Science.gov

Sample records for magnetic nanoparticles coated

  1. Magnetism in nanoparticles: tuning properties with coatings.

    PubMed

    Crespo, Patricia; de la Presa, Patricia; Marín, Pilar; Multigner, Marta; Alonso, José María; Rivero, Guillermo; Yndurain, Félix; González-Calbet, José María; Hernando, Antonio

    2013-12-04

    This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications.

  2. Multifunctional biocompatible coatings on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bychkova, A. V.; Sorokina, O. N.; Rosenfeld, M. A.; Kovarski, A. L.

    2012-11-01

    Methods for coating formation on magnetic nanoparticles used in biology and medicine are considered. Key requirements to the coatings are formulated, namely, biocompatibility, stability, the possibility of attachment of pharmaceutical agents, and the absence of toxicity. The behaviour of nanoparticle/coating nanosystems in the body including penetration through cellular membranes and the excretion rates and routes is analyzed. Parameters characterizing the magnetic properties of these systems and their magnetic controllability are described. Factors limiting the applications of magnetically controlled nanosystems for targeted drug delivery are discussed. The bibliography includes 405 references.

  3. Polysaccharide-Coated Magnetic Nanoparticles for Imaging and Gene Therapy

    PubMed Central

    Uthaman, Saji; Cherukula, Kondareddy; Cho, Chong-Su; Park, In-Kyu

    2015-01-01

    Today, nanotechnology plays a vital role in biomedical applications, especially for the diagnosis and treatment of various diseases. Among the many different types of fabricated nanoparticles, magnetic metal oxide nanoparticles stand out as unique and useful tools for biomedical applications, because of their imaging characteristics and therapeutic properties such as drug and gene carriers. Polymer-coated magnetic particles are currently of particular interest to investigators in the fields of nanobiomedicine and fundamental biomaterials. Theranostic magnetic nanoparticles that are encapsulated or coated with polymers not only exhibit imaging properties in response to stimuli, but also can efficiently deliver various drugs and therapeutic genes. Even though a large number of polymer-coated magnetic nanoparticles have been fabricated over the last decade, most of these have only been used for imaging purposes. The focus of this review is on polysaccharide-coated magnetic nanoparticles used for imaging and gene delivery. PMID:26078971

  4. Functionalization of polydopamine coated magnetic nanoparticles with biological entities

    NASA Astrophysics Data System (ADS)

    Mǎgeruşan, Lidia; Mrówczyński, Radosław; Turcu, Rodica

    2015-12-01

    New hybrid materials, obtained through introduction of cysteine, lysine and folic acid as biological entities into polydopamine-coated magnetite nanoparticles, are reported. The syntheses are straight forward and various methods were applied for structural and morphological characterization of the resulting nanoparticles. XPS proved a very powerful tool for surface chemical analysis and it evidences the functionalization of polydopamine coated magnetite nanoparticles. The superparamagnetic behavior and the high values of saturation magnetization recommend all products for further application where magnetism is important for targeting, separation, or heating by alternative magnetic fields.

  5. Technique to optimize magnetic response of gelatin coated magnetic nanoparticles.

    PubMed

    Parikh, Nidhi; Parekh, Kinnari

    2015-07-01

    The paper describes the results of optimization of magnetic response for highly stable bio-functionalize magnetic nanoparticles dispersion. Concentration of gelatin during in situ co-precipitation synthesis was varied from 8, 23 and 48 mg/mL to optimize magnetic properties. This variation results in a change in crystallite size from 10.3 to 7.8 ± 0.1 nm. TEM measurement of G3 sample shows highly crystalline spherical nanoparticles with a mean diameter of 7.2 ± 0.2 nm and diameter distribution (σ) of 0.27. FTIR spectra shows a shift of 22 cm(-1) at C=O stretching with absence of N-H stretching confirming the chemical binding of gelatin on magnetic nanoparticles. The concept of lone pair electron of the amide group explains the mechanism of binding. TGA shows 32.8-25.2% weight loss at 350 °C temperature substantiating decomposition of chemically bind gelatin. The magnetic response shows that for 8 mg/mL concentration of gelatin, the initial susceptibility and saturation magnetization is the maximum. The cytotoxicity of G3 sample was assessed in Normal Rat Kidney Epithelial Cells (NRK Line) by MTT assay. Results show an increase in viability for all concentrations, the indicative probability of a stimulating action of these particles in the nontoxic range. This shows the potential of this technique for biological applications as the coated particles are (i) superparamagnetic (ii) highly stable in physiological media (iii) possibility of attaching other drug with free functional group of gelatin and (iv) non-toxic.

  6. Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber

    NASA Astrophysics Data System (ADS)

    Akman, O.; Kavas, H.; Baykal, A.; Toprak, M. S.; Çoruh, Ali; Aktaş, B.

    2013-02-01

    Polyacrylonitrile (PAN) textiles with 2 mm thickness are coated with magnetic nanoparticles in coating baths with Ni, Co and their alloys via an electroless metal deposition method. The crystal structure, morphology and magnetic nature of composites are investigated by X-ray Powder diffraction, Scanning Electron Microscopy, and dc magnetization measurement techniques. The frequency dependent microwave absorption measurements have been carried out in the frequency range of 12.4-18 GHz (X and P bands). Diamagnetic and ferromagnetic properties are also investigated. Finally, the microwave absorption of composites is found strongly dependent on the coating time. One absorption peak is observed between 14.3 and 15.8 GHz with an efficient absorption bandwidth of 3.3-4.1 GHz (under -20 dB reflection loss limit). The Reflection loss (RL) can be achieved between -30 and -50 dB. It was found that the RL is decreasing and absorption bandwidth is decreasing with increasing coating time. While absorption peak moves to lower frequencies in Ni coated PAN textile, it goes higher frequencies in Co coated ones. The Ni-Co alloy coated composites have fluctuating curve of absorption frequency with respect to coating time. These results encourage further development of magnetic nanoparticle coated textile absorbers for broadband applications.

  7. Magnetic nanoparticles coated with polyaniline to stabilize immobilized trypsin

    NASA Astrophysics Data System (ADS)

    Maciel, J. C.; D. Mercês, A. A.; Cabrera, M.; Shigeyosi, W. T.; de Souza, S. D.; Olzon-Dionysio, M.; Fabris, J. D.; Cardoso, C. A.; Neri, D. F. M.; C. Silva, M. P.; Carvalho, L. B.

    2016-12-01

    It is reported the synthesis of magnetic nanoparticles via the chemical co-precipitation of Fe 3+ ions and their preparation by coating them with polyaniline. The electronic micrograph analysis showed that the mean diameter for the nanoparticles is ˜15 nm. FTIR, powder X-ray diffraction and Mössbauer spectroscopy were used to understand the chemical, crystallographic and 57Fe hyperfine structures for the two samples. The nanoparticles, which exhibited magnetic behavior with relatively high spontaneous magnetization at room temperature, were identified as being mainly formed by maghemite ( γFe2O3). The coated magnetic nanoparticles (sample labeled "mPANI") presented a real ability to bind biological molecules such as trypsin, forming the magnetic enzyme derivative (sample "mPANIG-Trypsin"). The amount of protein and specific activity of the immobilized trypsin were found to be 13±5 μg of protein/mg of mPANI (49.3 % of immobilized protein) and 24.1±0.7 U/mg of immobilized protein, respectively. After 48 days of storage at 4 ∘C, the activity of the immobilized trypsin was found to be 89 % of its initial activity. This simple, fast and low-cost procedure was revealed to be a promising way to prepare mPANI nanoparticles if technological applications addressed to covalently link biomolecules are envisaged. This route yields chemically stable derivatives, which can be easily recovered from the reaction mixture with a magnetic field and recyclable reused.

  8. Preparation and Evaluation of PLGA-Coated Capsaicin Magnetic Nanoparticles.

    PubMed

    Baskaran, Mrudhula; Baskaran, Padmamalini; Arulsamy, Navamoney; Thyagarajan, Baskaran

    2017-06-01

    Drugs used in the treatment of diseases can cause several unwanted systemic side effects. A site-specific drug delivery system can eliminate such consequences by delivering drugs to certain target areas of the body where therapeutic effects are required. Here we present the preparation and evaluation of magnetic nanoparticles of capsaicin, the active ingredient in chili peppers, coated with poly-L-lactide co-glycolide (PLGA), a FDA-approved biodegradable bioavailable polymer. PCMN were prepared by solvent-evaporation/coprecipitation technique and their physicochemical and pharmacological characteristics evaluated in vitro. Further, effective pain/inflammation therapeutics of PCMN in a mouse model of inflammation was also studied. We also prepared and evaluated the subcellular localization of PLGA coated fluorescence magnetic nanoparticle (PFMN) in vitro in HEK293 cells. Transmission electron microscopic images of PCMN showed that the size of the nanoparticles were of the order of 10-20 nm. PCMN showed approximately 9.29% drug loading and 89.15% encapsulation efficiencies. In vitro dissolution studies showed an increased solubility of capsaicin due to the nano-size of the PCMN, while PLGA coating allowed sustained release of capsaicin in vitro. The PCMN also reduced paw edema after injection in mice, and confocal microscopy revealed the successful intracellular localization of PLGA-coated fluorescein magnetic nanoparticles in HEK293 cells. The PCMN provided a sustained release of capsaicin in vitro and inhibited carrageenan-induced inflammatory pain in mouse model in vivo. These data suggest that PLGA coating of capsaicin magnetic nanoparticles have the potential to be amenable for a sustained release of capsaicin to relieve pain.

  9. Magnetic heating of silica-coated manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2016-07-01

    Manganese ferrite nanoparticles were synthesized using the reverse micelle method; these particles were then coated with silica. The silica-coated nanoparticles were spherical in shape, with an average diameter of 14 nm. The inverse spinel crystalline structure was observed through X-ray diffraction patterns. The coating status of silica on the surface of the nanoparticles was confirmed with a Fourier transform infrared spectrometer. The superparamagnetic properties were revealed by the zero coercive force in the hysteresis curve. Controllable heating at a fixed temperature of 42 °C was achieved by changing either the concentration of nanoparticles in the aqueous solution or the intensity of the alternating magnetic field. We found that at a fixed field strength of 5.5 kA/m, the 2.6 mg/ml sample showed a saturation temperature of 42 °C for magnetic hyperthermia. On the other hand, at a fixed concentration of 3.6 mg/ml, a field intensity of 4.57 kA/m satisfied the required temperature of 42 °C.

  10. LSMO Nanoparticles Coated by Hyaluronic Acid for Magnetic Hyperthermia

    NASA Astrophysics Data System (ADS)

    Chen, Yuanwei; Wang, Ying; Liu, Xi; Lu, Mai; Cao, Jiangwei; Wang, Tao

    2016-12-01

    Magnetic hyperthermia with the treating temperature range of 41-46 °C is an alternative therapy for cancer treatment. In this article, lanthanum strontium manganates (La1- x Sr x MnO3, 0.25 ≤ × ≤ 0.35) magnetic nanoparticles coated by hyaluronic acid (HA) which possesses the ability of targeting tumor cells were prepared by a simple hydrothermal method combined with a high-energy ball milling technique. The crystal structure, morphology, magnetic properties of the HA-coated magnetic nanoparticles (MNPs), and their heating ability under alternating magnetic field were investigated. It was found the HA-coated La0.7Sr0.3MnO3, with particle diameter of 100 nm, Curie temperature of 45 °C at a concentration 6 mg/ml, gave the optimal induction heating results. The heating temperature saturates at 45.7 °C, and the ESAR is 5.7 × 10-3 W/g · kHz · (kA/m2) which is much higher than other reported results.

  11. Magnetic nanoparticles coated with cyclodextrins and citrate for irinotecan delivery.

    PubMed

    Monteiro, Ana P F; Caminhas, Larissa D; Ardisson, José D; Paniago, Roberto; Cortés, Maria E; Sinisterra, Rubén D

    2017-05-01

    In the present work, we study the role of different components in the formation of more stable iron oxide magnetic nanoparticles (MNPs): β-cyclodextrin (BCD), 2-hydroxypropyl-β-cyclodextrin (HP) and citrate anion. MNPs formulations were characterized by FTIR, particles size measurements, zeta potential based on dynamic light scattering principle technique, X-ray powder pattern diffraction, XPS spectroscopy, transmission electron microscopy and thermogravimetric analysis. The results showed that cyclodextrins and citrate plays a key role in order to obtain a lower size of coated MNPs and proved to be an efficient strategy to obtain a more stable colloidal dispersion, avoiding the nanoparticles oxidation, enhancing the irinotecan incorporation and release. Furthermore, citrate-coated BCD-MNPs showed the same cytotoxicity of the free IRI.

  12. Isolation of DNA using magnetic nanoparticles coated with dimercaptosuccinic acid.

    PubMed

    Min, Ji Hyun; Woo, Mi-Kyung; Yoon, Ha Young; Jang, Jin Woo; Wu, Jun Hua; Lim, Chae-Seung; Kim, Young Keun

    2014-02-15

    Lately, the isolation of DNA using magnetic nanoparticles has received increased attention owing to their facile manipulation and low costs. Although methods involving their magnetic separation have been extensively studied, there is currently a need for an efficient technique to isolate DNA for highly sensitive diagnostic applications. We describe herein a method to isolate and purify DNA using biofunctionalized superparamagnetic nanoparticles synthesized by a modified polyol method to obtain the desired monodispersity, followed by surface modification with meso-2,3-dimercaptosuccinic acid (DMSA) containing carboxyl groups for DNA absorption. The DMSA-coated magnetic nanoparticles (DMSA-MNPs) were used for the isolation of DNA, with a maximum yield of 86.16%. In particular, we found that the isolation of DNA using small quantities of DMSA-MNPs was much more efficient than that using commercial microbeads (NucliSENS-easyMAG, BioMérieux). Moreover, the DMSA-MNPs were successfully employed in the isolation of genomic DNA from human blood. In addition, the resulting DNA-nanoparticle complex was directly subjected to PCR amplification without prior elution, which could eventually lead to simple, rapid, sensitive and integrated diagnostic systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Magnet-induced temporary superhydrophobic coatings from one-pot synthesized hydrophobic magnetic nanoparticles.

    PubMed

    Fang, Jian; Wang, Hongxia; Xue, Yuhua; Wang, Xungai; Lin, Tong

    2010-05-01

    In this paper, we report on the production of superhydrophobic coatings on various substrates (e.g., glass slide, silicon wafer, aluminum foil, plastic film, nanofiber mat, textile fabrics) using hydrophobic magnetic nanoparticles and a magnet-assembly technique. Fe(3)O(4) magnetic nanoparticles functionalized with a thin layer of fluoroalkyl silica on the surface were synthesized by one-step coprecipitation of Fe(2+)/Fe(3+) under an alkaline condition in the presence of a fluorinated alkyl silane. Under a magnetic field, the magnetic nanoparticles can be easily deposited on any solid substrate to form a thin superhydrophobic coating with water contact angle as high as 172 degrees , and the surface superhydrophobicity showed very little dependence on the substrate type. The particulate coating showed reasonable durability because of strong aggregation effect of nanoparticles, but the coating layer can be removed (e.g., by ultrasonication) to restore the original surface feature of the substrates. By comparison, the thin particle layer deposited under no magnetic field showed much lower hydrophobicity. The main reason for magnet-induced superhydrophobic surfaces is the formation of nano- and microstructured surface features. Such a magnet-induced temporary superhydrophobic coating may have wide applications in electronic, biomedical, and defense-related areas.

  14. Iron oxide nanoparticles for magnetically assisted patterned coatings

    NASA Astrophysics Data System (ADS)

    Dodi, Gianina; Hritcu, Doina; Draganescu, Dan; Popa, Marcel I.

    2015-08-01

    Iron oxide nanoparticles able to magnetically assemble during the curing stage of a polymeric support to create micro-scale surface protuberances in a controlled manner were prepared and characterized. The bare Fe3O4 particles were obtained by two methods: co-precipitation from an aqueous solution containing Fe3+/Fe2+ ions with a molar ratio of 2:1 and partial oxidation of ferrous ions in alkaline conditions. The products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetization measurement. They were subsequently functionalized using oleic acid, sodium oleate, or non-ionic surfactant mixtures with various hydrophilic to lipophilic balance (HLB) values. Composite nanoparticle-polymer films prepared by spraying were deposited and cured by drying on glass slides under a static magnetic field in the range of 1.5-5.5 mT. Magnetic field generated surface roughness was evidenced by optical and scanning electron microscopy. The optimum hierarchical patterning was obtained with the nanoparticles produced by partial oxidation and functionalized with hydrophobic surfactants. Possible applications may include ice-phobic composite coatings.

  15. Effects of nanoparticle coatings on the activity of oncolytic adenovirus-magnetic nanoparticle complexes.

    PubMed

    Tresilwised, Nittaya; Pithayanukul, Pimolpan; Holm, Per Sonne; Schillinger, Ulrike; Plank, Christian; Mykhaylyk, Olga

    2012-01-01

    Limitations to adenovirus infectivity can be overcome by association with magnetic nanoparticles and enforced infection by magnetic field influence. Here we examined three core-shell-type iron oxide magnetic nanoparticles differing in their surface coatings, particle sizes and magnetic properties for their ability to enhance the oncolytic potency of adenovirus Ad520 and to stabilize it against the inhibitory effects of serum or a neutralizing antibody. It was found that the physicochemical properties of magnetic nanoparticles are critical determinants of the properties which govern the oncolytic productivities of their complexes with Ad520. Although high serum concentration during infection or a neutralizing antibody had strong inhibitory influence on the uptake or oncolytic productivity of the naked virus, one particle type was identified which conferred high protection against both inhibitory factors while enhancing the oncolytic productivity of the internalized virus. This particle type equipped with a silica coating and adsorbed polyethylenimine, displaying a high magnetic moment and high saturation magnetization, mediated a 50% reduction of tumor growth rate versus control upon intratumoral injection of its complex with Ad520 and magnetic field influence, whereas Ad520 alone was inefficient. The correlations between physical properties of the magnetic particles or virus complexes and oncolytic potency are described herein.

  16. Synthesis and characterization of cationic lipid coated magnetic nanoparticles using multiple emulsions as microreactors

    NASA Astrophysics Data System (ADS)

    Akbaba, Hasan; Karagöz, Uğur; Selamet, Yusuf; Kantarcı, A. Gülten

    2017-03-01

    The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (<30 nm) for drug or nucleic acid delivery. Structure analysis showed that magnetic core material is in the form of magnetite. Saturation magnetization value was measured as 15-17 emu g-1 for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting.

  17. Measurement of the nonmagnetic coating thickness of core-shell magnetic nanoparticles by controlled magnetization magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Angeloni, L.; Passeri, D.; Scaramuzzo, F. A.; Di Iorio, D.; Barteri, M.; Mantovani, D.; Rossi, M.

    2016-06-01

    Magnetic nanoparticles (MNPs) represent an interesting tool for several biomedical applications. In order to improve the dispersion stability, the biocompatibility and bio-functionality, MNPs need to be coated with non-magnetic films. The optimization of these systems requires the deep characterization not only of the magnetic core, but also of the coating features. Beside the chemical and physical properties of the coating, its thickness is another important property which can influence the size, the shape and the overall magnetic behavior of the NPs system. In this work we propose a possible method to measure the thickness of the non-magnetic coating of core-shell MNPs through the use of controlled magnetization-magnetic force microscopy (CM-MFM). A preliminary study on the applicability of the proposed method has been performed on Fe3O4 NPs coated with a Cu film.

  18. Plasmonic/magnetic nanocomposites: Gold nanorods-functionalized silica coated magnetic nanoparticles.

    PubMed

    Redolfi Riva, Eugenio; Pastoriza-Santos, Isabel; Lak, Aidin; Pellegrino, Teresa; Pérez-Juste, Jorge; Mattoli, Virgilio

    2017-09-15

    We report here on the fabrication of a new example of nano-object that combines magnetic and plasmonic properties. The strategy is based on the electrostatic assembly of negatively charged gold nanorods (NIR-resonant) on positively charged silica-coated iron oxide nanoparticles. Silica coating of magnetic nanoparticles prevented iron oxide nanoparticles irreversible aggregation in water environment. Finally the stability of the nanocomposite in biological medium has been improved through a protein coating (BSA, bovine serum albumin). Morphological, optical and magnetic properties of the hybrid nanomaterials have been evaluated as well as its ability to be manipulated by an external magnetic field. Furthermore, temperature characterization upon NIR laser excitation has been performed in order to assess nanocomposite capability of increasing local environmental temperature. This nanomaterial could be used as a smart tool for photothermal treatment of cancerous lesions in order to maximize precision and efficacy of tissue heating upon laser stimulation by magnetically accumulating nanoparticles nearby the cancerous lesion, avoiding dispersion of the nanomaterial. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Magnetic nanoparticles coated with dimercaptosuccinic acid: development, characterization, and application in biomedicine

    NASA Astrophysics Data System (ADS)

    Ruiz, Amalia; Morais, Paulo César; Bentes de Azevedo, Ricardo; Lacava, Zulmira G. M.; Villanueva, Angeles; del Puerto Morales, María

    2014-11-01

    This review intends to summarize some of the results achieved in the development of magnetic nanoparticles coated with anionic ligands, specifically dimercaptosuccinic acid applied in the biomedical area. We describe synthetic routes used to produce iron oxide-based magnetic nanoparticles, subsequently coated with DMSA as well as functionalization strategies for specific purposes with polymers, antibodies, and cytokines. Finally, we have collected data on biological interactions of DMSA-coated nanoparticles in vitro and in vivo, in particular cell interaction process, pharmacokinetics, and biodistribution in different animal models and their promising applications in drug delivery, NMR imaging, hyperthermia, nanothermometry, magnetic separation, and bioremediation.

  20. Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles.

    PubMed

    Niemirowicz, Katarzyna; Surel, Urszula; Wilczewska, Agnieszka Z; Mystkowska, Joanna; Piktel, Ewelina; Gu, Xiaobo; Namiot, Zbigniew; Kułakowska, Alina; Savage, Paul B; Bucki, Robert

    2015-05-01

    Ceragenins, synthetic mimics of endogenous antibacterial peptides, are promising candidate antimicrobial agents. However, in some settings their strong bactericidal activity is associated with toxicity towards host cells. To modulate ceragenin CSA-13 antibacterial activity and biocompatibility, CSA-13-coated magnetic nanoparticles (MNP-CSA-13) were synthesized. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to characterize MNP-CSA-13 physicochemical properties. Bactericidal action and ability of these new compounds to prevent Pseudomonas. aeruginosa biofilm formation were assessed using a bacteria killing assay and crystal violet staining, respectively. Release of hemoglobin from human red blood cells was measured to evaluate MNP-CSA-13 hemolytic activity. In addition, we used surface activity measurements to monitor CSA-13 release from the MNP shell. Zeta potentials of P. aeruginosa cells and MNP-CSA-13 were determined to assess the interactions between the bacteria and nanoparticles. Morphology of P. aeruginosa subjected to MNP-CSA-13 treatment was evaluated using atomic force microscopy (AFM) to determine structural changes indicative of bactericidal activity. Our studies revealed that the MNP-CSA-13 nanosystem is stable and may be used as a pH control system to release CSA-13. MNP-CSA-13 exhibits strong antibacterial activity, and the ability to prevent bacteria biofilm formation in different body fluids. Additionally, a significant decrease in CSA-13 hemolytic activity was observed when the molecule was immobilized on the nanoparticle surface. Our results demonstrate that CSA-13 retains bactericidal activity when immobilized on a MNP while biocompatibility increases when CSA-13 is covalently attached to the nanoparticle.

  1. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles.

    PubMed

    Boguslavsky, Yonit; Margel, Shlomo

    2008-01-01

    Maghemite (gamma-Fe2O3) nanoparticles of 15 +/- 3 nm diameter were prepared by nucleation of gelatin/iron oxide followed by growth of gamma-Fe2O3 films onto these nuclei. The gamma-Fe2O3 nanoparticles were coated with polydivinylbenzene (PDVB) by emulsion polymerization of divinylbenzene (DVB) in an aqueous continuous phase containing the gamma-Fe2O3 nanoparticles. The PDVB-coated gamma-Fe2O3 nanoparticles, dispersed in water, were separated from homo-PDVB nanoparticles using the high gradient magnetic field (HGMF) technique. The influence of DVB concentration on the amount of PDVB coating, on the size and size distribution of the coated gamma-Fe2O3 nanoparticles and on their magnetic properties, has been investigated. Air-stable carbon-coated iron (alpha-Fe/C) crystalline nanoparticles of 41 +/- 12 nm diameter have been prepared by annealing the PDVB-coated gamma-Fe2O3 nanoparticles at 1050 degrees C in an inert atmosphere. These nanoparticles exhibit high saturation magnetization value (83 emu g(-1)) and excellent resistance to oxidation. Characterization of the PDVB-coated gamma-Fe2O3 and of the alpha-Fe/C nanoparticles has been accomplished by TEM, HRTEM, DLS, FTIR, XRD, thermal analysis, zeta-potential, and magnetic measurements.

  2. Human-like collagen protein-coated magnetic nanoparticles with high magnetic hyperthermia performance and improved biocompatibility

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoli; Zhang, Huan; Chang, Le; Yu, Baozhi; Liu, Qiuying; Wu, Jianpeng; Miao, Yuqing; Ma, Pei; Fan, Daidi; Fan, Haiming

    2015-01-01

    Human-like collagen (HLC)-coated monodispersed superparamagnetic Fe3O4 nanoparticles have been successfully prepared to investigate its effect on heat induction property and cell toxicity. After coating of HLC, the sample shows a faster rate of temperature increase under an alternating magnetic field although it has a reduced saturation magnetization. This is most probably a result of the effective heat conduction and good colloid stability due to the high charge of HLC on the surface. In addition, compared with Fe3O4 nanoparticles before coating with HLC, HLC-coated Fe3O4 nanoparticles do not induce notable cytotoxic effect at higher concentration which indicates that HLC-coated Fe3O4 nanoparticles has improved biocompatibility. Our results clearly show that Fe3O4 nanoparticles after coating with HLC not only possess effective heat induction for cancer treatment but also have improved biocompatibility for biomedicine applications.

  3. Characterization of polyaniline-coated magnetic nanoparticles for application in a disposable membrane strip biosensor

    NASA Astrophysics Data System (ADS)

    Yuk, J. S.; Rose, J.; Alocilja, E. C.

    2010-04-01

    We investigated the electrical properties of polyaniline-coated magnetic nanoparticles as a signal transducer for application in a disposable membrane strip biosensor. The size of these particles (~100 nm) was investigated by a transmission electron microscope. Electrical properties of these nanoparticles were investigated by four-point probe measurements and I-V measurements. Polyaniline-coated magnetic nanoparticles had a resistivity of 0.385 Ω cm and showed ohmic behavior. Resistance decreased with increasing concentration of polyaniline. We also demonstrated that the resistance decreased with increasing concentration of biotinylated IgG conjugated with these nanoparticles.

  4. Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pareta, Rajesh A.; Taylor, Erik; Webster, Thomas J.

    2008-07-01

    Bone diseases (including osteoporosis, osteoarthritis and bone cancer) are of great concern to the medical world. Drugs are available to treat such diseases, but often these drugs are not specifically targeted to the site of the disease and, thus, lack an immediate directed therapeutic effect. The optimal drug delivery system should enhance healthy bone growth with high specificity to the site of bone disease. It has been previously shown that magnetic nanoparticles can be directed in the presence of a magnetic field to any part of the body, allowing for site-specific drug delivery and possibly an immediate increase in bone density. The objective of the present study was to build off of this evidence and determine the density of osteoblasts (bone forming cells) in the presence of various uncoated and coated magnetic nanoparticles that could eventually be used in drug delivery applications. Results showed that some magnetic nanoparticles (specifically, γ-Fe2O3) significantly promoted osteoblast density (that is, cells per well) after 5 and 8 days of culture compared to controls (no particles). These magnetic nanoparticles were further coated with calcium phosphate (CaP; the main inorganic component of bone) to tailor them for treating various bone diseases. The coatings were conducted in the presence of either bovine serum albumin (BSA) or citric acid (CA) to reduce magnetic nanoparticle agglomeration, a common problem resulting from the use of nanoparticles which decreases their effectiveness. Results with these coatings showed that magnetic nanoparticles, specifically (γ-Fe2O3), coated in the presence of BSA significantly increased osteoblast density compared to controls after 1 day. In this manner, this study provided unexpected evidence that CaP-coated γ-Fe2O3 magnetic nanoparticles increased osteoblast density (compared to no particles) and, thus, should be further studied to treat numerous bone diseases.

  5. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots.

    PubMed

    Yi, Dong Kee; Selvan, S Tamil; Lee, Su Seong; Papaefthymiou, Georgia C; Kundaliya, Darshan; Ying, Jackie Y

    2005-04-13

    Quantum dots (QDs) and magnetic nanoparticles (MPs) are of interest for biological imaging, drug targeting, and bioconjugation because of their unique optoelectronic and magnetic properties, respectively. To provide for water solubility and biocompatibility, QDs and MPs were encapsulated within a silica shell using a reverse microemulsion synthesis. The resulting SiO2/MP-QD nanocomposite particles present a unique combination of magnetic and optical properties. Their nonporous silica shell allows them to be surface modified for bioconjugation in various biomedical applications.

  6. Mechanisms of enhanced osteoblast gene expression in the presence of hydroxyapatite coated iron oxide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tran, Nhiem; Hall, Douglas; Webster, Thomas J.

    2012-11-01

    Hydroxyapatite (HA) coated iron oxide (Fe3O4) magnetic nanoparticles have been shown to enhance osteoblast (bone forming cells) proliferation and osteoblast differentiation into calcium depositing cells (through increased secretion of alkaline phosphatase, collagen and calcium deposition) compared to control samples without nanoparticles. Such nanoparticles are, thus, very promising for numerous orthopedic applications including magnetically directed osteoporosis treatment. The objective of the current study was to elucidate the mechanisms of the aforementioned improved osteoblast responses in the presence of HA coated Fe3O4 nanoparticles. Results demonstrated large amounts of fibronectin (a protein known to increase osteoblast functions) adsorption on HA coated Fe3O4 nanoparticles. Specifically, fibronectin adsorption almost doubled when HA coated Fe3O4 nanoparticle concentrations increased from 12.5 to 100 μg ml-1, and from 12.5 to 200 μg ml-1, a four fold increase was observed. Results also showed greater osteoblast gene regulation (specifically, osteocalcin, type I collagen and cbfa-1) in the presence of HA coated Fe3O4 nanoparticles. Collectively, these results provide a mechanism for the observed enhanced osteoblast functions in the presence of HA coated iron oxide nanoparticles, allowing their further investigation for a number of orthopedic applications.

  7. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors.

    PubMed

    Larsen, Esben Kjær Unmack; Nielsen, Thomas; Wittenborn, Thomas; Rydtoft, Louise Munk; Lokanathan, Arcot R; Hansen, Line; Østergaard, Leif; Kingshott, Peter; Howard, Kenneth A; Besenbacher, Flemming; Nielsen, Niels Chr; Kjems, Jørgen

    2012-04-07

    Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333-20,000 Da PEG coatings that resulted in larger hydrodynamic size, lower surface charge, longer circulation half-life, and lower uptake in macrophage cells when the particles were coated with high molecular weight (M(w)) PEG molecules. By use of magnetic resonance imaging, we show coating-dependent in vivo uptake in murine tumors with an optimal coating M(w) of 10,000 Da.

  8. Drug embedded PVP coated magnetic nanoparticles for targeted killing of breast cancer cells.

    PubMed

    Rose, P Arsula; Praseetha, P K; Bhagat, Madhulika; Alexander, Princy; Abdeen, Sunitha; Chavali, Murthy

    2013-10-01

    Magnetic drug targeting is a drug delivery system that can be used in loco-regional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by co-precipitation of iron oxide followed by coating with polyvinyl pyrrolidone (PVP). Characterization was performed using X-ray diffraction, TEM, TGA, FTIR and UV-Vis Spectroscopy. Magnetite (Fe3O4) remained as the core of the carrier. The amount of PVP bound to the iron oxide nanoparticles was estimated by thermogravimetric analysis (TGA) and the attachment of PVP to the iron oxide nanoparticles confirmed by FTIR analysis. The loading efficiency of Epirubicin hydrochloride onto the PVP coated and uncoated iron oxide nanoparticles was measured at intervals such as 1 hr and 24 hrs by UV-Vis Spectroscopy. The binding of Epirubicin hydrochloride to the PVP coated and uncoated iron oxide nanoparticles were confirmed by FTIR analysis. The present findings showed that Epirubicin hydrochloride loaded PVP coated iron oxide nanoparticles are promising for magnetically targeted drug delivery. The drug displayed increased cell cytotoxicity at lower concentrations when conjugated with the nanoparticles than being administered conventionally as individual drugs.

  9. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors

    NASA Astrophysics Data System (ADS)

    Larsen, Esben Kjær Unmack; Nielsen, Thomas; Wittenborn, Thomas; Rydtoft, Louise Munk; Lokanathan, Arcot R.; Hansen, Line; Østergaard, Leif; Kingshott, Peter; Howard, Kenneth A.; Besenbacher, Flemming; Nielsen, Niels Chr.; Kjems, Jørgen

    2012-03-01

    Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333-20 000 Da PEG coatings that resulted in larger hydrodynamic size, lower surface charge, longer circulation half-life, and lower uptake in macrophage cells when the particles were coated with high molecular weight (Mw) PEG molecules. By use of magnetic resonance imaging, we show coating-dependent in vivo uptake in murine tumors with an optimal coating Mw of 10 000 Da.Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333-20 000 Da PEG coatings that resulted in larger hydrodynamic size, lower surface charge, longer circulation half-life, and lower uptake in macrophage cells when the particles were coated with high molecular weight (Mw) PEG molecules. By use of magnetic resonance imaging, we show coating-dependent in vivo uptake in murine tumors with an optimal coating Mw of 10 000 Da. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11554a

  10. Silica-coated quantum dots and magnetic nanoparticles for bioimaging applications (Mini-Review).

    PubMed

    Selvan, Subramanian Tamil

    2010-09-01

    Fluorescent quantum dots (e.g., CdSe-ZnS) and magnetic nanoparticles (e.g., Fe(2)O(3) or Fe(3)O(4)) are two important candidate systems that have been emerging as potential probes for bioimaging applications. This review focuses on the development of silica-coated inorganic probes (optical and magnetic) that are originated mainly from the author's laboratory for bioimaging applications. The recent developments in the synthesis of rare earth nanoparticles for multimodality imaging are also delineated.

  11. Effect of surface coating on magnetic properties of cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Chithra, M.; Anumol, C. N.; Sahoo, Subasa C.

    2016-05-01

    Cobalt ferrite nanoparticles were synthesized by coprecipitation method with and without surface coating. Oleic acid and citric acid were used as the surfactant during synthesis of nanoparticles. The sample prepared without coating and with (1M) oleic acid as surfactant showed crystalline nature whereas the sample prepared with (1M) citric acid was X-ray amorphous. The grain size was decreased with the addition of surfactant during synthesis. It was also observed that with the decrease in concentration of citric acid, grain size was increased. The sample prepared with (1M) citric acid was superparamagnetic and the other samples were ferrimagnetic in nature with magnetization value less than the bulk value of 80emu/g at 300K. Magnetization, remanence and coercivity values were decreased in the samples prepared with coating in comparison to the sample prepared without coating. As the temperature decreased from 300K to 60K all the magnetic properties mentioned above were enhanced. The observed magnetic properties of these nanoparticles can be attributed to the grain size, effect of surface coating and magnetic interactions in these nanoparticles.

  12. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia.

    PubMed

    Khot, V M; Salunkhe, A B; Thorat, N D; Ningthoujam, R S; Pawar, S H

    2013-01-28

    MgFe(2)O(4) nanoparticles with sizes around 20 nm have been prepared by a combustion method and functionalized with dextran for their possible applications in magnetic particle hyperthermia. The induction heating study of these nanoparticles at different magnetic field amplitudes, from 6.7 kA m(-1) to 26.7 kA m(-1), showed self-heating temperature rise up to 50.25 °C and 73.32 °C (at 5 mg mL(-1) and 10 mg mL(-1) concentrations in water respectively) which was primarily thought to be due to hysteresis losses activated by an AC magnetic field. The dextran coated nanoparticles showed a maximum specific absorption rate (SAR) of about 85.57 W g(-1) at 26.7 kA m(-1) (265 kHz). Dextran coated nanoparticles at concentrations below 1.8 mg mL(-1) exhibit good viability above 86% on mice fibroblast L929 cells. The results suggest that combustion synthesized MgFe(2)O(4) nanoparticles coated with dextran can be used as potential heating agents in magnetic particle hyperthermia. Uncoated and dextran coated samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric-differential thermal analysis (TG-DTA) and zeta potential-DLS studies.

