Science.gov

Sample records for magnetic hysteresis loss

  1. Magnetocaloric effect with low magnetic hysteresis loss in ferromagnetic Ni-Mn-Sb-Si alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Ruochen; Qian, Mingfang; Zhang, Xuexi; Qin, Faxiang; Wei, Longsha; Xing, Dawei; Cui, Xiping; Sun, Jianfei; Geng, Lin; Peng, Huaxin

    2017-04-01

    Giant magnetocaloric effect in Ni-Mn-X (X=In, Sn, Sb) Heusler alloys has been revealed due to the significant shift of the martensite transformation temperatures under a bias magnetic field. However, the magnetic hysteresis during the magnetization and demagnetization cycles creates a large hysteresis loss and reduces the refrigeration capacity. Here we demonstrated that the magnetic hysteresis loss in Ni-Mn-Sb alloys was effectively reduced by Si-doping. The quaternary Ni49.0Mn38.4Sb11.7Si0.9 alloy exhibited martensite and magnetic transitions around room temperature. Maximum magnetic entropy change ΔSm 9.4 J/kg K and working temperature interval 7.0 K were achieved attributed to the martensite transformation under a magnetic field of 5 T. Meanwhile, the average magnetic hysteresis loss for Ni49.0Mn38.4Sb11.7Si0.9 alloy was 2.1 J/kg, much smaller than that for Ni49.0Mn38.5Sb12.5 alloy, 11.4 J/kg. As a result, a refrigeration capacity of 50.2 J/kg was obtained in the Ni49.0Mn38.4Sb11.7Si0.9 alloy. This result shows that Si-doped Ni-Mn-Sb alloys may act as a potential material system for magnetic refrigeration.

  2. The magnetization process: Hysteresis

    NASA Technical Reports Server (NTRS)

    Balsamel, Richard

    1990-01-01

    The magnetization process, hysteresis (the difference in the path of magnetization for an increasing and decreasing magnetic field), hysteresis loops, and hard magnetic materials are discussed. The fabrication of classroom projects for demonstrating hysteresis and the hysteresis of common magnetic materials is described in detail.

  3. Amplitude and frequency dependence of hysteresis loss in a magnet-superconductor levitation system

    NASA Astrophysics Data System (ADS)

    Yang, Z. J.; Hull, J. R.; Mulcahy, T. M.; Rossing, T. D.

    1995-08-01

    Using an electromagnetically controlled mechanical pendulum, we measured the energy loss for different amplitudes in a magnetic levitation system that contained high temperature superconductors (HTSs). Two procedures were followed to measure losses at 77 K for frequencies of 93.8 mHz to 80 Hz. In the first procedure, the distance between the permanent magnet and the HTS levitator was the same as that during (field) cooling. In the second procedure, the magnet was lowered (after cooling) closer to the HTS levitator before the measurements were performed. The experimental data show that these two procedures give essentially the same results at the same distance despite different cooling (and magnetization) histories for melt-textured YBaCuO levitators, and the frequency-independent energy loss is a power-law function of amplitude. We attribute the energy loss to magnetic hysteresis in the superconductor.

  4. A magnetic hysteresis model

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas W.; Henretty, Debra A.

    1995-01-01

    The Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) will be deployed from the Space Shuttle and used as a target for a Shuttle-mounted laser. It will be a cylindrical satellite with several corner cube reflectors on the ends. The center of mass of the cylinder will be near one end, and aerodynamic torques will tend to align the axis of the cylinder with the spacecraft velocity vector. Magnetic hysteresis rods will be used to provide passive despin and oscillation-damping torques on the cylinder. The behavior of the hysteresis rods depends critically on the 'B/H' curves for the combination of materials and rod length-to-diameter ratio ('l-over-d'). These curves are qualitatively described in most Physics textbooks in terms of major and minor 'hysteresis loops'. Mathematical modeling of the functional relationship between B and H is very difficult. In this paper, the physics involved is not addressed, but an algorithm is developed which provides a close approximation to empirically determined data with a few simple equations suitable for use in computer simulations.

  5. Hysteresis Loss Analysis of Soft Magnetic Materials Under Direct Current Bias Conditions (Preprint)

    DTIC Science & Technology

    2015-09-01

    control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) 09-1-2015...classical domain theory predicts minimal losses. The observed trends are discussed within the frame work of classical domain theory. 15. SUBJECT TERMS...theory predicts minimal losses. The observed trends are discussed within the frame work of classical domain theory. I. INTRODUCTION In classical

  6. Hysteresis losses in MgB2 superconductors exposed to combinations of low AC and high DC magnetic fields and transport currents

    NASA Astrophysics Data System (ADS)

    Magnusson, N.; Abrahamsen, A. B.; Liu, D.; Runde, M.; Polinder, H.

    2014-11-01

    MgB2 superconductors are considered for generator field coils for direct drive wind turbine generators. In such coils, the losses generated by AC magnetic fields may generate excessive local heating and add to the thermal load, which must be removed by the cooling system. These losses must be evaluated in the design of the generator to ensure a sufficient overall efficiency. A major loss component is the hysteresis losses in the superconductor itself. In the high DC - low AC current and magnetic field region experimental results still lack for MgB2 conductors. In this article we reason towards a simplified theoretical treatment of the hysteresis losses based on available models in the literature with the aim of setting the basis for estimation of the allowable magnetic fields and current ripples in superconducting generator coils intended for large wind turbine direct drive generators. The resulting equations use the DC in-field critical current, the geometry of the superconductor and the magnitude of the AC magnetic field component as parameters. This simplified approach can be valuable in the design of MgB2 DC coils in the 1-4 T range with low AC magnetic field and current ripples.

  7. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  8. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loop for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  9. Modeling of the interleaved hysteresis loop in the measurements of rotational core losses

    NASA Astrophysics Data System (ADS)

    Alatawneh, Natheer; Pillay, Pragasen

    2016-01-01

    The measurement of core losses in machine laminations reveals a fundamental difference between rotational and pulsating types. Rotational core losses under rotating fields decrease at high flux density, while pulsating losses keep increasing steadily. Experimental analyses of loss components Px and Py in x and y directions with rotating fields show that the loss decreases in one loss component and sometimes attains negative values. Tracking the evolution of hysteresis loops along this loss component discloses a peculiar behavior of magnetic hysteresis, where the loop changes its path from counterclockwise to clockwise within a cycle of magnetization process, the so called interleaved hysteresis loop. This paper highlights a successful procedure for modeling the interleaved hysteresis loop in the measurement of rotational core losses in electrical machine laminations using the generalized Prandtl-Ishlinskii (PI) model. The efficiency of the proposed model is compared to Preisach model. Results and conclusion of this work are of importance toward building an accurate model of rotational core losses.

  10. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry).

    PubMed

    Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando

    2015-01-09

    Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the 'specific absorption rate (SAR)', is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 °C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m(-1) in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

  11. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando

    2015-01-01

    Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

  12. Magnetostrictive and Kinematic Model Considering the Dynamic Hysteresis and Energy Loss for GMA

    NASA Astrophysics Data System (ADS)

    LIU, Huifang; SUN, Xingwei; GAO, Yifei; WANG, Hanyu; GAO, Zijin

    2017-03-01

    Due to the influence of magnetic hysteresis and energy loss inherent in giant magnetostrictive materials (GMM), output displacement accuracy of giant magnetostrictive actuator (GMA) can not meet the precision and ultra precision machining. Using a GMM rod as the core driving element, a GMA which may be used in the field of precision and ultra precision drive engineering is designed through modular design method. Based on the Armstrong theory and elastic Gibbs free energy theory, a nonlinear magnetostriction model which considers magnetic hysteresis and energy loss characteristics is established. Moreover, the mechanical system differential equation model for GMA is established by utilizing D'Alembert's principle. Experimental results show that the model can preferably predict magnetization property, magnetic potential orientation, energy loss for GMM. It is also able to describe magnetostrictive elongation and output displacement of GMA. Research results will provide a theoretical basis for solving the dynamic magnetic hysteresis, energy loss and working precision for GMA fundamentally.

  13. Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation

    SciTech Connect

    Sablik, M.J.; Rios, S.; Landgraf, F.J.G.; Yonamine, T.; Campos, M.F. de

    2005-05-15

    In 2.2% Si electrical steel, the magnetic hysteresis behavior is sharply sheared by a rather small plastic deformation (0.5%). A modification to the Jiles-Atherton hysteresis model makes it possible to model magnetic effects of plastic deformation. In this paper, with this model, it is shown how a narrow hysteresis with an almost steplike hysteresis curve for an undeformed specimen is sharply sheared by plastic deformation. Computed coercivity and hysteresis loss show a sharp step to higher values at small strain due to an n=1/2 power law dependence on residual strain. The step is seen experimentally.

  14. Hysteresis model and statistical interpretation of energy losses in non-oriented steels

    NASA Astrophysics Data System (ADS)

    Mănescu (Păltânea), Veronica; Păltânea, Gheorghe; Gavrilă, Horia

    2016-04-01

    In this paper the hysteresis energy losses in two non-oriented industrial steels (M400-65A and M800-65A) were determined, by means of an efficient classical Preisach model, which is based on the Pescetti-Biorci method for the identification of the Preisach density. The excess and the total energy losses were also determined, using a statistical framework, based on magnetic object theory. The hysteresis energy losses, in a non-oriented steel alloy, depend on the peak magnetic polarization and they can be computed using a Preisach model, due to the fact that in these materials there is a direct link between the elementary rectangular loops and the discontinuous character of the magnetization process (Barkhausen jumps). To determine the Preisach density it was necessary to measure the normal magnetization curve and the saturation hysteresis cycle. A system of equations was deduced and the Preisach density was calculated for a magnetic polarization of 1.5 T; then the hysteresis cycle was reconstructed. Using the same pattern for the Preisach distribution, it was computed the hysteresis cycle for 1 T. The classical losses were calculated using a well known formula and the excess energy losses were determined by means of the magnetic object theory. The total energy losses were mathematically reconstructed and compared with those, measured experimentally.

  15. Dynamic Hysteresis in Compacted Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chowdary, Krishna M.

    The frequency and temperature dependent magnetic response of a bulk soft magnetic nanocomposite made by compacting Fe10Co 90 nanoparticles was measured and modeled. Electron microscopy and x-ray diffraction were used to characterize the size, composition, and structure of the nanoparticles and nanocomposite. Polyol synthesis was used to produce 200 nm particles with average grain size 20 nm and large superparamagnetic fraction. The nanoparticles were consolidated to 90% theoretical density by plasma pressure compaction. The compacted nanoparticles retained the 20 nm average grain size and large superparamagnetic fraction. The nanocomposite resistivity was more than three times that of the bulk alloy. Vibrating sample and SQUID-MPMS magnetometers were used for low frequency magnetic measurements of the nanoparticles and nanocomposite. Compaction reduced the coercivity from 175 Oe to 8 Oe and the effective anisotropy from 124 x 10 3 ergs/cc to 7.9 x 103 ergs/cc. These reductions were caused by increased exchange coupling between surface nanograins, consistent with predictions from the Random Anisotropy model. Varying degrees of exchange coupling existed within the nanocomposite, contributing to a distribution of energy barriers. A permeameter was used for frequency dependent magnetic measurements on a toroid cut from the nanocomposite. Complex permeability, coercivity, and power loss were extracted from dynamic minor hysteresis loops measured over a range of temperatures (77 K - 873 K) and frequencies (0.1 kHz - 100 kHz). The real and imaginary parts of the complex permeability spectrum showed asymmetries consistent with a distribution of energy barriers and high damping. When the complex permeability, power loss, and coercivity were scaled relative to the peak frequency of the imaginary permeability, all fell on universal curves. Various microscopic and macroscopic models for the complex permeability were investigated. The complex permeability was successfully fit

  16. Hysteresis prediction inside magnetic shields and application

    SciTech Connect

    Morić, Igor; De Graeve, Charles-Marie; Grosjean, Olivier; Laurent, Philippe

    2014-07-15

    We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60 μT. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission.

  17. Hysteresis prediction inside magnetic shields and application.

    PubMed

    Morić, Igor; De Graeve, Charles-Marie; Grosjean, Olivier; Laurent, Philippe

    2014-07-01

    We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60 μT. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission.

  18. Magnetic hysteresis based on dipolar interactions in granular magnetic systems

    NASA Astrophysics Data System (ADS)

    Allia, Paolo; Coisson, Marco; Knobel, Marcelo; Tiberto, Paola; Vinai, Franco

    1999-11-01

    The magnetic hysteresis of granular magnetic systems is investigated in the high-temperature limit (T>> blocking temperature of magnetic nanoparticles). Measurements of magnetization curves have been performed at room temperature on various samples of granular bimetallic alloys of the family Cu100-xCox (x=5-20 at. %) obtained in ribbon form by planar flow casting in a controlled atmosphere, and submitted to different thermal treatments. The loop amplitude and shape, which are functions of sample composition and thermal history, are studied taking advantage of a novel method of graphical representation, particularly apt to emphasize the features of thin, elongated loops. The hysteresis is explained in terms of the effect of magnetic interactions of the dipolar type among magnetic-metal particles, acting to hinder the response of the system of moments to isothermal changes of the applied field. Such a property is accounted for in a mean-field scheme, by introducing a memory term in the argument of the Langevin function which describes the anhysteretic behavior of an assembly of noninteracting superparamagnetic particles. The rms field arising from the cumulative effect of dipolar interactions is linked by the theory to a measurable quantity, the reduced remanence of a major symmetric hysteresis loop. The theory's self-consistence and adequacy have been properly tested at room temperature on all examined systems. The agreement with experimental results is always striking, indicating that at high temperatures the magnetic hysteresis of granular systems is dominated by interparticle, rather than single-particle, effects. Dipolar interactions seem to fully determine the magnetic hysteresis in the high-temperature limit for low Co content (x<=10). For higher concentrations of magnetic metal, the experimental results indicate that additional hysteretic mechanisms have to be introduced.

  19. Could linear hysteresis contribute to shear wave losses in tissues?

    PubMed

    Parker, Kevin J

    2015-04-01

    For nearly 100 y in the study of cyclical motion in materials, a particular phenomenon called "linear hysteresis" or "ideal hysteretic damping" has been widely observed. More recently in the field of shear wave elastography, the basic mechanisms underlying shear wave losses in soft tissues are in question. Could linear hysteresis play a role? An underlying theoretical question must be answered: Is there a real and causal physical model that is capable of producing linear hysteresis over a band of shear wave frequencies used in diagnostic imaging schemes? One model that can approximately produce classic linear hysteresis behavior, by examining a generalized Maxwell model with a specific power law relaxation spectrum, is described here. This provides a theoretical plausibility for the phenomenon as a candidate for models of tissue behavior.

  20. Mathematical modelling of frequency-dependent hysteresis and energy loss of FeBSiC amorphous alloy

    NASA Astrophysics Data System (ADS)

    Koprivica, Branko; Milovanovic, Alenka; Mitrovic, Nebojsa

    2017-01-01

    The aim of this paper is to present a novel mathematical model of frequency-dependent magnetic hysteresis. The major hysteresis loop in this model is represented by the ascending and descending curve over an arctangent function. The parameters of the hysteresis model have been calculated from a measured hysteresis loop of the FeBSiC amorphous alloy sample. A number of measurements have been performed with this sample at different frequencies of the sinusoidal excitation magnetic field. A variation of the coercive magnetic field with the frequency has been observed and used in the modelling of frequency-dependent hysteresis with the proposed model. A comparison between measured and modelled hysteresis loops has been presented. Additionally, the areas of the obtained hysteresis loops, representing the energy loss per unit volume, have been calculated and the dependence of the energy loss on the frequency is shown. Furthermore, two models of the frequency dependence of the coercivity and two models of the energy loss separation have been used for fitting the experimental and simulation results. The relations between these models and their parameters have been observed and analysed. Also, the relations between parameters of the hysteresis model and the parameters of the energy loss separation models have been analysed and discussed.

  1. Modified Davidenkov hysteresis and the propagation of sawtooth waves in polycrystals with hysteresis loss saturation

    NASA Astrophysics Data System (ADS)

    Nazarov, V. E.; Kiyashko, S. B.

    2016-08-01

    A modified Davidenkov hysteresis equation of the state has been proposed for describing the saturation of the effects of amplitude-dependent internal friction in polycrystalline metals and other solids, which possess imperfect elasticity. Using this equation, an exact analytical solution of the problem of the propagation of a periodic sawtooth wave in media characterized by quadratic hysteresis with nonlinear loss saturation has been obtained. Regularities of variations in the characteristics of a sawtooth wave, such as nonlinear loss, the change in the velocity of the propagation of the wave, and the amplitudes of the higher harmonics of the wave, have been determined. A graphical analysis of the evolution of the shape and the spectral components of the wave has been carried out.

  2. A MHO-based magnetic hysteresis model for amorphous materials

    NASA Astrophysics Data System (ADS)

    Ma, Lianwei; Shen, Yu; Li, Jinrong; Zhao, Xinlong

    2014-12-01

    A magnetic hysteretic operator (MHO) is proposed in this paper. Based on the constructed MHO, the input space of neural networks is expanded from one-dimension to two-dimension using the expanded space method so that the one-to-multiple mapping of magnetic hysteresis is transformed into one-to-one mapping. Based on the expanded input space, a neural network is employed to identify magnetic hysteresis. The result of an experimental example suggests the proposed approach is effective.

  3. Reduction of hysteresis losses in the magnetic refrigerant La0.8Ce0.2Fe11.4Si1.6 by the addition of boron

    NASA Astrophysics Data System (ADS)

    Shamba, P.; Debnath, J. C.; Zeng, R.; Wang, J. L.; Campbell, S. J.; Kennedy, S. J.; Dou, S. X.

    2011-04-01

    In an effort to improve the magnetocaloric effects of the NaZn13-type La0.8Ce0.2Fe11.4Si1.6 compound, the effect of boron doping on the magnetic properties and magnetocaloric properties has been investigated. The magnetic entropy change (ΔSM) for the La0.8Ce0.2Fe11.4Si1.6 compound, obtained for a field change of 0-5 T using the Maxwell relation exhibits a spike and appears to be overestimated and is thus corrected by using the Clausius-Clapeyron equation (CC). The ΔSM determined from the CC equation is estimated to be 19.6 J kg-1K-1. However, large hysteretic losses which are detrimental to the magnetic refrigeration efficiency occur in the same temperature range. In this work, we report a significant reduction in hysteretic losses by doping the La0.8Ce0.2Fe11.4Si1.6 compound with a small amount of boron to obtain La0.8Ce0.2Fe11.4Si1.6Bx compounds. The hysteresis loss decreases from 131.5 to 8.1 J kg -1 when x increases from 0 to 0.3, while ΔSM, obtained for a field change of 0-5 T, varies from 19.6 to 15.9 J kg-1K-1. This also simultaneously shifts the TC from 174 to 184 K and significantly improves the effective refrigerant capacity (RCeff) of the material from 164 to 305 J kg-1.

  4. Modulated self-reversed magnetic hysteresis in iron oxides

    PubMed Central

    Ma, Ji; Chen, Kezheng

    2017-01-01

    The steadfast rule of a ferromagnetic hysteresis loop claims its saturation positioned within the first and third quadrants, whereas its saturation positioned in the second and fourth quadrants (named as self-reversed magnetic hysteresis) is usually taken as an experimental artifact and is always intentionally ignored. In this report, a new insight in this unique hysteresis phenomenon and its modulation were discussed in depth. Different iron oxides (magnetite, maghemite and hematite) with varying dimensions were soaked in FeCl3 aqueous solution and absorbed Fe3+ cations due to their negative enough surface zeta potentials. These iron oxides@Fe3+ core-shell products exhibit well pronounced self-reversed magnetic hysteresis which concurrently have typical diamagnetic characteristics and essential ferromagnetic features. The presence of pre-magnetized Fe3+ shell and its negatively magnetic exchange coupling with post-magnetized iron-oxide core is the root cause for the observed phenomena. More strikingly, this self-reversed magnetic hysteresis can be readily modulated by changing the core size or by simply controlling Fe3+ concentration in aqueous solution. It is anticipated that this work will shed new light on the development of spintronics, magnetic recording and other magnetically-relevant fields. PMID:28220793

  5. Modulated self-reversed magnetic hysteresis in iron oxides.

    PubMed

    Ma, Ji; Chen, Kezheng

    2017-02-21

    The steadfast rule of a ferromagnetic hysteresis loop claims its saturation positioned within the first and third quadrants, whereas its saturation positioned in the second and fourth quadrants (named as self-reversed magnetic hysteresis) is usually taken as an experimental artifact and is always intentionally ignored. In this report, a new insight in this unique hysteresis phenomenon and its modulation were discussed in depth. Different iron oxides (magnetite, maghemite and hematite) with varying dimensions were soaked in FeCl3 aqueous solution and absorbed Fe(3+) cations due to their negative enough surface zeta potentials. These iron oxides@Fe(3+) core-shell products exhibit well pronounced self-reversed magnetic hysteresis which concurrently have typical diamagnetic characteristics and essential ferromagnetic features. The presence of pre-magnetized Fe(3+) shell and its negatively magnetic exchange coupling with post-magnetized iron-oxide core is the root cause for the observed phenomena. More strikingly, this self-reversed magnetic hysteresis can be readily modulated by changing the core size or by simply controlling Fe(3+) concentration in aqueous solution. It is anticipated that this work will shed new light on the development of spintronics, magnetic recording and other magnetically-relevant fields.

  6. Modulated self-reversed magnetic hysteresis in iron oxides

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Chen, Kezheng

    2017-02-01

    The steadfast rule of a ferromagnetic hysteresis loop claims its saturation positioned within the first and third quadrants, whereas its saturation positioned in the second and fourth quadrants (named as self-reversed magnetic hysteresis) is usually taken as an experimental artifact and is always intentionally ignored. In this report, a new insight in this unique hysteresis phenomenon and its modulation were discussed in depth. Different iron oxides (magnetite, maghemite and hematite) with varying dimensions were soaked in FeCl3 aqueous solution and absorbed Fe3+ cations due to their negative enough surface zeta potentials. These iron oxides@Fe3+ core-shell products exhibit well pronounced self-reversed magnetic hysteresis which concurrently have typical diamagnetic characteristics and essential ferromagnetic features. The presence of pre-magnetized Fe3+ shell and its negatively magnetic exchange coupling with post-magnetized iron-oxide core is the root cause for the observed phenomena. More strikingly, this self-reversed magnetic hysteresis can be readily modulated by changing the core size or by simply controlling Fe3+ concentration in aqueous solution. It is anticipated that this work will shed new light on the development of spintronics, magnetic recording and other magnetically-relevant fields.

  7. The significance of observed rotational magnetic hysteresis in lunar samples

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1974-01-01

    Rotational magnetic hysteresis curves for lunar soils 10084, 12070, and 14259, and rock 14053 have been published. There is no adequate explanation to date for the observed large hysteresis at high fields. Lunar rock magnetism researchers consider fine particle iron to be the primary source of stable magnetic remanence in lunar samples. Iron has cubic anisotropy with added shape anisotropy for extreme particle shapes. The observed high-field hysteresis must have its source in uniaxial or unidirectional anisotropy. This implies the existence of minerals with uniaxial anisotropy or exchange-coupled spin states. Therefore, the source of this observed high-field hysteresis must be identified and understood before serious paleointensity studies are made. It is probable that the exchange-coupled spin states and/or the source of uniaxial anisotropy responsible for the high-field hysteresis might be influenced by the lunar surface diurnal temperature cycling. The possible sources of high-field hysteresis in lunar samples are presented and considered.

  8. Magnetic hysteresis of limestones: facies control?

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.; Chow, Nancy; Werner, Tomasz

    1993-03-01

    The hysteresis properties of 116 non-red, marine limestones from 92 localities indicate that remanence is carried by magnetite of pseudo-single-domain (PSD) and small multidomain (MD) size. Pelagic limestones have paramagnetic matrices and hysteresis properties compatible with larger PSD or MD grain sizes of magnetite, probably associated with detrital clay minerals introduced by pelagic rain-out. Thus they may be less suitable recorders of stable remanence. Other limestone facies (excepting dolomitized examples) have diamagnetic matrices. They include shallow—subtidal limestones which tend to have smaller PSD sizes of magnetite, as do backreef—lagoonal, undifferentiated-shelf and reef facies. It is believed that the wide geographical and temporal range of samples minimizes effects related to post-compaction groundwater flow (late diagenesis) and that the associations recognized should be tested in future studies.

  9. Magnetization and Hysteresis of Dilute Magnetic-Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Skomski, Ralph; Balamurugan, B.; Sellmyer, D. J.

    2014-03-01

    Real-structure imperfections in dilute magnetic oxides tend to create small concentrations of local magnetic moments that are coupled by fairly long-range exchange interactions, mediated by p-electrons. The robustness of these interactions is caused by the strong overlap of the p orbitals, as contrasted to the much weaker interatomic exchange involving iron-series 3d electrons. The net exchange between defect moments can be positive or negative, which gives rise to spin structures with very small net moments. Similarly, the moments exhibit magnetocrystalline anisotropy, reinforced by electron hopping to and from 3d states and generally undergoing some random-anuisotropy averaging. Since the coercivity scales as 2K1/M and M is small, this creates pronounced and -- in thin films -- strongly anisotropic hysteresis loops. In finite systems with N moments, both K1 and M are reduced by a factor of order N1/2 due to random anisotropy and moment compensation, respectively, so that that typical coercivities are comparable to bulk magnets. Thermal activation readily randomizes the net moment of small oxide particles, so that the moment is easier to measure in compacted or aggregated particle ensembles. This research is supported by DOE (BES).

  10. Hysteresis and multiple stable configurations in a magnetic fluid system.

    PubMed

    Jackson, D P

    2008-05-21

    A magnetic liquid in a horizontal Hele-Shaw cell is subjected to a vertical magnetic field. The width of the magnetic fluid finger is measured as a function of applied field and compared to a theoretical model. The theoretical model uses an energy minimization procedure and predicts a double energy minimum, hysteresis, and discontinuous transitions between a circle and a finger. The experimental data set agrees very well with the theory for a well-defined magnetic fluid finger. Near the transitions, the experiments show hysteresis and support for a double energy minimum; however, the agreement is not quite so good. The discrepancy between theory and experiment near the transition region is likely due to the simplified finger model used in the theory.

  11. Effect of Tabor parameter on hysteresis losses during adhesive contact

    NASA Astrophysics Data System (ADS)

    Ciavarella, M.; Greenwood, J. A.; Barber, J. R.

    2017-01-01

    The Tabor parameter μ is conventionally assumed to determine the range of applicability of the classical 'JKR' solution for adhesive elastic contact of a sphere and a plane, with the variation of the contact area and approach with load, and in particular the maximum tensile force (the pull-off force) being well predicted for μ > 5 . Here we show that the hysteretic energy loss during a contact separation cycle is significantly overestimated by the JKR theory, even at quite large values of μ. This stems from the absence of long-range tensile forces in the JKR theory, which implies that jump into contact is delayed until the separation α = 0 . We develop an approximate solution based on the use of Wu's solution with van der Waals interactions for jump-in, and the JKR theory for jump out of contact, and show that for μ > 5 , the predicted hysteresis loss is then close to that found by direct numerical solutions using the Lennard-Jones force law. We also show how the same method can be adapted to allow for contact between bodies with finite support stiffness.

  12. Diagonal Mesh Equivalent (DME) for the calculation of the hysteresis losses in electrical machines

    NASA Astrophysics Data System (ADS)

    Vergura, S.; Carpentieri, M.; Lattarulo, F.

    2014-02-01

    The Magnetic Equivalent Circuits (MECs) technique is a powerful tool for machine analysis and power losses computation. Here, use is made of the Diagonal Mesh Equivalent (DME) to solve the equivalent electrical circuit for the branch fluxes to be easily computed and related to the machine compartments of technical interest. These are represented by the air gap, stator and rotor to name a few. Hysteresis loops have been computed, along with the static power losses, for assigned stator thicknesses and compared to ones alternatively obtained by the Modified Scalar Preisach Model. This study is especially aimed at giving improved issues to those who are engaged in the design of magnetic components for electrical machines.

  13. Limestones distinguished by magnetic hysteresis in three-dimensional projections

    NASA Astrophysics Data System (ADS)

    Borradaile, G. J.; Hamilton, Tom

    2003-09-01

    Magnetic hysteresis data determine the suitability of rocks for paleomagnetic work, provide clues to paleo-environment and paleo-climate and they may characterize depositional environments for limestones. However, the variables chosen for conventional two-dimensional hysteresis plots, such as that of Day et al. [1977], are not always suitable to discriminate between samples. Distinguishing samples by their regression surfaces in 3D hysteresis space may be more successful in some cases [Borradaile and Lagroix, 2000] but a 2D projection with a less arbitrary viewing axis is preferable for routine reporting. We show that limestone samples are simply discriminated in a new 2D projection produced by projecting hysteresis data from three dimensions (x, y, z = Mr/Ms, Bcr, Bc) onto a plane containing the Mr/Ms axis. The orientation of the plane is controlled by its x-axis that is defined by a suitably selected Bcr/Bc ratio, most often in the magnetite PSD range, 2< (Bcr/Bc) < 4.

  14. Magnetic hysteresis measurements of thin films under isotropic stress.

    NASA Astrophysics Data System (ADS)

    Holland, Patrick; Dubey, Archana; Geerts, Wilhelmus

    2000-10-01

    Nowadays, ferromagnetic thin films are widely applied in devices for information technology (credit cards, video recorder tapes, floppies, hard disks) and sensors (air bags, anti-breaking systems, navigation systems). Thus, with the increase in the use of magnetic media continued investigation of magnetic properties of materials is necessary to help in determining the useful properties of materials for new or improved applications. We are currently interested in studying the effect of applied external stress on Kerr hysteresis curves of thin magnetic films. The Ni and NiFe films were grown using DC magnetron sputtering with Ar as the sputter gas (pAr=4 mTorr; Tsub=55-190 C). Seed and cap layers of Ti were used on all films for adhesion and oxidation protection, respectively. A brass membrane pressure cell was designed to apply in-plane isotropic stress to thin films. In this pressure cell, gas pressure is used to deform a flexible substrate onto which a thin magnetic film has been sputtered. The curvature of the samples could be controlled by changing the gas pressure to the cell. Magneto-Optical in-plane hysteresis curves at different values of strain were measured. The results obtained show that the stress sensitivity is dependent on the film thickness. For the 500nm NiFe films, the coercivity strongly decreased as a function of the applied stress.

  15. Hysteresis in magnetic shape memory composites: Modeling and simulation

    NASA Astrophysics Data System (ADS)

    Conti, Sergio; Lenz, Martin; Rumpf, Martin

    2016-04-01

    Magnetic shape memory alloys are characterized by the coupling between the reorientation of structural variants and the rearrangement of magnetic domains. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the reorientation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the twin boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimality condition. We illustrate and discuss the influence of the particle geometry (volume fraction, shape, arrangement) and the polymer elastic parameters on the observed hysteresis and compare with recent experimental results.

  16. Magnetic fluid hyperthermia probed by both calorimetric and dynamic hysteresis measurements

    NASA Astrophysics Data System (ADS)

    Guibert, Clément; Fresnais, Jérôme; Peyre, Véronique; Dupuis, Vincent

    2017-01-01

    In this paper, we report an investigation of magnetic fluid hyperthermia (MFH) using combined calorimetric and newly implemented dynamic hysteresis measurements for two sets of well characterized size-sorted maghemite nanoparticles (with diameters of about 10 nm and 20 nm) dispersed in water and in glycerol. Our primary goal was to assess the influence of viscosity on the heating efficiency of magnetic nanoparticles described in terms of specific loss power (SLP or specific absorption rate, SAR) and dynamic hysteresis. In particular, we aimed to investigate how this SLP depends on the transition from Néelian to Brownian behavior of nanoparticles expected to occur between 10 nm and 20 nm (for maghemite) and dependent on the viscosity. While we observed a good agreement between calorimetric and dynamic hysteresis measurements, we found that the SLP measured for the different systems do not depend noticeably on the viscosity of solvent. Calculations performed according to Rosensweig's linear model [1] allow us to quantitatively reproduce our results at low field intensities, provided we use a value for the magnetic anisotropy constant much smaller than the one commonly used in the literature. This raises the question of the temperature dependance of the magnetic anisotropy constant and its relevance for a quantitative description of MFH.

  17. Calculation of Hysteresis Losses for Ferroelectric Soft Lead Zirconate Titanate Ceramics

    NASA Astrophysics Data System (ADS)

    Hamad, Mahmoud A.

    2014-02-01

    The phenomenological Hamad model was modified to enable retracing of the hysteresis loop of ferroelectric soft lead zirconate titanate (PZT). Comparison with experimental results revealed the modified model can retrace polarization versus electric field for different electric field amplitudes and temperatures. Hysteresis loss per unit volume per cycle for soft PZT was predicted and estimated. The results revealed that energy loss increased with decreasing temperature and with increasing electric field amplitude.

  18. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang Y.; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-09-25

    Hysteresis loops and Magnetic Barkhausen Noise in a single crystal α-iron containing a nonmagnetic particle were simulated based on the Laudau-Lifshitz-Gilbert equation. The analyses of domain morphologies and hysteresis loops show that reversal magnetization process is control by nucleation of reversed domains at nonmagnetic particle when the particle size reaches a particle value. In such a situation, the value of nucleation field is determined by the size of nonmagnetic particles, and moreover, coercive field and Magnetic Barkhausen Noise signal are strongly affected by the nucleation field of reversed domains.

  19. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Hernández-Gómez, P.; Muñoz, J. M.; Valente, M. A.; Torres, C.; de Francisco, C.

    2013-01-01

    Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer's formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  20. Allowing for hysteresis in the calculation of fields in the elements of accelerator magnetic systems

    NASA Astrophysics Data System (ADS)

    Vinokurov, N. A.; Shevchenko, O. A.; Serednyakov, S. S.; Shcheglov, M. A.; Royak, M. E.; Stupakov, I. M.; Kondratyeva, N. S.

    2016-07-01

    Iron magnetic circuit residual magnetization may contribute as much as several Gs to the magnetic field in charged-particle accelerators. This contribution depends on the magnetization "history." It is not taken into account in most of the existing software that uses the main magnetization curve. Therefore, an error in field calculations usually exceeds 1%, which is unacceptable for accelerators. In this article, a simple phenomenological magnetic-hysteresis model that is suitable for numerical computations is suggested. Approximations based on the proposed model are compared to the results of measurements on partial hysteresis cycles in a steel ring.

  1. Ac magnetorestriction hysteresis and magnetization direction in grain oriented silicon steels

    SciTech Connect

    Mogi, Hisashi; Matsuo, Yukio; Kumano, Tomoji

    1999-09-01

    A hysteresis curve of ac magnetostriction was measured, magnetizing a grain oriented silicon steel in the direction deviated from rolling direction of a sample. The ac magnetostriction ({lambda} ac) curves were analyzed as harmonics in the interest of noise spectrum of such as a power transformer. The domain structure model in this magnetostriction process was proposed. The hysteresis was large in the magnetization direction inclined at 30 and 90{degree} from the rolling direction.

  2. Magnetic hysteresis and Barkhausen noise emission analysis of magnetic materials and composites

    NASA Astrophysics Data System (ADS)

    Prabhu Gaunkar, Neelam

    specialchapt{ABSTRACT}. Barkhausen emission studies have been used to analyze the effect of residual stresses in ferromagnetic materials. The stresses generated due to mechanical wear and tear, abrasion and prolonged use can also lead to phase changes within the material. These phase changes can cause damage to the structural parts and should be prevented. In this study we analyze the magnetic hysteresis and Barkhausen noise profile of materials with more than one ferromagnetic phase. The correlation between the hysteresis and Barkhausen noise profiles for such materials is studied. Secondary Barkhausen emission peaks can be simulated for such materials. Experimental observations are compared with simulation measurements. Drawing a correlation between the secondary emergent peaks and the composition of each secondary phase should lead to an improved technique for non-destructive characterization of ferromagnetic materials. . Improved sensor-to-specimen coupling is also essential for conducting Barkhausen noise measurements of multiphase materials which may also have different surface geometries. A finite element study was conducted to optimize the design parameters of the magnetizing core in a Barkhausen noise sensor. Several sensor parameters inclusive of core material, core-tip curvature, core length and pole spacing were studied. A procedure for developing a high sensitivity Barkhausen noise sensor by design optimization based on finite element simulations has been demonstrated. The study also shows the applicability of Barkhausen emission and magnetic hysteresis analysis as advanced tools of non-destructive characterization of ferromagnetic materials.

  3. Calculation of the magnetic field in the active zone of a hysteresis clutch

    NASA Technical Reports Server (NTRS)

    Ermilov, M. A.; Glukhov, O. M.

    1977-01-01

    The initial distribution of magnetic induction in the armature stationary was calculated relative to the polar system of a hysteresis clutch. Using several assumptions, the problem is reduced to calculating the static magnetic field in the ferromagnetic plate with finite and continuous magnetic permeability placed in the air gap between two identical, parallel semiconductors with rack fixed relative to the tooth or slot position.

  4. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Li, Qiulin; Liu, Wei; Xu, Ben; Hu, Shenyang; Li, Yulan

    2015-07-15

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  5. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  6. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    DOE PAGES

    Li, Yi; Xu, Ben; Hu, Shenyang; ...

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domainsmore » on the magnetization reversal behavior and the magnetic properties.« less

  7. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy.

    PubMed

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-18

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  8. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    PubMed Central

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  9. The Wave Processes in the Media Having Inelastic Hysteresis with Saturation of The Nonlinear Loss

    NASA Astrophysics Data System (ADS)

    Nazarov, V. E.; Kiyashko, S. B.

    2016-07-01

    We study theoretically the nonlinear wave processes during excitation of a longitudinal harmonic wave in an unbounded medium and the rod resonator with inelastic hysteresis and saturation of the amplitude-dependent loss. The nonlinear-wave characteristics in such systems, namely, the amplitude-dependent loss, variation in the wave-propagation velocity, the resonant-frequency shift, and the higher-harmonic amplitudes are determined. The results of the theoretical and experimental studies of nonlinear effects in the rod resonator of annealed polycrystalline copper are compared. The effective parameters of the hysteretic nonlinearity of this metal are evaluated.

  10. A Neural-FEM tool for the 2-D magnetic hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.

    2016-04-01

    The aim of this work is to present a new tool for the analysis of magnetic field problems considering 2-D magnetic hysteresis. In particular, this tool makes use of the Finite Element Method to solve the magnetic field problem in real device, and fruitfully exploits a neural network (NN) for the modeling of 2-D magnetic hysteresis of materials. The NS has as input the magnetic inductions components B at the k-th simulation step and returns as output the corresponding values of the magnetic field H corresponding to the input pattern. It is trained by vector measurements performed on the magnetic material to be modeled. This input/output scheme is directly implemented in a FEM code employing the magnetic potential vector A formulation. Validations through measurements on a real device have been performed.

  11. Unusual hysteresis in the magnetic susceptibility of cubic hexaboride KB6.

    PubMed

    Etourneau, J; Ammar, A; Villesuzanne, A; Villeneuve, G; Chevalier, B; Whangbo, M-H

    2003-07-14

    Electrical resistivity, magnetic susceptibility, and electron paramagnetic resonance measurements were carried out for cubic hexaboride KB(6), which is one electron short of completely filling its conduction band. It is found that KB(6) is not metallic and has localized spins. KB(6) exhibits a highly unusual hysteresis in the magnetic susceptibility below 100 K, which suggests that it undergoes a slow relaxation process.

  12. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range.

    PubMed

    Ota, Satoshi; Kitaguchi, Ryoichi; Takeda, Ryoji; Yamada, Tsutomu; Takemura, Yasushi

    2016-09-10

    The dependence of magnetic relaxation on particle parameters, such as the size and anisotropy, has been conventionally discussed. In addition, the influences of external conditions, such as the intensity and frequency of the applied field, the surrounding viscosity, and the temperature on the magnetic relaxation have been researched. According to one of the basic theories regarding magnetic relaxation, the faster type of relaxation dominates the process. However, in this study, we reveal that Brownian and Néel relaxations coexist and that Brownian relaxation can occur after Néel relaxation despite having a longer relaxation time. To understand the mechanisms of Brownian rotation, alternating current (AC) hysteresis loops were measured in magnetic fluids of different viscosities. These loops conveyed the amplitude and phase delay of the magnetization. In addition, the intrinsic loss power (ILP) was calculated using the area of the AC hysteresis loops. The ILP also showed the magnetization response regarding the magnetic relaxation over a wide frequency range. To develop biomedical applications of magnetic nanoparticles, such as hyperthermia and magnetic particle imaging, it is necessary to understand the mechanisms of magnetic relaxation.

  13. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range

    PubMed Central

    Ota, Satoshi; Kitaguchi, Ryoichi; Takeda, Ryoji; Yamada, Tsutomu; Takemura, Yasushi

    2016-01-01

    The dependence of magnetic relaxation on particle parameters, such as the size and anisotropy, has been conventionally discussed. In addition, the influences of external conditions, such as the intensity and frequency of the applied field, the surrounding viscosity, and the temperature on the magnetic relaxation have been researched. According to one of the basic theories regarding magnetic relaxation, the faster type of relaxation dominates the process. However, in this study, we reveal that Brownian and Néel relaxations coexist and that Brownian relaxation can occur after Néel relaxation despite having a longer relaxation time. To understand the mechanisms of Brownian rotation, alternating current (AC) hysteresis loops were measured in magnetic fluids of different viscosities. These loops conveyed the amplitude and phase delay of the magnetization. In addition, the intrinsic loss power (ILP) was calculated using the area of the AC hysteresis loops. The ILP also showed the magnetization response regarding the magnetic relaxation over a wide frequency range. To develop biomedical applications of magnetic nanoparticles, such as hyperthermia and magnetic particle imaging, it is necessary to understand the mechanisms of magnetic relaxation. PMID:28335297

  14. Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles.

    PubMed

    Crespo, P; Litrán, R; Rojas, T C; Multigner, M; de la Fuente, J M; Sánchez-López, J C; García, M A; Hernando, A; Penadés, S; Fernández, A

    2004-08-20

    We report on the experimental observation of magnetic hysteresis up to room temperature in thiol-capped Au nanoparticles with 1.4 nm size. The coercive field ranges from 860 Oe at 5 K to 250 Oe at 300 K. It is estimated that the Au atoms exhibit a magnetic moment of mu=0.036mu(B). However, Au nanoparticles with similar size but stabilized by means of a surfactant, i.e., weak interaction between protective molecules and Au surface atoms, are diamagnetic, as bulk Au samples are. The apparent ferromagnetism is consequently associated with 5d localized holes generated through Au-S bonds. These holes give rise to localized magnetic moments that are frozen in due to the combination of the high spin-orbit coupling (1.5 eV) of gold and the symmetry reduction associated with two types of bonding: Au-Au and Au-S.

  15. Vector magnetic hysteresis modeling of stress annealed galfenol

    NASA Astrophysics Data System (ADS)

    Adly, A. A.; Davino, D.; Giustiniani, A.; Visone, C.

    2013-05-01

    In the past years, utilization of magnetostrictive materials has been increasing in different applications including actuation, sensing, and energy harvesting. Special interest has been recently directed to galfenol (iron-gallium alloy). This paper experimentally investigates the vector hysteresis properties of stress-annealed galfenol as well as to test the capability of recently proposed models to mimic those properties. Details of the measurements, model identification, and experimental testing of the model accuracy are reported in the paper.

  16. Study of magnetic hysteresis effects in a storage ring using precision tune measurement

    NASA Astrophysics Data System (ADS)

    Li, Wei; Hao, Hao; Mikhailov, Stepan F.; Xu, Wei; Li, Jing-Yi; Li, Wei-Min; Wu, Ying. K.

    2016-12-01

    With the advances in accelerator science and technology in recent decades, the accelerator community has focused on the development of next-generation light sources, for example diffraction-limited storage rings (DLSRs), which require precision control of the electron beam energy and betatron tunes. This work is aimed at understanding magnet hysteresis effects on the electron beam energy and lattice focusing in circular accelerators, and developing new methods to gain better control of these effects. In this paper, we will report our recent experimental study of the magnetic hysteresis effects and their impacts on the Duke storage ring lattice using the transverse feedback based precision tune measurement system. The major magnet hysteresis effects associated with magnet normalization and lattice ramping are carefully studied to determine an effective procedure for lattice preparation while maintaining a high degree of reproducibility of lattice focusing. The local hysteresis effects are also studied by measuring the betatron tune shifts which result from adjusting the setting of a quadrupole. A new technique has been developed to precisely recover the focusing strength of the quadrupole by returning it to a proper setting to overcome the local hysteresis effect. Supported by National Natural Science Foundation of China (11175180, 11475167) and US DOE (DE-FG02-97ER41033)

  17. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    SciTech Connect

    Heczko, O. Drahokoupil, J.; Straka, L.

    2015-05-07

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  18. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Heczko, O.; Drahokoupil, J.; Straka, L.

    2015-05-01

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  19. Magnetic Study of Martensitic Transformation in Austenitic Stainless Steel by Low Field Hysteresis Loops Analysis

    SciTech Connect

    Zhang Lefu; Takahashi, Seiki; Kamada, Yasuhiro; Kikuchi, Hiroaki; Mumtaz, Khalid; Ara, Katsuyuki; Sato, Masaya

    2005-04-09

    Magnetic method has been used to evaluate the volume percentage of {alpha}' martensitic phase in austenitic stainless steels by measuring saturation magnetization, and it is said to be a candidate NDE method. However, nondestructive detection of saturation magnetization without high magnetic field is difficult. In the current work, we present a NDE method for evaluating the magnetic properties of strain induced {alpha}' martensitic phase. Low field hysteresis loops of an austenitic stainless steels type SUS 304 after cold rolling were measured by using a yoke sensor. The results show that the initial permeability {mu}i and the relative coercive field Hcl calculated by low field hysteresis loop analysis keep monotonic relation with saturation magnetization and coercive force measured by VSM, respectively. By this method, it is possible to characterize the volume content and particle properties of {alpha}' martensitic phase in stainless steels.

  20. Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Ersin, Kantar

    2015-10-01

    Magnetic behaviors of the Ising system with bilayer honeycomb lattice (BHL) structure are studied by using the effective-field theory (EFT) with correlations. The effects of the interaction parameters on the magnetic properties of the system such as the hysteresis and compensation behaviors as well as phase diagrams are investigated. Moreover, when the hysteresis behaviors of the system are examined, single and double hysteresis loops are observed for various values of the interaction parameters. We obtain the L-, Q-, P-, and S-type compensation behaviors in the system. We also observe that the phase diagrams only exhibit the second-order phase transition. Hence, the system does not show the tricritical point (TCP).

  1. Core loss and magnetic susceptibility of superparamagnetic Fe nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Kin, Masane; Kura, Hiroaki; Ogawa, Tomoyuki

    2016-12-01

    Toroidal-shaped high-density Fe nanoparticle assemblies (FNAs) were fabricated by molding different sized Fe nanoparticles (NPs), and the effect of the magnetic behavior of the FNAs on the core loss and the magnetic susceptibility was investigated. An FNA with 4.3 nm diameter Fe NPs exhibits superparamagnetism at room temperature while an FNA with 6.4 nm diameter Fe NPs doesn't exhibit superparamagnetism at room temperature. AC magnetization curves at 1, 10 and 100 kHz were measured to evaluate the core loss of the toroidal-shaped FNAs. Both FNAs exhibited no significant eddy current loss, which suggests that surfactants on the NP surface effectively act to electrically insulate the NPs, and the NPs are not sintered together when the FNAs are molded. The AC magnetization curves had no hysteresis for the FNA with 4.3 nm diameter Fe NPs, i.e., the core loss was minimal for the superparamagnetic FNA. The magnetic susceptibility of the superparamagnetic FNA with 4.3 nm Fe NPs was 12 times higher than that estimated from Langevin theory due to the effect of strong magnetic dipole interaction. These results suggest that the superparamagnetic FNA has potential as a magnetic core material that exhibits low core loss and high magnetic susceptibility, even at high frequency.

  2. Scaling Behavior of Barkhausen Avalanches along the Hysteresis loop in Nucleation-Mediated Magnetization Reversal Process

    SciTech Connect

    Im, Mi-Young; Fischer, Peter; Kim, D.-H.; Shin, S.-C.

    2008-10-14

    We report the scaling behavior of Barkhausen avalanches for every small field step along the hysteresis loop in CoCrPt alloy film having perpendicular magnetic anisotropy. Individual Barkhausen avalanche is directly observed utilizing a high-resolution soft X-ray microscopy that provides real space images with a spatial resolution of 15 nm. Barkhausen avalanches are found to exhibit power-law scaling behavior at all field steps along the hysteresis loop, despite their different patterns for each field step. Surprisingly, the scaling exponent of the power-law distribution of Barkhausen avalanches is abruptly altered from 1 {+-} 0.04 to 1.47 {+-} 0.03 as the field step is close to the coercive field. The contribution of coupling among adjacent domains to Barkhausen avalanche process affects the sudden change of the scaling behavior observed at the coercivity-field region on the hysteresis loop of CoCrPt alloy film.

  3. A N2(3-) radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K.

    PubMed

    Rinehart, Jeffrey D; Fang, Ming; Evans, William J; Long, Jeffrey R

    2011-09-14

    The synthesis and magnetic properties of three new N(2)(3-) radical-bridged dilanthanide complexes, {[(Me(3)Si)(2)N](2)(THF)Ln}(2)(μ-η(2):η(2)-N(2))(-) (Ln = Tb, Ho, Er), are reported. All three display signatures of single-molecule-magnet behavior, with the terbium congener exhibiting magnetic hysteresis at 14 K and a 100 s blocking temperature of 13.9 K. The results show how synergizing the strong magnetic anisotropy of terbium(III) with the effective exchange-coupling ability of the N(2)(3-) radical can create the hardest molecular magnet discovered to date. Through comparisons with non-radical-bridged ac magnetic susceptibility measurements, we show that the magnetic exchange coupling hinders zero-field fast relaxation pathways, forcing thermally activated relaxation behavior over a much broader temperature range.

  4. Observation of complete inversion of the hysteresis loop in a bimodal magnetic thin film

    NASA Astrophysics Data System (ADS)

    Maity, Tuhin; Kepaptsoglou, Demie; Schmidt, Michael; Ramasse, Quentin; Roy, Saibal

    2017-03-01

    The existence of inverted hysteresis loops (IHLs) in magnetic materials is still in debate due to the lack of direct evidence and convincing theoretical explanations. Here we report the direct observation and physical interpretation of complete IHL in N i45F e55 films with 1 to 2 nm thin N i3Fe secondary phases at the grain boundaries. The origin of the inverted loop, however, is shown to be due to the exchange bias coupling between N i45F e55 and N i3Fe , which can be broken by the application of a high magnetic field. A large positive exchange bias (HE B=14 ×HC) is observed in the NiFe composite material giving novel insight into the formation of a noninverted hysteresis loop (non-IHL) and IHL, which depend on the loop tracing field range (HR). The crossover from non-IHL to IHL is found to be at 688 Oe.

  5. A neural approach for the numerical modeling of two-dimensional magnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Laudani, A.; Riganti Fulginei, F.; Salvini, A.

    2015-05-01

    This paper deals with a neural network approach to model magnetic hysteresis at macro-magnetic scale. Such approach to the problem seems promising in order to couple the numerical treatment of magnetic hysteresis to FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, making possible a full computer simulation in a reasonable time. The neural system proposed consists of four inputs representing the magnetic field and the magnetic inductions components at each time step and it is trained by 2-d measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the neural system returns the predicted value of the field H at the same time step. A suitable partitioning of the neural system, described in the paper, makes the computing process rather fast. Validations with experimental tests and simulations for non-symmetric and minor loops are presented.

  6. A neural approach for the numerical modeling of two-dimensional magnetic hysteresis

    SciTech Connect

    Cardelli, E.; Faba, A.; Laudani, A.; Riganti Fulginei, F.; Salvini, A.

    2015-05-07

    This paper deals with a neural network approach to model magnetic hysteresis at macro-magnetic scale. Such approach to the problem seems promising in order to couple the numerical treatment of magnetic hysteresis to FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, making possible a full computer simulation in a reasonable time. The neural system proposed consists of four inputs representing the magnetic field and the magnetic inductions components at each time step and it is trained by 2-d measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the neural system returns the predicted value of the field H at the same time step. A suitable partitioning of the neural system, described in the paper, makes the computing process rather fast. Validations with experimental tests and simulations for non-symmetric and minor loops are presented.

  7. Article surveillance magnetic marker having an hysteresis loop with large Barkhausen discontinuities

    DOEpatents

    Humphrey, Floyd B.

    1987-01-01

    A marker for an electronic article surveillance system is disclosed comprising a body of magnetic material with retained stress and having a magnetic hysteresis loop with a large Barkhausen discontinuity such that, upon exposure of the marker to an external magnetic field whose field strength in the direction opposing the instantaneous magnetic polarization of the marker exceeds a predetermined threshold value, there results a regenerative reversal of the magnetic polarization of the marker. An electronic article surveillance system and a method utilizing the marker are also disclosed. Exciting the marker with a low frequency and low field strength, so long as the field strength exceeds the low threshold level for the marker, causes a regenerative reversal of magnetic polarity generating a harmonically rich pulse that is readily detected and easily distinguished.

  8. Inverted hysteresis loops in magnetically coupled bilayers with uniaxial competing anisotropies: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Valvidares, S. M.; Álvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M.

    2001-10-01

    The magnetization reversal processes in magnetic bilayers with individual uniaxial anisotropies have been studied, both theoretically and experimentally, to analyze the possible existence of inverted hysteresis loops, that is, with negative remanent magnetization (Mr). Kerr effect measurements in amorphous YCo2/YCo2 bilayers and alternating gradient magnetometry in polycrystalline FeNi/FeNi samples reveal that Mr<0 can be observed for certain directions of the applied magnetic field in the sample plane. This property has also been found in CoNbZr films annealed under an applied field. Our theoretical approach shows that the behavior of these magnetic heterogeneous systems with two coupled uniaxial anisotropies can be understood in terms of two competing effective anisotropies, one biaxial (with Kbiax) and one uniaxial (with Kuniax). In particular, a phase diagram has been deduced for the conditions on Kbiax and Kuniax that can produce negative remanence. This description indicates that, under those anisotropy conditions, inverted hysteresis loops can be observed for an applied field close to the hard axis of the effective uniaxial anisotropy, when magnetization reversal is driven by rotations and not by domain nucleation and wall movement. To consider the real situation in a YCo2/YCo2 bilayer sample, the predictions of this phenomenological model have been further improved by micromagnetic calculations, which are in very good agreement with the magneto-optical measurements.

  9. Magnetization hysteresis studies in Sm1-xGdxAl2 alloys

    NASA Astrophysics Data System (ADS)

    Vaidya, U. V.; Venkatesh, S.; Rakhecha, V. C.; Ramakrishnan, S.; Grover, A. K.

    2009-03-01

    SmAl2 (Tc ˜ 125 K, μsat= 0.23 μB/f.u.) is known to exhibit magnetic compensation when doped with Gd (< 3 at.%). In such stoichiometries though the magnetization gets closer to zero, there exists a large spin polarization. This makes such materials attractive candidates for applications. We have performed detailed magnetization hysteresis and other studies in the series Sm1-xGdxAl2. In x=0.02 alloy, the loops are shifted (notion of exchange bias) along negative H-axis for temperatures just above Tcomp , and along positive H-axis for temperatures T < Tcomp. We argue that the change in the sign of exchange bias is due to the magnetic contribution of conduction electron polarization as well as that of local magnetic moments reversing the signs. At Tcomp the width of the hysteresis loop collapses. In the given series, one can set up the system in either spin-surplus or orbital-surplus state and control the exchange bias field. The compositions with 0.03 <= x < 0.06 do not exhibit zero cross over of magnetization and remain spin surplus. Our various studies and analysis shall be presented.

  10. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters.

  11. Magnetic characterization using a three-dimensional hysteresis projection, illustrated with a study of limestones

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.; Lagroix, France

    2000-04-01

    Limestones provide an important source of palaeomagnetic information despite their low content of submicroscopic remanence-bearing minerals. The chief sources of these minerals are thought to be clastic volcanic magnetite and titanomagnetite, and organic magnetite, the latter mostly from bacterial sources. Chemically remagnetized limestones carry magnetite or pyrrhotite. Three hysteresis properties prove useful in identifying and characterizing these mineralogical influences on limestones: the ratio of zero-field maximum remanence to saturation remanence (Mr/Ms) in an applied field, coercivity of remanence (Bcr) and coercivity (Bc). To a lesser extent Kf/Ms may be useful, where Kf is the ferrimagnetic susceptibility. Traditionally, these have been plotted on a combination of 2-D graphs that of necessity only preserve two variables (Day et al. 1977; Wasilewski 1973). However, we found that magnetic discrimination and characterization of the limestones was much easier on a three-axis hysteresis projection that preserves the values of Bcr, Bc and Mr/Ms as independent variables. Using logarithmic scales, the regression surfaces through the data become almost planar and distinguish pelagic, shallow marine, shelf and remagnetized limestones on the basis of the slope and intercept of the associated regression surface. Clearly, there are sensitive sedimentological, geochemical or organic influences that dictate the magnetic mineralogy through sedimentary environment. Moreover, the 3-D plot of hysteresis criteria affords easy recognition of remagnetized limestones and may permit the rejection of material unsuitable for palaeomagnetic study. The 3-D hysteresis projection may be useful for the characterization of other rocks and magnetic materials

  12. Origin of modulated phases and magnetic hysteresis in TmB4

    DOE PAGES

    Wierschem, Keola; Sunku, Sai Swaroop; Kong, Tai; ...

