence of an electrical discharge. The molecular constants including the rotational constant, centrifugal distortion constants, spin-rotation constants, and magnetic hyperfine interaction constants have been extracted from the spectra.

  6. Nuclear forward scattering of synchrotron radiation by 99Ru

    DOE PAGES

    Bessas, D.; Merkel, D. G.; Chumakov, A. I.; ...

    2014-10-03

    In this study, we measured nuclear forward scattering spectra utilizing the 99Ru transition, 89.571(3) keV, with a notably mixed E2/M1 multipolarity. The extension of the standard evaluation routines to include mixed multipolarity allows us to extract electric and magnetic hyperfine interactions from 99Ru-containing compounds. This paves the way for several other high-energy Mössbauer transitions, E~90 keV. Lastly, the high energy of such transitions allows for operando nuclear forward scattering studies in real devices.

  7. Ab initio molecular orbital studies of the positive muon and muonium in 4-arylmethyleneamino-TEMPO derivatives

    NASA Astrophysics Data System (ADS)

    Briere, T. M.; Jeong, J.; Das, T. P.; Ohira, S.; Nagamine, K.

    2000-08-01

    The muon and muonium bonding sites of the 4-arylmethyleneamino-2,2,6,6-tetramethylpiperidin-1-yloxyl radical crystals with aryl groups consisting of biphenyl and 4-pyridyl were studied via ab initio Hartree-Fock theory. The hyperfine fields, including both intramolecular and intermolecular interactions, were calculated at the sites of interest and compared to zero field μSR results.

  8. Master equation theory applied to the redistribution of polarized radiation in the weak radiation field limit. V. The two-term atom

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique

    2017-11-01

    Context. In previous papers of this series, we presented a formalism able to account for both statistical equilibrium of a multilevel atom and coherent and incoherent scatterings (partial redistribution). Aims: This paper provides theoretical expressions of the redistribution function for the two-term atom. This redistribution function includes both coherent (RII) and incoherent (RIII) scattering contributions with their branching ratios. Methods: The expressions were derived by applying the formalism outlined above. The statistical equilibrium equation for the atomic density matrix is first formally solved in the case of the two-term atom with unpolarized and infinitely sharp lower levels. Then the redistribution function is derived by substituting this solution for the expression of the emissivity. Results: Expressions are provided for both magnetic and non-magnetic cases. Atomic fine structure is taken into account. Expressions are also separately provided under zero and non-zero hyperfine structure. Conclusions: Redistribution functions are widely used in radiative transfer codes. In our formulation, collisional transitions between Zeeman sublevels within an atomic level (depolarizing collisions effect) are taken into account when possible (I.e., in the non-magnetic case). However, the need for a formal solution of the statistical equilibrium as a preliminary step prevents us from taking into account collisional transfers between the levels of the upper term. Accounting for these collisional transfers could be done via a numerical solution of the statistical equilibrium equation system.

  9. Study of atomic coherence effects in multi-level V+Ξ system involving Rydberg state

    NASA Astrophysics Data System (ADS)

    Kaur, Amanjot; Singh, Neeraj; Kaur, Paramjit

    2018-06-01

    We present theoretical model to investigate the influence of hyperfine levels on the atomic coherences of V+Ξ Rydberg system. Using density matrix formulation, an analytical expression of atomic coherence for weak probe field is derived. The closely spaced hyperfine levels cause asymmetry and red shift while wavelength mismatching induced due to Rydberg state leads to reduction in magnitude and broadening of group index, absorption and dispersion profiles for moving atoms. Our system shows both Rydberg Electromagnetically induced transparency (EIT) with subluminal behavior and Rydberg Electromagnetically induced absorption (EIA) with superluminal propagation by adjusting the strengths of control and switching fields. Variation of group index with probe detuning reveals anomalous dispersion regions at Autler-Townes doublet positions. Group index for Doppler-broadened atoms at resonance condition has lower magnitude as compared to the stationary atoms and hence the group delay time of the pulse is also reduced. We also explore in-depth non-degenerate four-wave mixing (FWM) which is ignited due to the presence of three electromagnetic (e.m.) fields and concurrently, establish relationship between FWM and multi-photon atomic coherence. The transient behavior is also studied for practical realization of our considered system as optical switch.

  10. Mass Independent Fractionation of Cadmium Isotopes During Thermal Ionization

    NASA Astrophysics Data System (ADS)

    Abouchami, W.; Galer, S. J.; Feldmann, H.; Schmitt, A. D.

    2008-12-01

    We have previously reported that Cd isotopes exhibit anomalous, non-mass dependent fractionation of odd versus even isotopes when measured by TIMS using silica gel-phosphoric acid activator. The deviation from mass dependent fractionation (MDF) on the odd masses 111 and 113 varies by fractions of a per-cent between runs. The effects cannot be explained by isobaric interferences, but seem, instead, to reflect mass independent fractionation (MIF) of Cd isotopes, much like that recently documented for Hg isotopes in natural systems (Bergquist and Blum, 2007). The absence of comparable Cd isotope anomalies in the ICP torch, and during extreme in-vacuo volatilization of Cd metal (Wombacher et al., 2004) conclusively implicates the silica gel activator in the process. So far, MIF has been documented for Cd, Zn and Pb isotopes when measured using the silica gel technique (Thirlwall, 2000; Schmitt et al., 2006; Manhes and Göpel, 2007). These MIF effects on Cd isotopes might perhaps be related to the non-mass dependence of nuclear volume with mass number, as described by Bigeleisen (1996) - also known as the "nuclear field shift". The MIF caused by the nuclear field shift results is a departure from MDF broadly characterized by a odd-even staggering with mass number. These effects have been quantified by Schauble (2007) who showed that the magnitude of the non-mass dependence for Hg and Tl isotopes lies in the ppm range for some simple reactions. Such MIF effects would appear, overall, far too small to account for our data, which require MIF offsets on the odd masses 111 and 113 approaching a per-cent. Moreover, an in-depth examination along the lines of Fujii et al. (2006) predicts tell-tale offsets for the even-even isotope pairs 114Cd/112Cd and 116Cd/112Cd as well, based upon the theory and the respective nuclear radii, but such accompanying offsets are unequivocally absent in our data. The odd-even isotope effects seen in our runs using silica gel activator are better explained by appealing to the nuclear spin (and magnetic moment) of odd nuclei alone. The "magnetic isotope effect" is a consequence of hyperfine coupling, in which an electron interacts with a nucleus of non-zero magnetic moment - i.e. one that has an odd number of nucleons (Turro, 1983; Buchachenko, 1995, 2001). This is purely a kinetic phenomenon in which the life-time, and thus the outcome, of reaction transition states is altered by the hyperfine splitting present in atoms with odd nuclei. The mechanism by which silica gel activator enhances the thermal ionization of elements such as Cd, Pb and Zn has been outlined by Kessinger and Delmore (2002). The first step involves the in-situ reduction of Cd2+ ions to Cd metal in the molten silica gel-phosphoric acid glass. It is most likely in this step - whereby two electrons are added - that a suitably long-lived transition state exists, during which the magnetic isotope effect enhances (or inhibits) reduction of masses 111 and 113 to metal species compared to those of even isotopes of Cd. The resulting "odd" and "even" populations of Cd-metal in the molten silica gel then cannot be related simply in terms of MDF. Overall, the magnetic isotope effect provides the best explanation of the MIF effects observed for Pb, Cd and Zn during thermal ionization with silica gel activator, and, probably, why the measured fractionation is always biased towards light isotopes.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Gary J.; Grandjean, Fernande; Guo, Xiaofeng

    Several high-resolution Mössbauer spectra of yttrium iron garnet, Y3Fe5O12, have been fit as a function of temperature with a new model based on a detailed analysis of the spectral changes that result from a reduction from the cubic Ia–3d space group to the trigonal R–3 space group. These spectral fits, which are all statistically identical, indicate that the magnetic sextet arising from the 16a site in cubic symmetry is subdivided into three sextets arising from the 6f, and the 3d, 3d, and the 1a, 1b, and 2c sites in rhombohedral-axis trigonal symmetry. The 24d site in cubic symmetry is subdividedmore » into four sextets arising from four different 6f sites in R–3 rhombohedral-axis trigonal symmetry, sites that differ only by the angles between the principal axis of the electric field gradient tensor and the magnetic hyperfine field assumed to be parallel with the magnetic easy axis. This analysis, when applied to the potential nuclear waste storage compounds, Y3-xCa0.5xTh0.5xFe5O12 and Y3- xCa0.5xCe0.5xFe5O12, indicates virtually no perturbation of the structural, electronic, and magnetic properties upon substitution of small amounts of calcium(II) and thorium(IV) or cerium(IV) onto the yttrium(III) 24c site as compared with Y3Fe5O12. The observed broadening of the four different 6f sites derived from the 24d site results from the substitution of yttrium(III) by calcium(II) and thorium(IV) or cerium(IV) cations on the next-nearest neighbor 24c site. In contrast, the same analysis, when applied to Y2.8Ce0.2Fe5O12, indicates a local perturbation of the magnetic exchange pathways as a result of the presence of cerium(IV) in the 24c next-nearest neighbor site of the iron(III) 24d site.« less

  12. Anisotropic rotational diffusion studied by passage saturation transfer electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Robinson, Bruce H.; Dalton, Larry R.

    1980-01-01

    The stochastic Liouville equation for the spin density matrix is modified to consider the effects of Brownian anisotropic rotational diffusion upon electron paramagnetic resonance (EPR) and saturation transfer electron paramagnetic resonance (ST-EPR) spectra. Spectral shapes and the ST-EPR parameters L″/L, C'/C, and H″/H defined by Thomas, Dalton, and Hyde at X-band microwave frequencies [J. Chem. Phys. 65, 3006 (1976)] are examined and discussed in terms of the rotational times τ∥ and τ⊥ and in terms of other defined correlation times for systems characterized by magnetic tensors of axial symmetry and for systems characterized by nonaxially symmetric magnetic tensors. For nearly axially symmetric magnetic tensors, such as nitroxide spin labels studied employing 1-3 GHz microwaves, ST-EPR spectra for systems undergoing anisotropic rotational diffusion are virtually indistinguishable from spectra for systems characterized by isotropic diffusion. For nonaxially symmetric magnetic tensors, such as nitroxide spin labels studied employing 8-35 GHz microwaves, the high field region of the ST-EPR spectra, and hence the H″/H parameter, will be virtually indistinguishable from spectra, and parameter values, obtained for isotropic diffusion. On the other hand, the central spectral region at x-band microwave frequencies, and hence the C'/C parameter, is sensitive to the anisotropic diffusion model provided that a unique and static relationship exists between the magnetic and diffusion tensors. Random labeling or motion of the spin label relative to the biomolecule whose hydrodynamic properties are to be investigated will destroy spectral sensitivity to anisotropic motion. The sensitivity to anisotropic motion is enhanced in proceeding to 35 GHz with the increased sensitivity evident in the low field half of the EPR and ST-EPR spectra. The L″/L parameter is thus a meaningful indicator of anisotropic motion when compared with H″/H parameter analysis. However, consideration of spectral shapes suggests that the C'/C parameter definition is not meaningfully extended from 9.5 to 35 GHz. Alternative definitions of the L″/L and C'/C parameters are proposed for those microwave frequencies for which the electron Zeeman anisotropy is comparable to or greater than the electron-nitrogen nuclear hyperfine anisotropy.