  13. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    NASA Astrophysics Data System (ADS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  14. Modular Fabrication of Polymer Brush Coated Magnetic Nanoparticles: Engineering the Interface for Targeted Cellular Imaging.

    PubMed

    Oz, Yavuz; Arslan, Mehmet; Gevrek, Tugce N; Sanyal, Rana; Sanyal, Amitav

    2016-08-03

    Development of efficient and rapid protocols for diversification of functional magnetic nanoparticles (MNPs) would enable identification of promising candidates using high-throughput protocols for applications such as diagnostics and cure through early detection and localized delivery. Polymer brush coated magnetic nanoparticles find use in many such applications. A protocol that allows modular diversification of a pool of parent polymer coated nanoparticles will lead to a library of functional materials with improved uniformity. In the present study, polymer brush coated parent magnetic nanoparticles obtained using reversible addition-fragmentation chain transfer (RAFT) polymerization are modified to obtain nanoparticles with different "clickable" groups. In this design, trithiocarbonate group terminated polymer brushes are "grafted from" MNPs using a catechol group bearing initiator. A postpolymerization radical exchange reaction allows installation of "clickable" functional groups like azides and maleimides on the chain ends of the polymers. Thus, modified MNPs can be functionalized using alkyne-containing and thiol-containing moieties like peptides and dyes using the alkyne-azide cycloaddition and the thiol-ene conjugation, respectively. Using the approach outlined here, a cell surface receptor targeting cyclic peptide and a fluorescent dye are attached onto nanoparticle surface. This multifunctional construct allows selective recognition of cancer cells that overexpress integrin receptors. Furthermore, the approach outlined here is not limited to the installation of azide and maleimide functional groups but can be expanded to a variety of "clickable" groups to allow nanoparticle modification using a broad range of chemical conjugations.

  15. Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging.

    PubMed

    Zhang, Lei; Yu, Faquan; Cole, Adam J; Chertok, Beata; David, Allan E; Wang, Jingkang; Yang, Victor C

    2009-12-01

    Magnetic iron oxide nanoparticles (MNP) coated with gum arabic (GA), a biocompatible phytochemical glycoprotein widely used in the food industry, were successfully synthesized and characterized. GA-coated MNP (GA-MNP) displayed a narrow hydrodynamic particle size distribution averaging about 100 nm; a GA content of 15.6% by dry weight; a saturation magnetization of 93.1 emu/g Fe; and a superparamagnetic behavior essential for most magnetic-mediated applications. The GA coating offers two major benefits: it both enhances colloidal stability and provides reactive functional groups suitable for coupling of bioactive compounds. In vitro results showed that GA-MNP possessed a superior stability upon storage in aqueous media when compared to commercial MNP products currently used in magnetic resonance imaging (MRI). In addition, significant cellular uptake of GA-MNP was evaluated in 9L glioma cells by electron spin resonance (ESR) spectroscopy, fluorescence microscopy, and MRI analyses. Based on these findings, it was hypothesized that GA-MNP might be utilized as a MRI-visible drug carrier in achieving both magnetic tumor targeting and intracellular drug delivery. Indeed, preliminary in vivo investigations validate this clinical potential. MRI visually confirmed the accumulation of GA-MNP at the tumor site following intravenous administration to rats harboring 9L glioma tumors under the application of an external magnetic field. ESR spectroscopy quantitatively revealed a 12-fold increase in GA-MNP accumulation in excised tumors when compared to contralateral normal brain. Overall, the results presented show promise that GA-MNP could potentially be employed to achieve simultaneous tumor imaging and targeted intra-tumoral drug delivery.

  16. Magnetic properties of magnetite nanoparticles coated with mesoporous silica by sonochemical method

    SciTech Connect

    Ursachi, Irina; Vasile, Aurelia; Chiriac, Horia; Postolache, Petronel; Stancu, Alexandru

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer MCM-41-coating of magnetite nanoparticles performed under ultrasonic irradiation. Black-Right-Pointing-Pointer Ultrasonic irradiation accelerates the formation of the MCM-41 framework. Black-Right-Pointing-Pointer The hysteretic response to an applied field was investigated applying FORC diagram. Black-Right-Pointing-Pointer The average coercive field of the Fe{sub 3}O{sub 4} nanoparticles increased after coating. -- Abstract: In this paper we present the magnetic properties of mesoporous silica-coated Fe{sub 3}O{sub 4} nanoparticles. The coating of magnetite nanoparticles with mesoporous silica shell was performed under ultrasonic irradiation. The obtained mesoporous silica-coated magnetite nanoparticles were characterized by powder X-ray diffraction, focused ion beam-scanning electron microscopy, nitrogen adsorption-desorption isotherms and vibrating sample magnetometer. The hysteretic behavior was studied using first-order reversal curves diagrams. The X-ray diffraction result indicates that the extreme chemical and physical conditions created by acoustic cavitations have an insignificant effect on crystallographic structural characteristic of magnetite nanoparticles. Changes in the coercivity distributions of the magnetite nanoparticles were observed on the first-order reversal curves diagrams for the samples with coated particles compared with the samples containing uncoated particles of magnetite. The coated particles show an increased most probable coercivity of about 20% compared with the uncoated particles which can be associated with an increased anisotropy due to coating even if the interaction field distribution measured on the diagrams are virtually identical for coated/uncoated samples.

  17. Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase

    NASA Astrophysics Data System (ADS)

    Šulek, Franja; Drofenik, Miha; Habulin, Maja; Knez, Željko

    2010-01-01

    A systematic approach towards the fabrication of highly functionalized silica shell magnetic nanoparticles, presently used for enzyme immobilization, is herein fully presented. The synthesis of bare maghemite (γ-Fe 2O 3) nanoparticles was accomplished by thermal co-precipitation of iron ions in ammonia alkaline solution at harsh reaction conditions, respectively. Primary surface engineering of maghemite nanoparticles was successfully performed by the proper deposition of silica onto nanoparticles surface under strictly regulated reaction conditions. Next, the secondary surface functionalization of the particles was achieved by coating the particles with organosilane followed by glutaraldehyde activation in order to enhance protein immobilization. Covalent immobilization of cholesterol oxidase was attempted afterwards. The structural and magnetic properties of magnetic silica nanocomposites were characterized by TEM and vibrating sample magnetometer (VSM) instruments. X-ray diffraction measurements confirmed the spinel structure and average size of uncoated maghemite nanoparticles to be around 20 nm in diameter. SEM-EDS spectra indicated a strong signal for Si, implying the coating procedure of silica onto the particles surface to be successfully accomplished. Fourier transform infrared (FT-IR) spectra analysis confirmed the binding of amino silane molecules onto the surface of the maghemite nanoparticles mediated Si-O-Si chemical bonds. Compared to the free enzyme, the covalently bound cholesterol oxidase retained 50% of its activity. Binding of enzyme onto chemically modified magnetic nanoparticles via glutaraldehyde activation is a promising method for developing biosensing components in biomedicine.

  18. Selective enrichment and sensitive detection of candidate disease biomarker using a novel surfactant-coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Capangpangan, R. Y.; dela Rosa, M. A. C.; Chang, C. H.; Wang, W. C.; Peng, J.; Shih, S. J.; Chiang, M. H.; Tzou, D. L.; Lin, C. C.; Chen, Y. J.

    2014-08-01

    In this study, novel surfactant-coated magnetic nanoparticles were synthesized and evaluated for enrichment performance towards the sensitive detection of disease biomarkers. Surfactants with phosphate ester groups (RD35A and RD66) were used as a coating to reduce aggregation and to enhance the nanoparticle dispersion. Importantly, sensitive enrichment of the target proteins using the antibody-functionalized magnetic nanoparticles (Ab@MNP) was obtained, with a five-fold increase in recovery compared to uncoated magnetic nanoparticles. Similarly, phosphopeptide enrichment using the NTA@MNP in standard samples showed that the nanoparticles could selectively enrich phosphorylated peptides.

  19. Selective extraction of berberine from Cortex Phellodendri using polydopamine-coated magnetic nanoparticles.

    PubMed

    Shi, Hai-Li; Peng, Shu-Lin; Sun, Jun; Liu, Yi-Ming; Zhu, Yuan-Ting; Qing, Lin-Sen; Liao, Xun

    2014-03-01

    A new extraction agent featuring dopamine self-polymerized on magnetic Fe3 O4 nanoparticles has been successfully synthesized and evaluated for the SPE of berberine from the extract of the traditional Chinese medicinal plant, Cortex Phellodendri. The nanoparticles prepared possessed a core-shell structure and showed super-paramagnetism. It was found that these polydopamine-coated nanoparticles exhibited strong and selective adsorption for berberine. Among the chemical components present in C. Phellodendri, only berberine was adsorbed by the nanoparticles and extracted by a following SPE procedure. Various conditions such as the amount of polydopamine-coated nanoparticles, desorption solvent, desorption time and equilibrium time were optimized for the SPE of berberine. The purity of berberine extracted from C. Phellodendri was determined to be as high as 91.3% compared with that of 9.5% in the extract. The established SPE protocol combined advantages of highly selective enrichment with easy magnetic separation, and proved to be a facile efficient procedure for the isolation of berberine. Further, the prepared polydopamine-coated magnetic nanoparticles could be reused for multiple times, reducing operational cost. The applicability and reliability of the developed SPE method were demonstrated by isolating berberine from three different C. Phellodendri extracts. Recoveries of 85.4-111.2% were obtained with relative standard deviations ranging from 0.27-2.05%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sun, Sheng-Nan; Wei, Chao; Zhu, Zan-Zan; Hou, Yang-Long; Subbu, S. Venkatraman; Xu, Zhi-Chuan

    2014-03-01

    Iron oxide nanoparticles are the most popular magnetic nanoparticles used in biomedical applications due to their low cost, low toxicity, and unique magnetic property. Magnetic iron oxide nanoparticles, including magnetite (Fe3O4) and maghemite (γ-Fe2O3), usually exhibit a superparamagnetic property as their size goes smaller than 20 nm, which are often denoted as superparamagnetic iron oxide nanoparticles (SPIONs) and utilized for drug delivery, diagnosis, therapy, and etc. This review article gives a brief introduction on magnetic iron oxide nanoparticles in terms of their fundamentals of magnetism, magnetic resonance imaging (MRI), and drug delivery, as well as the synthesis approaches, surface coating, and application examples from recent key literatures. Because the quality and surface chemistry play important roles in biomedical applications, our review focuses on the synthesis approaches and surface modifications of iron oxide nanoparticles. We aim to provide a detailed introduction to readers who are new to this field, helping them to choose suitable synthesis methods and to optimize the surface chemistry of iron oxide nanoparticles for their interests.

  1. Copper Ferrocyanide-Functionalized Magnetic Adsorbents Using Polyethyleneimine Coated Fe3O4 Nanoparticles for the Removal of Radioactive Cesium.

    PubMed

    Yang, Hee-Man; Hong, Sang Bum; Cho, Yong Suk; Lee, Kune-Woo; Seo, Bum-Kyoung; Moon, Jei-Kwon

    2016-03-01

    Copper ferrocyanide-functionalized magnetic nano-adsorbents were successfully synthesized by electrostatic coating of citric acid coated Fe3O4 nanoparticles with polyethyleneimine, and immobilizing copper and ferrocyanide on the surfaces of polyethyleneimine-coated nanoparticles. Radioactive cesium (Cs) adsorption tests were conducted to investigate the effectiveness of the copper ferrocyanide-functionalized magnetic nano-adsorbents toward the removal of radioactive Cs.

  2. Chitosan-coated magnetic nanoparticles prepared in one step by reverse microemulsion precipitation.

    PubMed

    López, Raúl G; Pineda, María G; Hurtado, Gilberto; León, Ramón Díaz de; Fernández, Salvador; Saade, Hened; Bueno, Darío

    2013-09-27

    Chitosan-coated magnetic nanoparticles (CMNP) were obtained at 70 °C and 80 °C in a one-step method, which comprises precipitation in reverse microemulsion in the presence of low chitosan concentration in the aqueous phase. X-ray diffractometry showed that CMNP obtained at both temperatures contain a mixture of magnetite and maghemite nanoparticles with ≈4.5 nm in average diameter, determined by electron microscopy, which suggests that precipitation temperature does not affect the particle size. The chitosan coating on nanoparticles was inferred from Fourier transform infrared spectrometry measurements; furthermore, the carbon concentration in the nanoparticles allowed an estimation of chitosan content in CMNP of 6%-7%. CMNP exhibit a superparamagnetic behavior with relatively high final magnetization values (≈49-53 emu/g) at 20 kOe and room temperature, probably due to a higher magnetite content in the mixture of magnetic nanoparticles. In addition, a slight direct effect of precipitation temperature on magnetization was identified, which was ascribed to a possible higher degree of nanoparticles crystallinity as temperature at which they are obtained increases. Tested for Pb2+ removal from a Pb(NO3)2 aqueous solution, CMNP showed a recovery efficacy of 100%, which makes them attractive for using in heavy metals ion removal from waste water.

  3. Chitosan-Coated Magnetic Nanoparticles Prepared in One Step by Reverse Microemulsion Precipitation

    PubMed Central

    López, Raúl G.; Pineda, María G.; Hurtado, Gilberto; de León, Ramón Díaz; Fernández, Salvador; Saade, Hened; Bueno, Darío

    2013-01-01

    Chitosan-coated magnetic nanoparticles (CMNP) were obtained at 70 °C and 80 °C in a one-step method, which comprises precipitation in reverse microemulsion in the presence of low chitosan concentration in the aqueous phase. X-ray diffractometry showed that CMNP obtained at both temperatures contain a mixture of magnetite and maghemite nanoparticles with ≈4.5 nm in average diameter, determined by electron microscopy, which suggests that precipitation temperature does not affect the particle size. The chitosan coating on nanoparticles was inferred from Fourier transform infrared spectrometry measurements; furthermore, the carbon concentration in the nanoparticles allowed an estimation of chitosan content in CMNP of 6%–7%. CMNP exhibit a superparamagnetic behavior with relatively high final magnetization values (≈49–53 emu/g) at 20 kOe and room temperature, probably due to a higher magnetite content in the mixture of magnetic nanoparticles. In addition, a slight direct effect of precipitation temperature on magnetization was identified, which was ascribed to a possible higher degree of nanoparticles crystallinity as temperature at which they are obtained increases. Tested for Pb2+ removal from a Pb(NO3)2 aqueous solution, CMNP showed a recovery efficacy of 100%, which makes them attractive for using in heavy metals ion removal from waste water. PMID:24084716

  4. Synthesis of amino-rich silica-coated magnetic nanoparticles for the efficient capture of DNA for PCR.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Zhou, Min; Zhang, Lida; Shi, Xianming

    2016-09-01

    Magnetic separation has great advantages over traditional bio-separation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor for efficient capture of the target analytes. In this paper, we report the synthesis of amino-rich silica-coated magnetic nanoparticles using a one-pot method. This type of magnetic nanoparticle has a rough surface and a higher density of amino groups than the nanoparticles prepared by a post-modification method. Furthermore, the results of hydrochloric acid treatment indicated that the magnetic nanoparticles were stably coated. The developed amino-rich silica-coated magnetic nanoparticles were used to directly adsorb DNA. After magnetic separation and blocking, the magnetic nanoparticles and DNA complexes were used directly for the polymerase chain reaction (PCR), without onerous and time-consuming purification and elution steps. The results of real-time quantitative PCR showed that the nanoparticles with higher amino group density resulted in improved DNA capture efficiency. The results suggest that amino-rich silica-coated magnetic nanoparticles are of great potential for efficient bio-separation of DNA prior to detection by PCR. Copyright © 2016. Published by Elsevier B.V.

  5. Sustained Release of Prindopril Erbumine from Its Chitosan-Coated Magnetic Nanoparticles for Biomedical Applications

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2013-01-01

    The preparation of magnetic nanoparticles coated with chitosan-prindopril erbumine was accomplished and confirmed by X-ray diffraction, TEM, magnetic measurements, thermal analysis and infrared spectroscopic studies. X-ray diffraction and TEM results demonstrated that the magnetic nanoparticles were pure iron oxide phase, having a spherical shape with a mean diameter of 6 nm, compared to 15 nm after coating with chitosan-prindopril erbumine (FCPE). Fourier transform infrared spectroscopy study shows that the coating of iron oxide nanoparticles takes place due to the presence of some bands that were emerging after the coating process, which belong to the prindopril erbumine (PE). The thermal stability of the PE in an FCPE nanocomposite was remarkably enhanced. The release study showed that around 89% of PE could be released within about 93 hours by a phosphate buffer solution at pH 7.4, which was found to be of sustained manner governed by first order kinetic. Compared to the control (untreated), cell viability study in 3T3 cells at 72 h post exposure to both the nanoparticles and the pure drug was found to be sustained above 80% using different doses. PMID:24300098

  6. Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Allam, Ayat A.; Sadat, Md Ehsan; Potter, Sarah J.; Mast, David B.; Mohamed, Dina F.; Habib, Fawzia S.; Pauletti, Giovanni M.

    2013-10-01

    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated

  7. Dual-modality self-heating and antibacterial polymer-coated nanoparticles for magnetic hyperthermia.

    PubMed

    Darwish, Mohamed S A; Nguyen, Nhung H A; Ševců, Alena; Stibor, Ivan; Smoukov, Stoyan K

    2016-06-01

    Multifunctional nanoparticles for magnetic hyperthermia which simultaneously display antibacterial properties promise to decrease bacterial infections co-localized with cancers. Current methods synthesize such particles by multi-step procedures, and systematic comparisons of antibacterial properties between coatings, as well as measurements of specific absorption rate (SAR) during magnetic hyperthermia are lacking. Here we report the novel simple method for synthesis of magnetic nanoparticles with shells of oleic acid (OA), polyethyleneimine (PEI) and polyethyleneimine-methyl cellulose (PEI-mC). We compare their antibacterial properties against single gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria as well as biofilms. Magnetite nanoparticles (MNPs) with PEI-methyl cellulose were found to be most effective against both S. aureus and E. coli with concentration for 10% growth inhibition (EC10) of <150 mg/l. All the particles have high SAR and are effective for heat-generation in alternating magnetic fields.

  8. Polymer- and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents.

    PubMed

    Kainz, Quirin M; Reiser, Oliver

    2014-02-18

    The work-up of chemical reactions by standard techniques is often time consuming and energy demanding, especially when chemists have to guarantee low levels of metal contamination in the products. Therefore, scientists need new ideas to rapidly purify reaction mixtures that are both economically and environmentally benign. One intriguing approach is to tether functionalities that are required to perform organic reactions to magnetic nanoparticles, for example, catalysts, reagents, scavengers, or chelators. This strategy allows researchers to quickly separate active agents from reaction mixtures by exploiting the magnetic properties of the support. In this Account, we discuss the main attributes of magnetic supports and describe how we can make the different nanomagnets accessible by surface functionalization. Arguably the most prominent magnetic nanoparticles are superparamagnetic iron oxide nanoparticles (SPIONs) due to their biologically well-accepted constituents, their established size-selective synthesis methods, and their diminished agglomeration (no residual magnetic attraction in the absence of an external magnetic field). However, nanoparticles made of pure metal have a considerably higher magnetization level that is useful in applications where high loadings are needed. A few layers of carbon can efficiently shield such highly reactive metal nanoparticles and, equally important, enable facile covalent functionalization via diazonium chemistry or non-covalent functionalization through π-π interactions. We highlight carbon-coated cobalt (Co/C) and iron (Fe/C) nanoparticles in this Account and compare them to SPIONs stabilized with surfactants or silica shells. The graphene-like coating of these nanoparticles offers only low loadings with functional groups via direct surface modification, and the resulting nanomagnets are prone to agglomeration without effective steric stabilization. To overcome these restrictions and to tune the dispersibility of the

  9. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    SciTech Connect

    Panda, Biswajit Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.

  10. Magnetic resonance imaging of glioma with novel APTS-coated superparamagnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Kangan; Shen, Mingwu; Zheng, Linfeng; Zhao, Jinglong; Quan, Qimeng; Shi, Xiangyang; Zhang, Guixiang

    2014-06-01

    We report in vitro and in vivo magnetic resonance (MR) imaging of C6 glioma cells with a novel acetylated 3-aminopropyltrimethoxysilane (APTS)-coated iron oxide nanoparticles (Fe3O4 NPs). In the present study, APTS-coated Fe3O4 NPs were formed via a one-step hydrothermal approach and then chemically modified with acetic anhydride to generate surface charge-neutralized NPs. Prussian blue staining and transmission electron microscopy (TEM) data showed that acetylated APTS-coated Fe3O4 NPs can be taken up by cells. Combined morphological observation, cell viability, and flow cytometric analysis of the cell cycle indicated that the acetylated APTS-coated Fe3O4 NPs did not significantly affect cell morphology, viability, or cell cycle, indicating their good biocompatibility. Finally, the acetylated APTS-coated Fe3O4 nanoparticles were used in magnetic resonance imaging of C6 glioma. Our results showed that the developed acetylated APTS-coated Fe3O4 NPs can be used as an effective labeling agent to detect C6 glioma cells in vitro and in vivo for MR imaging. The results from the present study indicate that the developed acetylated APTS-coated Fe3O4 NPs have a potential application in MR imaging.

  11. Magnetic resonance imaging of glioma with novel APTS-coated superparamagnetic iron oxide nanoparticles

    PubMed Central

    2014-01-01

    We report in vitro and in vivo magnetic resonance (MR) imaging of C6 glioma cells with a novel acetylated 3-aminopropyltrimethoxysilane (APTS)-coated iron oxide nanoparticles (Fe3O4 NPs). In the present study, APTS-coated Fe3O4 NPs were formed via a one-step hydrothermal approach and then chemically modified with acetic anhydride to generate surface charge-neutralized NPs. Prussian blue staining and transmission electron microscopy (TEM) data showed that acetylated APTS-coated Fe3O4 NPs can be taken up by cells. Combined morphological observation, cell viability, and flow cytometric analysis of the cell cycle indicated that the acetylated APTS-coated Fe3O4 NPs did not significantly affect cell morphology, viability, or cell cycle, indicating their good biocompatibility. Finally, the acetylated APTS-coated Fe3O4 nanoparticles were used in magnetic resonance imaging of C6 glioma. Our results showed that the developed acetylated APTS-coated Fe3O4 NPs can be used as an effective labeling agent to detect C6 glioma cells in vitro and in vivo for MR imaging. The results from the present study indicate that the developed acetylated APTS-coated Fe3O4 NPs have a potential application in MR imaging. PMID:24994959

  12. Biocompatible and fluorescent superparamagnetic iron oxide nanoparticles with superior magnetic properties coated with charged polysaccharide derivatives.

    PubMed

    Lachowicz, Dorota; Szpak, Agnieszka; Malek-Zietek, Katarzyna E; Kepczynski, Mariusz; Muller, Robert N; Laurent, Sophie; Nowakowska, Maria; Zapotoczny, Szczepan

    2017-02-01

    Syntheses and characterizations of biocompatible superparamagnetic iron oxide nanoparticles with embedded curcumin and coated with ultrathin layer of hyaluronic acid-curcumin (HA-Cur) conjugate have been reported. Zeta potential measurements confirmed effective coating of native iron oxide nanoparticles stabilized by cationic derivative of chitosan (SPION-CCh) with the synthesized HA-Cur conjugate. Both SPIONs with embedded curcumin and the ones coated with HA-Cur (SPION-CCh/HA-Cur) revealed desired magnetic characteristics while fluorescent properties were much better for the coated nanoparticles. SPION-CCh/HA-Cur nanoparticles were shown to be very promising candidates for T2 MRI contrast agents as they can easily penetrate cell membrane and their relaxivity is exceptionally high (ca. 470mM(-1)s(-1)). They may be also tracked using confocal fluorescence microscopy due to the presence of fluorescent curcumin in the coating. In vitro studies indicated that the obtained SPIONs-CCh/HA-Cur were non-toxic for EA.hy926 endothelial cells.

  13. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor.

    PubMed

    Kouassi, Gilles K; Irudayaraj, Joseph

    2006-05-15

    In this study, we report the chemical synthesis and functionalization of magnetic and gold-coated magnetic nanoparticles and the immobilization of single-stranded biotinylated oligonucleotides onto these particles. Selected sequences specific to the BRCA1 gene were used as a test platform. The binding of oligonucleotides to these particles was achieved through a streptavidin-biotin bridge via a carbodiimide activation protocol. Particle size and oligonucleotide attachment were confirmed by transmission electron microscopy; oligonucleotide binding was characterized by Fourier transform infrared spectroscopy and hybridization confirmed by fluorescence emission from the fluorophore attached to the target oligonucleotide strand. The rate of hybridization was measured using a spectrofluorometer and a microarray scanner. The rate of hybridization of oligonucleotides bound to the synthesized particles depends on the inorganic support material and its surface chemistry. The rate of hybridization increased concomitantly with the concentration of the probe and the target in the reaction medium. Furthermore, exposure of probe and target oligonucleotide to a combination of target and noncomplementary DNA strand reduced the rate of hybridization, possibly because of steric crowding in the reaction medium and cross-linking between reacting oligonucleotides and the noncomplementary strands. The study undertaken opens several possibilities in bioconjugate attachment to functionalized iron and iron nanocomposite structures for controlled manipulation and handling using magnetic fields.

  14. Trichoderma sp. Spores and Kluyveromyces marxianus Cells Magnetic Separation: Immobilization on Chitosan-Coated Magnetic Nanoparticles.

    PubMed

    Palacios-Ponce, Sócrates; Ramos-González, Rodolfo; Ruiz, Héctor A; Aguilar, Miguel A; Martínez-Hernández, José L; Segura-Ceniceros, Elda P; Aguilar, Cristóbal N; Michelena, Georgina; Ilyina, Anna

    2016-12-29

    In the present study, the interactions between chitosan-coated magnetic nanoparticles (C-MNP) and Trichoderma sp. spores as well as Kluyveromyces marxianus cells were studied. By means of Plackett-Burman design, it was demonstrated that factors which directly influenced on yeast cells immobilization and magnetic separation were: inoculum and C-MNP quantity, stirring speed, interaction time, and volume of medium, while in the case of fungal spores, the temperature also was disclosed as an influencing factor. Langmuir and Freundlich models were applied for the mathematical analysis of adsorption isotherms at 30 °C. For Trichoderma sp. spores adsorption isotherm, the highest correlation coefficient was observed for lineal function of Langmuir model with a maximum adsorption capacity at 5.00E+09 spores (C-MNP g(-1)). Adsorption isotherm of K. marxianus cells was better adjusted to Freundlich model with a constant (Kf) estimated as 2.05E+08 cells (C-MNP g(-1)). Both systems may have a novel application in fermentation processes assisted with magnetic separation of biomass.

  15. Aggregation state and magnetic properties of magnetite nanoparticles controlled by an optimized silica coating

    NASA Astrophysics Data System (ADS)

    Pérez, Nicolás; Moya, C.; Tartaj, P.; Labarta, A.; Batlle, X.

    2017-01-01

    The control of magnetic interactions is becoming essential to expand/improve the applicability of magnetic nanoparticles (NPs). Here, we show that an optimized microemulsion method can be used to obtain homogenous silica coatings on even single magnetic nuclei of highly crystalline Fe3-xO4 NPs (7 and 16 nm) derived from a high-temperature method. We show that the thickness of this coating is controlled almost at will allowing much higher average separation among particles as compared to the oleic acid coating present on pristine NPs. Magnetic susceptibility studies show that the thickness of the silica coating allows the control of magnetic interactions. Specifically, as this effect is better displayed for the smallest particles, we show that dipole-dipole interparticle interactions can be tuned progressively for the 7 nm NPs, from almost non-interacting to strongly interacting particles at room temperature. The quantitative analysis of the magnetic properties unambiguously suggests that dipolar interactions significantly broaden the effective distribution of energy barriers by spreading the distribution of activation magnetic volumes.

  16. One-stop genomic DNA extraction by salicylic acid-coated magnetic nanoparticles.

    PubMed

    Zhou, Zhongwu; Kadam, Ulhas S; Irudayaraj, Joseph

    2013-11-15

    Salicylic acid-coated magnetic nanoparticles were prepared via a modified one-step synthesis and used for a one-stop extraction of genomic DNA from mammalian cells. The synthesized magnetic particles were used for magnetic separation of cells from the media by nonspecific binding of the particles as well as extraction of genomic DNA from the lysate. The quantity and quality were confirmed by agarose gel electrophoresis and polymerase chain reaction. The entire process of extraction and isolation can be completed within 30 min. Compared with traditional methods based on centrifugation and filtration, the established method is fast, simple, reliable, and environmentally friendly.

  17. Biotransformation of magnetic nanoparticles as a function of coating in a rat model.

    PubMed

    Ruiz, A; Gutiérrez, L; Cáceres-Vélez, P R; Santos, D; Chaves, S B; Fascineli, M L; Garcia, M P; Azevedo, R B; Morales, M P

    2015-10-21

    Long-term in vivo studies in murine models have shown that DMSA-coated nanoparticles accumulate in spleen, liver and lung tissues during extended periods of time (at least up to 3 months) without any significant signs of toxicity detected. During that time, nanoparticles undergo a process of biotransformation either by reducing the size or the particle aggregation or both. Using a rat model, we have evaluated the transformations of magnetic nanoparticles injected at low doses. Particles with two different coatings, dimercaptosuccinic acid (NP-DMSA) and polyethylene glycol (NP-PEG-(NH2)2) have been administered to animals, to evaluate the role of coating in the degradation of the particles. We have found that low doses of magnetic nanoparticles are quickly metabolized by the animals. In fact, using a nanoparticle dose four times lower than in previous experiments, NP-DMSA were not observed 24 h after the administration either in the liver or in the lungs. Interestingly, an increased amount of ferritin, the iron storage protein, was observed in liver tissues from rats that were treated with the low dose of NP-DMSA in comparison with the control ones, suggesting a rapid metabolization of the particles into ferritin iron. On the other side we have found that, NP-PEG-(NH2)2 are still detectable in several organs 24 h after their administration at low doses. Probably, due to the longer circulation times of the NP-PEG-(NH2)2, there is a delay in the arrival of the particles to the tissue and this is the reason why we are able to see the particles 24 h post-administration. PEG coating could also be protecting the nanoparticles from rapid degradation of the reticuloendothelial system. Knowledge on the biodistribution, circulation time and degradation processes is required to gain a better understanding of the safety evaluation of this kind of nanomaterial for biomedical applications.

  18. Biotransformation of magnetic nanoparticles as a function of coating in a rat model

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Gutiérrez, L.; Cáceres-Vélez, P. R.; Santos, D.; Chaves, S. B.; Fascineli, M. L.; Garcia, M. P.; Azevedo, R. B.; Morales, M. P.

    2015-10-01

    Long-term in vivo studies in murine models have shown that DMSA-coated nanoparticles accumulate in spleen, liver and lung tissues during extended periods of time (at least up to 3 months) without any significant signs of toxicity detected. During that time, nanoparticles undergo a process of biotransformation either by reducing the size or the particle aggregation or both. Using a rat model, we have evaluated the transformations of magnetic nanoparticles injected at low doses. Particles with two different coatings, dimercaptosuccinic acid (NP-DMSA) and polyethylene glycol (NP-PEG-(NH2)2) have been administered to animals, to evaluate the role of coating in the degradation of the particles. We have found that low doses of magnetic nanoparticles are quickly metabolized by the animals. In fact, using a nanoparticle dose four times lower than in previous experiments, NP-DMSA were not observed 24 h after the administration either in the liver or in the lungs. Interestingly, an increased amount of ferritin, the iron storage protein, was observed in liver tissues from rats that were treated with the low dose of NP-DMSA in comparison with the control ones, suggesting a rapid metabolization of the particles into ferritin iron. On the other side we have found that, NP-PEG-(NH2)2 are still detectable in several organs 24 h after their administration at low doses. Probably, due to the longer circulation times of the NP-PEG-(NH2)2, there is a delay in the arrival of the particles to the tissue and this is the reason why we are able to see the particles 24 h post-administration. PEG coating could also be protecting the nanoparticles from rapid degradation of the reticuloendothelial system. Knowledge on the biodistribution, circulation time and degradation processes is required to gain a better understanding of the safety evaluation of this kind of nanomaterial for biomedical applications.

  19. Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew J.; Dolan, Ciaran; Cheong, Soshan; Herman, David A. J.; Naysmith, Briar; Zong, Fangrong; Galvosas, Petrik; Farrand, Kathryn J.; Hermans, Ian F.; Brimble, Margaret; Williams, David E.; Jin, Jianyong; Tilley, Richard D.

    2017-10-01

    Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte (;Fe-PolyM3;) assemblies, with good cell viability (>80%) remaining up to 100 μg mL-1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.

  20. Electrochemistry of norepinephrine on carbon-coated nickel magnetic nanoparticles modified electrode and analytical applications.

    PubMed

    Bian, Chunli; Zeng, Qingxiang; Xiong, Huayu; Zhang, Xiuhua; Wang, Shengfu

    2010-08-01

    A carbon-coated nickel magnetic nanoparticles modified glassy carbon electrode (C-Ni/GCE) was fabricated. The carbon-coated nickel magnetic nanoparticles were characterized with transmission electron microscopy (TEM). The electrochemical behaviors of norepinephrine (NE) were investigated on the modified electrode by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The carbon-coated nickel magnetic nanoparticles showed excellent electrocatalytic activity for the electrochemical redox of NE. NE exhibited two couples of well-defined redox peaks on C-Ni/GCE over the potential range from -0.4 to 0.8V in phosphate buffer solution (PBS) (pH=7.0). The redox mechanism for NE was proposed. DPV response of NE on the C-Ni/GCE showed that the catalytic oxidative peak current was linear with the square root concentration of NE in the range of 2.0 x 10(-7) to 8.0 x 10(-5)M, with a detection limit of 6.0 x 10(-8)M. The C-Ni/GCE showed good sensitivity, selectivity and stability for the determination of NE.

  1. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    NASA Astrophysics Data System (ADS)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  2. Influence of Surface Coating of Magnetic Nanoparticles on Mechanical Properties of Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Yarar, Ecem; Karakas, Gizem; Rende, Deniz; Ozisik, Rahmi; Malta, Seyda

    Polymer nanocomposites have emerged as promising materials due to improved properties when compared with conventional bulk polymers. Nanofillers are natural or synthetic organic/inorganic particles that are less than 100 nm in at least one dimension. Even the addition of trace amounts of nanofillers to polymers may lad to unique combinations of properties. Among variety of inorganic nanofillers, iron oxide magnetic nanoparticles are of great interest due to their unique physical and chemical properties, such as low toxicity, biocompatibility, large magnetization and conductivity, owing to their extremely small size and large specific surface area. In this study, approximately 8-10 nm magnetic nanoparticles coated with either citric acid or oleic acid are synthesized and blended with poly(methyl methacrylate) (PMMA) or poly(ethylene oxide) (PEO). The hydrophobicity/hydrophillicity of the polymer and the surface coating on the iron oxide nanoparticles are exploited to control the dispersion state of nanoparticles, and the effect of dispersion on mechanical and thermal properties of the nanocomposite are investigated via experimental methods such as dynamic mechanical analysis and differential scanning calorimetry. This material is based upon work partially supported by the National Science Foundation under Grant No. CMMI-1538730 and TUBITAK 112M666.