    2015-12-23

    In this study, we investigate the low-temperature magnetic phases in TmB4, a metallic quantum magnet on the geometrically frustrated Shastry-Sutherland lattice, using coordinated experimental and theoretical studies. Our results provide an explanation for the appearance of the intriguing fractional plateau in TmB4 and accompanying magnetic hysteresis. Together with observation of the bump in the half plateau, our results support the picture that the magnetization plateau structure in TmB4 is strongly influenced by the zero-field modulated phases. We present a phenomenological model to explain the appearance of the modulated phases and a microscopic Hamiltonian that captures the complete magnetic behavior ofmore » TmB4.« less

  13. Origin of modulated phases and magnetic hysteresis in TmB4

    SciTech Connect

    Wierschem, Keola; Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; Canfield, Paul C.; Panagopoulos, Christos; Sengupta, Pinaki

    2015-12-23

    In this study, we investigate the low-temperature magnetic phases in TmB4, a metallic quantum magnet on the geometrically frustrated Shastry-Sutherland lattice, using coordinated experimental and theoretical studies. Our results provide an explanation for the appearance of the intriguing fractional plateau in TmB4 and accompanying magnetic hysteresis. Together with observation of the bump in the half plateau, our results support the picture that the magnetization plateau structure in TmB4 is strongly influenced by the zero-field modulated phases. We present a phenomenological model to explain the appearance of the modulated phases and a microscopic Hamiltonian that captures the complete magnetic behavior of TmB4.

  14. Mastering hysteresis in magnetocaloric materials.

    PubMed

    Gutfleisch, O; Gottschall, T; Fries, M; Benke, D; Radulov, I; Skokov, K P; Wende, H; Gruner, M; Acet, M; Entel, P; Farle, M

    2016-08-13

    Hysteresis is more than just an interesting oddity that occurs in materials with a first-order transition. It is a real obstacle on the path from existing laboratory-scale prototypes of magnetic refrigerators towards commercialization of this potentially disruptive cooling technology. Indeed, the reversibility of the magnetocaloric effect, being essential for magnetic heat pumps, strongly depends on the width of the thermal hysteresis and, therefore, it is necessary to understand the mechanisms causing hysteresis and to find solutions to minimize losses associated with thermal hysteresis in order to maximize the efficiency of magnetic cooling devices. In this work, we discuss the fundamental aspects that can contribute to thermal hysteresis and the strategies that we are developing to at least partially overcome the hysteresis problem in some selected classes of magnetocaloric materials with large application potential. In doing so, we refer to the most relevant classes of magnetic refrigerants La-Fe-Si-, Heusler- and Fe2P-type compounds.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  15. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation.

    PubMed

    Vrijsen, N H; Jansen, J W; Compter, J C; Lomonova, E A

    2013-07-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.

  16. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation

    NASA Astrophysics Data System (ADS)

    Vrijsen, N. H.; Jansen, J. W.; Compter, J. C.; Lomonova, E. A.

    2013-07-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.

  17. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Zaim, A.; Kerouad, M.

    2017-02-01

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.

  18. Stress-induced magnetic hysteresis in amorphous microwires probed by microwave giant magnetoimpedance measurements

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Berzhansky, V. N.; Gomonay, H. V.; Qin, F. X.

    2013-05-01

    We report the results of a detailed study of the effects of tensile and torsional stresses on the giant magnetoimpedance (GMI) characteristics of vanishing-magnetostrictive Co-rich microwires at microwave frequency. A complex stress-induced hysteresis behaviour is identified in the GMI response in the presence of tensile and torsional stresses. It is also revealed that there exists a competition between these two kinds of stresses on the critical field via the interactions with the intrinsic anisotropy. An "enhanced core-shell" model is proposed here to resolve the physical origin of the low-field hysteresis and the dependence of induced anisotropy field on the applied tensile and/or torsional stress. Our results are of both technical importance to the design of non-contact stress sensors exploiting the GMI of microwires and fundamental significance to the understanding of the microwave GMI characteristics of soft magnetic microwires in the presence of external stresses.

  19. Hysteresis, thermomagnetic, and low-temperature magnetic properties of Southwestern U.S. obsidians

    NASA Astrophysics Data System (ADS)

    Sternberg, R. S.; Jackson, M. J.; Shackley, M. S.

    2011-12-01

    Geochemical signatures of Southwestern U.S. obsidians have been intensively studied, in part to use as a provenance method for archaeological obsidians (Shackley, 2005). We reported (Sternberg et al. 2010) examined magnetic properties of 50 unoriented samples from 10 geologic obsidian sources in Arizona, Nevada, and New Mexico; here we provide additional results measured at the Institute for Rock magnetism. Room-temperature hysteresis curves were measured using a vibrating sample magnetometer on 58 specimens from all 50 samples. The Quantum Designs Magnetic Properties Measurement System was used to measure low temperature cycling of the natural remanence and/or of a room-temperature saturation isothermal remanence for 10 specimens, and frequency dependence of susceptibility for 7 specimens. A Princeton VSM was used to measure hysteresis curves and thermomagnetic curves for 19 specimens from 17 samples. Eleven of the thermomagnetic curves show Curie temperatures close to that for magnetite, and most of them are almost perfectly reversible. Many of the specimens also show a less well-defined Curie point around 150-200°C; for a few specimens the thermomagnetic behavior is dominated by paramagnetic iron and no ferromagnetic phases can be identified. The low-temperature remanence and susceptibility measurements show the magnetite Verwey transition in almost all specimens, and a significant superparamagnetic presence in only a few cases. Hysteresis parameters plot mainly in the lower half of the PSD domain on a Day plot, and saturation magnetization values indicate magnetite concentrations of about 0.2% to 0.5% for most specimens. The coercivity of remanence decreased considerably for one specimen after surface cleaning, although for 5 other comparisons there was no change.

  20. Naturally Produced Co/CoO Nanocrystalline Magnetic Multilayers: Structure and Inverted Hysteresis.

    PubMed

    Santarossa, Francesca; Pappas, Spiridon D; Delimitis, Andreas; Sousanis, Andreas; Poulopoulos, Panagiotis

    2016-05-01

    Cobalt-based multilayers with excellent sequencing are grown via radiofrequency magnetron sputtering with the use of one Co target and natural oxidation. The Co layers are continuous, fully textured {111} and have the face centered cubic structure. At the end of deposition of each Co layer air is let to flow into the vacuum chamber via a fine (leak) valve. The top of Co is oxidized. The oxidized layers consist of cubic CoO crystallites. Near the film surface hexagonal Co(OH)2 is also detected. Magneto-optical Kerr effect hysteresis loops show in-plane magnetized films. The magnetic saturation field in the out-of-plane measurements is large exceeding 12 kOe. This observation supports indirectly the fact that Co is face centered cubic; if it was c-axis textured hexagonal the magnetocrystalline anisotropy would be large resulting in smaller values of the saturation field. As the Co-layer thickness decreases the in-plane loops show reduced remanence, slow approach to magnetic saturation and the out-of-plane loops show inverted hysteresis and/or crossing loop features with sizeable remanence. The effects are discussed with respect to the enhanced orbital magnetic moment of Co and the antiferromagnetic coupling between Co spins at the Co/CoO interface.

  1. Hysteresis Analysis and Positioning Control for a Magnetic Shape Memory Actuator

    PubMed Central

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2015-01-01

    Magnetic shape memory alloys (MSM alloys), a new kind of smart materials, have become a potential candidate in many engineering fields. MSMs have the advantage of bearing a huge strain, much larger than other materials. In addition, they also have fast response. These characteristics make MSM a good choice in micro engineering. However, MSMs display the obvious hysteresis phenomenon of nonlinear behavior. Thus the difficulty in using the MSM element as a positioning actuator is increased due to the hysteresis. In this paper, the hysteresis phenomenon of the MSM actuator is analyzed, and the closed-loop positioning control is also implemented experimentally. For that, a modified fuzzy sliding mode control (MFSMC) is proposed. The MFSMC and the PID control are used to design the controllers for realizing the positioning control. The experimental results are compared under different experimental conditions, such as different frequency, amplitude, and loading. The experimental results show that the precise positioning control of MFSMC can be achieved satisfactorily. PMID:25853405

  2. Hysteresis modeling of magnetic shape memory alloy actuator based on Krasnosel'skii-Pokrovskii model.

    PubMed

    Zhou, Miaolei; Wang, Shoubin; Gao, Wei

    2013-01-01

    As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.

  3. Thermal Hysteresis in Resistivity and Magnetization of PrCa(Sr)MnO

    NASA Astrophysics Data System (ADS)

    Mollah, S.

    Thermal hysteresis in resistivity and magnetization of Pr0.65Ca0.35-xSrxMnO3 (x = 0-0.35) manganites has been systematically studied to establish the interplay of their charge and spin-ordering. The increasing Sr concentration (x) transforms the charge-ordered (CO)/antiferromagnetic (AFM) insulating system (for x = 0) into a mixed-phased one (for x = 0.1) with sharp metal-insulator (MI) transition and finally leads to a ferromagnetic (FM) metallic (for x = 0.35) system. It has been found that the interplay of charge and spin-ordering is higher in mixed-phased state and the thermal hysteresis loop area is bigger. It increases with the increase of sharpness of MI transition. Interplay of charge and spin-ordering decreases with the increase of either CO/AFM insulating or FM metallic phase and is almost absent in completely CO/AFM insulating (with x = 0) or FM metallic (with x = 0.35) states bringing about zero thermal hysteresis loop.

  4. Correct Determination of Hysteresis of Nonlinear Current-Voltage Characteristics of Spin Valves, Magnetic Tunnel Junctions, or Memristors

    NASA Astrophysics Data System (ADS)

    Demidov, E. S.

    2016-11-01

    Until now, significant progress has been made in synthesizing the current-switched structure of spin valves and magnetic tunnel junctions with hysteresis dependences of the resistance on the current. These structures are of interest for creation of small-size electronic memory. However, hysteresis of resistance, which is usually presented in publications, does not correspond to physical principles. In this paper, we show how the hysteresis dependence of the resistance on the current, or the conductance on the voltage, which does not contradict the energy conservation law, and the corresponding current-voltage characteristic should look like. As an example, we present the experimental current-voltage characteristic of the CO2MnSi/MgO/Co2MnSi magnetic tunnel junction, which agrees with the model hysteresis dependences.

  5. A unified approach to describe the thermal and magnetic hysteresis in Heusler alloys

    NASA Astrophysics Data System (ADS)

    Blázquez, J. S.; Franco, V.; Conde, A.; Gottschall, T.; Skokov, K. P.; Gutfleisch, O.

    2016-09-01

    Different excitations, like temperature, magnetic field, or pressure, can drive a martensitic transition in Heusler alloys. Coupled phenomena in these materials lead to interesting magnetocaloric and barocaloric effects ascribed to this transition. In this work, we demonstrate that isothermal transformations induced by a magnetic field and isofield transformations induced by the temperature can be described using the same framework. By defining an effective temperature that relates field and temperature through the properties of the system (magnetic moment and entropy of the transition), both kinds of loops can be transformed into the other kind, therefore providing a more effective way of characterizing hysteretic samples. The validity of this effective temperature approach to describe the transition holds for martensite to austenite transformations as well as reversal ones, and thus, the hysteresis phenomena can be described using this single general excitation.

  6. Experimental measurement and calculation of losses in planar radial magnetic bearings

    NASA Astrophysics Data System (ADS)

    Kasarda, M. E. F.; Allaire, P. E.; Hope, R. W.; Humphris, R. R.

    1994-05-01

    The loss mechanisms associated with magnetic bearings have yet to be adequately characterized or modeled analytically and thus pose a problem for the designer of magnetic bearings. This problem is particularly important for aerospace applications where low power consumption of components is critical. Also, losses are expected to be large for high speed operation. The iron losses in magnetic bearings can be divided into eddy current losses and hysteresis losses. While theoretical models for these losses exist for transformer and electric motor applications, they have not been verified for magnetic bearings. This paper presents the results from a low speed experimental test rig and compares them to calculated values from existing theory. Experimental data was taken over a range of 90 to 2,800 rpm for several bias currents and two different pole configurations. With certain assumptions agreement between measured and calculated power losses was within 16 percent for a number of test configurations.

  7. Experimental measurement and calculation of losses in planar radial magnetic bearings

    NASA Technical Reports Server (NTRS)

    Kasarda, M. E. F.; Allaire, P. E.; Hope, R. W.; Humphris, R. R.

    1994-01-01

    The loss mechanisms associated with magnetic bearings have yet to be adequately characterized or modeled analytically and thus pose a problem for the designer of magnetic bearings. This problem is particularly important for aerospace applications where low power consumption of components is critical. Also, losses are expected to be large for high speed operation. The iron losses in magnetic bearings can be divided into eddy current losses and hysteresis losses. While theoretical models for these losses exist for transformer and electric motor applications, they have not been verified for magnetic bearings. This paper presents the results from a low speed experimental test rig and compares them to calculated values from existing theory. Experimental data was taken over a range of 90 to 2,800 rpm for several bias currents and two different pole configurations. With certain assumptions agreement between measured and calculated power losses was within 16 percent for a number of test configurations.

  8. Magnetic hysteresis classification of the lunar surface and the interpretation of permanent remanence in lunar surface samples

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1972-01-01

    A magnetic hysteresis classification of the lunar surface is presented. It was found that there is a distinct correlation between natural remanence (NRM), saturation magnetization, and the hysteresis ratios for the rock samples. The hysteresis classification is able to explain some aspects of time dependent magnetization in the lunar samples and relates the initial susceptibility to NRM, viscous remanence, and to other aspects of magnetization in lunar samples. It is also considered that since up to 60% of the iron in the lunar soil may be super paramagnetic at 400 K, and only 10% at 100 K, the 50% which becomes ferromagnetic over the cycle has the characteristics of thermoremanence and may provide for an enhancement in measurable field on the dark side during a subsatellite magnetometer circuit.

  9. Magnetic hysteresis properties of neutron-irradiated VVER440-type nuclear reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Gillemot, F.; Horváth, Á.; Székely, R.; Horváth, M.

    2012-11-01

    The development of non-destructive evaluation methods for irradiation embrittlement in nuclear reactor pressure vessel steels has a key role for safe and long-term operation of nuclear power plants. In this study, we have investigated the effect of neutron irradiation on base and weld metals of Russian VVER440-type reactor pressure vessel steels by measurements of magnetic minor hysteresis loops. A minor-loop coefficient, which is obtained from a scaling power-law relation of minor-loop parameters and is a sensitive indicator of internal stress, is found to change with neutron fluence for both metals. While the coefficient for base metal exhibits a local maximum at low fluence and a subsequent slow decrease, that for weld metal monotonically decreases with fluence. The observed results are explained by competing mechanisms of nanoscale defect formation and recovery, among which the latter process plays a dominant role for magnetic property changes in weld metal due to its ferritic microstructure.

  10. Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles

    PubMed Central

    Ruta, S.; Chantrell, R.; Hovorka, O.

    2015-01-01

    We present a general study of the frequency and magnetic field dependence of the specific heat power produced during field-driven hysteresis cycles in magnetic nanoparticles with relevance to hyperthermia applications in biomedicine. Employing a kinetic Monte-Carlo method with natural time scales allows us to go beyond the assumptions of small driving field amplitudes and negligible inter-particle interactions, which are fundamental to the applicability of the standard approach based on linear response theory. The method captures the superparamagnetic and fully hysteretic regimes and the transition between them. Our results reveal unexpected dipolar interaction-induced enhancement or suppression of the specific heat power, dependent on the intrinsic statistical properties of particles, which cannot be accounted for by the standard theory. Although the actual heating power is difficult to predict because of the effects of interactions, optimum heating is in the transition region between the superparamagnetic and fully hysteretic regimes. PMID:25766365

  11. Modeling hysteresis curves of anisotropic SmCoFeCuZr magnets

    NASA Astrophysics Data System (ADS)

    Sampaio da Silva, Fernanda A.; Castro, Nicolau A.; de Campos, Marcos F.

    2013-02-01

    The hysteresis curves at room temperature and at 630 K of an anisotropic magnet were successfully modeled with the Stoner-Wohlfarth Callen-Liu-Cullen (SW-CLC) model. This implies that coherent rotation of domains is the reversal mechanism in this magnet. The chemical composition of the evaluated magnet is Sm(CobalFe0.06Cu0.108Zr0.03)7.2. The anisotropy field HA was estimated with the model, resulting μ0HA=7.1 T at the room temperature, and 2.9 T at 630 K. For this sample, the CLC interaction parameter (1/d) is very low (near zero) and, thus, the nanocrystalline 2:17 grains are well "magnetically decoupled". The texture analysis using Schulz Pole figure data indicated Mr/Ms ratio=0.96, and this means that the magnet is very well aligned. The excellent alignment of the grains is one of the reasons for the high coercivity of this sample (˜4 T at room temperature).

  12. Hysteresis loops and adiabatic Landau-Zener-Stückelberg transitions in the magnetic molecule {V6}.

    PubMed

    Rousochatzakis, I; Ajiro, Y; Mitamura, H; Kögerler, P; Luban, M

    2005-04-15

    We have observed hysteresis loops and abrupt magnetization steps in the magnetic molecule {V(6)}, where each molecule comprises a pair of identical spin triangles, in the temperature range 1-5 K for external magnetic fields B with sweep rates of several Tesla per millisecond executing a variety of closed cycles. The hysteresis loops are accurately reproduced using a generalization of the Bloch equation based on direct one-phonon transitions between the instantaneous Zeeman-split levels of the ground state (an S=1/2 doublet) of each spin triangle. The magnetization steps occur for B approximately 0, and they are explained in terms of adiabatic Landau-Zener-Stückelberg transitions between the lowest magnetic energy levels as modified by an intertriangle anisotropic exchange of order 0.4 K.

  13. The effect of surface grain reversal on the AC losses of sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Moore, Martina; Roth, Stefan; Gebert, Annett; Schultz, Ludwig; Gutfleisch, Oliver

    2015-02-01

    Sintered Nd-Fe-B magnets are exposed to AC magnetic fields in many applications, e.g. in permanent magnet electric motors. We have measured the AC losses of sintered Nd-Fe-B magnets in a closed circuit arrangement using AC fields with root mean square-values up to 80 mT (peak amplitude 113 mT) over the frequency range 50 to 1000 Hz. Two magnet grades with different dysprosium content were investigated. Around the remanence point the low grade material (1.7 wt% Dy) showed significant hysteresis losses; whereas the losses in the high grade material (8.9 wt% Dy) were dominated by classical eddy currents. Kerr microscopy images revealed that the hysteresis losses measured for the low grade magnet can be mainly ascribed to grains at the sample surface with multiple domains. This was further confirmed when the high grade material was subsequently exposed to DC and AC magnetic fields. Here a larger number of surface grains with multiple domains are also present once the step in the demagnetization curve attributed to the surface grain reversal is reached and a rise in the measured hysteresis losses is evident. If in the low grade material the operating point is slightly offset from the remanence point, such that zero field is not bypassed, its AC losses can also be fairly well described with classical eddy current theory.

  14. Effect of stress and plastic deformation on hysteresis and anhysteretic magnetization of Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Lofland, Sam

    2004-03-01

    We report on the low-field magnetic properties of thin FeNi alloys films and ribbons under tensile stress. The magnetization was measured using a conventional vibrating sample magnetometer using a special designed fixture allowing applying forces as large as 250 N providing sizable uniaxial stresses on thin film and wires. Anhysteretic permeability was extracted from the anhysteretic B-H curves constructed by degaussing the sample at given longitudinal (parallel to the stresses) dc field. We discuss results of the measurements of steel and invar samples of FeNi samples leads to higher susceptibility and lower coercivity for low tensile stress. The magnetostriction contribution to dc magnetization under elastic stress and the effect of the plastic strain on the hysteresis loops were characterized. Larger stresses result in plastic strain of the sample which induces an increase in dislocation density and subsequently domain wall pinning. This causes an increase in coercivity and decrease in anhysteretic permeability at the highest stresses. We also discuss the effect of composition and processing on these results.

  15. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    SciTech Connect

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zou, Chao; Yang, Jun; Dong, Juan

    2013-12-16

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz. In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.0078hysteresis loss coefficient is lower for the silicone-MnZn ferrite coated sample (k{sub 2} =1.4058) in comparison with other samples.

  16. Magnetomechanical damping and magnetoelastic hysteresis in permalloy

    NASA Astrophysics Data System (ADS)

    Ercuta, A.; Mihalca, I.

    2002-11-01

    The inverse Wiedemann effect (IWE) consisting in longitudinal magnetization reversals was detected with a cylindrical permalloy layer subjected to circular DC magnetic fields while performing low frequency (~1 Hz) free torsion oscillations. Hysteresis occurring in the magnetization vs elastic strain dependence (the `magnetoelastic hysteresis') suggested irreversible processes activated mechanically. Joint vibration and magnetization time records were carried out by means of an experimental set-up including inverted pendulum and conventional integrating fluxmeter, in order to compare the relative energy losses ascribed to the magnetomechanical damping (MMD) and to the magnetoelastic hysteresis, respectively. The experimental results clearly pointed out a close connection between IWE and MMD providing evidence that, when simultaneously examined, both effects reflect the same basic phenomenon: the irreversible magnetization changes induced by the elastic strain.

  17. Force of adhesion upon loss of contact angle hysteresis: when a liquid behaves like a solid.

    PubMed

    Escobar, Juan V; Castillo, Rolando

    2013-11-27

    The theoretically predicted vanishment of the macroscopic contact angle hysteresis is found experimentally along with a small but finite force of adhesion (F(Ad)≈-0.5 μN) that, unexpectedly, is independent of the history of the preload. Our results agree with the prediction of a model in which the surface tension of the liquid provides the counterpart of the restoring force of an elastic solid, evidencing that the dewetting of a liquid in the absence of strong pinning points is equivalent to the detachment of an elastic solid.

  18. The origin of noise and magnetic hysteresis in crystalline permalloy ring-core fluxgate sensors

    NASA Astrophysics Data System (ADS)

    Narod, B. B.

    2014-09-01

    Developed in the 1960s for use in high-performance ring-core fluxgate sensors, 6-81.3 Mo permalloy remains the state of the art for permalloy-cored fluxgate magnetometers. The magnetic properties of 6-81.3, namely magnetocrystalline and magnetoelastic anisotropies and saturation induction, are all optimum in the Fe-Ni-Mo system. In such polycrystalline permalloy fluxgate sensors, a single phenomenon may cause both fluxgate noise and magnetic hysteresis; explain Barkhausen jumps, remanence and coercivity; and avoid domain denucleation. This phenomenon, domain wall reconnection, is presented as part of a theoretical model. In the unmagnetized state a coarse-grain high-quality permalloy foil ideally forms stripe domains, which present at the free surface as parallel, uniformly spaced domain walls that cross the entire thickness of the foil. Leakage flux "in" and "out" of alternating domains is a requirement of the random orientation, grain by grain, of magnetic easy axes' angles with respect to the foil free surface. Its magnetostatic energy together with domain wall energy determines an energy budget to be minimized. Throughout the magnetization cycle the free-surface domain pattern remains essentially unchanged, due to the magnetostatic energy cost such a change would elicit. Thus domain walls are "pinned" to free surfaces. Driven to saturation, domain walls first bulge then reconnect via Barkhausen jumps to form a new domain configuration that I have called "channel domains", which are attached to free surfaces. The approach to saturation now continues as reversible channel domain compression. Driving the permalloy deeper into saturation compresses the channel domains to arbitrarily small thickness, but will not cause them to denucleate. Returning from saturation the channel domain structure will survive through zero H, thus explaining remanence. The Barkhausen jumps, being irreversible exothermic events, are sources of fluxgate noise powered by the energy

  19. Anomalous Hall hysteresis in T m3F e5O12/Pt with strain-induced perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Xu, Yadong; Garay, Javier E.; Shi, Jing

    2016-10-01

    We demonstrate robust interface strain-induced perpendicular magnetic anisotropy in atomically flat ferrimagnetic insulator T m3F e5O12 (TIG) films grown with pulsed laser deposition on a substituted G d3G a5O12 substrate which maximizes the tensile strain at the interface. In bilayers consisting of Pt and TIG, we observe large squared Hall hysteresis loops over a wide range of thicknesses of Pt at room temperature. When a thin Cu layer is inserted between Pt and TIG, the Hall hysteresis magnitude decays but stays finite as the thickness of Cu increases up to 5 nm. However, if the Cu layer is placed atop Pt instead, the Hall hysteresis magnitude is consistently larger than when the Cu layer with the same thickness is inserted in between for all Cu thicknesses. These results suggest that both the proximity-induced ferromagnetism and spin current contribute to the anomalous Hall effect.

  20. Magnetic hysteresis of p(+) and He-3(2+) irradiated melt-textured YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Song, S. N.; Liu, J.; Chen, I. G.; Weinstein, Roy

    1992-01-01

    We have measured the magnetic hysteresis loops and temperature dependent trapped fields in melt-textured YBa2Cu3O(7-delta) samples before and after p(+) and He-3(2+) irradiation using a Hall effect magnetometer (HEM) as well as a commercial vibrating sample magnetometer (VSM). For proper He-3(2+) fluence, the critical current density may be enhanced by a factor of 10. Calculations based on various critical state models show that before the irradiation, the hysteresis loops can be well accounted for by a critical current density of a modified power law field dependence. After the irradiation, the best fit has been achieved by using an exponential form. Jc and its field dependence deduced from HEM hysteresis loops are in good agreement with those deduced from the VSM loops, suggesting that the Hall effect magnetometer can be conveniently used to characterize bulk high Tc oxide superconductors.

  1. Hysteresis in the tearing mode locking/unlocking due to resonant magnetic perturbations in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Fridström, R.; Frassinetti, L.; Brunsell, P. R.

    2015-10-01

    The physical mechanisms behind the hysteresis in the tearing mode locking and unlocking to a resonant magnetic perturbation (RMP) are experimentally studied in EXTRAP T2R reversed-field pinch. The experiments show that the electromagnetic and the viscous torque increase with increasing perturbation amplitude until the mode locks to the wall. At the wall-locking, the plasma velocity reduction profile is peaked at the radius where the RMP is resonant. Thereafter, the viscous torque drops due to the relaxation of the velocity in the central plasma. This is the main reason for the hysteresis in the RMP locking and unlocking amplitude. The increased amplitude of the locked tearing mode produces further deepening of the hysteresis. Both experimental results are in qualitative agreement with the model in Fitzpatrick et al (2001 Phys. Plasmas 8 4489)

  2. Analysis of Magnetic Minor Hysteresis Loops in Thermally Aged and Cold-rolled Fe-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Takahashi, F.; Kobayashi, S.; Murakami, T.; Takahashi, S.; Kamada, Y.; Kikuchi, H.

    2011-01-01

    Neutron irradiation causes the formation of Cu precipitate in reactor pressure vessel steel and makes the steel susceptible to rupture. In the present study, we have examined magnetic minor hysteresis loops of Fe-1wt%Cu alloy after thermally ageing at 753 K and subsequent cold rolling to elucidate the effects of Cu precipitation on magnetic properties. Minor-loop coefficients, obtained from scaling power laws between field-dependent parameters of minor hysteresis loops, decrease with ageing time and show a local maximum around 200 min, reflecting the growth of Cu precipitates with ageing. For the alloy cold-rolled after ageing, the minor-loop properties linearly increase with reduction and show a good relationship with mechanical properties such as DBTT and hardness. These observations indicate that the analysis method using magnetic minor loops can be an useful technique of nondestructive evaluation of irradiation embrittlement and subsequent deformation hardening in reactor pressure vessel steels.

  3. Magnetic evaluation of irradiation hardening in A533B reactor pressure vessel steels: Magnetic hysteresis measurements and the model analysis

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Yamamoto, T.; Klingensmith, D.; Odette, G. R.; Kikuchi, H.; Kamada, Y.

    2012-03-01

    We report results of measurements of magnetic minor hysteresis loops for neutron-irradiated A533B nuclear reactor pressure vessel steels varying alloy composition and irradiation condition. A minor-loop coefficient, which is obtained from a scaling power law between minor-loop parameters exhibits a steep decrease just after irradiation, followed by a maximum in the intermediate fluence regime for most alloys. A model analysis assuming Avrami-type growth for Cu-rich precipitates and an empirical logarithmic law for relaxation of residual stress demonstrates that an increment of the coefficient due to Cu-rich precipitates increases with Cu and Ni contents and is in proportion to a yield stress change, which is related to irradiation hardening.

  4. Magnetic loss and B(H) behaviour of non-oriented electrical sheets under a trapezoidal exciting field

    NASA Astrophysics Data System (ADS)

    Kedous-Lebouc, A.; Errard, S.; Cornut, B.; Brissonneau, P.

    1994-05-01

    The excess loss and hysteresis response of electrical steel are measured and discussed in the case of trapezoidal field excitation similar to the current provided by a current commutation supply of a self-synchronous rotating machine. Three industrial non-oriented SiFe samples of different magnetic grades and thicknesses are tested using an automatic Epstein frame equipment. The losses and the unusual observed B( H) loops are analysed in terms of the rate of change of the field, the diffusion of the induction inside the sheet and by the calculation of the theoretical hysteresis cycles due to the eddy currents.

  5. Damage Monitoring of Unidirectional C/SiC Ceramic-Matrix Composite under Cyclic Fatigue Loading using A Hysteresis Loss Energy-Based Damage Parameter at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-06-01

    The damage evolution of unidirectional C/SiC ceramic-matrix composite (CMC) under cyclic fatigue loading has been investigated using a hysteresis loss energy-based damage parameter at room and elevated temperatures. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy versus cycle number have been analyzed. By comparing the experimental fatigue hysteresis loss energy with theoretical computational values, the interface shear stress corresponding to different cycle number and peak stress has been estimated. The experimental evolution of fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter versus cycle number has been predicted for unidirectional C/SiC composite at room and elevated temperatures. The predicted results of interface shear stress degradation, stress-strain hysteresis loops corresponding to different number of applied cycles, fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter as a functions of cycle number agreed with experimental data. It was found that the fatigue hysteresis energy-based parameter can be used to monitor the fatigue damage evolution and predict the fatigue life of fiber-reinforced CMCs.

  6. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples--a useful setup for magnetic hyperthermia applications.

    PubMed

    Connord, V; Mehdaoui, B; Tan, R P; Carrey, J; Respaud, M

    2014-09-01

    A setup for measuring the high-frequency hysteresis loops of magnetic samples is described. An alternating magnetic field in the range 6-100 kHz with amplitude up to 80 mT is produced by a Litz wire coil. The latter is air-cooled using a forced-air approach so no water flow is required to run the setup. High-frequency hysteresis loops are measured using a system of pick-up coils and numerical integration of signals. Reproducible measurements are obtained in the frequency range of 6-56 kHz. Measurement examples on ferrite cylinders and on iron oxide nanoparticle ferrofluids are shown. Comparison with other measurement methods of the hysteresis loop area (complex susceptibility, quasi-static hysteresis loops, and calorific measurements) is provided and shows the coherency of the results obtained with this setup. This setup is well adapted to the magnetic characterization of colloidal solutions of magnetic nanoparticles for magnetic hyperthermia applications.

  7. Transport in superlattices of magnetic nanoparticles: coulomb blockade, hysteresis, and switching induced by a magnetic field.

    PubMed

    Tan, Reasmey P; Carrey, Julian; Desvaux, Céline; Grisolia, Jérémie; Renaud, Philippe; Chaudret, Bruno; Respaud, Marc

    2007-10-26

    We report on magnetotransport measurements on millimetric superlattices of Co-Fe nanoparticles surrounded by an organic layer. At low temperature, the transition between the Coulomb blockade and the conductive regime becomes abrupt and hysteretic. The transition between both regimes can be induced by a magnetic field, leading to a novel mechanism of magnetoresistance. Between 1.8 and 10 K, a high-field magnetoresistance attributed to magnetic disorder at the surface of the particles is also observed. Below 1.8 K, this magnetoresistance abruptly collapses and a low-field magnetoresistance is observed.

  8. Application of Barkhausen noise and ferromagnetic hysteresis for magnetic non-destructive evaluation of multiphase composites and structures

    NASA Astrophysics Data System (ADS)

    Prabhu Gaunkar, Neelam; Kypris, Orfeas; Nlebedim, Cajetan; Jiles, David

    2015-03-01

    Composite ferromagnetic materials with multiple magnetic phases are increasingly being used in applications such as magnetic data storage, magnetic sensors and actuators and exchange-spring magnets. These materials occur in single or multiphase conditions and can undergo phase changes over time or during processing. For these materials, we examine the interrelation between ferromagnetic hysteresis, Barkhausen noise and the material microstructure. We observe that the presence of a second phase in these materials can be detected with the help of Barkhausen noise signals due to the occurrence of additional peaks in the magnetization envelope. This behavior in the magnetic response can serve as a tool for non-destructive evaluation of ferromagnetic materials for which phase constitution and phase changes affect the structural performance.

  9. Surface magnetic contribution in zinc ferrite thin films studied by element- and site-specific XMCD hysteresis-loops

    NASA Astrophysics Data System (ADS)

    Mendoza Zélis, P.; Pasquevich, G. A.; Salcedo Rodríguez, K. L.; Sánchez, F. H.; Rodríguez Torres, C. E.

    2016-12-01

    Element- and site-specific magnetic hysteresis-loops measurements on a zinc ferrite (ZnFe2O4) thin film were performed by X-ray magnetic circular dichroism. Results show that iron in octahedral and tetrahedral sites of spinel structure are coupled antiferromagnetically between them, and when magnetic field is applied the magnetic moment of the ion located at octahedral sites aligns along the field direction. The magnetic measurements reveal a distinctive response of the surface with in-plane anisotropy and an effective anisotropy constant value of 12.6 kJ/m3. This effective anisotropy is due to the combining effects of demagnetizing field and, volume and surface magnetic anisotropies KV =3.1 kJ/m3 and KS =16 μJ/m2.

  10. Experimental study of magnetization AC loss in MgB2 wires and cables with non-magnetic sheath

    NASA Astrophysics Data System (ADS)

    Kováč, Ján; Šouc, Ján; Kováč, Pavol; Hušek, Imrich; Gömöry, Fedor

    2013-12-01

    The influence of MgB2 wires design on the magnetization AC loss was studied. AC loss in external AC magnetic field perpendicular to the wire axis was measured in the temperature range from 18 K up to 40 K and at the frequencies of 72 Hz and 144 Hz, respectively. For this purpose the experimental apparatus combining magnetization measurement system and non-magnetic vacuum vessel with two-stage crycooler for sample cooling has been used. To clarify the influence of wire architecture on the AC loss in non-magnetic GlidCop sheathed MgB2 composites experiments on a single-core, 30-filament un-twisted and also twisted samples were performed. MgB2 cables containing 7 mono-core strands and 30 filament strands were also measured. While in the cable containing single core strands the hysteresis loss was dominant, in the un-twisted wire and the cable with un-twisted filaments the coupling loss prevailed. The effect of decoupling was observed in all twisted filamentary wires. The obtained results show that in 7 strands cable the AC loss of strands is crucial to the overall AC loss of a cable.

  11. Mass loss from warm giants: Magnetic effects

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1980-01-01

    Among warm giant stars, rapid mass loss sets in along a well defined velocity dividing line (VDL). Hot corona also disappear close to the VDL and thermal pressure cannot drive the observed rapid mass loss in these stars. The VDL may be associated with magnetic fields changing from closed to open. Such a change is consistent with the lack of X-rays from late-type giants. A magnetic transition locus based on Pneuman's work on helmet streamer stability agrees well with the empirical VDL. The change from closed to open fields not only makes rapid mass loss possible, but also contributes to energizing the mass loss in the form of discrete bubbles.

  12. Kinetic effects on double hysteresis in spin crossover molecular magnets analyzed with first order reversal curve diagram technique

    SciTech Connect

    Stan, Raluca-Maria; Gaina, Roxana; Enachescu, Cristian E-mail: radu.tanasa@uaic.ro; Stancu, Alexandru; Tanasa, Radu E-mail: radu.tanasa@uaic.ro; Bronisz, Robert

    2015-05-07

    In this paper, we analyze two types of hysteresis in spin crossover molecular magnets compounds in the framework of the First Order Reversal Curve (FORC) method. The switching between the two stable states in these compounds is accompanied by hysteresis phenomena if the intermolecular interactions are higher than a threshold. We have measured the static thermal hysteresis (TH) and the kinetic light induced thermal hysteresis (LITH) major loops and FORCs for the polycrystalline Fe(II) spin crossover compound [Fe{sub 1−x}Zn{sub x}(bbtr){sub 3}](ClO{sub 4}){sub 2} (bbtr = 1,4-di(1,2,3-triazol-1-yl)butane), either in a pure state (x = 0) or doped with Zn ions (x = 0.33) considering different sweeping rates. Here, we use this method not only to infer the domains distribution but also to disentangle between kinetic and static components of the LITH and to estimate the changes in the intermolecular interactions introduced by dopants. We also determined the qualitative relationship between FORC distributions measured for TH and LITH.

  13. Rotational magnetization and rotational losses of grain oriented silicon steel sheets -- fundamental aspects and theory

    SciTech Connect

    Pfuetzner, H. . Bioelectricity and Magnetism Division)

    1994-09-01

    Rotational magnetization of grain oriented SiFe sheets involves three mechanisms: anisotropy, hysteresis and eddy currents. Apart from describing the respective physical background, the paper is focused on a separation of mechanisms. It discusses dependencies between field quantities which in the dynamic case are complicated by the fact that a three-dimensional field problem arises here. It is demonstrated that within a plane inner surface of a sheet, the magnetic behavior is independent of frequency in approximation. On the other hand, eddy currents yield phase shifts between individual surfaces. Respective rotational losses and their portions are discussed on the basis of Poynting's theorem.

  14. Azimuthal angular dependent hysteresis loops of Fe50Mn50/Ni81Fe19 bilayers grown under a magnetic field

    NASA Astrophysics Data System (ADS)

    Choi, Hyeok-Cheol; You, Chun-Yeol; Kim, Ki-Yeon

    2016-11-01

    The azimuthal angular dependence of the vectorial hysteresis loops in the Fe50Mn50(AF)/Ni81Fe19(F) bilayer grown under a magnetic field was investigated using a combination of vectorial magneto-optic Kerr effect and model calculation. From a comparison of the experimental and calculation results, it is found that the AF easy axis is not parallel with but rotated by about 20° away from the applied magnetic field during the sample growth. Moreover, the transverse loop at the AF easy axis does not vanish but displays an open full circle (i.e., magnetization changes sign between decreasing and increasing field branches for the full hysteresis measurement). Our model calculation reveals that they are reminiscent of the non-collinear uniaxial and unidirectional anisotropies. Specifically, the angular dependence of the transverse hysteresis is well reproduced with our model calculation taking non-collinear magnetic anisotropies into account. Coercivity determined from the longitudinal loops, on the other hand, is found to be nonzero and comparatively large at all azimuthal angles. This is in stark contrast with previous results regarding FeMn/NiFe bilayers field-cooled after sample growth. Neither domain wall nor incoherent magnetic rotation in the F layer is likely to be responsible for this coercivity discrepancy between theory and experiments. Apart from the uniaxial F and unidirectional AF-F anisotropies, we suggest that the F rotatable anisotropy equivalent of 40% to 60% of the interfacial coupling energy should be taken into account to properly address the coercivity enhancement in the FeMn/NiFe bilayer grown under a magnetic field.

  15. Enhancement of magnetic domain topologies in Co/Pt thin films by fine tuning the magnetic field path throughout the hysteresis loop

    NASA Astrophysics Data System (ADS)

    Westover, Andrew S.; Chesnel, Karine; Hatch, Kelsey; Salter, Philip; Hellwig, Olav

    2016-02-01

    We have studied the influence of magnetic history on the topology of perpendicular magnetic domains in a thin ferromagnetic film made of [Co(8 Å)/Pt(7 Å)]50 multilayers. More specifically, we have followed the morphological changes in the domain pattern when applying a magnetic field perpendicular to the layer, throughout minor and major magnetization loops, and in the resulting remanent state. We carried out this study by using MFM microscopy with an in-situ magnetic field. We find that the morphology of the magnetic domain pattern is greatly influenced by the magnetic history of the material and that some features, such as the degree of bubbliness (i.e., the extent of bubble domain formation) and density of isolated domains can be enhanced by fine tuning the magnetic field path within the major hysteresis loop towards different remanent states. In particular, we see how hysteresis is correlated to irreversible changes in the domain morphology. More interestingly, we find that the magnetic domain morphology at remanence can be changed from an interconnected labyrinthine stripe state to a state of many separated bubble domains by fine tuning the magnitude of the field previously applied to the material. These results agree well with other findings, such as the magnetic reversal behavior and magnetic memory effects in Co/Pt multilayers, and provide opportunities for potential technological applications.

  16. Magnetic sensing for microstructural assessment of power station steels: Differential permeability and magnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Karimian, N.; Wilson, J. W.; Yin, W.; Liu, J.; Davis, C. L.; Peyton, A. J.

    2013-06-01

    Failure of power station steel components can have severe economic impacts and also present significant risks to life and the environment. Currently components are inspected during costly shut-downs as no in-situ technique exists to monitor changes in microstructure of in-service steel components. Electromagnetic inspection has the potential to provide information on microstructure changes in power station steels in-situ. In this paper, tests have been carried out on pipe and tube samples in different microstructural conditions, using a lab-based closed magnetic circuit and impedance measurement systems. EM properties have been identified with correlations to material properties, which can quantify degradation in-situ and at elevated temperatures.

  17. Magnetization, anomalous Barkhausen effect, and core loss of Supermendur under high temperature cycling.

    NASA Technical Reports Server (NTRS)

    Niedra, J. M.; Schwarze, G. E.

    1971-01-01

    The magnetization and core loss of Supermendur were measured up to 900 C under conditions of slow temperature cycling in vacuum. As a consequence of this heating, the coercivity at 25 C increased from 21 A/m to about 110 A/m. This increase is less than previously reported. A prominent anomalous Barkhausen effect, pinched-in hysteresis loops, and a magnetic viscosity field in excess of 20 A/m were observed in the range of 600 to 700 C. At 850 C, Supermendur had a coercivity of 23 A/m, a saturation induction exceeding 1.5 T, a core loss of 26 W/kg at 400 Hz, and a maximum induction of 1.5 T. Supermendur may be useful for high temperature soft magnetic material applications where some history dependence of properties and instability of minor loops at lower temperatures is acceptable.

  18. Interacting Stoner-Wohlfarth behavior in hysteresis curves of Sm(CoFeCuZr) z magnets

    NASA Astrophysics Data System (ADS)

    Romero, S. A.; de Campos, M. F.; Rechenberg, H. R.; Missell, F. P.

    Several magnets with different Zr contents were studied: Sm(Co balFe 0.2Cu 0.1Zr x) 8 (bal=balance; x=0, 0.02, 0.04, 0.06 and 0.08). The microstructure of the magnets includes three main phases, all crystallographically coherent: the cell phase Sm 2(Co,Fe) 17, the cell boundary phase Sm(Co,Cu) 5 and a lamellar Zr-rich phase, rhombohedral (ZrSm) 1Co 3. The hysteresis curves were compared with the Callen, Liu and Cullen (CLC) modification of the Stoner-Wohlfarth model for an isotropic distribution of interacting single-domain particles. Choosing reasonable values for the saturation magnetization Ms, the anisotropy field Ha, and the mean-field interactions of the CLC model, we were able to reproduce the main features of the hysteresis curves for the x=0.02 and 0.04 samples. For higher x values, X-ray diffraction Rietveld analysis revealed the presence of other "impurity" phases, among them cubic Zr 6(Co,Fe) 23, rhombohedral (SmZr) 5(CoFeCu) 19 and rhombohedral (SmZr) 2(CoFeCu) 7.

  19. Dilution-induced slow magnetic relaxation and anomalous hysteresis in trigonal prismatic dysprosium(III) and uranium(III) complexes.

    PubMed

    Meihaus, Katie R; Rinehart, Jeffrey D; Long, Jeffrey R

    2011-09-05

    Magnetically dilute samples of complexes Dy(H(2)BPz(Me2)(2))(3) (1) and U(H(2)BPz(2))(3) (3) were prepared through cocrystallization with diamagnetic Y(H(2)BPz(Me2)(2))(3) (2) and Y(H(2)BPz(2))(3). Alternating current (ac) susceptibility measurements performed on these samples reveal magnetic relaxation behavior drastically different from their concentrated counterparts. For concentrated 1, slow magnetic relaxation is not observed under zero or applied dc fields of several hundred Oersteds. However, a 1:65 (Dy:Y) molar dilution results in a nonzero out-of-phase component to the magnetic susceptibility under zero applied dc field, characteristic of a single-molecule magnet. The highest dilution of 3 (1:90, U:Y) yields a relaxation barrier U(eff) = 16 cm(-1), double that of the concentrated sample. These combined results highlight the impact of intermolecular interactions in mononuclear single-molecule magnets possessing a highly anisotropic metal center. Finally, dilution elucidates the previously observed secondary relaxation process for concentrated 3. This process is slowed down drastically upon a 1:1 molar dilution, leading to butterfly magnetic hysteresis at temperatures as high as 3 K. The disappearance of this process for higher dilutions reveals it to be relaxation dictated by short-range intermolecular interactions, and it stands as the first direct example of an intermolecular relaxation process competing with single-molecule-based slow magnetic relaxation.

  20. Magnetic hysteresis at the domain scale of a multi-scale material model for magneto-elastic behaviour

    NASA Astrophysics Data System (ADS)

    Vanoost, D.; Steentjes, S.; Peuteman, J.; Gielen, G.; De Gersem, H.; Pissoort, D.; Hameyer, K.

    2016-09-01

    This paper proposes a multi-scale energy-based material model for poly-crystalline materials. Describing the behaviour of poly-crystalline materials at three spatial scales of dominating physical mechanisms allows accounting for the heterogeneity and multi-axiality of the material behaviour. The three spatial scales are the poly-crystalline, grain and domain scale. Together with appropriate scale transitions rules and models for local magnetic behaviour at each scale, the model is able to describe the magneto-elastic behaviour (magnetostriction and hysteresis) at the macroscale, although the data input is merely based on a set of physical constants. Introducing a new energy density function that describes the demagnetisation field, the anhysteretic multi-scale energy-based material model is extended to the hysteretic case. The hysteresis behaviour is included at the domain scale according to the micro-magnetic domain theory while preserving a valid description for the magneto-elastic coupling. The model is verified using existing measurement data for different mechanical stress levels.

  1. Photoneutrino energy losses in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Previously computed rates of energy losses (Petrosian et al., 1967) ignored the presence of strong magnetic fields, hence the change brought in when such a field (about 10 to the 12th to 10 to the 13th power G) is included is studied. The results indicate that for T about 10 to the 8th power K and densities rho of about 10,000 g/cu cm, the presence of a strong H field decreases the energy losses by at the most a factor between 10 and 100 in the region up to rho = 1,000,000 g/cu cm. At higher densities the neutrino emissivities are almost identical.

  2. Room-temperature switching of magnetic hysteresis by reversible single-crystal-to-single-crystal solvent exchange in imidazole-inspired Fe(ii) complexes.

    PubMed

    Huang, Wei; Shen, Fuxing; Zhang, Ming; Wu, Dayu; Pan, Feifei; Sato, Osamu

    2016-10-14

    The recent upsurge in molecular magnetism reflects its application in the areas of sensors and molecular switches. Thermal hysteresis is crucial to the molecular bistability and information storage, a wide hysteresis near room temperature is expected to be of practical sense for the molecular compound. In this work, spin crossover iron(ii) complexes [Fe(Liq)2](BF4)2·(CH3CH2)2O (1-Et2O) and [Fe(Liq)2](BF4)2·3H2O (1-3H2O) were prepared and structurally and magnetically analysed. The single-crystal-to-single-crystal (SCSC) solvation transformation and the influence on the crystal structures and magnetic hysteresis were investigated in an etherification-hydration cycle. At room temperature, X-ray diffraction experiments indicated a transformation from one crystal (1-Et2O, P21212) to another crystal (1-3H2O, P212121) upon humidity exposure and reversible recovery of its crystallinity upon exposure to ether vapor. The etherified phase 1-Et2O exhibits room temperature spin crossover (T1/2 = 305 K) but negligible thermal hysteresis, however the hydrated phase 1-3H2O exhibits the apparent hysteresis loop (T1/2↑ = 346 K, T1/2↓ = 326 K) which expands to room temperature. This effect is associated with the change of intermolecular cooperativity in the etherification-hydration recyclability.

  3. Enhancement of the transversal magnetic optic Kerr effect: Lock-in vs. hysteresis method.

    PubMed

    Hayek, Jorge Nicolás; Herreño-Fierro, César A; Patiño, Edgar J

    2016-10-01

    The lock-in amplifier is often used to study the enhancement of the magneto-optical Kerr effect (MOKE) in the presence of plasmon resonances. In the present work we show that it is possible to investigate such effect replacing the lock-in amplifier by a compensator, filter, and differential amplifier. This allows us to extract the full hysteresis loop in and out of the resonance without the need of a lock-in amplifier. Our results demonstrate these two setups are equivalent to study the enhancement of the transversal MOKE (T-MOKE) in magnetoplasmonic systems.

  4. Enhancement of the transversal magnetic optic Kerr effect: Lock-in vs. hysteresis method

    NASA Astrophysics Data System (ADS)

    Hayek, Jorge Nicolás; Herreño-Fierro, César A.; Patiño, Edgar J.

    2016-10-01

    The lock-in amplifier is often used to study the enhancement of the magneto-optical Kerr effect (MOKE) in the presence of plasmon resonances. In the present work we show that it is possible to investigate such effect replacing the lock-in amplifier by a compensator, filter, and differential amplifier. This allows us to extract the full hysteresis loop in and out of the resonance without the need of a lock-in amplifier. Our results demonstrate these two setups are equivalent to study the enhancement of the transversal MOKE (T-MOKE) in magnetoplasmonic systems.

  5. Input-Output Stability Analysis with Magnetic Hysteresis Non-Linearity - A Class of Multipliers,

    DTIC Science & Technology

    1984-06-08

    Circuit Theory, Vol. CT-17. that the same properties hold for yl(t). i.e.. p. 564. Nov. 1970. YI(t)ELa, is continuous, and go to zero as t--. [12] Desoer ...inductor (trans- former), but from circuit analysis point of view. zero as t . the input and output of the model replaced for N U as shown in Fig. (2...output [I. I],"Lumped- Circuit Models for Non-linearcof Industors Exhibiting Hysteresis Loop.’therefore, eEL., and el(t)- 0 as t- . imply IEEE Trans. on

  6. Longitudinal magnetization loss in twisted multifilamentary Bi2223 tape

    NASA Astrophysics Data System (ADS)

    Amemiya, N.; Rabbers, J.-J.; Krooshoop, B. E.; ten Haken, B.; ten Kate, H.; Ayai, N.; Hayashi, K.

    2002-08-01

    Multifilamentary Bi2223 tapes are exposed to the longitudinal magnetic field as well as the transverse one in some electrical power apparatuses such as multilayer power transmission cables. Here, we define the longitudinal and transverse magnetic fields as the field components parallel and perpendicular to the tape axis, respectively. If the filament-bundle is twisted, it can couple to the AC longitudinal magnetic field to generate the longitudinal magnetization loss. Furthermore, the AC transport current flowing spirally in the twisted filament-bundle possibly influences the longitudinal magnetization. The longitudinal magnetization loss was measured in a twisted multifilamentary Bi2223 tape exposed to longitudinal magnetic field and carrying the transport current. The measured longitudinal magnetization loss in the twisted tape exposed to the longitudinal magnetic field is larger than that in another untwisted tape. Supplying the AC transport current changes the longitudinal magnetization loss in the twisted tape exposed to the AC longitudinal magnetic field. The influence of the transport current depends on the phase relation between the longitudinal magnetic field and the transport current. If their phase difference is 0°, the longitudinal magnetization loss decreases remarkably with increasing amplitude of the transport current. It means that the change in the current distribution due to the transport current results in the decrease in the power flow from the magnet power supply. But, a preliminary measurement of the transport loss shows that the total loss increases with increasing transport current.

  7. Quantum mechanics and the second law of thermodynamics: an insight gleaned from magnetic hysteresis in the first order phase transition of an isolated mesoscopic-size type I superconductor

    NASA Astrophysics Data System (ADS)

    Keefe, Peter D.

    2012-11-01

    J Bardeen proposed that the adiabatic phase transition of mesoscopic-size type I superconductors must be accompanied by magnetic hysteresis in the critical magnetic field of sufficient magnitude to satisfy the second law of thermodynamics, herein referred to as ‘Bardeen Hysteresis’. Bardeen Hysteresis remains speculative in that it has not been reported in the literature. This paper investigates Bardeen Hysteresis as a possible accompaniment to the adiabatic phase transition of isolated mesoscopic-size type I superconductors and its implications with respect to the second law of thermodynamics. A causal mechanism for Bardeen Hysteresis is discussed which contrasts with the long accepted causal mechanism of magnetic hysteresis, as first summarized by Pippard, herein referred to as ‘Pippard Hysteresis’. The paper offers guidance for an experimental verification and comments on how the existence of Bardeen Hysteresis has relation to a quantum mechanical basis for the second law of thermodynamics.

  8. Assessment of Retained Austenite in AISI D2 Tool Steel Using Magnetic Hysteresis and Barkhausen Noise Parameters

    NASA Astrophysics Data System (ADS)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-03-01

    Inaccurate heat treatment process could result in excessive amount of retained austenite, which degrades the mechanical properties, like strength, wear resistance, and hardness of cold work tool steel parts. Thus, to control the mechanical properties, quantitative measurement of the retained austenite is a critical step in optimizing the heat-treating parameters. X-ray diffraction method is the most frequently used technique for this purpose. This technique is, however, destructive and time consuming. Furthermore, it is not applicable to 100% quality inspection of industrial parts. In the present paper, the influence of austenitizing temperature on the retained austenite content and hardness of AISI D2 tool steel has been studied. Additionally, nondestructive magnetic hysteresis parameters of the samples including coercivity, magnetic saturation, and maximum differential permeability as well as their magnetic Barkhausen noise features (RMS peak voltage and peak position) have been investigated. The results revealed direct relations between magnetic saturation, differential permeability, and MBN peak amplitude with increasing austenitizing temperature due to the retained austenite formation. Besides, both parameters of coercivity and peak position had an inverse correlation with the retained austenite fraction.

  9. Magnetostriction and effect of stress on hysteresis and anhysteretic magnetization of multilayered FeNi-Fe heterostructures

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Garrity, Ed

    2007-03-01

    We report on the low-field magnetic properties of thin film FeNi-Fe multilayered samples under tensile stress. Anhysterretic magnetization as a function of stresses was measured using a conventional vibrating sample magnetometer combined with a specially designed loading fixture providing controlled uniaxial stresses. Stresses are deduced from the characteristic resonant frequency of the sample in the fixture. Anhysteretic permeability was extracted from the anhysteretic B-H curves constructed by degaussing the sample at given longitudinal dc field. The magnetostriction contribution to dc magnetization under elastic stress and the effect of the plastic strain on the hysteresis loops were measured. The large positive magnetostriction of FeNi layer is found to compensate negative magnetostiction of the Fe layer. This leads to higher susceptibility and lower coercivity for low tensile stress. The drop in coercivity was particularly sensitive to film stress/strain. Larger stresses result in plastic strain of the sample which induces an increase in dislocation density and subsequently domain wall pinning. This causes an increase in coercivity and decrease in anhysteretic permeability at the highest stresses. The paper summarizes these effects.

  10. Magnetic hysteresis loop technique as a tool for the evaluation of σ phase embrittlement in Fe-Cr alloys

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Kamada, Y.; Murakami, T.; Echigoya, J.; Kikuchi, H.; Kobayashi, S.

    2013-02-01

    Fe-48 wt% Cr alloy was isothermally aged at 700 °C up to 250 h for the formation and growth of σ phase. Micro Vicker's hardness and magnetic hysteresis loop (MHL) measurements were carried out at various lengths of time by interrupting the test to observe the change in mechanical and magnetic properties respectively. A small volume fraction of σ phase did not produce any change in the hardness whereas a drastic decrease in remanence was found for its demagnetizing effect. The existence of σ phase was confirmed by transmission electron microscopy. The maximum induction of the alloy decreased with thermal ageing as the volume of ferrites decreased for the formation of non-magnetic σ phase. The volume fraction of σ phase was estimated from the maximum induction. The results showed that MHL technique can even detect 1% of σ phase in the alloy considering remanence as a measuring parameter. Hence MHL would be a powerful non-destructive evaluation technique for the evaluation of σ phase embrittlement in Fe-Cr alloys.

  11. Evaluation of Iron Loss in Interior Permanent Magnet Synchronous Motor with Consideration of Rotational Field

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Sanada, Masayuki; Morimoto, Shigeo; Takeda, Yoji; Kaido, Chikara; Wakisaka, Takeaki

    Loss evaluation is an important issue in the design of electrical machines. Due to the complicate structure and flux distribution, it is difficult to predict the iron loss in the machines exactly. This paper studies the iron loss in interior permanent magnet synchronous motors based on the finite element method. The iron loss test data of core material are used in the fitting of the hysteresis and eddy current loss constants. For motors in practical operation, additional iron losses due to the appearance of rotation of flux density vector and harmonic flux density distribution makes the calculation data deviates from the measured ones. Revision is made to account for these excess iron losses which exist in the practical operating condition. Calculation results show good consistence with the experimental ones. The proposed method provides a possible way to predict the iron loss of the electrical machine with good precision, and may be helpful in the selection of the core material which is best suitable for a certain machine.

  12. Element-specific magnetic hysteresis of individual 18 nm Fe nanocubes.

    PubMed

    Kronast, Florian; Friedenberger, Nina; Ollefs, Katharina; Gliga, Sebastian; Tati-Bismaths, Logane; Thies, Ronja; Ney, Andreas; Weber, Ramona; Hassel, Christoph; Römer, Florian M; Trunova, Anastasia V; Wirtz, Christian; Hertel, Riccardo; Dürr, Hermann A; Farle, Michael

    2011-04-13

    Correlating the electronic structure and magnetic response with the morphology and crystal structure of the same single ferromagnetic nanoparticle has been up to now an unresolved challenge. Here, we present measurements of the element-specific electronic structure and magnetic response as a function of magnetic field amplitude and orientation for chemically synthesized single Fe nanocubes with 18 nm edge length. Magnetic states and interactions of monomers, dimers, and trimers are analyzed by X-ray photoemission electron microscopy for different particle arrangements. The element-specific electronic structure can be probed and correlated with the changes of magnetic properties. This approach opens new possibilities for a deeper understanding of the collective response of magnetic nanohybrids in multifunctional materials and in nanomagnetic colloidal suspensions used in biomedical and engineering technologies.