  13. Relativistic coupled-cluster-theory analysis of energies, hyperfine-structure constants, and dipole polarizabilities of Cd+

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.

    2018-02-01

    Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.

  14. Hyperfine structure measurements of neutral iodine atom (127I) using Fourier Transform Spectrometry

    NASA Astrophysics Data System (ADS)

    Ashok, Chilukoti; Vishwakarma, S. R.; Bhatt, Himal; Ankush, B. K.; Deo, M. N.

    2018-01-01

    We report the hyperfine Structure (hfs) splitting observations of neutral iodine atom (II) in the 6000 - 10,000 cm-1 near infrared spectral region. The measurements were carried out using a high-resolution Fourier Transform Spectrometer (FTS), where an electrodeless discharge lamp (EDL), excited using microwaves, was employed as the light source and InGaAs as the light detector. A specially designed setup was used to lower the plasma temperature of the medium so as to reduce the Doppler width and consequently to increase the spectral resolution of hfs components. A total of 183 lines with hfs splitting have been observed, out of which hfs in 53 spectral lines are reported for the first time. On the basis of hfs analysis, we derived the magnetic dipole and electric quadrupole coupling constants, A and B respectively for 30 even and 30 odd energy levels and are compared with the values available in the literature. New hfs values for 5 even and 4 odd levels are also reported here for the first time.

  15. Theoretical energies, transition rates, lifetimes, hyperfine interaction constants and Lande´ gJ-factors for the Se XXVII spectrum of fusion interest

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Guo, Xue-Ling; Wang, Kai

    2018-02-01

    An extensive set of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, hyperfine structures, Lande´ gJ-factors, electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) radiative transition rates among the lowest 318 states arising from the 2s22p4, 2s2p5, 2p6, 2s22p33l (l = 0, 1, 2), 2s2p43l (l = 0, 1, 2), 2p53l (l = 0, 1, 2), and 2s22p34l (l = 0, 1, 2, 3) configurations has been obtained for Se XXVII. These new data, calculated within the frameworks of the multi-configuration Dirac-Hartree-Fock method and the second-order many-body perturbation theory, fill in the gap existing in the atomic data needed for the diagnostic processes of tokamak plasmas. Using two methods allowed us to make an intercomparison and to estimate the uncertainties on the obtained data. The results arising in the two sets of calculations are quite close, suggesting that there is a high degree of convergence achieved in our work. i.e., our two sets of energies agree to better than 0.02%, and the lifetimes mostly agree to within 2%. Comparison is also made with the limited number of experimental data and previous computations to assess the accuracy of our calculations.

  16. Complete wavelength mismatching effect in a Doppler broadened Y-type six-level EIT atomic medium

    NASA Astrophysics Data System (ADS)

    Bharti, Vineet; Wasan, Ajay

    We present a theoretical study of the Doppler broadened Y-type six-level atomic system, using a density matrix approach, to investigate the effect of varying control field wavelengths and closely spaced hyperfine levels in the 5P state of 87Rb. The closely spaced hyperfine levels in our six-level system affect the optical properties of Y-type system and cause asymmetry in absorption profiles. Depending upon the choices of π-probe, σ+-control and σ--control fields transitions, we consider three regimes: (i) perfect wavelength matching regime (λp=λ=λ), (ii) partial wavelength mismatching regime (λp≠λ=λ), and (iii) complete wavelength mismatching regime (λp≠λ≠λ). The complete wavelength mismatching regime is further distinguished into two situations, i.e., λ<λ and λ>λ. We have shown that in the room temperature atomic vapor, the asymmetric transparency window gets broadened in the partial wavelength mismatching regime as compared to the perfect wavelength matching regime. This broad transparency window also splits at the line center in the complete wavelength mismatching regime.

  17. In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy

    NASA Astrophysics Data System (ADS)

    Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.

    2017-06-01

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10-9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.

  18. In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy.

    PubMed

    Diermaier, M; Jepsen, C B; Kolbinger, B; Malbrunot, C; Massiczek, O; Sauerzopf, C; Simon, M C; Zmeskal, J; Widmann, E

    2017-06-12

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of ν HF =1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10 -9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.

  19. In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy

    PubMed Central

    Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.

    2017-01-01

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10−9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration. PMID:28604657

  20. HYPERFINE-DEPENDENT gf-VALUES OF Mn I LINES IN THE 1.49-1.80 μm H BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, M.; Hutton, R.; Zou, Y.

    2015-01-01

    The three Mn I lines at 17325, 17339, and 17349 Å are among the 25 strongest lines (log (gf) > 0.5) in the H band. They are all heavily broadened due to hyperfine structure, and the profiles of these lines have so far not been understood. Earlier studies of these lines even suggested that they were blended. In this work, the profiles of these three infrared (IR) lines have been studied theoretically and compared to experimental spectra to assist in the complete understanding of the solar spectrum in the IR. It is shown that the structure of these lines cannot be describedmore » in the conventional way using the diagonal A and B hyperfine interaction constants. The off-diagonal hyperfine interaction not only has a large impact on the energies of the hyperfine levels, but also introduces a large intensity redistribution among the hyperfine lines, changing the line profiles dramatically. By performing large-scale calculations of the diagonal and off-diagonal hyperfine interaction and the gf-values between the upper and lower hyperfine levels and using a semi-empirical fitting procedure, we achieved agreement between our synthetic and experimental spectra. Furthermore, we compare our results with observations of stellar spectra. The spectra of the Sun and the K1.5 III red giant star Arcturus were modeled in the relevant region, 1.73-1.74 μm, using our theoretically predicted gf-values and energies for each individual hyperfine line. Satisfactory fits were obtained and clear improvements were found using our new data compared with the old available Mn I data. A complete list of energies and gf-values for all the 3d {sup 5}4s({sup 7} S)4d e{sup 6}D - 3d {sup 5}4s({sup 7} S)4f w{sup 6}F hyperfine lines are available as supporting material, whereas only the stronger lines are presented and discussed in detail in this paper.« less

  1. Complete Monitoring of Coherent and Incoherent Spin Flip Domains in the Recombination of Charge-Separated States of Donor-Iridium Complex-Acceptor Triads.

    PubMed

    Klein, Johannes H; Schmidt, David; Steiner, Ulrich E; Lambert, Christoph

    2015-09-02

    The spin chemistry of photoinduced charge-separated (CS) states of three triads comprising one or two triarylamine donors, a cyclometalated iridium complex sensitizer and a naphthalene diimide (NDI) acceptor, was investigated by transient absorption spectroscopy in the ns-μs time regime. Strong magnetic-field effects (MFE) were observed for two triads with a phenylene bridge between iridium complex sensitizer and NDI acceptor. For these triads, the lifetimes of the CS states increased from 0.6 μs at zero field to 40 μs at about 2 T. Substituting the phenylene by a biphenyl bridge causes the lifetime of the CS state at zero field to increase by more than 2 orders of magnitude (τ = 79 μs) and the MFE to disappear almost completely. The kinetic MFE was analyzed in the framework of a generalized Hayashi-Nagakura scheme describing coherent (S, T0 ↔ T±) as well as incoherent (S, T0 ⇌ T±) processes by a single rate constant k±. The magnetic-field dependence of k± of the triads with phenylene bridge spans 2 orders of magnitude and exhibits a biphasic behavior characterized by a superposition of two Lorentzians. This biphasic MFE is observed for the first time and is clearly attributable to the coherent (B < 10 mT) and incoherent (10 mT < B < 2 T) domains of spin motion induced by isotropic and anisotropic hyperfine coupling. The parameters of both domains are well understood in terms of the structural properties of the two triads, including the effect of electron hopping in the triad with two donor moieties. The kinetic model also accounts for the reduction of the MFE on reducing the rate constant of charge recombination in the triad with the biphenyl bridge.

  2. Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms

    NASA Astrophysics Data System (ADS)

    Aldegunde, Jesus; Hutson, Jeremy M.

    2018-04-01

    Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.

  3. The hyperfine excitation of OH radicals by He

    NASA Astrophysics Data System (ADS)

    Marinakis, Sarantos; Kalugina, Yulia; Lique, François

    2016-04-01

    Hyperfine-resolved collisions between OH radicals and He atoms are investigated using quantum scattering calculations and the most recent ab initio potential energy surface, which explicitly takes into account the OH vibrational motion. Such collisions play an important role in astrophysics, in particular in the modelling of OH masers. The hyperfine-resolved collision cross sections are calculated for collision energies up to 2500 cm-1 from the nuclear spin free scattering S-matrices using a recoupling technique. The collisional hyperfine propensities observed are discussed. As expected, the results from our work suggest that there is a propensity for collisions with ΔF = Δj. The new OH-He hyperfine cross sections are expected to significantly help in the modelling of OH masers from current and future astronomical observations. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  4. Line shape of 57Co sources exhibiting self absorption

    NASA Astrophysics Data System (ADS)

    Spiering, H.; Ksenofontov, V.; Leupold, O.; Kusz, J.; Deák, L.; Németh, Z.; Bogdán, C.; Bottyán, L.; Nagy, D. L.

    2016-12-01

    The effect of selfabsorption in Mössbauer sources is studied in detail. Spectra were measured using an old 57 C o/ R h source of 74 M B q activity with an original activity of ca. 3.7 G B q and a 0.15 G B q 57 C o/ α - F e source magnetized by an in-plane magnetic field of 0.2 T. The 57 C o/ α - F e source of a thickness of 25 μ was used both from the active and the inactive side giving cause to very different selfabsorption effects. The absorber was a single crystal of ferrous ammonium sulphate hexahydrate (FAS). Its absorption properties were taken over from a detailed study (Bull et al., Hyperfine Interact. 94(1-3), 1; Spiering et al. 2). FAS (space group P21/c) crystallizes as flat plates containing the (overline {2}01) plane. The γ-direction was orthogonal to the crystal plate. The 57 C o atoms of the 57 C o/ R h source were assumed to be homogeneously distributed over a 6 μ thick Rh foil and to follow a one dimensional diffusion profile in the 25 μ Fe-foil. The diffusion length was fitted to 10 μ. The theory follows the Blume-Kistner equations for forward scattering (Blume and Kistner, Phys. Rev. 171, 417, 3) by integrating over the source sampled up to 128 layers.

  5. Electronic properties of thiolate compounds of oxomolybdenum(V) and their tungsten and selenium analogues. Effects of /sup 17/O, /sup 98/Mo, and /sup 95/Mo isotope substitution upon ESR spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, G.R.; Brunette, A.A.; McDonell, A.C.