  3. Structural and magnetic properties of polymer coated iron based nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Srinivasan

    reduction of the metal salt solution. Since our intention is to synthesize iron based nanoparticles we used iron salts such as FeCl3. A polymer such as polyethylene glycol is coated onto the oxide shell to make it biocompatible. Parameters such as length of the tube, diameter of the Y-tube junction and concentration of the reactants were varied to study the effect on particle size, structure and morphology of the magnetic nanoparticles. X-ray diffraction measurements revealed that the particles typically contain three iron based phases such as a crystalline (alpha-Fe), nanocrystalline/amorphous (a-FeB/n-Fe) and Fe-oxide. By controlling the synthesis parameters such as length of the reaction tube, inner diameter of the Y-tube and concentration of the reagents the volume percentage of the three phases of the nanoparticles, viz. crystalline phase, amorphous phase and Fe-Oxide phases can be controlled effectively. The Fe-Oxide phase could not be determined whether is magnetite and maghemite phase because of the very broad nature of the peak. Transmission electron microscopy was used to study the particle size and the microstructural property of the samples. Samples with particle size in the range of 3 nm to 30 nm were fabricated. The magnetic properties of the nanoparticles studied were measured with a vibrating sample magnetometer with a maximum field of 1 Tesla. The particles magnetic properties such as magnetization and coercivity were typical of a soft ferromagnetic material with a high magnetization (in emu/g) and the coercivity was in range of 50 to 450 Oe. The nanoparticles synthesized were used to study their performance in magnetic fluid hyperthermia and magnetic resonance imaging applications. In the hyperthermia, the power loss due to an alternating magnetic field had a direct correlation with the magnetization and the particle size of the nanoparticle. The power loss in magnetic fluid hyperthermia is an outcome from four loss mechanism, they are Brownian rotational

  4. Core-shell magnetic nanoparticles: a comparative study based on silica and polydopamine coating for magnetic bio-separation platforms.

    PubMed

    Sahin, Ferat; Turan, Eylem; Tumturk, Hayrettin; Demirel, Gokhan

    2012-12-07

    Core-shell magnetic nanoparticles (MNPs) offer tremendous opportunities in a large range of applications in biomedicine due to their superior magnetic properties, biocompatibility and suitability for modification. In most cases, these characteristic features are determined by their shell chemistry and morphology. Herein, we demonstrate a comparative study of silica and polydopamine (PDOP) coating onto MNP surfaces based on synthesis, characterization and usage in a bio-separation platform. It was found that monodispersed MNPs may be easily obtained on silica coating of varying shell thickness, whereas a continuous PDOP layer observed around the MNPs prevents the formation of the dispersed form. On the other hand, PDOP coated MNPs exhibited better superparamagnetic behavior and biological modification ability compared to the silica coated form.

  5. SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration.

    PubMed

    Guven, Burcu; Basaran-Akgul, Nese; Temur, Erhan; Tamer, Ugur; Boyaci, Ismail Hakki

    2011-02-21

    A method combining immunomagnetic separation (IMS) and surface-enhanced Raman scattering (SERS) was developed to enumerate Escherichia coli (E. coli). Gold-coated magnetic spherical nanoparticles were prepared by immobilizing biotin-labeled anti-E. coli antibodies onto avidin-coated magnetic nanoparticles and used in the separation and concentration of the E. coli cells. Raman labels have been constructed using rod shaped gold nanoparticles coated with 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) and subsequently with a molecular recognizer. Then DTNB-labeled gold nanorods were interacted with gold-coated magnetic spherical nanoparticle-antibody-E. coli complex. The capture efficiency and calibration graphs were obtained and examined in different E. coli concentrations (10(1)-10(7) cfu mL(-1)). The correlation between the concentration of bacteria and SERS signal was found to be linear within the range of 10(1)-10(4) cfu mL(-1) (R(2) = 0.992). The limit of detection (LOD) and limit of quantification (LOQ) values of the developed method were found to be 8 and 24 cfu mL(-1), respectively. The selectivity of the developed immunoassay was examined with Enterobacter aerogenes, Enterobacter dissolvens, and Salmonella enteriditis which did not produce any significant response. The ability of the immunoassay to detect E. coli in real water samples was also investigated and the results were compared with the experimental results from plate-counting methods. There was no significant difference between the methods that were compared (p > 0.05). This method is rapid and sensitive to target organisms with a total analysis time of less than 70 min.

  6. Effect of hydrophobic coating on the magnetic anisotropy and radiofrequency heating of γ-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Ulbrich, Pavel; Prokopec, Vadym; Svoboda, Pavel; Šantavá, Eva; Štěpánek, František

    2013-08-01

    The effect of a hydrophobic (oleic acid) coating on the magnetic properties of maghemite (γ-Fe2O3) nanoparticles was investigated. The nanoparticles were prepared by a novel bi-phasic co-precipitation route and their properties compared with uncoated nanoparticles and nanoparticles prepared by a standard single-phase process. The oleic acid coated nanoparticles had a mean diameter of 6 nm when the two-phase precipitation procedure was used compared to 12 nm for nanoparticles prepared in a single phase under otherwise identical conditions. Super Quantum Interference Device measurements show superparamagnetism of the nanoparticles, with a saturation magnetization at 4 K to be 66.4 emu/g and 89.0 emu/g for the coated nanoparticles obtained by two- and single-phase procedure, respectively. Zero-field-cooled and field-cooled curves reveal a dramatic shift in the blocking temperature of the coated nanoparticles, and a significant change in their anisotropy. The hydrophobic nanoparticles were able to form stable ferrofluids in a range of organic solvents and show good heating rates in a 400 kHz alternating magnetic field.

  7. Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis.

    PubMed

    Sánchez-Ramírez, Jaquelina; Martínez-Hernández, José L; Segura-Ceniceros, Patricia; López, Guillermo; Saade, Hened; Medina-Morales, Miguel A; Ramos-González, Rodolfo; Aguilar, Cristóbal N; Ilyina, Anna

    2017-01-01

    In the present study, Trichoderma reesei cellulase was covalently immobilized on chitosan-coated magnetic nanoparticles using glutaraldehyde as a coupling agent. The average diameter of magnetic nanoparticles before and after enzyme immobilization was about 8 and 10 nm, respectively. The immobilized enzyme retained about 37 % of its initial activity, and also showed better thermal and storage stability than free enzyme. Immobilized cellulase retained about 80 % of its activity after 15 cycles of carboxymethylcellulose hydrolysis and was easily separated with the application of an external magnetic field. However, in this reaction, K m was increased eight times. The immobilized enzyme was able to hydrolyze lignocellulosic material from Agave atrovirens leaves with yield close to the amount detected with free enzyme and it was re-used in vegetal material conversion up to four cycles with 50 % of activity decrease. This provides an opportunity to reduce the enzyme consumption during lignocellulosic material saccharification for bioethanol production.

  8. Synthesis, Stability, Cellular Uptake, and Blood Circulation Time of Carboxymethyl-Inulin Coated Magnetic Nanoparticles

    PubMed Central

    Santiago-Rodríguez, Lenibel; Lafontaine, Moises Montalvo; Castro, Cristina; Méndez-Vega, Janet; Latorre-Esteves, Magda; Juan, Eduardo J.; Mora, Edna; Torres-Lugo, Madeline; Rinaldi, Carlos

    2013-01-01

    Iron oxide nanoparticles were coated with the biocompatible, biodegradable, non-immunogenic polysaccharide inulin by introduction of carboxyl groups into the inulin structure and conjugation with amine groups on the surface of iron oxide nanoparticles grafted with 3-aminopropyltriethoxysilane. The resulting nanoparticles were characterized by FT-IR spectroscopy, transmission electron microscopy, dynamic light scattering, zeta potential, SQUID magnetometry, and with respect to their energy dissipation rate in applied alternating magnetic fields. The nanoparticles had a hydrodynamic diameter in the range of 70 ± 10 nm and were superparamagnetic, with energy dissipation rates in the range of 58–175 W/g for an applied field frequency of 233 kHz and an applied field amplitude in the range of 20–48 kA/m. The nanoparticles were stable in a range of pH, at temperatures between 23°C and 53°C, and in short term storage in water, PBS, and culture media. The particles were non-cytotoxic to the immortalized human cancer cell lines Hey A8 FDR, A2780, MDA 468, MCF-7 and Caco-2. The nanoparticles were readily taken up by Caco-2 cells in a time and concentration dependent fashion, and were found to have a pharmacokinetic time constant of 47 ± 3 min. The small size, non-cytotoxicity, and efficient energy dissipation of the particles could make them useful for biomedical applications such as magnetic fluid hyperthermia. PMID:23914296

  9. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2012-01-01

    Background and methods Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure. Results X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG) nanocarriers. Conclusion The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3) line, and anticancer activity was higher in HT29 than MCF7 cell lines. PMID:23166439

  10. Structural and Magnetic Properties of Gold and Silica Doubly Coated gamma-Fe2O3 Nanoparticles

    SciTech Connect

    Park,K.; Liang, G.; Ji, X.; Luo, Z.; Li, C.; Croft, M.; Markert, J.

    2007-01-01

    Extensive structural and magnetic characterization measurements were carried out on gold and silica doubly coated ?-Fe2O3 nanoparticles, which were recently demonstrated to have an efficient photothermal effect and high transverse relaxivities for MRI applications. Powder X-ray diffraction and X-ray absorption spectroscopy show the phase of the uncoated and coated nanoparticles to be that of the ?-Fe2O3 structure. The sizes, structure, and chemical compositions of the nanoparticles were determined by transmission electron microscopy. The magnetization results indicate that coating of the iron oxide nanoparticles by gold/silica decreases the blocking temperature from 160 to 80 K. Such a decrease can be well-explained by spin disorder, causing reduction of the effective volume of the ?-Fe2O3 core. Moreover, it was found that in the temperature (T) range between 100 K and room temperature, the gold/silica coating can cause a slight magnetic change in the ?-Fe2O3 cores from superparamagnetic to almost superparamagnetic. Finally, it was found that the coercivity for both the uncoated and the coated nanoparticles decreases almost linearly with T1/2 with the former decreasing faster than the latter, and this coercivity result confirms that the blocking temperature is decreased by gold/silica coating. These results are valuable for evaluating the future applications of this class of multifunctional, hybrid magnetic nanoparticles in biomedicine.

  11. Assessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Dávila-Ibáñez, Ana B.; Buurma, Niklaas J.; Salgueiriño, Verónica

    2013-05-01

    The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear evidence of the type of interactions established, reflects the importance of the DNA length, the nanoparticle size and the ionic strength, and permits the identification of the parameters controlling both the stability and the type of magnetoplexes formed. This information can be used to develop targeted systems with properties optimized for the various proposed applications of magnetoplexes.The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear evidence of the type of interactions established, reflects the importance of the DNA length, the nanoparticle size and the ionic strength, and permits the identification of the parameters controlling both the stability and the type of magnetoplexes formed. This information can be used to develop targeted systems with properties optimized for the various proposed applications of magnetoplexes. Electronic supplementary information (ESI) available: Experimental, description of ITC experiments, Fig. S1-S4, and Tables S1-S3. See DOI: 10.1039/c3nr34358h

  12. The effect of polymer coatings on proton transverse relaxivities of aqueous suspensions of magnetic nanoparticles.

    PubMed

    Carroll, Matthew R J; Huffstetler, Phillip P; Miles, William C; Goff, Jonathon D; Davis, Richey M; Riffle, Judy S; House, Michael J; Woodward, Robert C; St Pierre, Timothy G

    2011-08-12

    Iron oxide magnetic nanoparticles are good candidates for magnetic resonance imaging (MRI) contrast agents due to their high magnetic susceptibilities. Here we investigate 19 polyether-coated magnetite nanoparticle systems comprising three series. All systems were synthesized from the same batch of magnetite nanoparticles. A different polyether was used for each series. Each series comprised systems with systematically varied polyether loadings per particle. A highly significant (p < 0.0001) linear correlation (r = 0.956) was found between the proton relaxivity and the intensity-weighted average diameter measured by dynamic light scattering in the 19 particle systems studied. The intensity-weighted average diameter measured by dynamic light scattering is sensitive to small number fractions of larger particles/aggregates. We conclude that the primary effect leading to differences in proton relaxivity between systems arises from the small degree of aggregation within the samples, which appears to be determined by the nature of the polymer and, for one system, the degree of polymer loading of the particles. For the polyether coatings used in this study, any changes in relaxivity from differences in water exclusion or diffusion rates caused by the polymer are minor in comparison with the changes in relaxivity resulting from variations in the degree of aggregation.

  13. Magnetic and Mössbauer studies of fucan-coated magnetite nanoparticles for application on antitumoral activity

    NASA Astrophysics Data System (ADS)

    Silva, V. A. J.; Andrade, P. L.; Bustamante, Angel; de los Santos Valladares, L.; Mejia, M.; Souza, I. A.; Cavalcanti, K. P. S.; Silva, M. P. C.; Aguiar, J. Albino

    2014-01-01

    Fucan-coated magnetite (Fe3O4) nanoparticles were synthesized by the co-precipitation method and studied by Mössbauer spectroscopy and magnetic measurements. The sizes of the nanoparticles were 8-9 nm. Magnetization measurements and Mössbauer spectroscopy at 300 K revealed superparamagnetic behavior. The magnetic moment of the Fe3O4 is partly screened by the Fucan coating aggregation. When the magnetite nanoparticles are capped with oleic acid or fucan, reduced particle-particle interaction is observed by Mössbauer and TEM studies. The antitumoral activity of the fucan-coated nanoparticles were tested in Sarcoma 180, showing an effective reduction of the tumor size.

  14. A comparative study of neurotoxic potential of synthesized polysaccharide-coated and native ferritin-based magnetic nanoparticles

    PubMed Central

    Borysov, Arseniy; Krisanova, Natalia; Chunihin, Olexander; Ostapchenko, Ludmila; Pozdnyakova, Nataliya; Borisova, Тatiana

    2014-01-01

    Aim To analyze the neurotoxic potential of synthesized magnetite nanoparticles coated by dextran, hydroxyethyl starch, oxidized hydroxyethyl starch, and chitosan, and magnetic nanoparticles combined with ferritin as a native protein. Methods The size of nanoparticles was analyzed using photon correlation spectroscopy, their effects on the conductance of planar lipid membrane by planar lipid bilayer technique, membrane potential and acidification of synaptic vesicles by spectrofluorimetry, and glutamate uptake and ambient level of glutamate in isolated rat brain nerve terminals (synaptosomes) by radiolabeled assay. Results Uncoated synthesized magnetite nanoparticles and nanoparticles coated by different polysaccharides had no significant effect on synaptic vesicle acidification, the initial velocity of L-[14C]glutamate uptake, ambient level of L-[14C]glutamate and the potential of the plasma membrane of synaptosomes, and conductance of planar lipid membrane. Native ferritin-based magnetic nanoparticles had no effect on the membrane potential but significantly reduced L-[14C]glutamate transport in synaptosomes and acidification of synaptic vesicles. Conclusions Our study indicates that synthesized magnetite nanoparticles in contrast to ferritin have no effects on the functional state and glutamate transport of nerve terminals, and so ferritin cannot be used as a prototype, analogue, or model of polysaccharide-coated magnetic nanoparticle in toxicity risk assessment and manipulation of nerve terminals by external magnetic fields. Still, the ability of ferritin to change the functional state of nerve terminals in combination with its magnetic properties suggests its biotechnological potential. PMID:24891278

  15. The efficiency of magnetic hyperthermia and in vivo histocompatibility for human-like collagen protein-coated magnetic nanoparticles.

    PubMed

    Chang, Le; Liu, Xiao Li; Di Fan, Dai; Miao, Yu Qing; Zhang, Huan; Ma, He Ping; Liu, Qiu Ying; Ma, Pei; Xue, Wei Ming; Luo, Yan E; Fan, Hai Ming

    2016-01-01

    Magnetic hyperthermia is a promising technique for the minimally invasive elimination of solid tumors. In this study, uniform magnetite nanoparticles (MNPs) with different particle sizes were used as a model system to investigate the size and surface effects of human-like collagen protein-coated MNPs (HLC-MNPs) on specific absorption rate and biocompatibility. It was found that these HLC-MNPs possess rapid heating capacity upon alternating magnetic field exposure compared to that of MNPs without HLC coating, irrespective of the size of MNPs. The significant enhancement of specific absorption rate is favorable for larger sized nanoparticles. Such behavior is attributed to the reduced aggregation and increased stability of the HLC-MNPs. By coating HLC on the surface of certain sized MNPs, a significant increase in cell viability (up to 2.5-fold) can be achieved. After subcutaneous injection of HLC-MNPs into the back of Kunming mice, it was observed that the inflammatory reaction hardly occurred in the injection site. However, there was a significant presence of phagocytes and endocytosis after the injection of nonconjugated counterparts. The overall strategy to fabricate HLC-MNPs can serve as a general guideline to address the current challenges in clinical magnetic hyperthermia, improved biocompatibility, and enhanced heating characteristics through protein coating.

  16. The efficiency of magnetic hyperthermia and in vivo histocompatibility for human-like collagen protein-coated magnetic nanoparticles

    PubMed Central

    Chang, Le; Liu, Xiao Li; Di Fan, Dai; Miao, Yu Qing; Zhang, Huan; Ma, He Ping; Liu, Qiu Ying; Ma, Pei; Xue, Wei Ming; Luo, Yan E; Fan, Hai Ming

    2016-01-01

    Magnetic hyperthermia is a promising technique for the minimally invasive elimination of solid tumors. In this study, uniform magnetite nanoparticles (MNPs) with different particle sizes were used as a model system to investigate the size and surface effects of human-like collagen protein-coated MNPs (HLC-MNPs) on specific absorption rate and biocompatibility. It was found that these HLC-MNPs possess rapid heating capacity upon alternating magnetic field exposure compared to that of MNPs without HLC coating, irrespective of the size of MNPs. The significant enhancement of specific absorption rate is favorable for larger sized nanoparticles. Such behavior is attributed to the reduced aggregation and increased stability of the HLC-MNPs. By coating HLC on the surface of certain sized MNPs, a significant increase in cell viability (up to 2.5-fold) can be achieved. After subcutaneous injection of HLC-MNPs into the back of Kunming mice, it was observed that the inflammatory reaction hardly occurred in the injection site. However, there was a significant presence of phagocytes and endocytosis after the injection of nonconjugated counterparts. The overall strategy to fabricate HLC-MNPs can serve as a general guideline to address the current challenges in clinical magnetic hyperthermia, improved biocompatibility, and enhanced heating characteristics through protein coating. PMID:27042065

  17. Casein-Coated Fe5C2 Nanoparticles with Superior r2 Relaxivity for Liver-Specific Magnetic Resonance Imaging

    PubMed Central

    Cowger, Taku A.; Tang, Wei; Zhen, Zipeng; Hu, Kai; Rink, David E.; Todd, Trever J.; Wang, Geoffrey D.; Zhang, Weizhong; Chen, Hongmin; Xie, Jin

    2015-01-01

    Iron oxide nanoparticles have been extensively used as T2 contrast agents for liver-specific magnetic resonance imaging (MRI). The applications, however, have been limited by their mediocre magnetism and r2 relaxivity. Recent studies show that Fe5C2 nanoparticles can be prepared by high temperature thermal decomposition. The resulting nanoparticles possess strong and air stable magnetism, suggesting their potential as a novel type of T2 contrast agent. To this end, we improve the synthetic and surface modification methods of Fe5C2 nanoparticles, and investigated the impact of size and coating on their performances for liver MRI. Specifically, we prepared 5, 14, and 22 nm Fe5C2 nanoparticles and engineered their surface by: 1) ligand addition with phospholipids, 2) ligand exchange with zwitterion-dopamine-sulfonate (ZDS), and 3) protein adsorption with casein. It was found that the size and surface coating have varied levels of impact on the particles' hydrodynamic size, viability, uptake by macrophages, and r2 relaxivity. Interestingly, while phospholipid- and ZDS-coated Fe5C2 nanoparticles showed comparable r2, the casein coating led to an r2 enhancement by more than 2 fold. In particular, casein coated 22 nm Fe5C2 nanoparticle show a striking r2 of 973 mM-1s-1, which is one of the highest among all of the T2 contrast agents reported to date. Small animal studies confirmed the advantage of Fe5C2 nanoparticles over iron oxide nanoparticles in inducing hypointensities on T2-weighted MR images, and the particles caused little toxicity to the host. The improvements are important for transforming Fe5C2 nanoparticles into a new class of MRI contrast agents. The observations also shed light on protein-based surface modification as a means to modulate contrast ability of magnetic nanoparticles. PMID:26379788

  18. Casein-Coated Fe5C2 Nanoparticles with Superior r2 Relaxivity for Liver-Specific Magnetic Resonance Imaging.

    PubMed

    Cowger, Taku A; Tang, Wei; Zhen, Zipeng; Hu, Kai; Rink, David E; Todd, Trever J; Wang, Geoffrey D; Zhang, Weizhong; Chen, Hongmin; Xie, Jin

    2015-01-01

    Iron oxide nanoparticles have been extensively used as T2 contrast agents for liver-specific magnetic resonance imaging (MRI). The applications, however, have been limited by their mediocre magnetism and r2 relaxivity. Recent studies show that Fe5C2 nanoparticles can be prepared by high temperature thermal decomposition. The resulting nanoparticles possess strong and air stable magnetism, suggesting their potential as a novel type of T2 contrast agent. To this end, we improve the synthetic and surface modification methods of Fe5C2 nanoparticles, and investigated the impact of size and coating on their performances for liver MRI. Specifically, we prepared 5, 14, and 22 nm Fe5C2 nanoparticles and engineered their surface by: 1) ligand addition with phospholipids, 2) ligand exchange with zwitterion-dopamine-sulfonate (ZDS), and 3) protein adsorption with casein. It was found that the size and surface coating have varied levels of impact on the particles' hydrodynamic size, viability, uptake by macrophages, and r2 relaxivity. Interestingly, while phospholipid- and ZDS-coated Fe5C2 nanoparticles showed comparable r2, the casein coating led to an r2 enhancement by more than 2 fold. In particular, casein coated 22 nm Fe5C2 nanoparticle show a striking r2 of 973 mM(-1)s(-1), which is one of the highest among all of the T2 contrast agents reported to date. Small animal studies confirmed the advantage of Fe5C2 nanoparticles over iron oxide nanoparticles in inducing hypointensities on T2-weighted MR images, and the particles caused little toxicity to the host. The improvements are important for transforming Fe5C2 nanoparticles into a new class of MRI contrast agents. The observations also shed light on protein-based surface modification as a means to modulate contrast ability of magnetic nanoparticles.

  19. Influences of surface coating, UV irradiation and magnetic field on the algae removal using magnetite nanoparticles.

    PubMed

    Ge, Shijian; Agbakpe, Michael; Wu, Zhiyi; Kuang, Liyuan; Zhang, Wen; Wang, Xianqin

    2015-01-20

    Magnetophoretic separation is a promising and sustainable technology for rapid algal separation or removal from water. This work demonstrated the application of magnetic magnetite nanoparticles (MNPs) coated with a cationic polymer, polyethylenimine (PEI), toward the separation of Scenedesmus dimorphus from the medium broth. The influences of surface coating, UV irradiation, and magnetic field on the magnetophoretic separation were systematically examined. After PEI coating, zeta potential of MNPs shifted from −7.9 ± 2.0 to +39.0 ± 3.1 mV at a pH of 7.0, which improved MNPs-algae interaction and helped reduce the dose demand of MNPs (e.g., from 0.2 to 0.1 g·g(–1) while the harvesting efficiency (HE) of over 80% remained unchanged). The extended Derjaguin–Landau–Verwey–Overbeek theory predicted a strong attractive force between PEI-coated MNPs and algae, which supported the improved algal harvesting. Moreover, the HE was greater under the UV365 irradiation than that under the UV254, and increased with the irradiation intensity. Continuous application of the external magnetic field at high strength remarkably improved the algal harvesting. Finally, the reuse of MNPs for multiple cycles of algal harvesting was studied, which aimed at increasing the sustainability and lowering the cost.

  20. Quantification of the aggregation of magnetic nanoparticles with different polymeric coatings in cell culture medium

    NASA Astrophysics Data System (ADS)

    Eberbeck, D.; Kettering, M.; Bergemann, C.; Zirpel, P.; Hilger, I.; Trahms, L.

    2010-10-01

    The knowledge of the physico-chemical characteristics of magnetic nanoparticles (MNPs) is essential to enhance the efficacy of MNP-based therapeutic treatments (e.g. magnetic heating, magnetic drug targeting). According to the literature, the MNP uptake by cells may depend on the coating of MNPs, the surrounding medium as well as on the aggregation behaviour of the MNPs. Therefore, in this study, the aggregation behaviour of MNPs in various media was investigated. MNPs with different coatings were suspended in cell culture medium (CCM) containing fetal calf serum (FCS) and the distribution of the hydrodynamic sizes was measured by magnetorelaxometry (MRX). FCS as well as bovine serum albumin (BSA) buffer (phosphate buffered saline with 0.1% bovine serum albumin) may induce MNP aggregation. Its strength depends crucially on the type of coating. The degree of aggregation in CCM depends on its FCS content showing a clear, local maximum at FCS concentrations, where the IgG concentration (part of FCS) is of the order of the MNP number concentration. Thus, we attribute the observed aggregation behaviour to the mechanism of agglutination of MNPs by serum compartments as for example IgG. No aggregation was induced for MNPs coated with dextran, polyarabic acid or sodium phosphate, respectively, which were colloidally stable in CCM.

  1. Influence of a silica interlayer on the structural and magnetic properties of sol-gel TiO₂-coated magnetic nanoparticles.

    PubMed

    De Matteis, Laura; Fernández-Pacheco, Rodrigo; Custardoy, Laura; García-Martín, María L; de la Fuente, Jesús M; Marquina, Clara; Ibarra, M Ricardo

    2014-05-13

    Superparamagnetic iron oxide nanoparticles coated with titanium dioxide have been synthesized, growing the titanium dioxide directly either on the magnetic nuclei or on magnetic nanoparticles previously coated with a semihydrophobic silica layer. Both coatings have been obtained by sol-gel. Since it is well-known that the existence of the intermediate silica layer influences the physicochemical properties of the material, a detailed characterization of both types of coatings has been carried out. The morphology, structure, and composition of the synthesized nanomatrices have been locally analyzed with subangstrom spatial resolution, by means of aberration corrected transmission electron microscopy (HRTEM and STEM-HAADF). Besides magnetization measurements, proton relaxivity experiments have been also performed on water suspensions of the as-synthesized nanoparticles to investigate the role of the silica interlayer in the relaxometric properties. The silica interlayer leads to nanoparticles with much higher water stability and to higher relaxivity of the suspensions.

  2. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Zhong, Zhihui; Wang, Li; Li, Hongxia; Xiao, Kai

    2014-10-01

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating.

  3. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings.

    PubMed

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Zhong, Zhihui; Wang, Li; Li, Hongxia; Xiao, Kai

    2014-10-24

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating.

  4. Succinate Functionalization of Hyperbranched Polyglycerol-Coated Magnetic Nanoparticles as a Draw Solute During Forward Osmosis.

    PubMed

    Yang, Hee-Man; Choi, Hye Min; Jang, Sung-Chan; Han, Myeong Jin; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo

    2015-10-01

    Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPG-MNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.

  5. Polyinosinic:polycytidylic acid loading onto different generations of PAMAM dendrimer-coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Khodadust, Rouhollah; Mutlu, Pelin; Yalcın, Serap; Unsoy, Gozde; Gunduz, Ufuk

    2013-08-01

    Poly (I:C), which is a synthetic double-stranded RNA, have significant toxicity on tumor cells. The immobilization of Poly (I:C) onto nanoparticles is important for the fabrication of targeted delivery systems. In this study, different generations of newly synthesized PAMAM dendron-coated magnetic nanoparticles (DcMNP) which can be targeted to the tumor site under magnetic field were efficiently loaded for the first time with Poly (I:C). Different generations of DcMNPs (G2, G3, G4, G5, G6, and G7) were synthesized. Poly (I:C) activation was achieved in the presence of EDC and 1-methylimidazole. Loading of Poly (I:C) onto DcMNPs was followed by agarose gel electrophoresis. Acidic reaction conditions were found as superior to basic and neutral for binding of Poly (I:C). In addition, having more functional groups at the surface, higher generations (G7, G6, and G5) of PAMAM DcMNPs were found more suitable as a delivery system for Poly (I:C). Further in vitro and in vivo analyses of Poly (I:C)/PAMAM magnetic nanoparticles may provide new opportunities for the selective targeting and killing of tumor cells.

  6. Carboxyl modified magnetic nanoparticles coated open tubular column for capillary electrochromatographic separation of biomolecules.

    PubMed

    Wang, Wentao; Xiao, Xing; Chen, Jia; Jia, Li

    2015-09-11

    Carboxyl modified magnetic nanoparticles (Fe3O4-COOH MNPs) coated open tubular (OT) columns were prepared for capillary electrochromatography. The Fe3O4-COOH MNPs coatings were constructed on the surface of positively charged poly(diallydimethylammonium chloride) (PDDA) modified capillaries through electrostatic self-assembly approach. The as-prepared PDDA@Fe3O4-COOH MNPs coated OT columns were characterized by scanning electron microscopy and electroosmotic flow measurement. The electrochromatographic characterization of the OT columns was evaluated by separation of amino acids, dipeptides and proteins. The influences of background solution pH, concentration, and organic modifier content on separation were investigated. The separation of these analytes was primarily based on the electrophoretic mechanism in combination with chromatographic mechanism. The Fe3O4-COOH MNPs coatings improved the separation resolution of these analytes due to their large surface area. Three variants of bovine serum albumin, two variants of β-lactoglobulin and nine glycoisoforms of ovalbumin were successfully separated. The relative standard deviations of migration times of analytes representing run-to-run, day-to-day and column-to-column were less than 4.3%. Furthermore, the feasibility of the PDDA@Fe3O4-COOH MNPs coated OT column was verified by successful separation of acidic proteins in egg white. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Preparation and characterizations of naproxen-loaded magnetic nanoparticles coated with PLA- g-chitosan copolymer

    NASA Astrophysics Data System (ADS)

    Thammawong, C.; Sreearunothai, P.; Petchsuk, A.; Tangboriboonrat, P.; Pimpha, N.; Opaprakasit, P.

    2012-08-01

    Naproxen (NPX) drug-loaded magnetic nanoparticles (MNPs) have been prepared in a one-step process utilizing a biocompatible polylactide-grafted-chitosan copolymer. The copolymer serves both as a NPX drug carrier as well as a polymeric surfactant for the synthesis of MNPs without the use of any additional surfactant. Highly stable MNPs with high magnetization in the form of maghemite (γ-Fe2O3) are prepared in aqueous media. Effects of preparation conditions on structures and properties of the copolymer-coated and drug-loaded MNPs are investigated by employing particle size and zeta potential measurements, transmission electron microscopy, vibrating sample magnetometer, X-ray diffraction, Fourier-transform infrared, nuclear magnetic resonance, and confocal Raman spectroscopy. The results show that average particle size (150-300 nm), coating efficiency, and coating structures of the resulting MNPs materials are strongly dependent on MNP/copolymer and MNP/NPX ratios in feed. It is also observed that NPX acts as co-surfactant in the drug-loading process, resulting in different encapsulating structures with the variation in the MNP/copolymer and MNP/NPX ratios. Properties of the MNPs materials can be further optimized for use in specific biomedical applications.

  8. Synthesis and coating of cobalt ferrite nanoparticles: a first step toward the obtainment of new magnetic nanocarriers.

    PubMed

    Baldi, Giovanni; Bonacchi, Daniele; Franchini, Mauro Comes; Gentili, Denis; Lorenzi, Giada; Ricci, Alfredo; Ravagli, Costanza

    2007-03-27

    Monodisperse and stable cobalt ferrite (CoFe2O4) nanoparticles (5.4 nm) have been produced, coated with mono- and difunctional phosphonic and hydroxamic acids, and fully characterized (using thermogravimetric analysis (TGA), dynamic light scattering (DLS), IR spectroscopy, transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) measurements). Cobalt leakage of the coated nanoparticles has been also studied. Magnetic measurements show the possible applications in hyperthermia at low frequencies, and for this reason, water-soluble coated CoFe2O4 can be seen as a first step toward the obtainment of novel systems for biomagnetic applications.

  9. Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes

    NASA Astrophysics Data System (ADS)

    Geppert, Mark; Hohnholt, Michaela C.; Thiel, Karsten; Nürnberger, Sylvia; Grunwald, Ingo; Rezwan, Kurosch; Dringen, Ralf

    2011-04-01

    Magnetic iron oxide nanoparticles (Fe-NP) are currently considered for various diagnostic and therapeutic applications in the brain. However, little is known on the accumulation and biocompatibility of such particles in brain cells. We have synthesized and characterized dimercaptosuccinic acid (DMSA) coated Fe-NP and have investigated their uptake by cultured brain astrocytes. DMSA-coated Fe-NP that were dispersed in physiological medium had an average hydrodynamic diameter of about 60 nm. Incubation of cultured astrocytes with these Fe-NP caused a time- and concentration-dependent accumulation of cellular iron, but did not lead within 6 h to any cell toxicity. After 4 h of incubation with 100-4000 µM iron supplied as Fe-NP, the cellular iron content reached levels between 200 and 2000 nmol mg - 1 protein. The cellular iron content after exposure of astrocytes to Fe-NP at 4 °C was drastically lowered compared to cells that had been incubated at 37 °C. Electron microscopy revealed the presence of Fe-NP-containing vesicles in cells that were incubated with Fe-NP at 37 °C, but not in cells exposed to the nanoparticles at 4 °C. These data demonstrate that cultured astrocytes efficiently take up DMSA-coated Fe-NP in a process that appears to be saturable and strongly depends on the incubation temperature.

  10. Cell viability and MRI performance of highly efficient polyol-coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Arteaga-Cardona, Fernando; Gutiérrez-García, Eric; Hidalgo-Tobón, Silvia; López-Vasquez, Ciro; Brito-Barrera, Yazmín A.; Flores-Tochihuitl, Julia; Angulo-Molina, Aracely; Reyes-Leyva, Julio R.; González-Rodríguez, Roberto; Coffer, Jeffery L.; Pal, Umapada; Diaz-Conti, Mario Pérez-Peña; Platas-Neri, Diana; Dies-Suarez, Pilar; Fonseca, Rebeca Sosa; Arias-Carrión, Oscar; Méndez-Rojas, Miguel A.

    2016-11-01

    This work aimed at determining conditions that would allow us to control the size of the NPs and create a system with characteristics apt for biomedical applications. We describe a comprehensive study on the synthesis and physical characterization of two highly sensitive sets of triethylene glycol (TREG) and polyethylene glycol (PEG)-coated superparamagnetic iron oxide nanoparticles (SPIONs) to be evaluated for use as magnetic resonance (MR) contrast agents. The ferrofluids demonstrated excellent colloidal stability in deionized water at pH 7.0 as indicated by dynamic light scattering (DLS) data. The magnetic relaxivities, r 2, were measured on a 1.5 T clinical MRI instrument. Values in the range from 205 to 257 mM-1 s-1 were obtained, varying proportionally to the SPIONs' sizes and coating nature. Further in vitro cell viability tests and in vivo biodistribution analyses of the intravenously administered nanoparticles showed that the prepared systems have good biocompatibility and migrate to several organs, mainly the meninges, spleen, and liver. Based on these results, our findings demonstrated the potential utility of these nanosystems as clinical contrast agents for MR imaging.

  11. Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity.

    PubMed

    Mosaiab, Tamim; Jeong, Chan Jin; Shin, Gyo Jic; Choi, Kyung Ho; Lee, Sang Kug; Lee, Iksoo; In, Insik; Park, Sung Young

    2013-10-01

    This paper introduces a facile method to make highly stable and recyclable antimicrobial magnetic nanoparticles (NPs). Initially, magnetic iron oxide nanoparticles (IONPs) were coated with poly (vinyl pyrrolidone) conjugated catechol (PVP-CCDP). Afterward, silver nanoparticles (Ag(0)) were deposited onto PVP-CCDP coated IONPs using remain catechol. The prepared nanoparticles showed long term (~4 weeks) colloidal stability and redispersibility, respectively, against external magnetic field and over a broad range of pH (4-12). The NPs were characterized by UV-vis, SEM, XPS, and XRD measurements. TEM and DLS analyses showed that the mean particle size of PVP-CCDP coated IONPs/Ag(0) were about 72 nm. The recyclable magnetic NPs possessed a high antibacterial effect against the model microbes Staphylococcus aureus and Escherichia coli and could be separated easily using magnet following antibacterial test for repeated uses and maintained 100% antibacterial efficiency during three cycles. In MTT assay, the magnetic nanoparticles possessed no measureable cytotoxicity to live cells.