  13. Magnetic anisotropy, unusual hysteresis and putative “up-up-down” magnetic structure in EuTAl4Si2 (T = Rh and Ir)

    PubMed Central

    Maurya, Arvind; Thamizhavel, A.; Dhar, S. K.; Bonville, P.

    2015-01-01

    We present detailed investigations on single crystals of quaternary EuRhAl4Si2 and EuIrAl4Si2. The two compounds order antiferromagnetically at TN1 = 11.7 and 14.7 K, respectively, each undergoing two magnetic transitions. The magnetic properties in the ordered state present a large anisotropy despite Eu2+being an S-state ion for which the single-ion anisotropy is expected to be weak. Two features in the magnetization measured along the c-axis are prominent. At 1.8 K, a ferromagnetic-like jump occurs at very low field to a value one third of the saturation magnetization (1/3 M0) followed by a wide plateau up to 2 T for Rh and 4 T for Ir-compound. At this field value, a sharp hysteretic spin-flop transition occurs to a fully saturated state (M0). Surprisingly, the magnetization does not return to origin when the field is reduced to zero in the return cycle, as expected in an antiferromagnet. Instead, a remnant magnetization 1/3 M0 is observed and the magnetic loop around the origin shows hysteresis. This suggests that the zero field magnetic structure has a ferromagnetic component, and we present a model with up to third neighbor exchange and dipolar interaction which reproduces the magnetization curves and hints to an “up-up-down” magnetic structure in zero field. PMID:26156410

  14. Application of magnetomechanical hysteresis modeling of magnetic techniques for monitoring neutron embrittlement and biaxial stress

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Burkhardt, G.L.; Rollwitz, W.L.; Cadena, D.G.

    1993-01-31

    Objective of this project is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. If neutron embrittlement and biaxial stress can be measured via changes in magnetic properties, this should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. This first-year report addresses the issue of using magnetic property changes to detect neutron embrittlement. The magnetic measurements were all done on irradiated specimens previously broken in two in a Charpy test to determine their embrittlement. The magnetic properties of the broken charpy specimens from D.C. Cook did not correlate well with fluence or embrittlement parameters, possible due to metallurgical reasons. correlation was better with Indian Point 2 specimens, with the nonlinear harmonic amplitudes showing the best correlation (R[sup 2][approximately]0.7). However, correlation was not good enough. It is recommended that tests be done on unbroken irradiated Charpy specimens, for which magnetic characterization data prior to irradiation is available, if possible.

  15. Application of magnetomechanical hysteresis modeling of magnetic techniques for monitoring neutron embrittlement and biaxial stress

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Burkhardt, G.L.

    1993-01-31

    Research was done on the biaxial stress problem accomplished in the first half of the second year. All of the work done was preparatory to magnetic measurements. Issues addressed were: construction of a model for extracting changes in the magnetic properties of a specimen from the readings of an indirect sensor; initial development of a model for how biaxial stress alters the intrinsic magnetic properties of thespecimen; use of finite element stress analysis modeling to determine a detailed shape for the cruciform biaxial stress specimen; and construction of the biaxial stress loading apparatus.

  16. Wireless and passive temperature indicator utilizing the large hysteresis of magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bergmair, Bernhard; Liu, Jian; Huber, Thomas; Gutfleisch, Oliver; Suess, Dieter

    2012-07-01

    An ultra-low cost, wireless magnetoelastic temperature indicator is presented. It comprises a magnetostrictive amorphous ribbon, a Ni-Mn-Sn-Co magnetic shape memory alloy with a highly tunable transformation temperature, and a bias magnet. It allows to remotely detect irreversible changes due to transgressions of upper or lower temperature thresholds. Therefore, the proposed temperature indicator is particularly suitable for monitoring the temperature-controlled supply chain of, e.g., deep frozen and chilled food or pharmaceuticals.

  17. Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys

    SciTech Connect

    Emre, Baris; Bruno, Nickolaus M.; Yuce Emre, Suheyla; Karaman, Ibrahim

    2014-12-08

    The effect of Nb substitution for Ni in Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} magnetic shape memory alloys on their magnetic properties, martensitic transformation characteristics, transformation hysteresis, and magnetocaloric properties was studied using wavelength-dispersive X-ray spectroscopy, differential scanning calorimetry, and the temperature and field dependence of the magnetization. Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} alloy has a very low transformation hysteresis; however, the martensitic transformation temperatures are notably above room temperature, which is not desirable for magnetic refrigeration applications. In this study, small quantities of Nb substitution were shown to drastically shift the transformation temperatures to lower temperatures, at a rate of 68 K/at. % Nb, which is needed for household refrigeration. The austenite Curie temperature also decreased with increasing Nb content. However, a decrease in the latent heat of the martensitic transition was observed, which negatively affects the magnetic field-induced adiabatic temperature change capability. Still, the relatively large transformation entropy and the low transformation hysteresis make the Nb-doped Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} alloys potential candidates for solid state refrigeration near room temperature.

  18. Separation of ferromagnetic components by analyzing the hysteresis loops of remanent magnetization

    NASA Astrophysics Data System (ADS)

    Kosareva, L. R.; Utemov, E. V.; Nurgaliev, D. K.; Shcherbakov, V. P.; Kosarev, V. E.; Yasonov, P. G.

    2015-09-01

    The new method is suggested for separating ferromagnetic components in sediments through analyzing the coercivity spectra of the samples by the continuous wavelet transform with the Gaussian-based wavelet (MHAT). A total of 1056 samples of Lake Khuvsgul's sediments (Mongolia) are studied. At least four groups of magnetic components are identified based on the analysis of their magnetization and remagnetization curves. Almost all samples are found to contain two components of bacterial origin which are represented by the assemblages of the interacting single-domain grains and differ by the grain compositions (magnetite and greigite). The applicability of the magnetic data for diagnosing magnetotactic bacteria in sediments and building paleoecological and paleoclimatic reconstructions is demonstrated.

  19. Introduction of thermal activation in forward modeling of hysteresis loops for single-domain magnetic particles and implications for the interpretation of the Day diagram

    NASA Astrophysics Data System (ADS)

    Lanci, Luca; Kent, Dennis V.

    2003-03-01

    Synthetic hysteresis loops were generated by numerically solving the classical Stoner-Wohlfarth model and a thermally activated Stoner-Wohlfarth model for a set of randomly oriented magnetic grains. Although computationally intensive this method allows forward modeling of hysteresis loops of single-domain (SD) and viscous grains. In the classic Stoner-Wohlfarth model the shape of the modeled loops can be modified by changing the distribution of the anisotropy energy but all the loops will all have similar hysteresis parameters Msr/Ms and Hcr/Hc corresponding to that of a theoretical assemblage of SD particles. The thermally activated Stoner-Wohlfarth model, which allows the magnetic moment of each grain to switch between two energy minima according to Boltzmann statistics, extends the SD model toward superparamagnetic (SP) grains and introduces a volume dependency. Numerical simulation using the thermally activated model shows that the shapes of SD loops are modified by the effect of the thermal energy if the particles are sufficiently small. The major effect of the thermal disturbance is observed in highly viscous particles (smaller than approximately 0.03 μm in diameter, for magnetite) where it strongly reduces the coercivity and to a lesser extent the remanent magnetization. The effect on the hysteresis parameters is a large increase in Hcr/Hc and a decrease in Msr/Ms, by factors that vary with anisotropy distribution, grain volume and measurement time. For certain grain sizes, these result in hysteresis parameters that are similar to those attributed to pseudosingle-domain (PSD) grains.

  20. Low-loss energy storage flywheel

    NASA Technical Reports Server (NTRS)

    Evans, H. E.; Studer, P. A.

    1977-01-01

    Magnetically-levitated, ironless-armature spokeless rotor is used. Ironless armature construction eliminates core losses due to hysteresis and eddy currents. Device combines features of homopolar salient poles and stationary ironless electronically commutated armature.

  1. Magnetic hysteresis properties and 57Fe Mössbauer spectroscopy of iron and stony-iron meteorites: Implications for mineralogy and thermal history

    NASA Astrophysics Data System (ADS)

    Dos Santos, E.; Gattacceca, J.; Rochette, P.; Scorzelli, R. B.; Fillion, G.

    2015-05-01

    Since the solid matter in our solar system began to assemble 4.57 billion years ago, meteorites have recorded a large range of processes, including metamorphism, melting, irradiation and hypervelocity impacts. These processes as well as solar system magnetic fields can be accessed through the investigation of magnetic properties of meteorites. In this work, we present magnetic hysteresis properties, isothermal remanent magnetization acquisition curves and 57Fe Mössbauer spectra for nineteen iron and eleven stony-iron meteorites. These data will be the background for a discussion about the thermal and shock history of these meteorites. Although Mössbauer spectroscopy and hysteresis measurements are not able to provide cooling rates like the conventional metallographic method does, we show that the combination of the ordering degree of taenite phase measured by Mössbauer spectroscopy and hysteresis properties are useful for constraining the thermal and shock history of meteorites. In particular, strong shock and the associated thermal event that result in disordering of tetrataenite can be easily identified.

  2. Effect of applied tensile stress on the hysteresis curve and magnetic domain structure of grain-oriented transverse Fe-3%Si steel

    NASA Astrophysics Data System (ADS)

    Perevertov, O.; Thielsch, J.; Schäfer, R.

    2015-07-01

    The effect of an elastic applied tensile stress on the quasistatic hysteresis curve and domain structure in conventional (110) [001] Fe-3%Si steel, cut transversely to the rolling direction, is studied. The magnetic domains and magnetization processes were observed by longitudinal Kerr microscopy at different levels of stress. It is shown that above 8 MPa the bulk hysteresis loop can be described with a good accuracy by the action of an effective field, which is the product of the stress and a function of magnetization. Domain observation reveals that the reasons for the effective field are demagnetizing fields due to the disappearance of supplementary domains at low applied field and the formation of different domain systems in different grains at low and moderate fields. The latter are caused by differences in grain sensitivity to stress depending on the degree of misorientation and grain boundary orientation. A decrease of the effective field above 1 T is connected with a transformation of all grains into the same domain system - the column pattern. The hysteresis loop behavior is qualitatively the same as for strips cut in rolling direction and for non-oriented strips.

  3. Magnetic AC loss of a mono-Sr0.6K0.4Fe2As2 tape/Ag in perpendicular field

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Zhang, Guomin; Yu, Hui; Huang, Miaomiao; Yuan, Weijia

    2016-12-01

    The magnetic AC losses of monofilament Sr0.6K0.4Fe2As2/Ag tapes are measured in the temperature range between 20 K and 30 K both in perpendicular and parallel field. The loss, measured by the standard magnetization technique, is determined from the area of the hysteresis loop using a vibrating sample magnetometer (VSM) in a cyclic field of amplitude up to 7 T. The results in perpendicular field are compared to that of the parallel-field loss and theoretical calculation of magnetization loss at various temperatures. There is a reasonable agreement between the theoretical model and the experimental results even in high field. The magnetic critical current density (Jc) of the tape, obtained by the magnetic hysteresis measurements M(H), are investigated in two field directions and in the temperature range from 5 K to 30 K. The comparison between the magnetic Jc in both field directions and the transport Jc of the tape are also done at various temperatures and fields. The anisotropy of Jc (Γ = Jcab /Jcc) is very small.

  4. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress. Progress report, June 1991--December 1991

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters.

  5. Magnetization loss for stacks of ReBCO tapes

    NASA Astrophysics Data System (ADS)

    Bykovsky, N.; De Marzi, G.; Uglietti, D.; Bruzzone, P.; Muzzi, L.

    2017-02-01

    The AC loss measurements of the high temperature superconductor (HTS) cable prototype in the EDIPO test facility motivated detailed investigations of the loss contributions from the tape, strand and cable stages of the HTS fusion conductor design proposed at the Swiss Plasma Center. As an initial step of the task, magnetization tests of soldered stacks of HTS tapes were carried out at temperatures of 5 and 77 {{K}} and magnetic fields up to 12 {{T}} using the vibrating sample magnetometer technique. The influence on the magnetization loss of the number of tapes, width of the tape, field’s orientation and tape’s manufacturer is studied experimentally performing both the major and minor magnetization loops with different ramp rates of the applied magnetic field. In order to validate the test results, a numerical model is developed and presented in this work. From the numerical model we also deduced an analytical approach for the magnetization loss in the stacks of tapes with arbitrary number of tapes in the critical state model. Comparison between the measured and estimated magnetization loss of the cable prototypes is reported as well.

  6. AC losses in perpendicular external magnetic fields in ring bundle barrier multifilamentary BSCCO(2223) tapes with a central resistive barrier

    NASA Astrophysics Data System (ADS)

    Eckelmann, H.; Krelaus, J.; Nast, R.; Goldacker, W.

    2001-06-01

    For the most common AC frequencies, the main components of the AC losses in multifilamentary Bi(2223) tapes are caused by both hysteresis and coupling losses. These losses can be reduced by increasing the matrix resistivity, applying a twist to the filaments and by the use of a conductor design optimised for a practical application. In the ring bundle barrier (RBB) conductor design we have bundles of filaments which are twisted around a central resistive core. The RBB structure was prepared via the powder in tube assemble and react (PITAR) route . In these tapes six bundles of seven filaments are twisted around a resistive layer of a mixture of 50% SrCO 3 and 50% SrZrO 3 in the centre of the tape. A series of tapes with twist lengths down to 3.4 mm was prepared. We present the measured AC losses of these tapes in external perpendicular magnetic fields. By using existing models, a description of the losses in the low Ḃ range was possible, leading to a separation into hysteresis, eddy current and coupling current losses. The frequency dependent loss contribution is dominated by the coupling current losses, from which the coupling current decay time constant, the effective permeability, the matrix resistivity and the critical Ḃc for filament coupling were extracted. In tapes with a twist length below 5 mm the typical loss behaviour for decoupled filaments is observed at frequencies up to 500 Hz. Compared to the untwisted tapes, a loss reduction of up to 70% for low field amplitudes (below 10 mT) was achieved.

  7. Passive magnetic bearing element with minimal power losses

    DOEpatents

    Post, Richard F.

    1998-01-01

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in U.S. Patent No. 5,495,221 entitled "Dynamically Stable Magnetic Suspension/Bearing System." The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity.

  8. Passive magnetic bearing element with minimal power losses

    DOEpatents

    Post, R.F.

    1998-12-08

    Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in US Patent No. 5,495,221 entitled ``Dynamically Stable Magnetic Suspension/Bearing System.`` The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity. 8 figs.

  9. Macroscopic magnetic structures with balanced gain and loss

    NASA Astrophysics Data System (ADS)

    Lee, J. M.; Kottos, T.; Shapiro, B.

    2015-03-01

    We investigate magnetic nanostructures with balanced gain and loss and show that such configurations can result in a new type of dynamics for magnetization. Using the simplest possible setup consisting of two coupled ferromagnetic films, one with loss and another one with a balanced amount of gain, we demonstrate the existence of an exceptional point where both the eigenfrequencies and eigenvectors become degenerate. This point corresponds to a particular value of the gain and loss parameter α =αc . For α <αc the frequency spectrum is real, indicating stable dynamics, while for α >αc it is complex, signaling unstable dynamics which is, however, stabilized by nonlinearity.

  10. Micromagnetic simulation of hysteresis loop of elliptic permalloy nanorings

    NASA Astrophysics Data System (ADS)

    Mishra, Amaresh Chandra

    2016-09-01

    Magnetic hysteresis behavior of isotropic permalloy elliptic nanorings of outer semi-major axis length (aout) 100 nm and thickness (t) 20 nm were studied with respect to the variation of two parameters: outer semiminor axis length (bout) and the difference between outer and inner dimensions (r). The outer semiminor axis length (bout) varied from 90 nm to 20 nm which covers from nearly circular nanoring to elliptic nanoring of high aspect ratio. The value of r varied in steps of 10 nm. Micromagnetic simulation of in-plane hysteresis curve of these nanorings revealed that the remanent state of all of these elliptic rings are onion states if the magnetic field is applied along the longer side of the elliptic rings. If the magnetic field is applied along the shorter side, then the remanent states turn out to be vortex state. The hysteresis loss indicated by area of the hysteresis loop was found to be decreasing gradually with the increment of either r or bout. On the other hand, the remanent magnetization increased with increment of r but decreased with the increment of bout. The changes were attributed to three parameters mainly: inner curvature, exchange energy and demagnetization energy. The changes in loop area were discussed in light of variation of these three parameters.

  11. Advances in core loss calculations for magnetic materials

    NASA Technical Reports Server (NTRS)

    Triner, J. E.

    1982-01-01

    A new analytical technique which predicts the basic magnetic properties under various operating conditions encountered in state-of-the-art dc-ac/dc converters is discussed. Using a new flux-controlled core excitation circuit, magnetic core characteristics were developed for constant values of ramp flux (square wave voltage excitation) and frequency. From this empirical data, a mathematical loss characteristics equation is developed to analytically predict the specific core loss of several magnetic materials under various waveform excitation conditions. In addition, these characteristics show the circuit designer for the first time the direct functional relatonships between induction level and specific core loss as a function of the two key dc-dc converter operating parameters of input voltage and duty cycle.

  12. [Mathematical models of hysteresis

    SciTech Connect

    Mayergoyz, I.D.

    1991-01-01

    The research described in this proposal is currently being supported by the US Department of Energy under the contract Mathematical Models of Hysteresis''. Thus, before discussing the proposed research in detail, it is worthwhile to describe and summarize the main results achieved in the course of our work under the above contract. Our ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories''. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. Our research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. Our study has by and large been centered around the following topics: various generalizations and extensions of the classical Preisach model, finding of necessary and sufficient conditions for the representation of actual hysteretic nonlinearities by various Preisach type models, solution of identification problems for these models, numerical implementation and experimental testing of Preisach type models. Although the study of Preisach type models has constituted the main direction of the research, some effort has also been made to establish some interesting connections between these models and such topics as: the critical state model for superconducting hysteresis, the classical Stoner-Wohlfarth model of vector magnetic hysteresis, thermal activation type models for viscosity, magnetostrictive hysteresis and neural networks.

  13. Hysteresis in the Sky

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Banerjee, Shreya

    2016-07-01

    Hysteresis is a phenomenon occurring naturally in several magnetic and electric materials in condensed matter physics. When applied to cosmology, aka cosmological hysteresis, has interesting and vivid implications in the scenario of a cyclic bouncy universe. Most importantly, this physical prescription can be treated as an alternative proposal to inflationary paradigm. Cosmological hysteresis is caused by the asymmetry in the equation of state parameter during expansion and contraction phase of the universe, due to the presence of a single scalar field. This process is purely thermodynamical in nature, results in a non-vanishing hysteresis loop integral (∮pdV) in cosmology. When applied to variants of modified gravity models 1) Dvali-Gabadadze-Porrati (DGP) brane world gravity, 2) Cosmological constant dominated Einstein gravity, 3) Loop Quantum Gravity (LQG), 4) Einstein-Gauss-Bonnet brane world gravity and 5) Randall Sundrum single brane world gravity (RSII), under certain circumstances, this phenomenon leads to the increase in amplitude of the consecutive cycles and to a universe with older and larger successive cycles, provided we have physical mechanisms to make the universe bounce and turnaround. This inculcates an arrow of time in a dissipationless cosmology. Remarkably, this phenomenon appears to be widespread in several cosmological potentials in variants of modified gravity background, which we explicitly study for i) Hilltop, ii) Natural and iii) Coleman-Weinberg potentials, in this paper. Semi-analytical analysis of these models, for different potentials with minimum/minima, show that the conditions which creates a universe with an ever increasing expansion, depend on the signature of the hysteresis loop integral (∮pdV) as well as on the variants of model parameters.

  14. AC Loss Analysis on the Superconducting Coupling Magnet in MICE

    SciTech Connect

    Wu, Hong; Wang, Li; Green, Michael; Li, LanKai; Xu, FengYu; Liu, XiaoKun; Jia, LinXinag

    2008-07-08

    A pair of coupling solenoids is used in MICE experiment to generate magnetic field which keeps the muons within the iris of thin RF cavity windows. The coupling solenoids have a 1.5-meter inner diameter and will produce 7.4 T peak magnetic field. Three types of AC losses in coupling solenoid are discussed. The affect of AC losses on the temperature distribution within the cold mass during charging and rapid discharging process is analyzed also. The analysis result will be further confirmed by the experiment of the prototype solenoid for coupling solenoid, which will be designed, fabricated and tested at ICST.

  15. In situ measurement of thickness dependence of magnetoresistance and magnetic hysteresis loops of ultrathin Co films on a SiO 2/Si(1 1 1) substrate

    NASA Astrophysics Data System (ADS)

    Li, M.; Wang, G.-C.

    2000-07-01

    Ultrathin Co films ranging from 1 to 19 monolayers (ML) thick were grown by thermal evaporations on native-oxide-covered Si(1 1 1) surfaces in ultrahigh vacuum (UHV). The thickness-dependent magnetoresistance (MR) and thickness-dependent magnetic hysteresis loops were measured in situ by a collinear four-point probe and surface magneto-optical Kerr effect (SMOKE) techniques, respectively. The magnetoresistance of the Co films, measured with the applied magnetic field parallel to the film plane and perpendicular to the current direction, was obtained only when the Co film thickness reached ˜7 ML. The MR increased monotonically from ˜0.01% at ˜7 ML to ˜0.11% at ˜19 ML. The onset of measurable magnetic hysteresis loops from the Co film occurred at ˜3 ML, earlier than the onset thickness ˜7 ML for measurable MR. The coercivity Hc of the Co film decreased with the film thickness d in the range of 3-19 ML and followed a power law Hc∝ d- n with n=0.33±0.05. The MR change was attributed to scattering from domain walls. The coercivity decrease as a function of thickness was attributed to the decrease of surface domain-wall pinning.

  16. Triimidosulfonates as Acute Bite-Angle Chelates: Slow Relaxation of the Magnetization in Zero Field and Hysteresis Loop of a Co(II) Complex.

    PubMed

    Carl, Elena; Demeshko, Serhiy; Meyer, Franc; Stalke, Dietmar

    2015-07-06

    Starting from a polyimido sulfonate the four-coordinate, N,N'-chelated Co(II) complex [Co{(NtBu)3 SMe}2 ] (1) was synthesized, and its molecular structure was elucidated by single-crystal X-ray structural analysis. The acute N-Co-N bite angle imposed by the N,N'-chelating ligand (NtBu)3 SMe(-) leads to pronounced C2v distortion of the tetrahedral coordination environment and thus to high anisotropy of the Co(II) ion (D≈-58 cm(-1) ), favorable for single-molecule-magnet (SMM) properties. Magnetic measurements revealed a high barrier to spin reversal (Ueff =75 cm(-1) ) that gives rise to the observation of slow relaxation of the magnetization in zero field and a hysteresis loop at 2 K for this unique complex.

  17. Radiation-induced magnetization reversal causing a large flux loss in undulator permanent magnets.

    PubMed

    Bizen, Teruhiko; Kinjo, Ryota; Hasegawa, Teruaki; Kagamihata, Akihiro; Kida, Yuichiro; Seike, Takamitsu; Watanabe, Takahiro; Hara, Toru; Itoga, Toshiro; Asano, Yoshihiro; Tanaka, Takashi

    2016-11-29

    We report an unexpectedly large flux loss observed in permanent magnets in one of the undulators operated in SACLA, the x-ray free electron laser facility in Japan. Characterizations of individual magnets extracted from the relevant undulator have revealed that the flux loss was caused by a homogeneous magnetization reversal extending over a wide area, but not by demagnetization of individual magnets damaged by radiation. We show that the estimated flux-loss rate is much higher than what is reported in previous papers, and its distribution is much more localized to the upstream side. Results of numerical and experimental studies carried out to validate the magnetization reversal and quantify the flux loss are presented, together with possible countermeasures against rapid degradation of the undulator performance.

  18. Radiation-induced magnetization reversal causing a large flux loss in undulator permanent magnets

    NASA Astrophysics Data System (ADS)

    Bizen, Teruhiko; Kinjo, Ryota; Hasegawa, Teruaki; Kagamihata, Akihiro; Kida, Yuichiro; Seike, Takamitsu; Watanabe, Takahiro; Hara, Toru; Itoga, Toshiro; Asano, Yoshihiro; Tanaka, Takashi

    2016-11-01

    We report an unexpectedly large flux loss observed in permanent magnets in one of the undulators operated in SACLA, the x-ray free electron laser facility in Japan. Characterizations of individual magnets extracted from the relevant undulator have revealed that the flux loss was caused by a homogeneous magnetization reversal extending over a wide area, but not by demagnetization of individual magnets damaged by radiation. We show that the estimated flux-loss rate is much higher than what is reported in previous papers, and its distribution is much more localized to the upstream side. Results of numerical and experimental studies carried out to validate the magnetization reversal and quantify the flux loss are presented, together with possible countermeasures against rapid degradation of the undulator performance.

  19. Radiation-induced magnetization reversal causing a large flux loss in undulator permanent magnets

    PubMed Central

    Bizen, Teruhiko; Kinjo, Ryota; Hasegawa, Teruaki; Kagamihata, Akihiro; Kida, Yuichiro; Seike, Takamitsu; Watanabe, Takahiro; Hara, Toru; Itoga, Toshiro; Asano, Yoshihiro; Tanaka, Takashi

    2016-01-01

    We report an unexpectedly large flux loss observed in permanent magnets in one of the undulators operated in SACLA, the x-ray free electron laser facility in Japan. Characterizations of individual magnets extracted from the relevant undulator have revealed that the flux loss was caused by a homogeneous magnetization reversal extending over a wide area, but not by demagnetization of individual magnets damaged by radiation. We show that the estimated flux-loss rate is much higher than what is reported in previous papers, and its distribution is much more localized to the upstream side. Results of numerical and experimental studies carried out to validate the magnetization reversal and quantify the flux loss are presented, together with possible countermeasures against rapid degradation of the undulator performance. PMID:27897218

  20. Measured losses in superconductor magnets for 60-Hertz ac operation.

    NASA Technical Reports Server (NTRS)

    Hamlet, I. L.; Kilgore, R. A.

    1971-01-01

    Results of an experimental study of electrical losses in superconductor magnets. Preliminary 60-Hz ac loss data are presented for coils constructed of Nb3Sn ribbon, Nb-Ti cable, and multifilament Nb-Ti. Losses have been measured for different size coils up to approximately 20 cm in diameter. Of the conductor types tested, Nb3Sn ribbon has the lowest losses for ac operation. In Nb3Sn-ribbon coils of different sizes, the loss per unit length of conductor is shown to decrease with a decrease in the rate of change of current and to increase, in general, with increase in coil size. An important aspect of the study is the high degree of repeatability of the data.

  1. Large Energy Barrier and Magnetization Hysteresis at 5 K for a Symmetric {Dy2} Complex with Spherical Tricapped Trigonal Prismatic Dy(III) Ions.

    PubMed

    Mazarakioti, Eleni C; Regier, Jeffery; Cunha-Silva, Luís; Wernsdorfer, Wolfgang; Pilkington, Melanie; Tang, Jinkui; Stamatatos, Theocharis C

    2017-03-20

    The introduction of the Schiff base ligand N-salicylidene-2-amino-5-chlorobenzoic acid (sacbH2) in 4f-metal chemistry has afforded a new dinuclear complex, [Dy2(NO3)4(sacbH)2(H2O)2(MeCN)2] (1), with the metal ions adopting a rare spherical tricapped trigonal prismatic coordination geometry. The deprotonated phenoxido O atoms of the organic chelate occupy the axial triangular faces of the prism and were found to be very close to the main anisotropy axes of the two Dy(III) ions. As a result, the {Dy(III)2} compound exhibits frequency- and temperature-dependent out-of-phase ac signals below ∼25 K in the absence of a static dc field, yielding an energy barrier of 109.3(1) K for the reversal of magnetization. Fast and efficient quantum tunneling of magnetization, attributed to the strong tails of signals below ∼15 K, was suppressed through the application of a small dc field, yielding entirely visible χM″ signals below 27 K. Single-crystal magnetic hysteresis studies confirmed the single-molecule magnet (SMM) behavior of 1; the hysteresis loops appear at temperatures below ∼5 K, which is one of the highest blocking temperatures in the field of 4f-SMMs to date. This joint magneto-structural and ab initio study demonstrates the ability of more common coordination numbers (i.e., 9), but with rare coordination geometries (i.e., spherical tricapped trigonal prismatic), to promote axiality that enhances the molecular anisotropy and subsequently the magnetization dynamics of the system.

  2. Broadband magnetic losses of nanocrystalline ribbons and powder cores

    NASA Astrophysics Data System (ADS)

    Beatrice, Cinzia; Dobák, Samuel; Ferrara, Enzo; Fiorillo, Fausto; Ragusa, Carlo; Füzer, Ján; Kollár, Peter

    2016-12-01

    Finemet type alloys have been investigated from DC to 1 GHz at different induction levels upon different treatments: as amorphous precursors, as ribbons nanocrystallized with and without an applied saturating field, as consolidated powders. The lowest energy losses at all frequencies and maximum Snoek's product are exhibited by the transversally field-annealed ribbons. This is understood in terms of rotation-dominated magnetization process in the low-anisotropy material. Intergrain eddy currents are responsible for the fast increase of the losses with frequency and for early permeability relaxation of the powder cores. Evidence for resonant phenomena at high frequencies and for the ensuing inadequate role of the static magnetic constitutive equation of the material in solving the magnetization dynamics via the Maxwell's diffusion equation of the electromagnetic field is provided. It is demonstrated that, by taking the Landau-Lifshitz-Gilbert equation as a constitutive relation, the excellent frequency response of the transverse anisotropy ribbons can be described by analytical method.

  3. Automated setup for magnetic hysteresis characterization based on a voltage controlled current source with 500 kHz full power bandwidth and 10 A peak-to-peak current

    SciTech Connect

    Calabrese, G.; Capineri, L.; Granato, M.; Frattini, G.

    2015-04-15

    This paper describes the design of a system for the characterization of magnetic hysteresis behavior in soft ferrite magnetic cores. The proposed setup can test magnetic materials exciting them with controlled arbitrary magnetic field waveforms, including the capability of providing a DC bias, in a frequency bandwidth up to 500 kHz, with voltages up to 32 V peak-to-peak, and currents up to 10 A peak-to-peak. In order to have an accurate control of the magnetic field waveform, the system is based on a voltage controlled current source. The electronic design is described focusing on closed loop feedback stabilization and passive components choice. The system has real-time hysteretic loop acquisition and visualization. The comparisons between measured hysteresis loops of sample magnetic materials and datasheet available ones are shown. Results showing frequency and thermal behavior of the hysteresis of a test sample prove the system capabilities. Moreover, the B-H loops obtained with a multiple waveforms excitation signal, including DC bias, are reported. The proposal is a low-cost and replicable solution for hysteresis characterization of magnetic materials used in power electronics.

  4. Magnetism, hysteresis cycle, and Ir-substitution doping of Sr2CrIrO6 double perovskite: A Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    El Rhazouani, O.; El Khatabi, M.; Zarhri, Z.; Slassi, A.; Benyoussef, A.; El Kenz, A.

    2016-12-01

    Iridium-based double perovskite (DP) Sr2CrIrO6 is expected to have the highest Curie temperatures (Tc) among all DPs and a high spin-polarization at room temperature, thanks to the more extended 5d orbitals of Ir, which makes it potential candidate in spintronic applications. Several publications have appeared in recent years documenting Ir-based double perovskites, but very few have explored the promising compound Sr2CrIrO6. In this paper, a Monte Carlo simulation has been carried out in the framework of Ising model to make an exploratory study of Sr2CrIrO6. Thermal magnetization, magnetic susceptibility, internal energy and specific heat have been studied. Effect of crystal field of Ir on the magnetic properties has been explored. Magnetic hysteresis cycle has been studied in relation to the exchange coupling values. Effects of Ir-substitution doping by Os "Sr2CrIrxOs1 - xO6" and by Re "Sr2CrIrxRe1 - xO6" (0.1 ≤ x ≤ 0.5) on the magnetic behavior have been investigated.

  5. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization.

    PubMed

    Chen, Ritchie; Christiansen, Michael G; Anikeeva, Polina

    2013-10-22

    This article develops a set of design guidelines for maximizing heat dissipation characteristics of magnetic ferrite MFe2O4 (M = Mn, Fe, Co) nanoparticles in alternating magnetic fields. Using magnetic and structural nanoparticle characterization, we identify key synthetic parameters in the thermal decomposition of organometallic precursors that yield optimized magnetic nanoparticles over a wide range of sizes and compositions. The developed synthetic procedures allow for gram-scale production of magnetic nanoparticles stable in physiological buffer for several months. Our magnetic nanoparticles display some of the highest heat dissipation rates, which are in qualitative agreement with the trends predicted by a dynamic hysteresis model of coherent magnetization reversal in single domain magnetic particles. By combining physical simulations with robust scalable synthesis and materials characterization techniques, this work provides a pathway to a model-driven design of magnetic nanoparticles tailored to a variety of biomedical applications ranging from cancer hyperthermia to remote control of gene expression.

  6. Extended frequency analysis of magnetic losses under rotating induction in soft magnetic composites

    NASA Astrophysics Data System (ADS)

    de la Barrière, O.; Appino, C.; Fiorillo, F.; Ragusa, C.; Lecrivain, M.; Rocchino, L.; Ben Ahmed, H.; Gabsi, M.; Mazaleyrat, F.; LoBue, M.

    2012-04-01

    We present novel results on magnetic losses in soft magnetic composites (SMCs) excited with rotating field. Soft composites are very promising in electrical engineering applications, where new topologies of electrical machines with two- and three-dimensional induction loci are increasingly found. An experimental characterization of industrial SMC products has, therefore, been carried out, up to the kilohertz range, under alternating and circular flux loci, making use of a specifically designed and optimized loss measuring setup. The obtained results have been analyzed for all kinds of excitation, according to the loss separation concept, with the emphasis being placed on the relationship between the rotational and the alternating loss components. In particular, it is found that the ratio between the rotational and the alternating losses is, for any given peak induction, independent of frequency.

  7. Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, S. T.; Ma, Y. Q.; Zheng, G. H.; Dai, Z. X.

    2015-04-01

    Well-dispersed uniform cobalt ferrite nanoparticles were synthesized by thermal decomposition of a metal-organic salt in organic solvent with a high boiling point. Some of the nanoparticles were diluted in a SiO2 matrix and then the undiluted and diluted samples were characterized and their magnetic behavior explored. The undiluted and diluted samples exhibited maximum coercivity Hc of 23 817 and 15 056 Oe at 10 K, respectively, which are the highest values reported to date, and the corresponding ratios of remanence (Mr) to saturation (Ms) magnetization (Mr/Ms) were as high as 0.85 and 0.76, respectively. Interestingly, the magnetic properties of the samples changed at 200 K, which was observed in magnetic hysteresis M(H) loops and zero-field cooling curves as well as the temperature dependence of Hc, Mr/Ms, anisotropy, dipolar field, and the magnetic grain size. Below 200 K, both samples have large effective anisotropy, which arises from the surface spins, resulting in large Hc and Mr/Ms. Above 200 K, the effective anisotropy decreases because there is no contribution from surface spins, while the dipolar interaction increases, resulting in small Hc and Mr/Ms. Our results indicate that strong anisotropy and weak dipolar interaction tend to increase Hc and Mr/Ms, and also clarify that the jumps around H = 0 in M(H) loops can be attributed to the reorientation of surface spins. This work exposes the underlying mechanism in nanoscale magnetic systems, which should lead to improved magnetic performance.

  8. Optimization of magnetic neurostimulation waveforms for minimum power loss.

    PubMed

    Goetz, S M; Truong, N C; Gerhofer, M G; Peterchev, A V; Herzog, H-G; Weyh, T

    2012-01-01

    Magnetic stimulation is a key tool in experimental brain research and several clinical applications. Whereas coil designs and the spatial field properties have been intensively studied in the literature, the temporal dynamics of the field has received little attention. The available pulse shapes are typically determined by the relatively limited capabilities of commercial stimulation devices instead of efficiency or optimality. Furthermore, magnetic stimulation is relatively inefficient with respect to the required energy compared to other neurostimulation techniques. We therefore analyze and optimize the waveform dynamics with a nonlinear model of a mammalian motor axon for the first time, without any pre-definition of waveform candidates. We implemented an unbiased and stable numerical algorithm using variational calculus in combination with a global optimization method. This approach yields very stable results with comprehensible characteristic properties, such as a first phase which reduces ohmic losses in the subsequent pulse phase. We compare the energy loss of these optimal waveforms with the waveforms generated by existing magnetic stimulation devices.

  9. Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current

    NASA Astrophysics Data System (ADS)

    Wan, Xing-Xing; Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2015-11-01

    This paper presents an investigation on the AC losses in several typical superconducting composite conductors using the H-formulation model. A single superconducting strip with ferromagnetic substrate or cores and a stack of coated conductors with ferromagnetic substrates are studied. We consider all the coated conductors carrying AC transport currents and simultaneously exposed to perpendicular AC magnetic fields. The influences of the amplitude, frequency, phase difference and ferromagnetic materials on the AC losses are investigated. The results show that the magnetization losses of single strip and stacked strips have similar characteristics. The ferromagnetic substrate can increase the magnetization loss at low magnetic field, and decrease the loss at high magnetic field. The ferromagnetic substrate can obviously increase the transport loss in stacked strips. The trends of total AC losses of single strip and stacked strips are similar when they are carrying current or exposed to a perpendicular magnetic field. The effect of the frequency on the total AC losses of single strip is related to the amplitude of magnetic field. The AC losses decrease with increasing frequency in low magnetic field region while increase in high magnetic field region. As the phase difference changes, there is a periodic variation for the AC losses. Moreover, when the strip is under only the transport current and magnetic field, the ferromagnetic cores will increase the AC losses for large transport current or field.

  10. Diagenetic alteration of natural Fe Ti oxides identified by energy dispersive spectroscopy and low-temperature magnetic remanence and hysteresis measurements

    NASA Astrophysics Data System (ADS)

    Dillon, Melanie; Franke, Christine

    2009-02-01

    Low-temperature (LT) magnetic remanence and hysteresis measurements, in the range 300-5 K, were combined with energy dispersive spectroscopy (EDS) in order to characterize the magnetic inventory of strongly diagenetically altered sediments originating from the Niger deep-sea fan. We demonstrate the possibility of distinguishing between different compositions of members of the magnetite-ulvöspinel and ilmenite-hematite solid solution series on a set of five representative samples, two from the upper suboxic and three from the lower sulfidic anoxic zone of gravity core GeoB 4901. Highly sensitive LT magnetic measurements were performed on magnetic extracts resulting in large differences in the magnetic behavior between samples from the different layers. This emphasizes that both Fe-Ti oxide phases occur in different proportions in the two geochemical environments. Most prominent are variations in the coercivity sensitive parameter coercive field ( BC). At room-temperature (RT) hysteresis loops for all extracts are narrow and yield low coercivities (6-13 mT). With decreasing temperature the loops become more pronounced and wider. At 5 K an approximately 5-fold increase in BC for the suboxic samples contrasts a 20-25-fold increase for the samples from the anoxic zone. We demonstrate that this distinct increase in BC at LT corresponds to the increasing proportion of the Ti-rich hemoilmenite phase, while Fe-rich (titano-)magnetite dominates the magnetic signal at RT. This trend is also seen in the room-temperature saturation isothermal remanent magnetization (RT-SIRM) cycles: suboxic samples show remanence curves dominated by Fe-rich mineral phases while anoxic samples display curves clearly dominated by Ti-rich particles. We show that the EDS intensity ratios of the characteristic Fe K α and Ti K α lines of the Fe-Ti oxides may be used to differentiate between members of the magnetite-ulvöspinel and ilmenite-hematite solid solution series. Furthermore it is possible

  11. Low Thermal Loss Cryogenic Transfer Line with Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Shu, Quan-Sheng; Cheng, Guangfeng; Yu, Kun; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.

    2004-06-01

    An energy efficient, cost effective cryogenic distribution system (up to several miles) is crucial for spaceport and in-space cryogenic systems. The conduction heat loss from the supports that connect the cold inner lines to the warm support structure is ultimately the most serious heat leak after thermal radiation has been minimized. The use of magnetic levitation by permanent magnets and high temperature superconductors provides support without mechanical contact and thus, the conduction part of the heat leak can be reduced to zero. A stop structure is carefully designed to hold the center tube when the system is warm. The novel design will provide the potential of extending many missions by saving cryogens, or reducing the overall launch mass.

  12. Low loss and magnetic field-tunable superconducting terahertz metamaterial.

    PubMed

    Jin, Biaobing; Zhang, Caihong; Engelbrecht, Sebastian; Pimenov, Andrei; Wu, Jingbo; Xu, Qinyin; Cao, Chunhai; Chen, Jian; Xu, Weiwei; Kang, Lin; Wu, Peiheng

    2010-08-02

    Superconducting terahertz (THz) metamaterial (MM) made from niobium (Nb) film has been investigated using a continuous-wave THz spectroscopy. The quality factors of the resonance modes at 0.132 THz and 0.418 THz can be remarkably increased when the working temperature is below the superconducting transition temperature of Nb, indicating that the use of superconducting Nb is a possible way to achieve low loss performance of a THz MM. In addition, the tuning of superconducting THz MM by a magnetic field is also demonstrated, which offers an alternative tuning method apart from the existing electric, optical and thermal tuning methods.

  13. Thermo-magnetic history effects in the giant magnetostriction across the first-order transition and minor hysteresis loops modeling in Fe0.955Ni0.045Rh alloy.

    PubMed

    Manekar, Meghmalhar; Sharma, V K; Roy, S B

    2012-05-30

    Results of temperature- and magnetic field-dependent strain measurements across the first-order antiferromagnetic to ferromagnetic phase transition in Fe(0.955)Ni(0.045)Rh are presented. Distinct thermal and magnetic field hystereses are observed in the measured strain across the phase transition. The minor hysteresis loops inside the hysteretic regime across the temperature-driven transition are modeled using the Preisach model of hysteresis. The applicability of the Preisach model to explain the general features of minor hysteresis loops is discussed for a disorder influenced first-order transition. The minor hysteresis loops show the property of retaining the memory of the starting or end point of the temperature cycle followed within the hysteretic region. A larger temperature excursion within the hysteretic region wipes out the memory of a smaller temperature cycle which contains one of the extrema of the larger cycle. The end-point memory and the wiping-out property of the minor hysteresis loops can be described quite well within the Preisach model, irrespective of the temperature history followed to reach a particular starting point. Thermo-magnetic history effects across the magnetic field-induced transition are explained, which will enable the choice of the starting point of an experimental cycle in the field-temperature phase space so as to achieve the desired functionality. Our results highlight the necessity to understand the influence of disorder on a first-order phase transition so as to achieve a repeatable performance of materials whose functionalities are based on such a transition.

  14. Monitoring the fatigue state of steel by evaluating the quasistatic and dynamic magnetic behavior

    SciTech Connect

    Vandenbossche, Lode; Dupre, Luc; Melkebeek, Jan

    2005-05-15

    For the evaluation of fatigue damage progression the application of quasistatic and dynamic magnetic measurements combined with the Preisach hysteresis model and the statistical loss theory is investigated. Throughout the fatigue lifetime hysteresis and excess magnetic behavior, both known to be sensitive to microstructural variations, are monitored. The magnetic evaluation results for fatigue tests executed on two steels depend on their initial microstructure and chemical composition. In addition the effect of low stress amplitude cyclic loading on the magnetic properties of electrical steel is investigated: after 1000 cycles the excess losses are slightly decreased, while hysteresis properties stay invariant.

  15. Unusual magnetic hysteresis and the weakened transition behavior induced by Sn substitution in Mn{sub 3}SbN

    SciTech Connect

    Sun, Ying; Guo, Yanfeng; Li, Jun; Wang, Xia; Tsujimoto, Yoshihiro; Wang, Cong; Feng, Hai L.; Sathish, Clastin I.; Yamaura, Kazunari; Matsushita, Yoshitaka

    2014-01-28

    Substitution of Sb with Sn was achieved in ferrimagnetic antiperovskite Mn{sub 3}SbN. The experimental results indicate that with an increase in Sn concentration, the magnetization continuously decreases and the crystal structure of Mn{sub 3}Sb{sub 1-x}Sn{sub x}N changes from tetragonal to cubic phase at around x of 0.8. In the doping series, step-like anomaly in the isothermal magnetization was found and this behavior was highlighted at x = 0.4. The anomaly could be attributed to the magnetic frustration, resulting from competition between the multiple spin configurations in the antiperovskite lattice. Meantime, H{sub c} of 18 kOe was observed at x = 0.3, which is probably the highest among those of manganese antiperovskite materials reported so far. With increasing Sn content, the abrupt change of resistivity and the sharp peak of heat capacity in Mn{sub 3}SbN were gradually weakened. The crystal structure refinements indicate the weakened change at the magnetic transition is close related to the change of c/a ratio variation from tetragonal to cubic with Sn content. The results derived from this study indicate that the behavior of Mn{sub 3}Sb{sub 1-x}Sn{sub x}N could potentially enhance its scientific and technical applications, such as spin torque transfer and hard magnets.

  16. Structural, Magnetic, and Photomagnetic Studies of a Mononuclear Iron(II) Derivative Exhibiting an Exceptionally Abrupt Spin Transition. Light-Induced Thermal Hysteresis Phenomenon.

    PubMed

    Létard, Jean-François; Guionneau, Philippe; Rabardel, Louis; Howard, Judith A. K.; Goeta, Andres E.; Chasseau, Daniel; Kahn, Olivier

    1998-08-24

    The new spin-crossover compound Fe(PM-BiA)(2)(NCS)(2) with PM-BiA = N-(2-pyridylmethylene)aminobiphenyl has been synthesized. The temperature dependence of chi(M)T (chi(M) = molar magnetic susceptibility and T = temperature) has revealed an exceptionally abrupt transition between low-spin (LS) (S = 0) and high-spin (HS) (S = 2) states with a well-reproducible hysteresis loop of 5 K (T(1/2) downward arrow = 168 K and T(1/2) upward arrow = 173 K). The crystal structure has been determined both at 298 K in the HS state and at 140 K in the LS state. The spin transition takes place without change of crystallographic space group (Pccn with Z = 4). The determination of the intermolecular contacts in the LS and HS forms has revealed a two-dimensional structural character. The enthalpy and entropy variations, DeltaH and DeltaS, associated with the spin transition have been deduced from heat capacity measurements. DeltaS (= 58 J K(-)(1) mol(-)(1)) is larger than for other spin transition bis(thiocyanato) iron(II) derivatives. At 10 K the well-known LIESST (light-induced excited spin state trapping) effect has been observed within the SQUID cavity, by irradiating a single crystal or a powder sample with a Kr(+) laser coupled to an optical fiber. The magnetic behavior recorded under light irradiation in the warming and cooling modes has revealed a light-induced thermal hysteresis (LITH) effect with 35 < T(1/2) < 77 K. The HS --> LS relaxation after LIESST has been found to deviate from first-order kinetics. The kinetics has been investigated between 10 and 78 K. A thermally activated relaxation behavior at elevated temperatures and a nearly temperature independent tunneling mechanism at low temperatures have been observed. The slow rate of tunneling from the metastable HS state toward the ground LS state may be explained by the unusually large change in Fe-N bond lengths between these two states.

  17. Wide Temperature Core Loss Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1999-01-01

    100 kHz core loss properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of B(sub peak). For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at B(sub peak) = 0.1 T and 50 C only. For example, the 100 kHz specific core loss ranged from 50 - 70 mW/cubic cm for the 3 materials, when measured at 0.1 T and 50 C. This very low high frequency core loss, together with near zero saturation magnetostriction and insensitivity to rough handling, makes these amorphous ribbons strong candidates for power magnetics applications in wide temperature aerospace environments.

  18. AC Losses in the MICE Channel Magnets -- Is This a Curse or aBlessing?

    SciTech Connect

    Green, M.A.; Wu, H.; Wang, L.; Kai, L.L.; Jia, L.X.; Yang, S.Q.

    2008-01-31

    This report discusses the AC losses in the MICE channelmagnets during magnet charging and discharging. This report talks aboutthe three types of AC losses in the MICE magnets; the hysteretic AC lossin the superconductor, the coupling AC loss in the superconductor and theeddy current AC loss in the magnet mandrel and support structure. AClosses increase the heat load at 4 K. The added heat load increases thetemperature of the second stage of the cooler. In addition, AC losscontributes to the temperature rise between the second stage cold headand the high field point of the magnet, which is usually close to themagnet hot spot. These are the curses of AC loss in the MICE magnet thatcan limit the rate at which the magnet can be charge or discharged. Ifone is willing to allow some of the helium that is around the magnet toboil away during a magnet charge or discharge, AC losses can become ablessing. The boil off helium from the AC losses can be used to cool theupper end of the HTS leads and the surrounding shield. The AC losses arepresented for all three types of MICE magnets. The AC loss temperaturedrops within the coupling magnet are presented as an example of how boththe curse and blessing of the AC losses can be combined.

  19. Magnetic hysteresis properties, Mössbauer spectra and structural data of spherical 250 nm particles of solid solutions Fe3O4- γ- Fe2O3

    NASA Astrophysics Data System (ADS)

    Schmidbauer, E.; Keller, M.

    2006-02-01

    Magnetic hysteresis, 57Fe Mössbauer and X-ray data are presented for spherical 250 nm particles of solid solutions in the spinel system Fe3O4- γ- Fe2O3 ( Fe3-u□uO4, 0⩽u⩽1/3 ( □=cation vacancy)). For dispersed particles, the composition of u˜0.24 exhibits maxima of coercive force Hc˜25 kA/m, relative saturation remanence σrs/σs˜0.3, switching field distribution HSFD˜100 kA/m and of anhysteretic remanence susceptibility at room temperature. The experimental results point to single domain particles with non-homogeneous magnetization mode or to a magnetization mode intermediate between single domain and two domain particles. The maxima are probably a consequence of the superposed action of (i) Fe—single ion anisotropy and (ii) microstresses. Mössbauer spectra were used to analyse the cation distribution on A- and B-sites of the spinel lattice. The experimental data were found to disagree with the cation distribution according to a formula used in the literature for Mössbauer analysis. From X-ray diffractograms, lattice parameters a0 and intensity of superstructure reflections, due to ordering of □ in the spinel lattice, were determined as a function of the □ concentration u. The reflections are in agreement with a tetragonal cell with c0/a0=3 which has been frequently observed for γ- Fe2O3 ( u={1}/{3}) in the literature.

  20. AC losses in a HTS coil carrying DC current in AC external magnetic field

    NASA Astrophysics Data System (ADS)

    Ogawa, J.; Zushi, Y.; Fukushima, M.; Tsukamoto, O.; Suzuki, E.; Hirakawa, M.; Kikukawa, K.

    2003-10-01

    We electrically measured AC losses in a Bi2223/Ag-sheathed pancake coil excited by a DC current in AC external magnetic field. Losses in the coil contain two kinds of loss components that are the magnetization losses and dynamic resistance losses. In the measurement, current leads to supply a current to the coil were specially arranged to suppress electromagnetic coupling between the coil current and the AC external magnetic field. A double pick-up coils method was used to suppress a large inductive voltage component contained in voltage signal for measuring the magnetization losses. It was observed that the magnetization losses were dependent on the coil current and that a peak of a curve of the loss factor vs. amplitude of the AC external magnetic field shifted to lower amplitude of the AC magnetic field as the coil current increased. This result suggests the full penetration magnetic field of the coil tape decreases as the coil current increases. The dynamic resistance losses were measured by measuring a DC voltage appearing between the coil terminals. It was observed that the DC voltage appearing in the coil subject to the AC external magnetic field was much larger than that in the coil subject to DC magnetic field.

  1. Magnetization Losses in Multiply Connected YBa2Cu3O6+x-Coated Conductors (Postprint)

    DTIC Science & Technology

    2012-02-01

    penetration regime. For the YBCO -coated conductors the typical value of Jc 100 A/cm which translates into Bc 10 mT. Hereafter we estimate losses only...removal of YBCO by ablation. The measured transport criti- cal current in the 40-filament sample was close to 100 A.33 The breakeven rate defined by Eq...generation YBa2Cu3O6+x YBCO -coated conductors that are produced in the form of wide, thin tapes.12–16 A way to reduce the hysteresis loss in such tapes by

  2. Analysis and experiment of eddy current loss in Homopolar magnetic bearings with laminated rotor cores

    NASA Astrophysics Data System (ADS)

    Jinji, Sun; Dong, Chen

    2013-08-01

    This paper analyses the eddy current loss in Homopolar magnetic bearings with laminated rotor cores produced by the high speed rotation in order to reduce the power loss for the aerospace applications. The analytical model of rotational power loss is proposed in Homopolar magnetic bearings with laminated rotor cores considering the magnetic circuit difference between Homopolar and Heteropolar magnetic bearings. Therefore, the eddy current power loss can be calculated accurately using the analytical model by magnetic field solutions according to the distribution of magnetic fields around the pole surface and boundary conditions at the surface of the rotor cores. The measurement method of rotational power loss in Homopolar magnetic bearing is proposed, and the results of the theoretical analysis are verified by experiments in the prototype MSCMG. The experimental results show the correctness of calculation results.

  3. Hysteresis in Muscle

    NASA Astrophysics Data System (ADS)

    Ramos, Jorgelina; Lynch, Stephen; Jones, David; Degens, Hans

    This paper presents examples of hysteresis from a broad range of scientific disciplines and demonstrates a variety of forms including clockwise, counterclockwise, butterfly, pinched and kiss-and-go, respectively. These examples include mechanical systems made up of springs and dampers which have been the main components of muscle models for nearly one hundred years. For the first time, as far as the authors are aware, hysteresis is demonstrated in single fibre muscle when subjected to both lengthening and shortening periodic contractions. The hysteresis observed in the experiments is of two forms. Without any relaxation at the end of lengthening or shortening, the hysteresis loop is a convex clockwise loop, whereas a concave clockwise hysteresis loop (labeled as kiss-and-go) is formed when the muscle is relaxed at the end of lengthening and shortening. This paper also presents a mathematical model which reproduces the hysteresis curves in the same form as the experimental data.

  4. Contact angle hysteresis explained.

    PubMed

    Gao, Lichao; McCarthy, Thomas J

    2006-07-04

    A view of contact angle hysteresis from the perspectives of the three-phase contact line and of the kinetics of contact line motion is given. Arguments are made that advancing and receding are discrete events that have different activation energies. That hysteresis can be quantified as an activation energy by the changes in interfacial area is argued. That this is an appropriate way of viewing hysteresis is demonstrated with examples.

  5. Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Zhang, Yide (Inventor); Wang, Shihe (Inventor); Xiao, Danny (Inventor)

    2004-01-01

    A series of bulk-size magnetic/insulating nanostructured composite soft magnetic materials with significantly reduced core loss and its manufacturing technology. This insulator coated magnetic nanostructured composite is comprises a magnetic constituent, which contains one or more magnetic components, and an insulating constituent. The magnetic constituent is nanometer scale particles (1-100 nm) coated by a thin-layered insulating phase (continuous phase). While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase (or coupled nanoparticles) provide the desired soft magnetic properties, the insulating material provides the much demanded high resistivity which significantly reduces the eddy current loss. The resulting material is a high performance magnetic nanostructured composite with reduced core loss.

  6. Analysis and identification of influential phenomena on iron losses in embedded permanent magnet synchronous machine

    NASA Astrophysics Data System (ADS)

    Breznik, Mitja; Goričan, Viktor; Hamler, Anton; Čorović, Selma; Miljavec, Damijan

    2017-01-01

    This paper presents magnetic flux density behaviour in laminated electrical sheets which affects the results and precision of iron losses calculation in imbedded permanent magnet (IPM) machine. Objective of the research was to analyse all the influential phenomena that were identified through iron loss models analysis, finite element method simulations and iron loss measurements. The presence of phenomena such as harmonic content and rotational magnetic fields are confirmed with finite element method analysis of concentrated and distributed winding IPM machine. A significant magnetic flux density ripple in the rotor of concentrated winding IPM machine in comparison to distributed winding IPM machine is revealed and analysed. Behaviour that affects iron loss in the rotor of synchronous machines in the absence of first order harmonic is analysed. The DC level added to alternating magnetic flux density was used in experiment to mimic magnetic behaviour on the rotor of IPM machine and further to calculate iron losses.

  7. Magnetic Hysteresis Loop as a Tool for the Evaluation of Microstructure and Mechanical Properties of DP Steels

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Kumar, Satendra; Akela, Arbind Kumar; Prakash Rao, S.; Kaza, Marutiram

    2016-06-01

    DP steel of 1.3-mm thickness full hard sheet was heat treated at different temperatures in the range of 700-850 °C with 25 °C step for 15 min soaking followed by water quenching. The variation of the soaking temperatures leads to variation of volume fraction of martensite which was measured by image analysis software in optical microscopy. Mechanical properties of the samples were evaluated using micro Vicker's hardness test and tensile test machine. Magnetic properties of the samples were measured by MagStar to correlate with the microstructure and mechanical properties of the samples. It was observed that the coercivity of the samples increased linearly with the increase in volume fraction of martensite and mechanical properties. Hence monitoring coercivity would help non-destructive evaluation of mechanical properties of the DP steels. Additionally, it would also helpful for the non-destructive evaluation of variation in heat treatment conditions since coercivity also found to increase linearly with the increase in soaking temperature.

  8. Hysteresis in Metal Hydrides.

    ERIC Educational Resources Information Center

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  9. Prediction method of flux loss in anisotropic NdFeB/SmFeN hybrid magnets

    NASA Astrophysics Data System (ADS)

    Fukunaga, Hirotoshi; Murata, Hiroki; Yanai, Takeshi; Nakano, Masaki; Yamashita, Fumitoshi

    2010-05-01

    We systematically evaluated the initial flux loss of anisotropic HDDR-NdFeB/RD-SmFeN hybrid bonded magnets. The measured flux loss values were compared with those obtained by two prediction methods based on our previous proposal. Consequently, it was clarified that the initial flux loss of anisotropic bonded magnets can be predicted from demagnetization curves at room and exposure temperatures of the corresponding hybrid magnets, which suggests that the method proposed previously for isotropic magnets can be also applicable to anisotropic ones.