    1981-04-22

    The series of crystalline, mononuclear B/sup +/(MO(XR)/sub 4/)/sup -/ and triply bridged binuclear B/sup +/(M/sub 2/O/sub 2/(XR)/sub 6/(OMe))/sup -/(M = Mo, W; X = S, Se; R = aryl; B = quaternary cation) salts have been isolated and the anions (MoO(SR)/sub 4/)/sup -/ (R = Et, CH/sub 2/Ph) stabilized in solution at -60/sup 0/C. The mononuclear anions are intensely colored due to a ligand-to-metal charge-transfer transition which is absent in the binuclear species. The magnetic susceptibilities of (Et/sub 4/N)(MO(SPh)/sub 4/) show a Curie dependence in the range 300 to 4.2 K with minor deviations in the tungsten compound. The behaviormore » is essentially that of magnetically dilute 4d/sup 1/ and 5d/sup 1/ systems exhibiting a tetragonal ligand field and greatly reduced spin-orbit coupling on the metal. The presence of strong spin-spin coupling in the binuclear compounds leads to magnetic moments close to 0. ESR spectra (at X- and Q-band frequencies) of the mononuclear anions exhibit axial symmetry, and /sup 98/Mo and /sup 95/Mo isotope substitution and computer simulation permit accurate extraction of the g and hyperfine tensor anisotropies. Exceptionally arrow line widths permit observation of /sup 17/O-superhyperfine coupling in /sup 17/O-enriched (/sup 98/MoO(SPh)/sub 4/)/sup -/(a = 2.2 x 10/sup -4/cm/sup -1/).« less

  6. Heading error in an alignment-based magnetometer

    NASA Astrophysics Data System (ADS)

    Hovde, Chris; Patton, Brian; Versolato, Oscar; Corsini, Eric; Rochester, Simon; Budker, Dmitry

    2011-06-01

    A prototype magnetometer for anti-submarine warfare applications is being developed based on nonlinear magneto-optical rotation (NMOR) in atomic vapors. NMOR is an atomic spectroscopy technique that exploits coherences among magnetic sublevels of atoms such as cesium or rubidium to measure magnetic fields with high precision. NMOR uses stroboscopic optical pumping via frequency or amplitude modulation of a linearly polarized laser beam to create the alignment. An anti-relaxation coating on the walls of the atomic vapor cell can result in a long lifetime of 1 s or more for the coherence and enables precise measurement of the precession frequency. With proper feedback, the magnetometer can self-oscillate, resulting in accurate tracking and fast time response. The NMOR magnetic resonance spectrum of 87Rb has been measured as a function of heading in Earth's field. Optical pumping of alignment within the F=2 hyperfine manifold generates three resonances separated by the nonlinear Zeeman splitting. The spectra show a high degree of symmetry, consisting of a central peak and two side peaks of nearly equal intensity. As the heading changes, the ratio of the central peak to the average of the two side peaks changes. The amplitudes of the side peaks remain nearly equal. An analysis of the forced oscillation spectra indicates that, away from dead zones, heading error in self-oscillating mode should be less than 1 nT. A broader background is also observed in the spectra. While this background can be removed when fitting resonance spectra, understanding it will be important to achieving the small heading error in self-oscillating mode that is implied by the spectral measurements. Progress in miniaturizing the magnetometer is also reported. The new design is less than 10 cm across and includes fiber coupling of light to and from the magnetometer head. Initial tests show that the prototype has achieved a narrow spectral width and a strong polarization rotation signal.

  7. ENDOR-Induced EPR of Disordered Systems: Application to X-Irradiated Alanine.

    PubMed

    Kusakovskij, Jevgenij; Maes, Kwinten; Callens, Freddy; Vrielinck, Henk

    2018-02-15

    The electron paramagnetic resonance (EPR) spectra of radiation-induced radicals in organic solids are generally composed of multiple components that largely overlap due to their similar weak g anisotropy and a large number of hyperfine (HF) interactions. Such properties make these systems difficult to study using standard cw EPR spectroscopy even in single crystals. Electron-nuclear double-resonance (ENDOR) spectroscopy is a powerful and widely used complementary technique. In particular, ENDOR-induced EPR (EIE) experiments are useful for separating the overlapping contributions. In the present work, these techniques were employed to study the EPR spectrum of stable radicals in X-irradiated alanine, which is widely used in dosimetric applications. The principal values of all major proton HF interactions of the dominant radicals were determined by analyzing the magnetic field dependence of the ENDOR spectrum at 50 K, where the rotation of methyl groups is frozen. Accurate simulations of the EPR spectrum were performed after the major components were separated using an EIE analysis. As a result, new evidence in favor of the model of the second dominant radical was obtained.

  8. Magneto-optical contrast in liquid-state optically detected NMR spectroscopy

    PubMed Central

    Pagliero, Daniela; Meriles, Carlos A.

    2011-01-01

    We use optical Faraday rotation (OFR) to probe nuclear spins in real time at high-magnetic field in a range of diamagnetic sample fluids. Comparison of OFR-detected NMR spectra reveals a correlation between the relative signal amplitude and the fluid Verdet constant, which we interpret as a manifestation of the variable detuning between the probe beam and the sample optical transitions. The analysis of chemical-shift-resolved, optically detected spectra allows us to set constraints on the relative amplitudes of hyperfine coupling constants, both for protons at chemically distinct sites and other lower-gyromagnetic-ratio nuclei including carbon, fluorine, and phosphorous. By considering a model binary mixture we observe a complex dependence of the optical response on the relative concentration, suggesting that the present approach is sensitive to the solvent-solute dynamics in ways complementary to those known in inductive NMR. Extension of these experiments may find application in solvent suppression protocols, sensitivity-enhanced NMR of metalloproteins in solution, the investigation of solvent-solute interactions, or the characterization of molecular orbitals in diamagnetic systems. PMID:22100736

  9. Spontaneous Vortices in Imbalance Populated Fermion Gas, Finite Size System

    NASA Astrophysics Data System (ADS)

    Su, Jung-Jung; Shim, Yun-Pil; Duine, Rembert; MacDonald, Allan H.

    2006-05-01

    Atomic Fermion gases with mismatched densities have attracted much interest recently both experimentally and theoretically. These gases are related to superconductors in a magnetic field, to color superconductivity in high density QCD and to other systems. The main focus of recent research is on the possibility of unusual pairing states, the Larkin-Ovchinnikov-Fulde-Ferrel(LOFF)[1] phase, the Deformed Fermi surface(DFS)[2] and other states have been suggested in the past few years. We work specifically on two-dimensional systems with circular hard walls which contain atoms with two different hyperfine states and different populations. In addition to phase separation, a phenomenon that has already been observed[3], we consider the possibility of the spontaneous formation of vortices and giant vortices in some regions of parameter space. [1] Qinghong Cui, C.-R. Hu, J.Y.T. Wei, and Kun Yang, cond-mat/0510717 [2] Armen Sedrakian, Jordi Mur-Petit, Artur Polls, Herbert M"uther , cond-mat/0404577 [3] Guthrie B. Partridge, Wenhui Li, Ramsey I. Kamar, Yean-an Liao, Randall G. Hulet, cond-mat/0511752

  10. Noncontact bimolecular photoionization followed by radical-ions separation and their geminate recombination assisted by coherent HFI induced spin-conversion.

    PubMed

    Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I

    2008-02-07

    The Hamiltonian description of the spin-conversion induced by a hyperfine interaction (HFI) in photogenerated radical-ion pairs is substituted for the rate (incoherent) description of the same conversion provided by the widely used earlier elementary spin model. The quantum yields of the free ions as well as the singlet and triplet products of geminate recombination are calculated using distant dependent ionization and recombination rates, instead of their contact analogs. Invoking the simplest models of these rates, we demonstrate with the example of a spin-less system that the diffusional acceleration of radical-ion pair recombination at lower viscosity gives way to its diffusional deceleration (Angulo effect), accomplished with a kinetic plateau inherent with the primitive exponential model. Qualitatively the same behavior is found in real systems, assuming both ionization and recombination is carried out by the Marcus electron-transfer rates. Neglecting the Coulomb interaction between solvated ions, the efficiencies of radical-ion pair recombination to the singlet and triplet products are well fitted to the available experimental data. The magnetic field dependence of these yields is specified.

  11. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  12. The dynamics of the optically driven Lambda transition of the 15N-V- center in diamond.

    PubMed

    González, Gabriel; Leuenberger, Michael N

    2010-07-09

    Recent experimental results demonstrate the possibility of writing quantum information in the ground state triplet of the (15)N-V(-) center in diamond by means of an optically driven spin non-conserving two-photon Lambda transition in the presence of a strong applied electric field. Our calculations show that the hyperfine interaction in the (15)N-V(-) center is capable of mediating such a transition. We use a density matrix approach to describe the exact dynamics for the allowed optical spin non-conserving transitions between two sublevels of the ground state triplet. This approach allows us to calculate the Rabi oscillations, by means of which we obtain a Rabi frequency with an upper bound determined by the hyperfine interaction. This result is crucial for the success of implementing optically driven quantum information processing with the N-V center in diamond.

  13. The pure rotational spectrum of TiF (X 4Φr): 3d transition metal fluorides revisited

    NASA Astrophysics Data System (ADS)

    Sheridan, P. M.; McLamarrah, S. K.; Ziurys, L. M.

    2003-11-01

    The pure rotational spectrum of TiF in its X 4Φr (v=0) ground state has been measured using millimeter/sub-millimeter wave direct absorption techniques in the range 140-530 GHz. In ten out of the twelve rotational transitions recorded, all four spin-orbit components were observed, confirming the 4Φr ground state assignment. Additional small splittings were resolved in several of the spin components in lower J transitions, which appear to arise from magnetic hyperfine interactions of the 19F nucleus. In contrast, no evidence for Λ-doubling was seen in the data. The rotational transitions of TiF were analyzed using a case (a) Hamiltonian, resulting in the determination of rotational and fine structure constants, as well as hyperfine parameters for the fluorine nucleus. The data were readily fit in a case (a) basis, indicating strong first order spin-orbit coupling and minimal second-order effects, as also evidenced by the small value of λ, the spin-spin parameter. Moreover, only one higher order term, η, the spin-orbit/spin-spin interaction term, was needed in the analysis, again suggesting limited perturbations in the ground state. The relative values of the a, b, and c hyperfine constants indicate that the three unpaired electrons in this radical lie in orbitals primarily located on the titanium atom and support the molecular orbital picture of TiF with a σ1δ1π1 single electron configuration. The bond length of TiF (1.8342 Å) is significantly longer than that of TiO, suggesting that there are differences in the bonding between 3d transition metal fluorides and oxides.