  12. Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating

    PubMed Central

    2011-01-01

    Background Immobilization of lipase on appropriate solid supports is one way to improve their stability and activity, and can be reused for large scale applications. A sample, cost- effective and high loading capacity method is still challenging. Results A facile method of lipase immobilization was developed in this study, by the use of polydopamine coated magnetic nanoparticles (PD-MNPs). Under optimal conditions, 73.9% of the available lipase was immobilized on PD-MNPs, yielding a lipase loading capacity as high as 429 mg/g. Enzyme assays revealed that lipase immobilized on PD-MNPs displayed enhanced pH and thermal stability compared to free lipase. Furthermore, lipase immobilized on PD-MNPs was easily isolated from the reaction medium by magnetic separation and retained more than 70% of initial activity after 21 repeated cycles of enzyme reaction followed by magnetic separation. Conclusions Immobilization of enzyme onto magnetic iron oxide nanoparticles via poly-dopamine film is economical, facile and efficient. PMID:21649934

  13. Magnetic heating properties and neutron activation of tungsten-oxide coated biocompatible FePt core-shell nanoparticles.

    PubMed

    Seemann, K M; Luysberg, M; Révay, Z; Kudejova, P; Sanz, B; Cassinelli, N; Loidl, A; Ilicic, K; Multhoff, G; Schmid, T E

    2015-01-10

    Magnetic nanoparticles are highly desirable for biomedical research and treatment of cancer especially when combined with hyperthermia. The efficacy of nanoparticle-based therapies could be improved by generating radioactive nanoparticles with a convenient decay time and which simultaneously have the capability to be used for locally confined heating. The core-shell morphology of such novel nanoparticles presented in this work involves a polysilico-tungstate molecule of the polyoxometalate family as a precursor coating material, which transforms into an amorphous tungsten oxide coating upon annealing of the FePt core-shell nanoparticles. The content of tungsten atoms in the nanoparticle shell is neutron activated using cold neutrons at the Heinz Maier-Leibnitz (FRMII) neutron facility and thereby transformed into the radioisotope W-187. The sizeable natural abundance of 28% for the W-186 precursor isotope, a radiopharmaceutically advantageous gamma-beta ratio of γβ≈30% and a range of approximately 1mm in biological tissue for the 1.3MeV β-radiation are promising features of the nanoparticles' potential for cancer therapy. Moreover, a high temperature annealing treatment enhances the magnetic moment of nanoparticles in such a way that a magnetic heating effect of several degrees Celsius in liquid suspension - a prerequisite for hyperthermia treatment of cancer - was observed. A rise in temperature of approximately 3°C in aqueous suspension is shown for a moderate nanoparticle concentration of 0.5mg/ml after 15min in an 831kHz high-frequency alternating magnetic field of 250Gauss field strength (25mT). The biocompatibility based on a low cytotoxicity in the non-neutron-activated state in combination with the hydrophilic nature of the tungsten oxide shell makes the coated magnetic FePt nanoparticles ideal candidates for advanced radiopharmaceutical applications.

  14. Structure and magnetic properties of ZnO coated MnZn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallesh, Shanigaram; Sunny, Annrose; Vasundhara, Mutta; Srinivas, Veeturi

    2016-11-01

    A comparative study of structural and magnetic properties of MnZn spinel ferrite (SF) and ZnO coated MnZn ferrite (ZF) nanoparticles (NPs) has been carried out. The as-prepared NPs show a single phase cubic spinel structure, with lattice parameter ~8.432 Å. However, α-Fe2O3 impurity phase emerge from SF particles when subjected to annealing at 600 °C in air. The weight fraction of α-Fe2O3 phase increases with increasing Mn concentration (9% for x=0.2 and 53% for x=0.6). On the other hand in ZF (x=0.2 and 0.4) NPs no trace of impurity phase is observed when annealed at 600 °C. The magnetic measurements as a function of field and temperature revealed superparamagnetic like behavior with cluster moment ~104 μB in as-prepared particles. The cluster size obtained from the magnetic data corroborates well with that estimated from structural analysis. Present results on ZnO coated MnZn ferrite particles suggest that an interfacial (ZnO@SF) reaction takes place during annealing, which results in formation of Zn-rich ferrite phase in the interface region. This leads to deterioration of magnetic properties even in the absence of α-Fe2O3 impurity phase.

  15. Interleukin-1 and interleukin-6 production in mice's lungs induced by 2, 3 meso-dimercaptosuccinic-coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaves, S. B.; Silva, L. P.; Lacava, Z. G. M.; Morais, P. C.; Azevedo, R. B.

    2005-05-01

    In the present study, we evaluated the effects of a water-based (physiological medium) magnetic fluid sample containing magnetite nanoparticles surface coated with a layer of 2, 3 meso-dimercaptosuccinic acid in mice. The animals were killed after times varying from 5minto24h. Tissue analysis was made by light microscopy using hematoxilin and eosin (HE) staining and interleukin 1 and 6 immunohistochemistry. The results showed accumulation of nanoparticles in lungs after 30min of sample administration, with inflammatory process associated to it. It also showed an increase in both interleukins expression, which confirms inflammatory response associated with magnetic nanoparticles.

  16. Pharmaceutical formulation of HSA hybrid coated iron oxide nanoparticles for magnetic drug targeting.

    PubMed

    Zaloga, Jan; Pöttler, Marina; Leitinger, Gerd; Friedrich, Ralf P; Almer, Gunter; Lyer, Stefan; Baum, Eva; Tietze, Rainer; Heimke-Brinck, Ralph; Mangge, Harald; Dörje, Frank; Lee, Geoffrey; Alexiou, Christoph

    2016-04-01

    In this work we present a new formulation of superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic drug targeting. The particles were reproducibly synthesized from current good manufacturing practice (cGMP) - grade substances. They were surface coated using fatty acids as anchoring molecules for human serum albumin. We comprehensively characterized the physicochemical core-shell structure of the particles using sophisticated methods. We investigated biocompatibility and cellular uptake of the particles using an established flow cytometric method in combination with microwave-plasma assisted atomic emission spectroscopy (MP-AES). The cytotoxic drug mitoxantrone was adsorbed on the protein shell and we showed that even in complex media it is slowly released with a close to zero order kinetics. We also describe an in vitro proof-of-concept assay in which we clearly showed that local enrichment of this SPION-drug conjugate with a magnet allows site-specific therapeutic effects.

  17. Temperature-sensitive polymer-coated magnetic nanoparticles as a potential drug delivery system for targeted therapy of thyroid cancer.

    PubMed

    Koppolu, Bhanuprasanth; Bhavsar, Zarna; Wadajkar, Aniket S; Nattama, Sivaniarvindpriya; Rahimi, Maham; Nwariaku, Fiemu; Nguyen, Kytai T

    2012-12-01

    The objective of this work was to develop and investigate temperature-sensitive poly(N-isopropylacrylamide-acrylamide-allylamine)-coated iron oxide magnetic nanoparticles (TPMNPs) as possible targeted drug carriers for treatments of advanced thyroid cancer (ATC). These nanoparticles were prepared by free radical polymerization of monomers on the surface of silane-coupled iron oxide nanoparticles. In vitro studies demonstrated that TPMNPs were cytocompatible and effectively taken up by cancer cells in a dose-dependent manner. An external magnetic field significantly increased nanoparticle uptake, especially when cells were exposed to physiological flow conditions. Drug loading and release studies using doxorubicin confirmed the temperature-responsive release of drugs from nanoparticles. In addition, doxorubicin-loaded nanoparticles significantly killed ATC cells when compared to free doxorubicin. The in vitro results indicate that TPMNPs have potential as targeted and controlled drug carriers for thyroid cancer treatment.

  18. Magnetic nanoparticles (MNPs) covalently coated by PEO-PPO-PEO block copolymer for drug delivery.

    PubMed

    Wang, Ning; Guan, Yueping; Yang, Liangrong; Jia, Lianwei; Wei, Xuetuan; Liu, Huizhou; Guo, Chen

    2013-04-01

    A stable drug carrier has been prepared by covalently coating magnetic nanoparticles (MNPs) with PEO-PPO-PEO block copolymer Pluronic P85. The particles were characterized by TEM, XRD, DLS, VSM, FTIR, and TGA. A typical product has a 15 nm magnetite core and a 100 nm hydrodynamic diameter with a narrow size distribution and is superparamagnetic with large saturation magnetization (57.102 emu/g) at room temperature. The covalently-coated Pluronic-MNPs (MagPluronics) were proven to be stable in different conditions, such as aqueous solution, 0.2 M PBS solution, and pH 13.5 solution, which would be significant for biological applications. Furthermore, MagPluronics also possess temperature-responsive property acquired from the Pluronic copolymer layer on their surface, which can cause conformational change of Pluronics and improve load and delivery efficiency of the particles. The temperature-controlled loading and releasing of hydrophobic model drug curcumin were tested with these particles. A loading efficiency of 81.3% and a sustained release of more than 4 days were achieved in simulated human body condition. It indicates that the covalently-coated MagPluronics are stable carriers with good drug-loading capacity and controlled-release property.

  19. Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance.

    PubMed

    Riggio, Cristina; Calatayud, Maria Pilar; Hoskins, Clare; Pinkernelle, Josephine; Sanz, Beatriz; Torres, Teobaldo Enrique; Ibarra, Manuel Ricardo; Wang, Lijun; Keilhoff, Gerburg; Goya, Gerardo Fabian; Raffa, Vittoria; Cuschieri, Alfred

    2012-01-01

    It has been proposed in the literature that Fe(3)O(4) magnetic nanoparticles (MNPs) could be exploited to enhance or accelerate nerve regeneration and to provide guidance for regenerating axons. MNPs could create mechanical tension that stimulates the growth and elongation of axons. Particles suitable for this purpose should possess (1) high saturation magnetization, (2) a negligible cytotoxic profile, and (3) a high capacity to magnetize mammalian cells. Unfortunately, the materials currently available on the market do not satisfy these criteria; therefore, this work attempts to overcome these deficiencies. Magnetite particles were synthesized by an oxidative hydrolysis method and characterized based on their external morphology and size distribution (high-resolution transmission electron microscopy [HR-TEM]) as well as their colloidal (Z potential) and magnetic properties (Superconducting QUantum Interference Devices [SQUID]). Cell viability was assessed via Trypan blue dye exclusion assay, cell doubling time, and MTT cell proliferation assay and reactive oxygen species production. Particle uptake was monitored via Prussian blue staining, intracellular iron content quantification via a ferrozine-based assay, and direct visualization by dual-beam (focused ion beam/scanning electron microscopy [FIB/SEM]) analysis. Experiments were performed on human neuroblastoma SH-SY5Y cell line and primary Schwann cell cultures of the peripheral nervous system. This paper reports on the synthesis and characterization of polymer-coated magnetic Fe(3)O(4) nanoparticles with an average diameter of 73 ± 6 nm that are designed as magnetic actuators for neural guidance. The cells were able to incorporate quantities of iron up to 2 pg/cell. The intracellular distribution of MNPs obtained by optical and electronic microscopy showed large structures of MNPs crossing the cell membrane into the cytoplasm, thus rendering them suitable for magnetic manipulation by external magnetic fields

  20. Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance

    PubMed Central

    Riggio, Cristina; Calatayud, Maria Pilar; Hoskins, Clare; Pinkernelle, Josephine; Sanz, Beatriz; Torres, Teobaldo Enrique; Ibarra, Manuel Ricardo; Wang, Lijun; Keilhoff, Gerburg; Goya, Gerardo Fabian; Raffa, Vittoria; Cuschieri, Alfred

    2012-01-01

    Purpose It has been proposed in the literature that Fe3O4 magnetic nanoparticles (MNPs) could be exploited to enhance or accelerate nerve regeneration and to provide guidance for regenerating axons. MNPs could create mechanical tension that stimulates the growth and elongation of axons. Particles suitable for this purpose should possess (1) high saturation magnetization, (2) a negligible cytotoxic profile, and (3) a high capacity to magnetize mammalian cells. Unfortunately, the materials currently available on the market do not satisfy these criteria; therefore, this work attempts to overcome these deficiencies. Methods Magnetite particles were synthesized by an oxidative hydrolysis method and characterized based on their external morphology and size distribution (high-resolution transmission electron microscopy [HR-TEM]) as well as their colloidal (Z potential) and magnetic properties (Superconducting QUantum Interference Devices [SQUID]). Cell viability was assessed via Trypan blue dye exclusion assay, cell doubling time, and MTT cell proliferation assay and reactive oxygen species production. Particle uptake was monitored via Prussian blue staining, intracellular iron content quantification via a ferrozine-based assay, and direct visualization by dual-beam (focused ion beam/scanning electron microscopy [FIB/SEM]) analysis. Experiments were performed on human neuroblastoma SH-SY5Y cell line and primary Schwann cell cultures of the peripheral nervous system. Results This paper reports on the synthesis and characterization of polymer-coated magnetic Fe3O4 nanoparticles with an average diameter of 73 ± 6 nm that are designed as magnetic actuators for neural guidance. The cells were able to incorporate quantities of iron up to 2 pg/cell. The intracellular distribution of MNPs obtained by optical and electronic microscopy showed large structures of MNPs crossing the cell membrane into the cytoplasm, thus rendering them suitable for magnetic manipulation by external

  1. Effects of coating molecules on the magnetic heating properties of Au-Fe3O4 heterodimer nanoparticles

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ogasawara, J.; Himukai, H.; Itoh, T.

    2016-10-01

    In this paper, we report the heating properties of gold-magnetite (Au-Fe3O4) heterodimer nanoparticles (NPs) subjected to an alternating magnetic field. The Au-Fe3O4 NPs coated with oleic acid and oleylamine (OA) were synthesized through a method that combines seed mediation and high-temperature decomposition. The coating was replaced with dimercaptosuccinic acid (DMSA) by the ligand-exchange method. The specific absorption rates (SARs) for the OA- and DMSA-coated Au-Fe3O4 NPs coated with OA and DMSA at room temperature were determined through the calorimetric and magnetometric methods. SAR depended on the square of the magnetic field H up to an H value of 4 kA/m. The absolute value of the SAR for DMSA-coated NPs is about fivefold higher than that of the OA-coated NPs. The AC magnetic hysteresis measurements showed the recovery of the magnetic volume and the decrease in the magnetic anisotropy of the DMSA-coated NPs relative to those of the OA-coated NPs. These results suggest that the protective agent influences the magnetic properties of magnetite NPs via gold NPs.

  2. Rapid and Efficient Protein Digestion using Trypsin Coated Magnetic Nanoparticles under Pressure Cycles

    PubMed Central

    Lee, Byoungsoo; Lopez-Ferrer, Daniel; Kim, Byoung Chan; Na, Hyon Bin; Park, Yong Il; Weitz, Karl K.; Warner, Marvin G.; Hyeon, Taeghwan; Lee, Sang-Won; Smith, Richard D.; Kim, Jungbae

    2011-01-01

    Trypsin-coated magnetic nanoparticles (EC-TR/NPs), prepared via a simple multilayer random crosslinking of the trypsin molecules onto magnetic nanoparticles, were highly stable and could be easily captured using a magnet after the digestion was complete. EC-TR/NPs showed a negligible loss of trypsin activity after multiple uses and continuous shaking, while the conventional immobilization of covalently-attached trypsin on NPs resulted in a rapid inactivation under the same conditions due to the denaturation and autolysis of trypsin. A single model protein, a five protein mixture, and a whole mouse brain proteome were digested at atmospheric pressure and 37 °C for 12 h or in combination with pressure cycling technology (PCT) at room temperature for 1 min. In all cases, EC-TR/NPs performed equally to or better than free trypsin in terms of both identified peptide/protein number and the digestion reproducibility. In addition, the concomitant use of EC-TR/NPs and PCT resulted in very rapid (~1 min) and efficient digestions with more reproducible digestion results. PMID:21204257

  3. Rapid and Efficient Protein Digestion using Trypsin Coated Magnetic Nanoparticles under Pressure Cycles

    SciTech Connect

    Lee, Byoungsoo; Lopez-Ferrer, Daniel; Kim, Byoung Chan; Na, Hyon Bin; Park, Yong Il; Weitz, Karl K.; Warner, Marvin G.; Hyeon, Taeghwan; Lee, Sang-Won; Smith, Richard D.; Kim, Jungbae

    2011-01-01

    Trypsin-coated magnetic nanoparticles (EC-TR/NPs), prepared via a simple crosslinking of the enzyme to magnetic nanoparticles, were highly stable and could be easily captured using a magnet after the digestion was complete. EC-TR/NPs showed a negligible loss of trypsin activity after multiple uses and continuous shaking, while a control sample of covalently-attached trypsin on NPs resulted in a rapid inactivation under the same conditions due to the denaturation and autolysis of trypsin. Digestions were carried out on a single model protein, a five protein mixture, and a whole mouse brain proteome, and also compared for digestion at atmospheric pressure and 37 ºC for 12 h, and in combination with pressure cycling technology (PCT) at room temperature for 1 min. In all cases, the EC-TR/NPs performed equally as well or better than free trypsin in terms of the number of peptide/protein identifications and reproducibility across technical replicates. However, the concomitant use of EC-TR/NPs and PCT resulted in very fast (~1 min) and more reproducible digestions.

  4. High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles.

    PubMed

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2017-06-01

    Biocompatible ferrofluids based on dextran coated iron oxide nanoparticles were fabricated by conventional co-precipitation method. The experimental results show that the presence of dextran in reaction medium not only causes to the appearance of superparamagnetic behavior but also results in significant suppression in saturation magnetization of dextran coated samples. These results can be attributed to size reduction originated from the role of dextran as a surfactant. Moreover, weight ratio of dextran to magnetic nanoparticles has a remarkable influence on size and magnetic properties of nanoparticles, so that the sample prepared with a higher weight ratio of dextran to nanoparticles has the smaller size and saturation magnetization compare with the other samples. In addition, the ferrofluids containing such nanoparticles have an excellent stability at physiological pH for several months. Furthermore, the biocompatibility studies reveal that surface modification of nanoparticles by dextran dramatically decreases the cytotoxicity of bare nanoparticles and consequently improves their potential application for diagnostic and therapeutic purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Hałupka-Bryl, Magdalena; Bednarowicz, Magdalena; Dobosz, Bernadeta; Krzyminiewski, Ryszard; Zalewski, Tomasz; Wereszczyńska, Beata; Nowaczyk, Grzegorz; Jarek, Marcin; Nagasaki, Yukio

    2015-06-01

    Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles with chemiotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer. The aim of this work is to characterize physical and magnetic properties of synthesized nanoparicles. Characterization was carried out using EPR, HRTEM, X-ray diffraction, SQUID and NMR methods. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery.

  6. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA.

    PubMed

    Robinson, Ian; Tung, Le D; Maenosono, Shinya; Wälti, Christoph; Thanh, Nguyen T K

    2010-12-01

    Core-shell magnetic nanoparticles have received significant attention recently and are actively investigated owing to their large potential for a variety of applications. Here, the synthesis and characterization of bimetallic nanoparticles containing a magnetic core and a gold shell are discussed. The gold shell facilitates, for example, the conjugation of thiolated biological molecules to the surface of the nanoparticles. The composite nanoparticles were produced by the reduction of a gold salt on the surface of pre-formed cobalt or magnetite nanoparticles. The synthesized nanoparticles were characterized using ultraviolet-visible absorption spectroscopy, transmission electron microscopy, energy dispersion X-ray spectroscopy, X-ray diffraction and super-conducting quantum interference device magnetometry. The spectrographic data revealed the simultaneous presence of cobalt and gold in 5.6±0.8 nm alloy nanoparticles, and demonstrated the presence of distinct magnetite and gold phases in 9.2±1.3 nm core-shell magnetic nanoparticles. The cobalt-gold nanoparticles were of similar size to the cobalt seed, while the magnetite-gold nanoparticles were significantly larger than the magnetic seeds, indicating that different processes are responsible for the addition of the gold shell. The effect on the magnetic properties by adding a layer of gold to the cobalt and magnetite nanoparticles was studied. The functionalization of the magnetic nanoparticles is demonstrated through the conjugation of thiolated DNA to the gold shell.

  7. Magnetic nanoparticles coated with maltose-functionalized polyethyleneimine for highly efficient enrichment of N-glycopeptides.

    PubMed

    Li, Jinan; Wang, Fangjun; Wan, Hao; Liu, Jing; Liu, Zheyi; Cheng, Kai; Zou, Hanfa

    2015-12-18

    Hydrophilic interaction chromatography (HILIC) adsorbents have drawn increasing attention in recent years due to their high efficiency in N-glycopeptides enrichment. The hydrophilicity and binding capacity of HILIC adsorbents are crucial to the enrichment efficiency and mass spectrometry (MS) detection sensitivity of N-glycopeptides. Herein, magnetic nanoparticles coated with maltose-functionalized polyethyleneimine (Fe3O4-PEI-Maltose MNPs) were prepared by one-pot solvothermal reaction coupled with "click chemistry" and utilized for N-glycopeptides enrichment. Owing to the presence of hydrophilic and branched polyethyleneimine, the amount of immobilized disaccharide units was improved about four times. The N-glycopeptides capturing capacity was about 150mg/g (IgG/MNPs) and the MS detection limitation as low as 0.5fmol for IgG and 85% average enrichment recovery were feasibly achieved by using this hybrid magnetic adsorbent. Finally, 1237 unique N-glycosylation sites and 1567 unique N-glycopeptides from 684 N-glycoproteins were reliably characterized from 60μg protein sample extracted from mouse liver. Therefore, this maltose-functionalized polyethyleneimine coated adsorbent can play a promising role in highly efficient N-glycopeptides enrichment for glycoproteomic analyses of complex protein samples.

  8. Production and magnetic properties of in situ oligomer coated α-Fe nanoparticles in the gas phase

    NASA Astrophysics Data System (ADS)

    Choi, Byeong Ju; Lee, Gang Ho

    2007-11-01

    We report on the production and characterization of the magnetic properties of in situ oligomer coated α-Fe nanoparticles. Although a polymer cannot be used to in situ coat iron nanoparticles in the gas phase due to its low vapor pressure, an oligomer (i.e., a low mass polymer) may be used for this purpose because it has enough vapor pressure. Besides surface protection, functional molecules such as ligands, peptides, antibodies, and DNA can be also easily bound to an oligomer, which will be extremely useful for further advanced applications. We in situ coated α-Fe nanoparticles with a dimethylsilylenesiloxane oligomer in the gas phase by thermally decomposing Fe(CO)5 as a precursor of α-Fe nanoparticles with a resistive heater in the presence of dimethylsilylenesiloxane oligomer vapor. These core-shell nanoparticles ranging from 5 to 15 nm in core α-Fe nanoparticle diameter showed saturation magnetization as high as 68 emu/g and coercivities as large as 1338 and 381 Oe at 10 and 300 K, respectively.

  9. Magnetic solid-phase extraction based on mesoporous silica-coated magnetic nanoparticles for analysis of oral antidiabetic drugs in human plasma.

    PubMed

    de Souza, Karynne Cristina; Andrade, Gracielle Ferreira; Vasconcelos, Ingrid; de Oliveira Viana, Iara Maíra; Fernandes, Christian; de Sousa, Edésia Martins Barros

    2014-07-01

    In the present work, magnetic nanoparticles embedded into mesoporous silica were prepared in two steps: first, magnetite was synthesized by oxidation-precipitation method, and next, the magnetic nanoparticles were coated with mesoporous silica by using nonionic block copolymer surfactants as structure-directing agents. The mesoporous SiO2-coated Fe3O4 samples were functionalized using octadecyltrimethoxysilane as silanizing agent. The pure and functionalized silica nanoparticles were physicochemically and morphologically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resultant magnetic silica nanoparticles were applied as sorbents for magnetic solid-phase extraction (MSPE) of oral antidiabetic drugs in human plasma. Our results revealed that the magnetite nanoparticles were completely coated by well-ordered mesoporous silica with free pores and stable pore walls, and that the structural and magnetic properties of the Fe3O4 nanoparticles were preserved in the applied synthesis route. Indeed, the sorbent material was capable of extracting the antidiabetic drugs from human plasma, being useful for the sample preparation in biological matrices.

  10. Gum Arabic coated magnetic nanoparticles with affinity ligands specific for antibodies.

    PubMed

    Batalha, Iris L; Hussain, Abid; Roque, A C A

    2010-01-01

    A novel magnetic support based on gum Arabic (GA) coated iron oxide magnetic nanoparticles (MNP) has been endowed with affinity properties towards immunoglobulin G (IgG) molecules. The success of the in situ triazine ligand synthesis was confirmed by fluorescence assays. Two synthetic ligands previously developed for binding to IgG, named as ligand 22/8 (artificial Protein A) and ligand 8/7 (artificial Protein L) were immobilized on to MNPs coated with GA (MNP_GA). The dimension of the particles core was not affected by the surface functionalization with GA and triazine ligands. The hydrodynamic diameters of the magnetic supports indicate that the coupling of GA leads to the formation of larger agglomerates of particles with about 1 microm, but the introduction of the triazine ligands leads to a decrease on MNPs size. The non-functionalized MNP_GA bound 28 mg IgG/g, two times less than bare MNP (60 mg IgG/g). MNP_GA modified with ligand 22/8 bound 133 mg IgG/g support, twice higher than the value obtained for ligand 8/7 magnetic adsorbents (65 mg/g). Supports modified with ligand 22/8 were selected to study the adsorption and the elution of IgG. The adsorption of human IgG on this support followed a Langmuir behavior with a Q(máx) of 344 mg IgG/g support and K(a) of 1.5 x 10(5) M. The studies on different elution conditions indicated that although the 0.05 M citrate buffer (pH 3) presented good recovery yields (elution 64% of bound protein), there was occurrence of iron leaching at this acidic pH. Therefore, a potential alternative would be to elute bound protein with a 0.05 M glycine-NaOH (pH 11) buffer.

  11. The effect of protein corona on doxorubicin release from the magnetic mesoporous silica nanoparticles with polyethylene glycol coating

    NASA Astrophysics Data System (ADS)

    Pourjavadi, Ali; Tehrani, Zahra Mazaheri; Mahmoudi, Negar

    2015-04-01

    In the present work, biocompatible superparamagnetic iron oxide nanoparticles coated by mesoporous silica were used as drug nanocarriers for doxorubicin (Dox; an anticancer drug) delivery. In biological media, the interaction of protein corona layer with the surface of nanoparticles is inevitable. For this reason, we studied the effect of protein corona on drug release from magnetic mesoporous silica nanoparticles (MMSNs) in human plasma medium. Besides, we used hydrophilic and biocompatible polymer, polyethylene glycol (PEG), to decrease protein corona effects. The results showed the increased Dox release from PEGylated MMSNs compared with bare MMSNs. This result indicated that the coating of PEG reduced the wrapping of the protein corona around the nanoparticles. This phenomenon caused increase in Dox release.

  12. Control of the saturation temperature in magnetic heating by using polyethylene-glycol-coated rod-shaped nickel-ferrite (NiFe2O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2016-02-01

    Polyethylene-glycol (PEG)-coated nickel-ferrite nanoparticles were prepared for magnetic hyperthermia applications by using the co-precipitation method. The PEG coating occurred during the synthesis of the nanoparticles. The coated nanoparticles were rod-shaped with an average length of 16 nm and an average diameter of 4.5 nm, as observed using transmission electron microscopy. The PEG coating on the surfaces of the nanoparticles was confirmed from the Fourier-transform infrared spectra. The nanoparticles exhibited superparamagnetic characteristics with negligible coercive force. Further, magnetic heating effects were observed in aqueous solutions of the coated nanoparticles. The saturation temperature could be controlled at 42 ℃ by changing the concentration of the nanoparticles in the aqueous solution. Alternately, the saturation temperature could be controlled for a given concentration of nanoparticles by changing the intensity of the magnetic field. The Curie temperature of the nanoparticles was estimated to be 495 ℃. These results for the PEG-coated nickel-ferrite nanoparticles showed the possibility of utilizing them for controlled magnetic hyperthermia at 42 ℃.

  13. Targeting of Magnetic Nanoparticle-coated Microbubbles to the Vascular Wall Empowers Site-specific Lentiviral Gene Delivery in vivo

    PubMed Central

    Heun, Yvonn; Hildebrand, Staffan; Heidsieck, Alexandra; Gleich, Bernhard; Anton, Martina; Pircher, Joachim; Ribeiro, Andrea; Mykhaylyk, Olga; Eberbeck, Dietmar; Wenzel, Daniela; Pfeifer, Alexander; Woernle, Markus; Krötz, Florian; Pohl, Ulrich; Mannell, Hanna

    2017-01-01

    In the field of vascular gene therapy, targeting systems are promising advancements to improve site-specificity of gene delivery. Here, we studied whether incorporation of magnetic nanoparticles (MNP) with different magnetic properties into ultrasound sensitive microbubbles may represent an efficient way to enable gene targeting in the vascular system after systemic application. Thus, we associated novel silicon oxide-coated magnetic nanoparticle containing microbubbles (SO-Mag MMB) with lentiviral particles carrying therapeutic genes and determined their physico-chemical as well as biological properties compared to MMB coated with polyethylenimine-coated magnetic nanoparticles (PEI-Mag MMB). While there were no differences between both MMB types concerning size and lentivirus binding, SO-Mag MMB exhibited superior characteristics regarding magnetic moment, magnetizability as well as transduction efficiency under static and flow conditions in vitro. Focal disruption of lentiviral SO-Mag MMB by ultrasound within isolated vessels exposed to an external magnetic field decisively improved localized VEGF expression in aortic endothelium ex vivo and enhanced the angiogenic response. Using the same system in vivo, we achieved a highly effective, site-specific lentiviral transgene expression in microvessels of the mouse dorsal skin after arterial injection. Thus, we established a novel lentiviral MMB technique, which has great potential towards site-directed vascular gene therapy. PMID:28042335

  14. Targeting of Magnetic Nanoparticle-coated Microbubbles to the Vascular Wall Empowers Site-specific Lentiviral Gene Delivery in vivo.

    PubMed

    Heun, Yvonn; Hildebrand, Staffan; Heidsieck, Alexandra; Gleich, Bernhard; Anton, Martina; Pircher, Joachim; Ribeiro, Andrea; Mykhaylyk, Olga; Eberbeck, Dietmar; Wenzel, Daniela; Pfeifer, Alexander; Woernle, Markus; Krötz, Florian; Pohl, Ulrich; Mannell, Hanna

    2017-01-01

    In the field of vascular gene therapy, targeting systems are promising advancements to improve site-specificity of gene delivery. Here, we studied whether incorporation of magnetic nanoparticles (MNP) with different magnetic properties into ultrasound sensitive microbubbles may represent an efficient way to enable gene targeting in the vascular system after systemic application. Thus, we associated novel silicon oxide-coated magnetic nanoparticle containing microbubbles (SO-Mag MMB) with lentiviral particles carrying therapeutic genes and determined their physico-chemical as well as biological properties compared to MMB coated with polyethylenimine-coated magnetic nanoparticles (PEI-Mag MMB). While there were no differences between both MMB types concerning size and lentivirus binding, SO-Mag MMB exhibited superior characteristics regarding magnetic moment, magnetizability as well as transduction efficiency under static and flow conditions in vitro. Focal disruption of lentiviral SO-Mag MMB by ultrasound within isolated vessels exposed to an external magnetic field decisively improved localized VEGF expression in aortic endothelium ex vivo and enhanced the angiogenic response. Using the same system in vivo, we achieved a highly effective, site-specific lentiviral transgene expression in microvessels of the mouse dorsal skin after arterial injection. Thus, we established a novel lentiviral MMB technique, which has great potential towards site-directed vascular gene therapy.

  15. Polyethylene Glycol Modified, Cross-Linked Starch Coated Iron Oxide Nanoparticles for Enhanced Magnetic Tumor Targeting

    PubMed Central

    Cole, Adam J.; David, Allan E.; Wang, Jianxin; Galbán, Craig J.; Hill, Hannah L.; Yang, Victor C.

    2010-01-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140–190 nm) and relative PEG labeling (1.5% of surface amines – A5/D5, 0.4% – A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37°C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 hr) and D20 (11.75 hr) showing much longer half-lives than D (0.12 hr). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC0-∞ Sustained tumor exposure over 24 hours was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that both D5 and D20 are promising MNP platforms for enhanced magnetic tumor targeting, warranting further study in tumor models. PMID:21176955

  16. Susceptibility investigation of the nanoparticle coating-layer effect on the particle interaction in biocompatible magnetic fluids

    NASA Astrophysics Data System (ADS)

    Morais, P. C.; Santos, J. G.; Silveira, L. B.; Gansau, C.; Buske, N.; Nunes, W. C.; Sinnecker, J. P.

    2004-05-01

    AC susceptibility was used to investigate the effect of the surface-coating layer in two biocompatible, magnetite-based, magnetic fluid samples. Dextran and dimercaptosuccinic acid (DMSA) were the surface coating species. The temperature and frequency dependence of the peak susceptibility was discussed using the Vogel-Fulcher relation, from which the typical energy barrier (temperature correction) values of 1340±20 K (70±3 K) and 1230±30 K (86±5 K) were obtained for the dextran- and DMSA-coated nanoparticles, respectively.

  17. Polydopamine-Coated Manganese Carbonate Nanoparticles for Amplified Magnetic Resonance Imaging-Guided Photothermal Therapy.

    PubMed

    Cheng, Youxing; Zhang, Shupeng; Kang, Ning; Huang, Jianpan; Lv, Xiaolin; Wen, Kai; Ye, Shefang; Chen, Zhiwei; Zhou, Xi; Ren, Lei

    2017-06-07

    This study reports a multifunctional nanoparticle (NP) that can be used for amplified magnetic resonance image (MRI)-guided photothermal therapy (PTT) due to its surface coating with a polydopamine (PDA) shell. Importantly, by means of introducing the surface coating of PDA, large quantities of water can be trapped around the NPs allowing more efficient water exchange, leading to greatly improved MR contrast signals compared with those from NPs without the PDA coating. Further, a distinct photothermal effect can be obtained arising from the strong absorption of PDA in the near-infrared (NIR) region. By synthesizing multifunctional MnCO3@PDA NPs, for example, we found that the longitudinal relaxivity (r1) of MnCO3 NPs can improve from 5.7 to 8.3 mM(-1) s(-1). Subsequently, in vitro MRI and PTT results verified that MnCO3@PDA could serve as an excellent MRI/PTT theranostic agent. Furthermore, the MnCO3@PDA NPs were applied as an MRI/PTT theranostic agent for in vivo MRI-guided photothermal ablation of tumors by intratumoral injection in 4T1 tumor-bearing mice. The MR imaging result shows a significantly bright MR image in the tumor site. The MnCO3@PDA-mediated PTT result shows high therapeutic efficiency as a result of high photothermal conversion efficiency. The present strategy of amplified MRI-guided PTT based on PDA coating of NPs will be widely applicable to other multifunctional NPs.

  18. Alginate-coated magnetic nanoparticles for noninvasive MRI of extracellular calcium.

    PubMed

    Bar-Shir, Amnon; Avram, Liat; Yariv-Shoushan, Shani; Anaby, Debbie; Cohen, Smadar; Segev-Amzaleg, Niva; Frenkel, Dan; Sadan, Ofer; Offen, Daniel; Cohen, Yoram

    2014-07-01

    Nanoparticles (NPs) have great potential to increase the diagnostic capacity of many imaging modalities. MRI is currently regarded as the method of choice for the imaging of deep tissues, and metal ions, such as calcium ions (Ca(2+)), are essential ingredients for life. Despite the tremendous importance of Ca(2+) for the well-being of living systems, the noninvasive determination of the changes in Ca(2+) levels in general, and extracellular Ca(2+) levels in particular, in deep tissues remains a challenge. Here, we describe the preparation and contrast mechanism of a flexible easy to prepare and selective superparamagnetic iron oxide (SPIO) NPs for the noninvasive determination of changes in extracellular Ca(2+) levels using conventional MRI. We show that SPIO NPs coated with monodisperse and purified alginate, having a specific molecular weight, provide a tool to selectively determine Ca(2+) concentrations in the range of 250 µm to 2.5 mm, even in the presence of competitive ions. The alginate-coated magnetic NPs (MNPs) aggregate in the presence of Ca(2+) , which, in turn, affects the T2 relaxation of the water protons in their vicinity. The new alginate-coated SPIO NP formulations, which have no effect on cell viability for 24 h, allow the detection of Ca(2+) levels secreted from ischemic cell cultures and the qualitative examination of the change in extracellular Ca(2+) levels in vivo. These results demonstrate that alginate-coated MNPs can be used, at least qualitatively, as a platform for the noninvasive MRI determination of extracellular Ca(2+) levels in myriad in vitro and in vivo biomedical applications.