  10. Mesoscopic magnetomechanical hysteresis in a magnetorheological elastomer.

    PubMed

    Biller, A M; Stolbov, O V; Raikher, Yu L

    2015-08-01

    Field-induced magnetostatic interaction in a pair of identical particles made of a magnetically soft ferromagnet is studied. It is shown that due to saturation of the ferromagnet magnetization, this case differs significantly from the (super)paramagnetic one. A numerical solution is given, discussed, and compared with that provided by a simpler model (nonlinear mutual dipoles). We show that for multidomain ferromagnetic particles embedded in an elastomer matrix, as for paramagnetic ones in the same environment, pair clusters may form or break by a hysteresis scenario. However, the magnetization saturation brings in important features to this effect. First, the bistability state and the hysteresis take place only in a limited region of the material parameters of the system. Second, along with the hysteresis jumps occurring under the sole influence of the field, the "latent" hysteresis is possible which realizes only if the action of the field is combined with some additional (nonmagnetic) external factor. The obtained conditions, when used to assess the possibility of clustering in real magnetorheological polymers, infer an important role of mesoscopic magnetomechanical hysteresis for the macroscopic properties of these composites.

  11. The simulation of low core loss high speed permanent magnet motor based on soft-magnetic ferrite

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Fang, Xue; Guo, Yingjie; Wang, Xiuhe

    2006-11-01

    High core loss is the most outstanding problem in high speed permanent magnet motors. To solve this problem, water cooling or oil cooling is usually adopted, which increase the complexity and cost. Considering the characters of high permeability, high resistivity, low loss and low cost for soft magnetic ferrite, this paper proposes a novel high speed PM motor based on soft magnetic ferrite. Soft magnetic ferrite ring is used as stator core, rare earth PM ring serves as the rotor poles, and the slotless configuration with long effective air gap is adopted. The size matching design between the stator magnetic ring and the PM magnetic ring can make themselves work in their best operating points respectively, lower core loss and higher power density will be ensured in the motor. The results of magnetic field analysis, core loss analysis and the prototype test prove that the core loss can be greatly reduced, which verifies that the high speed PM BLDC motor based on soft magnetic ferrite is feasible.

  12. Transient multi-physics analysis of a magnetorheological shock absorber with the inverse Jiles-Atherton hysteresis model

    NASA Astrophysics Data System (ADS)

    Zheng, Jiajia; Li, Yancheng; Li, Zhaochun; Wang, Jiong

    2015-10-01

    This paper presents multi-physics modeling of an MR absorber considering the magnetic hysteresis to capture the nonlinear relationship between the applied current and the generated force under impact loading. The magnetic field, temperature field, and fluid dynamics are represented by the Maxwell equations, conjugate heat transfer equations, and Navier-Stokes equations. These fields are coupled through the apparent viscosity and the magnetic force, both of which in turn depend on the magnetic flux density and the temperature. Based on a parametric study, an inverse Jiles-Atherton hysteresis model is used and implemented for the magnetic field simulation. The temperature rise of the MR fluid in the annular gap caused by core loss (i.e. eddy current loss and hysteresis loss) and fluid motion is computed to investigate the current-force behavior. A group of impulsive tests was performed for the manufactured MR absorber with step exciting currents. The numerical and experimental results showed good agreement, which validates the effectiveness of the proposed multi-physics FEA model.

  13. In-plane hysteresis of permalloy nanorings: a study of micromagnetic simulation

    NASA Astrophysics Data System (ADS)

    Mishra, A. C.

    2015-09-01

    Magnetic hysteresis of isotropic permalloy nanorings with outer diameter 200 nm and thickness 20 nm has been studied. The inner diameter is varied from 0 to 190 nm to accommodate wide range of samples from nanodisk to thin nanorings. Micromagnetic simulation of in-plane hysteresis curve of these nanorings reveals that the magnetic properties change gradually with the change of inner diameter. The hysteresis loss indicated by the area of the hysteresis loop, increases gradually with the increase in inner radius up to d in = 174 nm. For inner diameter of 176 nm, the loop area decreases drastically and remains so for up to d in = 180 nm. After that, a small increment of d in results in a large increment of loop area. The remanent states are found to be vortex states for d in = 0-180 nm and onion states for d in > 180 nm. The changes are attributed to two parameters mainly: exchange energy and demagnetization energy. These two parameters depend on inner curvature of the ring, which is treated as a variable in this simulation work. The changes in loop area have been discussed in light of variation of these parameters.

  14. Performance Calculation of High Temperature Superconducting Hysteresis Motor Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Konar, G.; Chakraborty, N.; Das, J.

    Hysteresis motors being capable of producing a steady torque at low speeds and providing good starting properties at loaded condition became popular among different fractional horse power electrical motors. High temperature superconducting materials being intrinsically hysteretic are suitable for this type of motor. In the present work, performance study of a 2-pole, 50 Hz HTS hysteresis motor with conventional stator and HTS rotor has been carried out numerically using finite element method. The simulation results confirm the ability of the segmented HTS rotor with glued circular sectors to trap the magnetic field as high as possible compared to the ferromagnetic rotor. Also the magnetization loops in the HTS hysteresis motor are obtained and the corresponding torque and AC losses are calculated. The motor torque thus obtained is linearly proportional to the current which is the common feature of any hysteresis motor. Calculations of torques, current densities etc are done using MATLAB program developed in-house and validated using COMSOL Multiphysics software. The simulation result shows reasonable agreement with the published results.

  15. Total AC loss characteristics of untwisted and twisted Bi-2223 multifilamentary tapes and interaction between self and external magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenan; Amemiya, Naoyuki; Ayai, Naoki; Hayashi, Kazuhiko

    2004-11-01

    The authors have electrically measured the total AC losses of untwisted and twisted Bi-2223 multifilamentary tapes in AC parallel and perpendicular transverse magnetic fields. The magnetization and transport losses in the untwisted and twisted Bi-2223 multifilamentary tapes carrying an AC transport current in AC parallel and perpendicular transverse magnetic fields were measured independently to obtain the total AC loss. The total AC losses of both the untwisted and twisted Bi-2223 multifilamentary tapes in a parallel transverse magnetic field are approximately equal to the sum of the transport loss without the external magnetic field and the magnetization loss without the transport current. In particular, the total AC loss of the twisted tape in a parallel transverse magnetic field is in good agreement with this sum. On the other hand, the total AC losses of both the untwisted and twisted Bi-2223 multifilamentary tapes in a perpendicular transverse magnetic field are larger than the sum of the transport loss without any external magnetic field and the magnetization loss without transport current. The total AC loss of the twisted tape in a parallel transverse magnetic field can be predicted by the sum of the magnetization loss using the slab model for an equivalent filament thickness and the transport loss given by Norris for a superconductor with an elliptical cross section.

  16. Hysteresis and Fatigue

    NASA Astrophysics Data System (ADS)

    Erber, T.; Guralnick, S. A.; Michels, S. C.

    1993-06-01

    Fatigue in materials is the result of cumulative damage processes that are usually induced be repeated loading cycles. Since the energy dissipation associated with damage is irreversible, and the loading cycles are accompanied by the evolution of heat, the corresponding relation between stress and strain is not single-valued; but rather exhibits a memory dependence, or hysteresis. Conversely, sustained hysteresis is a necessary condition for fatigue and is related to the rate of damage accumulation. Engineering design and safety standards for estimating fatigue life are based in part on the Manson-Coffin relations between the width of stress-strain hysteresis loops and the number of loading cycles required to produce failure in test pieces. Experimental and theoretical results show that this relation can be extended into a simple phenomenological description of fatigue that directly links total hysteresis energy dissipation, the cumulation of material damage, and the average number of loading cycles leading to failure. Detailed features of the hysteresis can be understood with the help of analogies between the incremental collapse of structures and the inception and organization of damage in materials. In particular, scanning tunneling microscope measurements of the threshold of mechanical irreversibility and acoustic emission patterns may be used to check on the evolution of hysteresis at the microscopic level.

  17. Hysteresis and fatigue

    SciTech Connect

    Erber, T. ); Guralnick, S.A.; Michels, S.C. )

    1993-06-01

    Energy dissipation associated with damage of materials is irreversible and loading cycles are accompanied by the evolution of heat. The relation between energy dissipation and loading therefore exhibits a memory dependence or hysteresis. Conversely, sustained hysteresis is a necessary condition for fatigue and is related to the rate of damage accumulation. Standards for estimating fatigue life are partially based on the Manson-Coffin relations between the width of stress strain hysteresis loops and the number of loading cycles required to produce failure in test pieces. In the present study, experimental and theoretical results demonstrate that this relation can be extended into a simple phenomenological description of fatigue that directly links total hysteresis energy dissipation, the cumulation of material damage, and the average number of loading cycles leading to failure. Analogies between the incremental collapse of structures and the inception and organization of damage in materials are used to aid understanding of the detailed features of hysteresis. Scanning tunneling microscope measurements of the threshold of mechanical irreversibility and acoustic emission patterns are used to detect the evolution of hysteresis at the microscopic level. 61 refs., 14 figs., 1 tab.

  18. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-15

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  19. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-01

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ωeτe≫1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ωeτe as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  20. Role of reversible susceptibility in ferromagnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Schneider, Carl S.

    2002-05-01

    An equation of state based upon saturation magnetization, Ms, coercive field, Hc, and the reversible susceptibility function of magnetization is proposed for ferromagnetic hysteresis. Reversible susceptibility divided by the initial susceptibility is the anisotropy function of magnetization, χr, ranging from one in the demagnetized state to zero at saturation, and varying with magnetic history. Its dependence on scaled magnetization, m=M/Ms on the interval (-1,1) varies with material, allowing characterization of anisotropy classes. Precise measurements have been made of reversible susceptibility, initial and saturate magnetization curves, and loops for Orthonol™, annealed 3% nickel steel and as-received 1018 steel, representing crystals, isotropic polycrystals and composite ferromagnets, respectively. Magnetization change is the product of the reversible susceptibility, change in the applied field and the cooperative function due to domain interactions. This function is 1+βm for the virgin curve with half this slope from any reversal, where β=Ms/XiHc is the hysteresis coefficient. Variation of β for 1018 steel is due to distributed coercivities, and causes sigmoid B(H) curves. In the scaled field representation, where h=H/Hc, the cooperative function is 1/(1-hχr), a hyperbolic field dependence smeared by the anisotropy function. Constant anisotropy causes closed hysteresis loops, while variable anisotropy causes creeping of cycled asymmetric loops. In ferromagnetism, 1/χ=1/χr-h, normal scaled reluctivity is reduced from its reversible value by the scaled field.

  1. Correlation of AC Loss Data from Magnetic Susceptibility Measurements with YBCO Film Quality (Postprint)

    DTIC Science & Technology

    2012-02-01

    excimer laser operating at the KrF, 248 nm , wavelength. Substrates included LaAlO3 ( 100 ) and SrTiO3 ( 100 ) single crystal substrates as well as buffered...AFRL-RZ-WP-TP-2012-0100 CORRELATION OF AC LOSS DATA FROM MAGNETIC SUSCEPTIBILITY MEASUREMENTS WITH YBCO FILM QUALITY (POSTPRINT) Paul N...CORRELATION OF AC LOSS DATA FROM MAGNETIC SUSCEPTIBILITY MEASUREMENTS WITH YBCO FILM QUALITY (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT

  2. Nonlinear electromagnetic effects on magnetic bearing performance and power loss

    NASA Astrophysics Data System (ADS)

    Kenny, Andrew

    Magnetic bearings are now being used in many applications. One of their features is their ability to apply force without contact. Thus they do not wear out from friction and are quiet. Magnetic bearings have very low levels of parasitic drag torque and force, especially at lower speeds. Active magnetic bearings can utilize microprocessors and feedback to control or excite vibrations in a manner that is unique from all other types of bearings. This dissertation presents methods to design magnetic bearings and makes some advances to them. The circuit model equations for a homopolar bearing are presented and a solution is found including the effects of magnetic flux saturation and laminate stacking. Circuit model equations for thrust bearings are presented. Linearized frequency dependent reluctance elements are incorporated into these equations. The equations are arranged to predict the frequency dependence of thrust bearings and the predictions agree with measurements. Finite element models are used extensively to back up the circuit model results. The drag torque caused by high rotation speed is calculated by the finite element method. The accuracy of these calculations is confirmed by comparison to measurements available in previously published experiments. Predictions of the drag torque in homopolar bearing rotor spacers are presented. The finite element method is also used to confirm the performance equations derived for a novel thrust bearing and a novel radial bearing, and it is also used to confirm the advanced circuit equations which are demonstrated on homopolar bearings.

  3. Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2016-01-18

    Reversibility of the magnetocaloric effect in materials with first-order magnetostructural transformation is of vital significance for practical magnetic refrigeration applications. Here, we report a large reversible magnetocaloric effect in a Ni49.8Co1.2Mn33.5In15.5 magnetic shape memory alloy. A large reversible magnetic entropy change of 14.6 J/(kg K) and a broad operating temperature window of 18 K under 5 T were simultaneously achieved, correlated with the low thermal hysteresis (-8 K) and large magnetic-field-induced shift of transformation temperatures (4.9 K/T) that lead to a narrow magnetic hysteresis (1.1 T) and small average magnetic hysteresis loss (48.4 J/kg under 5 T) as well. Furthermore, a large reversible effective refrigeration capacity (76.6 J/kg under 5 T) was obtained, as a result of the large reversible magnetic entropy change, broad operating temperature window, and small magnetic hysteresis loss. The large reversible magnetic entropy change and large reversible effective refrigeration capacity are important for improving the magnetocaloric performance, and the small magnetic hysteresis loss is beneficial to reducing energy dissipation during magnetic field cycle in potential applications.

  4. Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2016-01-01

    Reversibility of the magnetocaloric effect in materials with first-order magnetostructural transformation is of vital significance for practical magnetic refrigeration applications. Here, we report a large reversible magnetocaloric effect in a Ni49.8Co1.2Mn33.5In15.5 magnetic shape memory alloy. A large reversible magnetic entropy change of 14.6 J/(kg K) and a broad operating temperature window of 18 K under 5 T were simultaneously achieved, correlated with the low thermal hysteresis (˜8 K) and large magnetic-field-induced shift of transformation temperatures (4.9 K/T) that lead to a narrow magnetic hysteresis (1.1 T) and small average magnetic hysteresis loss (48.4 J/kg under 5 T) as well. Furthermore, a large reversible effective refrigeration capacity (76.6 J/kg under 5 T) was obtained, as a result of the large reversible magnetic entropy change, broad operating temperature window, and small magnetic hysteresis loss. The large reversible magnetic entropy change and large reversible effective refrigeration capacity are important for improving the magnetocaloric performance, and the small magnetic hysteresis loss is beneficial to reducing energy dissipation during magnetic field cycle in potential applications.

  5. Adsorption hysteresis in nanopores

    PubMed

    Neimark; Ravikovitch; Vishnyakov

    2000-08-01

    Capillary condensation hysteresis in nanopores is studied by Monte Carlo simulations and the nonlocal density functional theory. Comparing the theoretical results with the experimental data on low temperature sorption of nitrogen and argon in cylindrical channels of mesoporous siliceous molecular sieves of MCM-41 type, we have revealed four qualitatively different sorption regimes depending on the temperature and pore size. As the pore size increases at a given temperature, or as the temperature decreases at a given pore size, the following regimes are consequently observed: volume filling without phase separation, reversible stepwise capillary condensation, irreversible capillary condensation with developing hysteresis, and capillary condensation with developed hysteresis. We show that, in the regime of developed hysteresis (pores wider than 5 nm in the case of nitrogen sorption at 77 K), condensation occurs spontaneously at the vaporlike spinodal while desorption takes place at the equilibrium. A quantitative agreement is found between the modeling results and the experimental hysteresis loops formed by the adsorption-desorption isotherms. The results obtained provide a better understanding of the general behavior of confined fluids and the specifics of sorption and phase transitions in nanomaterials.

  6. Using radiative energy losses to constrain the magnetization and magnetic reconnection rate at the base of black hole jets

    NASA Astrophysics Data System (ADS)

    Potter, William J.

    2017-02-01

    We calculate the severe radiative energy losses which occur at the base of black hole jets using a relativistic fluid jet model, including in situ acceleration of non-thermal leptons by magnetic reconnection. Our results demonstrate that including a self-consistent treatment of radiative energy losses is necessary to perform accurate magnetohydrodynamic simulations of powerful jets and that jet spectra calculated via post-processing are liable to vastly overestimate the amount of non-thermal emission. If no more than 95 per cent of the initial total jet power is radiated away by the plasma travels as it travels along the length of the jet, we can place a lower bound on the magnetization of the jet plasma at the base of the jet. For typical powerful jets, we find that the plasma at the jet base is required to be highly magnetized, with at least 10 000 times more energy contained in magnetic fields than in non-thermal leptons. Using a simple power-law model of magnetic reconnection, motivated by simulations of collisionless reconnection, we determine the allowed range of the large-scale average reconnection rate along the jet, by restricting the total radiative energy losses incurred and the distance at which the jet first comes into equipartition. We calculate analytic expressions for the cumulative radiative energy losses due to synchrotron and inverse-Compton emission along jets, and derive analytic formulae for the constraint on the initial magnetization.

  7. Polarizing Field and Particle Concentration Dependence of the Magnetic Loss Power in Ferrofluids

    NASA Astrophysics Data System (ADS)

    Fannin, Paul C.; Malaescu, Iosif; Stefu, Nicoleta; Marin, Catalin N.

    2009-05-01

    The frequency (f) and polarizing field (H) dependence of the complex magnetic permeability μ(f,H) = μ'(f,H)-iμ″(f,H), of different magnetic fluid samples, over the range 100 MHz to 6 GHz and 0 to 102.4 kA/m, respectively, were analyzed. Starting from an initial magnetic fluid sample (sample A) with magnetite particles dispersed in kerosene and stabilized with oleic acid, having particle concentration n = 19.16ṡ1022 m-3, three samples were obtained by successive dilution with kerosene (with a dilution ratio 2:3) (samples A1, A2, and A3). Based on the complex magnetic permeability measurements of each sample, and for each field value, values of the specific magnetic loss power were obtained. We have also studied the dependence on particle concentration of the magnetic loss power, both in zero polarizing field and in the presence of the polarizing field.

  8. Realization of small intrinsic hysteresis with large magnetic entropy change in La{sub 0.8}Pr{sub 0.2}(Fe{sub 0.88}Si{sub 0.10}Al{sub 0.02}){sub 13} by controlling itinerant-electron characteristics

    SciTech Connect

    Fujita, A.; Matsunami, D.; Yako, H.

    2014-03-24

    Tuning of phase-transition characteristics in La(Fe{sub x}Si{sub 1−x}){sub 13} was conducted in view of the correlation between microscopic itinerant electron natures and macroscopic thermodynamic (magnetocaloric) quantities. To realize a small hysteresis loss Q{sub H} accompanied by a large magnetic entropy change ΔS{sub M} in La(Fe{sub x}Si{sub 1−x}){sub 13}, two types of modulation based on itinerant electron characteristics, namely, the Fermi-level shift and the magnetovolume effect were combined by complex partial substitution of Al and Pr. Ab-initio calculations predict the reduction of a transition hysteresis owing to the Fermi-level shift after partial substitution of Al. On the other hand, the chemical pressure arisen from partial substitution of Pr enhances ΔS{sub M} through magnetovolume effect. The selective enhancement of ΔS{sub M} apart from Q{sub H} by the magnetovolume effect is well explained by the phenomenological Landau model. Consequently, ΔS{sub M} of La{sub 0.8}Pr{sub 0.2}(Fe{sub 0.88}Si{sub 0.10}Al{sub 0.02}){sub 13} is −18 J/kg K under a magnetic field change of 0–1.2 T, while the maximum value of Q{sub H} becomes 1/6 of that for La(Fe{sub 0.88}Si{sub 0.12}){sub 13}.

  9. Hot spot model of MagLIF implosions: Nernst term effect on magnetic flux losses

    NASA Astrophysics Data System (ADS)

    Garcia Rubio, Fernando; Sanz Recio, Javier; Betti, Riccardo

    2016-10-01

    An analytical model of a collisional plasma being compressed by a cylindrical liner is proposed and solved in a magnetized liner inertial fusion-like context. The implosion is assumed to be isobaric, and the magnetic diffusion is confined to a thin layer near the liner. Both unmagnetized and magnetized plasma cases are considered. The model reduces to a system of two partial differential equations for temperature and magnetic field. Special attention is given to the effect of the Nernst term on the evolution of the magnetic field. Scaling laws for temperature, magnetic field, hot spot mass increase and magnetic field losses are obtained. The temperature and magnetic field spatial profiles tend to a self-similar state. It is found that when the Nernst term is taken into account, the magnetic field is advected towards the liner, and the magnetic flux losses are independent of the magnetic Lewis number. Research supported by the Spanish Ministerio de Economía y Competitividad, Project No. ENE2014-54960R. Acknowledgements to the Laboratory of Laser Energetics (Rochester) for its hospitality.

  10. The hysteresis behavior of an Ising nanowire with core/shell morphology: Monte Carlo treatment

    NASA Astrophysics Data System (ADS)

    Boughazi, B.; Boughrara, M.; Kerouad, M.

    2014-08-01

    We have used Monte Carlo Simulations (MCS) to study the hysteresis behavior of the magnetic nanowire with core/shell morphology described by the spin {1}/{2} Ising particles in the core and the spin {3}/{2} Ising particles in the surface shell. The hysteresis curves are obtained for different temperatures. We find that the hysteresis loop areas decrease when the temperature increases and the hysteresis loops disappear at certain temperatures. Barkhausen jumps are observed for the ferromagnetic nanowire system. An unusual form of triple hysteresis behaviors is observed for the ferrimagnetic nanowire system. The thermal behaviors of the coercivity and the remanent magnetization are also investigated.

  11. Decrease of magnetic AC loss in twisted-filament Bi-2223 tapes

    NASA Astrophysics Data System (ADS)

    Oomen, M. P.; Rieger, J.; Leghissa, M.; Fischer, B.; Arndt, Th.

    1998-12-01

    In AC power-engineering applications, a large part of the AC loss in the superconductor is due to magnetization by the external field. This magnetic AC loss has been well described for the low- Tc conductors. In Bi-2223 tapes the picture is different due to strong anisotropy, granularity and flux creep. Magnetic AC loss in various twisted and non-twisted Bi-2223 tapes has been measured at power frequencies by a pickup method. The results are compared to theoretical models of magnetization loss. When the field is parallel to the tape plane, the filaments in twisted tapes can be decoupled and the AC loss is decreased even when the matrix is pure silver. The extra effect of higher-resistance matrix materials is studied. In perpendicular field it is more difficult to decouple the filaments, due to the particular tape geometry. Contrary to a wire, there are essential differences between the AC loss mechanisms in a long twisted tape and those in a short piece of non-twisted tape. Finally, the dynamic resistance caused by the AC magnetic field is examined.

  12. Novel magnetic core materials impact modelling and analysis for minimization of RF heating loss

    NASA Astrophysics Data System (ADS)

    Ghosh, Bablu Kumar; Mohamad, Khairul Anuar; Saad, Ismail

    2016-02-01

    The eddy current that exists in RF transformer/inductor leads to generation of noise/heat in the circuit and ultimately reduces efficiency in RF system. Eddy current is generated in the magnetic core of the inductor/transformer largely determine the power loss for power transferring process. The losses for high-frequency magnetic components are complicated due to both the eddy current variation in magnetic core and copper windings reactance variation with frequency. Core materials permeability and permittivity are also related to variation of such losses those linked to the operating frequency. This paper will discuss mainly the selection of novel magnetic core materials for minimization of eddy power loss by using the approach of empirical equation and impedance plane simulation software TEDDY V1.2. By varying the operating frequency from 100 kHz to 1GHz and magnetic flux density from 0 to 2 Tesla, the eddy power loss is evaluated in our study. The Nano crystalline core material is found to be the best core material due to its low eddy power loss at low conductivity for optimum band of frequency application.

  13. Hybrid superconducting magnetic bearing and its frictional energy loss and dynamics

    SciTech Connect

    Xia, Z.; Ma, K.B.; Chen, Q.Y.; Cooley, R.R.

    1995-12-31

    A hybrid superconducting magnetic bearing (SMB) has been designed and tested. A flywheel energy storage (FES) prototype has been constructed for testing bearing friction loss and characterizing the dynamics of the rotor. The hybrid SMB design uses magnetic forces from permanent magnets for levitation and high temperature superconductor YBCO in between the magnets for stabilization. A 42 lb. flywheel currently can rotate up to 6,000 RPM with kinetic energy of 8 Wh stored. The result from the recent rotor spin-down experiment indicates an average frictional energy loss <2% per hour in a vacuum of 10 {sup {minus}5} torr, with imperfect system alignment and balance of rotor. The system dynamics has been conducted to improve upon the energy loss and rotor-bearing modeling.

  14. AC loss evaluation of an HTS insert for high field magnet cooled by cryocoolers

    NASA Astrophysics Data System (ADS)

    Kajikawa, Kazuhiro; Awaji, Satoshi; Watanabe, Kazuo

    2016-12-01

    AC losses in a high temperature superconducting (HTS) insert coil for 25-T cryogen-free superconducting magnet during its initial energization are numerically calculated under the assumption of slab approximation. The HTS insert consisting of 68 single pancakes wound using coated conductors generates a central magnetic field of 11.5 T in addition to the contribution of 14.0 T from a set of low temperature superconducting (LTS) outsert coils. Both the HTS insert and the LTS coils are cooled using cryocoolers, and energized simultaneously up to the central field of 25.5 T with a constant ramp rate for 60 min. The influences of the magnitudes and orientations of locally applied magnetic fields, magnetic interactions between turns and transport currents flowing in the windings are taken into account in the calculations of AC losses. The locally applied fields are separated into axial and radial components, and the individual contributions of these field components to the AC losses are simply summed up to obtain the total losses. The AC losses due to the axial fields become major in the beginning of energization, whereas the total losses monotonically increase with time after the AC losses due to the radial fields become major.

  15. Macroscopic theory for capillary-pressure hysteresis.

    PubMed

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-03

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials.

  16. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    SciTech Connect

    Kispert, Lowell D; Focsan, A Ligia; Konovalova, Tatyana A; Lawrence, Jesse; Bowman, Michael K; Dixon, David A; Molnar, Peter; Deli, Jozsef

    2007-06-11

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car•+) but also neutral radicals (#Car•) by proton loss from the methyl groups at positions 5 or 5', and possibly 9 or 9' and 13 or 13'. Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car•+ which agree with the ENDOR for carotenoid α-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity [Lycopene (III) versus 8'-apo-β-caroten-8'-al (IV)]; hydrogen bonding [Lutein (V) versus III]; host [silica-alumina versus MCM-41 molecular sieve]; and substituted metal in MCM-41. Loss of H+ from the 5(5'), 9(9') or 13(13') methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I •+…Chl•-), lower in energy than 1Chl*. Formation of I •+ results in bond lengthening, a mechanism for nonradiative energy

  17. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel

    NASA Astrophysics Data System (ADS)

    Tang, Jiqiang; Sun, Jinji; Fang, Jiancheng; Shuzhi Sam, Ge

    2013-03-01

    For a magnetically suspended momentum flywheel (MSMF), the spinning rotor can be tilted by a pair of the presented axial hybrid magnetic bearing (AHMB) with eight poles and rotates around the radial axes to generate a large torque to maneuver the spacecraft. To improve the control performance and gimballing control ability of the AHMB, characteristics such as magnetic suspension force, angular stiffness and tilting momentum are researched. These segmented stator poles cause the magnetic density in the thrust rotor plate to be uneven unavoidably and the rotational loss is large at high speed, but we optimized the stator poles configuration and caused the thrust rotor plate formed by bulk DT4C and laminated material to make the magnetic density in the thrust rotor plate change less and be smoother. Laminated material such as 1J50 film with a thickness of 0.1 mm can make the variation of the magnetic density in DT4C become very small and the eddy loss of it be negligible, but the stress produced in the “O” shape stacks by reeling has a bad effect on its power loss. Nanocrystalline can reduce eddy losses and is not affected by the reeling process. Based on the AHBM consisting of the stator with eight improved poles and the presented thrust rotor plate with DT4 and nanocrystalline, the rotational loss of 5-DOF magnetically suspended momentum flywheel with angular momentum of 15 N m s at 5000 rpm has reduced from 23.4 W to 3.2 W, which proved that this AHMB has low eddy loss for the gimballing control ability.

  18. The electric properties of low-magnetic-loss magnetic composites containing Zn-Ni-Fe particles

    NASA Astrophysics Data System (ADS)

    Hidaka, Nobuhiro; Ishitsuka, Masayuki; Shirakata, Yasushi; Teramoto, Akinobu; Ohmi, Tadahiro

    2009-10-01

    Recently, magnetic composites consisting of magnetic particles dispersed in a polymer matrix have been widely discussed for miniaturizing high-frequency electronic components such as antennae. Previously, we investigated the influence of the manufacturing process on the homogeneous dispersion of magnetic particles in the polymer and on the magnetic properties of the magnetic composites. In order to miniaturize electronic components, it is crucial to be able to independently control the permeability and permittivity in magnetic composites. This paper investigates the anisotropy and frequency dependence of the dielectric properties of magnetic composites fabricated from 20 vol% Zn5Ni75Fe20 flaked particles. The permittivity of magnetic composites fabricated from Zn5Ni75Fe20 flaked particles is anisotropic: at 1 GHz, the relative permittivities parallel and perpendicular to the plane of the specimens are 27.2 and 16.9, respectively. The permittivity varied little between frequencies of 50 MHz and 10 GHz.

  19. Calorimetric method of ac loss measurement in a rotating magnetic field.

    PubMed

    Ghoshal, P K; Coombs, T A; Campbell, A M

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-T(c) superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  20. Calorimetric method of ac loss measurement in a rotating magnetic field

    SciTech Connect

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  1. Calorimetric method of ac loss measurement in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-Tc superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  2. Estimation of the Iron Loss in Deep-Sea Permanent Magnet Motors considering Seawater Compressive Stress

    PubMed Central

    Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress. PMID:25177717

  3. Estimation of the iron loss in deep-sea permanent magnet motors considering seawater compressive stress.

    PubMed

    Xu, Yongxiang; Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress.

  4. Calorimetry in superfluid He II to measure losses in superconducting magnets

    SciTech Connect

    Caspi, S.

    1982-04-01

    A method using calorimetry to measure magnet losses in pressurized Helium II is described. The isothermal nature of He II is used in measuring the overall heat capacity of the system and the net refrigeration power. During the measurements, the refrigeration power is held fixed, and the system (400 liters) temperature is near 1.92 K. The calorimetric measurement was calibrated against known power inputs between 1 and 20 W. This technique can even measure heat loads higher than the available refrigeration. Results of loss measurement on two dipole magnets are reported.

  5. Hysteresis in structural dynamics

    NASA Astrophysics Data System (ADS)

    Ivanyi, A.; Ivanyi, P.; Ivanyi, M. M.; Ivanyi, M.

    2012-05-01

    In this paper the Preisach hysteresis model is applied to determine the dynamic behavior of a steel column with mass on the top and loaded by an impulse force. The column is considered as a rigid element, while the fixed end of the column is modeled with a rotational spring of hysterestic characteristic. In the solution of the non-linear dynamical equation of motion the fix-point technique is inserted to the time marching iteration. In the investigation the non-linearity of the rotation spring is modeled with the Preisach hysteresis model. The variation of amplitude and the action time interval of force are changing. The results are plotted in figures.

  6. Energy loss of ions by electric-field fluctuations in a magnetized plasma

    SciTech Connect

    Nersisyan, Hrachya B.; Deutsch, Claude

    2011-06-15

    The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle.

  7. Energy loss of ions by electric-field fluctuations in a magnetized plasma.

    PubMed

    Nersisyan, Hrachya B; Deutsch, Claude

    2011-06-01

    The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle.

  8. Hysteresis of ionization waves

    SciTech Connect

    Dinklage, A.; Bruhn, B.; Testrich, H.; Wilke, C.

    2008-06-15

    A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

  9. Magnetic testing

    NASA Technical Reports Server (NTRS)

    Pasley, R. L.; Barton, J. R.

    1973-01-01

    Magnetic techniques are described for the nondestructive evaluation of defects in materials. The physical principles, and the magnetic-particle method are discussed along with magnetic-hysteresis measurements and electric current perturbations.

  10. Hysteresis Regime in the Operation of a Dual-Free-Layer Spin-Torque Nano-Oscillator with Out-of-Plane Counter-Precessing Magnetic Moments

    DTIC Science & Technology

    2013-07-21

    perpendicular polarizer has been suggested and demon- strated experimentally. In the STNO proposed in [28] the free magnetic layer (FL) was situated between...the ∗Electronic address: ovp@univ.kiev.ua perpendicular polarizer and an in-plane magnetized ref- erence layer . The magnetization of the free layer ... perpendicular magnetization of the reference layer results in the microwave-frequency oscillations of the device re- sistance transformed in a microwave

  11. A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber

    SciTech Connect

    Candiani, A.; Argyros, A.; Leon-Saval, S. G.; Lwin, R.; Selleri, S.; Pissadakis, S.

    2014-03-17

    We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

  12. Calculations on Hard Ferroelectric PbZr1-xTixO3 Dynamic Hysteresis

    NASA Astrophysics Data System (ADS)

    Hamad, Mahmoud A.

    2017-02-01

    A phenomenological model was modified for dynamic hysteresis loops of hard ferroelectric PbZr1-xTixO3 (PZT). The comparison with experimental results showed that the modified model can reproduce polarization versus an electric field. A predicted hysteresis loss of hard ferroelectric PZT was formulated and estimated. The calculations showed an increase in hysteresis loss with a decrease of frequency at a 40-kV/cm electric field amplitude.

  13. Magnetic field structure influence on primary electron cusp losses for micro-scale discharges

    SciTech Connect

    Dankongkakul, Ben; Araki, Samuel J.; Wirz, Richard E.

    2014-04-15

    An experimental effort was used to examine the primary electron loss behavior for micro-scale (≲3 cm diameter) discharges. The experiment uses an electron flood gun source and an axially aligned arrangement of ring-cusps to guide the electrons to a downstream point cusp. Measurements of the electron current collected at the point cusp show an unexpectedly complex loss pattern with azimuthally periodic structures. Additionally, in contrast to conventional theory for cusp losses, the overall radii of the measured collection areas are over an order of magnitude larger than the electron gyroradius. Comparing these results to Monte Carlo particle tracking simulations and a simplified analytical analysis shows that azimuthal asymmetries of the magnetic field far upstream of the collection surface can substantially affect the electron loss structure and overall loss area.

  14. Calculations of alpha particle loss for reversed magnetic shear in the Tokamak Fusion Test Reactor

    SciTech Connect

    Redi, M.H.; White, R.B.; Batha, S.H.; Levinton, F.M.; McCune, D.C.

    1997-03-01

    Hamiltonian coordinate, guiding center code calculations of the toroidal field ripple loss of alpha particles from a reversed shear plasma predict both total alpha losses and ripple diffusion losses to be greater than those from a comparable non-reversed magnetic shear plasma in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. High central q is found to increase alpha ripple losses as well as first orbit losses of alphas in the reversed shear simulations. A simple ripple loss model, benchmarked against the guiding center code, is found to work satisfactorily in transport analysis modelling of reversed and monotonic shear scenarios. Alpha ripple transport on TFTR affects ions within r/a=0.5, not at the plasma edge. The entire plasma is above threshold for stochastic ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped 3.5 MeV alphas are lost stochastically or through prompt losses. The 40% alpha particle loss predictions for TFTR suggest that reduction of toroidal field ripple will be a critical issue in the design of a reversed shear fusion reactor.

  15. Ramping turn-to-turn loss and magnetization loss of a No-Insulation (RE)Ba2Cu3Ox high temperature superconductor pancake coil

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Song, H.; Yuan, W.; Jin, Z.; Hong, Z.

    2017-03-01

    This paper is to study ramping turn-to-turn loss and magnetization loss of a no-insulation (NI) high temperature superconductor (HTS) pancake coil wound with (RE)Ba2Cu3Ox (REBCO) conductors. For insulated (INS) HTS coils, a magnetization loss occurs on superconducting layers during a ramping operation. For the NI HTS coil, additional loss is generated by the "bypassing" current on the turn-to-turn metallic contacts, which is called "turn-to-turn loss" in this study. Therefore, the NI coil's ramping loss is much different from that of the INS coil, but few studies have been reported on this aspect. To analyze the ramping losses of NI coils, a numerical method is developed by coupling an equivalent circuit network model and a H-formulation finite element method model. The former model is to calculate NI coil's current distribution and turn-to-turn loss, and the latter model is to calculate the magnetization loss. A test NI pancake coil is wound with REBCO tapes and the reliability of this model is validated by experiments. Then the characteristics of the NI coil's ramping losses are studied using this coupling model. Results show that the turn-to-turn loss is much higher than the magnetization loss. The NI coil's total ramping loss is much higher than that of its insulated counterpart, which has to be considered carefully in the design and operation of NI applications. This paper also discusses the possibility to reduce NI coil's ramping loss by decreasing the ramping rate of power supply or increasing the coil's turn-to-turn resistivity.

  16. Hysteresis in Transport Critical-Current Measurements of Oxide Superconductors.

    PubMed

    Goodrich, L F; Stauffer, T C

    2001-01-01

    We have investigated magnetic hysteresis in transport critical-current (I c) measurements of Ag-matrix (Bi,Pb)2Sr2Ca2Cu3O10- x (Bi-2223) and AgMg-matrix Bi2Sr2CaCu2O8+ x (Bi-2212) tapes. The effect of magnetic hysteresis on the measured critical current of high temperature superconductors is a very important consideration for every measurement procedure that involves more than one sweep of magnetic field, changes in field angle, or changes in temperature at a given field. The existence of this hysteresis is well known; however, the implications for a measurement standard or interlaboratory comparisons are often ignored and the measurements are often made in the most expedient way. A key finding is that I c at a given angle, determined by sweeping the angles in a given magnetic field, can be 17 % different from the I c determined after the angle was fixed in zero field and the magnet then ramped to the given field. Which value is correct is addressed in the context that the proper sequence of measurement conditions reflects the application conditions. The hysteresis in angle-sweep and temperature-sweep data is related to the hysteresis observed when the field is swept up and down at constant angle and temperature. The necessity of heating a specimen to near its transition temperature to reset it to an initial state between measurements at different angles and temperatures is discussed.

  17. Disc formation in turbulent cloud cores: is magnetic flux loss necessary to stop the magnetic braking catastrophe or not?

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; de Gouveia Dal Pino, E. M.; Lazarian, A.

    2013-03-01

    Recent numerical analysis of Keplerian disc formation in turbulent, magnetized cloud cores by Santos-Lima et al. demonstrated that reconnection diffusion is an efficient process to remove the magnetic flux excess during the buildup of a rotationally supported disc. This process is induced by fast reconnection of the magnetic fields in a turbulent flow. In a similar numerical study, Seifried et al. concluded that reconnection diffusion or any other non-ideal magnetohydrodynamic effects would not be necessary and turbulence shear alone would provide a natural way to build up a rotating disc without requiring magnetic flux loss. Their conclusion was based on the fact that the mean mass-to-flux ratio (μ) evaluated over a spherical region with a radius much larger than the disc is nearly constant in their models. In this paper, we compare the two sets of simulations and show that this averaging over large scales can mask significant real increases of μ in the inner regions where the disc is built up. We demonstrate that turbulence-induced reconnection diffusion of the magnetic field happens in the initial stages of the disc formation in the turbulent envelope material that is accreting. Our analysis is suggestive that reconnection diffusion is present in both sets of simulations and provides a simple solution for the `magnetic braking catastrophe' which is discussed in the literature in relation to the formation of protostellar accretion discs.

  18. An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles

    PubMed Central

    Osaci, Mihaela

    2015-01-01

    Summary Background: Nanoparticles can be used in biomedical applications, such as contrast agents for magnetic resonance imaging, in tumor therapy or against cardiovascular diseases. Single-domain nanoparticles dissipate heat through susceptibility losses in two modes: Néel relaxation and Brownian relaxation. Results: Since a consistent theory for the Néel relaxation time that is applicable to systems of interacting nanoparticles has not yet been developed, we adapted the Coffey theoretical model for the Néel relaxation time in external magnetic fields in order to consider local dipolar magnetic fields. Then, we obtained the effective relaxation time. The effective relaxation time is further used for obtaining values of specific loss power (SLP) through linear response theory (LRT). A comparative analysis between our model and the discrete orientation model, more often used in literature, and a comparison with experimental data from literature have been carried out, in order to choose the optimal magnetic parameters of a nanoparticle system. Conclusion: In this way, we can study effects of the nanoparticle concentration on SLP in an acceptable range of frequencies and amplitudes of external magnetic fields for biomedical applications, especially for tumor therapy by magnetic hyperthermia. PMID:26665090

  19. Magnetization AC losses in MgB2 wires made by IMD process

    NASA Astrophysics Data System (ADS)

    Kováč, J.; Šouc, J.; Kováč, P.; Hušek, I.

    2015-01-01

    Magnetization AC losses of MgB2 superconductors with one and four filaments made by an internal magnesium diffusion (IMD) into boron process were measured and analyzed. For AC loss measurement a system based on a calibration-free method was used. Short samples of MgB2 wires were exposed to an external magnetic field with amplitudes up to 0.07 T, frequencies up to 1200 Hz, and a temperature range between 15 K and 40 K. A strong effect of eddy current losses was found in single-core wire containing pure copper sheath, which was proved by the same wire measurement after Cu etching. The impact of coupling current losses in non-twisted four-filament wire and the decoupling effect after twisting were observed. Coupling current losses in a low-frequency region were effectively reduced in agreement with theoretical assumption. The degradation of transport currents due to torsion stress by twisting was taken into account and the normalized AC losses of MgB2 wires made by IMD and powder-in-tube processes were compared. It appears that the IMD process is more perspective for AC applications due to much higher current densities and smaller degradation of current-carrying capability by twisting.

  20. Fatigue and hysteresis modeling of ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Yoo, In. K.; Desu, Seshu B.

    1993-10-01

    Due to their nonlinear properties, ferroelectric materials are ideal candidates for smart materials. Degradation properties such as low voltage breakdown, fatigue, and aging have been major problems in commercial applications of these materials. Such degradations affect the lifetime of ferroelectric materials. Therefore, it is important to understand degradation for reliability improvement. In this article, recent studies on fatigue and hysteresis of ferroelectric ceramics such as Lead Zirconate Titanate (PZT) thin films is reviewed. A new fatigue model is discussed in detail which is based on effective one-directional movement of defects by internal field difference, defect entrapment at the ferroelectrics-electrode interface, and resultant polarization loss at the interface. A fatigue equation derived from this model is presented. Fatigue parameters such as initial polarization, piling constant, and decay constant are defined from the fatigue equation and voltage and temperature dependence of fatigue parameters are discussed. The jump distance of defect calculated from voltage dependence of the decay constant is close to the lattice constant of ferroelectric materials, which implies that oxygen or lead vacancies migrate either parallel or antiparallel to the polarization direction. From the temperature dependence of the decay constant, it is shown that the activation energy for domain wall movement plays an important role in fatigue. The hysteresis model of ferroelectrics is shown using polarization reversal. The hysteresis loop is made by four polarization stages: nucleation, growth, merging, and shrinkage of domains. The hysteresis equation confirms that dielectric viscosity controls hysteresis properties, and temperature dependence of the coefficient of dielectric viscosity is also discussed in conjunction with fatigue mechanism.

  1. Finite element analysis of hysteresis effects in piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Simkovics, Reinhard; Landes, Hermann; Kaltenbacher, Manfred; Hoffelner, Johann; Lerch, Reinhard

    2000-06-01

    The design of ultrasonic transducers for high power applications, e.g. in medical therapy or production engineering, asks for effective computer aided design tools to analyze the occurring nonlinear effects. In this paper the finite-element-boundary-element package CAPA is presented that allows to model different types of electromechanical sensors and actuators. These transducers are based on various physical coupling effects, such as piezoelectricity or magneto- mechanical interactions. Their computer modeling requires the numerical solution of a multifield problem, such as coupled electric-mechanical fields or magnetic-mechanical fields as well as coupled mechanical-acoustic fields. With the reported software environment we are able to compute the dynamic behavior of electromechanical sensors and actuators by taking into account geometric nonlinearities, nonlinear wave propagation and ferroelectric as well as magnetic material nonlinearities. After a short introduction to the basic theory of the numerical calculation schemes, two practical examples will demonstrate the applicability of the numerical simulation tool. As a first example an ultrasonic thickness mode transducer consisting of a piezoceramic material used for high power ultrasound production is examined. Due to ferroelectric hysteresis, higher order harmonics can be detected in the actuators input current. Also in case of electrical and mechanical prestressing a resonance frequency shift occurs, caused by ferroelectric hysteresis and nonlinear dependencies of the material coefficients on electric field and mechanical stresses. As a second example, a power ultrasound transducer used in HIFU-therapy (high intensity focused ultrasound) is presented. Due to the compressibility and losses in the propagating fluid a nonlinear shock wave generation can be observed. For both examples a good agreement between numerical simulation and experimental data has been achieved.

  2. MODELING OF STOCHASTIC MAGNETIC FLUX LOSS FROM THE EDGE OF A POOIDALLY DIVERTED TOKAMAK

    SciTech Connect

    EVANS, TE,; MOYER, RA; MONAT, P

    2002-06-01

    OAK A271 MODELING OF STOCHASTIC MAGNETIC FLUX LOSS FROM THE EDGE OF A POOIDALLY DIVERTED TOKAMAK. A field line integration code is used to study the loss of edge poloidal magnetic flux due to stochastic magnetic fields produced by an error field correction coil (C-coil) in DIII-D for various plasma shapes, coil currents and edge magnetic shear profiles. The authors find that the boundary of a diverted tokamak is more sensitive to stochastic flux loss than a nondiverted tokamak. The C-coil has been used to produce a stochastic layer in an ohmic diverted discharge with characteristics similar to those seen in stochastic boundary experiments in circular limiter ohmic plasmas, including: (1) an overall increase in recycling, (2) a broadening of the recycling profile at the divertor, and (3) a flattening of the boundary profiles over the extent of the stochastic layer predicted by the field line integration code. Profile flattening consistent with field line integration results is also seen in some high performance discharges with edge transport barriers. The prediction of a significant edge stochastic layer even in discharges with high performance and edge radial transport barriers indicates that either the self-consistent plasma response heals the stochastic layer or that edge stochastic layers are compatible with edge radial transport barriers.

  3. Application of magnetomechanical hysteresis modeling of magnetic techniques for monitoring neutron embrittlement and biaxial stress. First year report, June 1991--June 1992

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Burkhardt, G.L.; Rollwitz, W.L.; Cadena, D.G.

    1993-01-31

    Objective of this project is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. If neutron embrittlement and biaxial stress can be measured via changes in magnetic properties, this should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. This first-year report addresses the issue of using magnetic property changes to detect neutron embrittlement. The magnetic measurements were all done on irradiated specimens previously broken in two in a Charpy test to determine their embrittlement. The magnetic properties of the broken charpy specimens from D.C. Cook did not correlate well with fluence or embrittlement parameters, possible due to metallurgical reasons. correlation was better with Indian Point 2 specimens, with the nonlinear harmonic amplitudes showing the best correlation (R{sup 2}{approximately}0.7). However, correlation was not good enough. It is recommended that tests be done on unbroken irradiated Charpy specimens, for which magnetic characterization data prior to irradiation is available, if possible.

  4. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  5. Elastic hysteresis in human eyes is age dependent value.

    PubMed

    Ishii, Kotaro; Saito, Kei; Kameda, Toshihiro; Oshika, Tetsuro

    2012-06-19

    Background:  The elastic hysteresis phenomenon is observed when cyclic loading is applied to a viscoelastic system. The purpose of this study was to quantitatively evaluate elastic hysteresis in living human eyes against an external force. Design:  Prospective case series. Participants:  Twenty-four eyes of 24 normal human subjects (mean age: 41.5 ± 10.6 years) were recruited. Methods:  A non-contact tonometry process was recorded with a high-speed camera. Central corneal thickness (CCT), corneal thickness at 4 mm from the center, corneal curvature, and anterior chamber depth (ACD) were measured. Intraocular pressure (IOP) was also measured using Goldmann applanation tonometry (GAT) and dynamic contour tonometer (DCT). Main Outcome Measures:  Energy loss due to elastic hysteresis was calculated and graphed. Results:  The mean CCT was 552.5 ± 36.1 µm, corneal curvature was 7.84 ± 0.26 mm, and ACD was 2.83 ± 0.29 mm. The mean GAT-IOP was 14.2 ± 2.7 mmHg and DCT-IOP was 16.3 ± 3.5 mmHg. The mean energy loss due to elastic hysteresis was 3.90 × 10(-6) ± 2.49 × 10(-6) Nm. Energy loss due to elastic hysteresis correlated significantly with age (Pearson correlation coefficient = 0.596, p = 0.0016). There were no significant correlations between energy loss due to elastic hysteresis and other measurements. Conclusion:  Energy loss due to elastic hysteresis in the eyes of subjects was found to positively correlate with age, independent of anterior eye structure or IOP. Therefore, it is believed that the viscosity of the eye increases with age. © 2010 The Authors. Clinical and Experimental Ophthalmology © 2010 Royal Australian and New Zealand College of Ophthalmologists.

  6. Compact dielectric particles as a building block for low-loss magnetic metamaterials.

    PubMed

    Popa, Bogdan-Ioan; Cummer, Steven A

    2008-05-23

    We characterize experimentally a compact dielectric particle that can be used to design very low-loss artificial electromagnetic materials (metamaterials). Focusing on magnetic media, we show that the particle can behave almost identically to the well-known split-ring resonators (SRRs) widely used in present designs, without suffering from the Ohmic losses that can limit the applicability of SRRs especially at high frequencies. We experimentally compare qualitatively and quantitatively the dielectric particle with a typical split-ring resonator of the same size built on a low-loss dielectric substrate and show that at GHz frequencies the quality factor of the dielectric particle is more than 3 times bigger than that of its metallic counterpart. Low-loss and simple geometry are significant advantages compared to conventional metal SRRs.

  7. Experimental study of the AC magnetization loss in MgB2 superconducting wires at different temperatures

    NASA Astrophysics Data System (ADS)

    Kováč, Ján; Šouc, Ján; Kováč, Pavol

    2012-05-01

    The temperature and external AC magnetic field dependence of AC magnetization losses of MgB2 wires were studied. Temperature was varied from 18 K to 40 K and external magnetic field of frequencies 72 Hz and 144 Hz from 8 mT to 70 mT with orientation perpendicular to the wire axis. To clarify the influence of the wire construction on AC loss, single and six filament untwisted samples of length ∼50 mm were examined. For this purpose unique experimental apparatus created by the combination of original calibration-free measuring system designed for ac magnetization loss measurement and non-magnetic vacuum vessel with two-stage cryocooler for sample cooling was used. It was found, that for monofilament sample hysteretic AC losses was dominated in comparison to untwisted six-filaments sample, where coupling losses confirmed by frequency dependence were dominated.

  8. Towards an Optimized Coupling-loss Induced Quench Protection System (CLIQ) for Quadrupole Magnets

    NASA Astrophysics Data System (ADS)

    Ravaioli, Emmanuele; Datskov, Vladimir I.; Desbiolles, Vincent; Feuvrier, Jerome; Kirby, Glyn; Maciejewski, Michal; Sperin, Kevin A.; ten Kate, Herman H. J.; Verweij, Arjan P.; Willering, Gerard

    The recently developed Coupling-Loss-Induced Quench (CLIQ) protection system is a new method for initiating a fast and voluminous transition to the normal state for protecting high energy density superconducting magnets. Its simple and robust electrical design, its lower failure rate, and its more efficient energy deposition mechanism make CLIQ often preferable to other conventional quench protection methods. The system is now implemented for the protection of a two meter long superconducting quadrupole model magnet and as such fully characterized in the CERN magnet test facility. Test results convincingly show that CLIQ allows for a more global quench initiation and thus a faster discharge of the magnet energy than conventional quench heaters. Nevertheless, the CLIQ performance is strongly affected by the length of the magnet to protect, hence an optimization is required for effective application to full-size magnets. A series of measures for the optimization of a quench protection system for a quadrupole magnet based on CLIQ is outlined here. The impact of various key parameters on CLIQ's performance, the most efficient CLIQ configuration, and the advantage of installing multiple CLIQ units are assessed.

  9. Application of magnetomechanical hysteresis modeling of magnetic techniques for monitoring neutron embrittlement and biaxial stress. Second year interim report, June 1992--December 1992

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Burkhardt, G.L.

    1993-01-31

    Research was done on the biaxial stress problem accomplished in the first half of the second year. All of the work done was preparatory to magnetic measurements. Issues addressed were: construction of a model for extracting changes in the magnetic properties of a specimen from the readings of an indirect sensor; initial development of a model for how biaxial stress alters the intrinsic magnetic properties of thespecimen; use of finite element stress analysis modeling to determine a detailed shape for the cruciform biaxial stress specimen; and construction of the biaxial stress loading apparatus.

  10. The Effect of Magnetic Spots on Stellar Winds and Angular Momentum Loss

    NASA Astrophysics Data System (ADS)

    Cohen, O.; Drake, J. J.; Kashyap, V. L.; Gombosi, T. I.

    2009-07-01

    We simulate the effect of latitudinal variations in the location of star spots, as well as their magnetic field strength, on stellar angular momentum loss (AML) to the stellar wind. We use the Michigan solar corona global magnetohydrodynamic model, which incorporates realistic relation between the magnetic field topology and the wind distribution. We find that the spots' location significantly affects the stellar wind structure, and as a result, the total mass loss rate and AML rate. In particular, we find that the AML rate is controlled by the mass flux when spots are located at low latitudes but is controlled by an increased plasma density between the stellar surface and the Alfvén surface when spots are located at high latitudes. Our results suggest that there might be a feedback mechanism between the magnetic field distribution, wind distribution, AML through the wind, and the motions at the convection zone that generate the magnetic field. This feedback might explain the role of coronal magnetic fields in stellar dynamos.

  11. THE EFFECT OF MAGNETIC SPOTS ON STELLAR WINDS AND ANGULAR MOMENTUM LOSS

    SciTech Connect

    Cohen, O.; Drake, J. J.; Kashyap, V. L.; Gombosi, T. I.

    2009-07-10

    We simulate the effect of latitudinal variations in the location of star spots, as well as their magnetic field strength, on stellar angular momentum loss (AML) to the stellar wind. We use the Michigan solar corona global magnetohydrodynamic model, which incorporates realistic relation between the magnetic field topology and the wind distribution. We find that the spots' location significantly affects the stellar wind structure, and as a result, the total mass loss rate and AML rate. In particular, we find that the AML rate is controlled by the mass flux when spots are located at low latitudes but is controlled by an increased plasma density between the stellar surface and the Alfven surface when spots are located at high latitudes. Our results suggest that there might be a feedback mechanism between the magnetic field distribution, wind distribution, AML through the wind, and the motions at the convection zone that generate the magnetic field. This feedback might explain the role of coronal magnetic fields in stellar dynamos.

  12. Effect of carbon substitution on low magnetic field AC losses in MgB 2 single crystals

    NASA Astrophysics Data System (ADS)

    Ciszek, M.; Rogacki, K.; Karpiński, J.

    2011-11-01

    The DC magnetization and AC magnetic susceptibilities were measured for MgB2 single crystals, unsubstituted and carbon substituted with the composition of Mg(B0.94C0.06)2. AC magnetic losses were derived from the AC susceptibility data as a function of the AC amplitude and the DC bias magnetic field. From the DC magnetization loops critical current densities were derived as a function of temperature and DC field. Results show that the substitution with carbon decreases critical current densities at low external magnetic fields, in contrast to the well known effect of an increase of the critical current densities at higher magnetic fields.

  13. Magnetism variations and susceptibility hysteresis at the metal-insulator phase transition temperature of VO2 in a composite film containing vanadium and tungsten oxides

    NASA Astrophysics Data System (ADS)

    Akande, Amos A.; Rammutla, Koena E.; Moyo, Thomas; Osman, Nadir S. E.; Nkosi, Steven S.; Jafta, Charl J.; Mwakikunga, Bonex W.

    2015-02-01

    We report on the magnetic property of 0.67-WO3+0.33-VOx mixture film deposit on the corning glass substrate using the chemical sol-gel and atmospheric pressure chemical vapor deposition (APCVD) methods. The XRD and Raman spectroscopy confirm species of both materials, and the morphological studies with FIB-SEM and TEM reveal segregation of W and V atoms. XPS reveals that V4+ from VO2 forms only 11% of the film; V3+ in the form of V2O3 form 1% of the film, 21% is V5+ from V2O5 and 67% is given to W6+ from WO3. The analysis of the ESR data shows some sharp changes in the magnetism near the metal-to-insulator (MIT), which could be theoretically interpreted as the ordering or alignment of electron spins from net moment nature to parallel alignment of magnetic moment. The derivatives of magnetic susceptibility established the thermally induced magnetic property: two distinct transitions of 339 K for heating data and 338 K for cooling data for 151.2 mT field were obtained. Similar results were also obtained for 308.7 mT field, 336 K for heating data and 335 K for cooling data. VSM results confirm a paramagnetic phase with a small amount of magnetically ordered phase.

  14. On the Treatment of Electric and Magnetic Loss in the Linear Bicharacteristic Scheme for Electromagnetics

    NASA Technical Reports Server (NTRS)

    Beggs, John H.

    2000-01-01

    The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been extended to treat lossy dielectric and magnetic materials. This paper examines different methodologies for treatment of the electric loss term in the Linear Bicharacteristic Scheme for computational electromagnetics. Several different treatments of the electric loss term using the LBS are explored and compared on one-dimensional model problems involving reflection from lossy dielectric materials on both uniform and nonuniform grids. Results using these LBS implementations are also compared with the FDTD method for convenience.

  15. The role of the Martian crustal magnetic fields in controlling ionospheric loss

    NASA Astrophysics Data System (ADS)

    Brecht, Stephen H.; Ledvina, Stephen A.