  14. Full hyperfine structure analysis of singly ionized molybdenum

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa

    2017-03-01

    For a first time a parametric study of hyperfine structure of Mo II configuration levels is presented. The newly measured A and B hyperfine structure (hfs) constants values of Mo II 4d5, 4d45s and 4d35s2 configuration levels, for both 95 and 97 isotopes, using Fast-ion-beam laser-induced fluorescence spectroscopy [1] are gathered with other few data available in literature. A fitting procedure of an isolated set of these three lowest even-parity configuration levels has been performed by taking into account second-order of perturbation theory including the effects of closed shell-open shell excitations. Moreover the same study was done for Mo II odd-parity levels; for both parities two sets of fine structure parameters as well as the leading eigenvector percentages of levels and Landé-factor gJ, relevant for this paper are given. We present also predicted singlet, triplet and quintet positions of missing experimental levels up to 85000 cm-1. The single-electron hfs parameter values were extracted in their entirety for 97Mo II and for 95Mo II: for instance for 95Mo II, a4d 01 =-133.37 MHz and a5p 01 =-160.25 MHz for 4d45p; a4d 01 =-140.84 MHz, a5p 01 =-170.18 MHz and a5s 10 =-2898 MHz for 4d35s5p; a5s 10 =-2529 (2) MHz and a4d 01 =-135.17 (0.44) MHz for the 4d45s. These parameter values were analysed and compared with diverse ab-initio calculations. We closed this work with giving predicted values of magnetic dipole and electric quadrupole hfs constants of all known levels, whose splitting are not yet measured.

  15. VizieR Online Data Catalog: Rotational frequencies of TiO isotopologues (Lincowski+, 2016)

    NASA Astrophysics Data System (ADS)

    Lincowski, A. P.; Halfen, D. T.; Ziurys, L. M.

    2017-03-01

    Pure rotational spectra of the rare isotopologues of titanium oxide, 46TiO, 47TiO, 49TiO, and 50TiO, have been recorded using a combination of Fourier transform millimeter-wave (FTmmW) and millimeter/submillimeter direct absorption techniques in the frequency range 62-538GHz. This study is the first complete spectroscopic characterization of these species in their X3Δr ground electronic states. The isotopologues were created by the reaction of N2O or O2 and titanium vapor, produced either by laser ablation or in a Broida-type oven, and observed in the natural Ti isotopic abundances. Between 10 and 11 rotational transitions J+1<->J were measured for each species, typically in all 3 spin-orbit ladders Ω=1, 2, and 3. For 47TiO and 49TiO, hyperfine structure was resolved, originating from the titanium-47 and titanium-49 nuclear spins of I=5/2 and 7/2, respectively. For the Ω=1 and 3 components, the hyperfine structure was found to follow a classic Lande pattern, while that for Ω=2 appeared to be perturbed, likely a result of mixing with the nearby isoconfigurational a1Δ state. The spectra were analyzed with a case (a) Hamiltonian, and rotational, spin-orbit, and spin-spin parameters were determined for each species, as well as magnetic hyperfine and electric quadrupole constants for the two molecules with nuclear spins. The most abundant species, 48TiO, has been detected in circumstellar envelopes. These measurements will enable other titanium isotopologues to be studied at millimeter wavelengths, providing Ti isotope ratios that can test models of nucleosynthesis. (1 data file).

  16. Millimeter/Submillimeter Spectroscopy of TiO (X3Δr): The Rare Titanium Isotopologues

    NASA Astrophysics Data System (ADS)

    Lincowski, A. P.; Halfen, D. T.; Ziurys, L. M.

    2016-12-01

    Pure rotational spectra of the rare isotopologues of titanium oxide, 46TiO, 47TiO, 49TiO, and 50TiO, have been recorded using a combination of Fourier transform millimeter-wave (FTmmW) and millimeter/submillimeter direct absorption techniques in the frequency range 62-538 GHz. This study is the first complete spectroscopic characterization of these species in their X 3Δ r ground electronic states. The isotopologues were created by the reaction of N2O or O2 and titanium vapor, produced either by laser ablation or in a Broida-type oven, and observed in the natural Ti isotopic abundances. Between 10 and 11 rotational transitions J + 1 ≤ftrightarrow J were measured for each species, typically in all 3 spin-orbit ladders Ω = 1, 2, and 3. For 47TiO and 49TiO, hyperfine structure was resolved, originating from the titanium-47 and titanium-49 nuclear spins of I = 5/2 and 7/2, respectively. For the Ω = 1 and 3 components, the hyperfine structure was found to follow a classic Landé pattern, while that for Ω = 2 appeared to be perturbed, likely a result of mixing with the nearby isoconfigurational a 1Δ state. The spectra were analyzed with a case (a) Hamiltonian, and rotational, spin-orbit, and spin-spin parameters were determined for each species, as well as magnetic hyperfine and electric quadrupole constants for the two molecules with nuclear spins. The most abundant species, 48TiO, has been detected in circumstellar envelopes. These measurements will enable other titanium isotopologues to be studied at millimeter wavelengths, providing Ti isotope ratios that can test models of nucleosynthesis.

  17. In vivo EPR extracellular pH-metry in tumors using a triphosphonated trityl radical.

    PubMed

    Marchand, Valérie; Levêque, Philippe; Driesschaert, Benoit; Marchand-Brynaert, Jacqueline; Gallez, Bernard

    2017-06-01

    The ability to assess the extracellular pH (pHe) is an important issue in oncology, because extracellular acidification is associated with tumor aggressiveness and resistance to cytotoxic therapies. In this study, a stable triphosphonated triarylmethyl (TPTAM) radical was qualified as a pHe electron paramagnetic resonance (EPR) molecular reporter. Calibration of hyperfine splitting as a function of pH was performed using a 1.2-GHz EPR spectrometer. Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was used as an extracellular paramagnetic broadening agent to assess the localization of TPTAM when incubated with cells. In vivo EPR pH-metry was performed in MDA, SiHa, and TLT tumor models and in muscle. Bicarbonate therapy was used to modulate the tumor pHe. EPR measurements were compared with microelectrode readouts. The hyperfine splitting of TPTAM was strongly pH-dependent around the pKa of the probe (pKa = 6.99). Experiments with Gd-DTPA demonstrated that TPTAM remained in the extracellular compartment. pHe was found to be more acidic in the MDA, SiHa, and TLT tumor models compared with muscle. Treatment of animals by bicarbonate induced an increase in pHe in tumors: similar variations in pHe were found when using in vivo EPR or invasive microelectrodes measurements. This study demonstrates the potential usefulness of TPTAM for monitoring pHe in tumors. Magn Reson Med 77:2438-2443, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. 57Fe Mössbauer study of stoichiometric iron-based superconductor CaKFe 4As 4: a comparison to KFe 2As 2 and CaFe 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bud’ko, Sergey L.; Kong, Tai; Meier, William R.

    57Fe Mössbauer spectra at different temperatures between ~5 and ~300 K were measured on an oriented mosaic of single crystals of CaKFe 4 As 4. The data indicate that is a well formed compound with narrow spectral lines, no traces of other, Fe – containing, secondary phases in the spectra and no static magnetic order. There is no discernible feature at the superconducting transition temperature in any of the hyperfine parameters. The temperature dependence of the quadrupole splitting approximately follows the empirical ‘ T 3/2 law’. Furthermore, the hyperfine parameters of CaKFe 4 As 4 are compared with those formore » measured in this work, and the literature data for CaFe 2 As 2, and were found to be in between those for these two, ordered, 122 compounds, in agreement with the gross view of CaKFe 4 As 4 as a structural analog of KFe 2 As 2 and CaFe 2 As 2 that has alternating Ca- and K-layers in the structure.« less

  19. Zeeman-hyperfine structures and isotope effect in the spectrum of Tl I

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa; Sobolewski, Łukasz Marek; Kwela, Jerzy

    2018-01-01

    The Zeeman structures of seventeen lines of 205Tl I (Z = 81) covering the UV-NIR spectral range (351.92-1151.28) nm were investigated. Landé gJ-factors for eighteen levels were determined for the first time. Furthermore, we have performed fine structure studies for both even- and odd-configuration levels and determined the relevant parameters. For the 6 s 6p2 configuration we have refined the suggested level energies and predicted positions for missing levels. With regard to hyperfine structure (hfs), we have justified the surprisingly huge value of the magnetic hfs constant A(6s2 10 s) . Moreover, we have extracted the single-electron hfs constant parameter values for the lowest even-parity configurations of 205Tl I; for instance a10s10 (6s2 10 s) = 1015(9) MHz and a6s10 (6 s 6p2) = 217306(205) MHz. Regarding isotope shift analysis we have observed that Dirac-Fock calculations, preferably chosen to take into account the contribution of the p1/2 contact-electron, are in good agreement with experimental data for low-lying levels of each configuration under study.

  20. EPR analysis of cyanide complexes of wild-type human neuroglobin and mutants in comparison to horse heart myoglobin.

    PubMed

    Van Doorslaer, Sabine; Trandafir, Florin; Harmer, Jeffrey R; Moens, Luc; Dewilde, Sylvia

    2014-06-01

    Electron paramagnetic resonance (EPR) data reveal large differences between the ferric ((13)C-)cyanide complexes of wild-type human neuroglobin (NGB) and its H64Q and F28L point mutants and the cyanide complexes of mammalian myo- and haemoglobin. The point mutations, which involve residues comprising the distal haem pocket in NGB, induce smaller, but still significant changes, related to changes in the stabilization of the cyanide ligand. Furthermore, for the first time, the full (13)C hyperfine tensor of the cyanide carbon of cyanide-ligated horse heart myoglobin (hhMb) was determined using Davies ENDOR (electron nuclear double resonance). Disagreement of these experimental data with earlier predictions based on (13)C NMR data and a theoretical model reveal significant flaws in the model assumptions. The same ENDOR procedure allowed also partial determination of the corresponding (13)C hyperfine tensor of cyanide-ligated NGB and H64QNGB. These (13)C parameters differ significantly from those of cyanide-ligated hhMb and challenge our current theoretical understanding of how the haem environment influences the magnetic parameters obtained by EPR and NMR in cyanide-ligated haem proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The HERMES Polarized Atomic Beam Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nass, A.

    2003-07-30

    The atomic beam source (ABS) provides nuclear polarized hydrogen or deuterium atoms for the HERMES target at flow rates of about 6.5 {center_dot} 1016H-vector/s (hydrogen in two hyperfine substates) and 6.0 {center_dot} 1016D-vector/s (deuterium in three hyperfine substates). The degree of dissociation of 93% for H (95% for D) at the entrance of the storage cell and the nuclear polarization of around 0.97 (H) and 0.92 (D) have been found to be constant within a a couple of percent over the whole running period of the HERMES experiment. A new dissociator (MWD) based on a microwave discharge at 2.45 GHzmore » has been developed and installed into the HERMES-ABS in 2000. Since the velocity distribution of the MWD differs from that of the RFD the intensity could be increased further with a modified sextupole magnet system. For this purpose the way for a new start generator for sextupole tracking calculations was opened. Monte-Carlo simulations were successfully used to describe the gas expansion between nozzle, skimmer and collimator. A new type of beam monitor was used to study the beam formation after the nozzle.« less

  2. 57Fe Mössbauer study of stoichiometric iron-based superconductor CaKFe 4As 4: a comparison to KFe 2As 2 and CaFe 2As 2

    DOE PAGES

    Bud’ko, Sergey L.; Kong, Tai; Meier, William R.; ...