  19. Oriented Attachment of Recombinant Proteins to Agarose-Coated Magnetic Nanoparticles by Means of a β-Trefoil Lectin Domain.

    PubMed

    Acebrón, Iván; Ruiz-Estrada, Amalia G; Luengo, Yurena; Morales, María Del Puerto; Guisán, José Manuel; Mancheño, José Miguel

    2016-11-16

    Design of generic methods aimed at the oriented attachment of proteins at the interfacial environment of magnetic nanoparticles currently represents an active field of research. With this in mind, we have prepared and characterized agarose-coated maghemite nanoparticles to set up a platform for the attachment of recombinant proteins fused to the β-trefoil lectin domain LSL150, a small protein that combines fusion tag properties with agarose-binding capacity. Analysis of the agarose-coated nanoparticles by dynamic light scattering, Fourier transform infrared spectroscopy, and thermogravimetric studies shows that decoupling particle formation from agarose coating provides better results in terms of coating efficiency and particle size distribution. LSL150 interacts with these agarose-coated nanoparticles exclusively through the recognition of the sugars of the polymer, forming highly stable complexes, which in turn can be dissociated ad hoc with the competing sugar lactose. Characterization of the complexes formed with the fusion proteins LSL-EGFP (LSL-tagged enhanced green fluorescent protein from Aquorea victoria) and LSL-BTL2 (LSL-tagged lipase from Geobacillus thermocatenolatus) provided evidence supporting a topologically oriented binding of these molecules to the interface of the agarose-coated nanoparticles. This is consistent with the marked polarity of the β-trefoil structure where the sugar-binding sites and the N- and C-terminus ends are at opposed sides. In summary, LSL150 displays topological and functional features expected from a generic molecular adaptor for the oriented attachment of proteins at the interface of agarose-coated nanoparticles.

  20. Colorimetric detection of pathogenic bacteria using platinum-coated magnetic nanoparticle clusters and magnetophoretic chromatography.

    PubMed

    Kwon, Donghoon; Lee, Sanghee; Ahn, Myung Mo; Kang, In Seok; Park, Ki-Hwan; Jeon, Sangmin

    2015-07-09

    A colorimetric method that uses platinum-coated magnetic nanoparticle clusters (Pt/MNCs) and magnetophoretic chromatography is developed to detect pathogenic bacteria. Half-fragments of monoclonal Escherichia coli O157:H7 (EC) antibodies were functionalized to Pt/MNCs and used to capture E. coli bacteria in milk. After magnetic separation of free Pt/MNCs and Pt/MNC-EC complexes from the milk, a precision pipette was used to imbibe the E. coli-containing solution, then a viscous polyethylene glycol solution. Due to difference in viscosities, the solutions separate into two liquid layers inside the pipette tip. The Pt/MNC-EC complexes were separated from the free Pt/MNCs by applying an external magnetic field, then added to a tetramethylbenzidine (TMB) solution. Catalytic oxidation of TMB by Pt produced color changes of the solution, which enabled identification of the presence of 10 cfu mL(-1) E. coli bacteria with the naked eye. The total assay time including separation, binding and detection was 30 min.

  1. Effective Removal of Tetracycline from Aqueous Solution by Organic Acid-Coated Magnetic Nanoparticles.

    PubMed

    Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua

    2016-03-01

    Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline.

  2. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    PubMed Central

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835

  3. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles.

    PubMed

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours' exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours' exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP-cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo.

  4. Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruan, Jing; Wang, Kan; Song, Hua; Xu, Xin; Ji, Jiajia; Cui, Daxiang

    2011-12-01

    Fluorescent magnetic nanoparticles exhibit great application prospects in biomedical engineering. Herein, we reported the effects of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles (FMNPs) on human embryonic kidney 293 (HEK293) cells and mice with the aim of investigating their biocompatibility. FMNPs with 150 nm in diameter were prepared, and characterized by high-resolution transmission electron microscopy and photoluminescence (PL) spectra and magnetometer. HEK293 cells were cultured with different doses of FMNPs (20, 50, and 100μ g/ml) for 1-4 days. Cell viability and adhesion ability were analyzed by CCK8 method and Western blotting. 30 mice were randomly divided into three groups, and were, respectively, injected via tail vein with 20, 60, and 100 μg FMNPs, and then were, respectively, raised for 1, 7, and 30 days, then their lifespan, important organs, and blood biochemical parameters were analyzed. Results show that the prepared water-soluble FMNPs had high fluorescent and magnetic properties, less than 50 μg/ml of FMNPs exhibited good biocompatibility to HEK293 cells, the cell viability, and adhesion ability were similar to the control HEK293 cells. FMNPs primarily accumulated in those organs such as lung, liver, and spleen. Lung exposed to FMNPs displayed a dose-dependent inflammatory response, blood biochemical parameters such as white blood cell count (WBC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), displayed significant increase when the FMNPs were injected into mice at dose of 100μg. In conclusion, FMNPs exhibit good biocompatibility to cells under the dose of less than 50 μg/ml, and to mice under the dose of less than 2mg/kg body weight. The FMNPs' biocompatibility must be considered when FMNPs are used for in vivo diagnosis and therapy.

  5. Fabrication of water-repellent cellulose fiber coated with magnetic nanoparticles under supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Xu, Shengjie; Shen, Danping; Wu, Peiyi

    2013-04-01

    Hematite nanoparticle-coated magnetic composite fiber was prepared in supercritical carbon dioxide (scCO2). With the help of scCO2, cellulose did not need to be dissolved and regenerated and it could be in any form (e.g., cotton wool, filter paper, textile, etc.). The penetrating and swelling effect of scCO2, the slowing reaction rate of weak alkalis, and the template effect of cellulose fibers were discovered to be the key factors for the fabrication of ordered cellulose/Fe2O3 composite fibers. The structures of the composite fibers as well as the layers of Fe2O3 particles were characterized by means of scanning/transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman investigation. It was found that α-Fe2O3 granules which ranged from 30 to 85 nm with average diameter around 55 nm would be generated on the surface of cellulose fibers via potassium acetate, while irregular square prisms (ranged from 200 to 600 nm) which were composed of smaller nanoparticles ( 10 nm) would be fabricated via urea. And, the obtained composite was highly water repellent with superparamagnetic or ferromagnetic properties.

  6. Silica-coated Gd(DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages

    PubMed Central

    Bruckman, Michael A.; Randolph, Lauren N.; Gulati, Neetu M.; Stewart, Phoebe L.; Steinmetz, Nicole F.

    2015-01-01

    The molecular imaging of in vivo targets allows non-invasive disease diagnosis. Nanoparticles offer a promising platform for molecular imaging because they can deliver large payloads of imaging reagents to the site of disease. Magnetic resonance imaging (MRI) is often preferred for clinical diagnosis because it uses non-ionizing radiation and offers both high spatial resolution and excellent penetration. We have explored the use of plant viruses as the basis of for MRI contrast reagents, specifically Tobacco mosaic virus (TMV), which can assemble to form either stiff rods or spheres. We loaded TMV particles with paramagnetic Gd ions, increasing the ionic relaxivity compared to free Gd ions. The loaded TMV particles were then coated with silica maintaining high relaxivities. Interestingly, we found that when Gd(DOTA) was loaded into the interior channel of TMV and the exterior was coated with silica, the T1 relaxivities increased by three-fold from 10.9 mM−1 s−1 to 29.7 mM−1s−1 at 60 MHz compared to uncoated Gd-loaded TMV. To test the performance of the contrast agents in a biological setting, we focused on interactions with macrophages because the active or passive targeting of immune cells is a popular strategy to investigate the cellular components involved in disease progression associated with inflammation. In vitro assays and phantom MRI experiments indicate efficient targeting and imaging of macrophages, enhanced contrast-to-noise ratio was observed by shape-engineering (SNP > TMV) and silica-coating (Si-TMV/SNP > TMV/SNP). Because plant viruses are in the food chain, antibodies may be prevalent in the population. Therefore we investigated whether the silica-coating could prevent antibody recognition; indeed our data indicate that mineralization can be used as a stealth coating option to reduce clearance. Therefore, we conclude that the silica-coated protein-based contrast agent may provide an interesting candidate material for further investigation

  7. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA

    NASA Astrophysics Data System (ADS)

    Robinson, Ian; Tung, Le D.; Maenosono, Shinya; Wälti, Christoph; Thanh, Nguyen T. K.

    2010-12-01

    Core-shell magnetic nanoparticles have received significant attention recently and are actively investigated owing to their large potential for a variety of applications. Here, the synthesis and characterization of bimetallic nanoparticles containing a magnetic core and a gold shell are discussed. The gold shell facilitates, for example, the conjugation of thiolated biological molecules to the surface of the nanoparticles. The composite nanoparticles were produced by the reduction of a gold salt on the surface of pre-formed cobalt or magnetite nanoparticles. The synthesized nanoparticles were characterized using ultraviolet-visible absorption spectroscopy, transmission electron microscopy, energy dispersion X-ray spectroscopy, X-ray diffraction and super-conducting quantum interference device magnetometry. The spectrographic data revealed the simultaneous presence of cobalt and gold in 5.6 +/- 0.8 nm alloy nanoparticles, and demonstrated the presence of distinct magnetite and gold phases in 9.2 +/- 1.3 nm core-shell magnetic nanoparticles. The cobalt-gold nanoparticles were of similar size to the cobalt seed, while the magnetite-gold nanoparticles were significantly larger than the magnetic seeds, indicating that different processes are responsible for the addition of the gold shell. The effect on the magnetic properties by adding a layer of gold to the cobalt and magnetite nanoparticles was studied. The functionalization of the magnetic nanoparticles is demonstrated through the conjugation of thiolated DNA to the gold shell.Core-shell magnetic nanoparticles have received significant attention recently and are actively investigated owing to their large potential for a variety of applications. Here, the synthesis and characterization of bimetallic nanoparticles containing a magnetic core and a gold shell are discussed. The gold shell facilitates, for example, the conjugation of thiolated biological molecules to the surface of the nanoparticles. The composite

  8. Mass Spectrometric Detection of Neuropeptides Using Affinity-Enhanced Microdialysis with Antibody-Coated Magnetic Nanoparticles

    PubMed Central

    Schmerberg, Claire M.; Li, Lingjun

    2012-01-01

    Microdialysis (MD) is a useful sampling tool for many applications due to its ability to permit sampling from an animal concurrent with normal activity. MD is of particular importance in the field of neuroscience, in which it is used to sample neurotransmitters (NTs) while the animal is behaving in order to correlate dynamic changes in NTs with behavior. One important class of signaling molecules, the neuropeptides (NPs), however, presented significant challenges when studied with MD, due to the low relative recovery (RR) of NPs by this technique. Affinity-enhanced microdialysis (AE-MD) has previously been used to improve recovery of NPs and similar molecules. For AE-MD, an affinity agent (AA), such as an antibody-coated particle or free antibody, is added to the liquid perfusing the MD probe. This AA provides an additional mass transport driving force for analyte to pass through the dialysis membrane, and thus increases the RR. In this work, a variety of AAs have been investigated for AE-MD of NPs in vitro and in vivo, including particles with C18 surface functionality and antibody-coated particles. Antibody-coated magnetic nanoparticles (AbMnP) provided the best RR enhancement in vitro, with statistically significant (p<0.05) enhancements for 4 out of 6 NP standards tested, and RR increases up to 41-fold. These particles were then used for in vivo MD in the Jonah crab, Cancer borealis, during a feeding study, with mass spectrometric (MS) detection. 31 NPs were detected in a 30 min collection sample, compared to 17 when no AA was used. The use of AbMnP also increased the temporal resolution from 4–18 hrs in previous studies to just 30 min in this study. The levels of NPs detected were also sufficient for reliable quantitation with the MS system in use, permitting quantitative analysis of the concentration changes for 7 identified NPs on a 30 min time course during feeding. PMID:23249250

  9. PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells.

    PubMed

    Xue, Peng; Sun, Lihong; Li, Qian; Zhang, Lei; Guo, Jinhong; Xu, Zhigang; Kang, Yuejun

    2017-09-08

    The integration of multifunctional therapeutic capabilities into a single nanosystem has attracted much attention for use as an efficient cancer therapy. However, developing biocompatible therapeutic nano-agents with desirable safety, efficiency, targeting, and synergistic effects remains challenging. Herein, we designed a class of multifunctional PEGylated magnetic nanoparticles (NPs) with a core-shell structure and polydopamine (PDA) coating, which were loaded with the anticancer drug doxorubicin (DOX) for simultaneous targeted chemotherapy and photothermal ablation of tumour cells. This nanosystem showed strong near-infrared absorption due to the polydopamine layer and was capable of magnetic field-guided drug delivery due to the superparamagnetism of the carrier. The resultant product exhibited excellent stability and biocompatibility in vitro due to the PEGylation of dopamine. Notably, the combination of chemotherapy and photothermal therapy had an evident synergistic effect on the ablation of tumour cells. This multifunctional nanoplatform has promising potential as an efficient therapeutic agent for multimodal cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Functionalized milk-protein-coated magnetic nanoparticles for MRI-monitored targeted therapy of pancreatic cancer

    PubMed Central

    Huang, Jing; Qian, Weiping; Wang, Liya; Wu, Hui; Zhou, Hongyu; Wang, Andrew Yongqiang; Chen, Hongbo; Yang, Lily; Mao, Hui

    2016-01-01

    Engineered nanocarriers have emerged as a promising platform for cancer therapy. However, the therapeutic efficacy is limited by low drug loading efficiency, poor passive targeting to tumors, and severe systemic side effects. Herein, we report a new class of nanoconstructs based on milk protein (casein)-coated magnetic iron oxide (CNIO) nanoparticles for targeted and image-guided pancreatic cancer treatment. The tumor-targeting amino-terminal fragment (ATF) of urokinase plasminogen activator and the antitumor drug cisplatin (CDDP) were engineered on this nanoplatform. High drug loading (~25 wt%) and sustained release at physiological conditions were achieved through the exchange and encapsulation strategy. These ATF-CNIO-CDDP nanoparticles demonstrated actively targeted delivery of CDDP to orthotopic pancreatic tumors in mice. The effective accumulation and distribution of ATF-CNIO-CDDP was evidenced by magnetic resonance imaging, based on the T2-weighted contrast resulting from the specific accumulation of ATF-CNIO-CDDP in the tumor. Actively targeted delivery of ATF-CNIO-CDDP led to improved therapeutic efficacy in comparison with free CDDP and nontargeted CNIO-CDDP treatment. Meanwhile, less systemic side effects were observed in the nanocarrier-treated groups than that in the group treated with free CDDP. Hematoxylin and Eosin and Sirius Red staining of tumor sections revealed the possible disruption of stroma during the treatment with ATF-CNIO-CDDP. Overall, our results suggest that ATF-CNIO-CDDP can be an effective theranostic platform for active targeting-enhanced and image-guided cancer treatment while simultaneously reducing the systemic toxicity. PMID:27462153

  11. Novel magnetic nanoparticles coated by benzene- and β-cyclodextrin-bearing dextran, and the sorption of polycyclic aromatic hydrocarbon.

    PubMed

    Cho, Eunae; Tahir, Muhammad Nazir; Choi, Jae Min; Kim, Hwanhee; Yu, Jae-Hyuk; Jung, Seunho

    2015-11-20

    We present the synthesis of novel magnetic nanoparticles functionalized by benzene- and β-cyclodextrin-derivatized dextran. The grafting strategy was based on the [alkynyl-iron] cluster in the modified dextrans, which were prepared by click reaction from alkyne-modified dextran and benzyl azide or mono-6-O-deoxy-monoazido β-cyclodextrin. Characterization was then carried out by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. Using the developed magnetic nanoparticles, the potential for removing polycyclic aromatic hydrocarbons such as phenanthrene and pyrene by sorption onto the nanomaterials was assessed. In the sorption, pi-stacking interactions of the benzene-derivatized dextran and host-guest chemistry of the β-cyclodextrin-derivatized dextran were considered to be significant. Furthermore, the polysaccharide derivative-coated magnetic adsorbents could be recovered by an external magnet for reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: physicochemical and magnetic properties, and cellular compatibility.

    PubMed

    Singh, Rajendra K; Kim, Tae-Hyun; Patel, Kapil D; Knowles, Jonathan C; Kim, Hae-Won

    2012-07-01

    Magnetic nanoparticles (MNPs) are considered highly useful in therapeutic and diagnostic applications. However, MNPs require surface modification to promote dispersibility in aqueous solutions and thus biocompatibility. In this article, the authors modified MNPs with inorganic silica layer to create silica-coated magnetite nanoparticles (MNP@Si) via sol-gel process. Synthesis involves hydrolysis and condensation steps using tetraethylorthosilicate (TEOS) in methanol/ polyethylene glycol (PEG) solution and ammonia catalyst. Nanoparticles were characterized in terms of morphology, particle size, crystalline phase, chemical-bond structure, surface charge and magnetic properties: in particular, the MNP@Si size was easily tunable through alteration of the Fe(3) O(4) -to-TEOS ratio. As this ratio increased, the MNP@Si size decreased from 270 to 15 nm whilst maintaining core 12-nm MNP particle size, indicating decrease in thickness of the silica coating. All MNP@Si, in direct contrast to uncoated MNPs, showed excellent stability in aqueous solution. The particles' physicochemical and magnetic properties systematically varied with size (coating thickness), and the zeta potential diminished toward negative values, while magnetization increased as the coating thickness decreased. 15-nm MNP@Si showed excellent magnetization (about 64.1 emu/g), almost comparable to that of uncoated MNPs (70.8 emu/g). Preliminary in vitro assays confirmed that the silica layer significantly reduced cellular toxicity as assessed by increase in cell viability and reduction in reactive oxygen species production during 48 h of culture. Newly-developed MNP@Si, with a high capacity for magnetization, water-dispersibility, and diminished cell toxicity, may be potentially useful in diverse biomedical applications, including delivery of therapeutic and diagnostic biomolecules. Copyright © 2012 Wiley Periodicals, Inc.

  13. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tadyszak, Krzysztof; Kertmen, Ahmet; Coy, Emerson; Andruszkiewicz, Ryszard; Milewski, Sławomir; Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan; Chybczyńska, Katarzyna

    2017-07-01

    Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe3O4@SiO2 nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.

  14. Anisotropic magnetic field observed at 300 K in citrate-coated iron oxide nanoparticles: effect of counterions

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.; Li, Lin; Mukherjee, Sudip; Ghosh, Goutam

    2015-12-01

    Iron oxide nanoparticles (IONPs) have been synthesized by chemical co-precipitation method and coated with three citrates, namely, tri-lithium citrate (TLC), tri-sodium citrate (TSC), or tri-potassium citrate (TKC). In these `core-shell' structures, the `core' is a cluster of average 3 IONPs which is enveloped by a `shell' of citrate molecules and counterions, and thus called `core-shell' nano-clusters (CS-NCs), of average size 20 to 22 nm. The counterions in the three CS-NCs differ in ionic radii (r_{{ion}}), in the order of Li+ < Na+ < K+. Our aim was to investigate the effect of counterions on magnetic interactions between CS-NCs in different powder samples at 300 K, using vibrating sample magnetometer and electron magnetic resonance (EMR) techniques. The hysteresis loops showed negligible coercivity field ( H c) in all samples. The saturation magnetization ( M S) was the highest for TLC-coated CS-NCs. The blocking temperature ( T B), obtained from zero-field-cooled measurements, was >300 K for TLC-coated CS-NCs and <300 K for TSC- and TKC-coated CS-NCs. The EMR linewidth (∆ B PP), measured at 300 K, was also the broadest for TLC-coated CS-NCs. At low temperatures, Δ B PP was found to increase more significantly for TSC- and TKC-coated CS-NCs than for TLC-coated CS-NCs. These results indicate a significant anisotropic field effect; arising due to thermal motion of counterions at 300 K, on the magnetic interactions in TLC-coated CS-NCs. To our knowledge, this is the first report on the effect of counterions on magnetic interactions between CS-NCs.

  15. Folate receptor mediated in vivo targeted delivery of human serum albumin coated manganese ferrite magnetic nanoparticles to cancer cells

    NASA Astrophysics Data System (ADS)

    Zaidan, A.; Ilhami, F.; Fahmi, M. Z.; Purwanto, B.; Kharisma, R. Z.

    2017-05-01

    Manganese ferrite nanoparticles (MnFe2O4) have received increasing attention due to their remarkable magnetic properties and have been used for various biomedical applications. They have potential applications in magnetic resonance imaging and hyperthermia for cancer. Both novel applications require a delivery system that will allow nanoparticle to move easily and localization of nanoparticle to the target tissue. In our work, we developed human serum albumin coated manganese ferrite magnetic nanoparticles (HSA-MF NPs). The nanoparticles were prepared using solvothermal method and modified with folic acid for targeted delivery. Structure and morphology of manganese ferrite nanoparticle were characterized by X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM). The size of folic acid conjugated HSA-MF NPs (HSA-MF-FA NPs) were studied by dynamic light scattering (DLS). In the in vivo study, we used benzopyrene-induced cancer in mice. We successfully delivered HSA-MF-FA NPs through intravenous tail injection after induction of the tumour. We found that 54% of initial HSA-MF-FA NPs which previously injected localize in the target tissue. While obtained p-value from independent T-test is 0.013 which shows that there is a difference between the control group (HSA-MF NPs) and the treated group (HSA-MF-FA NPs)

  16. Sensitive and high-fidelity electrochemical immunoassay using carbon nanotubes coated with enzymes and magnetic nanoparticles.

    PubMed

    Piao, Yunxian; Jin, Zongwen; Lee, Dohoon; Lee, Hye-Jin; Na, Hyon-Bin; Hyeon, Taeghwan; Oh, Min-Kyu; Kim, Jungbae; Kim, Hak-Sung

    2011-03-15

    We demonstrate a highly sensitive electrochemical immunosensor based on the combined use of substrate recycling and carbon nanotubes (CNTs) coated with tyrosinase (TYR) and magnetic nanoparticles (MNP). Both TYR and MNP were immobilized on the surface of CNTs by covalent attachment, followed by additional cross-linking via glutaraldehyde treatment to construct multi-layered cross-linked TYR-MNP aggregates (M-EC-CNT). Magnetically capturable, highly active and stable M-EC-CNT were further conjugated with primary antibody against a target analyte of hIgG, and used for a sandwich-type immunoassay with a secondary antibody conjugated with alkaline phosphatase (ALP). In the presence of a target analyte, a sensing assembly of M-EC-CNT and ALP-conjugated antibody was attracted onto a gold electrode using a magnet. On an electrode, ALP-catalyzed hydrolysis of phenyl phosphate generated phenol, and successive TYR-catalyzed oxidation of phenol produced electrochemically measurable o-quinone that was converted to catechol in a scheme of substrate recycling. Combination of highly active M-EC-CNT and substrate recycling for the detection of hIgG resulted in a sensitivity of 27.6 nA ng(-1) mL(-1) and a detection limit of 0.19 ng mL(-1) (1.2 pM), respectively, representing better performance than any other electrochemical immunosensors relying on the substrate recycling with the TYR-ALP combination. The present immunosensing system also displayed a long-term stability by showing a negligible loss of electrochemical detection signal even after reagents were stored in an aqueous buffer at 4°C for more than 6 months. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Synthesis, characterization and magnetic property of maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles and their protective coating with pepsin for bio-functionalization

    SciTech Connect

    Bandhu, A.; Sutradhar, S.; Mukherjee, S.; Greneche, J.M.; Chakrabarti, P.K.

    2015-10-15

    Highlights: • Maghemite nanoparticles were prepared by a modified co-precipitation method. • Nanoparticles were then successfully coated with pepsin for bio-functionlization. • XRD and Mössbauer spectra confirmed the maghemite phase of the nanoparticles. • Magnetic data were analysed to evaluate particle size, anisotropy etc. - Abstract: Maghemite nanoparticles (γ-Fe{sub 2}O{sub 3}) are prepared by co-precipitation method. To obtain bio-functionalized magnetic nanoparticles for magnetically controlled drug delivery, the prepared nanoparticles are successfully coated with pepsin, a bio-compatible polymer and digestive enzyme. Crystallographic phase of the nanoparticles is confirmed by X-ray diffractograms (XRD), high resolution transmission electron microscopy (HRTEM) and {sup 57}Fe Mössbauer spectrometry. The average size of nanoparticles/nanocrystallites is estimated from the (3 1 1) peak of the XRD pattern using Debye–Scherrer formula. Results of HRTEM of coated and bare samples are in good agreement with those extracted from the XRD analysis. The dynamic magnetic properties are observed and different quantities viz., coercive field, magnetization, remanence, hysteresis losses etc., are estimated, which confirmed the presence of superparamagnetic relaxation of nanoparticles. Mössbauer spectra of the samples recorded at both 300 and 77 K, confirmed that the majority of particles are maghemite together with a very small fraction of magnetite nanoparticles.

  18. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E.; Kraus, Jr., Robert H.; Atcher, Robert W.; Schmidt, Jurgen G.

    2009-07-07

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  19. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E.; Kraus, Jr., Robert H.; Atcher, Robert W.; Schmidt, Jurgen G.

    2007-06-05

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  20. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E.; Kraus, Jr., Robert H.; Atcher; Robert W.; Schmidt, Jurgen G.

    2009-07-07

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  1. Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles.

    PubMed

    Gong, Yanyan; Gai, Longshuang; Tang, Jingchun; Fu, Jie; Wang, Qilin; Zeng, Eddy Y

    2017-10-01

    FeS-coated iron (Fe/FeS) magnetic nanoparticles were easily prepared, characterized, and applied for Cr(VI) removal in simulated groundwater. TEM, XRD, and BET characterization tests showed that FeS coating on the surface of Fe(0) inhibited the aggregation of Fe(0) and that Fe/FeS at a S/Fe molar ratio of 0.207 possessed a large surface area of 62.1m(2)/g. Increasing the S/Fe molar ratio from 0 to 0.138 decreased Cr(VI) removal by 42.8%, and a further increase to 0.207 enhanced Cr(VI) removal by 63% within 72h. Moreover, Fe/FeS inhibited the leaching of Fe, reducing the toxicity of the particles. Mechanistic analysis indicated that Fe(0), Fe(2+), and S(2-) were synergistically involved in the reduction of Cr(VI) to nontoxic Cr(III), which further precipitated as (CrxFe1-x)(OH)3 and Cr(III)-Fe-S. The process of Cr(VI) sorption by Fe/FeS (S/Fe=0.207) was fitted well with a pseudo-second-order kinetic model, and the isotherm data were simulated by Langmuir isotherm model with a maximum sorption capacity of 69.7mg/g compared to 48.9mg/g for Fe(0). Low pH and initial Cr(VI) concentration favored Cr(VI) removal. Continuous fixed bed column studies showed that simulated permeable reactive barriers (PRB) with Fe/FeS was considerably effective for in situ removal of Cr(VI) from groundwater. This study demonstrated the high potential of Fe/FeS for Cr(VI) immobilization in water, groundwater, and soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. An electrochemical immunosensor for digoxin using core-shell gold coated magnetic nanoparticles as labels.

    PubMed

    Ahmadi, Anita; Shirazi, Hanieh; Pourbagher, Narges; Akbarzadeh, Abolfazl; Omidfar, Kobra

    2014-03-01

    A simple, sensitive, and low-cost immunosensor was designed for the detection of digoxin through core-shell gold coated magnetic nanoparticles (Fe3O4-Au-NPs) as an electrochemical label. Having had such a large potential for a variety of applications, Fe3O4-Au-NPs have attracted a considerable attention and are actively investigated recently. Digoxin is a cardiac glycoside which, at high level, can indicate an increased risk of toxicity. This new competitive electrochemical immunosensor was developed based on antigen-antibody reaction employing antigen (Ag) labeled Fe3O4-Au-NPs and PVA modified screen-printed carbon electrode surface in order to detect the serum digoxin. The structures of Fe3O4-Au-NPs were studied by transmission electron microscopy, X-ray diffraction and Fourier transformed infrared spectroscopy. Cyclic voltammetry and differential pulse voltammetry (DPV) were employed to determine the physicochemical and electrochemical properties of immunosensor. DPV was employed for quantitative detection of digoxin in biological samples. The developed immunosensor was capable to detect digoxin in the range from 0.5 to 5 ng mL(-1), with a detection limit as low as 0.05 ng mL(-1). The proposed method represented acceptable reproducibility, stability, and reliability for the rapid detection of digoxin in serum samples.

  3. Capture of Magnetic Nanoparticles in Simulated Blood Vessels: Effects of Proteins and Coating with Poly(ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Robertson, Jaimee; Brazel, Christopher

    2012-11-01

    Magnetic nanoparticles (MNPs) have applications in cancer treatment as they can be captured and localized to a diseased site by use of an external magnetic field. After localization, cancer treatments such as magnetically targeted chemotherapy and localized hyperthermia can be applied. Previously, our lab has shown that the percent capture of MNPs is significantly reduced when MNPs are dispersed in protein solutions compared to water or aqueous polymer solutions. The purpose of this study was to determine the effects of proteins on capture efficiency and to investigate the ability of poly(ethylene glycol), PEG, coatings to reduce aggregation of MNPs with proteins, allowing for a greater capture of MNPs in flow. Using Tygon® tubing to simulate blood vessels, a maghemite nanoparticle solution was pumped through a capture zone, where a magnetic field was applied. After passing through the capture zone, the fluid flowed to a spectrophotometer, which measured the absorbance of the solution. The introduction of proteins into the nanoparticle solution reduced the percent capture of MNPs. However, coating the MNPs with PEG aided in preventing aggregation and led to higher capture efficiencies in protein solutions. Additionally, the effects of capture length and protein exposure time were examined. It was found that a higher percent capture is attainable with a longer capture length. Furthermore, on a scale of hours, the percent capture is not affected by the protein exposure time. Funded by NSF REU Grant 1062611 and NIH NCI R21CA 141388.

  4. Targeted delivery of tissue plasminogen activator by binding to silica-coated magnetic nanoparticle

    PubMed Central

    Chen, Jyh-Ping; Yang, Pei-Ching; Ma, Yunn-Hwa; Tu, Su-Ju; Lu, Yu-Jen

    2012-01-01

    Background and methods Silica-coated magnetic nanoparticle (SiO2-MNP) prepared by the sol-gel method was studied as a nanocarrier for targeted delivery of tissue plasminogen activator (tPA). The nanocarrier consists of a superparamagnetic iron oxide core and an SiO2 shell and is characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, superconducting quantum interference device, and thermogravimetric analysis. An amine-terminated surface silanizing agent (3-aminopropyltrimethoxysilane) was used to functionalize the SiO2 surface, which provides abundant –NH2 functional groups for conjugating with tPA. Results The optimum drug loading is reached when 0.5 mg/mL tPA is conjugated with 5 mg SiO2-MNP where 94% tPA is attached to the carrier with 86% retention of amidolytic activity and full retention of fibrinolytic activity. In vitro biocompatibility determined by lactate dehydrogenase release and cell proliferation indicated that SiO2-MNP does not elicit cytotoxicity. Hematological analysis of blood samples withdrawn from mice after venous administration indicates that tPA-conjugated SiO2-MNP (SiO2-MNP-tPA) did not alter blood component concentrations. After conjugating to SiO2-MNP, tPA showed enhanced storage stability in buffer and operation stability in whole blood up to 9.5 and 2.8-fold, respectively. Effective thrombolysis with SiO2-MNP-tPA under magnetic guidance is demonstrated in an ex vivo thrombolysis model where 34% and 40% reductions in blood clot lysis time were observed compared with runs without magnetic targeting and with free tPA, respectively, using the same drug dosage. Enhanced penetration of SiO2-MNP-tPA into blood clots under magnetic guidance was confirmed from microcomputed tomography analysis. Conclusion Biocompatible SiO2-MNP developed in this study will be useful as a magnetic targeting drug carrier to improve clinical thrombolytic therapy. PMID:23055726

  5. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages.

    PubMed

    Vogt, Carmen; Pernemalm, Maria; Kohonen, Pekka; Laurent, Sophie; Hultenby, Kjell; Vahter, Marie; Lehtiö, Janne; Toprak, Muhammet S; Fadeel, Bengt

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.

  6. Removal of chromium(VI) and dye Alizarin Red S (ARS) using polymer-coated iron oxide (Fe3O4) magnetic nanoparticles by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Hanif, Sara; Shahzad, Asma

    2014-06-01

    The present research was conducted with an aim to develop such adsorbent system: polymer-coated magnetic nanoparticles which can remove heavy metal and dye from water of different concentration. Synthesis of magnetic iron oxide nanoparticles for contaminated water purification has been one of the outcomes of application of rapidly growing field of Nanotechnology in Environmental Science. In the present study, the efficiency of magnetic nanoparticles for removal of Cr(VI) and dye (alizarin) from water solutions of known concentrations were evaluated. The nanoparticles were prepared by co-precipitation method and characterized by X-ray photoelectron spectroscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Polymer-coated magnetic iron oxide nanoparticles carrying functional groups on their surface were synthesized by different methods for permanent magnet-assisted removal of heavy metal (chromium) and dye (Alizarin Red S) from water. The characterization showed that synthesized nanoparticles were in the size range of 10-50 nm. The adsorption capacities of the Fe3O4 using polyMETAC-coated particles for dye (Alizarin Red S) removal were 80-96 % and chromium 62-91 %. The chromium concentration was determined after magnetic separation using atomic absorption spectrophotometer and dye concentration was estimated with UV-visible spectrophotometer. Nanoparticles of polymer coated showed the highest removal capacity from water for metal and dye. The developed adsorbents had higher capacity for removal of heavy metal ions and dye.

  7. Transferrin-coated magnetic upconversion nanoparticles for efficient photodynamic therapy with near-infrared irradiation and luminescence bioimaging.

    PubMed

    Wang, Dan; Zhu, Lin; Pu, Yuan; Wang, Jie-Xin; Chen, Jian-Feng; Dai, Liming

    2017-08-10

    In the present study, we devised a green-synthesis route to NaYF4:Gd(3+),Yb(3+),Er(3+) upconversion nanoparticles (UCNPs) by using eco-friendly paraffin liquid, instead of 1-octadecene, as a high boiling non-coordinating solvent. A multifunctional nanoplatform was then developed by coating UCNPs with biocompatible transferrin (TRF) for magnetically-assisted and near-infrared light induced photodynamic therapy and bioimaging. Protoporphyrin IX (PpIX), a clinically approved photodynamic therapy agent, was loaded into the shell layer of the TRF-coated UCNPs (UCNP@TRF nanoparticles), which can be efficiently taken up by cancer cells for photodynamic therapy. Upon near-infrared light irradiation, the UCNP@TRF-PpIX nanoparticles could not only kill the cancer cells via photodynamic therapy but also serve as imaging probes. We also demonstrated that an external magnetic field could be used to increase the uptake of UCNP@TRF-PpIX nanoparticles by MDA-MB-231 and HeLa cancer cells, and hence result in an enhanced photodynamic therapy efficiency. This work demonstrates the innovative design and development of high-performance multifunctional PDT agents.

  8. Excellent improvement in the static and dynamic magnetic properties of carbon coated iron nanoparticles for microwave absorption

    NASA Astrophysics Data System (ADS)

    Khani, Omid; Shoushtari, Morteza Zargar; Farbod, Mansoor

    2015-11-01

    Carbon coated iron nanoparticles were synthesized, using a simple arc-discharge method. The morphology and the internal structure of the core/shell nanoparticles were studied, using field emission scanning electron microscopy and transmission electron microscopy. X-ray diffraction analysis showed that both magnetic α-Fe and nonmagnetic γ-Fe phases existed in the as-prepared particles. In order to improve the static and dynamic magnetic properties of the core/shell nanoparticles, the produced nanocapsules were annealed in argon atmosphere at two different temperatures. Hysteresis loops revealed that the value of the saturation magnetization (MS) increased more than 4.1 times of its original value by annealing and this led to 70% increase in the imaginary part of the permeability. Phase analysis showed that heat treatment eliminated the nonmagnetic γ-Fe phase completely. The reflection loss plots were studied for composite layers containing 20 vol% of the annealed and not annealed nanocapsules. One of the absorber layers which contained annealed nanocapsules showed at least -10 dB loss in the whole G, C, X and Ku frequency bands and the optimal absorption exceeded -37 dB at 5.8 GHz for the as-prepared sample with a thickness of 3.2 mm. The results revealed that the magnetic properties of the arc-made Fe/C core/shell nanoparticle can be improved significantly by annealing in argon.

  9. Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy.