    2014-08-01

    A hybrid particle code has been used to examine the interaction of the solar wind with Mars. It is found that the presence of the crustal magnetic fields modifies the heavy ion (O+ and O2+) loss rates. In the case of the solar minimum situation the modification was found to be significant and reported in Brecht and Ledvina (2012). In this paper both solar minimum and solar maximum results are reported and compared with data. The crustal magnetic fields reduce the ionospheric loss rate; and when the energy limits imposed on the data fits are considered, the results of the simulations are in reasonable agreement with data. The agreement with the data provides a strong argument for the physical control demonstrated by the simulations being realistic.

  16. Characterization of Corneal Indentation Hysteresis.

    PubMed

    Ko, Match W L; Dongming Wei; Leung, Christopher K S

    2015-01-01

    Corneal indentation is adapted for the design and development of a characterization method for corneal hysteresis behavior - Corneal Indentation Hysteresis (CIH). Fourteen porcine eyes were tested using the corneal indentation method. The CIH measured in enucleated porcine eyes showed indentation rate and intraocular pressure (IOP) dependences. The CIH increased with indentation rate at lower IOP (<; 25 mmHg) and decreased with indentation rate at higher IOP (> 25 mmHg). The CIH was linear proportional to the IOP within an individual eye. The CIH was positively correlated with the IOP, corneal in-plane tensile stress and corneal tangent modulus (E). A new method based on corneal indentation for the measurement of Corneal Indentation Hysteresis in vivo is developed. To our knowledge, this is the first study to introduce the corneal indentation hysteresis and correlate the corneal indentation hysteresis and corneal tangent modulus.

  17. Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis In Planar Diodes

    SciTech Connect

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian; Maksymovych, Petro; Sargent, Edward H.

    2015-03-31

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3 antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  18. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes.

    PubMed

    Xu, Jixian; Buin, Andrei; Ip, Alexander H; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G; Maksymovych, Peter; Sargent, Edward H

    2015-05-08

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  19. Thermal hysteresis proteins.

    PubMed

    Barrett, J

    2001-02-01

    Extreme environments present a wealth of biochemical adaptations. Thermal hysteresis proteins (THPs) have been found in vertebrates, invertebrates, plants, bacteria and fungi and are able to depress the freezing point of water (in the presence of ice crystals) in a non-colligative manner by binding to the surface of nascent ice crystals. The THPs comprise a disparate group of proteins with a variety of tertiary structures and often no common sequence similarities or structural motifs. Different THPs bind to different faces of the ice crystal, and no single mechanism has been proposed to account for THP ice binding affinity and specificity. Experimentally THPs have been used in the cryopreservation of tissues and cells and to induce cold tolerance in freeze susceptible organisms. THPs represent a remarkable example of parallel and convergent evolution with different proteins being adapted for an anti-freeze role.

  20. Vortex flow hysteresis

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1986-01-01

    An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.

  1. Magnetic hysteresis of dynamic response of one-dimensional magnonic crystals consisting of homogenous and alternating width nanowires observed with broadband ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Ding, J.; Kostylev, M.; Adeyeye, A. O.

    2011-08-01

    We systematically probed the dynamic behavior of homogenous and alternating width (AW) Ni80Fe20 nanowire (NW) arrays using broadband ferromagnetic resonance (FMR) spectroscopy as a function of geometrical parameters such as wire width and interwire spacing. For homogenous width NWs, the FMR responses are markedly sensitive to wire widths and interwire spacing due to spatially varying demagnetizing field. The collective spin-wave mode profile for ferromagneticly and antiferromagneticly ordered ground state has been investigated by controlling the relative alignment of magnetization of neighboring NWs. We show that magnetic ground states of coupled AW NW arrays can be controlled by applying different magnetic field histories, and the collective spin-wave mode is very sensitive to the difference in the widths of wires constituting AW wire arrays. We have also mapped the ferromagnetic and antiferromagnetic ground states magnetic configurations using magnetic force microscopy. Our experimental results are in good agreements with a simple analytical theory we suggest for phenomenological description of the collective oscillations.

  2. APPARATUS FOR MINIMIZING ENERGY LOSSES FROM MAGNETICALLY CONFINED VOLUMES OF HOT PLASMA

    DOEpatents

    Post, R.F.

    1961-10-01

    An apparatus is described for controlling electron temperature in plasma confined in a Pyrotron magnetic containment field. Basically the device comprises means for directing low temperature electrons to the plasma in controlled quantities to maintain a predetermined optimum equilibrium electron temperature whereat minimum losses of plasma ions due to ambipolar effects and energy damping of the ions due to dynamical friction with the electrons occur. (AEC)

  3. Low hysteresis FeMn-based top spin valve.

    PubMed

    Ustinov, V V; Krinitsina, T P; Milyaev, M A; Naumova, L I; Proglyado, V V

    2012-09-01

    FeMn-based top spin valves Ta/[FeNi/CoFe]/Cu/CoFe/FeMn/Ta with different Cu and FeMn layers thicknesses were prepared by DC magnetron sputtering at room temperature. It was shown that low field hysteresis due to free layer magnetization reversal can be reduced down to (0.1 divided by 0.2) Oe keeping the GMR ratio higher 8% by using both layers thicknesses optimization and non-collinear geometry of magnetoresistance measurements. Dependence of low field hysteresis and GMR ratio on the angle between applied magnetic field and pinning direction are presented.

  4. Role of Loss of Equilibrium and Magnetic Reconnection in Coronal Eruptions: Resistive and Hall MHD simulations

    NASA Astrophysics Data System (ADS)

    Yang, H.; Bhattacharjee, A.; Forbes, T. G.

    2008-12-01

    It has long been suggested that eruptive phenomena such as coronal mass ejections, prominence eruptions, and large flares might be caused by a loss of equilibrium in a coronal flux rope (Van Tend and Kuperus, 1978). Forbes et al. (1994) developed an analytical two-dimensional model in which eruptions occur due to a catastrophic loss of equilibrium and relaxation to a lower-energy state containing a thin current sheet. Magnetic reconnection then intervenes dynamically, leading to the release of magnetic energy and expulsion of a plasmoid. We have carried out high-Lundquist-number simulations to test the loss-of equilibrium mechanism, and demonstrated that it does indeed occur in the quasi-ideal limit. We have studied the subsequent dynamical evolution of the system in resistive and Hall MHD models for single as well as multiple arcades. The typical parallel electric fields are super-Dreicer, which makes it necessary to include collisionless effects via a generalized Ohm's law. It is shown that the nature of the local dissipation mechanism has a significant effect on the global geometry and dynamics of the magnetic configuration. The presence of Hall currents is shown to alter the length of the current sheet and the jets emerging from the reconnection site, directed towards the chromosphere. Furthermore, Hall MHD effects break certain symmetries of resistive MHD dynamics, and we explore their observational consequences.

  5. Depinning of flux lines and AC losses in magnet-superconductor levitation system

    SciTech Connect

    Terentiev, A. N.; Hull, J. R.; De Long, L. E.

    1999-11-29

    The AC loss characteristics of a magnet-superconductor system were studied with the magnet fixed to the free end of an oscillating cantilever located near a stationary melt-textured YBCO pellet. Below a threshold AC field amplitude {approx}2Oe, the dissipation of the oscillator is amplitude-independent, characteristic of a linear, non-hysteretic regime. Above threshold,dissipation increases with amplitude, reflecting the depinning and hysteretic motion of flux lines. The threshold AC field is an order of magnitude higher than that measured for the same YBCO material via AC susceptometry in a uniform DC magnetic field, A partial lock-in of flux lines between YBCO ab planes is proposed as the mechanism for the substantial increase of the depinning threshold.

  6. On the energy losses of hot worked Nd-Fe-B magnets and ferrites in a small alternating magnetic field perpendicular to a bias field

    SciTech Connect

    Staa, F. von; Hempel, K.A.; Artz, H.

    1995-11-01

    Torsion pendulum magnetometer measurements on ferrites and on neodymium-iron-boron permanent magnets are presented. The damping of the oscillation of the pendulum leads to information on the magnetic energy losses of the magnets in a small alternating magnetic field applied perpendicular to a bias field. The origin of the energy absorption is explained by the magnetization reversal of single-domain particles. It is shown experimentally that the energy absorption mechanism requires the ferromagnetic order of the sample, and that the magnetic field strength of maximal energy absorption coincides with the effective anisotropy field strength.

  7. CONNECTING FLARES AND TRANSIENT MASS-LOSS EVENTS IN MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Osten, Rachel A.; Wolk, Scott J.

    2015-08-10

    We explore the ramification of associating the energetics of extreme magnetic reconnection events with transient mass-loss in a stellar analogy with solar eruptive events. We establish energy partitions relative to the total bolometric radiated flare energy for different observed components of stellar flares and show that there is rough agreement for these values with solar flares. We apply an equipartition between the bolometric radiated flare energy and kinetic energy in an accompanying mass ejection, seen in solar eruptive events and expected from reconnection. This allows an integrated flare rate in a particular waveband to be used to estimate the amount of associated transient mass-loss. This approach is supported by a good correspondence between observational flare signatures on high flaring rate stars and the Sun, which suggests a common physical origin. If the frequent and extreme flares that young solar-like stars and low-mass stars experience are accompanied by transient mass-loss in the form of coronal mass ejections, then the cumulative effect of this mass-loss could be large. We find that for young solar-like stars and active M dwarfs, the total mass lost due to transient magnetic eruptions could have significant impacts on disk evolution, and thus planet formation, and also exoplanet habitability.

  8. Effect of resonant magnetic perturbations on fast ion prompt loss in tokamaks

    NASA Astrophysics Data System (ADS)

    Mou, M. L.; Wang, Z. T.; Wu, N.; Chen, S. Y.; Tang, C. J.

    2017-04-01

    Fast ion prompt loss induced by resonant magnetic perturbations (RMPs) is simulated by solving Hamiltonian equations strictly in the guiding center coordinate system. Full orbit simulations show that the prompt loss rate can increase significantly in resonant regions when RMPs are added. Furthermore, the prompt loss rate is larger in the low-field side than in the high-field side in tokamak plasmas. Detailed analyses show that a number of trapped ions which lie near the center of the trapped region can be lost, because of the enhancement of radial orbit drifts induced by the resonance between RMPs and the unperturbed orbit. Meanwhile, orbit conversion from counter-passing orbit to trapped orbit occurs near the trapped-passing boundary in the low-field side, while it occurs near the co-counter boundary in the high-field side, both of which play an important role in prompt loss. Simulations also demonstrate a periodicity for orbit drifts, and the mechanism of drift periodicity results from the resonance between RMP and the equilibrium magnetic field.

  9. Design of wide bandwidth pyramidal microwave absorbers using ferrite composites with broad magnetic loss spectra

    NASA Astrophysics Data System (ADS)

    Park, Myung-Jun; Kim, Sung-Soo

    2016-09-01

    Wide bandwidth microwave absorbers with a pyramidal shape and a significantly reduced thickness can be designed using high lossy ferrite materials with broad magnetic loss spectra. The microwave absorbing properties of pyramidal cone absorbers are analyzed using the transmission line approximation, which provides the reflection loss as a function of the material parameters and absorber geometry. Three types of ferrite materials (NiZn spinel ferrite, Co2Z hexaferrite, and RuCoM hexaferrite) are used as the absorbent fillers in a rubber matrix. Among these, Co2Z ferrite is the most suitable material for wide bandwidth pyramidal absorbers, due to its broad magnetic loss spectrum in the GHz frequency range. The optimal geometry of the pyramidal absorber is also determined using the transmission line theory. With the reduced total height of the pyramidal absorber (approximately 60 mm), a wide bandwidth (1.5-18 GHz with respect to the -20 dB reflection loss) can be realized. The proposed absorbers have a thickness advantage over the classical pyramidal ohmic absorbers; thus, they are suitable for small and semi-anechoic chambers.

  10. Reduction of Thermal Loss in HTS Windings by Using Magnetic Flux Deflection

    NASA Astrophysics Data System (ADS)

    Tsuzuki, K.; Miki, M.; Felder, B.; Koshiba, Y.; Izumi, M.; Umemoto, K.; Aizawa, K.; Yanamoto, T.

    Efforts on the generation of intensified magnetic flux have been made for the optimized shape of HTS winding applications. This contributes to the high efficiency of the rotating machines using HTS windings. Heat generation from the HTS windings requires to be suppressed as much as possible, when those coils are under operation with either direct or alternative currents. Presently, the reduction of such thermal loss generated by the applied currents on the HTS coils is reported with a magnetic flux deflection system. The HTS coils are fixed together with flattened magnetic materials to realize a kind of redirection of the flux pathway. Eventually, the magnetic flux density perpendicular to the tape surface (equivalent to the a-b plane) of the HTS tape materials is reduced to the proximity of the HTS coil. To verify the new geometry of the surroundings of the HTS coils with magnetic materials, a comparative study of the DC coil voltage was done for different applied currents in prototype field-pole coils of a ship propulsion motor.

  11. HYSTERESIS BETWEEN DISTINCT MODES OF TURBULENT DYNAMOS

    SciTech Connect

    Karak, Bidya Binay; Brandenburg, Axel; Kitchatinov, Leonid L.

    2015-04-20

    Nonlinear mean-field models of the solar dynamo show long-term variability, which may be relevant to different states of activity inferred from long-term radiocarbon data. This paper is aimed at probing the dynamo hysteresis predicted by the recent mean-field models of Kitchatinov and Olemskoy with direct numerical simulations. We perform three-dimensional (3D) simulations of large-scale dynamos in a shearing box with helically forced turbulence. As an initial condition, we either take a weak random magnetic field or we start from a snapshot of an earlier simulation. Two quasi-stable states are found to coexist in a certain range of parameters close to the onset of the large-scale dynamo. The simulations converge to one of these states depending on the initial conditions. When either the fractional helicity or the magnetic Prandtl number is increased between successive runs above the critical value for onset of the dynamo, the field strength jumps to a finite value. However, when the fractional helicity or the magnetic Prandtl number is then decreased again, the field strength stays at a similar value (strong field branch) even below the original onset. We also observe intermittent decaying phases away from the strong field branch close to the point where large-scale dynamo action is just possible. The dynamo hysteresis seen previously in mean-field models is thus reproduced by 3D simulations. Its possible relation to distinct modes of solar activity such as grand minima is discussed.

  12. Control designs for low-loss active magnetic bearings: Theory and implementation

    NASA Astrophysics Data System (ADS)

    Wilson, Brian Christopher David

    Active Magnetic Bearings (AMB) have been proposed for use in Electromechanical Flywheel Batteries. In these devices, kinetic energy is stored in a magnetically levitated flywheel which spins in a vacuum. The AMB eliminates all mechanical losses, however, electrical loss, which is proportional to the square of the magnetic flux, is still significant. For efficient operation, the flux bias, which is typically introduced into the electromagnets to improve the AMB stiffness, must be reduced, preferably to zero. This zero-bias (ZB) mode of operation cripples the classical control techniques which are customarily used and nonlinear control is required. As a compromise between AMB stiffness and efficiency, a new flux bias scheme is proposed called the generalized complementary flux condition (gcfc). A flux-bias dependent trade-off exists between AMB stiffness, power consumption, and power loss. This work theoretically develops and experimentally verifies new low-loss AMB control designs which employ the gcfc condition. Particular attention is paid to the removal of the singularity present in the standard nonlinear control techniques when operating in ZB. Experimental verification is conduced on a 6-DOF AMB reaction wheel. Practical aspects of the gcfc implementation such as flux measurement and flux-bias implementation with voltage mode amplifiers using IR compensation are investigated. Comparisons are made between the gcfc bias technique and the standard constant-flux-sum (cfs) bias method. Under typical operating circumstances, theoretical analysis and experimental data show that the new gcfc bias scheme is more efficient in producing the control flux required for rotor stabilization than the ordinary cfs bias strategy.

  13. Heating efficiency in magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Deatsch, Alison E.; Evans, Benjamin A.

    2014-03-01

    Magnetic nanoparticles for hyperthermic treatment of cancers have gained significant attention in recent years. In magnetic hyperthermia, three independent mechanisms result in thermal energy upon stimulation: Néel relaxation, Brownian relaxation, and hysteresis loss. The relative contribution of each is strongly dependent on size, shape, crystalline anisotropy, and degree of aggregation or agglomeration of the nanoparticles. We review the effects of each of these physical mechanisms in light of recent experimental studies and suggest routes for progress in the field.

  14. A new family of 1D exchange biased heterometal single-molecule magnets: observation of pronounced quantum tunneling steps in the hysteresis loops of quasi-linear {Mn2Ni3} clusters.

    PubMed

    Das, Animesh; Gieb, Klaus; Krupskaya, Yulia; Demeshko, Serhiy; Dechert, Sebastian; Klingeler, Rüdiger; Kataev, Vladislav; Büchner, Bernd; Müller, Paul; Meyer, Franc

    2011-03-16

    First members of a new family of heterometallic Mn/Ni complexes [Mn(2)Ni(3)X(2)L(4)(LH)(2)(H(2)O)(2)] (X = Cl: 1; X = Br: 2) with the new ligand 2-{3-(2-hydroxyphenyl)-1H-pyrazol-1-yl}ethanol (H(2)L) have been synthesized, and single crystals obtained from CH(2)Cl(2) solutions have been characterized crystallographically. The molecular structures feature a quasi-linear Mn(III)-Ni(II)-Ni(II)-Ni(II)-Mn(III) core with six-coordinate metal ions, where elongated axes of all the distorted octahedral coordination polyhedra are aligned parallel and are fixed with respect to each other by intramolecular hydrogen bonds. 1 and 2 exhibit quite strong ferromagnetic exchange interactions throughout (J(Mn-Ni) ≈ 40 K (1) or 42 K (2); J(Ni-Ni) ≈ 22 K (1) or 18 K (2)) that lead to an S(tot) = 7 ground state, and a sizable uniaxial magnetoanisotropy with D(mol) values -0.55 K (1) and -0.45 K (2). These values are directly derived also from frequency- and temperature-dependent high-field EPR spectra. Slow relaxation of the magnetization at low temperatures and single-molecule magnet (SMM) behavior are evident from frequency-dependent peaks in the out-of-phase ac susceptibilities and magnetization versus dc field measurements, with significant energy barriers to spin reversal U(eff) = 27 K (1) and 22 K (2). Pronounced quantum tunnelling steps are observed in the hysteresis loops of the temperature- and scan rate-dependent magnetization data, but with the first relaxation step shifted above (1) or below (2) the zero crossing of the magnetic field, despite the very similar molecular structures. The different behavior of 1 and 2 is interpreted in terms of antiferromagnetic (1) or ferromagnetic (2) intermolecular interactions, which are discussed in view of the subtle differences of intermolecular contacts within the crystal lattice.

  15. AC losses in multifilamentary Bi(2223) tapes with an interfilamentary resistive carbonate barrier

    NASA Astrophysics Data System (ADS)

    Eckelmann, H.; Quilitz, M.; Oomen, M.; Leghissa, M.; Goldacker, W.

    1998-12-01

    For the most common AC application frequencies, the main component of the AC losses in multifilamentary Bi(2223) tapes are caused by hysteresis- and coupling losses. These losses can be reduced enhancing the matrix resistivity and applying a twist to the filaments. We report on the AC loss properties of 37-filament tapes with AgAu (8 wt.%) matrix, and novel 19-filament tapes with SrCO 3 barriers between the filaments. We performed transport AC loss and magnetic AC loss measurements in parallel and perpendicular magnetic fields. Both kinds of tapes were also prepared with filament twists below a twist pitch of 20 mm. The influence of the different tape modifications on the AC loss behaviour is presented and compared with theoretical models to understand the effect of the resistive matrix. In the case of magnetic AC loss measurements, reduced AC losses due to decoupled filaments were observed for the twisted tapes with a resistive matrix in low parallel fields.

  16. Novel platform for minimizing cell loss on separation process: Droplet-based magnetically activated cell separator

    NASA Astrophysics Data System (ADS)

    Kim, Youngho; Hong, Su; Lee, Sang Ho; Lee, Kangsun; Yun, Seok; Kang, Yuri; Paek, Kyeong-Kap; Ju, Byeong-Kwon; Kim, Byungkyu

    2007-07-01

    To reduce the problem of cell loss due to adhesion, one of the basic phenomena in microchannel, we proposed the droplet-based magnetically activated cell separator (DMACS). Based on the platform of the DMACS—which consists of permanent magnets, a coverslip with a circle-shaped boundary, and an injection tube—we could collect magnetically (CD45)-labeled (positive) cells with high purity and minimize cell loss due to adhesion. To compare separation efficiency between the MACS and the DMACS, the total number of cells before and after separation with both the separators was counted by flow cytometry. We could find that the number (3241/59940) of cells lost in the DMACS is much less than that (22360/59940) in the MACS while the efficiency of cell separation in the DMACS (96.07%) is almost the same as that in the MACS (96.72%). Practically, with fluorescent images, it was visually confirmed that the statistical data are reliable. From the viability test by using Hoechst 33 342, it was also demonstrated that there was no cell damage on a gas-liquid interface. Conclusively, DMACS will be a powerful tool to separate rare cells and applicable as a separator, key component of lab-on-a-chip.

  17. Advanced theory of driven birdcage resonator with losses for biomedical magnetic resonance imaging and spectroscopy.

    PubMed

    Novikov, Alexander

    2011-02-01

    A complete time-dependent physics theory of symmetric unperturbed driven hybrid birdcage resonator was developed for general application. In particular, the theory can be applied for radiofrequency (RF) coil engineering, computer simulations of coil-sample interaction, etc. Explicit time dependence is evaluated for different forms of driving voltage. The major steps of the solution development are shown and appropriate explanations are given. Green's functions and spectral density formula were developed for any form of periodic driving voltage. The concept of distributed power losses based on transmission line theory is developed for evaluation of local losses of a coil. Three major types of power losses are estimated as equivalent series resistances in the circuit of the birdcage resonator. Values of generated resistances in legs and end-rings are estimated. An application of the theory is shown for many practical cases. Experimental curve of B(1) field polarization dependence is measured for eight-sections birdcage coil. It was shown that the steady-state driven resonance frequencies do not depend on damping factor unlike the free oscillation (transient) frequencies. An equivalent active resistance is generated due to interaction of RF electromagnetic field with a sample. Resistance of the conductor (enhanced by skin effect), Eddy currents and dielectric losses are the major types of losses which contribute to the values of generated resistances. A biomedical sample for magnetic resonance imaging and spectroscopy is the source of the both Eddy current and dielectric losses of a coil. As demonstrated by the theory, Eddy current loss is the major effect of coil shielding.

  18. Low loss pole configuration for multi-pole homopolar magnetic bearings

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor); Hakun, Claef F. (Inventor)

    2001-01-01

    A new pole configuration for multi-pole homopolar bearings proposed in this invention reduces rotational losses caused by eddy-currents generated when non-uniform flux distributions exist along the rotor surfaces. The new homopolar magnetic bearing includes a stator with reduced pole-to-pole and exhibits a much more uniform rotor flux than with large pole-to-pole gaps. A pole feature called a pole-link is incorporated into the low-loss poles to provide a uniform pole-to-pole gap and a controlled path for pole-to-pole flux. In order to implement the low-loss pole configuration of magnetic bearings with small pole-to-pole gaps, a new stator configuration was developed to facilitate installation of coil windings. The stator was divided into sector shaped pieces, as many pieces as there are poles. Each sector-shaped pole-piece can be wound on a standard coil winding machine, and it is practical to wind precision layer wound coils. To achieve maximum actuation efficiency, it is desirable to use all the available space for the coil formed by the natural geometric configuration. Then, the coils can be wound in a tapered shape. After winding, the sectored-pole-pieces are installed into and fastened by bonding or other means, to a ring of material which encloses the sectored-pole-pieces, forming a complete stator.

  19. Mach, methodology, hysteresis and economics

    NASA Astrophysics Data System (ADS)

    Cross, R.

    2008-11-01

    This methodological note examines the epistemological foundations of hysteresis with particular reference to applications to economic systems. The economy principles of Ernst Mach are advocated and used in this assessment.

  20. Hysteresis phenomena in hydraulic measurement

    NASA Astrophysics Data System (ADS)

    Ran, H. J.; Luo, X. W.; Chen, Y. L.; Xu, H. Y.; Farhat, M.

    2012-11-01

    Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.

  1. Anomalous Beam-Ion Loss in TFTR Reversed Magnetic Shear Plasmas

    SciTech Connect

    Ruskov, E.; Bell, M.; Budny, R.V.; McCune, D.C.; Medley, S.S.; Redi, M.H.; Scott, S.; Synakowski, E.J.; von Goeler, S.; White, R.B.; Zweben, S.J.

    1999-02-01

    Anomalous beam-ion loss has been observed in an experiment with short tritium beam pulses injected into deuterium-beam-heated Tokamak Fusion Test Reactor plasmas (P{sub NBI}=15 thinspthinspMW) with reversed magnetic shear (RS). Comparisons of the measured total 14thinspthinspMeV neutron emission, the neutron flux along eight radial locations, and the perpendicular plasma stored energy with predictions from an extensive set of TRANSP simulations suggest that about 40{percent} beam power is lost on a time scale much shorter than the tritium beam pulse length {Delta}t=70 thinspthinspms. In contrast with recent results [K. Tobita {ital et al.,} Nucl.thinspthinspFusion {bold 37}, 1583 (1997)] from RS experiments at JT-60U, we were not able to show conclusively that magnetic field ripple is responsible for this anomaly. {copyright} {ital 1999} {ital The American Physical Society}

  2. Anomalous Beam-Ion Loss in TFTR Reversed Magnetic Shear Plasmas

    NASA Astrophysics Data System (ADS)

    Ruskov, E.; Bell, M.; Budny, R. V.; McCune, D. C.; Medley, S. S.; Redi, M. H.; Scott, S.; Synakowski, E. J.; von Goeler, S.; White, R. B.; Zweben, S. J.

    1999-02-01

    Anomalous beam-ion loss has been observed in an experiment with short tritium beam pulses injected into deuterium-beam-heated Tokamak Fusion Test Reactor plasmas ( PNBI = 15 MW) with reversed magnetic shear (RS). Comparisons of the measured total 14 MeV neutron emission, the neutron flux along eight radial locations, and the perpendicular plasma stored energy with predictions from an extensive set of TRANSP simulations suggest that about 40% beam power is lost on a time scale much shorter than the tritium beam pulse length Δt = 70 ms. In contrast with recent results [K. Tobita et al., Nucl. Fusion 37, 1583 (1997)] from RS experiments at JT-60U, we were not able to show conclusively that magnetic field ripple is responsible for this anomaly.

  3. Particle Events as a Possible Source of Large Ozone Loss during Magnetic Polarity Transitions

    NASA Technical Reports Server (NTRS)

    vonKoenig, M.; Burrows, J. P.; Chipperfield, M. P.; Jackman, C. H.; Kallenrode, M.-B.; Kuenzi, K. F.; Quack, M.

    2002-01-01

    The energy deposition in the mesosphere and stratosphere during large extraterrestrial charged particle precipitation events has been known for some time to contribute to ozone losses due to the formation of potential ozone destroying species like NO(sub x), and HO(sub x). These impacts have been measured and can be reproduced with chemistry models fairly well. In the recent past, however, even the impact of the largest solar proton events on the total amount of ozone has been small compared to the dynamical variability of ozone, and to the anthropogenic induced impacts like the Antarctic 'ozone hole'. This is due to the shielding effect of the magnetic field. However, there is evidence that the earth's magnetic field may approach a reversal. This could lead to a decrease of magnetic field strength to less than 25% of its usual value over a period of several centuries . We show that with realistic estimates of very large solar proton events, scenarios similar to the Antarctic ozone hole of the 1990s may occur during a magnetic polarity transition.

  4. Spin flip loss in magnetic confinement of ultracold neutrons for neutron lifetime experiments

    NASA Astrophysics Data System (ADS)

    Steyerl, A.; Leung, K. K. H.; Kaufman, C.; Müller, G.; Malik, S. S.

    2017-03-01

    We analyze the spin flip loss for ultracold neutrons in magnetic bottles of the type used in experiments aiming at a precise measurement of the neutron lifetime, extending the one-dimensional field model used previously by Steyerl et al. [Phys. Rev. C 86, 065501 (2012), 10.1103/PhysRevC.86.065501] to two dimensions for cylindrical multipole fields. We also develop a general analysis applicable to three dimensions. Here we apply it to multipole fields and to the bowl-type field configuration used for the Los Alamos UCN τ experiment. In all cases considered the spin flip loss calculated exceeds the Majorana estimate by many orders of magnitude but can be suppressed sufficiently by applying a holding field of appropriate magnitude to allow high-precision neutron lifetime measurements, provided other possible sources of systematic error are under control.

  5. Measurements of AC Loss In Second-Generation HTS Tapes in a DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Osofsky, M. S.; Soulen, R. J.; Gubser, D. U.; Datta, T.

    2008-03-01

    The successful application of superconductivity to motors and other power system components depends on the characterization and subsequent minimization of the ac loss in the superconductor used for fabrication of the component. The superconductive component, excited by an ac power source, may be exposed to large dc magnetic fields and/or ac fields. To further complicate the situation, the transport properties of the tapes are strongly dependent on the angle between the applied field and the YBCO c-axis (normal to the tape surface). We report on measurements of the transport ac loss of a YBaCuO tape at 65 K, at several frequencies, in applied dc fields of 1-3 T with the field parallel and perpendicular to the tape normal.

  6. Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms

    SciTech Connect

    Jain, Aditya; Moitra, Parikshit; Koschny, Thomas; Valentine, Jason; Soukoulis, Costas M.

    2015-07-14

    Artificially created surfaces or metasurfaces, composed of appropriately shaped subwavelength structures, namely, meta-atoms, control light at subwavelength scales. Historically, metasurfaces have used radiating metallic resonators as subwavelength inclusions. However, while resonant optical metasurfaces made from metal have been sufficiently subwavelength in the propagation direction, they are too lossy for many applications. Metasurfaces made out of radiating dielectric resonators have been proposed to solve the loss problem, but are marginally subwavelength at optical frequencies. We designed subwavelength resonators made out of nonradiating dielectrics. The resonators are decorated with appropriately placed scatterers, resulting in a meta-atom with an engineered electromagnetic response. A metasurface that yields an electric response is fabricated, experimentally characterized, and a method to obtain a magnetic response at optical frequencies is theoretically demonstrated. In conclusion, this design methodology paves the way for metasurfaces that are simultaneously subwavelength and low loss.

  7. Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms

    DOE PAGES

    Jain, Aditya; Moitra, Parikshit; Koschny, Thomas; ...

    2015-07-14

    Artificially created surfaces or metasurfaces, composed of appropriately shaped subwavelength structures, namely, meta-atoms, control light at subwavelength scales. Historically, metasurfaces have used radiating metallic resonators as subwavelength inclusions. However, while resonant optical metasurfaces made from metal have been sufficiently subwavelength in the propagation direction, they are too lossy for many applications. Metasurfaces made out of radiating dielectric resonators have been proposed to solve the loss problem, but are marginally subwavelength at optical frequencies. We designed subwavelength resonators made out of nonradiating dielectrics. The resonators are decorated with appropriately placed scatterers, resulting in a meta-atom with an engineered electromagnetic response. Amore » metasurface that yields an electric response is fabricated, experimentally characterized, and a method to obtain a magnetic response at optical frequencies is theoretically demonstrated. In conclusion, this design methodology paves the way for metasurfaces that are simultaneously subwavelength and low loss.« less

  8. A fast feedback controlled magnetic drive for the ASDEX Upgrade fast-ion loss detectors.

    PubMed

    Ayllon-Guerola, J; Gonzalez-Martin, J; Garcia-Munoz, M; Rivero-Rodriguez, J; Herrmann, A; Vorbrugg, S; Leitenstern, P; Zoletnik, S; Galdon, J; Garcia Lopez, J; Rodriguez-Ramos, M; Sanchis-Sanchez, L; Dominguez, A D; Kocan, M; Gunn, J P; Garcia-Vallejo, D; Dominguez, J

    2016-11-01

    A magnetically driven fast-ion loss detector system for the ASDEX Upgrade tokamak has been designed and will be presented here. The device is feedback controlled to adapt the detector head position to the heat load and physics requirements. Dynamic simulations have been performed taking into account effects such as friction, coil self-induction, and eddy currents. A real time positioning control algorithm to maximize the detector operational window has been developed. This algorithm considers dynamical behavior and mechanical resistance as well as measured and predicted thermal loads. The mechanical design and real time predictive algorithm presented here may be used for other reciprocating systems.

  9. Transient loss of plasma from a theta pinch having an initially reversed magnetic field

    SciTech Connect

    Heidrich, J. E.

    1981-01-01

    The results of an experimental study of the transient loss of plasma from a 25-cm-long theta pinch initially containing a reversed trapped magnetic field are presented. The plasma, amenable to MHD analyses, was a doubly ionized helium plasma characterized by an ion density N/sub i/ = 2 x 10/sup 16/ cm/sup -3/ and an ion temperature T/sub i/ = 15 eV at midcoil and by N/sub i/ = 0.5 x 10/sup 16/ cm/sup -3/ and T/sub i/ = 6 eV at a position 2.5 cm beyond the end of the theta coil.

  10. A fast feedback controlled magnetic drive for the ASDEX Upgrade fast-ion loss detectors

    NASA Astrophysics Data System (ADS)

    Ayllon-Guerola, J.; Gonzalez-Martin, J.; Garcia-Munoz, M.; Rivero-Rodriguez, J.; Herrmann, A.; Vorbrugg, S.; Leitenstern, P.; Zoletnik, S.; Galdon, J.; Garcia Lopez, J.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Dominguez, A. D.; Kocan, M.; Gunn, J. P.; Garcia-Vallejo, D.; Dominguez, J.

    2016-11-01

    A magnetically driven fast-ion loss detector system for the ASDEX Upgrade tokamak has been designed and will be presented here. The device is feedback controlled to adapt the detector head position to the heat load and physics requirements. Dynamic simulations have been performed taking into account effects such as friction, coil self-induction, and eddy currents. A real time positioning control algorithm to maximize the detector operational window has been developed. This algorithm considers dynamical behavior and mechanical resistance as well as measured and predicted thermal loads. The mechanical design and real time predictive algorithm presented here may be used for other reciprocating systems.

  11. Domain-wall motion in random potential and hysteresis modeling

    SciTech Connect

    Pasquale, M.; Basso, V.; Bertotti, G.; Jiles, D.C.; Bi, Y.

    1998-06-01

    Two different approaches to hysteresis modeling are compared using a common ground based on energy relations, defined in terms of dissipated and stored energy. Using the Preisach model and assuming that magnetization is mainly due to domain-wall motion, one can derive the expression of magnetization along a major loop typical of the Jiles{endash}Atherton model and then extend its validity to cases where mean-field effects and reversible contributions are present. {copyright} {ital 1998 American Institute of Physics.}

  12. Barkhausen discontinuities and hysteresis of ferromagnetics: New stochastic approach

    SciTech Connect

    Vengrinovich, Valeriy

    2014-02-18

    The magnetization of ferromagnetic material is considered as periodically inhomogeneous Markov process. The theory assumes both statistically independent and correlated Barkhausen discontinuities. The model, based on the chain evolution-type process theory, assumes that the domain structure of a ferromagnet passes successively the steps of: linear growing, exponential acceleration and domains annihilation to zero density at magnetic saturation. The solution of stochastic differential Kolmogorov equation enables the hysteresis loop calculus.

  13. Computer Simulations of Contributions of Néel and Brown Relaxation to Specific Loss Power of Magnetic Fluids in Hyperthermia

    NASA Astrophysics Data System (ADS)

    Phong, Pham Thanh; Nguyen, Luu Huu; Manh, Do Hung; Lee, In-Ja; Phuc, Nguyen Xuan

    2017-04-01

    In this study, the degree of the contribution of particular relaxation losses to the specific loss power are calculated for a number of magnetic fluids, including Fe3O4, CoFe2O4, MnFe2O4, FeCo, FePt and La0.7Sr0.3MnO3 nanoparticles in various viscosities. We found that the specific loss of every fluid studied increases linearly with particle saturation magnetization. The competition between Néel and Brownian relaxation contributions gives rise to a peak at a critical diameter in the plot of specific loss power versus diameter. The critical diameter does not change with saturation magnetization but monotonically decreases with increasing magnetic anisotropy. If particle diameter is smaller than 6-11 nm, the maximum loss power tends to diminish and the heating effect to switch off. According to how the materials respond to viscosity change, the hyperthermia materials can be classified into two groups. One is hard nanoparticles with high anisotropy of which the critical diameter decreases with viscosity and the specific loss power versus saturation magnetization rate decreases strongly. The other is soft nanoparticles with low anisotropy of which the properties are insensitive to the viscosity of the fluid. We discuss our simulated results in relation to recent experimental findings.

  14. Core losses of an inverter-fed permanent magnet synchronous motor with an amorphous stator core under no-load

    NASA Astrophysics Data System (ADS)

    Denis, Nicolas; Kato, Yoshiyuki; Ieki, Masaharu; Fujisaki, Keisuke

    2016-05-01

    In this paper, an interior permanent magnet synchronous motor (IPMSM) with a stator core made of amorphous magnetic material (AMM) is presented. The IPMSM is driven by a voltage source three-phase inverter with classical pulse width modulation (PWM) control. The core losses under no-load condition are measured by experiment and compared to an equivalent IPMSM with a stator core made of NO steel. Under these conditions, the core losses are influenced by the stator, rotor and magnet shapes but also by the PWM carrier signal that implies a high frequency harmonic in the magnetic flux density. It is demonstrated that the AMM can reduce the core losses by about 56 %.

  15. Effect of applied magnetic field on sound transmission loss of MR-based sandwich panels

    NASA Astrophysics Data System (ADS)

    Hemmatian, Masoud; Sedaghati, Ramin

    2017-02-01

    This study aims to investigate the sound transmission loss (STL) capability of sandwich panels treated with Magnetorheological (MR) fluids at low frequencies. An experimental setup has been designed to investigate the effect of the intensity of applied magnetic field on the natural frequencies and STL of a clamped circular panel. It is shown that the fundamental natural frequency of the MR sandwich panel increases in proportion to the applied magnetic field. In addition, the STL of the panel at the resonance frequency increases as the magnetic field is amplified. Furthermore, the classical plate theory and Ritz method have been utilized to develop the governing equations of motion of the finite multilayered circular panels comprising two elastic face sheets and MR fluid core layer. The radiated sound power from the panel is derived using Rayleigh integral as a function of the transverse velocity of the panel which is subsequently used to evaluate the STL. The theoretical study is validated comparing the simulation results with the experimental measurements. Experimental and analytical parametric study have also been conducted to study the effect of the core layers’ thickness on the natural frequency and the STL of sandwich panel.

  16. Energy loss of ions in a magnetized plasma: conformity between linear response and binary collision treatments.

    PubMed

    Nersisyan, H B; Zwicknagel, G; Toepffer, C

    2003-02-01

    The energy loss of a heavy ion moving in a magnetized electron plasma is considered within the linear response (LR) and binary collision (BC) treatments with the purpose to look for a connection between these two models. These two complementary approaches yield close results if no magnetic field is present, but there develop discrepancies with growing magnetic field at ion velocities that are lower than, or comparable with, the thermal velocity of the electrons. We show that this is a peculiarity of the Coulomb interaction which requires cutoff procedures to account for its singularity at the origin and its infinite range. The cutoff procedures in the LR and BC treatments are different as the order of integrations in velocity and in ordinary (Fourier) spaces is reversed in both treatments. While BC involves a velocity average of Coulomb logarithms, there appear in LR Coulomb logarithms of velocity averaged cutoffs. The discrepancies between LR and BC vanish, except for small contributions of collective modes, for smoothened potentials that require no cutoffs. This is shown explicitly with the help of an improved BC in which the velocity transfer is treated up to second order in the interaction in Fourier space.

  17. Hysteresis Modeling in Magnetostrictive Materials Via Preisach Operators

    NASA Technical Reports Server (NTRS)

    Smith, R. C.

    1997-01-01

    A phenomenological characterization of hysteresis in magnetostrictive materials is presented. Such hysteresis is due to both the driving magnetic fields and stress relations within the material and is significant throughout, most of the drive range of magnetostrictive transducers. An accurate characterization of the hysteresis and material nonlinearities is necessary, to fully utilize the actuator/sensor capabilities of the magnetostrictive materials. Such a characterization is made here in the context of generalized Preisach operators. This yields a framework amenable to proving the well-posedness of structural models that incorporate the magnetostrictive transducers. It also provides a natural setting in which to develop practical approximation techniques. An example illustrating this framework in the context of a Timoshenko beam model is presented.

  18. An Energy-Based Hysteresis Model for Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Calkins, F. T.; Smith, R. C.; Flatau, A. B.

    1997-01-01

    This paper addresses the modeling of hysteresis in magnetostrictive transducers. This is considered in the context of control applications which require an accurate characterization of the relation between input currents and strains output by the transducer. This relation typically exhibits significant nonlinearities and hysteresis due to inherent properties of magnetostrictive materials. The characterization considered here is based upon the Jiles-Atherton mean field model for ferromagnetic hysteresis in combination with a quadratic moment rotation model for magnetostriction. As demonstrated through comparison with experimental data, the magnetization model very adequately quantifies both major and minor loops under various operating conditions. The combined model can then be used to accurately characterize output strains at moderate drive levels. The advantages to this model lie in the small number (six) of required parameters and the flexibility it exhibits in a variety of operating conditions.

  19. Direct recursive identification of the Preisach hysteresis density function

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael

    2013-12-01

    In this paper, a novel direct method of recursive identification of the Preisach hysteresis density function is proposed. Using the discrete dynamic Preisach model, which is a state-space realization of the classical scalar Preisach model, the method is designed based on the output increment error. After giving the general formulation, the identification scheme implemented for a discretized Preisach plane is introduced and evaluated through the use of numerical simulations. Two cases of Gaussian mixtures are considered for mapping the hysteresis system to be identified. The parameter convergence is shown for a low-pass filtered white-noise input. Further, the proposed identification method is applied to a magnetism-related application example, where the flux linkage hysteresis of a proportional solenoid is assumed from the measurements, and then the inverse of a standard demagnetization procedure is utilized as the identification sequence.

  20. Hysteresis modeling in ballistic carbon nanotube field-effect transistors

    PubMed Central

    Liu, Yian; Moura, Mateus S; Costa, Ademir J; de Almeida, Luiz Alberto L; Paranjape, Makarand; Fontana, Marcio

    2014-01-01

    Theoretical models are adapted to describe the hysteresis effects seen in the electrical characteristics of carbon nanotube field-effect transistors. The ballistic transport model describes the contributions of conduction energy sub-bands over carbon nanotube field-effect transistor drain current as a function of drain-source and gate-source voltages as well as other physical parameters of the device. The limiting-loop proximity model, originally developed to understand magnetic hysteresis, is also utilized in this work. The curves obtained from our developed model corroborate well with the experimentally derived hysteretic behavior of the transistors. Modeling the hysteresis behavior will enable designers to reliably use these effects in both analog and memory applications. PMID:25187698

  1. Steinmetz law for ac magnetized iron-phenolformaldehyde resin soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Kollár, Peter; Olekšáková, Denisa; Vojtek, Vladimír; Füzer, Ján; Fáberová, Mária; Bureš, Radovan

    2017-02-01

    The validity of the Steinmetz law, describing the total energy losses as a function of maximum induction from 0.1 to 1.2 T has been verified in the frequency range from 100 Hz to 1.2 kHz for iron-based soft magnetic composites (SMCs), with the aim to determine the coefficients in Steinmetz law. The Bertotti's statistical model was used to modify the Steinmetz law, for the hysteresis energy loss Wdc of SMCs magnetized in dc magnetic field, to the model for total energy losses Wt when an ac magnetic field is applied. In this case the total energy losses Wt consist of hysteresis losses to which the dynamic energy losses Wd, consisting of interparticle eddy current losses Wc inter, intraparticle eddy current losses Wc intra and excess losses We, were added. The validity of this model was experimentally proven for the investigated Fe-based SMCs at maximum inductions Bm ranging from 0.1 to 1.2 T.

  2. Magnetic Resonance Measurement of Turbulent Kinetic Energy for the Estimation of Irreversible Pressure Loss in Aortic Stenosis

    PubMed Central

    Dyverfeldt, Petter; Hope, Michael D.; Tseng, Elaine E.; Saloner, David

    2013-01-01

    OBJECTIVES The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. BACKGROUND Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. METHODS The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. RESULTS The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance–measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R2 = 0.91). CONCLUSIONS Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss

  3. Synthesis of bulk FeHfBO soft magnetic materials and its loss characterization at megahertz frequency

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Kou, Xiaoming; Mu, Mingkai; Warsi Muhammad, Asif; Lin, Shuo; Harris, Brendan S.; Parsons, Paul E.; Zhu, Hao; Lee, Fred C.; Xiao, John Q.

    2013-05-01

    Magnetic core materials with low loss, high saturation magnetization, large permeability, and operating frequency above 1 MHz are in high demands for the next generation of miniaturized power electronics. Amorphous FeHfB ribbons with thickness around 20 μm have been fabricated through melt-spinning. Different heat treatments were performed on the FeHfB ribbons, and the relations among heat treatments, microstructure, and magnetic properties have been explored. Properties such as coercivity (Hc) of 2.0 Oe and saturation magnetic flux density (BS) of 1.2 T have been achieved in samples with exchange coupling. The losses can be minimized by balancing the hysteretic and eddy current losses and can be further reduced with additional magnetic field annealing. At 5 MHz with peak magnetic flux density of 20 mT, the materials show core losses comparable to the best ferrites, but with higher permeability value of about 200 and superior saturation induction of more than 1 T.

  4. Direct measurement of the plasma loss width in an optimized, high ionization fraction, magnetic multi-dipole ring cusp

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Weisberg, D. B.; Khalzov, I.; Milhone, J.; Flanagan, K.; Peterson, E.; Wahl, C.; Forest, C. B.

    2016-10-01

    The loss width of plasma in the WiPAL multi-dipole magnetic ring cusp [Cooper et al., Phys. Plasmas 21, 13505 (2014); Forest et al., J. Plasma Phys. 81, 345810501 (2015)] has been directly measured using a novel array of probes embedded in the insulating plasma limiters. The large plasma volume ( ˜10 m3), small loss area associated with strong rare earth permanent magnets ( Bo˜2.23 kG at face), and large heating power ( ≤200 kW) produces a broad range of electron temperatures ( 2 magnetic fields, differs from previous devices: the cusp loss width is much larger than the Debye length and electron gyroradius and comparable to the collision length. Plasma parameters measured at the surface of ceramic limiter tiles covering the magnets and along radial chords in the cusp magnetic field indicate that electron density and temperature are nearly constant on magnetic field lines and that the mirror forces play little role in confining the plasma other than to constrict the loss area. Particle balance modeling is used to determine the cross field diffusion coefficient base on the measured losses to the limiters. The experimentally determined cross field diffusion coefficient (which determines the cusp loss width) is consistent with ambipolar diffusion across five orders of magnitude. The ambipolar diffusion across a given field line is set primarily by the electron-neutral collisions in the region where the magnetic field is the weakest, even though these plasmas can have ionization fractions near 1.

  5. Modeling of magnetic properties of polymer bonded Nd-Fe-B magnets with surface modifications

    NASA Astrophysics Data System (ADS)

    Xiao, Jun; Otaigbe, Joshua U.; Jiles, David C.

    2000-07-01

    The effects of surface modification on the magnetic properties of polymer-bonded Nd-Fe-B magnets have been studied. Two sets of Nd-Fe-B powders, coated and uncoated, were blended and compression molded with polyphenylene sulfide in isotropic form. Their magnetic properties were measured using a Helmholtz coil and a SQUID. The results showed that the effect of the coating significantly improved the irreversible loss in flux and energy product of the polymer-bonded magnets. The results have been interpreted using an isotropic model of hysteresis that takes into account energy losses. The modeling showed that the presence of soft magnetic materials in the Nd-Fe-B powders caused by oxidation reduces the interaction among magnetic particles, however, the coating treatment alters the magnetic properties by increasing the remanence of polymer-bonded magnets via increasing the interparticle coupling coefficient.

  6. Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

    NASA Astrophysics Data System (ADS)

    Provenzano, Virgil; Della Torre, Edward; Bennett, Lawrence H.; ElBidweihy, Hatem

    2014-02-01

    The Gd5Ge2Si2 alloy and the off-stoichiometric Ni50Mn35In15 Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd5Ge2Si2 and Ni50Mn35In15 alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis.

  7. Metal loss characterization in 55-gallon drum steel by the magnetic flux leakage method

    SciTech Connect

    Hockey, R.; Riechers, D.; Duncan, D.

    1995-12-31

    A technique, using Magnetic Flux Leakage (MFL), has been developed for imaging corrosion damage in real-time on the inner surface of sealed 55-gallon drums. An experimental study and theoretical background are presented showing the sensitivity of an MFL technique for detecting and imaging both general and localized corrosion on the inner surface of sealed 55-gallon drums, inspected from the outer surface. Measurements resulting from studies on natural corrosion and machined defects in 55-gallon drum steel will be discussed. Image processing techniques applied to scan data show metal loss in 2-D gray scale images. This work suggests an approach to designing a real-time, full-coverage, 55-gallon drum inspection system to characterize drum wall thickness for comparison over time to determine corrosion rate.

  8. Calorimetric AC loss measurement of MgB2 superconducting tape in an alternating transport current and direct magnetic field

    NASA Astrophysics Data System (ADS)

    See, K. W.; Xu, X.; Horvat, J.; Cook, C. D.; Dou, S. X.

    2012-11-01

    Applications of MgB2 superconductors in electrical engineering have been widely reported, and various studies have been made to define their alternating current (AC) losses. However, studies on the transport losses with an applied transverse DC magnetic field have not been conducted, even though this is one of the favored conditions in applications of practical MgB2 tapes. Methods and techniques used to characterize and measure these losses have so far been grouped into ‘electrical’ and ‘calorimetric’ approaches with external conditions set to resemble the application conditions. In this paper, we present a new approach to mounting the sample and employ the calorimetric method to accurately determine the losses in the concurrent application of AC transport current and DC magnetic fields that are likely to be experienced in practical devices such as generators and motors. This technique provides great simplification compared to the pickup coil and lock-in amplifier methods and is applied to a long length (˜10 cm) superconducting tape. The AC loss data at 20 and 30 K will be presented in an applied transport current of 50 Hz under external DC magnetic fields. The results are found to be higher than the theoretical predictions because of the metallic fraction of the tape that contributes quite significantly to the total losses. The data, however, will allow minimization of losses in practical MgB2 coils and will be used in the verification of numerical coil models.

  9. Nonlinear diffusion and superconducting hysteresis

    SciTech Connect

    Mayergoyz, I.D.

    1996-12-31

    Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.

  10. Heat Loss in a Laser-Driven, Magnetized, X-Ray Source with Thermoelectric Terms

    NASA Astrophysics Data System (ADS)

    Giuliani, J. L.; Velikovich, A. L.; Kemp, G. E.; Colvin, J. D.; Koning, J.; Fournier, K. B.

    2016-10-01

    The efficiency of laser-driven K-shell radiation sources, i.e., pipes containing a gas or a metal foam, may be improved by using an axial magnetic field to thermally insulate the pipe wall from the hot interior. A planar, self-similar solution for the magnetic and thermal diffusion is developed to model the near wall physics that includes the thermoelectric Nernst and Ettingshausen effects. This solution extends previous work for the MagLIF concept to include the full dependence of the transport coefficients on the electron Hall parameter. The analytic solution assumes a constant pressure. This case is matched with a 1D MHD code, which is then applied to the case allowing for pressure gradients. These numerical solutions are found to evolve toward the self-similar ones. The variation of the time integrated heat loss with and without the thermoelectric terms will be examined. The present work provides a verification test for general MHD codes that use Braginskii's or Epperlein-Haines' transport model to account for thermoelectric effects. NRL supported by the DOE/NNSA. LLNL work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  11. A simple model of hysteresis behavior using spreadsheet analysis

    NASA Astrophysics Data System (ADS)

    Ehrmann, A.; Blachowicz, T.

    2015-01-01

    Hysteresis loops occur in many scientific and technical problems, especially as field dependent magnetization of ferromagnetic materials, but also as stress-strain-curves of materials measured by tensile tests including thermal effects, liquid-solid phase transitions, in cell biology or economics. While several mathematical models exist which aim to calculate hysteresis energies and other parameters, here we offer a simple model for a general hysteretic system, showing different hysteresis loops depending on the defined parameters. The calculation which is based on basic spreadsheet analysis plus an easy macro code can be used by students to understand how these systems work and how the parameters influence the reactions of the system on an external field. Importantly, in the step-by-step mode, each change of the system state, compared to the last step, becomes visible. The simple program can be developed further by several changes and additions, enabling the building of a tool which is capable of answering real physical questions in the broad field of magnetism as well as in other scientific areas, in which similar hysteresis loops occur.

  12. Joining of parts via magnetic heating of metal aluminum powders

    SciTech Connect

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  13. Impact of cycle-hysteresis interactions on the performance of giant magnetocaloric effect refrigerants

    NASA Astrophysics Data System (ADS)

    Brown, T. D.; Karaman, I.; Shamberger, P. J.

    2016-07-01

    Magnetic refrigeration technology based on the giant magnetocaloric effect in solid-state refrigerants is known qualitatively to be limited by dissipative mechanisms accompanying hysteresis in the magneto-structural solid-solid phase transition. In this paper, we quantitatively explore the dependence of cycle performance metrics (cooling power, temperature span, work input, and fractional Carnot efficiency) on hysteresis properties (thermal hysteresis, one-way transition width) of the magneto-structural phase transition in a Ni45Co5Mn36.6In13.4 alloy system. We investigate a variety of Ericsson-type magnetic refrigeration cycles, using a Preisach-based non-equilibrium thermodynamic framework to model the evolution of the alloy's magnetic and thermal properties. Performance metrics are found to depend strongly on hysteresis parameters, regardless of the cycle chosen. However, for a given hysteresis parameter set, the material's transformation temperatures determine a unique cycle that maximizes efficiency. For the model system used undergoing Ericsson cycles with 5 and 1.5 {{T}} maximum field constraint, fractional Carnot efficiencies in excess of 0.9 require thermal hysteresis below 1.5 {{K}} and 0.5 {{K}}, respectively. We conclude briefly with some general materials considerations for mitigating these hysteresis inefficiencies through microstructure design and other materials processing strategies.

  14. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Drake, Jeremy J.; Cohen, Ofer; Yashiro, Seiji; Gopalswamy, Nat

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  15. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    SciTech Connect

    Velikovich, A. L. Giuliani, J. L.; Zalesak, S. T.

    2014-12-15

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω{sub e}τ{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  16. Induced magnetization and power loss for a periodically driven system of ferromagnetic nanoparticles with randomly oriented easy axes

    NASA Astrophysics Data System (ADS)

    Denisov, S. I.; Lyutyy, T. V.; Pedchenko, B. O.; Hryshko, O. M.

    2016-07-01

    We study the effect of an elliptically polarized magnetic field on a system of noninteracting, single-domain ferromagnetic nanoparticles characterized by a uniform distribution of easy axis directions. Our main goal is to determine the average magnetization of this system and the power loss in it. In order to calculate these quantities analytically, we develop a general perturbation theory for the Landau-Lifshitz-Gilbert (LLG) equation and find its steady-state solution for small magnetic field amplitudes. On this basis, we derive the second-order expressions for the average magnetization and power loss, investigate their dependence on the magnetic field frequency, and analyze the role of subharmonic resonances resulting from the nonlinear nature of the LLG equation. For arbitrary amplitudes, the frequency dependence of these quantities is obtained from the numerical solution of this equation. The impact of transitions between different regimes of regular and chaotic dynamics of magnetization, which can be induced in nanoparticles by changing the magnetic field frequency, is examined in detail.

  17. Enhanced loss of magnetic-mirror-trapped fast electrons by a shear Alfvén wave

    SciTech Connect

    Wang, Y.; Gekelman, W.; Pribyl, P.; Papadopoulos, K.

    2014-05-15

    Laboratory observations of enhanced loss of magnetic mirror trapped fast electrons irradiated by a shear Alfvén Wave (SAW) are reported. The experiment is performed in the quiescent after-glow plasma in the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62(12), 2875–2883 (1991)]. A trapped energetic electron population (>100 keV) is generated in a magnetic mirror section (mirror ratio ≈ 2, length = 3.5 m) by an X-mode high power microwave pulse, and forms a hot electron ring due to the grad-B and curvature drift. SAWs of arbitrary polarization are launched externally by a Rotating Magnetic Field source (δB/B{sub 0} ≈ 0.1%, λ{sub ∥} ≈ 9 m). Irradiated by a right-handed circularly polarized SAW, the loss of electrons, in both the radial and the axial direction of the mirror field, is significantly enhanced and is modulated at f{sub Alfvén}. The periodical loss continues even after the termination of the SAW. Experimental observations suggest that a spatial distortion of the ring is formed in the SAW field and creates a collective mode of the hot electron population that degrades its confinement and leads to electron loss from the magnetic mirror. The results could have implications on techniques of radiation belt remediation.

  18. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfven Eigenmodes in the Large Helical Device

    SciTech Connect

    Ogawa, K.; Isobe, M.; Watanabe, F.; Spong, Donald A; Shimizu, A.; Osakabe, M.; Ohdachi, S.; Sakakibara, S.

    2012-01-01

    Beam-ion losses induced by fast-ion-driven toroidal Alfven eigenmodes (TAE) were measured with a scintillator-based lost fast-ion probe (SLIP) in the large helical device (LHD). The SLIP gave simultaneously the energy E and the pitch angle chi = arccos(v(parallel to)/v) distribution of the lost fast ions. The loss fluxes were investigated for three typical magnetic configurations of R{sub ax{_}vac} = 3.60 m, 3.75 m, and 3.90 m, where R{sub ax{_}vac} is the magnetic axis position of the vacuum field. Dominant losses induced by TAEs in these three configurations were observed in the E/chi regions of 50 similar to 190 keV/40 degrees, 40 similar to 170 keV/25 degrees, and 30 similar to 190 keV/30 degrees, respectively. Lost-ion fluxes induced by TAEs depend clearly on the amplitude of TAE magnetic fluctuations, R{sub ax{_}vac} and the toroidal field strength B{sub t}. The increment of the loss fluxes has the dependence of (b{sub TAE}/B{sub t}){sup s}. The power s increases from s = 1 to 3 with the increase of the magnetic axis position in finite beta plasmas.