    2017-07-06

    57Fe Mössbauer spectra at different temperatures between ~5 and ~300 K were measured on an oriented mosaic of single crystals of CaKFe 4 As 4. The data indicate that is a well formed compound with narrow spectral lines, no traces of other, Fe – containing, secondary phases in the spectra and no static magnetic order. There is no discernible feature at the superconducting transition temperature in any of the hyperfine parameters. The temperature dependence of the quadrupole splitting approximately follows the empirical ‘ T 3/2 law’. Furthermore, the hyperfine parameters of CaKFe 4 As 4 are compared with those formore » measured in this work, and the literature data for CaFe 2 As 2, and were found to be in between those for these two, ordered, 122 compounds, in agreement with the gross view of CaKFe 4 As 4 as a structural analog of KFe 2 As 2 and CaFe 2 As 2 that has alternating Ca- and K-layers in the structure.« less

  3. Quantum Chemical Calculations of Torsionally Mediated Hyperfine Splittings in States of E Symmetry of Acetaldehyde (CH_{3}CHO)

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Reid, Elias M.; Guislain, Bradley; Hougen, Jon T.; Alekseev, E. A.; Krapivin, Igor

    2017-06-01

    Hyperfine splittings in methanol have been revisited in three recent publications. (i) Coudert et al. [JCP 143 (2015) 044304] published an analysis of splittings observed in the low-J range. They calculated 32 spin-rotation, 32 spin-spin, and 16 spin-torsion hyperfine constants using the ACES2 package. Three of these constants were adjusted to fit hyperfine patterns for 12 transitions. (ii) Three present authors and collaborators [JCP 145 (2016) 024307] analyzed medium to high-J experimental Lamb-dip measurements in methanol and presented a theoretical spin-rotation explanation that was based on torsionally mediated spin-rotation hyperfine operators. These contain, in addition to the usual nuclear spin and overall rotational operators, factors in the torsional angle α of the form {e^{plusmn;{inα}}}. Such operators have non-zero matrix elements between the two components of a torsion-rotation ^{tr}E state, but have zero matrix elements within a ^{tr}A state. More than 55 hyperfine splittings were successfully fitted using three parameters and the fitted values agree well with ab initio values obtained in (i). (iii) Lankhaar et al. [JCP 145 (2016) 244301] published a reanalysis of the data set from (i), using CFOUR recalculated hyperfine constants based on their rederivation of the relevant expressions. They explain why their choice of fixed and floated parameters leads to numerical values for all parameters that seem to be more physical than those in (i). The results in (ii) raise the question of whether large torsionally-mediated spin-rotation splittings will occur in other methyl-rotor-containing molecules. This abstract presents ab initio calculations of torsionally mediated hyperfine splittings in the E states of acetaldehyde using the same three operators as in (ii) and spin-rotation constants computed by Gaussian09. We explored the first 13 K states for J from 10 to 40 and ν_{t} = 0, 1, and 2. Our calculations indicate that hyperfine splittings in CH_{3}CHO are just below current measurement capability. This conclusion is confirmed by available experimental measurements.

  4. Measurement of the β-asymmetry parameter of Cu67 in search for tensor-type currents in the weak interaction

    NASA Astrophysics Data System (ADS)

    Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I. S.; Porobic, T.; Prashanth, P. N.; Towner, I. S.; Tramm, C.; Zákoucký, D.; Severijns, N.

    2014-09-01

    Background: Precision measurements at low energy search for physics beyond the standard model in a way complementary to searches for new particles at colliders. In the weak sector the most general β-decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor, and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β decay are on the level of several percent. Purpose: Extracting new information on tensor coupling constants by measuring the β-asymmetry parameter in the pure Gamow-Teller decay of Cu67, thereby testing the V-A structure of the weak interaction. Method: An iron sample foil into which the radioactive nuclei were implanted was cooled down to mK temperatures in a 3He-4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β radiation was observed with planar high-purity germanium detectors operating at a temperature of about 10 K. An on-line measurement of the β asymmetry of Cu68 was performed as well for normalization purposes. Systematic effects were investigated using geant4 simulations. Results: The experimental value, Ã=0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are -0.045<(CT+CT')/CA<0.159 (90% C.L.). Conclusions: The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.

  5. Spin coherence and 14N ESEEM effects of nitrogen-vacancy centers in diamond with X-band pulsed ESR

    DOE PAGES

    Rose, B. C.; Weis, C. D.; Tyryshkin, A. M.; ...

    2016-12-20

    Pulsed ESR experiments are reported for ensembles of negatively-charged nitrogen-vacancy centers (NV   - ) in diamonds at X-band magnetic fields (280–400 mT) and low temperatures (2–70 K). The NV   - centers in synthetic type IIa diamonds (nitrogen impurity concentration   < 1 ppm) are prepared with bulk concentrations of 2 • 10 13 cm   -3 to 4• 10 14 cm   -3 by high-energy electron irradiation and subsequent annealing. We find that a proper post-radiation anneal (1000°C for 60 min) is very important to repair the radiation damage and to recover long electron spin coherence times for NV  more » - s. After the annealing, spin coherence times of T 2  = 0.74ms at 5 K are achieved, being only limited by 13 C nuclear spectral diffusion in natural abundance diamonds. By measuring the temperature dependence of T 2 in the under-annealed diamonds (900°C) we directly extract the density (10 14  -16 cm   -3 ) and activation energy (2.5 meV) of unannealed defects responsible for the faster NV  - decoherence. At X-band magnetic fields, strong electron spin echo envelope modulation (ESEEM) is observed originating from the central 14 N nucleus, and we extract accurate 14 N nuclear hypefine and quadrupole tensors. In addition, the ESEEM effects from two proximal 13 C sites (second-nearest neighbor and fourth-nearest neighbor) are resolved and the respective 13 C hyperfine coupling constants are extracted.« less

  6. The orbital ground state of the azide-substrate complex of human heme oxygenase is an indicator of distal H-bonding: implications for the enzyme mechanism.

    PubMed

    Ogura, Hiroshi; Evans, John P; Peng, Dungeng; Satterlee, James D; Ortiz de Montellano, Paul R; La Mar, Gerd N

    2009-04-14

    The active site electronic structure of the azide complex of substrate-bound human heme oxygenase 1 (hHO) has been investigated by (1)H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. Two-dimensional (1)H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts that places the lone iron pi-spin in the d(xz) orbital, rather than the d(yz) orbital found in the cyanide complex. Comparison of iron spin relaxivity, magnetic anisotropy, and magnetic susceptibilities argues for a low-spin, (d(xy))(2)(d(yz),d(xz))(3), ground state in both azide and cyanide complexes. The switch from singly occupied d(yz) for the cyanide to d(xz) for the azide complex of hHO is shown to be consistent with the orbital hole determined by the azide pi-plane in the latter complex, which is approximately 90 degrees in-plane rotated from that of the imidazole pi-plane. The induction of the altered orbital ground state in the azide relative to the cyanide hHO complex, as well as the mean low-field bias of methyl hyperfine shifts and their paramagnetic relaxivity relative to those in globins, indicates that azide exerts a stronger ligand field in hHO than in the globins, or that the distal H-bonding to azide is weaker in hHO than in globins. The Asp140 --> Ala hHO mutant that abolishes activity retains the unusual WT azide complex spin/orbital ground state. The relevance of our findings for other HO complexes and the HO mechanism is discussed.

  7. The orbital ground state of the azide-substrate complex of human heme oxygenase is an indicator of distal H-bonding: Implications for the enzyme mechanism‡

    PubMed Central

    Ogura, Hiroshi; Evans, John P.; Peng, Dungeng; Satterlee, James D.; de Montellano, Paul R. Ortiz; Mar, Gerd N. La

    2009-01-01

    The active site electronic structure of the azide complex of substrate-bound human heme oxygenase-1, (hHO) has been investigated by 1H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. 2D 1H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts, that places the lone iron π-spin in the dxz orbital, rather than the dyz orbital found in the cyanide complex. Comparison of iron spin relaxivity, magnetic anisotropy and magnetic susceptibilities argues for a low-spin, (dxy)2(dyz,dxz)3, ground state in both azide and cyanide complexes. The switch from singly-occupied dyz for the cyanide to dxz for the azide complex of hHO is shown to be consistent with the orbital hole determined by the azide π-plane in the latter complex, which is ∼90° in-plane rotated from that of the imidazole π-plane. The induction of the altered orbital ground state in the azide relative to the cyanide hHO complex, as well as the mean low-field bias of methyl hyperfine shifts and their paramagnetic relaxivity relative to those in globins, indicate that azide exerts a stronger ligand field in hHO than in the globins, or that the distal H-bonding to azide is weaker in hHO than in globins. The Asp140 → Ala hHO mutant that abolishes activity retains the unusual WT azide complex spin/orbital ground state. The relevance of our findings for other HO complexes and the HO mechanism is discussed. PMID:19243105

  8. A Comparative Study of Gold Bonding via Electronic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Ruohan

    The bonding and electrostatic properties of gold containing molecules are highly influenced by relativistic effects. To understand this facet on bonding, a series of simple diatomic AuX (X=F, Cl, O and S) molecules, where upon bond formation the Au atom donates or accepts electrons, was investigated and discussed in this thesis. First, the optical field-free, Stark, and Zeeman spectroscopic studies have been performed on AuF and AuCl. The simple polar bonds between Au and typical halogens (i.e. F and Cl) can be well characterized by the electronic structure studies and the permanent electric dipole moments, mu el. The spectroscopic parameters have been precisely determined for the [17.7]1, [17.8]0+ and X1Sigma + states of AuF, and the [17.07]1, [17.20]0+ and X1Sigma+ states of AuCl. The mu el have been determined for ground and excited states of AuF and AuCl. The results from the hyperfine analysis and Stark measurement support the assignments that the [17.7]1 and [17.8]0+ states of AuF are the components of a 3pi state. Similarly, the analysis demonstrated the [19.07]1 and [19.20]0+ states are the components of the 3pi state of AuCl. Second, my study focused on AuO and AuS because the bonding between gold and sulfur/oxygen is a key component to numerous established and emerging technologies that have applications as far ranging as medical imaging, catalysis, electronics, and material science. The high-resolution spectra were record and analyzed to obtain the geometric and electronic structural data for the ground and excited states. The electric dipole moment, muel , and the magnetic dipole moment, mum, has been the precisely measured by applying external static electric and magnetic fields. muel and mum are used to give insight into the unusual complex bonding in these molecules. In addition to direct studies on the gold-containing molecules, other studies of related molecules are included here as well. These works contain the pure rotation measurement of PtC, the hyperfine and Stark spectroscopic studies of PtF, and the Stark and Zeeman spectroscopic studies of MgH and MgD. Finally, a perspective discussion and conclusion will summarize the results of AuF, AuCl, AuO, and AuS from this work (bond lengths, dipole moment, etc.). The highly quantitative information derived from this work is the foundation of a chemical description of matter and essential for kinetic energy manipulation via Stark and Zeeman interactions. This data set also establishes a synergism with computation chemists who are developing new methodologies for treating relativistic effects and electron correlation.