    PubMed

    Rao, Lang; Cai, Bo; Bu, Lin-Lin; Liao, Qing-Quan; Guo, Shi-Shang; Zhao, Xing-Zhong; Dong, Wen-Fei; Liu, Wei

    2017-03-13

    Biomimetic cell membrane-coated nanoparticles (CM-NPs) with superior biochemical properties have been broadly utilized for various biomedical applications. Currently, researchers primarily focus on using ultrasonic treatment and mechanical extrusion to improve the synthesis of CM-NPs. In this work, we demonstrate that microfluidic electroporation can effectively facilitate the synthesis of CM-NPs. To test it, Fe3O4 magnetic nanoparticles (MNs) and red blood cell membrane-derived vesicles (RBC-vesicles) are infused into a microfluidic device. When the mixture of MNs and RBC-vesicles flow through the electroporation zone, the electric pulses can effectively promote the entry of MNs into RBC-vesicles. After that, the resulting RBC membrane-capped MNs (RBC-MNs) are collected from the chip and injected into experimental animals to test the in vivo performance. Owing to the superior magnetic and photothermal properties of the MN cores and the long blood circulation characteristic of the RBC membrane shells, core-shell RBC-MNs were used for enhanced tumor magnetic resonance imaging (MRI) and photothermal therapy (PTT). Due to the completer cell membrane coating, RBC-MNs prepared by microfluidic electroporation strategy exhibit significantly better treatment effect than the one fabricated by conventional extrusion. We believe the combination of microfluidic electroporation and CM-NPs provides an insight into the synthesis of bioinpired nanoparticles to improve cancer diagnosis and therapy.

  10. SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor.

    PubMed

    Baby, Tessy Theres; Ramaprabhu, S

    2010-03-15

    A new type of amperometric glucose biosensor based on silicon dioxide coated magnetic nanoparticle decorated multiwalled carbon nanotubes (Fe(3)O(4)@SiO(2)/MWNTs) on a glassy carbon electrode (GCE) has been developed. MWNTs have been synthesized by catalytic chemical vapour decomposition (CCVD) of acetylene over rare earth (RE) based AB(3) alloy hydride catalyst. The as-grown MWNTs have been purified and further functionlized. Functionalized MWNTs have been decorated with magnetic Fe(3)O(4) nanoparticles which have been uniformly coated with biocompatible SiO(2) using a simple chemical reduction method. The characterization of magnetic nanoparticle modified MWNTs have been done by X-ray diffraction (XRD), Fourier transform infra red spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), energy dispersive X-ray analysis (EDX) and UV-vis spectroscopy. Amperometric biosensor has been fabricated by the deposition of glucose oxidase (GOD) over Nafion-solubilized Fe(3)O(4)@SiO(2)/MWNTs electrode. The resultant bioelectrode retains its biocatalytic activity and offers fast and sensitive glucose quantification. The performance of the biosensor has been studied using cyclic voltammetry and amperometry and the results have been discussed. The fabricated glucose biosensor exhibits a linear response from 1 microM to 30 mM with an excellent detection limit of 800 nM indicating the potential applications in food industries. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  11. In vitro studies of heparin-coated magnetic nanoparticles for potential use in the treatment of neointimal hyperplasia

    NASA Astrophysics Data System (ADS)

    Hargett, Andrew

    Purpose: Though recent decades have developed a myriad of treatments in response to atherosclerosis, prevalence remains high and complications, especially restenosis, may occur. Restenosis following stents is often caused by excessive vascular smooth muscle cell (VSMCS) migration and proliferation into the intima, known as neointimal hyperplasia. The shear number of angioplasty and stent procedures throughout the world makes this a major concern of all endovascular surgery. Our lab has proposed the pairing of heparin and magnetic nanoparticles for targeted drug delivery to the stent location. Utilizing the high surface area of nanoparticles, we hope to deliver higher heparin dosing to inhibit VSMC proliferation without systemic effects. This study evaluates synthesis of these particles as well as preliminary in vitro controls on relevant cell lines found within the vasculature system. Materials and Methods: Heparin-coated iron oxide nanoparticles were synthesized and characterized according to size (TEM), hydrodynamic diameter (DLS), zeta potential, iron concentration, and heparin loading (DMMB assay). Assays were then performed using these particles as experimental conditions on VSMCs, Endothelial Cells (PECs), and Fibroblasts (3T3s) for determination of cell uptake (Prussian Blue, TEM), effects on proliferation (MTS assay), cytotoxicity (Live/Dead assay), and phenotype changes (immunofluorescent staining). Experimental conditions were assessed against control nanoparticles without heparin and raw heparin in solution for dosage effects. Results: Particles were successfully synthesized, loaded with heparin, and characterized to validate each step of synthesis. Proliferation and cytotoxicity cell assays determined heparin-coated nanoparticles to be more potent in effects at lower concentrations of heparin when compared to raw heparin in solution. Immunostaining of VSMCs demonstrated a relatively higher tendency towards nonproliferative phenotypes following

  12. Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles.

    PubMed

    Zhang, Ming; Cushing, Brian L; O'Connor, Charles J

    2008-02-27

    A systematic study of the formation of silica-coated magnetite particles via a modified reverse microemulsion approach was investigated by using transmission electron microscopy (TEM), x-ray diffraction (XRD) and a superconducting quantum interference device (SQUID). The results show that the surfactant Igepal CO-520 played an important role in the reaction system, and the thickness of the silica shell could be controlled by the concentration of the reaction agents. The developed ultra-thin silica-coated magnetic particles with a ∼2 nm thin silica shell have a high saturated magnetization around 15 emu g(-1).

  13. Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Cushing, Brian L.; O'Connor, Charles J.

    2008-02-01

    A systematic study of the formation of silica-coated magnetite particles via a modified reverse microemulsion approach was investigated by using transmission electron microscopy (TEM), x-ray diffraction (XRD) and a superconducting quantum interference device (SQUID). The results show that the surfactant Igepal CO-520 played an important role in the reaction system, and the thickness of the silica shell could be controlled by the concentration of the reaction agents. The developed ultra-thin silica-coated magnetic particles with a ~2 nm thin silica shell have a high saturated magnetization around 15 emu g-1.

  14. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Li, Gui-yin; Zhou, Zhi-de; Li, Yuan-jian; Huang, Ke-long; Zhong, Ming

    2010-12-01

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe 3O 4/KCTS) as support. The magnetic Fe 3O 4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe 3O 4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe 3O 4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  15. Nanoparticles Affect PCR Primarily via Surface Interactions with PCR Components: Using Amino-Modified Silica-Coated Magnetic Nanoparticles as a Main Model.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Shi, Xianming

    2015-06-24

    Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic nanoparticles (ASMNPs, which can be collected very easily using an external magnetic field) as a model and compared them with gold nanoparticles (AuNPs, which have been studied extensively) to reveal the mechanisms by which nanoparticles affect PCR. We found that nanoparticles affect PCR primarily by binding to PCR components: (1) inhibition, (2) specifity, and (3) efficiency and yield of PCR are impacted. (1) Excess nanomaterials inhibit PCR by adsorbing to DNA polymerase, Mg(2+), oligonucleotide primers, or DNA templates. Nanoparticle surface-active groups are particularly important to this effect. (2, a) Nanomaterials do not inhibit nonspecific amplification products caused by false priming as previously surmised. It was shown that relatively low concentrations of nanoparticles inhibited the amplification of long amplicons, and increasing the amount of nanoparticles inhibited the amplification of short amplicons. This concentration phenomenon appears to be the result of the formation of "joints" upon the adsorption of ASMNPs to DNA templates. (b) Nanomaterials are able to inhibit nonspecific amplification products due to incomplete amplification by preferably adsorbing single-stranded incomplete amplification products. (3) Some types of nanomaterials, such as AuNPs, enhance the efficiency and yield of PCR because these types of nanoparticles can adsorb to single-stranded DNA more strongly than to double-stranded DNA. This behavior assists in the rapid and thorough denaturation of double-stranded DNA templates. Therefore, the interaction between the surface of nanoparticles and PCR components is sufficient to explain most of the effects of nanoparticles on PCR.

  16. Heteroaggregation between PEI-coated magnetic nanoparticles and algae: effect of particle size on algal harvesting efficiency.

    PubMed

    Ge, Shijian; Agbakpe, Michael; Zhang, Wen; Kuang, Liyuan

    2015-03-25

    Colloidal interactions between magnetic nanoparticles (NPs) and algal cells are of paramount significance to magnetophoretic separation of algal biomass from water. This study evaluated the size effect of magnetic NPs (MNPs) coated with polyethylenimine (PEI) on the separation efficiency of Scenedesmus dimorphus as well as on the recovery efficiency of MNPs from algal biomass. Results showed that algal harvesting efficiency (HE) increased from ca. 60% to 85% as the diameter of PEI-coated MNPs increased from 9 to 53 nm. Likewise, algal recovery capacity (algae/MNPs, w/w) also showed the same size dependence. But a large size (247 nm) led to a decline of algal HE, which was correctly interpreted by a settling model that predicts large sizes of MNPs could eventually reduce the settling velocity under magnetophoresis. The extended Derjaguin-Landau-Verwey-Overbeek theory revealed that the particle size and PEI coating both influenced the interaction energies (e.g., energy barrier) between MNPs and algae. Particularly, PEI coating significantly reduced the energy barrier between MNPs and algae and thereby increased their heteroaggregation and algal HE. Moreover, PEI-coated MNPs were recovered from the harvested algae biomass through a chemical-free ultrasonic method, and the recovery efficiency appeared to be higher for larger MNPs. Overall, the synthesized sizes of applied MNPs will not only affect algal HE but also have economic implications on magnetophoretic algal separation technologies.

  17. Heating efficiency and correlation between the structural and magnetic properties of oleic acid coated MnFe2O4 nanoparticles for magnetic hyperthermia application

    NASA Astrophysics Data System (ADS)

    Raland, R. D.; Saikia, D.; Borgohain, C.; Borah, J. P.

    2017-08-01

    In pursuit of developing magnetic nanoparticles with optimal heat dissipation capabilities, we have successfully synthesized manganese ferrite (MnFe2O4) nanoparticles coated with various concentrations of oleic acid (OA) via co-precipitation. We found that the particle size decreases gradually with increasing OA concentration (35 nm for 0% OA  →  30 nm for 5% OA  →  27 nm for 7% OA  →  20 nm for 9% OA), which was confirmed by the x-ray diffractogram, Williamson-Hall plot and transmission electron micrograph. We also observe a decrease in lattice parameter, and interestingly, change in the shape of MnFe2O4 nanoparticles to quasi-cubic with the increase of OA concentration. These structural changes also manifest in the cation re-distribution, bond length and angle between the octahedral and tetrahedral sites. The magnetic properties are determined by vibrational sample magnetometry (VSM), which shows an increase in the saturation magnetization (M s) from 26 emu g-1 to 38 emu g-1 with almost negligible coercivity, indicating the superparamagnetic nature of the nanoparticles. Finally, the efficiency of induction heating is measured by its specific absorption rate (SAR) and intrinsic loss power (ILP), whose value varies as a function of saturation magnetization, engendered by the changes in the structural motifs of the MnFe2O4 nanoparticles under the influence of OA coating and their concentrations. This study demonstrates the quantitative link between the size, shape and magnetic anisotropy, which are intimately entwined with the heating performance of the nanoparticle.

  18. Orbital magnetic moment and coercivity of SiO2-coated FePt nanoparticles studied by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Kadono, T.; Yamamoto, S.; Singh, V. R.; Verma, V. K.; Ishigami, K.; Shibata, G.; Harano, T.; Takeda, Y.; Okane, T.; Saitoh, Y.; Yamagami, H.; Takano, M.; Fujimori, A.

    2014-07-01

    We have investigated the spin and orbital magnetic moments of Fe in FePt nanoparticles in the L10-ordered phase coated with SiO2 by x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements at the Fe L2,3 absorption edges. Using XMCD sum rules, we evaluated the ratio of the orbital magnetic moment (Morb) to the effective spin magnetic moment (Mspineff) of Fe to be Morb/Mspineff=0.08. This Morb/Mspineff value is comparable to the value (0.09) obtained for FePt nanoparticles prepared by gas phase condensation, and is larger than the values (˜0.05) obtained for FePt thin films, indicating a high degree of L10 order. The hysteretic behavior of the FePt component of the magnetization was measured by XMCD. The magnetic coercivity (Hc) was found to be as large as 1.8 T at room temperature, ˜3 times larger than the thin film value and ˜50 times larger than that of the gas phase condensed nanoparticles. The hysteresis curve is well explained by the Stoner-Wohlfarth model for noninteracting single-domain nanoparticles with the Hc distributed from 1 to 5 T.

  19. Poly(methyl methacrylate) coating of soft magnetic amorphous and crystalline Fe,Co-B nanoparticles by chemical reduction.

    PubMed

    Fernández Barquín, L; Yedra Martínez, A; Rodríguez Fernández, L; Rojas, D P; Murphy, F J; Alba Venero, D; Ruiz González, L; González-Calbet, J; Fdez-Gubieda, M L; Pankhurst, Q A

    2012-03-01

    The structural and magnetic properties of a collection of nanoparticles coated by Poly(methyl methacrylate) through a wet chemical synthesis have been investigated. The particles display either an amorphous (M = Fe, Co) M-B arrangement or a mixed structure bcc-Fe and fcc-Co + amorphous M-B. Both show the presence of a metal oxi-hydroxide formed in aqueous reduction. The organic coating facilitates technological handling. The cost-effective synthesis involves a reduction in a Poly(methyl methacrylate) aqueous solution of iron(II) or cobalt(II) sulphates (< 0.5 M) by sodium borohydride (< 0.5 M). The particles present an oxidized component, as deduced from X-ray diffraction, Mössbauer and Fe- and Co K-edge X-ray absorption spectroscopy and electron microscopy. For the ferrous alloys, this Fe-oxide is alpha-goethite, favoured by the aqueous solution. The Poly(methyl methacrylate) coating is confirmed by Fourier transform infrared spectroscopy. In pure amorphous core alloys there is a drastic change of the coercivity from bulk to around 30 Oe in the nanoparticles. The mixed structured alloys also lie in the soft magnetic regime. Magnetisation values at room temperature range around 100 emu/g. The coercivity stems from multidomain particles and their agglomeration, triggering the dipolar interactions.

  20. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Bo; Zhang, Hui; Chen, Jin; Zhai, Chuanxin; Yang, Deren; Jiang, Biao; Wu, Yulian

    2009-09-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet β-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into β-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  1. Fe3O4 magnetic core coated by silver and functionalized with N-acetyl cysteine as novel nanoparticles in ferritin adsorption

    NASA Astrophysics Data System (ADS)

    Akduman, Begüm; Uygun, Murat; Uygun, Deniz Aktaş; Antalík, Marián

    2013-04-01

    A novel metal-chelate affinity matrix utilizing N-acetyl cysteine as a metal chelating agent was synthesized. For this, magnetic Fe3O4 core was coated with silver by chemical reduction. Then, these magnetic silver nanoparticles were covered with N-acetyl cysteine, and Fe3+ was chelated to this modified magnetic silver nanoparticle. These magnetic nanoparticles were characterized by SEM, AFM, EDX, and ESR analysis. Synthesized nanoparticles were spherical and average size is found to be 69 nm. Fe3+ chelated magnetic silver nanoparticles were used for the adsorption of ferritin from its aqueous solution. Optimum conditions for the ferritin adsorption experiments were performed at pH 6.0 phosphate buffer and 25 °C of medium temperature and the maximum ferritin adsorption capacity is found to be 89.57 mg/g nanoparticle. Ferritin adsorption onto magnetic silver nanoparticles was increased with increasing ferritin concentration while adsorption capacity was decreased with increasing ionic strength. Affinity of the magnetic silver nanoparticles to the ferritin molecule was shown with SPR analysis. It was also observed that the adsorption capacity of the magnetic silver nanoparticles was not significantly changed after the five adsorption/desorption cycles.

  2. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer.

    PubMed

    Eyvazzadeh, Nazila; Shakeri-Zadeh, Ali; Fekrazad, Reza; Amini, Elahe; Ghaznavi, Habib; Kamran Kamrava, S

    2017-07-03

    Because of their great scientific and technological potentials, iron oxide nanoparticles (IONPs) have been the focus of extensive investigations in biomedicine over the past decade. Additionally, the surface plasmon resonance effect of gold nanoparticles (AuNPs) makes them a good candidate for photothermal therapy applications. The unique properties of both IONPs (magnetic) and AuNPs (surface plasmon resonance) may lead to the development of a multi-modal nanoplatform to be used as a magnetic resonance imaging (MRI) contrast agent and as a nanoheater for photothermal therapy. Herein, core-shell gold-coated IONPs (Au@IONPs) were synthesized and investigated as an MRI contrast agent and as a light-responsive agent for cancer photothermal therapy.The synthesized Au@IONPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis. The transverse relaxivity (r 2) of the Au@IONPs was measured using a 3-T clinical MRI scanner. Through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of the Au@IONs was examined on a KB cell line, derived from the epidermal carcinoma of a human mouth. Moreover, the photothermal effects of Au@IONPs in the presence of a laser beam (λ = 808 nm; 6.3 W/cm(2); 5 min) were studied.The results show that the Au@IONPs are spherical with a hydrodynamic size of 33 nm. A transverse relaxivity of 95 mM(-1) S(-1) was measured for the synthesized Au@IONPs. It is evident from the MTT results that no significant cytotoxicity in KB cells occurs with Au@IONPs. Additionally, no significant cell damage induced by the laser is observed. Following the photothermal treatment using Au@IONPs, approximately 70% cell death is achieved. It is found that cell lethality depended strongly on incubation period and the Au@IONP concentration.The data highlight the potential of Au@IONPs as a dual-function MRI contrast agent and

  3. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Prabha, G.; Raj, V.

    2016-06-01

    In the present research work, the anticancer drug 'curcumin' is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe3O4) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183-390 nm with a zeta potential value of 26-41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix.

  4. Acoustic characterization and contrast imaging of microbubbles encapsulated by polymeric shells coated or filled with magnetic nanoparticles.

    PubMed

    Sciallero, Claudia; Grishenkov, Dmitry; Kothapalli, Satya V V N; Oddo, Letizia; Trucco, Andrea

    2013-11-01

    The combination of superparamagnetic iron oxide nanoparticles with polymeric air-filled microbubbles is used to produce two types of multimodal contrast agents to enhance medical ultrasound and magnetic resonance imaging. The nanoparticles are either covalently linked to the shell or physically entrapped into the shell. In this paper, the characterization of the acoustic properties (backscattered power, fracturing pressure, attenuation and dispersion of the ultrasonic wave) and ultrasound imaging of the two types of magnetic microbubbles are presented. In vitro B-mode images are generated using a medical ultrasound scanner by applying a nonconventional signal processing technique that is suitable to detect polymeric bubbles and based on the combination of multipulse excitation and chirp coding. Even if both types of microbubbles can be considered to be effective ultrasound contrast agents, the different structure of the shell loaded with nanoparticles has a pronounced effect on the echogenicity and the detection sensitivity of the imaging technique. The best results are obtained using microbubbles that are externally coated with nanoparticles. A backscattered power of 20 dB was achieved at lower concentration, and an increment of 8 dB in the contrast-to-tissue ratio was observed with respect to the more rigid microbubbles with particles entrapped into the shell.

  5. The effect of two novel amino acid-coated magnetic nanoparticles on survival in vascular endothelial cells, bone marrow stromal cells, and macrophages

    PubMed Central

    2014-01-01

    Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles. PMID:25276100

  6. The effect of two novel amino acid-coated magnetic nanoparticles on survival in vascular endothelial cells, bone marrow stromal cells, and macrophages

    NASA Astrophysics Data System (ADS)

    Wu, Qinghua; Meng, Ning; Zhang, Yanru; Han, Lei; Su, Le; Zhao, Jing; Zhang, Shangli; Zhang, Yun; Zhao, Baoxiang; Miao, Junying

    2014-09-01

    Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles.

  7. DNA templated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kinsella, Joseph M.

    Recent discoveries in nanoscience are predicted to potentially revolutionize future technologies in an extensive number of fields. These developments are contingent upon discovering new and often unconventional methods to synthesize and control nanoscale components. Nature provides several examples of working nanotechnology such as the use of programmed self assembly to build and deconstruct complex molecular systems. We have adopted a method to control the one dimensional assembly of magnetic nanoparticles using DNA as a scaffold molecule. With this method we have demonstrated the ability to organize 5 nm particles into chains that stretch up to ˜20 mum in length. One advantage of using DNA compared is the ability of the molecule to interact with other biomolecules. After assembling particles onto DNA we have been able to cleave the molecule into smaller fragments using restriction enzymes. Using ligase enzymes we have re-connected these fragments, coated with either gold or iron oxide, to form long one-dimensional arrangements of the two different types of nanoparticles on a single molecular guide. We have also created a sensitive magnetic field sensor by incorporating magnetic nanoparticle coated DNA strands with microfabricated electrodes. The IV characteristics of the aligned nanoparticles are dependant on the magnitude of an externally applied magnetic field. This transport phenomenon known as tunneling magnetoresistance (TMR) shows room temperature resistance of our devices over 80% for cobalt ferrite coated DNA when a field of 20 kOe is applied. In comparison, studies using two dimensional nanoparticle films of irox oxides xii only exhibit a 35% MR effect. Confinement into one dimension using the DNA guide produces a TMR mechanism which produces significant increases in magnetoresistance. This property can be utilized for applications in magnetic field sensing, data storage, and logic elements.

  8. Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: Magnetic properties and transverse relaxivity

    NASA Astrophysics Data System (ADS)

    Kaman, Ondřej; Kuličková, Jarmila; Herynek, Vít; Koktan, Jakub; Maryško, Miroslav; Dědourková, Tereza; Knížek, Karel; Jirák, Zdeněk

    2017-04-01

    Hydrothermal synthesis of Mn1-xZnxFe2O4 nanoparticles followed by direct encapsulation of the as-grown material into silica is demonstrated as a fast and facile method for preparation of efficient negative contrast agents based on clusters of ferrite crystallites. At first, the hydrothermal procedure is optimized to achieve strictly single-phase magnetic nanoparticles of Mn-Zn ferrites in the compositional range of x≈0.2-0.6 and with the mean size of crystallites ≈10 nm. The products are characterized by powder X-ray diffraction, X-ray fluorescence spectroscopy, and SQUID magnetometry, and the composition close to x=0.4 is selected for the preparation of silica-coated clusters with the mean diameter of magnetic cores ≈25 nm. Their composite structure is studied by means of transmission electron microscopy combined with detailed image analysis and magnetic measurements in DC fields. The relaxometric studies, performed in the magnetic field of B0=0.5 T, reveal high transverse relaxivity (r2(20 °C)=450 s-1 mmol(Me3O4)-1 L) with a pronounced temperature dependence, which correlates with the observed temperature dependence of magnetization and is ascribed to a mechanism of transverse relaxation similar to the motional averaging regime.

  9. Morphological Analysis of Reticuloendothelial System in Capuchin Monkeys (Sapajus spp.) after Meso-2,3-Dimercaptosuccinic Acid (DMSA) Coated Magnetic Nanoparticles Administration

    PubMed Central

    Rodrigues da Silva, Jaqueline; Tomaz, Carlos; Tavares, Maria Clotilde; Pereira Garcia, Monica; Nair Báo, Sônia; Paulino Lozzi, Silene; Bentes de Azevedo, Ricardo

    2015-01-01

    Magnetic nanoparticles can be used for numerous in vitro and in vivo applications. However, since uptake by the reticuloendothelial system represents an obstacle for the achievement of nanoparticle diagnostic and therapeutic goals, the aim of the present study was to evaluate the uptake of dimercaptosuccinic acid coated magnetic nanoparticles by reticuloendothelial system phagocytic cells present in lymph nodes, spleen, and liver tissue and how the presence of these particles could have an impact on the morphology of these organs in capuchin monkeys (Sapajus spp.). Animals were intravenously injected with dimercaptosuccinic acid coated magnetic nanoparticles and euthanized 12 hours and 90 days post-injection. Organs were processed by transmission electron microscopy and histological techniques. Samples of spleen and lymph nodes showed no morphological changes. Nevertheless, liver samples collected 90 days post-administration showed slight morphological alteration in space of Disse. Moreover, morphometrical analysis of hepatic mitochondria was performed, suggesting a clear positive correlation between mitochondrial area and dimercaptosuccinic acid coated magnetic nanoparticles administration time. The present results are directly relevant to current safety considerations in clinical diagnostic and therapeutic uses of magnetic nanoparticles. PMID:26559061

  10. Morphological Analysis of Reticuloendothelial System in Capuchin Monkeys (Sapajus spp.) after Meso-2,3-Dimercaptosuccinic Acid (DMSA) Coated Magnetic Nanoparticles Administration.

    PubMed

    Vasconcelos Braz, Shélida; Monge-Fuentes, Victoria; Rodrigues da Silva, Jaqueline; Tomaz, Carlos; Tavares, Maria Clotilde; Pereira Garcia, Monica; Nair Báo, Sônia; Paulino Lozzi, Silene; Bentes de Azevedo, Ricardo

    2015-01-01

    Magnetic nanoparticles can be used for numerous in vitro and in vivo applications. However, since uptake by the reticuloendothelial system represents an obstacle for the achievement of nanoparticle diagnostic and therapeutic goals, the aim of the present study was to evaluate the uptake of dimercaptosuccinic acid coated magnetic nanoparticles by reticuloendothelial system phagocytic cells present in lymph nodes, spleen, and liver tissue and how the presence of these particles could have an impact on the morphology of these organs in capuchin monkeys (Sapajus spp.). Animals were intravenously injected with dimercaptosuccinic acid coated magnetic nanoparticles and euthanized 12 hours and 90 days post-injection. Organs were processed by transmission electron microscopy and histological techniques. Samples of spleen and lymph nodes showed no morphological changes. Nevertheless, liver samples collected 90 days post-administration showed slight morphological alteration in space of Disse. Moreover, morphometrical analysis of hepatic mitochondria was performed, suggesting a clear positive correlation between mitochondrial area and dimercaptosuccinic acid coated magnetic nanoparticles administration time. The present results are directly relevant to current safety considerations in clinical diagnostic and therapeutic uses of magnetic nanoparticles.

  11. Leach-proof magnetic thrombolytic nanoparticles and coatings of enhanced activity.

    PubMed

    Drozdov, Andrey S; Vinogradov, Vasiliy V; Dudanov, Ivan P; Vinogradov, Vladimir V

    2016-06-20

    Despite the fact that magnetic thrombolytic composites is an emerging area, all known so far systems are based on the similar mechanism of action: thrombolytic enzyme releases from the magnetic carrier leaving non-active matrix, thus making the whole system active only for a limited period of time. Such systems often have very complex structure organization and composition, consisting of materials not approved for parenteral injection, making them poor candidates for real clinical trials and implementation. Here we report, for the first time, the production of thrombolytic magnetic composite material with non-releasing behavior and prolonged action. Obtained composite shows good thrombolytic activity, consists of fully biocompatible materials and could be applied as infinitely active thrombolytic coatings or magnetically-targetable thrombolytic agents.

  12. Leach-proof magnetic thrombolytic nanoparticles and coatings of enhanced activity

    PubMed Central

    Drozdov, Andrey S.; Vinogradov, Vasiliy V.; Dudanov, Ivan P.; Vinogradov, Vladimir V.

    2016-01-01

    Despite the fact that magnetic thrombolytic composites is an emerging area, all known so far systems are based on the similar mechanism of action: thrombolytic enzyme releases from the magnetic carrier leaving non-active matrix, thus making the whole system active only for a limited period of time. Such systems often have very complex structure organization and composition, consisting of materials not approved for parenteral injection, making them poor candidates for real clinical trials and implementation. Here we report, for the first time, the production of thrombolytic magnetic composite material with non-releasing behavior and prolonged action. Obtained composite shows good thrombolytic activity, consists of fully biocompatible materials and could be applied as infinitely active thrombolytic coatings or magnetically-targetable thrombolytic agents. PMID:27321930

  13. Leach-proof magnetic thrombolytic nanoparticles and coatings of enhanced activity

    NASA Astrophysics Data System (ADS)

    Drozdov, Andrey S.; Vinogradov, Vasiliy V.; Dudanov, Ivan P.; Vinogradov, Vladimir V.

    2016-06-01

    Despite the fact that magnetic thrombolytic composites is an emerging area, all known so far systems are based on the similar mechanism of action: thrombolytic enzyme releases from the magnetic carrier leaving non-active matrix, thus making the whole system active only for a limited period of time. Such systems often have very complex structure organization and composition, consisting of materials not approved for parenteral injection, making them poor candidates for real clinical trials and implementation. Here we report, for the first time, the production of thrombolytic magnetic composite material with non-releasing behavior and prolonged action. Obtained composite shows good thrombolytic activity, consists of fully biocompatible materials and could be applied as infinitely active thrombolytic coatings or magnetically-targetable thrombolytic agents.

  14. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy.

    PubMed

    Mashhadi Malekzadeh, Asemeh; Ramazani, Ali; Tabatabaei Rezaei, Seyed Jamal; Niknejad, Hassan

    2017-03-15

    Magnetic drug targeting is a drug delivery strategy that can be used to improve the therapeutic efficiency on tumor cells and reduce the side effects on normal cells and tissues. The aim in this study is designing a novel multifunctional drug delivery system based on superparamagnetic nanoparticles for cancer therapy. Magnetic nanoparticles were synthesized by coprecipitation of iron oxide followed by coating with poly citric acid (PCA) dendritic macromolecules via bulk polymerization strategy. It was further surface-functionalized with poly(ethylene glycol) (PEG) and then to achieve tumor cell targeting property, folic acid was further incorporated to the surface of prepared carriers via a facile coupling reaction between the hydroxyl end group of the PEG and the carboxyl group of folic acid. The so prepared nanocarriers (Fe3O4@PCA-PEG-FA) were characterized by X-ray diffraction, TEM, TGA, FT-IR, DLS and VSM techniques. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. Transmission electron microscopy and dynamic light scattering were also performed which revealed that size of nanocarriers was lying in the range of 10-49nm. Quercetin loading and release profiles of prepared nanocarriers showed that up to 83% of loaded drug was released in 250h. Fluorescent microscopy showed that the cellular uptake by folate receptor-overexpressing HeLa cells of the quercetin-loaded Fe3O4@PCA-PEG-FA nanoparticles was higher than that of non-folate conjugated nanoparticles. Thus, folate conjugation significantly increased nanoparticle cytotoxicity. Also, T2-weighted MRI images of Fe3O4@PCA-PEG-FA nanoparticles showed that the magnetic resonance signal is enhanced significantly with increasing nanoparticle concentration in water and they also served as MRI contrast agents with relaxivities of 3.4mM(-1)s(-1) (r1) and 99.8mM(-1)s(-1) (r2). The results indicate that this multifunctional nanocarrier is a significant breakthrough in developing a

  15. Characterization of alendronic- and undecylenic acid coated magnetic nanoparticles for the targeted delivery of rosiglitazone to subcutaneous adipose tissue.

    PubMed

    Saatchi, Katayoun; Tod, Sarah E; Leung, Donna; Nicholson, Kenton E; Andreu, Irene; Buchwalder, Christian; Schmitt, Veronika; Häfeli, Urs O; Gray, Sarah L

    2017-02-01

    Obesity is a state of positive energy balance where excess white adipose tissue accumulates to the detriment of metabolic health. Improving adipocyte function with systemic administration of thiazolidinediones (TZDs) improves metabolic outcomes in obesity, however TZD use is limited clinically due to undesirable side effects. Here we evaluate magnetic nanoparticles (MNPs) as a tool to target rosiglitazone (Rosi) specifically to adipose tissue. Results show Rosi can be adsorbed to MNPs (Rosi-MNPs) with hydrophobic coatings for which we present binding and release kinetics. Rosi adsorbed to MNPs retained the ability to induce PPARγ target gene expression in cells. Biodistribution analysis of radiolabeled Rosi-MNPs revealed a fat-implanted magnet significantly enhanced localization of Rosi to the targeted adipose tissue when administered by subcutaneous injection to obese mice. We propose MNPs for targeted delivery of anti-diabetic agents to superficially located subcutaneous adipose tissue.

  16. Self-Assembly of an Optically-Responsive Polydiacetylene-Coating on Iron Ferrite Magnetic Nanoparticles for Tumor Detection and Targeting

    NASA Astrophysics Data System (ADS)

    Le, Vivian

    Nanoparticles are a promising diagnostic agent with applications in tumor imaging and targeted cancer treatment. They can offer multifunctional properties by combining imaging methods to improve cancer diagnosis, treatment, and disease monitoring. Two such complementary tools are magnetic resonance imaging (MRI) and fluorescence imaging. In this thesis, a dual solvent exchange approach was chosen to facilitate the self-assembly of amphiphilic diacetylene monomers onto hydrophobic iron ferrite magnetic nanoparticles (MNPs). Various concentrations of the diacetylene monomers, 10,12-pentacosadiynoic acid (PCDA) and 10,12-heptacosadiynoic acid (HCDA), were coated onto ˜14 nm iron ferrite MNPs. The diacetylene monomer coating were cross-linked to a stable blue colored polydiacetylene (PDA) coating after applying UV light. The resulting PDA-MNP hybrid displayed characteristic chromogenic and fluorogenic in response to thermal stress. This novel multifunctional nanoparticle system holds exciting potential for dual-modality diagnostics applications.

  17. Magnetic removal of Entamoeba cysts from water using chitosan oligosaccharide-coated iron oxide nanoparticles.

    PubMed

    Shukla, Sudeep; Arora, Vikas; Jadaun, Alka; Kumar, Jitender; Singh, Nishant; Jain, Vinod Kumar

    2015-01-01

    Amebiasis, a major health problem in developing countries, is the second most common cause of death due to parasitic infection. Amebiasis is usually transmitted by the ingestion of Entamoeba histolytica cysts through oral-fecal route. Herein, we report on the use of chitosan oligosaccharide-functionalized iron oxide nanoparticles for efficient capture and removal of pathogenic protozoan cysts under the influence of an external magnetic field. These nanoparticles were synthesized through a chemical synthesis process. The synthesized particles were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and zeta potential analysis. The particles were found to be well dispersed and uniform in size. The capture and removal of pathogenic cysts were demonstrated by fluorescent microscopy, transmission electron microscopy, and scanning electron microscopy (SEM). Three-dimensional modeling of various biochemical components of cyst walls, and thereafter, flexible docking studies demonstrate the probable interaction mechanism of nanoparticles with various components of E. histolytica cyst walls. Results of the present study suggest that E. histolytica cysts can be efficiently captured and removed from contaminated aqueous systems through the application of synthesized nanoparticles.

  18. Genesis of supported carbon-coated Co nanoparticles with controlled magnetic properties, prepared by decomposition of chelate complexes

    NASA Astrophysics Data System (ADS)

    Tarasov, Konstantin; Beaunier, Patricia; Che, Michel; Marceau, Eric; Li, Yanling

    2011-05-01

    Following procedures formerly developed for the preparation of supported heterogeneous catalysts, carbon-coated cobalt nanoparticles dispersed on porous alumina have been prepared by impregnation of γ-Al2O3 with (NH4)2[Co(EDTA)] and thermal decomposition in inert atmosphere. Below 350 °C, Co(II) ions are complexed in a hexa-coordinated way by the EDTA ligand. The thermal treatment at 400-900 °C leads to the EDTA ligand decomposition and recovering of the support porosity, initially clogged by the impregnated salt. According to X-ray absorption spectroscopy, and due to in situ redox reactions between the organic ligand and Co(II), both oxidic and metallic cobalt phases are formed. Characterisation by transmission electron microscopy, X-ray diffraction and magnetic measurements reveals that an increase in the treatment temperature leads to an increase of the degree of cobalt reduction as well as to a growth of the cobalt metal particles. As a consequence, the samples prepared at 400-700 °C exhibit superparamagnetism and a saturation magnetisation of 1.7-6.5 emu g-1 at room temperature, whilst the sample prepared at 900 °C has a weak coercivity (0.1 kOe) and a saturation magnetisation of 12 emu g-1. Metal particles are homogeneously dispersed on the support and appear to be protected by carbon; its elimination by a heating in H2 at 400 °C is demonstrated to cause sintering of the metal particles. The route investigated here can be of interest for obtaining porous magnetic adsorbents or carriers with high magnetic moments and low coercivities, in which the magnetic nanoparticles are protected from chemical aggression and sintering by their coating.