  19. Wetting hysteresis induced by nanodefects.

    PubMed

    Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried

    2016-01-19

    Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles.

  20. Efficient Computational Model of Hysteresis

    NASA Technical Reports Server (NTRS)

    Shields, Joel

    2005-01-01

    A recently developed mathematical model of the output (displacement) versus the input (applied voltage) of a piezoelectric transducer accounts for hysteresis. For the sake of computational speed, the model is kept simple by neglecting the dynamic behavior of the transducer. Hence, the model applies to static and quasistatic displacements only. A piezoelectric transducer of the type to which the model applies is used as an actuator in a computer-based control system to effect fine position adjustments. Because the response time of the rest of such a system is usually much greater than that of a piezoelectric transducer, the model remains an acceptably close approximation for the purpose of control computations, even though the dynamics are neglected. The model (see Figure 1) represents an electrically parallel, mechanically series combination of backlash elements, each having a unique deadband width and output gain. The zeroth element in the parallel combination has zero deadband width and, hence, represents a linear component of the input/output relationship. The other elements, which have nonzero deadband widths, are used to model the nonlinear components of the hysteresis loop. The deadband widths and output gains of the elements are computed from experimental displacement-versus-voltage data. The hysteresis curve calculated by use of this model is piecewise linear beyond deadband limits.

  1. Wetting hysteresis induced by nanodefects

    PubMed Central

    Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried

    2016-01-01

    Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles. PMID:26721395

  2. Research on the Dynamic Hysteresis Loop Model of the Residence Times Difference (RTD)-Fluxgate

    PubMed Central

    Wang, Yanzhang; Wu, Shujun; Zhou, Zhijian; Cheng, Defu; Pang, Na; Wan, Yunxia

    2013-01-01

    Based on the core hysteresis features, the RTD-fluxgate core, while working, is repeatedly saturated with excitation field. When the fluxgate simulates, the accurate characteristic model of the core may provide a precise simulation result. As the shape of the ideal hysteresis loop model is fixed, it cannot accurately reflect the actual dynamic changing rules of the hysteresis loop. In order to improve the fluxgate simulation accuracy, a dynamic hysteresis loop model containing the parameters which have actual physical meanings is proposed based on the changing rule of the permeability parameter when the fluxgate is working. Compared with the ideal hysteresis loop model, this model has considered the dynamic features of the hysteresis loop, which makes the simulation results closer to the actual output. In addition, other hysteresis loops of different magnetic materials can be explained utilizing the described model for an example of amorphous magnetic material in this manuscript. The model has been validated by the output response comparison between experiment results and fitting results using the model. PMID:24002230

  3. Research on the dynamic hysteresis loop model of the residence times difference (RTD)-fluxgate.

    PubMed

    Wang, Yanzhang; Wu, Shujun; Zhou, Zhijian; Cheng, Defu; Pang, Na; Wan, Yunxia

    2013-09-02

    Based on the core hysteresis features, the RTD-fluxgate core, while working, is repeatedly saturated with excitation field. When the fluxgate simulates, the accurate characteristic model of the core may provide a precise simulation result. As the shape of the ideal hysteresis loop model is fixed, it cannot accurately reflect the actual dynamic changing rules of the hysteresis loop. In order to improve the fluxgate simulation accuracy, a dynamic hysteresis loop model containing the parameters which have actual physical meanings is proposed based on the changing rule of the permeability parameter when the fluxgate is working. Compared with the ideal hysteresis loop model, this model has considered the dynamic features of the hysteresis loop, which makes the simulation results closer to the actual output. In addition, other hysteresis loops of different magnetic materials can be explained utilizing the described model for an example of amorphous magnetic material in this manuscript. The model has been validated by the output response comparison between experiment results and fitting results using the model.

  4. Total AC losses in twisted and untwisted multifilamentary Bi-2223 superconducting tapes carrying AC transport current in AC longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Jin, Feng; Jiang, Zhenan; Shirai, Shunsuke; ten Haken, Bennie; Rabbers, Jan-Jaap; Ayai, Naoki; Hayashi, Kazuhiko

    2003-03-01

    In some electrical apparatuses, superconducting tapes are exposed to the longitudinal magnetic field. In this work, AC losses were measured in twisted and untwisted Bi-2223 tapes carrying AC transport current in the AC longitudinal magnetic field. In twisted tapes, the transport, magnetization and total losses depend on the relative direction of the longitudinal magnetic field to the direction of the transport current, while the field direction does not influence the AC loss characteristics in untwisted tapes. In the Z-twisted tapes, the total AC loss is larger in the longitudinal magnetic field that is anti-parallel to the transport current than in the longitudinal magnetic field of another direction. Numerical analysis shows that this field direction dependence of the total AC loss results from the change in the current distribution. In the longitudinal magnetic field that is anti-parallel to the transport current, the total AC loss in the Z-twisted tape is more than that in the untwisted tape. This dependence on the field direction is reversed in S-twisted tapes. It is to be noted that the twist increases the total AC loss in a longitudinal magnetic field of a certain direction, while it reduces the AC loss in the transverse magnetic field.

  5. Hysteresis heating based induction bonding of composite materials

    NASA Astrophysics Data System (ADS)

    Suwanwatana, Witchuda

    The viability of using magnetic particulate susceptor materials for induction heating during bonding of polymer matrix composites is well established in this work. The unique ability to offer localized heating, geometric flexibility, and self-controlled temperature is the major advantage of this technique. Hysteresis heating is tailored through careful design of the microstructure of nickel particulate polymer films (Ni/PSU). An excellent heating rate can be attained in the frequency range of 1 to 10 MHz for particle volume fraction below percolation of 0.26. The diameter of nickel particle should be kept between 65 nm to 10 mum to ensure multi-domain heating, Curie temperature control, negligible shielding effect, minimum eddy current, and slight particle oxidation. The hysteresis heating behavior of the Ni/PSU films is found to be volumetric in nature and proportional to the cube of applied magnetic field. On the other hand, heat generation is inversely proportional to the size of the multi-domain particles. The frequency effect; however, provide maximum heat generation at the domain wall resonance frequency. Curie temperature control is observed when sufficiently high magnetic fields (˜138 Oe) are applied. The master curves of AC heat generation in Ni/PSU films are established and show a strong particle size effect. Hysteresis fusion bonding of glass/polyphenylene sulfide thermoplastic composites using a magnetic film as the thermoplastic adhesive shows that the bond strength of hysteresis-welded materials is comparable to that of autoclave-welded materials while offering an order of magnitude reduction in cycle time. The relative contribution of the intimate contact and healing mechanisms to the fusion bonding process indicates that hysteresis bonding is controlled by intimate contact. The macroscopic failure modes vary from mostly adhesive composite/film (low bond strength) to a combination of adhesive composite/film, cohesive film, cohesive composite and

  6. Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications

    NASA Astrophysics Data System (ADS)

    Praveena, K.; Chen, Hsiao-Wen; Liu, Hsiang-Lin; Sadhana, K.; Murthy, S. R.

    2016-12-01

    Nowadays electronic industries prerequisites magnetic materials, i.e., iron rich materials and their magnetic alloys. However, with the advent of high frequency applications, the standard techniques of reducing eddy current losses, using iron cores, were no longer efficient or cost effective. Current market trends of the switched mode power supplies industries required even low energy losses in power conversion with maintenance of adequate initial permeability. From the above point of view, in the present study we aimed at the production of Manganese-Zinc ferrites prepared via solution combustion method using mixture of fuels and achieved low loss, high saturation magnetization, high permeability, and high magnetic domain relaxation frequency. The as-synthesized Zn2+ substituted MnFe2O4 were characterized by X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The fractions of Mn2+, Zn2+ and Fe2+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of all ferrite samples were estimated by Raman scattering spectroscopy. The magnetic domain relaxation was investigated by inductance spectroscopy (IS) and the observed magnetic domain relaxation frequency (fr) was increased with the increase in grain size. The real and imaginary part of permeability (μ‧ and μ″) increased with frequency and showed a maximum above 100 MHz. This can be explained on the basis of spin rotation and domain wall motion. The saturation magnetization (Ms), remnant magnetization (Mr) and magneton number (μB) decreased gradually with increasing Zn2+ concentration. The decrease in the saturation magnetization was discussed with Yafet-Kittel (Y-K) model. The Zn2+ concentration increases the relative number of ferric ions on the A sites, reduces the A-B interactions. The frequency dependent total power losses decreased as the zinc concentration increased. At 1 MHz, the total power loss (Pt) changed from 358 mW/cm3 for x=0-165 mW/cm3

  7. Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system

    SciTech Connect

    Kocakaplan, Yusuf; Keskin, Mustafa

    2014-09-07

    The hysteresis and compensation behaviors of the spin-3/2 cylindrical Ising nanotube system are studied within the framework of the effective-field theory with correlations. The effects of the Hamiltonian parameters are investigated on the magnetic and thermodynamic quantities, such as the total magnetization, hysteresis curves, and compensation behaviors of the system. Depending on the Hamiltonian parameters, some characteristic hysteresis behaviors are found, such as the existence of double and triple hysteresis loops. According to Néel classification nomenclature, the system displays Q-, R-, P-, N-, M-, and S- types of compensation behaviors for the appropriate values of the system parameters. We also compare our results with some recently published theoretical and experimental works and find a qualitatively good agreement.

  8. CABLE DESIGN FOR FAST RAMPED SUPERCONDUCTING MAGNETS (COS-0 DESIGN).

    SciTech Connect

    GHOSH,A.

    2004-03-22

    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 300 T-m and 100 T-m. Fast ramp times are needed, which can cause significant problems for the magnets, particularly in the areas of ac loss and magnetic field distortion. The development of the low loss Rutherford cable that can be used is described, together with a novel insulation scheme designed to promote efficient cooling. Measurements of contact resistance in the cable are presented and the results of these measurements are used to predict the ac losses, in the magnets during fast ramp operation. For the high energy ring, a lm model dipole magnet was built, based on the RHIC dipole design. This magnet was tested under boiling liquid helium in a vertical cryostat. The quench current showed very little dependence on ramp rate. The ac losses, measured by an electrical method, were fitted to straight line plots of loss/cycle versus ramp rate, thereby separating the eddy current and hysteresis components. These results were compared with calculated values, using parameters which had previously been measured on short samples of cable. Reasonably good agreement between theory and experiment was found, although the measured hysteresis loss is higher than expected in ramps to the highest field levels.

  9. Synthesis and characterization of 1D iron(II) spin crossover coordination polymers with hysteresis.

    PubMed

    Bauer, Wolfgang; Lochenie, Charles; Weber, Birgit

    2014-02-07

    Purposeful ligand design was used for the synthesis of eight new 1D iron(II) spin crossover coordination polymers aiming for cooperative spin transitions with hysteresis. The results from magnetic measurements and X-ray structure analysis show that the combination of rigid linkers and a hydrogen bond network between the 1D chains is a promising tool to reach this goal. Five of the eight new samples show a cooperative spin transition with hysteresis with up to 43 K wide hysteresis loops.

  10. Magnetic resonance morphometry of the loss of gray matter volume in Parkinson's disease patients

    PubMed Central

    Xia, Jianguo; Wang, Juan; Tian, Weizhong; Ding, Hongbin; Wei, Qilin; Huang, Huanxin; Wang, Jun; Zhao, Jinli; Gu, Hongmei; Tang, Lemin

    2013-01-01

    Voxel-based morphometry can be used to quantitatively compare structural differences and func-tional changes of gray matter in subjects. In the present study, we compared gray matter images of 32 patients with Parkinson's disease and 25 healthy controls using voxel-based morphometry based on 3.0 T high-field magnetic resonance T1-weighted imaging and clinical neurological scale scores. Results showed that the scores in Mini-Mental State Examination and Montreal Cognitive Assessment were lower in patients compared with controls. In particular, the scores of visuospa-tial/executive function items in Montreal Cognitive Assessment were significantly reduced, but mean scores of non-motor symptoms significantly increased, in patients with Parkinson's disease. In dition, gray matter volume was significantly diminished in Parkinson's disease patients compared with normal controls, including bilateral temporal lobe, bilateral occipital lobe, bilateral parietal lobe, bilateral frontal lobe, bilateral insular lobe, bilateral parahippocampal gyrus, bilateral amygdale, right uncus, and right posterior lobe of the cerebellum. These findings indicate that voxel-based phometry can accurately and quantitatively assess the loss of gray matter volume in patients with Parkinson' disease, and provide essential neuroimaging evidence for multisystem pathological mechanisms involved in Parkinson's disease. PMID:25206566

  11. Abnormal Magnetic Resonance Imaging Findings in Patients With Sudden Sensorineural Hearing Loss

    PubMed Central

    Jeong, Kyung-Hwa; Choi, Jin Woo; Shin, Jung Eun; Kim, Chang-Hee

    2016-01-01

    Abstract The etiology of sudden sensorineural hearing loss (SSNHL) remains unclear in most cases. This study aimed to assess abnormal magnetic resonance imaging (MRI) findings in patients with SSNHL and evaluate the value of MRI in identifying the cause of SSNHL. A retrospective analysis of the charts and MRI findings of 291 patients with SSNHL was performed. In 291 patients, MRI abnormality, which was considered a cause of SSNHL, was detected in 13 patients. Vestibular schwannoma involving the internal auditory canal (IAC) and/or cerebellopontine angle was observed in 9 patients. All 9 patients had intrameatal tumors, and 6 of the 9 patients displayed extrameatal extension of their tumors. The tumor was small (<1 cm) or medium-sized (1.1–2.9 cm) in these 6 patients. Intralabyrinthine schwannoma, labyrinthine hemorrhage, IAC metastasis, and a ruptured dermoid cyst were each observed in 1 patient. The most commonly observed MRI abnormality in patients with SSNHL was vestibular schwannoma, and all of the lesions were small or medium-sized tumors involving the IAC. PMID:27124066

  12. Modeling of hysteresis in gene regulatory networks.

    PubMed

    Hu, J; Qin, K R; Xiang, C; Lee, T H

    2012-08-01

    Hysteresis, observed in many gene regulatory networks, has a pivotal impact on biological systems, which enhances the robustness of cell functions. In this paper, a general model is proposed to describe the hysteretic gene regulatory network by combining the hysteresis component and the transient dynamics. The Bouc-Wen hysteresis model is modified to describe the hysteresis component in the mammalian gene regulatory networks. Rigorous mathematical analysis on the dynamical properties of the model is presented to ensure the bounded-input-bounded-output (BIBO) stability and demonstrates that the original Bouc-Wen model can only generate a clockwise hysteresis loop while the modified model can describe both clockwise and counter clockwise hysteresis loops. Simulation studies have shown that the hysteresis loops from our model are consistent with the experimental observations in three mammalian gene regulatory networks and two E.coli gene regulatory networks, which demonstrate the ability and accuracy of the mathematical model to emulate natural gene expression behavior with hysteresis. A comparison study has also been conducted to show that this model fits the experiment data significantly better than previous ones in the literature. The successful modeling of the hysteresis in all the five hysteretic gene regulatory networks suggests that the new model has the potential to be a unified framework for modeling hysteresis in gene regulatory networks and provide better understanding of the general mechanism that drives the hysteretic function.

  13. Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis In Planar Diodes

    DOE PAGES

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; ...

    2015-03-31

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3 antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solarmore » cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.« less

  14. Effects of dynamic diffraction conditions on magnetic parameter determination in a double perovskite Sr2FeMoO6 using electron energy-loss magnetic chiral dichroism.

    PubMed

    Wang, Z C; Zhong, X Y; Jin, L; Chen, X F; Moritomo, Y; Mayer, J

    2016-12-30

    Electron energy-loss magnetic chiral dichroism (EMCD) spectroscopy, which is similar to the well-established X-ray magnetic circular dichroism spectroscopy (XMCD), can determine the quantitative magnetic parameters of materials with high spatial resolution. One of the major obstacles in quantitative analysis using the EMCD technique is the relatively poor signal-to-noise ratio (SNR), compared to XMCD. Here, in the example of a double perovskite Sr2FeMoO6, we predicted the optimal dynamical diffraction conditions such as sample thickness, crystallographic orientation and detection aperture position by theoretical simulations. By using the optimized conditions, we showed that the SNR of experimental EMCD spectra can be significantly improved and the error of quantitative magnetic parameter determined by EMCD technique can be remarkably lowered. Our results demonstrate that, with enhanced SNR, the EMCD technique can be a unique tool to understand the structure-property relationship of magnetic materials particularly in the high-density magnetic recording and spintronic devices by quantitatively determining magnetic structure and properties at the nanometer scale.

  15. Currents, magnetization and AC-losses of YBa 2Cu 3O 7 superconductors in rapidly changing magnetic fields

    NASA Astrophysics Data System (ADS)

    Kwasnitza, K.; Plotzner, V.; Waldmann, M.; Widmer, E.

    1988-06-01

    In YBa 2Cu 3O 7 samples of different shape time dependent magnetization currents were induced at 4.2K by the application of rapid magnetic field changes. This contactless method allows the study of the intergrain and intragrain currents in the resistive flux flow state.

  16. Characterization of strain-induced martensite phase in austenitic stainless steel using a magnetic minor-loop scaling relation

    SciTech Connect

    Kobayashi, Satoru; Saito, Atsushi; Takahashi, Seiki; Kamada, Yasuhiro; Kikuchi, Hiroaki

    2008-05-05

    We propose a combined magnetic method using a scaling power-law rule and initial permeability in magnetic minor hysteresis loops for characterization of ferromagnetic {alpha}{sup '} martensites in austenitic stainless steel. The scaling power law between the hysteresis loss and remanence is universal, being independent of volume fraction of strain-induced {alpha}{sup '} martensites. A coefficient of the power law largely decreases with volume fraction, while the initial permeability linearly increases, reflecting a change in the morphology and quantity of martensites, respectively. The present method is highly effective for integrity assessment of austenitic stainless steels because of the sensitivity and extremely low measurement field.

  17. Electric and magnetic losses modeled by a stable hybrid with explicit-implicit time-stepping for Maxwell's equations

    SciTech Connect

    Halleroed, Tomas Rylander, Thomas

    2008-04-20

    A stable hybridization of the finite-element method (FEM) and the finite-difference time-domain (FDTD) scheme for Maxwell's equations with electric and magnetic losses is presented for two-dimensional problems. The hybrid method combines the flexibility of the FEM with the efficiency of the FDTD scheme and it is based directly on Ampere's and Faraday's law. The electric and magnetic losses can be treated implicitly by the FEM on an unstructured mesh, which allows for local mesh refinement in order to resolve rapid variations in the material parameters and/or the electromagnetic field. It is also feasible to handle larger homogeneous regions with losses by the explicit FDTD scheme connected to an implicitly time-stepped and lossy FEM region. The hybrid method shows second-order convergence for smooth scatterers. The bistatic radar cross section (RCS) for a circular metal cylinder with a lossy coating converges to the analytical solution and an accuracy of 2% is achieved for about 20 points per wavelength. The monostatic RCS for an airfoil that features sharp corners yields a lower order of convergence and it is found to agree well with what can be expected for singular fields at the sharp corners. A careful convergence study with resolutions from 20 to 140 points per wavelength provides accurate extrapolated results for this non-trivial test case, which makes it possible to use as a reference problem for scattering codes that model both electric and magnetic losses.

  18. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors.

    PubMed

    Glowacki, B A; Majoros, M

    2009-06-24

    Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa(2)Cu(3)O(7) and (Pb,Bi)(2)Sr(2)Ca(2)Cu(3)O(9) conductors, and buffer layers have to be used. In contrast, in MgB(2) conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.

  19. High temperature oxidation and its induced coercivity loss of a 2:17 type SmCo-based magnet

    SciTech Connect

    Wang, X.; Peng, X. Zhao, H.; Wang, F.; Guo, Zh.; Li, W.

    2015-03-07

    Oxidation has been explained as one possibility for unacceptable and irreversible coercivity loss of 2:17 type SmCo-based magnets at high temperatures over 550 °C, but the question for how oxidation affects coercivity in the magnet has not been fundamentally answered. In this work, oxidation and its induced degradation of the magnetic phases of a Sm(Co{sub bal}Fe{sub 0.22}Cu{sub 0.08}Zr{sub 0.02}){sub 7.5} magnet in air at 600 °C have been investigated by using transmission electron microscopy and correlated with the demagnetization curves measured. It shows that the coercivity loss, which is significantly increased with oxidation time, is small and independent of time in the magnet unaffected by oxidation. The reason lies in that the 2:17 cell and 1:5 cell boundary, although they have been completely disintegrated in the oxidized part by external oxidation of Co, Fe, and Cu and internal oxidation of Sm, remains in the unoxidized part except that 1:5 boundary close to the oxidized part is decreased in thickness and Cu content.

  20. High temperature oxidation and its induced coercivity loss of a 2:17 type SmCo-based magnet

    NASA Astrophysics Data System (ADS)

    Wang, X.; Peng, X.; Zhao, H.; Guo, Zh.; Li, W.; Wang, F.

    2015-03-01

    Oxidation has been explained as one possibility for unacceptable and irreversible coercivity loss of 2:17 type SmCo-based magnets at high temperatures over 550 °C, but the question for how oxidation affects coercivity in the magnet has not been fundamentally answered. In this work, oxidation and its induced degradation of the magnetic phases of a Sm(CobalFe0.22Cu0.08Zr0.02)7.5 magnet in air at 600 °C have been investigated by using transmission electron microscopy and correlated with the demagnetization curves measured. It shows that the coercivity loss, which is significantly increased with oxidation time, is small and independent of time in the magnet unaffected by oxidation. The reason lies in that the 2:17 cell and 1:5 cell boundary, although they have been completely disintegrated in the oxidized part by external oxidation of Co, Fe, and Cu and internal oxidation of Sm, remains in the unoxidized part except that 1:5 boundary close to the oxidized part is decreased in thickness and Cu content.

  1. Contact angle hysteresis on fluoropolymer surfaces.

    PubMed

    Tavana, H; Jehnichen, D; Grundke, K; Hair, M L; Neumann, A W

    2007-10-31

    Contact angle hysteresis of liquids with different molecular and geometrical properties on high quality films of four fluoropolymers was studied. A number of different causes are identified for hysteresis. With n-alkanes as probe liquids, contact angle hysteresis is found to be strongly related to the configuration of polymer chains. The largest hysteresis is obtained with amorphous polymers whereas the smallest hysteresis occurs for polymers with ordered molecular chains. This is explained in terms of sorption of liquid by the solid and penetration of liquid into the polymer film. Correlation of contact angle hysteresis with the size of n-alkane molecules supports this conclusion. On the films of two amorphous fluoropolymers with different molecular configurations, contact angle hysteresis of one and the same liquid with "bulky" molecules is shown to be quite different. On the surfaces of Teflon AF 1600, with stiff molecular chains, the receding angles of the probe liquids are independent of contact time between solid and liquid and similar hysteresis is obtained for all the liquids. Retention of liquid molecules on the solid surface is proposed as the most likely cause of hysteresis in these systems. On the other hand, with EGC-1700 films that consist of flexible chains, the receding angles are strongly time-dependent and the hysteresis is large. Contact angle hysteresis increases even further when liquids with strong dipolar intermolecular forces are used. In this case, major reorganization of EGC-1700 chains due to contact with the test liquids is suggested as the cause. The effect of rate of motion of the three-phase line on the advancing and receding contact angles, and therefore contact angle hysteresis, is investigated. For low viscous liquids, contact angles are independent of the drop front velocity up to approximately 10 mm/min. This agrees with the results of an earlier study that showed that the rate-dependence of the contact angles is an issue only

  2. Computer Calculations of Eddy-Current Power Loss in Rotating Titanium Wheels and Rims in Localized Axial Magnetic Fields

    SciTech Connect

    Mayhall, D J; Stein, W; Gronberg, J B

    2006-05-15

    We have performed preliminary computer-based, transient, magnetostatic calculations of the eddy-current power loss in rotating titanium-alloy and aluminum wheels and wheel rims in the predominantly axially-directed, steady magnetic fields of two small, solenoidal coils. These calculations have been undertaken to assess the eddy-current power loss in various possible International Linear Collider (ILC) positron target wheels. They have also been done to validate the simulation code module against known results published in the literature. The commercially available software package used in these calculations is the Maxwell 3D, Version 10, Transient Module from the Ansoft Corporation.

  3. Tuning size and thermal hysteresis in bistable spin crossover nanoparticles.

    PubMed

    Galán-Mascarós, José Ramón; Coronado, Eugenio; Forment-Aliaga, Alicia; Monrabal-Capilla, María; Pinilla-Cienfuegos, Elena; Ceolin, Marcelo

    2010-06-21

    Nanoparticles of iron(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition "moves" towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications.

  4. The effect of the magnetic nanoparticle's size dependence of the relaxation time constant on the specific loss power of magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Harabech, Mariem; Leliaert, Jonathan; Coene, Annelies; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc

    2017-03-01

    Magnetic nanoparticle hyperthermia is a cancer treatment in which magnetic nanoparticles (MNPs) are subjected to an alternating magnetic field to induce heat in the tumor. The generated heat of MNPs is characterized by the specific loss power (SLP) due to relaxation phenomena of the MNP. Up to now, several models have been proposed to predict the SLP, one of which is the Linear Response Theory. One parameter in this model is the relaxation time constant. In this contribution, we employ a macrospin model based on the Landau-Lifshitz-Gilbert equation to investigate the relation between the Gilbert damping parameter and the relaxation time constant. This relaxation time has a pre-factor τ0 which is often taken as a fixed value ranging between 10-8 and 10-12 s. However, in reality it has small size dependence. Here, the influence of this size dependence on the calculation of the SLP is demonstrated, consequently improving the accuracy of this estimate.

  5. Anisotropy and hysteresis of transport critical currents in high temperature Ln-Y-Ba-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Noto, K.; Morita, H.; Fujimori, H.; Mizuno, K.; Aomine, T.; Ni, B.; Matsushita, T.; Yamafuji, K.; Muto, Y.

    1989-03-01

    Following the measurements of anisotropy and hysteresis in transport critical currents with changing temperature and polarity of magnetic field, a.c. magnetic measurements by the Campbell method were performed for sintered Ln-Y-Ba-Cu-O superconductors. The information derived from them indicated that hysteresis does not occur in the intragrain current but in the intergrain one. The results are interpreted in terms of flux pinning, where the anisotropy originates from the texture structure and hysteresis is associated with the superconducting weak links of the sintered oxide pellets.

  6. Charge metastability and hysteresis in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Pollanen, J.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    2016-12-01

    We report simultaneous quasi-dc magnetotransport and high-frequency surface acoustic wave measurements on bilayer two-dimensional electron systems in GaAs. Near strong integer quantized Hall states, a strong magnetic-field-sweep hysteresis in the velocity of the acoustic waves is observed at low temperatures. This hysteresis indicates the presence of a metastable state with anomalously high conductivity in the interior of the sample. This nonequilibrium state is not revealed by conventional low-frequency transport measurements which are dominated by dissipationless transport at the edge of the two-dimensional system. We find that a field-cooling technique allows the equilibrium charge configuration within the interior of the sample to be established. A simple model for this behavior is discussed.

  7. A Preisach-Based Nonequilibrium Methodology for Simulating Performance of Hysteretic Magnetic Refrigeration Cycles

    NASA Astrophysics Data System (ADS)

    Brown, Timothy D.; Bruno, Nickolaus M.; Chen, Jing-Han; Karaman, Ibrahim; Ross, Joseph H.; Shamberger, Patrick J.

    2015-09-01

    In giant magnetocaloric effect (GMCE) materials a large entropy change couples to a magnetostructural first-order phase transition, potentially providing a basis for magnetic refrigeration cycles. However, hysteresis loss greatly reduces the availability of refrigeration work in such cycles. Here, we present a methodology combining a Preisach model for rate-independent hysteresis with a thermodynamic analysis of nonequilibrium phase transformations which, for GMCE materials exhibiting hysteresis, allows an evaluation of refrigeration work and efficiency terms for an arbitrary cycle. Using simplified but physically meaningful descriptors for the magnetic and thermal properties of a Ni45Co5Mn36.6In13.4 at.% single-crystal alloy, we relate these work/efficiency terms to fundamental material properties, demonstrating the method's use as a materials design tool. Following a simple two-parameter model for the alloy's hysteresis properties, we compute and interpret the effect of each parameter on the cyclic refrigeration work and efficiency terms. We show that hysteresis loss is a critical concern in cycles based on GMCE systems, since the resultant lost work can reduce the refrigeration work to zero; however, we also find that the lost work may be mitigated by modifying other aspects of the transition, such as the width over which the one-way transformation occurs.

  8. Asymmetric Hysteresis for Probing Dzyaloshinskii-Moriya Interaction.

    PubMed

    Han, Dong-Soo; Kim, Nam-Hui; Kim, June-Seo; Yin, Yuxiang; Koo, Jung-Woo; Cho, Jaehun; Lee, Sukmock; Kläui, Mathias; Swagten, Henk J M; Koopmans, Bert; You, Chun-Yeol

    2016-07-13

    The interfacial Dzyaloshinskii-Moriya interaction (DMI) is intimately related to the prospect of superior domain-wall dynamics and the formation of magnetic skyrmions. Although some experimental efforts have been recently proposed to quantify these interactions and the underlying physics, it is still far from trivial to address the interfacial DMI. Inspired by the reported tilt of the magnetization of the side edge of a thin film structure, we here present a quasi-static, straightforward measurement tool. By using laterally asymmetric triangular-shaped microstructures, it is demonstrated that interfacial DMI combined with an in-plane magnetic field yields a unique and significant shift in magnetic hysteresis. By systematic variation of the shape of the triangular objects combined with a droplet model for domain nucleation, a robust value for the strength and sign of interfacial DMI is obtained. This method gives immediate and quantitative access to DMI, enabling a much faster exploration of new DMI systems for future nanotechnology.

  9. Effects of temperature and tensile stress on the magnetic properties of a steel core from an ACSR conductor

    SciTech Connect

    Morgan, V.T.; Zhang, B.; Findlay, R.D.

    1996-10-01

    To calculate the radial current distribution and core loss within a concentric-lay steel-cored conductor, the magnetic properties of the core must be known for any service condition. The paper describes comprehensive measurements on a length of the steel core taken from a 54/3.77 mm + 19/2.24 mm (Grackle) ACSR conductor. Curves are given to illustrate the effects of magnetic field strength, tensile stress and temperature on the modulus, real and imaginary parts of the complex relative permeability, the hysteretic angle, the loss tangent, the total core loss and the hysteresis loss.

  10. Hysteresis in the phase transition of chocolate

    NASA Astrophysics Data System (ADS)

    Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua

    2016-01-01

    We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.

  11. Hysteresis in a quantized superfluid 'atomtronic' circuit.

    PubMed

    Eckel, Stephen; Lee, Jeffrey G; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W; Lobb, Christopher J; Phillips, William D; Edwards, Mark; Campbell, Gretchen K

    2014-02-13

    Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits-it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).

  12. Hysteresis in a quantized superfluid `atomtronic' circuit

    NASA Astrophysics Data System (ADS)

    Eckel, Stephen; Lee, Jeffrey G.; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W.; Lobb, Christopher J.; Phillips, William D.; Edwards, Mark; Campbell, Gretchen K.

    2014-02-01

    Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits--it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).

  13. Hysteresis rarefaction in the Riemann problem

    NASA Astrophysics Data System (ADS)

    Krejčí, P.

    2008-11-01

    We consider the wave equation with Preisach hysteresis and Riemann initial data as a model for wave propagation in hysteretic (e.g. elastoplastic) media. The main result consists in proving that in the convex hysteresis loop domain, there exists a unique self-similar locally Lipschitz continuous solution. In other words, smooth rarefaction waves propagate in both directions from the initial jump discontinuity.

  14. Modeling of hysteresis loops by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Nehme, Z.; Labaye, Y.; Sayed Hassan, R.; Yaacoub, N.; Greneche, J. M.

    2015-12-01

    Recent advances in MC simulations of magnetic properties are rather devoted to non-interacting systems or ultrafast phenomena, while the modeling of quasi-static hysteresis loops of an assembly of spins with strong internal exchange interactions remains limited to specific cases. In the case of any assembly of magnetic moments, we propose MC simulations on the basis of a three dimensional classical Heisenberg model applied to an isolated magnetic slab involving first nearest neighbors exchange interactions and uniaxial anisotropy. Three different algorithms were successively implemented in order to simulate hysteresis loops: the classical free algorithm, the cone algorithm and a mixed one consisting of adding some global rotations. We focus particularly our study on the impact of varying the anisotropic constant parameter on the coercive field for different temperatures and algorithms. A study of the angular acceptation move distribution allows the dynamics of our simulations to be characterized. The results reveal that the coercive field is linearly related to the anisotropy providing that the algorithm and the numeric conditions are carefully chosen. In a general tendency, it is found that the efficiency of the simulation can be greatly enhanced by using the mixed algorithm that mimic the physics of collective behavior. Consequently, this study lead as to better quantified coercive fields measurements resulting from physical phenomena of complex magnetic (nano)architectures with different anisotropy contributions.

  15. A combined experimental and finite element analysis method for the estimation of eddy-current loss in NdFeB magnets.

    PubMed

    Fratila, Radu; Benabou, Abdelkader; Tounzi, Abdelmounaïm; Mipo, Jean-Claude

    2014-05-14

    NdFeB permanent magnets (PMs) are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE) method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model.

  16. The loss rates of O{sup +} in the inner magnetosphere caused by both magnetic field line curvature scattering and charge exchange reactions

    SciTech Connect

    Ji, Y.; Shen, C.

    2014-03-15

    With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O{sup +} (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O{sup +} to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O{sup +} are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.

  17. L-H power threshold scaling with magnetic geometry on NSTX and the role of ion orbit loss

    NASA Astrophysics Data System (ADS)

    Battaglia, D. J.; Chang, C.-S.; Kaye, S. M.; Ku, S.; Maingi, R.; NSTX Team

    2011-10-01

    The L-H power threshold (PLH) on the National Spherical Torus Experiment varies with X-point radius (RX) , plasma current (Ip) , the direction of the ion grad-B drift and the amount of lithium evaporated on the divertor surfaces. The edge Te and Ti (where Te ~ Ti) just prior to the time of the L-H transition vary with the magnetic geometry, but are fairly independent of the neutral fueling rate and lithium conditioning. These observations are consistent with the X-transport theory, which describes the mean edge radial electric field (Er) profile required to prevent non-ambipolar ion loss in a diverted plasma. A guiding-center orbit calculation in the absence of electric fields, collisions and flows provides insight into the dependence of the ion loss, and thus Er, on the magnetic geometry and edge Ti. For example, the number of ion loss orbits remains constant as RX is reduced from 0.64m to 0.47m only if the edge Ti increases by 60%. This is in agreement with self-consistent calculations of Er using the neoclassical XGC0 code and experiments that measured edge Te and Ti to be 40 - 60% larger. Similar agreement is also observed between guiding-center calculations, XGC0 results and the measured PLH versus Ip and ion grad-B direction. Supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  18. A Test of HTS Power Cable in a Sweeping Magnetic Field

    SciTech Connect

    Piekarz, H.; Hays, S.; Blowers, J.; Shiltsev, V.; /Fermilab

    2011-11-29

    Short sample HTS power cable composed of multiple 344C-2G strands and designed to energize a fast-cycling dipole magnet was exposed to a sweeping magnetic field in the (2-20) T/s ramping rate. The B-field orientation toward the HTS strands wide surface was varied from 0{sup 0} to 10{sup 0}, in steps of 1{sup 0}. The test arrangement allowed measurement of the combined hysteresis and eddy current power losses. For the validity of these measurements, the power losses of a short sample cable composed of multiple LTS wire strands were also performed to compare with the known data. The test arrangement of the power cable is described, and the test results are compared with the projections for the eddy and hysteresis power losses using the fine details of the test cable structures.

  19. Corneal hysteresis and its relevance to glaucoma

    PubMed Central

    Deol, Madhvi; Taylor, David A.; Radcliffe, Nathan M.

    2015-01-01

    Purpose of review Glaucoma is a leading cause of irreversible blindness worldwide. It is estimated that roughly 60.5 million people had glaucoma in 2010 and that this number is increasing. Many patients continue to lose vision despite apparent disease control according to traditional risk factors. The purpose of this review is to discuss the recent findings with regard to corneal hysteresis, a variable that is thought to be associated with the risk and progression of glaucoma. Recent findings Low corneal hysteresis is associated with optic nerve and visual field damage in glaucoma and the risk of structural and functional glaucoma progression. In addition, hysteresis may enhance intraocular pressure (IOP) interpretation: low corneal hysteresis is associated with a larger magnitude of IOP reduction following various glaucoma therapies. Corneal hysteresis is dynamic and may increase in eyes after IOP-lowering interventions are implemented. Summary It is widely accepted that central corneal thickness is a predictive factor for the risk of glaucoma progression. Recent evidence shows that corneal hysteresis also provides valuable information for several aspects of glaucoma management. In fact, corneal hysteresis may be more strongly associated with glaucoma presence, risk of progression, and effectiveness of glaucoma treatments than central corneal thickness. PMID:25611166

  20. Transport, hysteresis and avalanches in artificial spin ice systems

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, A

    2010-01-01

    We examine the hopping dynamics of an artificial spin ice system constructed from colloids on a kagome optical trap array where each trap has two possible states. By applying an external drive from an electric field which is analogous to a biasing applied magnetic field for real spin systems, we can create polarized states that obey the spin-ice rules of two spins in and one spin out at each vertex. We demonstrate that when we sweep the external drive and measure the fraction of the system that has been polarized, we can generate a hysteresis loop analogous to the hysteretic magnetization versus external magnetic field curves for real spin systems. The disorder in our system can be readily controlled by changing the barrier that must be overcome before a colloid can hop from one side of a trap to the other. For systems with no disorder, the effective spins all flip simultaneously as the biasing field is changed, while for strong disorder the hysteresis curves show a series of discontinuous jumps or avalanches similar to Barkhausen noise.

  1. Energy losses in mechanically modified bacterial magnetosomes

    NASA Astrophysics Data System (ADS)

    Molcan, Matus; Gojzewski, Hubert; Skumiel, Andrzej; Dutz, Silvio; Kovac, Jozef; Kubovcikova, Martina; Kopcansky, Peter; Vekas, Ladislau; Timko, Milan

    2016-09-01

    Magnetosomes are isolated from the Magnetospirillum magneticum strain AMB-1 bacteria. Two samples are compared: magnetosomes normally prepared of a ‘standard’ length and magnetosomes of a short length. Chains of magnetosomes are shortened by mechanical modification (cleavage) by means of sonication treatment. They represent a new geometry of magnetosomes that have not been investigated before. The effect of the sonication is analysed using transmission and electron microscopy, atomic force microscopy, and dynamic light scattering. Scanning imaging reveals three types of shortening effect in a sample of shortened magnetosomes, namely, membrane collapse, membrane destruction, and magnetosome cleavage. Dynamic light scattering shows a reduction of hydrodynamic diameter in a sample of shortened magnetosomes. The magnetic properties of magnetosomes are analysed and compared in DC and AC magnetic fields based on the evaluation of quasi-static hysteresis loops (energy losses) and calorimetric hyperthermia measurements (specific absorption rate), respectively. A sample of shortened magnetosomes behaves magnetically in a different manner, showing that both the energy loss and the specific absorption rate are reduced, and thereby indicates a variation in the heating process. The magnetic properties of magnetosomes, together with the new and stable geometry, are balanced, which opens the way for a better adaptation of the magnetic field parameters for particular applications.

  2. MEASURED AND CALCULATED LOSSES IN A MODEL DIPOLE FOR GSI'S HEAVY ION SYNCHROTRON.

    SciTech Connect

    WANDERER,P.; ANERELLA,M.; GANETIS,G.; GHOSH,A.K.; JOSHI,P.; MARONE,A.; MURATORE,J.; ET AL.

    2003-06-15

    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 300T{center_dot}m and 10OT{center_dot}m. Fast ramp times are needed. These can cause problems of ac loss and field distortion in the magnets. For the high energy ring, a lm model dipole magnet has been built, based on the RHIC dipole design. This magnet was tested under boiling liquid helium in a vertical dewar. The quench current showed very little dependence on ramp rate. The ac losses, measured by an electrical method, were fitted to straight line plots of loss/cycle versus ramp rate, thereby separating the eddy current and hysteresis components. These results were compared with calculated values, using parameters which had previously been measured on short samples of cable. Reasonably good agreement between theory and experiment was found, although the measured hysteresis loss is higher than expected in ramps to the highest field levels.

  3. Alfvén eigenmode stability and fast ion loss in DIII-D and ITER reversed magnetic shear plasmas

    NASA Astrophysics Data System (ADS)

    Van Zeeland, M. A.; Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; Spong, D. A.; Austin, M. E.; Fisher, R. K.; García Muñoz, M.; Gorelenkova, M.; Luhmann, N.; Murakami, M.; Nazikian, R.; Pace, D. C.; Park, J. M.; Tobias, B. J.; White, R. B.

    2012-09-01

    Neutral beam injection into reversed-magnetic shear DIII-D plasmas produces a variety of Alfvénic activity including toroidicity-induced Alfvén eigenmodes (TAEs) and reversed shear Alfvén eigenmodes (RSAEs). With measured equilibrium profiles as inputs, the ideal MHD code NOVA is used to calculate eigenmodes of these plasmas. The postprocessor code NOVA-K is then used to perturbatively calculate the actual stability of the modes, including finite orbit width and finite Larmor radius effects, and reasonable agreement with the spectrum of observed modes is found. Using experimentally measured mode amplitudes, fast ion orbit following simulations have been carried out in the presence of the NOVA calculated eigenmodes and are found to reproduce the dominant energy, pitch and temporal evolution of the losses measured using a large bandwidth scintillator diagnostic. The same analysis techniques applied to a DT 8 MA ITER steady-state plasma scenario with reversed-magnetic shear and both beam ion and alpha populations show Alfvén eigenmode instability. Both RSAEs and TAEs are found to be unstable with maximum growth rates occurring for toroidal mode number n = 6 and the majority of the drive coming from fast ions injected by the 1 MeV negative ion beams. AE instability due to beam ion drive is confirmed by the non-perturbative code TAEFL. Initial fast ion orbit following simulations using the unstable modes with a range of amplitudes (δB/B = 10-5-10-3) have been carried out and show negligible fast ion loss. The lack of fast ion loss is a result of loss boundaries being limited to large radii and significantly removed from the actual modes themselves.

  4. Hysteresis during contact angles measurement.

    PubMed

    Diaz, M Elena; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D

    2010-03-15

    A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle.

  5. Understanding rheological hysteresis in soft glassy materials.

    PubMed

    Radhakrishnan, Rangarajan; Divoux, Thibaut; Manneville, Sébastien; Fielding, Suzanne M

    2017-03-01

    Motivated by recent experimental studies of rheological hysteresis in soft glassy materials, we study numerically strain rate sweeps in simple yield stress fluids and viscosity bifurcating yield stress fluids. Our simulations of downward followed by upward strain rate sweeps, performed within fluidity models and the soft glassy rheology model, successfully capture the experimentally observed monotonic decrease of the area of the rheological hysteresis loop with sweep time in simple yield stress fluids, and the bell shaped dependence of hysteresis loop area on sweep time in viscosity bifurcating fluids. We provide arguments explaining these two different functional forms in terms of differing tendencies of simple and viscosity bifurcating fluids to form shear bands during the sweeps, and show that the banding behaviour captured by our simulations indeed agrees with that reported experimentally. We also discuss the difference in hysteresis behaviour between inelastic and viscoelastic fluids. Our simulations qualitatively agree with the experimental data discussed here for four different soft glassy materials.

  6. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  7. Contact angle hysteresis at the nanometer scale.

    PubMed

    Delmas, Mathieu; Monthioux, Marc; Ondarçuhu, Thierry

    2011-04-01

    Using atomic force microscopy with nonconventional carbon tips, the pinning of a liquid contact line on individual nanometric defects was studied. This mechanism is responsible for the occurrence of the contact angle hysteresis. The presence of weak defects which do not contribute to the hysteresis is evidenced for the first time. The dissipated energy associated with strong defects is also measured down to values in the range of kT, which correspond to defect sizes in the order of 1 nm.

  8. Spatial versus time hysteresis in damping mechanisms

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Fabiano, R. H.; Wang, Y.; Inman, D. J.; Cudney, H., Jr.

    1988-01-01

    A description is given of continuing investigations on the task of estimating internal damping mechanisms in flexible structures. Specifically, two models for internal damping in Euler-Bernoulli beams are considered: spatial hysteresis and time hysteresis. A theoretically sound computational algorithm for estimation is described, and experimental results are discussed. It is concluded that both models perform well in the sense that they accurately predict response for the experiments conducted.

  9. Structural hysteresis model of transmitting mechanical systems

    NASA Astrophysics Data System (ADS)

    Ruderman, M.; Bertram, T.

    2015-02-01

    We present a structural hysteresis model which describes the dynamic behavior of transmitting mechanical systems with a hysteretic spring and damped bedstop element, both connected in series. From the application point view this approach can be used for predicting the transmitted mechanical force based only on the known kinematic excitation. Using the case study of an elastic gear transmission we show and identify a hysteresis response which multivariate behavior depends on an internal state of the bedstop motion.

  10. Load-Dependent Friction Hysteresis on Graphene.

    PubMed

    Ye, Zhijiang; Egberts, Philip; Han, Gang Hee; Johnson, A T Charlie; Carpick, Robert W; Martini, Ashlie

    2016-05-24

    Nanoscale friction often exhibits hysteresis when load is increased (loading) and then decreased (unloading) and is manifested as larger friction measured during unloading compared to loading for a given load. In this work, the origins of load-dependent friction hysteresis were explored through atomic force microscopy (AFM) experiments of a silicon tip sliding on chemical vapor deposited graphene in air, and molecular dynamics simulations of a model AFM tip on graphene, mimicking both vacuum and humid air environmental conditions. It was found that only simulations with water at the tip-graphene contact reproduced the experimentally observed hysteresis. The mechanisms underlying this friction hysteresis were then investigated in the simulations by varying the graphene-water interaction strength. The size of the water-graphene interface exhibited hysteresis trends consistent with the friction, while measures of other previously proposed mechanisms, such as out-of-plane deformation of the graphene film and irreversible reorganization of the water molecules at the shearing interface, were less correlated to the friction hysteresis. The relationship between the size of the sliding interface and friction observed in the simulations was explained in terms of the varying contact angles in front of and behind the sliding tip, which were larger during loading than unloading.

  11. Influence of fourfold anisotropy form on hysteresis loop shape in ferromagnetic nanostructures

    SciTech Connect

    Ehrmann, Andrea; Blachowicz, Tomasz

    2014-08-15

    The dependence of the form of different mathematical depictions of fourfold magnetic anisotropies has been examined, using a simple macro-spin model. Strong differences in longitudinal and transverse hysteresis loops occur due to deviations from the usual phenomenological model, such as using absolute value functions. The proposed possible models can help understanding measurements on sophisticated magnetic nanosystems, like exchange bias layered structures employed in magnetic hard disk heads or magnetic nano-particles, and support the development of solutions with specific magnetization reversal behavior needed in novel magneto-electronic devices.

  12. Influence of fourfold anisotropy form on hysteresis loop shape in ferromagnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Ehrmann, Andrea; Blachowicz, Tomasz

    2014-08-01

    The dependence of the form of different mathematical depictions of fourfold magnetic anisotropies has been examined, using a simple macro-spin model. Strong differences in longitudinal and transverse hysteresis loops occur due to deviations from the usual phenomenological model, such as using absolute value functions. The proposed possible models can help understanding measurements on sophisticated magnetic nanosystems, like exchange bias layered structures employed in magnetic hard disk heads or magnetic nano-particles, and support the development of solutions with specific magnetization reversal behavior needed in novel magneto-electronic devices.

  13. Measurement of magnetic losses by thermal method applied to power ferrites at high level of induction and frequency

    NASA Astrophysics Data System (ADS)

    Loyau, V.; Lo Bue, M.; Mazaleyrat, F.

    2009-02-01

    Classically, low frequency losses in soft magnetic materials and ferrites in particular are measured by flux metric method under sinusoidal waveform excitation voltage. However, in typical application of modern power electronics, the frequency currently exceeds 100 kHz. This feature is at the origin of a difficulty: the phase shift between current and voltage can be disturbed by current probe delay. Thus, the results can be affected by large errors. As a consequence, it becomes more and more important to develop alternative methods to measure losses in magnetic materials. It is proposed to use calorimetric method which is by principle free of the above mentioned problems. The experimental device is described in details and the results are reported for experiments conducted on a commercial Mn-Zn ferrite under sinusoidal waveform regime for frequencies varying from 10 to 200 kHz. Comparisons with flux metric measurement show that significant differences appear typically for Bf products above 5000 V/m2 (50 kHz×100 mT).

  14. Analytical core loss calculations for magnetic materials used in high frequency high power converter applications. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Triner, J. E.

    1979-01-01

    The basic magnetic properties under various operating conditions encountered in the state-of-the-art DC-AC/DC converters are examined. Using a novel core excitation circuit, the basic B-H and loss characteristics of various core materials may be observed as a function of circuit configuration, frequency of operation, input voltage, and pulse-width modulation conditions. From this empirical data, a mathematical loss characteristics equation is developed to analytically predict the specific core loss of several magnetic materials under various waveform excitation conditions.

  15. Noninvasive quantification of fluid mechanical energy losses in the total cavopulmonary connection with magnetic resonance phase velocity mapping.

    PubMed

    Venkatachari, Anand K; Halliburton, Sandra S; Setser, Randolph M; White, Richard D; Chatzimavroudis, George P

    2007-01-01

    A major determinant of the success of surgical vascular modifications, such as the total cavopulmonary connection (TCPC), is the energetic efficiency that is assessed by calculating the mechanical energy loss of blood flow through the new connection. Currently, however, to determine the energy loss, invasive pressure measurements are necessary. Therefore, this study evaluated the feasibility of the viscous dissipation (VD) method, which has the potential to provide the energy loss without the need for invasive pressure measurements. Two experimental phantoms, a U-shaped tube and a glass TCPC, were scanned in a magnetic resonance (MR) imaging scanner and the images were used to construct computational models of both geometries. MR phase velocity mapping (PVM) acquisitions of all three spatial components of the fluid velocity were made in both phantoms and the VD was calculated. VD results from MR PVM experiments were compared with VD results from computational fluid dynamics (CFD) simulations on the image-based computational models. The results showed an overall agreement between MR PVM and CFD. There was a similar ascending tendency in the VD values as the image spatial resolution increased. The most accurate computations of the energy loss were achieved for a CFD grid density that was too high for MR to achieve under current MR system capabilities (in-plane pixel size of less than 0.4 mm). Nevertheless, the agreement between the MR PVM and the CFD VD results under the same resolution settings suggests that the VD method implemented with a clinical imaging modality such as MR has good potential to quantify the energy loss in vascular geometries such as the TCPC.

  16. Quasi-static magnetic properties and high-frequency energy losses in CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Tykhonenko-Polishchuk, Yu. O.; Kulyk, N. N.; Yelenich, O. V.; Bečyte, V.; Mažeika, K.; Kalita, V. M.; Belous, A. G.; Tovstolytkin, A. I.

    2016-06-01

    Two series of nanosized cobalt spinel ferrites CoFe2O4 are synthesized from metal salts using high-energy ball milling with the addition of NaCl as a growth agent (series CFO-NaCl), and without (CFO Series). The particle properties are characterized using atomic force microscopy, as well as magnetic and calorimetric measurements. It is shown that the average sizes of the nanoparticles were ˜5.6 and ˜10.3 nm for CFO and CFO-NaCl series, respectively. We performed magnetostatic measurements and determined the parameters that are required to analyze the magnetic state and remagnetization processes of the nanoparticles. It is shown that the blocking temperature is ≈160 K for CFO samples and ≈300 K for the CFO-NaCl series. It was concluded that at 293 K the CFO series particles exhibit a superparamagnetic state, whereas the CFO-NaCl series are in the blocked state. The specific loss power that is scattered by the synthesized nanoparticle ensembles placed in an alternating magnetic field, is measured experimentally and theoretically assessed. The nature of the processes that determine the thermal characteristics of the nanoparticles is analyzed.

  17. The role of multi-walled carbon nanotubes on the magnetic and reflection loss characteristics of substituted strontium ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghasemi, Ali

    2013-03-01

    Substituted strontium ferrite SrFe12-x(Ni0.5Mn0.5Zr)x/2O19/multi-walled carbon nanotubes (MWCNTs) composites were prepared by a sol-gel method. X-ray diffraction patterns confirm the formation of single phase ferrite nanoparticle and nanocomposites of ferrite/carbon nanotubes. Fourier transform infrared spectroscopy demonstrates the existence of functional groups on the surface of carbon nanotubes. Superconducting quantum interference device measurements showed that the values of specific saturation magnetization increases, while coercivity decreases with an increase in substitution content. Zero field cooled magnetization and field cooled magnetization curves display that with an increase in substitution content, the blocking temperature increases. Field emission scanning electron microscopy micrographs demonstrate that ferrite nanoparticles were attached on external surfaces of the carbon nanotubes. The investigation of the microwave absorption indicates that with an addition of carbon nanotubes, the real and imaginary parts of permittivity and reflection loss enhanced. It is found that with increasing the thickness of absorbers, the resonance frequencies shift to lower regime.

  18. Fatigue Hysteresis of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2016-02-01

    When the fiber-reinforced ceramic-matrix composites (CMCs) are first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. Under fatigue loading, the stress-strain hysteresis loops appear as fiber slipping relative to matrix in the interface debonded region upon unloading/reloading. Due to interface wear at room temperature or interface oxidation at elevated temperature, the interface shear stress degredes with increase of the number of applied cycles, leading to the evolution of the shape, location and area of stress-strain hysteresis loops. The evolution characteristics of fatigue hysteresis loss energy in different types of fiber-reinforced CMCs, i.e., unidirectional, cross-ply, 2D and 2.5D woven, have been investigated. The relationships between the fatigue hysteresis loss energy, stress-strain hysteresis loops, interface frictional slip, interface shear stress and interface radial thermal residual stress, matrix stochastic cracking and fatigue peak stress of fiber-reinforced CMCs have been established.

  19. Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide.

    PubMed

    Guan, Xiaowei; Chen, Pengxin; Chen, Sitao; Xu, Peipeng; Shi, Yaocheng; Dai, Daoxin

    2014-08-01

    An ultracompact and low-loss TM-pass polarizer on silicon is proposed and demonstrated experimentally with a subwavelength-grating (SWG) waveguide. The SWG waveguide is designed to support Bloch mode for TM polarization so that the incident TM-polarized light goes through the SWG waveguide with very low excess loss. On the other hand, for TE polarization, the SWG waveguide works as a Bragg reflector, and consequently the incident TE-polarized light is reflected. For a fabricated ∼9  μm long polarizer (with the period number N=20), the measured extinction ratio is ∼27  dB and the excess loss is ∼0.5  dB at the central wavelength 1550 nm. The bandwidth to achieve an extinction ratio of 20 dB is about 60 nm (from 1520 to 1580 nm). When increasing the period number to N=40, the measured extinction ratio is up to 40 dB (which is not as high as the expected theoretical value 65 dB due to the limit of the measurement system).

  20. AC losses of single-core MgB2 wires with different metallic sheaths

    NASA Astrophysics Data System (ADS)

    Kováč, J.; Šouc, J.; Kováč, P.; Hušek, I.

    2015-12-01

    AC losses of single-core MgB2 superconductors with different metallic sheaths (Cu, GlidCop, stainless steel and Monel) have been measured and analyzed. These wires were exposed to external magnetic field with frequencies 72 and 144 Hz and amplitudes up to 0.1 T at temperatures ranged from 18 to 40 K. The obtained results have shown that applied metallic sheath can affect the measured AC loss considerably. In the case of GlidCop and Stainless Steel a negligible small effect of metallic sheath was observed. Strong contribution of eddy currents has been found in the wire with well conductive copper sheath. In the case of Monel sheath, the hysteresis loss of magnetic sheath is dominated and AC loss of MgB2 core is practically not visible.

  1. Thermal hysteresis of Morin transition in hematite particles.

    PubMed

    Suber, L; Imperatori, P; Mari, A; Marchegiani, G; Mansilla, M Vasquez; Fiorani, D; Plunkett, W R; Rinaldi, D; Cannas, C; Ennas, G; Peddis, D

    2010-07-14

    Rhombohedral shaped, single crystal hematite particles with narrow size distribution (D(TEM) = 93 +/- 2 nm) were prepared by hydrolysis of iron chloride and polymerisation in water. The results of field dependent magnetization measurements at different warming-cooling rates and ac susceptibility measurements at varying frequencies are reported and discussed. Thermal hysteresis (DeltaT(M)) associated with the Morin transition and field dependence of the Morin temperature (T(M)) are observed in warming-cooling cycles (DeltaT(M) = 25 and 13 K for H = 0.1 and 3 T, respectively) due to the first order phase transition. A frequency dependence of ac susceptibility is observed above T(M), as a result of the relaxation of the magnetic moment of hematite particles in the weak-ferromagnetic phase.

  2. Monte Carlo simulation of the hysteresis phenomena on ferromagnetic nanotubes.

    PubMed

    Salazar-Enríquez, C D; Restrepo, J; Restrepo-Parra, E

    2012-06-01

    In this work the hysteretic properties of single wall ferromagnetic nanotubes were studied. Hysteresis loops were computed on the basis of a classical Heisenberg model involving nearest neighbor interactions and using a Monte Carlo method implemented with a single spin movement Metropolis dynamics. Nanotubes with square and hexagonal unit cells were studied varying their diameter, temperature and magneto-crystalline anisotropy. Effects of the diameter were found stronger in the square unit cell magnetic nanotubes (SMNTs) than in the hexagonal unit cell magnetic nanotubes (HMNTs). The ferromagnetic behavior was observed in SMNTs at higher temperature than in HMNTs. Moreover in both cases, SMNTs and HMNTs, the magneto-crystalline anisotropy in the longitudinal direction showed a linear correspondence with the coercive field.

  3. Fetal loss in mice exposed to magnetic fields during early pregnancy

    SciTech Connect

    Svedenstaal, B.M.; Johanson, K.J.