  9. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ionsmore » produced by photoionization.« less

  10. EPR and FTIR spectroscopic studies of MO-Al2O3-Bi2O3-B2O3-MnO2(M = Pb, Zn and Cd) glasses

    NASA Astrophysics Data System (ADS)

    Lalitha Phani, A. V.; Sekhar, K. Chandra; Chakradhar, R. P. S.; Narasimha Chary, M.; Shareefuddin, Md

    2018-03-01

    Glasses of the system (30-x)MO-xAl2O3-15Bi2O3-54.5B2O3-0.5MnO2 [M = Pb, Zn & Cd] (x = 0, 5, 10 & 15 mol%) were prepared by the normal melt quenching method. The amorphous nature of the prepared glasses was confirmed by the XRD studies. The EPR and FTIR studies were carried out at room temperature (RT). The EPR spectra exhibited three resonance signals at g ≈ 2.0 with a hyperfine structure, an absorption around g = 4.3 and a distinct shoulder at g = 3.3. Deconvoluted spectra were drawn for g ≈ 2.0 to resolve the six hyperfine lines. The electron paramagnetic resonance signal at g ≈ 2.0 indicates that the Mn2+ ions are in nearly perfectly octahedral symmetry. The low field signals at g = 3.3 and g = 4.3 are attributed to the Mn2+ ion which are in distorted rhombic symmetries. The hyperfine (HF) splitting constant (A) values suggested that the bonding between Mn2+ ions and its ligands is ionic in nature. The presence of BO3 and BO4 borate units, metal oxide cation units, Mn2+ and Bi-O bond vibrations in BiO3 units were noticed from the FTIR spectra.

  11. Magnetic Moments and Hyperfine Parameters of Fe3-xCrxAl0.5Si0.5

    NASA Astrophysics Data System (ADS)

    Rećko, Katarzyna; Go, Anna; Satuła, Dariusz; Biernacka, Maria; Dobrzyński, Ludwik; Waliszewski, Janusz; Milczarek, Jacek J.; Szymański, Krzysztof

    2012-04-01

    Results of X-ray, neutron, magnetization and Mössbauer measurements on polycrystalline samples of Fe3-xCrx Al0.5Si0.5 (x=0, 0.125, 0.250, 0.375, and 0.5) alloys, crystallizing in DO3 type of structure, are presented. X-ray and neutron diffraction confirmed the phase homogeneity of all the samples. The unit cell volume has been proved to be independent of the chromium content. Neutron and Mössbauer measurements disclosed that Cr atoms occupy preferentially B-sites, while D-sites are almost entirely occupied by Al and Si. The total magnetisation as well as the individual magnetic moments μFe(A,C), μFe(B) and μCr(B,D) have been found to vary linearly with chromium concentration. Influence of local environments on the formation of magnetic moments in Fe3Al0.5Si0.5 when chromium is substituted for iron was examined using self-consistent spin-polarized tight-binding linear muffin-tin orbital method (TB-LMTO).

  12. EFFECTIVE HYPERFINE-STRUCTURE FUNCTIONS OF AMMONIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustovičová, L.; Soldán, P.; Špirko, V., E-mail: spirko@marge.uochb.cas.cz

    The hyperfine structure of the rotation-inversion ( v {sub 2} = 0{sup +}, 0{sup −}, 1{sup +}, 1{sup −}) states of the {sup 14}NH{sub 3} and {sup 15}NH{sub 3} ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction.more » In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.« less

  13. Theoretical studies of alkyl radicals in the NaY and HY zeolites.

    PubMed

    Ghandi, Khashayar; Zahariev, Federico E; Wang, Yan Alexander

    2005-08-18

    Interplay of quantum mechanical calculations and experimental data on hyperfine coupling constants of ethyl radical in zeolites at several temperatures was engaged to study the geometries and binding energies and to predict the temperature dependence of hyperfine splitting of a series of alkyl radicals in zeolites for the first time. The main focus is on the hyperfine interaction of alkyl radicals in the NaY and HY zeolites. The hyperfine splitting for neutral free radicals and free radical cations is predicted for different zeolite environments. This information can be used to establish the nature of the muoniated alkyl radicals in the NaY and HY zeolites via muSR experiments. The muon hyperfine coupling constants of the ethane radical cation in these zeolites are very large with relatively little dependence on temperature. It was found that the intramolecular dynamics of alkyl free radicals are only weakly affected by their strong binding to zeolites. In contrast, the substrate binding has a significant effect on their intermolecular dynamics.

  14. Innovation and reliability of atomic standards for PTTI applications

    NASA Technical Reports Server (NTRS)

    Kern, R.

    1981-01-01

    Innovation and reliability in hyperfine frequency standards and clock systems are discussed. Hyperfine standards are defined as those precision frequency sources and clocks which use a hyperfine atomic transition for frequency control and which have realized significant commercial production and acceptance (cesium, hydrogen, and rubidium atoms). References to other systems such as thallium and ammonia are excluded since these atomic standards have not been commercially exploited in this country.

  15. Quadrupole splittings in the near-infrared spectrum of 14NH 3

    DOE PAGES

    Twagirayezu, Sylvestre; Hall, Gregory E.; Sears, Trevor J.

    2016-10-13

    Sub-Doppler, saturation dip, spectra of lines in the v 1 + v 3, v 1 + 2v 4 and v 3 + 2v 4 bands of 14NH 3 have been measured by frequency comb-referenced diode laser absorption spectroscopy. The observed spectral line widths are dominated by transit time broadening, and show resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling. Modeling of the observed line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the excited state level has hyperfine splittings similar tomore » the same rotational level in the ground state. The data provide accurate frequencies for the line positions and easily separate lines overlapped in Doppler-limited spectra. The observed hyperfine splittings can be used to make and confirm rotational assignments and ground state combination differences obtained from the measured frequencies are comparable in accuracy to those obtained from conventional microwave spectroscopy. Furthermore, several of the measured transitions do not show the quadrupole hyperfine splittings expected based on their existing rotational assignments. Either the assignments are incorrect or the upper levels involved are perturbed in a way that affects the nuclear hyperfine structure.« less

  16. Optical Polarization of Nuclear Spins in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Falk, Abram L.; Klimov, Paul V.; Ivády, Viktor; Szász, Krisztián; Christle, David J.; Koehl, William F.; Gali, Ádám; Awschalom, David D.

    2015-06-01

    We demonstrate optically pumped dynamic nuclear polarization of 29Si nuclear spins that are strongly coupled to paramagnetic color centers in 4 H - and 6 H -SiC. The 9 9 % ±1 % degree of polarization that we observe at room temperature corresponds to an effective nuclear temperature of 5 μ K . By combining ab initio theory with the experimental identification of the color centers' optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.

  17. Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments.

    PubMed

    Rvachov, Timur M; Son, Hyungmok; Sommer, Ariel T; Ebadi, Sepehr; Park, Juliana J; Zwierlein, Martin W; Ketterle, Wolfgang; Jamison, Alan O

    2017-10-06

    We create fermionic dipolar ^{23}Na^{6}Li molecules in their triplet ground state from an ultracold mixture of ^{23}Na and ^{6}Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3×10^{4} ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p-wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.

  18. Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur M.; Son, Hyungmok; Sommer, Ariel T.; Ebadi, Sepehr; Park, Juliana J.; Zwierlein, Martin W.; Ketterle, Wolfgang; Jamison, Alan O.

    2017-10-01

    We create fermionic dipolar 23Na 6Li molecules in their triplet ground state from an ultracold mixture of 23Na and 6Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3 ×1 04 ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p -wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.

  19. The millimeter wave spectrum of silver monoxide, AgO

    NASA Astrophysics Data System (ADS)

    Steimle, T.; Tanimoto, M.; Namiki, K.; Saito, S.

    1998-05-01

    The pure rotational spectra of 107AgO and 109AgO were recorded in the 117-380 GHz spectral region using a dc-sputtering absorption cell. The 107Ag(I=1/2) and 109Ag(I=1/2) magnetic hyperfine parameters are interpreted in terms of plausible electronic configuration contributions to the X 2Πi state. It is shown that the determined unusual sign of the Λ-doubling and Fermi contact parameters implies that the X 2Πi state is dominated by a three open shell configuration. A comparison with isovalent CuO is made.

  20. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steimle, Timothy

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladiummore » (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μ m. In general terms, μ el, gives insight into the charge distribution and mm into the number and nature of the unpaired electrons. Analysis of the hyperfine interactions (i.e. Fermi-contact, nuclear electric quadrupole, etc.) is particularly insightful because it results from the interaction of nuclei with non-zero spin and the chemically important valence electrons. The bulk of the spectroscopic techniques used in these studies exploit the sensitivity of laser induced fluorescence (LIF) detection. The spectroscopic schemes employed include: a) cw and pulsed laser field-free(FF) excitation and dispersed LIF (DLIF); b) optical Stark; c) optical Zeeman; d) pump/probe microwave double resonance (PPMODR); e) fluorescence lifetimes, and f) resonant and non-resonant two-photon ionization TOF mass spectrometry. Vibrational spacing, force constants and electronic states distributions are derived from the analysis of pulsed dye laser excitation and DLIF spectra. Geometric structure (bond lengths and angles) and hyperfine parameters are derived from the analysis of cw-laser LIF and PPMODR spectra. Permanent electric dipole moments, mel,, and magnetic dipole moments, mm, are derived from the analysis of optical Stark and Zeeman spectra, respectively. Transition moments are derived from the analysis of radiative lifetimes. A supersonic molecular beam sample of these ephemeral molecules is generated by skimming the products of either a laser ablation/reaction source or a d.c. discharge source.« less

  1. Absence of exchange interaction between localized magnetic moments and conduction-electrons in diluted Er{sup 3+} gold-nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesseux, G. G., E-mail: lesseux@ifi.unicamp.br; Urbano, R. R.; Iwamoto, W.

    2014-05-07

    The Electron Spin Resonance (ESR) of diluted Er{sup 3+} magnetic ions in Au nanoparticles (NPs) is reported. The NPs were synthesized by reducing chloro triphenyl-phosphine gold(I) and erbium(III) trifluoroacetate. The Er{sup 3+} g-value along with the observed hyperfine splitting indicate that the Er{sup 3+} impurities are in a local cubic symmetry. Furthermore, the Er{sup 3+} ESR spectra show that the exchange interaction between the 4f and the conduction electrons (ce) is absent or negligible in Au{sub 1–x}Er{sub x} NPs, in contrast to the ESR results in bulk Au{sub 1–x}Er{sub x}. Therefore, the nature of this interaction needs to be reexaminedmore » at the nano scale range.« less

  2. Framework Stability of Nanocrystalline NaY in Aqueous Solution at Varying pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petushkov, Anton; Freeman, Jasmine; Larsen, Sarah C.