  19. Microgel coating of magnetic nanoparticles via bienzyme-mediated free-radical polymerization for colorimetric detection of glucose

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Wang, Xia; Liao, Chuanan; Wei, Qingcong; Wang, Qigang

    2015-10-01

    This study describes a new strategy for the fabrication of magnetic core-shell microgels by free-radical polymerization triggered by the cascade reaction of glucose oxidase (GOx) and horseradish peroxidase (HRP). The mild polymerization around the interface of the magnetic nanoparticles permits the mild coating of the microgel layer with excellent characteristics for various applications in biocatalysis and medical diagnostics, as well as in clinical fields. The immobilized bienzyme within the microgel has a largely retained activity relative to the non-immobilized one. The confining effect of the microgel and the well designed distance between the two enzymes can benefit the diffusion of intermediates to the HRP active site. The final microgels can be incontestably employed as sensitive biosensors for colorimetric glucose detection.This study describes a new strategy for the fabrication of magnetic core-shell microgels by free-radical polymerization triggered by the cascade reaction of glucose oxidase (GOx) and horseradish peroxidase (HRP). The mild polymerization around the interface of the magnetic nanoparticles permits the mild coating of the microgel layer with excellent characteristics for various applications in biocatalysis and medical diagnostics, as well as in clinical fields. The immobilized bienzyme within the microgel has a largely retained activity relative to the non-immobilized one. The confining effect of the microgel and the well designed distance between the two enzymes can benefit the diffusion of intermediates to the HRP active site. The final microgels can be incontestably employed as sensitive biosensors for colorimetric glucose detection. Electronic supplementary information (ESI) available: Experimental details and ESI figures. See DOI: 10.1039/c5nr05716g

  20. Characterization of the biocompatible magnetic colloid on the basis of Fe3O4 nanoparticles coated with dextran, used as contrast agent in magnetic resonance imaging.

    PubMed

    Gamarra, L F; Amaro, E; Alves, S; Soga, D; Pontuschka, W M; Mamani, J B; Carneiro, S M; Brito, G E S; Figueiredo Neto, A M

    2010-07-01

    The magnetic resonance imaging contrast agent, the so-called Endorem colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe3O4 monodomain and it was observed that its oxidation to gamma-Fe2O3 occurs at 253.1 degrees C. The Mössbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T1, T2, and T2* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermo-optic coefficient dn/dT, thermal conductivity kappa, optical birefringence delta n0, nonlinear refractive index n2, nonlinear absorption beta' and third-order nonlinear susceptibility |chi(3)| are also reported.

  1. Carbon coated magnetic nanoparticles as a novel magnetic solid phase extraction adsorbent for simultaneous extraction of methamphetamine and ephedrine from urine samples.

    PubMed

    Taghvimi, Arezou; Hamishehkar, Hamed

    2017-01-15

    This paper develops a highly selective, specific and efficient method for simultaneous determination of ephedrine and methamphetamine by a new carbon coated magnetic nanoparticles (C/MNPs) as a magnetic solid phase extraction (MSPE) adsorbent in biological urine medium. The characterization of synthesized magnetic nano adsorbent was completely carried out by various characterization techniques like Fourier transform infrared (FT-IR) spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). Nine important parameters influencing extraction efficiency including amount of adsorbent, amounts of sample volume, pH, type and amount of extraction organic solvent, time of extraction and desorption, agitation rate and ionic strength of extraction medium, were studied and optimized. Under optimized extraction conditions, a good linearity was observed in the concentration range of 100-2000ng/mL for ephedrine and 100-2500ng/mL for methamphetamine. Analysis of positive urine samples was carried out by proposed method with the recovery of 98.71 and 97.87% for ephedrine and methamphetamine, respectively. The results indicated that carbon coated magnetic nanoparticles could be applied in clinical and forensic laboratories for simultaneous determination of abused drugs in urine media. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles.

    PubMed

    Saville, Steven L; Woodward, Robert C; House, Michael J; Tokarev, Alexander; Hammers, Jacob; Qi, Bin; Shaw, Jeremy; Saunders, Martin; Varsani, Rahi R; St Pierre, Tim G; Mefford, O Thompson

    2013-03-07

    It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R(2), is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. It is widely known that chain formation occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. In this work we examine the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate of aqueous suspensions of magnetic particles. A series of iron oxide nanoparticles with varying stabilizing ligand brush lengths were synthesized. These systems were characterized with dynamic light scattering, transmission electron microscopy, dark-field optical microscopy, and proton transverse relaxation rate measurements. The dark field optical microscopy and R(2) measurements were made in similar magnetic fields over the same time scale so as to correlate the reduction of the transverse relaxivity with the formation of linear aggregates. Our results indicate that varying the ligand length has a direct effect on the colloidal arrangement of the system in a magnetic field, producing differences in the rate and size of chain formation, and hence systematic changes in transverse relaxation rates over time. With increasing ligand brush length, attractive inter-particle interactions are reduced, which results in slower aggregate formation and shorter linear aggregate length. These results have implications for the stabilization, characterization and potentially the toxicity of magnetic nanoparticle systems used in biomedical applications.

  3. Tuning surface coatings of optimized magnetite nanoparticle tracers for in vivo Magnetic Particle Imaging.

    PubMed

    Khandhar, Amit P; Ferguson, R Matthew; Arami, Hamed; Kemp, Scott J; Krishnan, Kannan M

    2015-02-01

    Surface coatings are important components of Magnetic Particle Imaging (MPI) tracers - they preserve their key properties responsible for optimum tracer performance in physiological environments. In vivo, surface coatings form a physical barrier between the hydrophobic SPION cores and the physiological environment, and their design dictates the blood half-life and biodistribution of MPI tracers. Here we show the effect of tuning poly(ethylene glycol) (PEG)-based surface coatings on both in vitro and in vivo (mouse model) MPI performance of SPIONs. Our results showed that varying PEG molecular weight had a profound impact on colloidal stability, characterized using Dynamic Light Scattering (DLS), and the m'(H) response of SPIONs, measured in a 25 kHz/20 mTμ0(-1)max Magnetic Particle Spectrometer (MPS). Increasing PEG molecular weight from 5 kDa to 20 kDa preserved colloidal stability and m'(H) response of ~25 nm SPIONs - the optimum core diameter for MPI - in serum-rich cell culture medium for up to 24 hours. Furthermore, we compared the in vivo circulation time of SPIONs as a function of hydrodynamic diameter and showed that clustered SPIONs can adversely affect blood half-life; critically, SPIONs with clusters had 5 times shorter blood half-life than individually coated SPIONs. We anticipate that the development of MPI SPION tracers with long blood half-lives have potential not only in vascular imaging applications, but also enable opportunities in molecular targeting and imaging - a critical step towards early cancer detection using the new MPI modality.

  4. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting.

    PubMed

    Cole, Adam J; David, Allan E; Wang, Jianxin; Galbán, Craig J; Hill, Hannah L; Yang, Victor C

    2011-03-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, potentially enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140-190 nm) and relative PEG labeling (1.5% of surface amines - A5/D5, 0.4% - A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37 °C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 h) and D20 (11.75 h) showing much longer half-lives than D (0.12 h). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC(0-∞). Sustained tumor exposure over 24 h was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that a polyethylene glycol modified, cross-linked starch-coated MNP is a promising platform for enhanced magnetic tumor targeting, warranting further study in tumor models.

  5. Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment

    NASA Astrophysics Data System (ADS)

    Thammawong, Chakrit; Opaprakasit, Pakorn; Tangboriboonrat, Pramuan; Sreearunothai, Paiboon

    2013-06-01

    A large amount of radioactive cesium (Cs) has been released into natural environment following the nuclear accident in Fukushima, Japan in 2011. Much effort has been directed at capturing Cs and remediation of the contaminated environment. However, conventional sorbents, such as Prussian blue and zeolites cannot be easily recovered once spread into an open environment. Here, we develop new nano-sorbent based on the magnetic nanoparticles (MNP) functionalized with Prussian blue (PB) that possess both high Cs adsorption capacity (96 mg Cs/g sorbent) and large distribution coefficient (3.2 × 104 mL/g at 0.5 ppm Cs concentration). The developed sorbents possess good value of saturation magnetization (20 emu/g) allowing for rapid and ease of sorbent separation from the Cs solution after treatment using magnetic field. This Cs magnetic nano-sorbent can offer high potential for the use in large scale remediation of a Cs contaminated environment as well as the possibility of novel Cs decorporation drugs that can be magnetically assisted for accelerated excretion of radiocesium from the human body.

  6. RGDS-functionalized polyethylene glycol hydrogel-coated magnetic iron oxide nanoparticles enhance specific intracellular uptake by HeLa cells

    PubMed Central

    Nazli, Caner; Ergenc, Tugba Ipek; Yar, Yasemin; Acar, Havva Yagci; Kizilel, Seda

    2012-01-01

    The objective of this study was to develop thin, biocompatible, and biofunctional hydrogel-coated small-sized nanoparticles that exhibit favorable stability, viability, and specific cellular uptake. This article reports the coating of magnetic iron oxide nanoparticles (MIONPs) with covalently cross-linked biofunctional polyethylene glycol (PEG) hydrogel. Silanized MIONPs were derivatized with eosin Y, and the covalently cross-linked biofunctional PEG hydrogel coating was achieved via surface-initiated photopolymerization of PEG diacrylate in aqueous solution. The thickness of the PEG hydrogel coating, between 23 and 126 nm, was tuned with laser exposure time. PEG hydrogel-coated MIONPs were further functionalized with the fibronectin-derived arginine-glycine-aspartic acid-serine (RGDS) sequence, in order to achieve a biofunctional PEG hydrogel layer around the nanoparticles. RGDS-bound PEG hydrogel-coated MIONPs showed a 17-fold higher uptake by the human cervical cancer HeLa cell line than that of amine-coated MIONPs. This novel method allows for the coating of MIONPs with nano-thin biofunctional hydrogel layers that may prevent undesirable cell and protein adhesion and may allow for cellular uptake in target tissues in a specific manner. These findings indicate that the further biofunctional PEG hydrogel coating of MIONPs is a promising platform for enhanced specific cell targeting in biomedical imaging and cancer therapy. PMID:22619531

  7. Polyelectrolyte-coated gold magnetic nanoparticles for immunoassay development: toward point of care diagnostics for syphilis screening.

    PubMed

    Yang, Dong; Ma, Jianzhong; Zhang, Qinlu; Li, Ningning; Yang, Jiangcun; Raju, Paul Ananda; Peng, Mingli; Luo, Yanling; Hui, Wenli; Chen, Chao; Cui, Yali

    2013-07-16

    Immediate response for disease control relies on simple, inexpensive, and sensitive diagnostic tests, highly sought after for timely and accurate test of various diseases, including infectious diseases. Composite Fe3O4/Au nanoparticles have attracted considerable interest in diagnostic applications due to their unique physical and chemical properties. Here, we developed a simple coating procedure for gold magnetic nanoparticles (GMNs) with poly(acrylic acid) (PAA). PAA-coated GMNs (PGMNs) were stable and monodispersed and characterized by Fourier transform-infrared spectroscopy (FT-IR), transmission electron microscopy, UV-visible scanning spectrophotometry, thermogravimetric analysis, and Zetasizer methodologies. For diagnostic application, we established a novel lateral flow immunoassay (LFIA) strip test system where recombinant Treponema pallidum antigens (r-Tp) were conjugated with PGMNs to construct a particle probe for detection of anti-Tp antibodies. Intriguingly, the particle probes specifically identified Tp antibodies with a detection limitation as low as 1 national clinical unit/mL (NCU/mL). An ample pool of 1020 sera samples from three independent hospitals were obtained to assess our PGMNs-based LFIA strips, which exhibited substantially high values of sensitivity and specificity for all clinical tests (higher than 97%) and, therefore, proved to be a suitable approach for syphilis screening at a point-of-care test manner.

  8. Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood.

    PubMed

    Lee, Jung-Jae; Jeong, Kyung Jae; Hashimoto, Michinao; Kwon, Albert H; Rwei, Alina; Shankarappa, Sahadev A; Tsui, Jonathan H; Kohane, Daniel S

    2014-01-08

    Bacterial sepsis is a serious clinical condition that can lead to multiple organ dysfunction and death despite timely treatment with antibiotics and fluid resuscitation. We have developed an approach to clearing bacteria and endotoxin from the bloodstream, using magnetic nanoparticles (MNPs) modified with bis-Zn-DPA, a synthetic ligand that binds to both Gram-positive and Gram-negative bacteria. Magnetic microfluidic devices were used to remove MNPs bound to Escherichia coli , a Gram-negative bacterium commonly implicated in bacterial sepsis, from bovine whole blood at flows as high as 60 mL/h, resulting in almost 100% clearance. Such devices could be adapted to clear bacteria from septicemic patients.

  9. High productivity purification of immunoglobulin G monoclonal antibodies on starch-coated magnetic nanoparticles by steric exclusion of polyethylene glycol.

    PubMed

    Gagnon, Pete; Toh, Phyllicia; Lee, Jeremy

    2014-01-10

    We achieved exceptionally high capacity capture of monoclonal IgG by adding 200 nm starch-coated magnetic particles as nucleation centers, adding polyethylene glycol (PEG), then collecting the particle-associated antibody in a magnetic field. Experimental data suggest that accretion of IgG begins on particle surfaces then continues with fusion of particle-centric accretions up to about 1mm in a process that closely parallels PEG precipitation. An embedded nanoparticle mass of 1.3% of the IgG mass is adequate to enable efficient magnetic collection of the associated IgG. Recovery of purified IgG averaged 98% up to loads of 78 mg of IgG per mg of particles. Converted to an equivalent volume of settled particles, this represents about 58 g IgG per mL of nanoparticles, which is roughly 1000 times higher than the average capacity of commercial protein A porous particles packed in columns. When applied to cell culture harvest clarified by centrifugation and microfiltration, performing the nanoparticle technique under physiological conditions permitted only a 10-fold reduction of host cell protein (HCP) contamination and IgG recovery less than 50%. Application of a more capable clarification method and operating the nanoparticle method at 0.5-1.0M NaCl supported more than 99% HCP reduction and 87% IgG recovery. The high salt concentration also dramatically diminished the influence of operating pH on selectivity. The nanoparticle step was followed by sample application without buffer exchange to a column packed with multimodal electropositive-hydrophobic particles that reduced HCP to 2 ppm. Aggregate content was reduced from 4.9 to 3.6% at the nanoparticle step, then to less than 0.05% at the multimodal step. The multimodal step also removed residual PEG. Overall IgG recovery was 69%. The ability of the system to achieve purity similar to protein A, but dramatically higher productivity than packed columns, suggests that the technique could evolve as a credible option for

  10. Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells.

    PubMed

    Ghio, Andrew J; Dailey, Lisa A; Richards, Judy H; Jang, Myoseon

    2009-07-01

    Numerous industrial applications for man-made nanoparticles have been proposed. Interactions of nanoparticles with agents in the atmosphere may impact human health. We tested the postulate that in vitro exposures of respiratory epithelial cells to airborne magnetic nanoparticles (MNP; Fe(3)O(4)) with and without a secondary organic aerosol (SOA) and an inorganic acid could affect iron homeostasis, oxidative stress, and interleukin (IL)-8 release. Cell iron concentrations were increased after exposures to MNP and values were further elevated with co-exposures to either SOA or inorganic acid. Increased expression of ferritin and elevated levels of RNA for DMT1, proteins for iron storage and transport respectively, followed MNP exposures, but values were significant for only those with co-exposures to inorganic acid and organic aerosols. Cell iron concentration corresponded to a measure of oxidative stress in the airway epithelial cells; MNP with co-exposures to SOA and inorganic acid increased both available metal and indices of oxidant generation. Finally, the release of a proinflammatory cytokine (i.e. IL-8) by the exposed cells similarly increased with cell iron concentration. We conclude that MNP can interact with a SOA and an inorganic acid to present metal in a catalytically reactive state to cultured respiratory cells. This produces an oxidative stress to affect a release of IL-8.

  11. The dendritic effect and magnetic permeability in dendron coated nickel and manganese zinc ferrite nanoparticles.

    PubMed

    Jishkariani, Davit; Lee, Jennifer D; Yun, Hongseok; Paik, Taejong; Kikkawa, James M; Kagan, Cherie R; Donnio, Bertrand; Murray, Christopher B

    2017-09-28

    The collective magnetic properties of nanoparticle (NP) solid films are greatly affected by inter-particle dipole-dipole interactions and therefore the proximity of the neighboring particles. In this study, a series of dendritic ligands (generations 0 to 3, G0-G3) have been designed and used to cover the surface of magnetic NPs to control the spacings between the NP components in single lattices. The dendrons of different generations introduced here were based on the 2,2-bis(hydroxymethyl)propionic acid (Bis-MPA) scaffold and equipped with an appropriate surface binding group at one end and several fatty acid segments at the other extremity. The surface of the NPs was then modified by partial ligand exchange between the primary stabilizing surfactants and the new dendritic wedges. It was shown that this strategy permitted very precise tuning of inter-particle spacings in the range of 2.9-5.0 nm. As expected, the increase in the inter-particle spacings reduced the dipole-dipole interactions between magnetic NPs and therefore allowed changes in their magnetic permeability. The dendron size and inter-particle distance dependence was studied to reveal the dendritic effect and identify the optimal geometry and generation.

  12. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties.

    PubMed

    Lartigue, Lenaic; Innocenti, Claudia; Kalaivani, Thangavel; Awwad, Azzam; Sanchez Duque, Maria del Mar; Guari, Yannick; Larionova, Joulia; Guérin, Christian; Montero, Jean-Louis Georges; Barragan-Montero, Véronique; Arosio, Paolo; Lascialfari, Alessandro; Gatteschi, Dante; Sangregorio, Claudio

    2011-07-13

    Synthesis of functionalized magnetic nanoparticles (NPs) for biomedical applications represents a current challenge. In this paper we present the synthesis and characterization of water-dispersible sugar-coated iron oxide NPs specifically designed as magnetic fluid hyperthermia heat mediators and negative contrast agents for magnetic resonance imaging. In particular, the influence of the inorganic core size was investigated. To this end, iron oxide NPs with average size in the range of 4-35 nm were prepared by thermal decomposition of molecular precursors and then coated with organic ligands bearing a phosphonate group on one side and rhamnose, mannose, or ribose moieties on the other side. In this way a strong anchorage of the organic ligand on the inorganic surface was simply realized by ligand exchange, due to covalent bonding between the Fe(3+) atom and the phosphonate group. These synthesized nanoobjects can be fully dispersed in water forming colloids that are stable over very long periods. Mannose, ribose, and rhamnose were chosen to test the versatility of the method and also because these carbohydrates, in particular rhamnose, which is a substrate of skin lectin, confer targeting properties to the nanosystems. The magnetic, hyperthermal, and relaxometric properties of all the synthesized samples were investigated. Iron oxide NPs of ca. 16-18 nm were found to represent an efficient bifunctional targeting system for theranostic applications, as they have very good transverse relaxivity (three times larger than the best currently available commercial products) and large heat release upon application of radio frequency (RF) electromagnetic radiation with amplitude and frequency close to the human tolerance limit. The results have been rationalized on the basis of the magnetic properties of the investigated samples.

  13. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe

    2016-02-01

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core-shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals ( 11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core-shell nanoparticles ( 54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core-shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  14. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy

    PubMed Central

    Li, Tianyuzi; Gendelman, Howard E; Zhang, Gang; Puligujja, Pavan; McMillan, JoEllyn M; Bronich, Tatiana K; Edagwa, Benson; Liu, Xin-Ming; Boska, Michael D

    2015-01-01

    Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory’s development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK), pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART) nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI) scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA) decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO]) particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN)-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery. PMID:26082630

  15. Silica-coated magnetic nanoparticles impair proteasome activity and increase the formation of cytoplasmic inclusion bodies in vitro.

    PubMed

    Phukan, Geetika; Shin, Tae Hwan; Shim, Jeom Soon; Paik, Man Jeong; Lee, Jin-Kyu; Choi, Sangdun; Kim, Yong Man; Kang, Seong Ho; Kim, Hyung Sik; Kang, Yup; Lee, Soo Hwan; Mouradian, M Maral; Lee, Gwang

    2016-07-05

    The potential toxicity of nanoparticles, particularly to neurons, is a major concern. In this study, we assessed the cytotoxicity of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye (MNPs@SiO2(RITC)) in HEK293 cells, SH-SY5Y cells, and rat primary cortical and dopaminergic neurons. In cells treated with 1.0 μg/μl MNPs@SiO2(RITC), the expression of several genes related to the proteasome pathway was altered, and proteasome activity was significantly reduced, compared with control and with 0.1 μg/μl MNPs@SiO2(RITC)-treated cells. Due to the reduction of proteasome activity, formation of cytoplasmic inclusions increased significantly in HEK293 cells over-expressing the α-synuclein interacting protein synphilin-1 as well as in primary cortical and dopaminergic neurons. Primary neurons, particularly dopaminergic neurons, were more vulnerable to MNPs@SiO2(RITC) than SH-SY5Y cells. Cellular polyamines, which are associated with protein aggregation, were significantly altered in SH-SY5Y cells treated with MNPs@SiO2(RITC). These findings highlight the mechanisms of neurotoxicity incurred by nanoparticles.

  16. Silica-coated magnetic nanoparticles impair proteasome activity and increase the formation of cytoplasmic inclusion bodies in vitro

    PubMed Central

    Phukan, Geetika; Shin, Tae Hwan; Shim, Jeom Soon; Paik, Man Jeong; Lee, Jin-Kyu; Choi, Sangdun; Kim, Yong Man; Kang, Seong Ho; Kim, Hyung Sik; Kang, Yup; Lee, Soo Hwan; Mouradian, M. Maral; Lee, Gwang

    2016-01-01

    The potential toxicity of nanoparticles, particularly to neurons, is a major concern. In this study, we assessed the cytotoxicity of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye (MNPs@SiO2(RITC)) in HEK293 cells, SH-SY5Y cells, and rat primary cortical and dopaminergic neurons. In cells treated with 1.0 μg/μl MNPs@SiO2(RITC), the expression of several genes related to the proteasome pathway was altered, and proteasome activity was significantly reduced, compared with control and with 0.1 μg/μl MNPs@SiO2(RITC)-treated cells. Due to the reduction of proteasome activity, formation of cytoplasmic inclusions increased significantly in HEK293 cells over-expressing the α–synuclein interacting protein synphilin-1 as well as in primary cortical and dopaminergic neurons. Primary neurons, particularly dopaminergic neurons, were more vulnerable to MNPs@SiO2(RITC) than SH-SY5Y cells. Cellular polyamines, which are associated with protein aggregation, were significantly altered in SH-SY5Y cells treated with MNPs@SiO2(RITC). These findings highlight the mechanisms of neurotoxicity incurred by nanoparticles. PMID:27378605

  17. Polydopamine-coated magnetic nanoparticles for enrichment and direct detection of small molecule pollutants coupled with MALDI-TOF-MS.

    PubMed

    Ma, Yu-rong; Zhang, Xiao-le; Zeng, Tao; Cao, Dong; Zhou, Zhen; Li, Wen-hui; Niu, Hongyun; Cai, Ya-qi

    2013-02-01

    Polydopamine-coated Fe(3)O(4) nanoparticles (Fe(3)O(4)@PDA NPs) were synthesized and applied as matrix for the detection of pollutants by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The synthesis of Fe(3)O(4)@PDA NPs was accomplished in 30 min by in situ polymerization of dopamine without any toxic reagent. Using Fe(3)O(4)@PDA NPs as matrix of MALDI-TOF, eleven small molecule pollutants (molecular weight from 251.6 to 499.3), including Benzo(a)pyrene (BaP), three perfluorinated compounds (PFCs), and seven antibiotics, were successfully detected in either positive or negative reflection mode without background interference. Furthermore, the Fe(3)O(4)@PDA NPs can also enrich trace amounts of hydrophobic target, such as BaP, from solution to nanoparticles surface. Then the Fe(3)O(4)@PDA-BaP can be isolated through magnetic sedimentation step and directly spotted on the stainless steel plate for MALDI measurement. With Fe(3)O(4)@PDA NPs as adsorbent and matrix, we also realized the analysis of BaP in tap water and lake water samples. Thus, a magnetic solid-phase extraction (MSPE)-MALDI-TOF-MS method was established for the measurement of BaP.

  18. Magnetic inductive heating of organs of mouse models treated by copolymer coated Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Pham, Hong Nam; Giang Pham, Thi Ha; Nguyen, Dac Tu; Thong Phan, Quoc; Thu Huong Le, Thi; Thu Ha, Phuong; Do, Hung Manh; Nhung Hoang, Thi My; Phuc Nguyen, Xuan

    2017-06-01

    Biodistribution studies provide basic information to design and perform various applications of superparamagnetic iron oxide magnetic nanoparticles (SPIOs) in biomedicine such as drug delivery, MRI as well as hyperthermia. Recently, several quantitative measurements as well as new imaging methods have been used to characterize the SPIOs distribution in organs and in tissues of animal model. In this report we used the fabricated iron oxide nanoparticles coated with two block copolymers of polystyrene-co-polyacrylic acid (St-co-PAA) and polylactic acid-co-polyethylene glycol (PLA-PEG). The biodistributions were investigated ex-vivo for several organs of both healthy and Sarcoma transplanted Swiss mice. The SPIOs concentrations were verified mainly by magnetic inductive heating (MIH) measurement with a combination with atomic absorption spectroscopy (AAS). The results indicated the density detected highest in liver and lowest in kidney. The SPIOs concentration increased significantly up to 24 h after the injection. The observations by our two methods not only are in agreement with each other but also consistent with the tendency reported by other techniques. Discussion will also concern injection strategy for various aspects of hyperthermia applications. Invited talk at 8th Int. Workshop on Advanced Materials Science and Nanotechnology (Ha Long City, Vietnam, 8-12 November 2016).

  19. Trastuzumab-conjugated liposome-coated fluorescent magnetic nanoparticles to target breast cancer.

    PubMed

    Jang, Mijung; Yoon, Young Il; Kwon, Yong Soo; Yoon, Tae-Jong; Lee, Hak Jong; Hwang, Sung Il; Yun, Bo La; Kim, Sun Mi

    2014-01-01

    To synthesize mesoporous silica-core-shell magnetic nanoparticles (MNPs) encapsulated by liposomes (Lipo [MNP@m-SiO2]) in order to enhance their stability, allow them to be used in any buffer solution, and to produce trastuzumab-conjugated (Lipo[MNP@m-SiO2]-Her2Ab) nanoparticles to be utilized in vitro for the targeting of breast cancer. The physiochemical characteristics of Lipo[MNP@m-SiO2] were assessed in terms of size, morphological features, and in vitro safety. The multimodal imaging properties of the organic dye incorporated into Lipo[MNP@m-SiO2] were assessed with both in vitro fluorescence and MR imaging. The specific targeting ability of trastuzumab (Her2/neu antibody, Herceptin®)-conjugated Lipo[MNP@m-SiO2] for Her2/neu-positive breast cancer cells was also evaluated with fluorescence and MR imaging. We obtained uniformly-sized and evenly distributed Lipo[MNP@m-SiO2] that demonstrated biological stability, while not disrupting cell viability. Her2/neu-positive breast cancer cell targeting by trastuzumab-conjugated Lipo[MNP@m-SiO2] was observed by in vitro fluorescence and MR imaging. Trastuzumab-conjugated Lipo[MNP@m-SiO2] is a potential treatment tool for targeted drug delivery in Her2/neu-positive breast cancer.

  20. Trastuzumab-Conjugated Liposome-Coated Fluorescent Magnetic Nanoparticles to Target Breast Cancer

    PubMed Central

    Jang, Mijung; Yoon, Young Il; Kwon, Yong Soo; Yoon, Tae-Jong; Lee, Hak Jong; Hwang, Sung Il; Yun, Bo La

    2014-01-01

    Objective To synthesize mesoporous silica-core-shell magnetic nanoparticles (MNPs) encapsulated by liposomes (Lipo [MNP@m-SiO2]) in order to enhance their stability, allow them to be used in any buffer solution, and to produce trastuzumab-conjugated (Lipo[MNP@m-SiO2]-Her2Ab) nanoparticles to be utilized in vitro for the targeting of breast cancer. Materials and Methods The physiochemical characteristics of Lipo[MNP@m-SiO2] were assessed in terms of size, morphological features, and in vitro safety. The multimodal imaging properties of the organic dye incorporated into Lipo[MNP@m-SiO2] were assessed with both in vitro fluorescence and MR imaging. The specific targeting ability of trastuzumab (Her2/neu antibody, Herceptin®)-conjugated Lipo[MNP@m-SiO2] for Her2/neu-positive breast cancer cells was also evaluated with fluorescence and MR imaging. Results We obtained uniformly-sized and evenly distributed Lipo[MNP@m-SiO2] that demonstrated biological stability, while not disrupting cell viability. Her2/neu-positive breast cancer cell targeting by trastuzumab-conjugated Lipo[MNP@m-SiO2] was observed by in vitro fluorescence and MR imaging. Conclusion Trastuzumab-conjugated Lipo[MNP@m-SiO2] is a potential treatment tool for targeted drug delivery in Her2/neu-positive breast cancer. PMID:25053899

  1. Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery.

    PubMed

    Unterweger, Harald; Tietze, Rainer; Janko, Christina; Zaloga, Jan; Lyer, Stefan; Dürr, Stephan; Taccardi, Nicola; Goudouri, Ourania-Menti; Hoppe, Alexander; Eberbeck, Dietmar; Schubert, Dirk W; Boccaccini, Aldo R; Alexiou, Christoph

    2014-01-01

    A highly selective and efficient cancer therapy can be achieved using magnetically directed superparamagnetic iron oxide nanoparticles (SPIONs) bearing a sufficient amount of the therapeutic agent. In this project, SPIONs with a dextran and cisplatin-bearing hyaluronic acid coating were successfully synthesized as a novel cisplatin drug delivery system. Transmission electron microscopy images as well as X-ray diffraction analysis showed that the individual magnetite particles were around 4.5 nm in size and monocrystalline. The small crystallite sizes led to the superparamagnetic behavior of the particles, which was exemplified in their magnetization curves, acquired using superconducting quantum interference device measurements. Hyaluronic acid was bound to the initially dextran-coated SPIONs by esterification. The resulting amide bond linkage was verified using Fourier transform infrared spectroscopy. The additional polymer layer increased the vehicle size from 22 nm to 56 nm, with a hyaluronic acid to dextran to magnetite weight ratio of 51:29:20. A maximum payload of 330 μg cisplatin/mL nanoparticle suspension was achieved, thus the particle size was further increased to around 77 nm with a zeta potential of -45 mV. No signs of particle precipitation were observed over a period of at least 8 weeks. Analysis of drug-release kinetics using the dialysis tube method revealed that these were driven by inverse ligand substitution and diffusion through the polymer shell as well as enzymatic degradation of hyaluronic acid. The biological activity of the particles was investigated in a nonadherent Jurkat cell line using flow cytometry. Further, cell viability and proliferation was examined in an adherent PC-3 cell line using xCELLigence analysis. Both tests demonstrated that particles without cisplatin were biocompatible with these cells, whereas particles with the drug induced apoptosis in a dose-dependent manner, with secondary necrosis after prolonged incubation. In

  2. Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery

    PubMed Central

    Unterweger, Harald; Tietze, Rainer; Janko, Christina; Zaloga, Jan; Lyer, Stefan; Dürr, Stephan; Taccardi, Nicola; Goudouri, Ourania-Menti; Hoppe, Alexander; Eberbeck, Dietmar; Schubert, Dirk W; Boccaccini, Aldo R; Alexiou, Christoph

    2014-01-01

    A highly selective and efficient cancer therapy can be achieved using magnetically directed superparamagnetic iron oxide nanoparticles (SPIONs) bearing a sufficient amount of the therapeutic agent. In this project, SPIONs with a dextran and cisplatin-bearing hyaluronic acid coating were successfully synthesized as a novel cisplatin drug delivery system. Transmission electron microscopy images as well as X-ray diffraction analysis showed that the individual magnetite particles were around 4.5 nm in size and monocrystalline. The small crystallite sizes led to the superparamagnetic behavior of the particles, which was exemplified in their magnetization curves, acquired using superconducting quantum interference device measurements. Hyaluronic acid was bound to the initially dextran-coated SPIONs by esterification. The resulting amide bond linkage was verified using Fourier transform infrared spectroscopy. The additional polymer layer increased the vehicle size from 22 nm to 56 nm, with a hyaluronic acid to dextran to magnetite weight ratio of 51:29:20. A maximum payload of 330 μg cisplatin/mL nanoparticle suspension was achieved, thus the particle size was further increased to around 77 nm with a zeta potential of −45 mV. No signs of particle precipitation were observed over a period of at least 8 weeks. Analysis of drug-release kinetics using the dialysis tube method revealed that these were driven by inverse ligand substitution and diffusion through the polymer shell as well as enzymatic degradation of hyaluronic acid. The biological activity of the particles was investigated in a nonadherent Jurkat cell line using flow cytometry. Further, cell viability and proliferation was examined in an adherent PC-3 cell line using xCELLigence analysis. Both tests demonstrated that particles without cisplatin were biocompatible with these cells, whereas particles with the drug induced apoptosis in a dose-dependent manner, with secondary necrosis after prolonged incubation

  3. A dual mode targeting probe for distinguishing HER2-positive breast cancer cells using silica-coated fluorescent magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Jia; An, Yan-Li; Zang, Feng-Chao; Zong, Shen-Fei; Cui, Yi-Ping; Teng, Gao-Jun

    2013-10-01

    We report a composite nanoprobe based on silica-coated magnetic nanoparticles (NPs) for distinguishing breast cancers at different HER2 statuses. The nanoprobe has a core-shell structure, with Fe3O4 NPs as the magnetic core and dye-embedded silica as the fluorescent shell, whose average size is about 150 nm. Besides, the outmost surfaces of the probes were modified with specific antibodies to endow the probe with a targeting ability. With such a structure, the nanoprobe can accomplish dual mode targeting of human breast cancer cells based on fluorescence and magnetic resonance imaging (MRI). In the experiments, three human breast cancer cell lines were used to test the targeting ability of the nanoprobe. Specifically, SKBR3 cells with a high HER2 expression level were used as the model target cells, while MCF7 cells with a lower HER2 expression levels and HER2-negative MDA-MB-231 cells were used as the controls. Both the fluorescence and MRI imaging results confirmed that the nanoprobe can distinguish three cancer cell lines with different HER2 expression levels. With the dual mode imaging and specific targeting properties, we anticipate that the presented nanoprobe may have a great potential in the diagnosis and treatment of cancerous diseases.

  4. Low toxicity and long circulation time of Polyampholyte-coated magnetic nanoparticles for blood pool contrast agents

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Shen, Ming; Zhao, Tao; Xu, Yuanyuan; Lin, Jiang; Duan, Yourong; Gu, Hongchen

    2015-01-01

    Polyampholyte-coated (poly(acrylic acid) (PAA)-co-3-(diethylamino)-propylamine (DEAPA)) magnetite nanoparticles (PAMNPs) have been prepared as contrasting agent used in magnetic resonance imaging (MRI). Excellent biocompatibility is required for contrasting agents used in high-resolution magnetic resonance angiography. To evaluate the biocompatibility of PAMNPs, some experiments have been conducted. The hemolysis, plasma recalcification, dynamic blood clotting, prothrombin time, inflammatory cytokine release and complement system activation assays were carried out to investigate the hemocompatibility. To evaluate the toxicity to vessel, MTT test and vascular irritation tests were conducted. Tissue toxicity test was also performed to investigate the biocompability in vivo. We also looked into the biodistribution. The results showed that PAMNPs at the working concentration (0.138 mM) present similar hemocompatibility with negative control, thus have no significant effect to vessels. PAMNPs were mainly distributed in the liver and the blood. The circulation time in blood was considerably long, with the half-time of 3.77 h in plasma. This property is advantageous for PAMNPs' use in angiography. PAMNPs could be metabolized rapidly in mice and were not observed to cause any toxic or adverse effect. In short, these results suggest that the PAMNPs have great potential to serve as safe contrast agents in magnetic resonance imaging (MRI).

  5. Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools.