    1995-12-01

    The effects of low-frequency magnetic fields (MFs) on early pregnancy were studied in CBA/S mice. The magnetic field was a 20 kHz, 15 {micro}T sawtooth. Pregnant females were divided into four groups, two control groups and two exposed groups. One group was exposed to MFs continuously from day 1 postconception (pc) until day 5.5 pc, and the other group was exposed continuously until day 7 pc. All animals were sacrificed on day 19 pc, the day before partus, and their uterine contents were analyzed. No significant increase in the resorption (early fetal death) rate was found in the exposed animals compared to the sham controls. In the group exposed during days 1.0--5.5 pc, the body weight and length of the living fetuses were significantly decreased. Except on day 3 pc (progesterone) and day 13 pc (calcium) in the treated groups, there were no significant differences in progesterone and calcium levels in peripheral blood. Implantation occurred on the same day in MF-treated and control animals.

  4. THE DEPENDENCE OF STELLAR MASS AND ANGULAR MOMENTUM LOSSES ON LATITUDE AND THE INTERACTION OF ACTIVE REGION AND DIPOLAR MAGNETIC FIELDS

    SciTech Connect

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    2015-11-01

    Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfvén wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates and that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.

  5. Contact angle hysteresis, adhesion, and marine biofouling.

    PubMed

    Schmidt, Donald L; Brady, Robert F; Lam, Karen; Schmidt, Dale C; Chaudhury, Manoj K

    2004-03-30

    Adhesive and marine biofouling release properties of coatings containing surface-oriented perfluoroalkyl groups were investigated. These coatings were prepared by cross-linking a copolymer of 1H,1H,2H,2H-heptadecafluorodecyl acrylate and acrylic acid with a copolymer of poly(2-isopropenyl-2-oxazoline) and methyl methacrylate at different molar ratios. The relationships between contact angle, contact angle hysteresis, adhesion, and marine biofouling were studied. Adhesion was determined by peel tests using pressure-sensitive adhesives. The chemical nature of the surfaces was studied by using X-ray photoelectron spectroscopy. Resistance to marine biofouling of an optimized coating was studied by immersion in seawater and compared to previous, less optimized coatings. The adhesive release properties of the coatings did not correlate well with the surface energies of the coatings estimated from the static and advancing contact angles nor with the amount of fluorine present on the surface. The adhesive properties of the surfaces, however, show a correlation with water receding contact angles and contact angle hysteresis (or wetting hysteresis) resulting from surface penetration and surface reconstruction. Coatings having the best release properties had both the highest cross-link density and the lowest contact angle hysteresis. An optimized coating exhibited unprecedented resistance to marine biofouling. Water contact angle hysteresis appears to correlate with marine biofouling resistance.

  6. Mössbauer spectroscopy, magnetic characteristics, and reflection loss analysis of nickel-strontium substituted cobalt ferrite nanoparticles

    SciTech Connect

    Ghasemi, Ali; Paesano, Andrea; Cerqueira Machado, Carla Fabiana; Shirsath, Sagar E.; Liu, Xiaoxi; Morisako, Akimitsu

    2014-05-07

    In current research work, Co{sub 1-x}Ni{sub x/2}Sr{sub x/2}Fe{sub 2}O{sub 4} (x = 0–1 in a step of 0.2) ferrite nanoparticles were synthesized by a sol-gel method. According to the evolution in the subspectral areas obtained from Mössbauer spectroscopy, it was found that the relaxing iron belongs mostly to the site B, since the Mössbauer fraction of site A does not vary appreciably. With an increase in Ni-Sr substitution contents in cobalt ferrite, the coercivity and saturation of magnetization decrease. Variation of reflection loss versus frequency in microwave X-band demonstrates that the reflection peak shifts to lower frequency by adding substituted cations and the synthesized nanoparticles can be considered for application in electromagnetic wave absorber technology.

  7. Radiation losses and dark mode for spin-wave propagation through a discrete magnetic micro-waveguide

    NASA Astrophysics Data System (ADS)

    Barabanenkov, Yuri; Osokin, Sergey; Kalyabin, Dmitry; Nikitov, Sergey

    2016-11-01

    This paper presents the quantum mechanical type T -scattering operator approach to studying the forward volume magnetostatic spin-wave multiple scattering by a finite ensemble of cylindrical magnetic inclusions in a ferromagnetic thin film. The approach is applied to the problem of spin-wave excitation transfer along a linear chain of inclusions. The substantial results are deriving the optical theorem for the T -scattering operator and, as a consequence, deriving a formula for collective extinction cross section of inclusion ensemble, where only the first inclusion of the chain is irradiated by an incident narrow spin-wave beam. From this formula it can be shown that only irradiated inclusion makes a direct contribution in the collective extinction cross section of the total number of inclusions. In this case the direct summarized contribution of all the other inclusions from the chain into the spin-wave scattering is invisible; we call such phenomenon the dark mode. Applying a one-multipole and closest neighbor coupling approximation, we reveal a regime of distant resonant transfer for spin-wave excitation along the linear chain of an essentially big but finite number of particles with the dark mode. Because we also found a resonant mechanism of filtering this mode from radiation losses, the revealed regime shows that at resonant conditions the linear chain of magnetic inclusions can play the role of a spin-wave micro-waveguide, which transfers a signal over a big distance in a form of the dark mode, where the controllable level of radiation losses can tend to reach nearly zero values.

  8. Hysteresis in the anomalous Hall effect of MnAs thin films

    NASA Astrophysics Data System (ADS)

    Jaeckel, Felix T.; Stintz, Andreas; El-Emawy, Abdel-Rahman A.; Malloy, Kevin J.

    2008-03-01

    We report detailed measurements of the Hall effect in MBE-grown MnAs thin films on (001)-GaAs as a function of temperature. Hysteresis of the Hall resistivity is observed for temperatures between 300 and 355 K. Non-linear behavior of the Hall resistivity persists up to 390 K. The appearance of hysteresis at low temperatures can be explained by the emergence of stable, out-of-plane domains due to the shape anisotropy of the contracting α-phase. However, the persistence of the hysteresis and the anomalous Hall effect at temperatures significantly above 318 K is not consistent with the complete transformation of the α-phase and introduces new questions about the magnetic properties of the β-phase.

  9. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width.

    PubMed

    Cui, Jun; Chu, Yong S; Famodu, Olugbenga O; Furuya, Yasubumi; Hattrick-Simpers, Jae; James, Richard D; Ludwig, Alfred; Thienhaus, Sigurd; Wuttig, Manfred; Zhang, Zhiyong; Takeuchi, Ichiro

    2006-04-01

    Reversibility of structural phase transformations has profound technological implications in a wide range of applications from fatigue life in shape-memory alloys (SMAs) to magnetism in multiferroic oxides. The geometric nonlinear theory of martensite universally applicable to all structural transitions has been developed. It predicts the reversibility of the transitions as manifested in the hysteresis behaviour based solely on crystal symmetry and geometric compatibilities between phases. In this article, we report on the verification of the theory using the high-throughput approach. The thin-film composition-spread technique was devised to rapidly map the lattice parameters and the thermal hysteresis of ternary alloy systems. A clear relationship between the hysteresis and the middle eigenvalue of the transformation stretch tensor as predicted by the theory was observed for the first time. We have also identified a new composition region of titanium-rich SMAs with potential for improved control of SMA properties.

  10. Anomalous Hysteresis in Perovskite Solar Cells.

    PubMed

    Snaith, Henry J; Abate, Antonio; Ball, James M; Eperon, Giles E; Leijtens, Tomas; Noel, Nakita K; Stranks, Samuel D; Wang, Jacob Tse-Wei; Wojciechowski, Konrad; Zhang, Wei

    2014-05-01

    Perovskite solar cells have rapidly risen to the forefront of emerging photovoltaic technologies, exhibiting rapidly rising efficiencies. This is likely to continue to rise, but in the development of these solar cells there are unusual characteristics that have arisen, specifically an anomalous hysteresis in the current-voltage curves. We identify this phenomenon and show some examples of factors that make the hysteresis more or less extreme. We also demonstrate stabilized power output under working conditions and suggest that this is a useful parameter to present, alongside the current-voltage scan derived power conversion efficiency. We hypothesize three possible origins of the effect and discuss its implications on device efficiency and future research directions. Understanding and resolving the hysteresis is essential for further progress and is likely to lead to a further step improvement in performance.

  11. Experimental Investigation of DC-Bias Related Core Losses in a Boost Inductor (Postprint)

    DTIC Science & Technology

    2014-08-01

    dc bias-flux conditions. These dc bias conditions result in distorted hysteresis loops, increased core losses, and have been shown to be independent...core are proportional to the controllable converter load currents, this topology is ideal to study dc-related losses. Inductor core B-H hysteresis ...These dc bias conditions result in dis- torted hysteresis loops, increased core losses, and have been shown to be independent of core material. The

  12. Hysteresis modeling in graphene field effect transistors

    SciTech Connect

    Winters, M.; Rorsman, N.; Sveinbjörnsson, E. Ö.

    2015-02-21

    Graphene field effect transistors with an Al{sub 2}O{sub 3} gate dielectric are fabricated on H-intercalated bilayer graphene grown on semi-insulating 4H-SiC by chemical vapour deposition. DC measurements of the gate voltage v{sub g} versus the drain current i{sub d} reveal a severe hysteresis of clockwise orientation. A capacitive model is used to derive the relationship between the applied gate voltage and the Fermi energy. The electron transport equations are then used to calculate the drain current for a given applied gate voltage. The hysteresis in measured data is then modeled via a modified Preisach kernel.

  13. Application of geometry based hysteresis modelling in compensation of hysteresis of piezo bender actuator

    NASA Astrophysics Data System (ADS)

    Milecki, Andrzej; Pelic, Marcin

    2016-10-01

    This paper presents results of studies of an application of a new method of piezo bender actuators modelling. A special hysteresis simulation model was developed and is presented. The model is based on a geometrical deformation of main hysteresis loop. The piezoelectric effect is described and the history of the hysteresis modelling is briefly reviewed. Firstly, a simple model for main loop modelling is proposed. Then, a geometrical description of the non-saturated hysteresis is presented and its modelling method is introduced. The modelling makes use of the function describing the geometrical shape of the two hysteresis main curves, which can be defined theoretically or obtained by measurement. These main curves are stored in the memory and transformed geometrically in order to obtain the minor curves. Such model was prepared in the Matlab-Simulink software, but can be easily implemented using any programming language and applied in an on-line controller. In comparison to the other known simulation methods, the one presented in the paper is easy to understand, and uses simple arithmetical equations, allowing to quickly obtain the inversed model of hysteresis. The inversed model was further used for compensation of a non-saturated hysteresis of the piezo bender actuator and results have also been presented in the paper.

  14. A differential algebraic approach for the modeling of polycrystalline ferromagnetic hysteresis with minor loops and frequency dependence

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2016-07-01

    In the current paper, a nonlinear differential algebraic approach is proposed for the modeling of hysteretic dynamics of polycrystalline ferromagnetic materials. The model is constructed by employing a phenomenological theory to the magnetization orientation switching. For the modeling of hysteresis in polycrystalline ferromagnetic materials, the single crystal model is applied to each magnetic domain along its own principal axis. The overall dynamics of the polycrystalline materials is obtained by taking a weighted combination of the dynamics of all magnetic domains. The weight function for the combination is taken as the distribution function of the principal axes. Numerical simulations are performed and comparisons with its experimental counterparts are presented. The hysteretic dynamics caused by orientation switching processes is accurately captured by the proposed model. Minor hysteresis loops associated with partial-amplitude loadings are also captured. Rate dependence of the hysteresis loops are inherently incorporated into the model due to its differential nature.

  15. Development and calibration of a MFM-based system for local hysteresis loops measurements

    NASA Astrophysics Data System (ADS)

    Coïsson, M.; Barrera, G.; Celegato, F.; Tiberto, P.

    2016-10-01

    A measurement technique derived from a field-dependent magnetic force microscope (MFM) is presented for the measurement of local hysteresis loops on patterned micrometric and sub-micrometric magnetic structures. The technique exploits the synchronisation of the applied field variations with the end-of-line signal of the microscope, while keeping the slow scan axis disabled. In this way, a single MFM image contains the whole field evolution of the magnetisation processes in the sample along a user-defined profile. An analysis procedure is presented for the subsequent determination of local hysteresis loops on magnetic dots. The system has been calibrated for what concerns the applied field values. No significant artifacts induced in the measurements by the applied field have been observed up to applied fields of ≈ 1000 Oe.

  16. Unmixing hysteresis loops of the late Miocene–early Pleistocene loess-red clay sequence

    PubMed Central

    Zhang, Rui; Necula, Cristian; Heslop, David; Nie, Junsheng

    2016-01-01

    Magnetic paleoclimatic records often represent mixed environmental signals. Unmixing these signals may improve our understanding of the paleoenvironmental information contained within these records, but such a task is challenging. Here we report an example of numerical unmixing of magnetic hysteresis data obtained from Chinese loess and red clay sequences. We find that the mixed magnetic assemblages of the loess and red clay sediments both contain a component characterized by a narrow hysteresis loop, the abundance of which is positively correlated with magnetic susceptibility. This component has grain sizes close to the superparamagnetic/stable single domain boundary and is attributed to pedogenic activity. Furthermore, a wasp-waisted component is found in both the loess and red clay, however, the wasp-waisted form is more constricted in the red clay. We attribute this component to a mixture of detrital ferrimagnetic grains with pedogenic hematite. The abundance of this component decreases from the base to the top of the red clay, a pattern we attribute to decreased hematite production over the Chinese Loess Plateau (CLP) due to long-term climate cooling. This work demonstrates the potential of hysteresis loop unmixing to recover quantitative paleoclimatic information carried by both low and high coercivity magnetic minerals. PMID:27389499

  17. Unmixing hysteresis loops of the late Miocene–early Pleistocene loess-red clay sequence

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Necula, Cristian; Heslop, David; Nie, Junsheng

    2016-07-01

    Magnetic paleoclimatic records often represent mixed environmental signals. Unmixing these signals may improve our understanding of the paleoenvironmental information contained within these records, but such a task is challenging. Here we report an example of numerical unmixing of magnetic hysteresis data obtained from Chinese loess and red clay sequences. We find that the mixed magnetic assemblages of the loess and red clay sediments both contain a component characterized by a narrow hysteresis loop, the abundance of which is positively correlated with magnetic susceptibility. This component has grain sizes close to the superparamagnetic/stable single domain boundary and is attributed to pedogenic activity. Furthermore, a wasp-waisted component is found in both the loess and red clay, however, the wasp-waisted form is more constricted in the red clay. We attribute this component to a mixture of detrital ferrimagnetic grains with pedogenic hematite. The abundance of this component decreases from the base to the top of the red clay, a pattern we attribute to decreased hematite production over the Chinese Loess Plateau (CLP) due to long-term climate cooling. This work demonstrates the potential of hysteresis loop unmixing to recover quantitative paleoclimatic information carried by both low and high coercivity magnetic minerals.

  18. Unmixing hysteresis loops of the late Miocene-early Pleistocene loess-red clay sequence.

    PubMed

    Zhang, Rui; Necula, Cristian; Heslop, David; Nie, Junsheng

    2016-07-08

    Magnetic paleoclimatic records often represent mixed environmental signals. Unmixing these signals may improve our understanding of the paleoenvironmental information contained within these records, but such a task is challenging. Here we report an example of numerical unmixing of magnetic hysteresis data obtained from Chinese loess and red clay sequences. We find that the mixed magnetic assemblages of the loess and red clay sediments both contain a component characterized by a narrow hysteresis loop, the abundance of which is positively correlated with magnetic susceptibility. This component has grain sizes close to the superparamagnetic/stable single domain boundary and is attributed to pedogenic activity. Furthermore, a wasp-waisted component is found in both the loess and red clay, however, the wasp-waisted form is more constricted in the red clay. We attribute this component to a mixture of detrital ferrimagnetic grains with pedogenic hematite. The abundance of this component decreases from the base to the top of the red clay, a pattern we attribute to decreased hematite production over the Chinese Loess Plateau (CLP) due to long-term climate cooling. This work demonstrates the potential of hysteresis loop unmixing to recover quantitative paleoclimatic information carried by both low and high coercivity magnetic minerals.

  19. Computational micromagnetic study of particulate media hysteresis and recording

    NASA Astrophysics Data System (ADS)

    Seberino, Christian

    2000-11-01

    A description of the micromagnetic theory, algorithms, computer software and computer hardware built and used to study particulate media particles, hysteresis and recording is first provided. This includes a derivation and analysis of the modified version of the Fast Multipole Method used in this dissertation. Results will then be presented on particulate media particle nucleation field dependence on particle shape, particle aspect ratio, ferromagnetic exchange energy and external magnetic field angle. Results on the discretization necessary to accurately model a particle will also be provided. The reversal mode of a particle will be simulated and analyzed. Simulated longitudinal and transverse hysteresis loops will be presented. Results will also be presented on particulate media coercivity and squareness dependence on volumetric packing fraction. Simulated recorded transition results will be given as well as total power spectra results for AC and DC erased particulate media. Numerical results will be compared to experimental data and analytical theories. Advice is provided on how to build a personal supercomputer like the one used in the numerical experiments of this dissertation.

  20. Application of superconducting coils to the NASA prototype magnetic balance

    NASA Technical Reports Server (NTRS)

    Haldeman, C. W.; Kraemer, R. A.; Phey, S. W.; Alishahi, M. M.; Covert, E. E.

    1981-01-01

    Application of superconducting coils to a general purpose magnetic balance was studied. The most suitable currently available superconducting cable for coils appears to be a bundle of many fine wires which are transposed and are mechanically confined. Sample coils were tested at central fields up to .5 Tesla, slewing rates up to 53 Tesla/ sec and frequencies up to 30 Hz. The ac losses were measured from helium boil-off and were approximately 20% higher than those calculated. Losses were dominated by hysteresis and a model for loss calculation which appears suitable for design purposes is presented along with computer listings. Combinations of two coils were also tested and interaction losses are reported. Two feasible geometries are also presented for prototype magnetic balance using superconductors.

  1. Magnetic Resonance Imaging of Changes in Abdominal Compartments in Obese Diabetics during a Low-Calorie Weight-Loss Program

    PubMed Central

    Vogt, Lena J.; Steveling, Antje; Meffert, Peter J.; Kromrey, Marie-Luise; Kessler, Rebecca; Hosten, Norbert; Krüger, Janine; Gärtner, Simone; Aghdassi, Ali A.; Mayerle, Julia; Lerch, Markus M.; Kühn, Jens-Peter

    2016-01-01

    Objectives To investigate changes in the fat content of abdominal compartments and muscle area during weight loss using confounder-adjusted chemical-shift-encoded magnetic resonance imaging (MRI) in overweight diabetics. Methods Twenty-nine obese diabetics (10/19 men/women, median age: 59.0 years, median body mass index (BMI): 34.0 kg/m2) prospectively joined a standardized 15-week weight-loss program (six weeks of formula diet exclusively, followed by reintroduction of regular food with gradually increasing energy content over nine weeks) over 15 weeks. All subjects underwent a standardized MRI protocol including a confounder-adjusted chemical-shift-encoded MR sequence with water/fat separation before the program as well at the end of the six weeks of formula diet and at the end of the program at 15 weeks. Fat fractions of abdominal organs and vertebral bone marrow as well as volumes of visceral and subcutaneous fat were determined. Furthermore, muscle area was evaluated using the L4/L5 method. Data were compared using the Wilcoxon signed-rank test for paired samples. Results Median BMI decreased significantly from 34.0 kg/m2 to 29.9 kg/m2 (p < 0.001) at 15 weeks. Liver fat content was normalized (14.2% to 4.1%, p < 0.001) and vertebral bone marrow fat (57.5% to 53.6%, p = 0.018) decreased significantly throughout the program, while fat content of pancreas (9.0%), spleen (0.0%), and psoas muscle (0.0%) did not (p > 0.15). Visceral fat volume (3.2 L to 1.6 L, p < 0.001) and subcutaneous fat diameter (3.0 cm to 2.2 cm, p < 0.001) also decreased significantly. Muscle area declined by 6.8% from 243.9 cm2 to 226.8 cm2. Conclusion MRI allows noninvasive monitoring of changes in abdominal compartments during weight loss. In overweight diabetics, weight loss leads to fat reduction in abdominal compartments, such as visceral fat, as well as liver fat and vertebral bone marrow fat while pancreas fat remains unchanged. PMID:27110719

  2. Wetting hysteresis of nanodrops on nanorough surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Chung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2016-10-01

    Nanodrops on smooth or patterned rough surfaces are explored by many-body dissipative particle dynamics to demonstrate the influence of surface roughness on droplet wetting. On a smooth surface, nanodrops exhibit the random motion and contact angle hysteresis is absent. The diffusivity decays as the intrinsic contact angle (θY) decreases. On a rough surface, the contact line is pinned and the most stable contact angle (θY') is acquired. The extent of contact angle hysteresis (Δ θ ) is determined by two approaches, which resemble the inflation-deflation method and inclined plane method for experiments. The hysteresis loop is acquired and both approaches yield consistent results. The influences of wettability and surface roughness on θY' and Δ θ are examined. θY' deviates from that estimated by the Wenzel or Cassie-Baxter models. This consequence can be explained by the extent of impregnation, which varies with the groove position and wettability. Moreover, contact angle hysteresis depends more on the groove width than the depth.

  3. Wetting hysteresis of nanodrops on nanorough surfaces.

    PubMed

    Chang, Cheng-Chung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2016-10-01

    Nanodrops on smooth or patterned rough surfaces are explored by many-body dissipative particle dynamics to demonstrate the influence of surface roughness on droplet wetting. On a smooth surface, nanodrops exhibit the random motion and contact angle hysteresis is absent. The diffusivity decays as the intrinsic contact angle (θ_{Y}) decreases. On a rough surface, the contact line is pinned and the most stable contact angle (θ_{Y}^{'}) is acquired. The extent of contact angle hysteresis (Δθ) is determined by two approaches, which resemble the inflation-deflation method and inclined plane method for experiments. The hysteresis loop is acquired and both approaches yield consistent results. The influences of wettability and surface roughness on θ_{Y}^{'} and Δθ are examined. θ_{Y}^{'} deviates from that estimated by the Wenzel or Cassie-Baxter models. This consequence can be explained by the extent of impregnation, which varies with the groove position and wettability. Moreover, contact angle hysteresis depends more on the groove width than the depth.

  4. Role of hysteresis in stomatal aperture dynamics

    NASA Astrophysics Data System (ADS)

    Ramos, Antônio M. T.; Prado, Carmen P. C.

    2013-01-01

    Stomata are pores responsible for gas exchange in leaves. Several experiments indicate that stomata synchronize into clusters or patches. The patches’ coordination may produce oscillations in stomatal conductance. Previous studies claim to reproduce some experimental results. However, none was able to explain the variety of behavior observed in the stomatal dynamics. Recently, Ferraz and Prado suggested a realistic geometry of vein distribution. Although it reproduces the patches, no oscillation was observed and the patches remain static. Without exploring significant details, the authors stated that hysteresis in stomatal aperture could explain several experimental features. In this paper, the hysteresis hypothesis is further explored through the concept of hysteretic operators. We have shown that the hysteresis assumption is sufficient to obtain dynamical patches and oscillations in stomatal conductance. The robustness of this hypothesis is tested by using different hysteresis operators. The model analysis reveals a dependence between the period of oscillation in stomatal conductance and the water deficit between the leaf and the environment. This underlying feature of the model might inspire further experiments to test this hypothesis.

  5. Managing Hysteresis: Three Cornerstones to Fiscal Stability

    ERIC Educational Resources Information Center

    Weeks, Richard

    2012-01-01

    The effects of the Great Recession of 2007-2009 continue to challenge school business officials (SBOs) and other education leaders as they strive to prepare students for the global workforce. Economists have borrowed a word from chemistry to describe this state of affairs: hysteresis--the lingering effects of the past on the present. Today's SBOs…

  6. Circuit increases capability of hysteresis synchronous motor

    NASA Technical Reports Server (NTRS)

    Markowitz, I. N.

    1967-01-01

    Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.

  7. Element-specific hysteresis loop measurements on Individual 35 nm islands with scanning transmission X-ray microscopy.

    PubMed

    Luo, Feng; Eimüller, Thomas; Amaladass, Edward; Lee, Ming Sang; Heyderman, Laura J; Solak, Harun H; Tyliszczak, Tolek

    2012-03-01

    Using scanning transmission X-ray microscopy combined with X-ray magnetic circular dichroism, element-specific hysteresis loops with a 25 nm X-ray probe are obtained on 35 nm Fe/Gd multilayer nanoislands fabricated by extreme ultra-violet interference lithography. Local hysteresis loops measured for the individual islands and the antidot film between the islands display similar behavior resulting from the lateral confinement. Line scan measurements confirm ferrimagnetic coupling between Fe and Gd in the patterned region. The ability to measure magnetization reversal with X-rays at high spatial resolution will provide an important tool for future characterization of sub-50 nm nanostructures.

  8. Contact angle hysteresis: a different view and a trivial recipe for low hysteresis hydrophobic surfaces.

    PubMed

    Krumpfer, Joseph W; McCarthy, Thomas J

    2010-01-01

    Contact angle hysteresis is addressed from two perspectives. The first is an analysis of the events that occur during motion of droplets on superhydrophobic surfaces. Hysteresis is discussed in terms of receding contact line pinning and the tensile failure of capillary bridges. The sign of the curvature of the solid surface is implicated as playing a key role. The second is the report of a new method to prepare smooth low hysteresis surfaces. The thermal treatment of oxygen plasma-cleaned silicon wafers with trimethylsilyl-terminated linear poly(dimethylsiloxane) (PDMS - commercial silicone oils) in disposable glass vessels is described. This treatment renders silicon/silica surfaces that contain covalently attached PDMS chains. The grafted layers of nanometre scale thickness are liquid-like (rotationally dynamic at room temperature), decrease activation barriers for contact line motion and minimize water contact angle hysteresis. This simple method requires neither sophisticated techniques nor substantial laboratory skills to perform.

  9. Magnetic configuration effects on TAE-induced losses and a comparison with the orbit-following model in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ogawa, Kunihiro; Isobe, Mitsutaka; Toi, Kazuo; Spong, Donald A.; Osakabe, Masaki; LHD Experiment Group

    2012-09-01

    Fast-ion losses from Large Helical Device (LHD) plasmas due to toroidal Alfvén eigenmodes (TAEs) were measured by a scintillator-based lost fast-ion probe (SLIP) to understand the loss processes. TAE-induced losses measured by the SLIP appeared in energy E ranges of around 50-180 keV with pitch angles χ between 35°-45°, and increased with the increase in TAE amplitudes. Position shifts of the magnetic axis due to a finite plasma pressure led not only to an increase in TAE-induced losses but also to a stronger scaling of fast-ion losses on TAE amplitudes. Characteristics of the observed fast-ion losses were compared with a numerical simulation based on orbit-following models in which the TAE fluctuations are taken into account. The calculation indicated that the number of lost fast ions reaching the SLIP increased with the increase in the TAE amplitude at the TAE gap. Moreover, the calculated dependence of fast-ion loss fluxes on the fluctuation amplitude became stronger in the case of large magnetic axis shifts, compared with the case of smaller shifts, as was observed in the experiments. The simulation results agreed qualitatively with the experimental observations in the LHD.

  10. NC-(CF2)4-CNSSN radical containing 1,2,3,5-dithiadiazolyl radical dimer exhibiting triplet excited states at low temperature and thermal hysteresis on melting-solidification: structural, spectroscopic, and magnetic characterization.

    PubMed

    Shuvaev, Konstantin V; Decken, Andreas; Grein, Friedrich; Abedin, Tareque S M; Thompson, Laurence K; Passmore, Jack

    2008-08-14

    A high yield, one-pot synthesis of the 1,2,3,5-dithiadiazolyl radical NC-(CF2)4-CNSSN radical by reduction of the corresponding 1,3,2,4-dithiadiazolium salt is reported. In the solid state, the title compound is dimerized in trans-cofacial fashion with intra-dimeric Sdelta+...N(delta-) interactions of ca. 3.2 angstroms, and the dimeric units are linked by electrostatic -C triple bond N(delta-)...Sdelta+ interactions forming an infinite chain. Magnetic susceptibility measurements performed on the solid state sample indicate a magnetic moment of 1.8 microB per dimer (1.3 microB per monomer) at 300 K and a good fit to the Bleaney-Bowers model in the temperature range 2-300 K with 2J = -1500 +/- 50 cm(-1), g = 2.02(5), rho = 0.90(3)%, and TIP = 1.25(4) x 10(-3) emu mol(-1). The [NC-(CF2)4-CNSSN radical]2 dimer is the second example of a 1,2,3,5-dithiadiazolyl radical dimer with an experimentally detected triplet excited state as probed by solid-state EPR [2J = -1730 +/- 100 cm(-1), |D| = 0.0278(5) cm(-1), |E| = 0.0047(5) cm(-1)]. The value of the singlet-triplet gap has enabled us to estimate the "in situ" dimerization energy of the radical dimer as ca. -10 kJ mol(-1). The diradical character of the dimer was calculated [CASSCF(6,6)/6-31G*] as 35%. The title radical shows magnetic bistability in the temperature range of 305-335 K as probed by the solid-state EPR presumably arising from the presence of a metastable paramagnetic supercooled phase. Bistability is accompanied by thermochromic behavior with a color change from dark green (dimeric solid) to dark brown (paramagnetic liquid).

  11. Torque meter aids study of hysteresis motor rings

    NASA Technical Reports Server (NTRS)

    Cole, M.

    1967-01-01

    Torque meter, simulating hysteresis motor operation, allows rotor ring performance characteristics to be analyzed. The meter determines hysteresis motor torque and actual stresses of the ring due to its mechanical situation and rotation, aids in the study of asymmetries or defects in motor rings, and measures rotational hysteresis.

  12. Hysteresis of thin film IPRTs in the range 100 °C to 600 °C

    NASA Astrophysics Data System (ADS)

    Zvizdić, D.; Šestan, D.

    2013-09-01

    As opposed to SPRTs, the IPRTs succumb to hysteresis when submitted to change of temperature. This uncertainty component, although acknowledged as omnipresent at many other types of sensors (pressure, electrical, magnetic, humidity, etc.) has often been disregarded in their calibration certificates' uncertainty budgets in the past, its determination being costly, time-consuming and not appreciated by customers and manufacturers. In general, hysteresis is a phenomenon that results in a difference in an item's behavior when approached from a different path. Thermal hysteresis results in a difference in resistance at a given temperature based on the thermal history to which the PRTs were exposed. The most prominent factor that contributes to the hysteresis error in an IPRT is a strain within the sensing element caused by the thermal expansion and contraction. The strains that cause hysteresis error are closely related to the strains that cause repeatability error. Therefore, it is typical that PRTs that exhibit small hysteresis also exhibit small repeatability error, and PRTs that exhibit large hysteresis have poor repeatability. Aim of this paper is to provide hysteresis characterization of a batch of IPRTs using the same type of thin-film sensor, encapsulated by same procedure and same company and to estimate to what extent the thermal hysteresis obtained by testing one single thermometer (or few thermometers) can serve as representative of other thermometers of the same type and manufacturer. This investigation should also indicate the range of hysteresis departure between IPRTs of the same type. Hysteresis was determined by cycling IPRTs temperature from 100 °C through intermediate points up to 600 °C and subsequently back to 100 °C. Within that range several typical sub-ranges are investigated: 100 °C to 400 °C, 100 °C to 500 °C, 100 °C to 600 °C, 300 °C to 500 °C and 300 °C to 600 °C . The hysteresis was determined at various temperatures by

  13. Origin of the constricted hysteresis loop in cobalt ferrites revisited

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-guo; Zhang, Yu-Jie; Wang, Weng-Hong; Wu, Guang-Heng

    2011-08-01

    A series of Co ferrites (Co xFe 3- xO 4 ( x=0-1)) were prepared using solid-state method in this work. The aging effect of their structures and constrictions of hysteresis loops under low magnetic field were investigated. It was found that during the aging process, the migration of trivalent (bivalent) ions between tetrahedral (A-site) and octahedral (B-site) coordination induced a shrinking of the lattice, which would expand again due to the precipitation of Fe 3+ after a much longer aging time. The first process caused a pronounced constriction of the loops, due to the uniaxial anisotropy led by this migration. The depression of constriction could attribute to both the expansion of lattice and the change of ionic ratios as a result of the second-phase-precipitation. The impacts of Co content, aging time and temperature upon the constriction were also discussed.

  14. Hysteresis in an Ising model with mobile bonds

    NASA Astrophysics Data System (ADS)

    Čapeta, D.; Sunko, D. K.

    2005-04-01

    Hysteresis is studied in a disordered Ising model in which diffusion of antiferromagnetic bonds is allowed in addition to spin flips. Saturation behavior changes to a figure-eight loop when diffusion is introduced. The upper and lower fields delimiting the figure-eight are determined by the Hamiltonian, while its surface and the crossing point depend on the temperature and details of the dynamics. The main avalanche is associated with the disappearance of hidden order. Some experimental observations of figure-eight anomalies are discussed. It is argued they are a signal of a transient rearrangement of domain couplings, characteristic of amorphous and/or magnetically soft samples, and similar to evolution of kinetic glasses.

  15. The effect of nano-SiO 2 on the magnetic properties of the low power loss manganese-zinc ferrites

    NASA Astrophysics Data System (ADS)

    Nie, Jianhu; Li, Haihua; Feng, Zekun; He, Huahui

    2003-09-01

    The effect of the addition of nano-SiO 2 on the power losses in the manganese-zinc ferrites has been investigated by measuring the magnetic properties and observing the grain boundary structures. The powders of Mn 0.72Zn 0.21Fe 2.07O 4 composition were prepared by using a conventional ceramic powder processing technique. Toroidal cores were sintered at 1340°C for 4 h using a tube furnace with atmosphere controlled by using the equation for equilibrium oxygen partial pressure. The microstructure of grain boundary was observed by AES and SEM. It has been found that the grain boundaries resistivity and magnetic loss are greatly dependent upon the content of nano-SiO 2. There is an optimum content of nano-SiO 2 to produce uniform grain structure and low magnetic loss. The eddy current losses were reduced by the addition of nano-SiO 2. These losses are thought to originate from the additive effect of Si atoms, which are enriched in grain boundaries to form a high resistivity layer and prevent Ca and Nb atoms being incorporated with the spinel lattice.

  16. An application of the time-step topological model for three-phase transformer no-load current calculation considering hysteresis

    NASA Astrophysics Data System (ADS)

    Carrander, Claes; Mousavi, Seyed Ali; Engdahl, G. öran

    2017-02-01

    In many transformer applications, it is necessary to have a core magnetization model that takes into account both magnetic and electrical effects. This becomes particularly important in three-phase transformers, where the zero-sequence impedance is generally high, and therefore affects the magnetization very strongly. In this paper, we demonstrate a time-step topological simulation method that uses a lumped-element approach to accurately model both the electrical and magnetic circuits. The simulation method is independent of the used hysteresis model. In this paper, a hysteresis model based on the first-order reversal-curve has been used.

  17. Magnetic properties and large magnetocaloric effect in Laves phase metallic compound

    NASA Astrophysics Data System (ADS)

    Gao, Tian; Qi, Ningning; Zhang, Yufeng; Zhou, Tao

    2014-12-01

    We investigated the magnetic properties and magnetocaloric effect of C15 Laves phase TbMn1.6Fe0.4 by magnetization and heat capacity measurements. A sharp second-order magnetic Tb-Tb ordering transition at Curie temperature TC ~ 120 K and a short-range Fe-Fe ordering transition at ~230 K are observed. Around TC, the compound shows a large magnetocaloric effect with no obvious thermal and magnetic hysteresis loss. The maximum value of magnetic entropy change reaches 8.72 J kg-1 K-1 for a magnetic field change ΔH = 7 T over a wide temperature range. The obtained relative cooling power reaches 184, 560, and 803 J kg-1 for ΔH = 2, 5 and 7 T, respectively. Large reversible magnetocaloric effect and the wide operating temperature range indicate that TbMn1.6Fe0.4 could be a promising candidate for magnetic refrigeration.

  18. Modeling the stress dependence of Barkhausen phenomena for stress axis linear and noncollinear with applied magnetic field (abstract)

    SciTech Connect

    Sablik, M.J.; Augustyniak, B.; Chmielewski, M.

    1996-04-01

    The almost linear dependence of the maximum Barkhausen noise signal amplitude on stress has made it a tool for nondestructive evaluation of residual stress. Recently, a model has been developed to account for the stress dependence of the Barkhausen noise signal. The model uses the development of Alessandro {ital et} {ital al}. who use coupled Langevin equations to derive an expression for the Barkhausen noise power spectrum. The model joins this expression to the magnetomechanical hysteresis model of Sablik {ital et} {ital al}., obtaining both a hysteretic and stress-dependent result for the magnetic-field-dependent Barkhausen noise envelope and obtaining specifically the almost linear stress dependence of the Barkhausen noise maximum experimentally. In this paper, we extend the model to derive the angular dependence observed by Kwun of the Barkhausen noise amplitude when stress axis is taken at different angles relative to magnetic field. We also apply the model to the experimental observation that in XC10 French steel, there is an apparent almost linear correlation with stress of hysteresis loss and of the integral of the Barkhausen noise signal over applied field {ital H}. Further, the two quantities, Barkhausen noise integral and hysteresis loss, are linearly correlated with each other. The model shows how that behavior is to be expected for the measured steel because of its sharply rising hysteresis curve. {copyright} {ital 1996 American Institute of Physics.}

  19. Tuning the magnetism of ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Viñas, S. Liébana; Simeonidis, K.; Li, Z.-A.; Ma, Z.; Myrovali, E.; Makridis, A.; Sakellari, D.; Angelakeris, M.; Wiedwald, U.; Spasova, M.; Farle, M.

    2016-10-01

    The importance of magnetic interactions within an individual nanoparticle or between adjacent ones is crucial not only for the macroscopic collective magnetic behavior but for the AC magnetic heating efficiency as well. On this concept, single-(MFe2O4 where M=Fe, Co, Mn) and core-shell ferrite nanoparticles consisting of a magnetically softer (MnFe2O4) or magnetically harder (CoFe2O4) core and a magnetite (Fe3O4) shell with an overall size in the 10 nm range were synthesized and studied for their magnetic particle hyperthermia efficiency. Magnetic measurements indicate that the coating of the hard magnetic phase (CoFe2O4) by Fe3O4 provides a significant enhancement of hysteresis losses over the corresponding single-phase counterpart response, and thus results in a multiplication of the magnetic hyperthermia efficiency opening a novel pathway for high-performance, magnetic hyperthermia agents. At the same time, the existence of a biocompatible Fe3O4 outer shell, toxicologically renders these systems similar to iron-oxide ones with significantly milder side-effects.

  20. Improvement of azimuthal homogeneity in permanent-magnet bearing rotors

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Rossing, T. D.; Mulcahy, T. M.; Uherka, K. L.

    1992-10-01

    Permanent magnets that are levitated and rotating over a bulk high-temperature superconductor (HTS) form the basis of many superconducting bearing designs. Experiments have shown that the rotational-loss 'coefficient of friction' for thrust bearings of this type can be as low as 8 x 10(exp -6). While the loss mechanisms of such bearings are not well understood, the azimuthal homogeneity of the rotating permanent magnet is believed to play an important role in determining the loss. One possible loss mechanism is magnetic hysteresis in the HTS, where the energy loss E per cycle is derived from the critical state model and given by E = K (Delta B)(sup 3)/J(sub c) where K is a geometric coefficient, Delta B is the variation in magnetic field at the surface of the HTS experienced during a rotation of the levitated magnet, and J(sub c) is the critical current density of the HTS. It is clear that a small decrease in Delta B (i.e., decreasing the azimuthal inhomogeneity of the rotating magnetic field) could have profound effects on decreasing E and the rotational coefficient of friction. The role of Delta B is also expected to be significant in reducing losses from eddy currents and other mechanisms. Low rotational losses in HTS bearings have been demonstrated only for levitated masses of several grams. For practical bearings, it is important to obtain these low losses with larger levitated masses. There are two main routes toward decreasing Delta B. The first is to improve the alignment of the magnetic particles during fabrication and to maintain close tolerances on grinding angles during manufacture of the permanent magnet. The second, the subject of this paper, is to provide correctional procedures after the magnet is fabricated.

  1. Improvement of azimuthal homogeneity in permanent-magnet bearing rotors

    SciTech Connect

    Hull, J.R.; Rossing, T.D.; Mulcahy, T.M.; Uherka, K.L.

    1992-10-23

    Permanent magnets that are levitated and rotating over a bulk high-temperature superconductor (HTS) form the basis of many superconducting bearing designs. Experiments have shown that the rotational-loss coefficient of friction'' for thrust bearings of this type can be as low as 8 [times] 10[sup [minus]6]. While the loss mechanisms of such bearings are not well understood, the azimuthal homogeneity of the rotating permanent magnet is believed to play an important role in determining the loss. One possible loss mechanism is magnetic hysteresis in the HTS, where the energy loss E per cycle is derived from the critical state model and given by E = K ([Delta]B[sup 3]/J[sub c]) where K is a geometric coefficient, [Delta]B is the variation in magnetic field at the surface of the HTS experienced during a rotation of the levitated magnet, and J[sub c] is the critical current density of the HTS. It is clear that a small decrease in [Delta]B (i.e., decreasing the azimuthal inhomogeneity of the rotating magnetic field) could have profound effects on decreasing E and the rotational coefficient of friction. The role of [Delta]B is also expected to be significant in reducing losses from eddy currents and other mechanisms. Low rotational losses in HTS bearings have been demonstrated only for levitated masses of several grams. For practical bearings, it is important to obtain these low losses with larger levitated masses. There are two main routes toward decreasing [Delta]B. The first is to improve the alignment of the magnetic particles during fabrication and to maintain close tolerances on grinding angles during manufacture of the permanent magnet. The second, the subject of this paper, is to provide correctional procedures after the magnet is fabricated.

  2. Improvement of azimuthal homogeneity in permanent-magnet bearing rotors

    SciTech Connect

    Hull, J.R.; Rossing, T.D.; Mulcahy, T.M.; Uherka, K.L.

    1992-10-23

    Permanent magnets that are levitated and rotating over a bulk high-temperature superconductor (HTS) form the basis of many superconducting bearing designs. Experiments have shown that the rotational-loss``coefficient of friction`` for thrust bearings of this type can be as low as 8 {times} 10{sup {minus}6}. While the loss mechanisms of such bearings are not well understood, the azimuthal homogeneity of the rotating permanent magnet is believed to play an important role in determining the loss. One possible loss mechanism is magnetic hysteresis in the HTS, where the energy loss E per cycle is derived from the critical state model and given by E = K ({Delta}B{sup 3}/J{sub c}) where K is a geometric coefficient, {Delta}B is the variation in magnetic field at the surface of the HTS experienced during a rotation of the levitated magnet, and J{sub c} is the critical current density of the HTS. It is clear that a small decrease in {Delta}B (i.e., decreasing the azimuthal inhomogeneity of the rotating magnetic field) could have profound effects on decreasing E and the rotational coefficient of friction. The role of {Delta}B is also expected to be significant in reducing losses from eddy currents and other mechanisms. Low rotational losses in HTS bearings have been demonstrated only for levitated masses of several grams. For practical bearings, it is important to obtain these low losses with larger levitated masses. There are two main routes toward decreasing {Delta}B. The first is to improve the alignment of the magnetic particles during fabrication and to maintain close tolerances on grinding angles during manufacture of the permanent magnet. The second, the subject of this paper, is to provide correctional procedures after the magnet is fabricated.

  3. Fully-coupled magnetoelastic model for Galfenol alloys incorporating eddy current losses and thermal relaxation

    NASA Astrophysics Data System (ADS)

    Evans, Phillip G.; Dapino, Marcelo J.

    2008-03-01

    A general framework is developed to model the nonlinear magnetization and strain response of cubic magnetostrictive materials to 3-D dynamic magnetic fields and 3-D stresses. Dynamic eddy current losses and inertial stresses are modeled by coupling Maxwell's equations to Newton's second law through a nonlinear constitutive model. The constitutive model is derived from continuum thermodynamics and incorporates rate-dependent thermal effects. The framework is implemented in 1-D to describe a Tonpilz transducer in both dynamic actuation and sensing modes. The model is shown to qualitatively describe the effect of increase in magnetic hysteresis with increasing frequency, the shearing of the magnetization loops with increasing stress, and the decrease in the magnetostriction with increasing load stiffness.

  4. Study of contact angle hysteresis using the Cellular Potts Model.

    PubMed

    Mortazavi, Vahid; D'Souza, Roshan M; Nosonovsky, Michael

    2013-02-28

    We use the Cellular Potts Model (CPM) to study the contact angle (CA) hysteresis in multiphase (solid-liquid-vapour) systems. We simulate a droplet over the tilted patterned surface, and a bubble placed under the surface immersed in liquid. The difference between bubbles and droplets was discussed through their CA hysteresis. Dependency of CA hysteresis on the surface structure and other parameters was also investigated. This analysis allows decoupling of the 1D (pinning of the triple line) and 2D (adhesion hysteresis in the contact area) effects and provides new insight into the nature of CA hysteresis.

  5. Wetting Hysteresis at the Molecular Scale

    NASA Technical Reports Server (NTRS)

    Jin, Wei; Koplik, Joel; Banavar, Jayanth R.

    1996-01-01

    The motion of a fluid-fluid-solid contact line on a rough surface is well known to display hysteresis in the contact angle vs. velocity relationship. In order to understand the phenomenon at a fundamental microscopic level, we have conducted molecular dynamics computer simulations of a Wilhelmy plate experiment in which a solid surface is dipped into a liquid bath, and the force-velocity characteristics are measured. We directly observe a systematic variation of force and contact angle with velocity, which is single-valued for the case of an atomically smooth solid surface. In the microscopically rough case, however, we find (as intuitively expected) an open hysteresis loop. Further characterization of the interface dynamics is in progress.

  6. AC losses and transverse resistivity in filamentary MgB 2 tape with Ti barriers

    NASA Astrophysics Data System (ADS)

    Polák, M.; Demenčík, E.; Hušek, I.; Kopera, L.; Kováč, P.; Mozola, P.; Takács, S.

    2011-07-01

    We measured and analyzed AC losses of MgB 2 tape with 19 filaments surrounded by Ti barriers and embedded in copper stabilization, exposed to external magnetic field with frequencies from 30 mHz up to 1.4 Hz and amplitudes up to 0.8 T at 4.2 K. Using the measured frequency dependence of the total AC losses we determined the contribution of hysteresis and coupling losses. The transverse resistivity determined from the coupling losses is considerably higher than that corresponding to the resistivity of copper stabilization before the tape processing due to diffusion of Ti. From the measured penetration field critical current densities were determined using results of theories for circular as well as rectangular filaments.

  7. Constitutive modeling of contact angle hysteresis.

    PubMed

    Vedantam, Srikanth; Panchagnula, Mahesh V

    2008-05-15

    We introduce a phase field model of wetting of surfaces by sessile drops. The theory uses a two-dimensional non-conserved phase field variable to parametrize the Gibbs free energy of the three-dimensional system. Contact line tension and contact angle hysteresis arise from the gradient term in the free energy and the kinetic coefficient respectively. A significant advantage of this approach is in the constitutive specification of hysteresis. The advancing and receding angles of a surface, the liquid-vapor interfacial energy and three-phase line tension are the only required constitutive inputs to the model. We first simulate hysteresis on a smooth chemically homogeneous surface using this theory. Next we show that it is possible to study heterogeneous surfaces whose component surfaces are themselves hysteretic. We use this theory to examine the wetting of a surface containing a circular heterogeneous island. The contact angle for this case is found to be determined solely by the material properties at the contact line in accord with recent experimental data.

  8. Electroosmotic flow hysteresis for dissimilar ionic solutions

    PubMed Central

    Lim, An Eng; Lam, Yee Cheong

    2015-01-01

    Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species. PMID:25945139

  9. Computing ferrite core losses at high frequency by finite elements method including temperature influence

    SciTech Connect

    Ahmed, B.; Ahmad, J.; Guy, G.

    1994-09-01

    A finite elements method coupled with the Preisach model of hysteresis is used to compute-the ferrite losses in medium power transformers (10--60 kVA) working at relatively high frequencies (20--60 kHz) and with an excitation level of about 0.3 Tesla. The dynamic evolution of the permeability is taken into account. The simple and doubly cubic spline functions are used to account for temperature effects respectively on electric and on magnetic parameters of the ferrite cores. The results are compared with test data obtained with 3C8 and B50 ferrites at different frequencies.

  10. Direct measurements of the magnetic entropy change.

    PubMed

    Nielsen, K K; Bez, H N; von Moos, L; Bjørk, R; Eriksen, D; Bahl, C R H

    2015-10-01

    An experimental device that can accurately measure the magnetic entropy change, Δs, as a function of temperature, T, and magnetic field, H, is presented. The magnetic field source is in this case a set of counter-rotating concentric Halbach-type magnets, which produce a highly homogeneous applied field with constant orientation. The field may be varied from 0 to 1.5 T in a continuous way. The temperature stability of the system is controlled to within ±10 mK and the standard range for the current setup is from 230 K to 330 K. The device is under high vacuum and we show that thermal losses to the ambient are negligible in terms of the calorimetric determination of the magnetic entropy change, while the losses cannot be ignored when correcting for the actual sample temperature. We apply the device to two different types of samples; one is commercial grade Gd, i.e., a pure second-order phase transition material, while the other is Gd5Si2Ge2, a first order magnetic phase transition material. We demonstrate the device's ability to fully capture the thermal hysteresis of the latter sample by following appropriate thermal resetting scheme and magnetic resetting scheme.

  11. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.

    2015-03-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices.

  12. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers

    PubMed Central

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.

    2015-01-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices. PMID:25777540

  13. Measurements of the transverse resistance and eddy current losses in a cable-in-conduit conductor

    NASA Astrophysics Data System (ADS)

    Keilin, V. E.; Kovalev, I. A.; Kruglov, S. L.; Lelekhov, S. A.; Il'in, A. A.; Naumov, A. V.; Shcherbakov, V. I.; Shutov, K. A.

    2015-11-01

    In the case of plasma current interruption in tokamaks, the conductor of toroidial field (TF) coils experiences the action of a pulsed decreasing magnetic field (PDMF) parallel to the conductor's axis. To estimate the stability of a cable-in-conduit conductor against the PDMF, a new experimental method to study different types of losses is applied. This method exploits a high sensitivity of temperature and gas pressure to input energy in a closed volume. It allows one to measure hysteresis losses with a rather high accuracy (provided that the rate of change of the PDMF is low) and a sum of hysteresis losses and eddy current losses (when the rate of change of the PDMF is high). An experimental setup to measure the transverse (circumferential) resistance and losses has been developed at the National Research Centre Kurchatov Institute. A Russianmade Nb3Sn conductor intended for the TF coils of the International Thermonuclear Experimental Reactor is subjected to a PDMF with different amplitudes and characteristic times. The electromagnetic time constant and the transverse resistivity of the conductor are experimentally determined. The maximum temperature of strands under the action of the PDMF is calculated.

  14. Untangling perceptual memory: hysteresis and adaptation map into separate cortical networks.

    PubMed

    Schwiedrzik, Caspar M; Ruff, Christian C; Lazar, Andreea; Leitner, Frauke C; Singer, Wolf; Melloni, Lucia

    2014-05-01

    Perception is an active inferential process in which prior knowledge is combined with sensory input, the result of which determines the contents of awareness. Accordingly, previous experience is known to help the brain "decide" what to perceive. However, a critical aspect that has not been addressed is that previous experience can exert 2 opposing effects on perception: An attractive effect, sensitizing the brain to perceive the same again (hysteresis), or a repulsive effect, making it more likely to perceive something else (adaptation). We used functional magnetic resonance imaging and modeling to elucidate how the brain entertains these 2 opposing processes, and what determines the direction of such experience-dependent perceptual effects. We found that although affecting our perception concurrently, hysteresis and adaptation map into distinct cortical networks: a widespread network of higher-order visual and fronto-parietal areas was involved in perceptual stabilization, while adaptation was confined to early visual areas. This areal and hierarchical segregation may explain how the brain maintains the balance between exploiting redundancies and staying sensitive to new information. We provide a Bayesian model that accounts for the coexistence of hysteresis and adaptation by separating their causes into 2 distinct terms: Hysteresis alters the prior, whereas adaptation changes the sensory evidence (the likelihood function).

  15. Modeling of micromagnetic Barkhausen activity using a stochastic process extension to the theory of hysteresis

    SciTech Connect

    Jiles, D.C. ); Sipahi, L.B. ); Williams, G. )

    1993-05-15

    Recent work by Bertotti [IEEE Trans. Magn. [bold MAG]-[bold 24], 621 (1988)] and others has shown that it is possible to model the micromagnetic Barkhausen discontinuities at the coercive point using a two-parameter stochastic model. However, the present formulation of the model is restricted to limited regions of the hysteresis curve over which [ital dM]/[ital dH] is approximately constant and when [ital dH]/[ital dt] is held at a constant rate. A natural extension of this model is to take the basic result, in which the level of Barkhausen activity in one time period is related to the activity in the previous time period, and increment it by a small amount which is dependent on the differential permeability. The extension of the model proposed here uses the theory of ferromagnetic hysteresis to determine the differential permeability at any point of the hysteresis loop. The Barkhausen activity is then assumed to vary in proportion to the differential permeability. The resulting model allows the Barkhausen sum of discontinuous changes in magnetization to be modelled around the entire hysteresis loop, leading to an important generalization of the basic model.

  16. Untangling Perceptual Memory: Hysteresis and Adaptation Map into Separate Cortical Networks

    PubMed Central

    Schwiedrzik, Caspar M.; Ruff, Christian C.; Lazar, Andreea; Leitner, Frauke C.; Singer, Wolf; Melloni, Lucia

    2014-01-01

    Perception is an active inferential process in which prior knowledge is combined with sensory input, the result of which determines the contents of awareness. Accordingly, previous experience is known to help the brain “decide” what to perceive. However, a critical aspect that has not been addressed is that previous experience can exert 2 opposing effects on perception: An attractive effect, sensitizing the brain to perceive the same again (hysteresis), or a repulsive effect, making it more likely to perceive something else (adaptation). We used functional magnetic resonance imaging and modeling to elucidate how the brain entertains these 2 opposing processes, and what determines the direction of such experience-dependent perceptual effects. We found that although affecting our perception concurrently, hysteresis and adaptation map into distinct cortical networks: a widespread network of higher-order visual and fronto-parietal areas was involved in perceptual stabilization, while adaptation was confined to early visual areas. This areal and hierarchical segregation may explain how the brain maintains the balance between exploiting redundancies and staying sensitive to new information. We provide a Bayesian model that accounts for the coexistence of hysteresis and adaptation by separating their causes into 2 distinct terms: Hysteresis alters the prior, whereas adaptation changes the sensory evidence (the likelihood function). PMID:23236204

  17. Hysteresis of Current in Noninteracting Atomic Fermi Gases in Optical Ring Potentials

    NASA Astrophysics Data System (ADS)

    Metcalf, Mekena; Chien, Chih-Chun; Lai, Chen-Yen

    Hysteresis is a ubiquitous phenomenon, which can be found in magnets, superfluids, and other many-body systems. Although interactions are present in most systems exhibiting hysteresis, here we show the current of a non-interacting Fermi gas in an optical ring potential produces hysteresis behavior when driven by a time-dependent artificial gauge field and subject to dissipation. Fermions in a ring potential threaded with flux can exhibit a persistent current when the system is in thermal equilibrium, but cold-atoms are clean and dissipation for reaching thermal equilibrium may be introduced by an external, thermal bath. We use the standard relaxation approximation to model the dynamics of cold-atoms driven periodically by an artificial gauge field. A competition of the driven time and the relaxation time leads to hysteresis of the mass current, and work done on the system, as a function of the relaxation time, exhibits similar behavior as Kramers transition rate in chemical reaction and one-dimensional thermal transport.

  18. Evaluation of observable phase space by fast ion loss detector by calculating particle orbits in consideration of plasma facing components and three dimensional magnetic field.

    PubMed

    Shinohara, Kouji; Kim, Junghee; Kim, Jun Young; Rhee, Tongnyeol

    2016-11-01

    The orbits of lost ions can be calculated from the information obtained by a fast ion loss detector (FILD). The orbits suggest a source of the lost fast ions in a phase space. However, it is not obvious whether an observable set of orbits, or phase space, of a FILD appropriately covers the region of interest to be investigated since the observable phase space can be affected by plasma facing components (PFCs) and a magnetic configuration. A tool has been developed to evaluate the observable phase space of FILD diagnostic by calculating particle orbits by taking the PFCs and 3D magnetic field into account.

  19. A stability-based mechanism for hysteresis in the walk–trot transition in quadruped locomotion

    PubMed Central

    Aoi, Shinya; Katayama, Daiki; Fujiki, Soichiro; Tomita, Nozomi; Funato, Tetsuro; Yamashita, Tsuyoshi; Senda, Kei; Tsuchiya, Kazuo

    2013-01-01

    Quadrupeds vary their gaits in accordance with their locomotion speed. Such gait transitions exhibit hysteresis. However, the underlying mechanism for this hysteresis remains largely unclear. It has been suggested that gaits correspond to attractors in their dynamics and that gait transitions are non-equilibrium phase transitions that are accompanied by a loss in stability. In the present study, we used a robotic platform to investigate the dynamic stability of gaits and to clarify the hysteresis mechanism in the walk–trot transition of quadrupeds. Specifically, we used a quadruped robot as the body mechanical model and an oscillator network for the nervous system model to emulate dynamic locomotion of a quadruped. Experiments using this robot revealed that dynamic interactions among the robot mechanical system, the oscillator network, and the environment generate walk and trot gaits depending on the locomotion speed. In addition, a walk–trot transition that exhibited hysteresis was observed when the locomotion speed was changed. We evaluated the gait changes of the robot by measuring the locomotion of dogs. Furthermore, we investigated the stability structure during the gait transition of the robot by constructing a potential function from the return map of the relative phase of the legs and clarified the physical characteristics inherent to the gait transition in terms of the dynamics. PMID:23389894

  20. Hysteresis modelling of GO laminations for arbitrary in-plane directions taking into account the dynamics of orthogonal domain walls

    NASA Astrophysics Data System (ADS)

    Baghel, A. P. S.; Sai Ram, B.; Chwastek, K.; Daniel, L.; Kulkarni, S. V.