    Nanocrystalline zeolites (with crystal sizes of less than 50 nm) are versatile, porous nanomaterials with potential applications in a broad range of areas including bifunctional catalysis, drug delivery, environmental protection, and sensing, to name a few. The characterization of the properties of nanocrystalline zeolites on a fundamental level is critical to the realization of these innovative applications. Nanocrystalline zeolites have unique surface chemistry that is distinct from conventional microcrystalline zeolite materials and that will result in novel applications. In the proposed work, magnetic resonance techniques (solid state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR)) will be used tomore » elucidate the structure and reactivity of nanocrystalline zeolites and to motivate bifunctional applications. Density functional theory (DFT) calculations will enhance data interpretation through chemical shift, quadrupole coupling constant, g-value and hyperfine calculations.« less

  3. The far-infrared laser magnetic resonance spectrum of the SiH radical and determination of ground state parameters

    NASA Technical Reports Server (NTRS)

    Brown, J. M.; Curl, R. F.; Evenson, K. M.

    1984-01-01

    The far-infrared laser magnetic resonance spectrum of the SiH radical in the v = O level of its X2Pi state has been recorded. The signals are rather weak. The molecules were generated in the reaction between fluorine atoms and SiH4. Rotational transitions have been detected in both 2Pi1/2 and 2Pi3/2 spin components but no fine structure transitions between the spin components were observed. Proton hyperfine splittings were resolved on some lines. The measurements have been analyzed, subjected to a least-squares fit using an effective Hamiltonian, and the appropriate molecular parameters determined. The weakness of the spectrum and the failure of attempts to power saturate favorable lines are both consistent with a small value for the electric dipole moment for SiH.

  4. Spin manipulation and spin-lattice interaction in magnetic colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Moro, Fabrizio; Turyanska, Lyudmila; Granwehr, Josef; Patanè, Amalia

    2014-11-01

    We report on the spin-lattice interaction and coherent manipulation of electron spins in Mn-doped colloidal PbS quantum dots (QDs) by electron spin resonance. We show that the phase memory time,TM , is limited by Mn-Mn dipolar interactions, hyperfine interactions of the protons (1H) on the QD capping ligands with Mn ions in their proximity (<1 nm), and surface phonons originating from thermal fluctuations of the capping ligands. In the low Mn concentration limit and at low temperature, we achieve a long phase memory time constant TM˜0.9 μ s , thus enabling the observation of Rabi oscillations. Our findings suggest routes to the rational design of magnetic colloidal QDs with phase memory times exceeding the current limits of relevance for the implementation of QDs as qubits in quantum information processing.

  5. The rotational spectrum of the CH radical in its a 4Sigma(-) state, studied by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Nelis, Thomas; Brown, John M.; Evenson, Kenneth M.

    1990-01-01

    The CH radical has been detected in its a 4Sigma(-) state by the technique of laser magnetic resonance at far-infrared wavelengths. Spectra relating to different spin components of the first three rotational transitions have been recorded. The molecule was generated either by the reaction of F atoms with CH4, with a trace of added oxygen or by the reaction of O atoms with C2H2. The observed resonances have been analyzed and fitted to determine the parameters of an effective Hamiltonian for a molecule in a 4Sigma state. The principal quantities determined are the rotational constant B0 = 451 138.434(94) MHz and the spin-spin parameter lambda(0) = 2785.83(18) MHz. Proton hyperfine parameters have also been determined.

  6. The effect of Mn and B on the magnetic and structural properties of nanostructured Fe60Al40 alloys produced by mechanical alloying.

    PubMed

    Rico, M M; Alcázar, G A Pérez; Zamora, L E; González, C; Greneche, J M

    2008-06-01

    The effect of Mn and B on the magnetic and structural properties of nanostructured samples of the Fe60Al40 system, prepared by mechanical alloying, was studied by 57Fe Mössbauer spectrometry, X-ray diffraction and magnetic measurements. In the case of the Fe(60-x)Mn(x)Al40 system, 24 h milling time is required to achieve the BCC ternary phase. Different magnetic structures are observed according to the temperature and the Mn content for alloys milled during 48 h: ferromagnetic, antiferromagnetic, spin-glass, reentrant spin-glass and superparamagnetic behavior. They result from the bond randomness behaviour induced by the atomic disorder introduced by the MA process and from the competitive interactions of the Fe-Fe ferromagnetic interactions and the Mn-Mn and Fe-Mn antiferromagnetic interactions and finally the presence of Al atoms acting as dilutors. When B is added in the Fe60Al40 alloy and milled for 12 and 24 hours, two crystalline phases were found: a prevailing FeAl BCC phase and a Fe2B phase type. In addition, one observes an additional contribution attributed to grain boundaries which increases when both milling time and boron composition increase. Finally Mn and B were added to samples of the Fe60Al40 system prepared by mechanical alloying during 12 and 24 hours. Mn content was fixed to 10 at.% and B content varied between 0 and 20 at.%, substituting Al. X-ray patterns show two crystalline phases, the ternary FeMnAl BCC phase, and a (Fe,Mn)2B phase type. The relative proportion of the last phase increases when the B content increases, in addition to changes of the grain size and the lattice parameter. Such behavior was observed for both milling periods. On the other hand, the magnetic hyperfine field distributions show that both phases exhibit chemical disorder, and that the contribution attributed to the grain boundaries is less important when the B content increases. Coercive field values of about 10(2) Oe slightly increase with boron content. Comparison with previous results on FeAIB alloys shows that Mn promotes the structural stability of the nanostructured powders.

  7. Magnetic properties of Ni substituted Y-type barium ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Won, Mi Hee; Kim, Chul Sung, E-mail: cskim@kookmin.ac.kr

    2014-05-07

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba{sub 2}Co{sub 2−x}Ni{sub x}Fe{sub 12}O{sub 22} (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirmsmore » the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (M{sub s}) decreases with Ni contents. Ni{sup 2+}, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co{sup 2+} having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba{sub 2}Co{sub 1.5}Ni{sub 0.5}Fe{sub 12}O{sub 22} shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature T{sub C} is increased with Ni contents, while T{sub S} is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3b{sub VI}, 6c{sub IV}*, 6c{sub VI}, 18h{sub VI}, 6c{sub IV}, and 3a{sub IV} sites at below T{sub C}. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe{sup 3+} and obtained the isomer shift (δ), magnetic hyperfine field (H{sub hf}), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna applications in UHF band.« less

  8. One Part Nuclear, One Part Solid State: Fifty Years of Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Westfall, Catherine

    2004-05-01

    Starting in 1955 Rudolf Mössbauer conducted experiments that would demonstrate in the next three years that an atomic nucleus in a crystal does not recoil when it emits a gamma ray and provides the entire emitted energy to the gamma ray. The resonance spectroscopy made possible by this discovery led to fifty years of scientific explorations in a wide variety of fields including nuclear and solid state physics, chemistry, and geology. At the current time, Mössbauer spectroscopy is a vital part of science programs, both in many laboratories and at world-class light sources, such as Argonnes Advanced Photon Source. This paper will focus on the history of multidisciplinary Mössbauer research at Argonne National Laboratory and particularly on the interaction between nuclear and condensed matter physicists. This was necessary because of the ultra-high energy resolution of the Mössbauer resonance with its ability to resolve hyperfine interactions between the nuclear moments (nuclear charge distribution, the nuclear magnetic moment, and nuclear quadrupole moment) and corresponding solid state properties (electron charge distribution at the nucleus, magnetic field at the nucleus, and electric field gradient at the nucleus.) Understanding and exploiting Mössbauer spectroscopy therefore required work at the intersection of nuclear and solid state physics and the skills and knowledge of both specialties. The paper will start with the discovery and confirmation of the Mössbauer effect. Then it will outline early important experiments, such as the use of Mössbauer spectroscopy to confirm Einsteins general theory of relativity, and give an overview of the rapid expansion of this research tool, first with the use of Fe57 and later with the use of other isotopes. In particular the paper will focus on Argonnes cutting-edge Mössbauer work on transuranics. This work built on the resources and expertise first developed at the laboratory during WWII and brought together not only nuclear and condensed matter physicists, but also chemists, material scientists, and others.

  9. Manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology.

    PubMed

    Bressel, U; Borodin, A; Shen, J; Hansen, M; Ernsting, I; Schiller, S

    2012-05-04

    Advanced techniques for manipulation of internal states, standard in atomic physics, are demonstrated for a charged molecular species for the first time. We address individual hyperfine states of rovibrational levels of a diatomic ion by optical excitation of individual hyperfine transitions, and achieve controlled transfer of population into a selected hyperfine state. We use molecular hydrogen ions (HD+) as a model system and employ a novel frequency-comb-based, continuous-wave 5  μm laser spectrometer. The achieved spectral resolution is the highest obtained so far in the optical domain on a molecular ion species. As a consequence, we are also able to perform the most precise test yet of the ab initio theory of a molecule.

  10. Effect of heterovalent substitutions in yttrium chromite on the hyperfine interactions of {sup 119}Sn{sup 4+} studied by Mössbauer spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabritchnyi, Pavel B., E-mail: pf_1404@yahoo.fr; Afanasov, Mikhail I.; Mezhuev, Evgeny M.

    2016-03-15

    In order to develop the {sup 119}Sn Mössbauer spectroscopic probe technique to study magnetically ordered materials, three Ca-substituted yttrium chromites, i.e. Y{sub 0.9}Ca{sub 0.1}CrO{sub 3}, Y{sub 0.9}Ca{sub 0.1}Cr{sub 0.9}Ti{sub 0.1}O{sub 3} and Y{sub 0.8}Ca{sub 0.2}Cr{sub 0.8}Ti{sub 0.2}O{sub 3}, doped with 0.3 atom-% Sn{sup 4+}, were for the first time investigated. {sup 119}Sn Mössbauer spectra, recorded at 4.2 K, have allowed, through analysis of the magnetic hyperfine field values, probed by {sup 119}Sn nuclei, to gain insight into the local magnetically active surrounding of different Sn{sup 4+} ions. In all of these compounds, partial segregation of Sn{sup 4+} ions is revealed.more » In the case of Y{sub 0.9}Ca{sub 0.1}CrO{sub 3}, neither highly oxidized Cr{sup 4+} nor Cr{sup 6+} species, expected to compensate for the Ca{sup 2+} positive charge deficit, is found in the vicinity of the {sup 119}Sn{sup 4+} probe. In the case of both studied Ti-containing chromites, {sup 119}Sn Mössbauer spectra have provided the original indirect evidence for the statistical distribution of Cr{sup 3+} and Ti{sup 4+} ions over the octahedral sites and permitted characterization of the occurring associates of Sn{sup 4+}. - Graphical abstract: Two kinds of Sn{sup 4+} associates allowing {sup 119}Sn Mössbauer spectra of tin-doped Y{sub 0.9}Ca{sub 0.1}Cr{sub 0.9}Ti{sub 0.1}O{sub 3} and Y{sub 0.8}Ca{sub 0.2}Cr{sub 0.8}Ti{sub 0.2}O{sub 3} to be accounted for. - Highlights: • {sup 119}Sn probe is tested as a source of information on the B-sublattice of AF perovskites. • Neither Cr{sup 3+} nor Cr{sup 6+} is detected nearby {sup 119}Sn{sup 4+} ions in Y{sub 0.9}Ca{sub 0.1}CrO{sub 3}. • Cr{sup 3+} and Ti{sup 4+} are found to be randomly distributed in Y{sub 1−x}Ca{sub x}Cr{sub 1−x}Ti{sub x}O{sub 3} (x=0.1 or 0.2). • Sn{sup 4+} dopant segregations are revealed in all of the studied materials.« less

  11. Hyperfine structure of excited states and quadrupole moment of Ne-21 using laser-induced line-narrowing techniques.

    NASA Technical Reports Server (NTRS)

    Ducas, T. W.; Feld, M. S.; Ryan, L. W., Jr.; Skribanowitz, N.; Javan, A.