    2016-11-01

    The anisotropy of magnetic properties in grain-oriented steels is related to their microstructure. It results from the anisotropy of the single crystal properties combined to crystallographic texture. The magnetization process along arbitrary directions can be explained using phase equilibrium for domain patterns, which can be described using Neel's phase theory. According to the theory the fractions of 180° and 90° domain walls depend on the direction of magnetization. This paper presents an approach to model hysteresis loops of grain-oriented steels along arbitrary in-plane directions. The considered description is based on a modification of the Jiles-Atherton model. It includes a modified expression for the anhysteretic magnetization which takes into account contributions of two types of domain walls. The computed hysteresis curves for different directions are in good agreement with experimental results.

  1. Resistive hysteresis and nonlinear I-V characteristics at the first-order melting of the Abrikosov vortex lattice

    NASA Astrophysics Data System (ADS)

    Domínguez, Daniel; Grønbech-Jensen, Niels; Bishop, A. R.

    1995-12-01

    We study a three-dimensional network of Josephson junctions in a magnetic field, which undergoes a first-order melting transition of the triangular vortex lattice. We perform a Langevin dynamics calculation of the resistance and current-voltage (I-V) characteristics. We find hysteresis in the resistance as a function of temperature as measured in untwinned YBa2Cu3O7. Close to the melting temperature the I-V curves are S shaped with hysteresis and show a melting transition when increasing the current, driven by the blowing out of current nucleated vortex loops.

  2. Hysteresis in voltage-gated channels.

    PubMed

    Villalba-Galea, Carlos A

    2016-09-30

    Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels.

  3. Influence of the applied elastic tensile and compressive stress on the hysteresis curves of Fe-3%Si non-oriented steel

    NASA Astrophysics Data System (ADS)

    Perevertov, O.

    2017-04-01

    The influence of applied elastic tensile stress up to 120 MPa and compressive stress up to 35 MPa on the magnetic hysteresis curves of non-oriented Fe-3%Si steel is studied. In two tensile stress ranges the hysteresis loop changed monotonously - low stress below 10 MPa facilitated the magnetization process, while above 15 MPa tension deteriorated magnetic properties. This difference in behavior corresponds to two different mechanisms - 1) favoring by tensile stress magnetic easy axes closest to the filed direction and 2) appearance of large demagnetizing fields at grain boundaries and the sample surface. Compression continuously deteriorated magnetic properties and made the hysteresis loop constricted above a few MPa. The effective field as a product of two functions - of the magnetization and of the stress gave excellent agreement with experimental curves for both tensile stress ranges and for compression. The sensitivity of magnetization to compression was approximately five times larger than to tension. The complex hysteresis loop behavior under tension and compression was explained on the basis of our previous results on stressed grain-oriented steel of the same composition, in which the magnetic domains were also studied.

  4. Fingerprint image enhancement by differential hysteresis processing.

    PubMed

    Blotta, Eduardo; Moler, Emilce

    2004-05-10

    A new method to enhance defective fingerprints images through image digital processing tools is presented in this work. When the fingerprints have been taken without any care, blurred and in some cases mostly illegible, as in the case presented here, their classification and comparison becomes nearly impossible. A combination of spatial domain filters, including a technique called differential hysteresis processing (DHP), is applied to improve these kind of images. This set of filtering methods proved to be satisfactory in a wide range of cases by uncovering hidden details that helped to identify persons. Dactyloscopy experts from Policia Federal Argentina and the EAAF have validated these results.

  5. Mechano-electric optoisolator transducer with hysteresis

    NASA Astrophysics Data System (ADS)

    Ciuruş, I. M.; Dimian, M.; Graur, A.

    2011-01-01

    This article presents a theoretical and experimental study of designing a mechano-electric optoisolator transducer with hysteresis. Our research is centred upon designing transducers on the basis of optical sensors, as photoelectric conversions eliminate the influence of electromagnetic disturbances. Conversion of the rotation/translation motions into electric signals is performed with the help of a LED-photoresistor Polaroid optocoupler. The driver of the optocoupler's transmitter module is an independent current source. The signal conditioning circuit is a Schmitt trigger circuit. The device is designed to be applied in the field of automation and mechatronics.

  6. Contact angle hysteresis on randomly rough surfaces: a computational study.

    PubMed

    David, Robert; Neumann, A Wilhelm

    2013-04-09

    Wetting is important in many applications, and the solid surfaces being wet invariably feature some amount of surface roughness. A free energy-based computational simulation is used to study the effect of roughness on wetting and especially contact angle hysteresis. On randomly rough, self-affine surfaces, it is found that hysteresis depends primarily on the value of the Wenzel roughness parameter r, increasing in proportion with r - 1. Micrometer-level roughness causes hysteresis of a few degrees.

  7. Method and apparatus for sub-hysteresis discrimination

    DOEpatents

    De Geronimo, Gianluigi

    2015-12-29

    Embodiments of comparator circuits are disclosed. A comparator circuit may include a differential input circuit, an output circuit, a positive feedback circuit operably coupled between the differential input circuit and the output circuit, and a hysteresis control circuit operably coupled with the positive feedback circuit. The hysteresis control circuit includes a switching device and a transistor. The comparator circuit provides sub-hysteresis discrimination and high speed discrimination.

  8. THE EFFECT OF LIQUID STRUCTURE ON CONTACT ANGLE HYSTERESIS

    DTIC Science & Technology

    Contact angle hysteresis was measured for a variety of liquids on condensed monolayers of 17-(perfluoroheptyl)-heptadecanoic acid adsorbed on...into the porous monolayer. However, contact angle hysteresis was negligible when the average diameter of the liquid molecules was larger than the...monolayers by contact angle hysteresis measurements on a series of liquids having gradations in molecular volume. The results of this investigation

  9. On the rationale for hysteresis in economic decisions

    NASA Astrophysics Data System (ADS)

    Rios, Luis A.; Rachinskii, Dmitrii; Cross, Rod

    2017-02-01

    In the social sciences there are plausible reasons to postulate that hysteresis effects are important. The available evidence, however, is predominantly at the macro level. In this paper we review the evidence regarding hysteresis in the neural processes underlying human behavior. We argue that there is a need for experimental and neuroimaging studies to fill the gap in knowledge about hysteresis processes at the micro level in the social sciences.

  10. [Mathematical models of hysteresis]. Progress report No. 4, [January 1, 1991--December 31, 1991

    SciTech Connect

    Mayergoyz, I.D.

    1991-12-31

    The research described in this proposal is currently being supported by the US Department of Energy under the contract ``Mathematical Models of Hysteresis``. Thus, before discussing the proposed research in detail, it is worthwhile to describe and summarize the main results achieved in the course of our work under the above contract. Our ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with ``nonlocal memories``. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. Our research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. Our study has by and large been centered around the following topics: various generalizations and extensions of the classical Preisach model, finding of necessary and sufficient conditions for the representation of actual hysteretic nonlinearities by various Preisach type models, solution of identification problems for these models, numerical implementation and experimental testing of Preisach type models. Although the study of Preisach type models has constituted the main direction of the research, some effort has also been made to establish some interesting connections between these models and such topics as: the critical state model for superconducting hysteresis, the classical Stoner-Wohlfarth model of vector magnetic hysteresis, thermal activation type models for viscosity, magnetostrictive hysteresis and neural networks.

  11. On the origin of giant magnetocaloric effect and thermal hysteresis in multifunctional α-FeRh thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Tiejun; Cher, M. K.; Shen, L.; Hu, J. F.; Yuan, Z. M.

    2013-12-01

    We report temperature and field dependent lattice structure, magnetic properties and magnetocaloric effect in epitaxial Fe50Rh50 thin films with (001) texture. Temperature-dependent XRD measurements reveal an irreversible first-order phase transition with 0.66% lattice change upon heating/cooling. First-principle calculation shows a state change of Rh from non-magnetic (0 μB) for antiferromagnetic phase to magnetic (0.93 μB) state for ferromagnetic phase. A jump of magnetization at temperature of 305 K and field more than 5 T indicates a field-assisted magnetic state change of Ru that contributes to the jump. Giant positive magnetic entropy change was confirmed by isothermal magnetization measurements and an in-situ temperature rise of 15 K. The magnetic state change of Rh between antiferromagnetic and ferromagnetic states is the main origin of giant magnetic entropy change and large thermal hysteresis observed.

  12. Hysteresis phenomena of the intelligent driver model for traffic flow.

    PubMed

    Dahui, Wang; Ziqiang, Wei; Ying, Fan

    2007-07-01

    We present hysteresis phenomena of the intelligent driver model for traffic flow in a circular one-lane roadway. We show that the microscopic structure of traffic flow is dependent on its initial state by plotting the fraction of congested vehicles over the density, which shows a typical hysteresis loop, and by investigating the trajectories of vehicles on the velocity-over-headway plane. We find that the trajectories of vehicles on the velocity-over-headway plane, which usually show a hysteresis loop, include multiple loops. We also point out the relations between these hysteresis loops and the congested jams or high-density clusters in traffic flow.

  13. Dynamic hysteresis modeling including skin effect using diffusion equation model

    NASA Astrophysics Data System (ADS)

    Hamada, Souad; Louai, Fatima Zohra; Nait-Said, Nasreddine; Benabou, Abdelkader

    2016-07-01

    An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

  14. Exchange anisotropy in polycrystalline FeNi /FeMn films with hysteresis loop asymmetry

    NASA Astrophysics Data System (ADS)

    Merenkov, D. N.; Bludov, A. N.; Gnatchenko, S. L.; Baran, M.; Szymczak, R.; Novosad, V. A.

    2007-11-01

    The process of magnetization reversal of a FeNi(50Å )/FeMn(50Å) polycrystalline film prepared in a magnetic field has been investigated at temperatures ranging from 25to300K. The external field was oriented in the film plane along the easy or difficult axis of the ferromagnetic layer. In the process of magnetization reversal of the film along the easy axis, strong asymmetry of the hysteresis loop is observed together with an exchange shift. As temperature decreases, the asymmetry becomes more pronounced and the shift increases. The field dependences of the magnetization of the film are symmetric and are not shifted when the external field is applied along the difficult axis. The magnetization reversal process is examined on the basis of a model that takes account of the appearance of high-order exchange anisotropy in polycrystalline films. It is shown that the observed strong asymmetry of the hysteresis loop is associated with the formation of a canted phase and the existence of a metastable state. As the film temperature decreases, the interval of fields where the canted phase can exist becomes wider as a result of an increase of the exchange anisotropy constants.

  15. What we can learn from the hysteresis properties of metal-bearing meteorites

    NASA Astrophysics Data System (ADS)

    Gattacceca, J.; Rochette, P.; Suavet, C.; Uehara, M.

    2010-12-01

    Metallic iron-nickel alloys are the main magnetic minerals in many meteorite groups, mostly in the form of kamacite, taenite and tetrataenite. We present here new room temperature hysteresis measurements on more than a hundred FeNi-bearing meteorite falls, mostly ordinary chondrites, as well as a synthesis of pre-existing data. Low temperature hysteresis measurements (down to 10 K) are also presented. These data are compared to other magnetic (magnetic susceptibility in particular) and petrographic parameters (intensity of thermal metamorphism, shock stage...). The bulk magnetic properties of these meteorites are primarily controlled by the relative proportion of the three above-mentioned minerals, and in particular the presence of tetrataenite. Discussion will focus on, but not be limited to: 1) The the elongated shape of metallic grains that is is revealed by the discrepancy between ferromagnetic susceptibility and saturation magnetization, whose ratio is too high for FeNi alloys; 2) The existence of a low temperature transition around 60 K; 3) The comparison between ordinary chondrites, carbonaceous chondrites, HED achondrites and lunar samples.

  16. Efficient modeling of vector hysteresis using a novel Hopfield neural network implementation of Stoner–Wohlfarth-like operators

    PubMed Central

    Adly, Amr A.; Abd-El-Hafiz, Salwa K.

    2012-01-01

    Incorporation of hysteresis models in electromagnetic analysis approaches is indispensable to accurate field computation in complex magnetic media. Throughout those computations, vector nature and computational efficiency of such models become especially crucial when sophisticated geometries requiring massive sub-region discretization are involved. Recently, an efficient vector Preisach-type hysteresis model constructed from only two scalar models having orthogonally coupled elementary operators has been proposed. This paper presents a novel Hopfield neural network approach for the implementation of Stoner–Wohlfarth-like operators that could lead to a significant enhancement in the computational efficiency of the aforementioned model. Advantages of this approach stem from the non-rectangular nature of these operators that substantially minimizes the number of operators needed to achieve an accurate vector hysteresis model. Details of the proposed approach, its identification and experimental testing are presented in the paper. PMID:25685446

  17. Efficient modeling of vector hysteresis using a novel Hopfield neural network implementation of Stoner-Wohlfarth-like operators.

    PubMed

    Adly, Amr A; Abd-El-Hafiz, Salwa K

    2013-07-01

    Incorporation of hysteresis models in electromagnetic analysis approaches is indispensable to accurate field computation in complex magnetic media. Throughout those computations, vector nature and computational efficiency of such models become especially crucial when sophisticated geometries requiring massive sub-region discretization are involved. Recently, an efficient vector Preisach-type hysteresis model constructed from only two scalar models having orthogonally coupled elementary operators has been proposed. This paper presents a novel Hopfield neural network approach for the implementation of Stoner-Wohlfarth-like operators that could lead to a significant enhancement in the computational efficiency of the aforementioned model. Advantages of this approach stem from the non-rectangular nature of these operators that substantially minimizes the number of operators needed to achieve an accurate vector hysteresis model. Details of the proposed approach, its identification and experimental testing are presented in the paper.

  18. Statistical analysis of Contact Angle Hysteresis

    NASA Astrophysics Data System (ADS)

    Janardan, Nachiketa; Panchagnula, Mahesh

    2015-11-01

    We present the results of a new statistical approach to determining Contact Angle Hysteresis (CAH) by studying the nature of the triple line. A statistical distribution of local contact angles on a random three-dimensional drop is used as the basis for this approach. Drops with randomly shaped triple lines but of fixed volumes were deposited on a substrate and their triple line shapes were extracted by imaging. Using a solution developed by Prabhala et al. (Langmuir, 2010), the complete three dimensional shape of the sessile drop was generated. A distribution of the local contact angles for several such drops but of the same liquid-substrate pairs is generated. This distribution is a result of several microscopic advancing and receding processes along the triple line. This distribution is used to yield an approximation of the CAH associated with the substrate. This is then compared with measurements of CAH by means of a liquid infusion-withdrawal experiment. Static measurements are shown to be sufficient to measure quasistatic contact angle hysteresis of a substrate. The approach also points towards the relationship between microscopic triple line contortions and CAH.

  19. Modeling Anomalous Hysteresis in Perovskite Solar Cells.

    PubMed

    van Reenen, Stephan; Kemerink, Martijn; Snaith, Henry J

    2015-10-01

    Organic-inorganic lead halide perovskites are distinct from most other semiconductors because they exhibit characteristics of both electronic and ionic motion. Accurate understanding of the optoelectronic impact of such properties is important to fully optimize devices and be aware of any limitations of perovskite solar cells and broader optoelectronic devices. Here we use a numerical drift-diffusion model to describe device operation of perovskite solar cells. To achieve hysteresis in the modeled current-voltage characteristics, we must include both ion migration and electronic charge traps, serving as recombination centers. Trapped electronic charges recombine with oppositely charged free electronic carriers, of which the density depends on the bias-dependent ion distribution in the perovskite. Our results therefore show that reduction of either the density of mobile ionic species or carrier trapping at the perovskite interface will remove the adverse hysteresis in perovskite solar cells. This gives a clear target for ongoing research effort and unifies previously conflicting experimental observations and theories.

  20. Hysteresis and feedback of ice sheet response

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Saito, F.; Takahashi, K.

    2014-12-01

    Investigating the response of ice sheets to climatic forcings in the past by climate-ice sheet modelling is important for understanding the ice sheets' change. The 100-kyr cycle of the large Northern Hemisphere ice sheets and fast termination of the glacial cycle are the prominent pattern known from paleoclimate records. We simulate the past glacial cycles with an ice sheet model, IcIES in combination with a general circulation model, MIROC, using the time series of insolation and atmospheric CO2. Feedback processes between ice sheet and atmosphere such as the ice albedo feedback, the elevation-mass balance feedback, desertification effect and stationary wave feedback are analyzed. We show that the threshold of termination of the glacial cycles can be explained by the pattern of the hysteresis of ice sheet change, i.e. multiple steady states of the ice sheets under climatic forcings. We find that slope of the upper branch of the multiple equilibria curve for Laurentide ice volumes is fundamental for the observed glacial patterns. Finally, we discuss the similarity and difference between the hysteresis structure of ice sheets variation for Northern Hemisphere ice sheets, Antarctica and Greenland.

  1. Percolation and hysteresis in macroscopic capillarity

    NASA Astrophysics Data System (ADS)

    Hilfer, Rudolf

    2010-05-01

    The concepts of relative permeability and capillary pressure are crucial for the accepted traditional theory of two phase flow in porous media. Recently a theoretical approach was introduced that does not require these concepts as input [1][2][3]. Instead it was based on the concept of hydraulic percolation of fluid phases. The presentation will describe this novel approach. It allows to simulate processes with simultaneous occurence of drainage and imbibition. Furthermore, it predicts residual saturations and their spatiotemporal changes during two phase immiscible displacement [1][2][3][4][5]. [1] R. Hilfer. Capillary Pressure, Hysteresis and Residual Saturation in Porous Media, Physica A, vol. 359, pp. 119, 2006. [2] R. Hilfer. Macroscopic Capillarity and Hysteresis for Flow in Porous Media, Physical Review E, vol. 73, pp. 016307, 2006. [3] R. Hilfer. Macroscopic capillarity without a constitutive capillary pressure function, Physica A, vol. 371, pp. 209, 2006. [4] R. Hilfer. Modeling and Simulation of Macrocapillarity, in: P. Garrido et al. (eds.) Modeling and Simulation of Materials vol. CP1091, pp. 141, American Institute of Physcis, New York, 2009. [5] R. Hilfer and F. Doster. Percolation as a basic concept for macroscopic capillarity, Transport in Porous Media, DOI 10.1007/s11242-009-9395-0, in print, 2009.

  2. Magnetic properties and magnetocaloric effect in the RCu{sub 2}Si{sub 2} and RCu{sub 2}Ge{sub 2} (R = Ho, Er) compounds

    SciTech Connect

    Mo, Zhao-Jun; Shen, Jun E-mail: tangcc@hebut.edu.cn; Wu, Jian-Feng; Yan, Li-Qin; Wang, Li-Chen; Sun, Ji-rong; Shen, Bao-Gen; Gao, Xin-Qiang; Tang, Cheng-Chun E-mail: tangcc@hebut.edu.cn

    2014-02-21

    The magnetic properties and magnetocaloric effect (MCE) in RCu{sub 2}Si{sub 2} and RCu{sub 2}Ge{sub 2} (R = Ho, Er) compounds have been investigated. All these compounds possess an antiferromagnetic (AFM)-paramagnetic (PM) transition around their respective Neel temperatures. The RCu{sub 2}Si{sub 2} compounds undergo spin-glassy behavior above Neel temperature. Furthermore, a field-induced metamagnetic transition from AFM to ferromagnetic (FM) states is observed in these compounds. The calculated magnetic entropy changes show that all RCu{sub 2}Si{sub 2} and RCu{sub 2}Ge{sub 2} (R = Ho, Er) compounds, especially, ErCu{sub 2}Si{sub 2} exhibits large MCEs with no thermal hysteresis and magnetic hysteresis loss. The value of −ΔS{sub M}{sup max} reaches 22.8 J/Kg K for magnetic field changes from 0 to 5 T. In particular, for field changes of 1 and 2 T, the giant reversible magnetic entropy changes −ΔS{sub M}{sup max} are 8.3 and 15.8 J/kg K at 2.5 K, which is lower than the boiling point of helium. The low-field giant magnetic entropy change, together with ignorable thermal hysteresis and field hysteresis loss of ErCu{sub 2}Si{sub 2} compound is expected to have effective applications in low temperature magnetic refrigeration.

  3. Crystal Orientation and Temperature Effects on the Double Hysteresis Loop Behavior of a PVDF- g-PS Graft Copolymer

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Yang, Lianyun; Guan, Fangxiao

    2013-03-01

    In a recent report, double hysteresis loop behavior is observed in a nanoconfined poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene [P(VDF-TrFE-CTFE)- g-PS] copolymer. It is considered that the PS grafts are capable of reducing the compensation polarization and thus the polarization electric field during the reverse poling process, resulting in the double hysteresis loop behavior. In this study, we further investigated crystal orientation and temperature effects on this novel ferroelectric behavior. It is observed that with increasing the orientation factor, the electric displacement-electric field (D-E) loop changes from linear for non-oriented film to double loop for the well-oriented film. With increasing the temperature, the double hysteresis loop is gradually replaced by the single and open loop, which is attributed to the impurity ion migrational loss in the sample. This work is supported by NSF (DMR-0907580).

  4. Magnetic properties of high-density patterned magnetic media

    NASA Astrophysics Data System (ADS)

    Gurovich, B. A.; Prikhodko, K. E.; Kuleshova, E. A.; Yu Yakubovsky, A.; Meilikhov, E. Z.; Mosthenko, М. G.

    2010-10-01

    Structures of patterned magnetic media (PMM) with a density of 100-155 Gb/in. 2 have been prepared using the original method of selective removal of atoms making use of irradiation by an accelerated ion beam for producing patterns of materials whose chemical and physical properties are different from those of the matrix. Magnetic hysteresis loops for cobalt PMM structures with Co bit sizes of 40×15, 30×15, and 15×15 nm 2 show linear increase of coercivity with bit anisotropy factor. Consecutive reversals of nanobit magnetizations in bit ensembles have been visualized by the MFM technique, which allows one to reconstruct corresponding magnetic hysteresis loops.

  5. Damping measurements of laminated composite materials and aluminum using the hysteresis loop method

    NASA Astrophysics Data System (ADS)

    Abramovich, H.; Govich, D.; Grunwald, A.

    2015-10-01

    The damping characteristics of composite laminates made of Hexply 8552 AGP 280-5H (fabric), used for structural elements in aeronautical vehicles, have been investigated in depth using the hysteresis loop method and compared to the results for aluminum specimens (2024 T351). It was found that the loss factor, η, obtained by the hysteresis loop method is linearly dependent only on the applied excitation frequency and is independent of the preloading and the stress amplitudes. For the test specimens used in the present tests series, it was found that the damping of the aluminum specimens is higher than the composite ones for longitudinal direction damping, while for bending vibrations the laminates exhibited higher damping values.

  6. Lodestone: Nature's own permanent magnet

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1976-01-01

    Magnetic hysteresis and microstructural details are presented which explain why the class of magnetic iron ores defined as proto-lodestones, can behave as permanent magnets, i.e. lodestones. Certain of these proto-lodestones which are not permanent magnets can be made into permanent magnets by charging in a field greater than 1000 oersted. This fact, other experimental observations, and field evidence from antiquity and the middle ages, which seems to indicate that lodestones are found as localized patches within massive ore bodies, suggests that lightning might be responsible for the charging of lodestones. The large remanent magnetization, high values of coercive force, and good time stability for the remanent magnetization are all characteristics of proto-lodestone iron ores which behave magnetically as fine scale ( 10 micrometer) intergrowths when subjected to magnetic hysteresis analysis. The magnetic results are easily understood by analysis of the complex proto lodestone microstructural patterns observable at the micrometer scale and less.

  7. Remarkable magnetization with ultra-low loss BaGdxFe12-xO19 nanohexaferrites for applications up to C-band

    NASA Astrophysics Data System (ADS)

    Singh, Virender Pratap; Kumar, Gagan; Kotnala, R. K.; Shah, Jyoti; Sharma, Sucheta; Daya, K. S.; Batoo, Khalid M.; Singh, M.

    2015-03-01

    Sol-gel synthesized BaGdxFe12-xO19, (x=0.0, 0.1, 0.2, 0.3) nanohexaferrites, have been explored for magnetic and microwave properties. X-ray diffraction studies revealed the hexagonal structure of the synthesized ferrites. The particle size was observed to be in the range 90-84 nm. The dc resistivity was found to be increasing with an increase in Gd3+ content and the variation of dc resistivity with temperature confirmed the semiconducting behavior of all nanohexaferrites. The observed values of saturation magnetization and coercivity, at room temperature, are 81.34 emu/g and 6020 Oe respectively which are very high as compared to the values ever reported till date. Additionally, we observed ultra-low magnetic loss (0.004-0.01) and dielectric loss (0.004-0.06) over the GHz frequency region. The obtained results make these nanohexaferrites a competent material for antenna applications up to C-band.

  8. The heating effect of iron-cobalt magnetic nanofluids in an alternating magnetic field: application in magnetic hyperthermia treatment

    NASA Astrophysics Data System (ADS)

    Shokuhfar, Ali; Seyyed Afghahi, Seyyed Salman

    2013-12-01

    In this research, FeCo alloy magnetic nanofluids were prepared by reducing iron(III) chloride hexahydrate and cobalt(II) sulfate heptahydrate with sodium borohydride in a water/CTAB/hexanol reverse micelle system for application in magnetic hyperthermia treatment. X-ray diffraction, electron microscopy, selected area electron diffraction, and energy-dispersive analysis indicate the formation of bcc-structured iron-cobalt alloy. Magnetic property assessment of nanoparticles reveals that some samples are single-domain superparamagnetic, while others are single- or multi-domain ferromagnetic. The stability of the magnetic fluids was achieved by using a CTAB/1-butanol surfactant bilayer. Results of Gouy magnetic susceptibility balance experiments indicate good stability of FeCo nanoparticles even after dilution. The inductive properties of corresponding magnetic fluids including temperature rise and specific absorption rate were determined. Results show that with increasing of the nanoparticle size in the single-domain size regime, the generated heat increases, indicating the significant effect of the hysteresis loss. Finally, the central parameter controlling the specific absorption rate of nanoparticles was introduced, the experimental results were compared with those of the Stoner-Wohlfarth model and linear response theory, and the best sample for magnetic hyperthermia treatment was specified.

  9. The heating effect of iron-cobalt magnetic nanofluids in an alternating magnetic field: application in magnetic hyperthermia treatment.

    PubMed

    Shokuhfar, Ali; Seyyed Afghahi, Seyyed Salman

    2013-12-20

    In this research, FeCo alloy magnetic nanofluids were prepared by reducing iron(III) chloride hexahydrate and cobalt(II) sulfate heptahydrate with sodium borohydride in a water/CTAB/hexanol reverse micelle system for application in magnetic hyperthermia treatment. X-ray diffraction, electron microscopy, selected area electron diffraction, and energy-dispersive analysis indicate the formation of bcc-structured iron-cobalt alloy. Magnetic property assessment of nanoparticles reveals that some samples are single-domain superparamagnetic, while others are single- or multi-domain ferromagnetic. The stability of the magnetic fluids was achieved by using a CTAB/1-butanol surfactant bilayer. Results of Gouy magnetic susceptibility balance experiments indicate good stability of FeCo nanoparticles even after dilution. The inductive properties of corresponding magnetic fluids including temperature rise and specific absorption rate were determined. Results show that with increasing of the nanoparticle size in the single-domain size regime, the generated heat increases, indicating the significant effect of the hysteresis loss. Finally, the central parameter controlling the specific absorption rate of nanoparticles was introduced, the experimental results were compared with those of the Stoner-Wohlfarth model and linear response theory, and the best sample for magnetic hyperthermia treatment was specified.

  10. Single molecule magnets from magnetic building blocks

    NASA Astrophysics Data System (ADS)

    Kroener, W.; Paretzki, A.; Cervetti, C.; Hohloch, S.; Rauschenbach, S.; Kern, K.; Dressel, M.; Bogani, L.; M&üLler, P.

    2013-03-01

    We provide a basic set of magnetic building blocks that can be rationally assembled, similar to magnetic LEGO bricks, in order to create a huge variety of magnetic behavior. Using rare-earth centers and multipyridine ligands, fine-tuning of intra and intermolecular exchange interaction is demonstrated. We have investigated a series of molecules with monomeric, dimeric and trimeric lanthanide centers using SQUID susceptometry and Hall bar magnetometry. A home-made micro-Hall-probe magnetometer was used to measure magnetic hysteresis loops at mK temperatures and fields up to 17 T. All compounds show hysteresis below blocking temperatures of 3 to 4 K. The correlation of the assembly of the building blocks with the magnetic properties will be discussed.

  11. Fatigue, Hysteresis and Acoustic Emission. Parts 1 and 2

    DTIC Science & Technology

    1992-05-15

    Strain Controlled Fatigue Experiment in Progress ............ 47 25. Typical Hysteresis Loop Displayed with Data Points ..................... 48 26...88 52. Typical Hysteresis Loops from a Staircase Load Program ................. 89 53. Typical Strain Controlled Fatigue Experiment Displaying Strain ...area is difficult, if not impossible. Hence, the shift from stress controlled to strain controlled experiments. During this period, separating the total

  12. Magnetic nanoparticles for applications in oscillating magnetic field

    SciTech Connect

    Peeraphatdit, Chorthip

    2009-01-01

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific

  13. Coexistence of negative photoconductivity and hysteresis in semiconducting graphene

    NASA Astrophysics Data System (ADS)

    Zhuang, Shendong; Chen, Yan; Xia, Yidong; Tang, Nujiang; Xu, Xiaoyong; Hu, Jingguo; Chen, Zhuo

    2016-04-01

    Solution-processed graphene quantum dots (GQDs) possess a moderate bandgap, which make them a promising candidate for optoelectronics devices. However, negative photoconductivity (NPC) and hysteresis that happen in the photoelectric conversion process could be harmful to performance of the GQDs-based devices. So far, their origins and relations have remained elusive. Here, we investigate experimentally the origins of the NPC and hysteresis in GQDs. By comparing the hysteresis and photoconductance of GQDs under different relative humidity conditions, we are able to demonstrate that NPC and hysteresis coexist in GQDs and both are attributed to the carrier trapping effect of surface adsorbed moisture. We also demonstrate that GQDs could exhibit positive photoconductivity with three-order-of-magnitude reduction of hysteresis after a drying process and a subsequent encapsulation. Considering the pervasive moisture adsorption, our results may pave the way for a commercialization of semiconducting graphene-based and diverse solution-based optoelectronic devices.

  14. A Hysteresis Model for Piezoceramic Materials

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.; Ounaies, Zoubeida

    1999-01-01

    This paper addresses the modeling of nonlinear constitutive relations and hysteresis inherent to piezoceramic materials at moderate to high drive levels. Such models are, necessary to realize the, full potential of the materials in high performance control applications, and a necessary prerequisite is the development of techniques which permit control implementation. The approach employed here is based on the qualification of reversible and irreversible domain wall motion in response to applied electric fields. A comparison with experimental data illustrates that because the resulting ODE model is physics-based, it can be employed for both characterization and prediction of polarization levels throughout the range of actuator operation. Finally, the ODE formulation is amenable to inversion which facilitates the development of an inverse compensator for linear control design.

  15. Contact angle hysteresis on superhydrophobic stripes.

    PubMed

    Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I

    2014-08-21

    We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.

  16. Hysteresis in Pressure-Driven DNA Denaturation

    PubMed Central

    Hernández-Lemus, Enrique; Nicasio-Collazo, Luz Adriana; Castañeda-Priego, Ramón

    2012-01-01

    In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like) charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue. PMID:22496765

  17. Mechanism of Wettability Hysteresis in Natural Soils

    NASA Astrophysics Data System (ADS)

    Ryder, J. L.; Demond, A. H.

    2006-12-01

    Because models of subsurface flow and transport depend on the contact angles made by the air/water and waste liquid/water interfaces with soil and rock surfaces, accurate knowledge of the wettability of subsurface systems is necessary. Sessile drop contact angles were measured on dry rock surfaces and on the same rock surfaces immersed in a second fluid. Quartz slides and cut rock faces that had been leveled and polished served as representative surfaces for silica sand, talc, kerogen containing shales, bituminous coal, and mineralized carbon. For several carbon-containing materials, contact angles are reversed from near 170 degrees when water is the receding fluid to less than 70 degrees if water is the advancing fluid. However, some mineral soils do not display wetting reversal. This work seeks to explain the mechanisms of the wetting order hysteresis. Utilizing an aqueous 0.01 M NaCl solution, glycerol, 1-bromonapthalene, and diidomethane as probe fluids, contact angle values are assessed with the method of van Oss et al. (1988) to determine the surface energy components of each type of soil. The quartz mineral surface energy has a large polar component and the calculated quartz surface energy does not depend on the wetting history of the slide. However, the magnitudes of the surface energy components of the carbon-containing materials change depending on the wetting history, indicating that the nature of the surface is altered by the surrounding fluid. The presence of wetting order hysteresis may contribute to the heterogeneous fluid distributions found at many waste liquid sites. When soil is known to contain carbon, some knowledge of the wetting history is necessary to predict the contact angle and thus the transport behavior.

  18. Global distribution of GPS losses of phase lock and total electron content slips during the 2005 May 15 and the 2003 November 20 magnetic storms

    NASA Astrophysics Data System (ADS)

    Yasyukevich, Yuriy; Astafeva, Elvira; Givetev, Ilya; Maksikov, Aleksey

    2015-12-01

    Using data of worldwide network of GPS receivers we investigated losses of GPS phase lock (LoL) during two strong magnetic storms. At fundamental L1 frequency, LoL density is found to increase up to 0.25 % and at L2 frequency the increase is up to 3 %. This is several times as much compared with the background level. During the 2003 November 20 magnetic storm, the number of total electron content (TEC) slips exceeded the background level ~50 times. During superstorms, the most number of GPS LoL is observed at low and high latitudes. At the same time, the area of numerous TEC slips correspond to auroral oval boundaries.

  19. An undulation theory for condensation in open end slit pores: critical hysteresis temperature & critical hysteresis pore size.

    PubMed

    Fan, Chunyan; Zeng, Yonghong; Do, D D; Nicholson, D

    2014-06-28

    A new theory of condensation in an open end slit pore, based on the concept of temperature dependent undulation, at the interface separating the adsorbed phase and the gas-like region, is presented. The theory, describes, for the first time, the microscopic origin of the critical hysteresis temperature and the critical hysteresis pore size, properties which are not accessible to any classical theories.

  20. Energy Loss of Solar p Modes due to the Excitation of Magnetic Sausage Tube Waves: Importance of Coupling the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-07-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = -z 0).

  1. Electroless Co-P-Carbon Nanotube composite coating to enhance magnetic properties of grain-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Goel, Vishu; Anderson, Philip; Hall, Jeremy; Robinson, Fiona; Bohm, Siva

    2016-06-01

    The effect of Co-P-CNT coating on the magnetic properties of grain oriented electrical steel was investigated. To analyse the coating, Raman spectroscopy, Superconducting QUantum Interference Device (SQUID), single strip testing, Scanning Electron Microscopy (SEM) and talysurf surface profilometry were performed. Raman spectra showed the D and G band which corroborates the presence of Multi-Walled Carbon Nanotubes (MWCNT) in the coating. The magnetic nature of the coating was confirmed by SQUID results. Power loss results show an improvement ranging 13-15% after coating with Co-P-CNT. The resistivity of the coating was measured to be 104 μΩ cm. Loss separation graphs were plotted before and after coating to study the improvement in power loss. It was found that the coating helps in reducing the hysteresis loss. The thickness of the coating was found to be 414±40 nm. The surface profilometry results showed that the surface roughness improved after coating the sample.

  2. Reduced Magnetization and Loss in Ag-Mg Sheathed Bi2212 Wires: Systematics With Sample Twist Pitch and Length

    DOE PAGES

    Myers, C. S.; Susner, M. A.; Miao, H.; ...

    2014-11-20

    Suppression of magnetization and effective filament diameter (deff) with twisting was investigated for a series of recent Bi2212 strands manufactured by Oxford Superconducting Technologies. We measured magnetization as a function of field (out to 14 T), at 5.1 K, of twisted and nontwisted 37 × 18 double restack design strands. The samples were helical coils 5-6 mm in height and approximately 5 mm in diameter. The strand diameter was 0.8 mm. The magnetization of samples having twist pitches of 25.4, 12.7, and 6.35 mm were examined and compared to nontwisted samples of the same filament configuration. The critical state modelmore » was used to extract the 12-T deff from magnetization data for comparison. Twisting the samples reduced deff by a factor of 1.5-3. The deff was shown to increase both with L and Lp. Mathematical expressions, based upon the anisotropic continuum model, were fit to the data, and a parameter γ2, which quantifies the electrical connectivity perpendicular to the filament axis, was extracted. The bundle-to-bundle connectivity along the radial axis was found to be approximately 0.2%. The deff was substantially reduced with Lp. In addition, the importance of understanding sample length dependence for quantitative measurements is discussed.« less

  3. Reduced Magnetization and Loss in Ag-Mg Sheathed Bi2212 Wires: Systematics With Sample Twist Pitch and Length

    SciTech Connect

    Myers, C. S.; Susner, M. A.; Miao, H.; Huang, Y.; Sumption, M. D.; Collings, E. W.

    2014-11-20

    Suppression of magnetization and effective filament diameter (deff) with twisting was investigated for a series of recent Bi2212 strands manufactured by Oxford Superconducting Technologies. We measured magnetization as a function of field (out to 14 T), at 5.1 K, of twisted and nontwisted 37 × 18 double restack design strands. The samples were helical coils 5-6 mm in height and approximately 5 mm in diameter. The strand diameter was 0.8 mm. The magnetization of samples having twist pitches of 25.4, 12.7, and 6.35 mm were examined and compared to nontwisted samples of the same filament configuration. The critical state model was used to extract the 12-T deff from magnetization data for comparison. Twisting the samples reduced deff by a factor of 1.5-3. The deff was shown to increase both with L and Lp. Mathematical expressions, based upon the anisotropic continuum model, were fit to the data, and a parameter γ2, which quantifies the electrical connectivity perpendicular to the filament axis, was extracted. The bundle-to-bundle connectivity along the radial axis was found to be approximately 0.2%. The deff was substantially reduced with Lp. In addition, the importance of understanding sample length dependence for quantitative measurements is discussed.

  4. Electromagnetic nonlinearities in a Roebel-cable-based accelerator magnet prototype: variational approach

    NASA Astrophysics Data System (ADS)

    Ruuskanen, J.; Stenvall, A.; Lahtinen, V.; Pardo, E.

    2017-02-01

    Superconducting magnets are the most expensive series of components produced in the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN). When developing such magnets beyond state-of-the-art technology, one possible option is to use high-temperature superconductors (HTS) that are capable of tolerating much higher magnetic fields than low-temperature superconductors (LTS), carrying simultaneously high current densities. Significant cost reductions due to decreased prototype construction needs can be achieved by careful modelling of the magnets. Simulations are used, e.g. for designing magnets fulfilling the field quality requirements of the beampipe, and adequate protection by studying the losses occurring during charging and discharging. We model the hysteresis losses and the magnetic field nonlinearity in the beampipe as a function of the magnet’s current. These simulations rely on the minimum magnetic energy variation principle, with optimization algorithms provided by the open-source optimization library interior point optimizer. We utilize this methodology to investigate a research and development accelerator magnet prototype made of REBCO Roebel cable. The applicability of this approach, when the magnetic field dependence of the superconductor’s critical current density is considered, is discussed. We also scrutinize the influence of the necessary modelling decisions one needs to make with this approach. The results show that different decisions can lead to notably different results, and experiments are required to study the electromagnetic behaviour of such magnets further.

  5. Hysteresis in DNA compaction by Dps is described by an Ising model.

    PubMed

    Vtyurina, Natalia N; Dulin, David; Docter, Margreet W; Meyer, Anne S; Dekker, Nynke H; Abbondanzieri, Elio A

    2016-05-03

    In all organisms, DNA molecules are tightly compacted into a dynamic 3D nucleoprotein complex. In bacteria, this compaction is governed by the family of nucleoid-associated proteins (NAPs). Under conditions of stress and starvation, an NAP called Dps (DNA-binding protein from starved cells) becomes highly up-regulated and can massively reorganize the bacterial chromosome. Although static structures of Dps-DNA complexes have been documented, little is known about the dynamics of their assembly. Here, we use fluorescence microscopy and magnetic-tweezers measurements to resolve the process of DNA compaction by Dps. Real-time in vitro studies demonstrated a highly cooperative process of Dps binding characterized by an abrupt collapse of the DNA extension, even under applied tension. Surprisingly, we also discovered a reproducible hysteresis in the process of compaction and decompaction of the Dps-DNA complex. This hysteresis is extremely stable over hour-long timescales despite the rapid binding and dissociation rates of Dps. A modified Ising model is successfully applied to fit these kinetic features. We find that long-lived hysteresis arises naturally as a consequence of protein cooperativity in large complexes and provides a useful mechanism for cells to adopt unique epigenetic states.

  6. Hysteresis in DNA compaction by Dps is described by an Ising model

    PubMed Central

    Vtyurina, Natalia N.; Dulin, David; Docter, Margreet W.; Meyer, Anne S.; Dekker, Nynke H.; Abbondanzieri, Elio A.

    2016-01-01

    In all organisms, DNA molecules are tightly compacted into a dynamic 3D nucleoprotein complex. In bacteria, this compaction is governed by the family of nucleoid-associated proteins (NAPs). Under conditions of stress and starvation, an NAP called Dps (DNA-binding protein from starved cells) becomes highly up-regulated and can massively reorganize the bacterial chromosome. Although static structures of Dps–DNA complexes have been documented, little is known about the dynamics of their assembly. Here, we use fluorescence microscopy and magnetic-tweezers measurements to resolve the process of DNA compaction by Dps. Real-time in vitro studies demonstrated a highly cooperative process of Dps binding characterized by an abrupt collapse of the DNA extension, even under applied tension. Surprisingly, we also discovered a reproducible hysteresis in the process of compaction and decompaction of the Dps–DNA complex. This hysteresis is extremely stable over hour-long timescales despite the rapid binding and dissociation rates of Dps. A modified Ising model is successfully applied to fit these kinetic features. We find that long-lived hysteresis arises naturally as a consequence of protein cooperativity in large complexes and provides a useful mechanism for cells to adopt unique epigenetic states. PMID:27091987

  7. Anhysteretic magnetization and magnetostriction of thin NiFe films under stress and plastic deformation

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Garrity, Ed; Lofland, Sam

    2006-03-01

    The magnetic properties of thin samples of a thin film NiFe sample under tensile stress are investigated. The magnetostriction contribution to dc magnetization under elastic stress and the effect of the plastic strain on the hysteresis loops are discussed. Also, a role of the plastic deformation interrelated with the elastic stress in the magnetization process is established. An experimental system based on a conventional vibrating sample magnetometer equipped with the specially designed loading fixture and optical resonant spectroscopy tension monitoring technique is used to measure anhysteretic permeability and magnetization curve as a function of stress and temperature. This method used to measure anhysteretic permeability and magnetization curve of Ni-Fe as a function of stress and temperature. Anhysteretic permeability was extracted from the anhysteretic B-H curves constructed by degaussing the sample at given longitudinal (parallel to the stresses) dc field. The large positive magnetostriction constant of FeNi samples leads to higher susceptibility and lower coercivity with tensile stress while the large volume magnetostriction results in reduced saturation magnetization. Large stresses imposed on the sample result in plastic strain of the sample which induces increase in dislocation density and domain wall pinning. This causes the gain in hysteresis loss and coercivity to increase at the highest stresses. We also discuss the effect of the Ni composition on results of the measurements.

  8. Thermophysical and Magnetic Properties of Carbon Beads Containing Nickel Nanocrystallites

    NASA Astrophysics Data System (ADS)

    Skumiel, A.; Izydorzak, M.; Leonowicz, M.; Pomogailo, A. D.; Dzhardimalieva, G. I.

    2011-09-01

    Ferromagnetic and superparamagnetic nickel nanocrystallites, stabilized in a carbon matrix, were prepared by a three-step procedure including formation of a Ni acrylamide complex, followed by frontal polymerization and pyrolysis of the polymer at various temperatures. It was found that the procedure applied enables fabrication of magnetic beads containing metallic nanocrystallites embedded in a carbon matrix. The size of the crystallites, their morphology, volume fraction, and magnetic properties can be tailored by the pyrolysis temperature. The size of the crystallites affects their behavior in an external magnetic field, i.e., a heating process is the most effective for a sample pyrolyzed at 873 K. The revealed H n-type dependence of the temperature increase rate, (d T/d t) t=0, on the amplitude of the magnetic field indicates the presence of both superparamagnetic and ferromagnetic particles in all the samples studied since n > 2. For the superparamagnetic particles, the heating mechanism is associated with Néel relaxation. For the lower values of the magnetic field amplitude, H < H 0, the relaxation losses dominate whereas for the opposite case, H > H 0, the magnetic hysteresis is the main source of thermal energy losses. The composites containing magnetic Ni nanocrystallites entrapped in a carbon matrix can be potentially applied for hyperthermia treatment.

  9. Fe-based nanoparticles as tunable magnetic particle hyperthermia agents

    NASA Astrophysics Data System (ADS)

    Simeonidis, K.; Martinez-Boubeta, C.; Balcells, Ll.; Monty, C.; Stavropoulos, G.; Mitrakas, M.; Matsakidou, A.; Vourlias, G.; Angelakeris, M.

    2013-09-01

    Magnetic hyperthermia, an alternative anticancer modality, is influenced by the composition, size, magnetic properties, and degree of aggregation of the corresponding nanoparticle heating agents. Here, we attempt to evaluate the AC magnetic field heating response of Fe-based nanoparticles prepared by solar physical vapor deposition, a facile, high-yield methodology. Nanoparticle systems were grown by evaporating targets of Fe and Fe3O4 with different stoichiometry. It is observed that Fe3O4 nanoparticles residing in the magnetic monodomain region exhibit increased heating efficiency together with high specific loss power values above 0.9 kW/g at 765 kHz and 24 kA/m, compared with that of 0.1 kW/g for zero-valent Fe nanoparticles under the same conditions. The enhanced performance of Fe3O4 nanoparticles under the range of field explored (12-24 kA/m) may be attributed to the activation of a magnetic hysteresis loss mechanism when the applied AC field surpasses the particle anisotropy field at H ≥ 0.5HA. This is also illustrated by the smaller coercivity of Fe3O4 nanoparticles compared with that of their Fe counterparts. Therefore, understanding the interconnection between intrinsic parameters (composition, size and magnetic properties), the dosage (concentration, volume) and the intensity and frequency of the AC field can lead to essential design guidelines for in vitro, in vivo, and clinical applications of magnetic nanoparticles for hyperthermia.

  10. Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment

    SciTech Connect

    Trassinelli, M. Marangolo, M.; Eddrief, M.; Etgens, V. H.; Gafton, V.; Hidki, S.; Lacaze, E.; Lamour, E.; Prigent, C.; Rozet, J.-P.; Steydli, S.; Zheng, Y.; Vernhet, D.

    2014-02-24

    We present the investigation on the modifications of structural and magnetic properties of MnAs thin film epitaxially grown on GaAs induced by slow highly charged ions bombardment under well-controlled conditions. The ion-induced defects facilitate the nucleation of one phase with respect to the other in the first-order magneto-structural MnAs transition, with a consequent suppression of thermal hysteresis without any significant perturbation on the other structural and magnetic properties. In particular, the irradiated film keeps the giant magnetocaloric effect at room temperature opening new perspective on magnetic refrigeration technology for everyday use.

  11. Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment

    NASA Astrophysics Data System (ADS)

    Trassinelli, M.; Marangolo, M.; Eddrief, M.; Etgens, V. H.; Gafton, V.; Hidki, S.; Lacaze, E.; Lamour, E.; Prigent, C.; Rozet, J.-P.; Steydli, S.; Zheng, Y.; Vernhet, D.

    2014-02-01

    We present the investigation on the modifications of structural and magnetic properties of MnAs thin film epitaxially grown on GaAs induced by slow highly charged ions bombardment under well-controlled conditions. The ion-induced defects facilitate the nucleation of one phase with respect to the other in the first-order magneto-structural MnAs transition, with a consequent suppression of thermal hysteresis without any significant perturbation on the other structural and magnetic properties. In particular, the irradiated film keeps the giant magnetocaloric effect at room temperature opening new perspective on magnetic refrigeration technology for everyday use.

  12. Significance of conservative asparagine residues in the thermal hysteresis activity of carrot antifreeze protein.

    PubMed Central

    Zhang, Dang-Quan; Liu, Bing; Feng, Dong-Ru; He, Yan-Ming; Wang, Shu-Qi; Wang, Hong-Bin; Wang, Jin-Fa

    2004-01-01

    The approximately 24-amino-acid leucine-rich tandem repeat motif (PXXXXXLXXLXXLXLSXNXLXGXI) of carrot antifreeze protein comprises most of the processed protein and should contribute at least partly to the ice-binding site. Structural predictions using publicly available online sources indicated that the theoretical three-dimensional model of this plant protein includes a 10-loop beta-helix containing the approximately 24-amino-acid tandem repeat. This theoretical model indicated that conservative asparagine residues create putative ice-binding sites with surface complementarity to the 1010 prism plane of ice. We used site-specific mutagenesis to test the importance of these residues, and observed a distinct loss of thermal hysteresis activity when conservative asparagines were replaced with valine or glutamine, whereas a large increase in thermal hysteresis was observed when phenylalanine or threonine residues were replaced with asparagine, putatively resulting in the formation of an ice-binding site. These results confirmed that the ice-binding site of carrot antifreeze protein consists of conservative asparagine residues in each beta-loop. We also found that its thermal hysteresis activity is directly correlated with the length of its asparagine-rich binding site, and hence with the size of its ice-binding face. PMID:14531728

  13. Understanding the Hysteresis Loop Conundrum in Pharmacokinetic / Pharmacodynamic Relationships

    PubMed Central

    Louizos, Christopher; Yáñez, Jaime A.; Forrest, Laird; Davies, Neal M.

    2015-01-01

    Hysteresis loops are phenomena that sometimes are encountered in the analysis of pharmacokinetic and pharmacodynamic relationships spanning from pre-clinical to clinical studies. When hysteresis occurs it provides insight into the complexity of drug action and disposition that can be encountered. Hysteresis loops suggest that the relationship between drug concentration and the effect being measured is not a simple direct relationship, but may have an inherent time delay and disequilibrium, which may be the result of metabolites, the consequence of changes in pharmacodynamics or the use of a non-specific assay or may involve an indirect relationship. Counter-clockwise hysteresis has been generally defined as the process in which effect can increase with time for a given drug concentration, while in the case of clockwise hysteresis the measured effect decreases with time for a given drug concentration. Hysteresis loops can occur as a consequence of a number of different pharmacokinetic and pharmacodynamic mechanisms including tolerance, distributional delay, feedback regulation, input and output rate changes, agonistic or antagonistic active metabolites, uptake into active site, slow receptor kinetics, delayed or modified activity, time-dependent protein binding and the use of racemic drugs among other factors. In this review, each of these various causes of hysteresis loops are discussed, with incorporation of relevant examples of drugs demonstrating these relationships for illustrative purposes. Furthermore, the effect that pharmaceutical formulation has on the occurrence and potential change in direction of the hysteresis loop, and the major pharmacokinetic / pharmacodynamic modeling approaches utilized to collapse and model hysteresis are detailed. PMID:24735761

  14. Understanding the hysteresis loop conundrum in pharmacokinetic/pharmacodynamic relationships.

    PubMed

    Louizos, Christopher; Yáñez, Jaime A; Forrest, M Laird; Davies, Neal M

    2014-01-01

    Hysteresis loops are phenomena that sometimes are encountered in the analysis of pharmacokinetic and pharmacodynamic relationships spanning from pre-clinical to clinical studies. When hysteresis occurs it provides insight into the complexity of drug action and disposition that can be encountered. Hysteresis loops suggest that the relationship between drug concentration and the effect being measured is not a simple direct relationship, but may have an inherent time delay and disequilibrium, which may be the result of metabolites, the consequence of changes in pharmacodynamics or the use of a non-specific assay or may involve an indirect relationship. Counter-clockwise hysteresis has been generally defined as the process in which effect can increase with time for a given drug concentration, while in the case of clockwise hysteresis the measured effect decreases with time for a given drug concentration. Hysteresis loops can occur as a consequence of a number of different pharmacokinetic and pharmacodynamic mechanisms including tolerance, distributional delay, feedback regulation, input and output rate changes, agonistic or antagonistic active metabolites, uptake into active site, slow receptor kinetics, delayed or modified activity, time-dependent protein binding and the use of racemic drugs among other factors. In this review, each of these various causes of hysteresis loops are discussed, with incorporation of relevant examples of drugs demonstrating these relationships for illustrative purposes. Furthermore, the effect that pharmaceutical formulation has on the occurrence and potential change in direction of the hysteresis loop, and the major pharmacokinetic / pharmacodynamic modeling approaches utilized to collapse and model hysteresis are detailed.

  15. High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Ming; Hong, Siang-Jie; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-08-01

    A typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle (CA) hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious CA hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing CA, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of CA hysteresis, the surface remains superhydrophobic but becomes highly adhesive.

  16. Static measurements of slender delta wing rolling moment hysteresis

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Levin, Daniel

    1991-01-01

    Slender delta wing planforms are susceptible to self-induced roll oscillations due to aerodynamic hysteresis during the limit cycle roll oscillation. Test results are presented which clearly establish that the static rolling moment hysteresis has a damping character; hysteresis tends to be greater when, due to either wing roll or side slip, the vortex burst moves back and forth over the wing trailing edge. These data are an indirect indication of the damping role of the vortex burst during limit cycle roll oscillations.

  17. Stress dependence of the hysteresis loops of Co-rich amorphous wire

    NASA Astrophysics Data System (ADS)

    Usov, N.; Antonov, A.; Dykhne, A.; Lagar'kov, A.

    1998-03-01

    The structure of the 0953-8984/10/11/009/img7 domain wall separating the inner core and the outer shell of Co-rich amorphous wire is studied theoretically on the basis of a model distribution of the residual quenching stresses throughout the wire volume. For a long wire, both axial and circumferential hysteresis loops are obtained at different values of the applied stress. The applied tensile stress is shown to reduce the remanent wire magnetization, but has only little effect on the wire coercivity. On the other hand, the applied torsional stress leads to an increase of the wire coercivity. The results obtained are in qualitative agreement with recent experiments.

  18. Morphology and Magnetic Properties of IRON/GOLD(001) Ultrathin Films: a Hrleed and Smoke Study

    NASA Astrophysics Data System (ADS)

    Liew, Yun-Fook

    Many of the controversies in surface and ultrathin film magnetism are believe to arise from the poor knowledge of the surface or film morphology. In this thesis we have studied and correlated the morphological and magnetic properties of monolayers and submonolayer Fe/Au(001) ultrathin films. We have used two complementary surface sensitive tools, the High-Resolution Low-Energy Electron Diffractometer (HRLEED) and the Surface Magneto-Optic Kerr Effect (SMOKE) apparatus, to characterize the morphologies and magnetic properties of ultrathin ferromagnetic films of Fe deposited on a Au(001) substrate by the Molecular Beam Epitaxy (MBE) technique. HRLEED with time-dependent, energy-dependent, and temperature-dependent spot profile analysis was used to determine the growth modes, the structure, the size and separation distributions of magnetic islands, and the stability of the Fe/Au(001) ultrathin films. Their corresponding magnetic properties such as the coercive field, magnetic anistropy, saturation and remanence magnetization, and hysteresis loss were extracted from the hysteresis loops measured with the SMOKE technique. Using the two sets of complementary information we are able to correlate the structural properties of the film to the magnetic properties of the film. For submonolayer coverage Fe films on Au(001) surface, a strong perpendicular magnetic anisotropy that aligns the spins out of the plane of the sample was observed. The coercivity and squareness of the hysteresis loop also displayed a strong correlation with the average size of 2D or 3D magnetic islands. The larger the average size of these islands the larger the coercivity and squareness. The magnetization of these ultrathin films also exhibits temperature dependence. Films of submonolayer coverages with finite size magnetic islands are believed to go super-paramagnetic. For a thicker Fe film of coverage 1.5 ML, the magnetization vanished at ~375^ circC, well below the bulk Curie temperature of 770^circ

  19. Superconductor and magnet levitation devices

    NASA Astrophysics Data System (ADS)

    Ma, K. B.; Postrekhin, Y. V.; Chu, W. K.

    2003-12-01

    This article reviews levitation devices using superconductors and magnets. Device concepts and their applications such as noncontact bearings, flywheels, and momentum wheels are discussed, following an exposition of the principles behind these devices. The basic magneto-mechanical phenomenon responsible for levitation in these devices is a result of flux pinning inherent in the interaction between a magnet and a type II superconductor, described and explained in this article by comparison with behavior expected of a perfect conductor or a nearly perfect conductor. The perfect conductor model is used to illustrate why there is a difference between the forces observed when the superconductor is cooled after or before the magnet is brought into position. The same model also establishes the principle that a resisting force or torque arises only in response to those motions of the magnet that changes the magnet field at the superconductor. A corollary of the converse, that no drag torque appears when an axisymmetric magnet levitated above a superconductor rotates, is the guiding concept in the design of superconductor magnet levitation bearings, which is the common component in a majority of levitation devices. The perfect conductor model is extended to a nearly perfect conductor to provide a qualitative understanding of the dissipative aspects such as creep and hysteresis in the interaction between magnets and superconductors. What all these entail in terms of forces, torques, and power loss is expounded further in the context of generic cases of a cylindrical permanent magnet levitated above a superconductor and a superconductor rotating in a transverse magnetic field. Then we proceed to compare the pros and cons of levitation bearings based on the first arrangement with conventional mechanical bearings and active magnetic bearings, and discuss how the weak points of the levitation bearing may be partially overcome. In the latter half, we examine designs of devices

  20. AC Magnetic Heating of Superparamagnetic Fe and Co Nanoparticles

    DTIC Science & Technology

    2012-06-01

    saturation magnetization, MS. As the magnitude of the field decreases the total magnetization decreases and reaches at zero field the remanent magnetization...a spontaneous random orientation of the magnetic moment inside the particles (zero remanence magnetization and coercivity, so no hysteresis