    1972-01-01

    Observation results are presented on the optical hyperfine structure in Ne-21 obtained with the aid of laser-induced line-narrowing techniques. The output from a long stabilized single-mode 1.15-micron He-Ne laser focused into an external sample cell containing Ne-21 was used in implementing these techniques. Their applicability is demonstrated for optical hyperfine structure observation in systems whose features are ordinarily masked by Doppler broadening.

  12. Two-photon exchange correction to the hyperfine splitting in muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Tomalak, Oleksandr

    2017-12-01

    We reevaluate the Zemach, recoil and polarizability corrections to the hyperfine splitting in muonic hydrogen expressing them through the low-energy proton structure constants and obtain the precise values of the Zemach radius and two-photon exchange (TPE) contribution. The uncertainty of TPE correction to S energy levels in muonic hydrogen of 105 ppm exceeds the ppm accuracy level of the forthcoming 1S hyperfine splitting measurements at PSI, J-PARC and RIKEN-RAL.

  13. Electric dipole moment of diatomic molecules by configuration interaction. V - Two states of /2/Sigma/+/ symmetry in CN.

    NASA Technical Reports Server (NTRS)

    Green, S.

    1972-01-01

    Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.

  14. Electron paramagnetic resonance of a 10B-containing heterocyclic radical

    NASA Astrophysics Data System (ADS)

    Eaton, Sandra S.; Ngendahimana, Thacien; Eaton, Gareth R.; Jupp, Andrew R.; Stephan, Douglas W.

    2018-05-01

    Electron paramagnetic resonance measurements for a 10B-containing heterocyclic phenanthrenedione radical, (C6F5)2B(O2C14H8), were made at X-band in 9:1 toluene:dichloromethane from 10 to 293 K and in toluene from 180 to 293 K. In well-deoxygenated 0.1 mM toluene solution at room temperature hyperfine couplings to 10B, four pairs of protons and five pairs of fluorines contribute to a continuous wave spectrum with many resolved lines. Hyperfine couplings were adjusted to provide the best fit for spectra of the radical enriched in 10B and the analogous radical synthesized with 10,11B in natural abundance, resulting in small refinements of the hyperfine coupling constants previously reported for the natural abundance sample. Electron spin relaxation rates at temperatures between 15 and 293 K were similar for samples containing 10B and natural isotope abundance. Analysis of electron spin echo envelope modulation and hyperfine correlation spectroscopy data at 80 K found Axx = -7.5 ± 0.3, Ayy = -8.5 ± 0.3, and Azz = -10.8 ± 0.3 MHz for 11B, which indicates small spin density on the boron. The spin echo and hyperfine spectroscopy data for the 10B -containing radical are consistent with the factor of 2.99 smaller hyperfine values for 10B than for 11B.

  15. Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Riis, E.; Sinclair, A. G.; Poulsen, O.; Drake, G. W. F.; Rowley, W. R. C.; Levick, A. P.

    1994-01-01

    High-precision laser-resonance measurements accurate to +/-0.5 MHz or better are reported for transitions among the 1s2s 3S1-1s2p 3PJ hyperfine manifolds for each of J=0, 1, and 2 in both 6Li+ and 7Li+. A detailed analysis of hyperfine structure is performed for both the S and P states, using newly calculated values for the magnetic dipole and electric quadrupole coupling constants, and the hyperfine shifts subtracted from the measurements. The resulting transition frequencies are then analyzed on three different levels. First, the isotope shifts in the fine-structure splittings are calculated from the relativistic reduced mass and recoil terms in the Breit interaction, and compared with experiment at the +/-0.5-MHz level of accuracy. This comparison is particularly significant because J-independent theoretical uncertainties reduce through cancellation to the +/-0.01-MHz level. Second, the isotope shifts in the full transition frequencies are used to deduce the difference in rms nuclear radii. The result is Rrms(6Li)-Rrms(7Li)=0.15+/-0.01 fm, in agreement with nuclear scattering data, but with substantially improved accuracy. Third, high-precision calculations of the low-order non-QED contributions to the transition frequencies are subtracted from the measurements to obtain the residual QED shifts. The isotope-averaged and spin-averaged effective shift for 7Li+ is 37 429.40+/-0.39 MHz, with an additional uncertainty of +/-1.5 MHz due to finite nuclear size corrections. The accuracy of 11 parts per million is the best two-electron Lamb shift measurement in the literature, and is comparable to the accuracies achieved in hydrogen. Theoretical contributions to the two-electron Lamb shift are discussed, including terms of order (αZ)4 recently obtained by Chen, Cheng, and Johnson [Phys. Rev. A 47, 3692 (1993)], and the results used to extract a QED shift for the 2 3S1 state. The result of 30 254+/-12 MHz is shown to be in good accord with theory (30 250+/-30 MHz) when two-electron corrections to the Bethe logarithm are taken into account by a 1/Z expansion method.

  16. What the multiline signal (MLS) simulation data with average of weighted computations reveal about the Mn hyperfine interactions and oxidation states of the manganese cluster in OEC?

    NASA Astrophysics Data System (ADS)

    Baituti, Bernard

    2017-11-01

    Understanding the structure of oxygen evolving complex (OEC) fully still remains a challenge. Lately computational chemistry with the data from more detailed X-ray diffraction (XRD) OEC structure, has been used extensively in exploring the mechanisms of water oxidation in the OEC (Gatt et al., J. Photochem. Photobiol. B 104(1-2), 80-93 2011). Knowledge of the oxidation states is very crucial for understanding the core principles of catalysis by photosystem II (PSII) and catalytic mechanism of OEC. The present study involves simulation studies of the X-band continuous wave electron-magnetic resonance (CW-EPR) generated S 2 state signals, to investigate whether the data is in agreement with the four manganese ions in the OEC, being organised as a `3 + 1' (trimer plus one) model (Gatt et al., Angew. Chem. Int. Ed. 51, 12025-12028 2012; Petrie et al., Chem. A Eur. J. 21, 6780-6792 2015; Terrett et al., Chem. Commun. (Camb.) 50, 8-11 2014) or `dimer of dimers' model (Terrett et al. 2016). The question that still remains is how much does each Mn ion contribute to the " g2multiline" signal through its hyperfine interactions in OEC also to differentiate between the `high oxidation state (HOS)' and `low oxidation state (LOS)' paradigms? This is revealed in part by the structure of multiline (ML) signal studied in this project. Two possibilities have been proposed for the redox levels of the Mn ions within the catalytic cluster, the so called `HOS' and `LOS' paradigms (Gatt et al., J. Photochem. Photobiol. B 104(1-2), 80-93 2011). The method of data analysis involves numerical simulations of the experimental spectra on relevant models of the OEC cluster. The simulations of the X-band CW-EPR multiline spectra, revealed three manganese ions having hyperfine couplings with large anisotropy. These are most likely Mn III centres and these clearly support the `LOS' OEC paradigm model, with a mean oxidation of 3.25 in the S2 state. This is consistent with the earlier data by Jin et al. (Phys. Chem. Chem. Phys. (PCCP) 16(17), 7799-812 2014), but the present results clearly indicate that heterogeneity in hyperfine couplings exist in samples as typically prepared.

  17. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence.

    PubMed

    Fallahi, P; Yilmaz, S T; Imamoğlu, A

    2010-12-17

    We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.

  18. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-05-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.

  19. Anomalous electron spin decoherence in an optically pumped quantum dot

    NASA Astrophysics Data System (ADS)

    Shi, Xiaofeng; Sham, L. J.

    2013-03-01

    We study the nuclear-spin-fluctuation induced spin decoherence of an electron (SDE) in an optically pumped quantum dot. The SDE is computed in terms of the steady distribution of the nuclear field (SDNF) formed through the hyperfine interaction (HI) with two different nuclear species in the dot. A feedback loop between the optically driven electron spin and the nuclear spin ensemble determines the SDNF [W. Yang and L. J. Sham, Phy. Rev. B 85, 235319(2012)]. Different from that work and others reviewed therein, where a bilinear HI, SαIβ , between the electron (or hole) spin S and the nuclear spin I is used, we use an effective nonlinear interaction of the form SαIβIγ derived from the Fermi-contact HI. Our feedback loop forms a multi-peak SDNF in which the SDE shows remarkable collapses and revivals in nanosecond time scale. Such an anomalous SDE results from a quantum interference effect of the electron Larmor precession in a multi-peak effective magnetic field. In the presence of a bilinear HI that suppresses the nuclear spin fluctuation, the non-Markovian SDE persists whenever there are finite Fermi contact interactions between two or more kinds of nuclei and the electron in the quantum dot. This work is supported by NSF(PHY 1104446) and the US Army Research Office MURI award W911NF0910406.

  20. Theoretical proposal for a magnetic resonance study of charge transport in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, Vagharsh

    Charge transport in disordered organic semiconductors occurs via carrier incoherent hops in a band of localized states. In the framework of continuous-time random walk the carrier on-site waiting time distribution (WTD) is one of the basic characteristics of diffusion. Besides, WTD is fundamentally related to the density of states (DOS) of localized states, which is a key feature of a material determining the optoelectric properties. However, reliable first-principle calculations of DOS in organic materials are not yet available and experimental characterization of DOS and WTD is desirable. We theoretically study the spin dynamics of hopping carriers and propose measurement schemes directly probing WTD, based on the zero-field spin relaxation and the primary (Hahn) spin echo. The proposed schemes are possible because, as we demonstrate, the long-time behavior of the zero-field relaxation and the primary echo is determined by WTD, both for the hyperfine coupling dominated and the spin-orbit coupling dominated spin dynamics. We also examine the dispersive charge transport, which is a non-Markovian sub-diffusive process characterized by non-stationarity. We show that the proposed schemes unambiguously capture the effects of non-stationarity, e.g., the aging behavior of random walks. This work was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

Top