    PubMed

    Gong, Ji-Lai; Liang, Yi; Huang, Yong; Chen, Ji-Wei; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2007-02-15

    A simple, sensitive and highly specific immunoassay has been developed based on surface-enhanced Raman scattering for human alpha-fetoprotein (AFP), a tumor marker for the diagnosis of hepatocellular carcinoma. This strategy combines the Ag/SiO2 core-shell nanoparticles embedded with rhodamine B isothiocyanate dye molecules as Raman tags and the amino group modified silica-coated magnetic nanoparticle as immobilization matrix and separation tool. In the proposed system, a sandwich-type immunoassay was performed between polyclonal antibody functionalized Ag/SiO2 nanoparticle-based Raman tags and monoclonal antibody modified silica-coated magnetic nanoparticles. The presence of the analyte and the reaction between the antigen and antibody can be monitored by the Raman spectra of the Ag/SiO2 tags. Compared to the previous surface-enhanced Raman immunoassays, the main advantage of this strategy lies in two aspects. One is the high stability of Raman tags derived from the silica shell-coated silver core-shell nanostructure. The other is the use of silica-coated magnetic nanoparticles as immobilization matrix and separation tool, thus avoiding complicated pretreatment and washing steps. We have studied in detail the experimental parameters such as the effects of the antibody concentration modified on the Raman tags and on the magnetic particles, and the immunoreaction time. Using this strategy, concentration of human AFP up to 0.12 microg/ml was detected with a detection limit of 11.5 pg/ml.

  6. Dual mode nanoparticles: CdS coated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Radwan, F. N.; Carroll, K. J.; Carpenter, E. E.

    2010-05-01

    Reverse micelles can be used in a sequential fashion to make core-shell nanoparticles. Using this technique it is possible to make a magnetic quantum dot, by coating an iron core with a cadmium sulfide shell. Transmission electron microscopy indicated core-shell morphology and narrow size distribution of the obtained particles. Collectively, x-ray powder diffraction and x-ray photoelectron spectroscopy verified the presence of cadmium sulfide on the surface of the nanoparticles. Optical properties of the coated particles were demonstrated using fluorescence spectroscopy. A vibrating sample magnetometer was used to determine magnetic properties. Dual mode cadmium sulfide coated iron core-shell nanoparticles make unique candidates for the use in biomedical applications.

  7. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system

    PubMed Central

    Barahuie, Farahnaz; Dorniani, Dena; Saifullah, Bullo; Gothai, Sivapragasam; Hussein, Mohd Zobir; Pandurangan, Ashok Kumar; Arulselvan, Palanisamy; Norhaizan, Mohd Esa

    2017-01-01

    Chitosan (CS) iron oxide magnetic nanoparticles (MNPs) were coated with phytic acid (PTA) to form phytic acid-chitosan-iron oxide nanocomposite (PTA-CS-MNP). The obtained nanocomposite and nanocarrier were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermogravimetric and differential thermogravimetric analyses. Fourier transform infrared spectra and thermal analysis of MNPs and PTA-CS-MNP nanocomposite confirmed the binding of CS on the surface of MNPs and the loading of PTA in the PTA-CS-MNP nanocomposite. The coating process enhanced the thermal stability of the anticancer nanocomposite obtained. X-ray diffraction results showed that the MNPs and PTA-CS-MNP nanocomposite are pure magnetite. Drug loading was estimated using ultraviolet-visible spectroscopy and showing a 12.9% in the designed nanocomposite. Magnetization curves demonstrated that the synthesized MNPs and nanocomposite were superparamagnetic with saturation magnetizations of 53.25 emu/g and 42.15 emu/g, respectively. The release study showed that around 86% and 93% of PTA from PTA-CS-MNP nanocomposite could be released within 127 and 56 hours by a phosphate buffer solution at pH 7.4 and 4.8, respectively, in a sustained manner and governed by pseudo-second order kinetic model. The cytotoxicity of the compounds on HT-29 colon cancer cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The HT-29 cell line was more sensitive against PTA-CS-MNP nanocomposite than PTA alone. No cytotoxic effect was observed on normal cells (3T3 fibroblast cells). This result indicates that PTA-CS-MNP nanocomposite can inhibit the proliferation of colon cancer cells without causing any harm to normal cell. PMID:28392693

  8. Cross-linked magnetic nanoparticles from poly(ethylene glycol) and dodecyl grafted poly(succinimide) as magnetic resonance probes.

    PubMed

    Yang, Hee-Man; Park, Chan Woo; Lim, Sujin; Park, Sung-Il; Chung, Bong Hyun; Kim, Jong-Duk

    2011-12-14

    Cross-linked magnetic nanoparticles were developed to improve the structural stability of amphiphilic polymer coated magnetic nanoparticles. These nanoparticles show strong potential for biomedical applications such as magnetic resonance imaging (MRI).

  9. Polyhydroxybutyrate-coated magnetic nanoparticles for doxorubicin delivery: cytotoxic effect against doxorubicin-resistant breast cancer cell line.

    PubMed

    Yalcin, Serap; Unsoy, Gozde; Mutlu, Pelin; Khodadust, Rouhollah; Gunduz, Ufuk

    2014-01-01

    In this study, polyhydroxybutyrate (PHB)-coated magnetic nanoparticles (MNPs) were prepared by coprecipitation of iron salts (Fe and Fe) by ammonium hydroxide. Characterizations of PHB-coated MNPs were performed by Fourier transform infrared spectroscopy, x-ray diffraction, dynamic light scattering, thermal gravimetric analysis, vibrating sample magnetometry, and transmission electron microscopy analyses. Doxorubicin was loaded onto PHB-MNPs, and the release efficiencies at different pHs were studied under in vitro conditions. The most efficient drug loading concentration was found about 87% at room temperature in phosphate-buffered saline (pH 7.2). The drug-loaded MNPs were stable up to 2 months in neutral pH for mimicking physiological conditions. The drug release studies were performed with acetate buffer (pH 4.5) that mimics endosomal pH. Doxorubicin (60%) released from PHB-MNPs within 65 hours. Doxorubicin-loaded PHB-MNPs were about 2.5-fold more cytotoxic as compared with free drug on resistant Michigan Cancer Foundation-7 (human breast adenocarcinoma, MCF-7) cell line (1 μM doxorubicin) in vitro. Therefore, doxorubicin-loaded PHB-MNPs lead to overcome the drug resistance.

  10. Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging.

    PubMed

    Chen, Weihong; Yi, Peiwei; Zhang, Yi; Zhang, Liming; Deng, Zongwu; Zhang, Zhijun

    2011-10-01

    Formation of composites of dextran-coated Fe(3)O(4) nanoparticles (NPs) and graphene oxide (Fe(3)O(4)-GO) and their application as T(2)-weighted contrast agent for efficient cellular magnetic resonance imaging (MRI) are reported. Aminodextran (AMD) was first synthesized by coupling reaction of carboxymethyldextran with butanediamine, which was then chemically conjugated to meso-2,3-dimercaptosuccinnic acid-modified Fe(3)O(4) NPs. Next, the AMD-coated Fe(3)O(4) NPs were anchored onto GO sheets via formation of amide bond in the presence of 1-ethyl-3-(3-dimethyaminopropyl) carbodiimide (EDC). It is found that the Fe(3)O(4)-GO composites possess good physiological stability and low cytotoxicity. Prussian Blue staining analysis indicates that the Fe(3)O(4)-GO nanocomposites can be internalized efficiently by HeLa cells, depending on the concentration of the composites incubated with the cells. Furthermore, compared with the isolated Fe(3)O(4) NPs, the Fe(3)O(4)-GO composites show significantly enhanced cellular MRI, being capable of detecting cells at the iron concentration of 5 μg mL(-1) with cell density of 2 × 10(5) cells mL(-1), and at the iron concentration of 20 μg mL(-1) with cell density of 1000 cells mL(-1).

  11. Oleate Coated Magnetic Cores Based on Magnetite, Zn Ferrite and Co Ferrite Nanoparticles - Preparation, Physical Characterization and Biological Impact on Helianthus Annuus Photosynthesis

    SciTech Connect

    Ursache-Oprisan, Manuela; Foca-nici, Ecaterina; Cirlescu, Aurelian; Caltun, Ovidiu; Creanga, Dorina

    2010-12-02

    Sodium oleate was used as coating shell for magnetite, Zn ferrite and Co ferrite powders to stabilize them in the form of aqueous magnetic suspensions. The physical characterization was carried out by applying X-ray diffraction and magnetization measurements. Both crystallite size and magnetic core diameter ranged between 7 and 11 nm. The influence of magnetic nanoparticle suspensions (corresponding to magnetic nanoparticle levels of 10{sup -14}-10{sup -15}/cm{sup 3}) on sunflower seedlings was studied considering the changes in the photosynthesis pigment levels. Similar responses were obtained for magnetite and cobalt ferrite nanoparticle treatment consisting in the apparent inhibition of chlorophyll biosynthesis while for zinc ferrite nanoparticles some concentrations seemed to have stimulatory effects on the chlorophylls as well as on the carotene levels. But the chlorophyll ratio was diminished in the case of all three types of magnetic nanoparticles meaning their slight negative effect on the light harvesting complex II (LHC II) from the chloroplast membranes and consequently on the photosynthesis efficiency.

  12. PEG-b-AGE Polymer Coated Magnetic Nanoparticle Probes with Facile Functionalization and Anti-fouling Properties for Reducing Non-specific Uptake and Improving Biomarker Targeting

    PubMed Central

    Wang, Liya; Huang, Jing; Wu, Hui; Cheng, Guojun; Zhou, Zhengyang; MacDonald, Tobey; Yang, Lily; Mao, Hui

    2015-01-01

    Non-specific surface adsorption of bio-macromolecules (e.g. proteins) on nanoparticles, known as biofouling, and the uptake of nanoparticles by the mononuclear phagocyte system (MPS) and reticuloendothelial system (RES) lead to substantial reduction in the efficiency of target-directed imaging and delivery in biomedical applications of engineered nanomaterials in vitro and in vivo. In this work, a novel copolymer consisting of blocks of poly ethylene glycol and allyl glycidyl ether (PEG-b-AGE) was developed for coating magnetic iron oxide nanoparticles (IONPs) to reduce non-specific protein adhesion that leads to formation of “protein corona” and uptake by macrophages. The facile surface functionalization was demonstrated by using targeting ligands of a small peptide of RGD or a whole protein of transferrin (Tf). The PEG-b-AGE coated IONPs exhibited anti-biofouling properties with significantly reduced protein corona formation and non-specific uptake by macrophages before and after the surface functionalization, thus improving targeting of RGD-conjugated PEG-b-AGE coated IONPs to integrins in U87MG glioblastoma and MDA-MB-231 breast cancer cells that overexpress αvβ3 integrins, and Tf-conjugated PEG-b-AGE coated IONPs to transferrin receptor (TfR) in D556 and Daoy medulloblastoma cancer cells with high overexpression of transferrin receptor, compared to respective control cell lines. Magnetic resonance imaging (MRI) of cancer cells treated with targeted IONPs with or without anti-biofouling PEG-b-AGE coating polymers demonstrated the target specific MRI contrast change using anti-biofouling PEG-b-AGE coated IONP with minimal off-targeted background compared to the IONPs without anti-biofouling coating, promising the highly efficient active targeting of nanoparticle imaging probes and drug delivery systems and potential applications of imaging quantification of targeted biomarkers. PMID:26594360

  13. PEG-b-AGE Polymer Coated Magnetic Nanoparticle Probes with Facile Functionalization and Anti-fouling Properties for Reducing Non-specific Uptake and Improving Biomarker Targeting.

    PubMed

    Li, Yuancheng; Lin, Run; Wang, Liya; Huang, Jing; Wu, Hui; Cheng, Guojun; Zhou, Zhengyang; MacDonald, Tobey; Yang, Lily; Mao, Hui

    2015-05-07

    Non-specific surface adsorption of bio-macromolecules (e.g. proteins) on nanoparticles, known as biofouling, and the uptake of nanoparticles by the mononuclear phagocyte system (MPS) and reticuloendothelial system (RES) lead to substantial reduction in the efficiency of target-directed imaging and delivery in biomedical applications of engineered nanomaterials in vitro and in vivo. In this work, a novel copolymer consisting of blocks of poly ethylene glycol and allyl glycidyl ether (PEG-b-AGE) was developed for coating magnetic iron oxide nanoparticles (IONPs) to reduce non-specific protein adhesion that leads to formation of "protein corona" and uptake by macrophages. The facile surface functionalization was demonstrated by using targeting ligands of a small peptide of RGD or a whole protein of transferrin (Tf). The PEG-b-AGE coated IONPs exhibited anti-biofouling properties with significantly reduced protein corona formation and non-specific uptake by macrophages before and after the surface functionalization, thus improving targeting of RGD-conjugated PEG-b-AGE coated IONPs to integrins in U87MG glioblastoma and MDA-MB-231 breast cancer cells that overexpress αvβ3 integrins, and Tf-conjugated PEG-b-AGE coated IONPs to transferrin receptor (TfR) in D556 and Daoy medulloblastoma cancer cells with high overexpression of transferrin receptor, compared to respective control cell lines. Magnetic resonance imaging (MRI) of cancer cells treated with targeted IONPs with or without anti-biofouling PEG-b-AGE coating polymers demonstrated the target specific MRI contrast change using anti-biofouling PEG-b-AGE coated IONP with minimal off-targeted background compared to the IONPs without anti-biofouling coating, promising the highly efficient active targeting of nanoparticle imaging probes and drug delivery systems and potential applications of imaging quantification of targeted biomarkers.

  14. Magnetic Nanoparticles in Non-magnetic CNTs and Graphene

    NASA Astrophysics Data System (ADS)

    Kayondo, Moses; Seifu, Dereje

    Magnetic nanoparticles were embedded in non-magnetic CNTs and graphene matrix to incorporate all the advantages and the unique properties of CNTs and graphene. Composites of CNTs and graphene with magnetic nanoparticles may offer new opportunities for a wide variety of potential applications such as magnetic data storage, magnetic force microscopy tip, electromagnetic interference shields, thermally conductive films, reinforced polymer composites, transparent electrodes for displays, solar cells, gas sensors, magnetic nanofluids, and magnetically guided drug delivery systems. Magnetic nanoparticles coated CNTs can also be used as an electrode in lithium ion battery to replace graphite because of the higher theoretical capacity. Graphene nanocomposites, coated with magnetic sensitive nanoparticles, have demonstrated enhanced magnetic property. We would like to acknowledge support by NSF-MRI-DMR-1337339.

  15. Immobilization of Aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods.

    PubMed

    Osuna, Yolanda; Sandoval, José; Saade, Hened; López, Raúl G; Martinez, José L; Colunga, Edith M; de la Cruz, Gabriela; Segura, Elda P; Arévalo, Fernando J; Zon, María A; Fernández, Héctor; Ilyina, Anna

    2015-08-01

    Aspergillus niger lipase immobilization by covalent binding on chitosan-coated magnetic nanoparticles (CMNP), obtained by one-step co-precipitation, was studied. Hydroxyl and amino groups of support were activated using glycidol and glutaraldehyde, respectively. Fourier transform infrared spectrometry, high-resolution transmission electron microscopy and thermogravimetric analysis confirmed reaction of these coupling agents with the enzyme and achievement of a successful immobilization. The derivatives showed activities of 309.5 ± 2.0 and 266.2 ± 2.8 U (g support)(-1) for the CMNP treated with glutaraldehyde and with glycidol, respectively. Immobilization enhanced the enzyme stability against changes of pH and temperature, compared to free lipase. Furthermore, the kinetic parameters K m and V max were determined for the free and immobilized enzyme. K m value quantified for enzyme immobilized by means of glutaraldehyde was 1.7 times lowers than for free lipase. High storage stability during 50 days was observed in the immobilized derivatives. Finally, immobilized derivatives retained above 80% of their initial activity after 15 hydrolytic cycles. The immobilized enzyme can be applied in various biotechnological processes involving magnetic separation.

  16. Plasmonic and silicon spherical nanoparticle antireflective coatings.

    PubMed

    Baryshnikova, K V; Petrov, M I; Babicheva, V E; Belov, P A

    2016-03-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.

  17. Plasmonic and silicon spherical nanoparticle antireflective coatings

    PubMed Central

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes. PMID:26926602

  18. Plasmonic and silicon spherical nanoparticle antireflective coatings

    NASA Astrophysics Data System (ADS)

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-03-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.

  19. Effects of coating spherical iron oxide nanoparticles

    SciTech Connect

    Milosevic, Irena; Motte, Laurence; Aoun, Bachir; Li, Tao; Ren, Yang; Sun, Chengjun; Saboungi, Marie-Louise

    2017-01-01

    We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide on the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazu and Dr. Federica Migliardo.

  20. Sonochemical coating of magnetite nanoparticles with silica.

    PubMed

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  1. FITC-Dextran entrapped and silica coated gadolinium oxide nanoparticles for synchronous optical and magnetic resonance imaging applications.

    PubMed

    Kumar, Shailja; Meena, Virendra Kumar; Hazari, Puja Panwar; Sharma, Rakesh Kumar

    2016-06-15

    We report, microemulsion mediated synthesis of FITC-dextran dye entrapped and silica coated Gd2O3 nanoparticles (NPs) for dual purpose of optical and magnetic resonance imaging, in the present study. TEM image revealed that the average size of the NPs is 18nm and hydrodynamic diameter of the particles as measured by DLS comes out to be about 16nm. Gd2O3 core show paramagnetism which is affirmed by the NMR line broadening effect on neighboring water proton spectrum and also by magnetization curve obtained in VSM analysis. The fluorescence of the entrapped dye is confirmed by the UV-vis and fluorescence spectroscopy. Nanoencapsulation of FITC-dextran fluorophore was found to increase its optical activity and provided a blanket against quenching. Moreover, TGA data revealed that entrapment of dye imparts thermal stability to it and enhances its fluorescence in comparison to bare dye. The release kinetic pattern (at pH 7.4) of the entrapped dye revealed that these particles behave as non-releasing system. The in-vitro cell viability (SRB) assay of the particles done on normal cell line (HEK-293) as well as cancerous cell line (A-549) indicated non-cytotoxic nature of the particles. In a nut-shell, these particles have the potential to be efficiently used for optical and magnetic resonance imaging. We anticipate that further optimization of these particles can be done by either conjugating or entrapping a drug for targeted drug delivery which would open more prospective options in biomedical field.

  2. Structural characterization of copolymer embedded magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Nedelcu, G. G.; Nastro, A.; Filippelli, L.; Cazacu, M.; Iacob, M.; Rossi, C. Oliviero; Popa, A.; Toloman, D.; Dobromir, M.; Iacomi, F.

    2015-10-01

    Small magnetic nanoparticles (Fe3O4) were synthesized by co-precipitation and coated by emulsion polymerization with poly(methyl methacrylate-co-acrylic acid) (PMMA-co-AAc) to create surface functional groups that can attach drug molecules and other biomolecules. The coated and uncoated magnetite nanoparticles were stored for two years in normal closed ships and than characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and electron paramagnetic resonance spectroscopy. The solid phase transformation of magnetite to maghemite, as well as an increase in particle size were evidenced for the uncoated nanoparticles. The coated nanoparticles preserved their magnetite structure and magnetic properties. The influences of monomers and surfactant layers on interactions between the magnetic nanoparticles evidenced that the thickness of the polymer has a significant effect on magnetic properties.

  3. Facile non-hydrothermal synthesis of oligosaccharides coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effect.

    PubMed

    Huang, Jing; Wang, Liya; Zhong, Xiaodong; Li, Yuancheng; Yang, Lily; Mao, Hui

    2014-01-01

    Ultrafine sub-5 nm magnetic iron oxide nanoparticles coated with oligosaccharides (SIO) with dual T1-T2 weighted contrast enhancing effect and fast clearance has been developed as magnetic resonance imaging (MRI) contrast agent. Excellent water solubility, biocompatibility and high stability of such sub-5 nm SIO nanoparticles were achieved by using the "in-situ polymerization" coating method, which enables glucose forming oligosaccharides directly on the surface of hydrophobic iron oxide nanocrystals. Reported ultrafine SIO nanoparticles exhibit a longitudinal relaxivity (r1) of 4.1 mM(-1)s(-1) and a r1/r2 ratio of 0.25 at 3 T (clinical field strength), rendering improved T1 or "brighter" contrast enhancement in T1-weighted MRI in addition to typical T2 or "darkening" contrast of conventional iron oxide nanoparticles. Such dual contrast effect can be demonstrated in liver imaging with T2 "darkening" contrast in the liver parenchyma but T1 "bright" contrast in the hepatic vasculature. More importantly, this new class of ultrafine sub-5 nm iron oxide nanoparticles showed much faster body clearance than those with larger sizes, promising better safety for clinical applications.

  4. On the accessibility of surface-bound drugs on magnetic nanoparticles. Encapsulation of drugs loaded on modified dextran-coated superparamagnetic iron oxide by β-cyclodextrin.

    PubMed

    Sudha, Natesan; Yousuf, Sameena; Israel, Enoch V M V; Paulraj, Mosae Selvakumar; Dhanaraj, Premnath

    2016-05-01

    We report the loading of drugs on aminoethylaminodextran-coated iron oxide nanoparticles, their superparamagnetic behavior, loading of drugs on them, and the β-cyclodextrin-complex formation of the drugs on the surface of the nanoparticles. The magnetic behavior is studied using vibrating sample magnetometry and X-ray photoelectron spectroscopy is used to analyze the elemental composition of drug-loaded nanoparticles. Scanning electron microscopy shows ordered structures of drug-loaded nanoparticles. UV-visible absorption and fluorescence spectroscopy are used to study the binding of the surface-loaded drugs to β-cyclodextrin. All of the drugs form 1:1 host-guest complexes. The iodide ion quenching of fluorescence of free- and iron oxide-attached drugs are compared. The binding strengths of the iron oxide surface-loaded drugs-β-cyclodextrin binding are smaller than those of the free drugs.

  5. SiO2 coating effects in the magnetic anisotropy of Fe3-xO4 nanoparticles suitable for bio-applications.

    PubMed

    Figueroa, A I; Moya, C; Bartolomé, J; Bartolomé, F; García, L M; Pérez, N; Labarta, A; Batlle, X

    2013-04-19

    We present radio frequency transverse susceptibility (TS) measurements on oleic acid-coated and SiO2-coated Fe3-xO4 magnetite nanoparticles. The effects of the type of coating on the interparticle interactions and magnetic anisotropy are evaluated for two different particle sizes in powder samples. On the one hand, SiO2 coating reduces the interparticle interactions as compared to oleic acid coating, the reduction being more effective for 5 nm than for 14 nm diameter particles. On the other hand, the magnetic anisotropy field at low temperature is lower than 1 kOe in all cases and independent of the coating used. Our results are relevant concerning applications in biomedicine, since the SiO2 coating renders 5 and 14 nm hydrophilic particles with very limited agglomeration, low anisotropy, and superparamagnetic behavior at room temperature. The TS technique also allows us to discriminate the influence on the anisotropy field of interparticle interactions from that of the thermal fluctuations.

  6. Magnetic Resonance Imaging of Mouse Islet Grafts Labeled with Novel Chitosan-Coated Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Kuo, Chien-Hung; Chien, Yu-Wen; Kuo, Hsiao-Yunn; Chen, Fu-Rong; Chen, Ming H.; Yen, Tzu-Chen; Tsai, Zei-Tsan

    2013-01-01

    Object To better understand the fate of islet isografts and allografts, we utilized a magnetic resonance (MR) imaging technique to monitor mouse islets labeled with a novel MR contrast agent, chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles. Materials and Methods After being incubated with and without CSPIO (10 µg/ml), C57BL/6 mouse islets were examined under transmission electron microscope (TEM) and their insulin secretion was measured. Cytotoxicity was examined in α (αTC1) and β (NIT-1 and βTC) cell lines as well as islets. C57BL/6 mice were used as donors and inbred C57BL/6 and Balb/c mice were used as recipients of islet transplantation. Three hundred islets were transplanted under the left kidney capsule of each mouse and then MR was performed in the recipients periodically. At the end of study, the islet graft was removed for histology and TEM studies. Results After incubation of mouse islets with CSPIO (10 µg/mL), TEM showed CSPIO in endocytotic vesicles of α- and β-cells at 8 h. Incubation with CSPIO did not affect insulin secretion from islets and death rates of αTC1, NIT-1 and βTC cell lines as well as islets. After syngeneic and allogeneic transplantation, grafts of CSPIO-labeled islets were visualized on MR scans as persistent hypointense areas. At 8 weeks after syngeneic transplantation and 31 days after allogeneic transplantation, histology of CSPIO-labeled islet grafts showed colocalized insulin and iron staining in the same areas but the size of allografts decreased with time. TEM with elementary iron mapping demonstrated CSPIO distributed in the cytoplasm of islet cells, which maintained intact ultrastructure. Conclusion Our results indicate that after syngeneic and allogeneic transplantation, islets labeled with CSPIO nanoparticles can be effectively and safely imaged by MR. PMID:23658638

  7. Metallic magnetic nanoparticles.

    PubMed

    Hernando, A; Crespo, P; García, M A

    2005-12-22

    In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm), covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  8. Impact of core dielectric properties on the localized surface plasmonic spectra of gold-coated magnetic core-shell nanoparticles.

    PubMed

    Chaffin, Elise Anne; Bhana, Saheel; O'Connor, Ryan Timothy; Huang, Xiaohua; Wang, Yongmei

    2014-12-11

    Gold-coated iron oxide core-shell nanoparticles (IO-Au NPs) are of interest for use in numerous biomedical applications because of their unique combined magnetic-plasmonic properties. Although the effects of the core-dielectric constant on the localized surface plasmon resonance (LSPR) peak position of Au-shell particles have been previously investigated, the impact that light-absorbing core materials with complex dielectric functions have on the LSPR peak is not well established. In this study, we use extended Mie theory for multilayer particles to examine the individual effects of the real and imaginary components of core refractive indices on Au-shell NP plasmonic peaks. We find that the imaginary component dampens the intensity of the cavity plasmon and results in a decrease of surface plasmon coupling. For core materials with large imaginary refractive indices, the coupled mode LSPR peak disappears, and only the anticoupled mode remains. Our findings show that the addition of a nonabsorbing polymer layer to the core surface decreases the dampening of the cavity plasmon and increases LSPR spectral intensity. Additionally, we address apparent discrepancies in the literature regarding the effects of Au-shell thickness on LSPR peak shifts.

  9. Ionic liquid coated magnetic nanoparticles for the gas chromatography/mass spectrometric determination of polycyclic aromatic hydrocarbons in waters.

    PubMed

    Galán-Cano, Francisco; Alcudia-León, María del Carmen; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2013-07-26

    In this paper, ionic liquid coated magnetic nanoparticles (IL-MNPs) have been prepared by covalent immobilization. The as-synthesized MNPs have been successfully used as sorbent for the extraction of polycyclic aromatic hydrocarbons (PAHs) from water samples, the analytes being finally determined by gas chromatography/mass spectrometry. The influence of several experimental variables (including the ionic strength, amount of MNPs, sample volume, agitation time and desorption solvent) has been considered in depth in the optimization process. The developed method, which has been analytically characterized under its optimal operation conditions, allows the detection of the analytes in the samples with method detection limits in the range from 0.04μgL(-1) (fluoranthene) to 1.11μgL(-1) (indeno(1,2,3-cd)pyrene). The repeatability of the method, expressed as relative standard deviation (RSD, n=7), varies between 4.0% (benzo[b]fluoranthene) and 8.9% (acenaphthene), while the enrichment factors are in the range from 49 (naphthalene) to 158 (fluoranthene). The proposed procedure has been applied for the determination of thirteen PAHs in water samples (tap, river, well and reservoir ones) with recoveries in the range from 75 to 102%.

  10. Fighting cancer with magnetic nanoparticles and immunotherapy

    NASA Astrophysics Data System (ADS)

    Gutiérrez, L.; Mejías, R.; Barber, D. F.; Veintemillas-Verdaguer, S.; Serna, C. J.; Lázaro, F. J.; Morales, M. P.

    2012-03-01

    IFN-γ-adsorbed DMSA-coated magnetite nanoparticles can be used as an efficient in vivo drug delivery system for tumor immunotherapy. Magnetic nanoparticles, with adsorbed interferon-γ, were targeted to the tumor site by application of an external magnetic field. A relevant therapeutic dosage of interferon in the tumor was detected and led to a notable reduction in tumor size. In general, only 10% of the total injected nanoparticles after multiple exposures were found in tissues by AC susceptibility measurements of the corresponding resected tissues. Magnetic nanoparticle biodistribution is affected by the application of an external magnetic field.

  11. Synthesis of amino-rich silica coated magnetic nanoparticles and their application in the capture of DNA for PCR

    USDA-ARS?s Scientific Manuscript database

    Magnetic separation has great advantages over traditional bioseparation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor in allowing efficient capture of t...

  12. Chitosan-coated poly(lactic-co-glycolic acid) perfluorooctyl bromide nanoparticles for cell labeling in (19)F magnetic resonance imaging.

    PubMed

    Vu-Quang, Hieu; Vinding, Mads Sloth; Xia, Dan; Nielsen, Thomas; Ullisch, Marcus Görge; Dong, MingDong; Nielsen, Niels Chr; Kjems, Jørgen

    2016-01-20

    Noninvasive therapeutic cell tracking methods in living animals are important for understanding cell function and fate in connection with cell therapy. Here we report a new particle system based on chitosan-coated poly(lactic-co-glycolic acid) perfluorooctyl bromide (PLGA PFOB) nanoparticles designed for (19)F magnetic resonance imaging (MRI) cell tracking. Chitosan was adsorbed onto the PLGA PFOB nanoparticles through electric interactions, which led to an increase in the hydrodynamic size and a surface charge proportional to the coating weight ratio. Confocal laser scanning microscopy, flow cytometry analysis and (19)F-MRI showed that to achieve the highest labeling efficiency in vitro, the optimal weight ratio of chitosan to the PLGA PFOB nanoparticles was 1:10 for human mesenchymal stem cells (hMSCs) and 1:100 for Raw 264.7 macrophages. In vivo(19)F-MRI showed that (19)F labeled hMSCs remained at the injected site 24h after injection. Thus, this study validates that chitosan-coated PLGA PFOB nanoparticles have the potential to track cell migration in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effects of DMSA-coated Fe3O4 magnetic nanoparticles on global gene expression of mouse macrophage RAW264.7 cells.

    PubMed

    Liu, Yingxun; Chen, Zhongping; Gu, Ning; Wang, Jinke

    2011-08-28

    Fe(3)O(4) magnetic nanoparticles (MNPs) coated with 2,3-dimercaptosuccinnic acid (DMSA) are considered to be a promising nanomaterial with biocompatibility. In the present study, the effects of DMSA-coated Fe(3)O(4) MNPs on the expression of all identified mouse genes, which regulate various cellular biological processes, were determined to establish whether this nanoparticle is cytotoxic to mammalian cells. Mouse macrophage RAW264.7 cells were treated with 100μg/ml of DMSA-coated Fe(3)O(4) MNPs for 4, 24 and 48h, and the global gene expression was detected via Affymetrix Mouse Genome 430 2.0 GeneChips(®) microarrays. It was found that gene expression of 711, 545 and 434 transcripts was significantly altered by 4-, 24- and 48-h treatments, respectively. Of these genes, 27 were consistently upregulated and 6 were consistently downregulated at the three treatment durations. Bioinformatic analysis of all differentially expressed genes revealed that this nanoparticle can strongly activate inflammatory and immune responses and can inhibit the biosynthesis and metabolism of RAW264.7 cells at a dose of 100μg/ml. These results demonstrated that DMSA-coated Fe(3)O(4) MNPs display cytotoxicity in this type of macrophage at high doses.

  14. Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating

    NASA Astrophysics Data System (ADS)

    Józefczak, A.; Hornowski, T.; Závišová, V.; Skumiel, A.; Kubovčíková, M.; Timko, M.

    2014-03-01

    The ultrasonic propagation in the water-based magnetic fluid with doubled layered surfactant shell was studied. The measurements were carried out both in the presence as well as in the absence of the external magnetic field. The thickness of the surfactant shell was evaluated by comparing the mean size of magnetic grain extracted from magnetization curve with the mean hydrodynamic diameter obtained from differential centrifugal sedimentation method. The thickness of surfactant shell was used to estimate volume fraction of the particle aggregates consisted of magnetite grain and surfactant layer. From the ultrasonic velocity measurements in the absence of the applied magnetic field, the adiabatic compressibility of the particle aggregates was determined. In the external magnetic field, the magnetic fluid studied in this article becomes acoustically anisotropic, i.e., velocity and attenuation of the ultrasonic wave depend on the angle between the wave vector and the direction of the magnetic field. The results of the ultrasonic measurements in the external magnetic field were compared with the hydrodynamic theory of Ovchinnikov and Sokolov (velocity) and with the internal chain dynamics model of Shliomis, Mond and Morozov (attenuation).

  15. Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging.

    PubMed

    Li, Dan; Tang, Xin; Pulli, Benjamin; Lin, Chao; Zhao, Peng; Cheng, Jian; Lv, Zhongwei; Yuan, Xueyu; Luo, Qiong; Cai, Haidong; Ye, Meng

    2014-01-01

    Theranostic nanoparticles based on superparamagnetic iron oxide (SPIO) have a great promise for tumor diagnosis and gene therapy. However, the availability of theranostic nanoparticles with efficient gene transfection and minimal toxicity remains a big challenge. In this study, we construct an intelligent SPIO-based nanoparticle comprising a SPIO inner core and a disulfide-containing polyethylenimine (SSPEI) outer layer, which is referred to as a SSPEI-SPIO nanoparticle, for redox-triggered gene release in response to an intracellular reducing environment. We reveal that SSPEI-SPIO nanoparticles are capable of binding genes to form nano-complexes and mediating a facilitated gene release in the presence of dithiothreitol (5-20 mM), thereby leading to high transfection efficiency against different cancer cells. The SSPEI-SPIO nanoparticles are also able to deliver small interfering RNA (siRNA) for the silencing of human telomerase reverse transcriptase genes in HepG2 cells, causing their apoptosis and growth inhibition. Further, the nanoparticles are applicable as T2-negative contrast agents for magnetic resonance (MR) imaging of a tumor xenografted in a nude mouse. Importantly, SSPEI-SPIO nanoparticles have relatively low cytotoxicity in vitro at a high concentration of 100 μg/mL. The results of this study demonstrate the utility of a disulfide-containing cationic polymer-decorated SPIO nanoparticle as highly potent and low-toxic theranostic nano-system for specific nucleic acid delivery inside cancer cells.

  16. Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools.

    PubMed

    Liang, Yi; Gong, Ji-Lai; Huang, Yong; Zheng, Yue; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2007-04-30

    A novel, highly selective DNA hybridization assay has been developed based on surface-enhanced Raman scattering (SERS) for DNA sequences related to HIV. This strategy employs the Ag/SiO(2) core-shell nanoparticle-based Raman tags and the amino group modified silica-coated magnetic nanoparticles as immobilization matrix and separation tool. The hybridization reaction was performed between Raman tags functionalized with 3'-amino-labeled oligonucleotides as detection probes and the amino group modified silica-coated magnetic nanoparticles functionalized with 5'-amino-labeled oligonucleotides as capture probes. The Raman spectra of Raman tags can be used to monitor the presence of target oligonucleotides. The utilization of silica-coated magnetic nanoparticles not only avoided time-consuming washing, but also amplified the signal of hybridization assay. Additionally, the results of control experiments show that no or very low signal would be obtained if the hybridization assay is conducted in the presence of DNA sequences other than complementary oligonucleotides related to HIV gene such as non-complementary oligonucleotides, four bases mismatch oligonucleotides, two bases mismatch oligonucleotides and even single base mismatch oligonucleotides. It was demonstrated that the method developed in this work has high selectivity and sensitivity for DNA detection related to HIV gene.

  17. Nanoparticles of Molybdenum Chlorophyllin Photosensitizer and Magnetic Citrate-Coated Cobalt Ferrite Complex Available to Hyperthermia and Photodynamic Therapy Clinical Trials

    NASA Astrophysics Data System (ADS)

    Primo, Fernando L.; Cordo, Paloma L. A. G.; Neto, Alberto F.; Morais, Paulo C.; Tedesco, Antonio C.

    2010-12-01

    This study report on the synthesis and characterization of molybdenum chlorophyllin (Mo-Chl) compounds associated in a complex with magnetic nanoparticles (citrate-coated cobalt ferrite), the latter prepared as a biocompatible magnetic fluid (MF). The complex material was developed for application as a synergic drug for cancer treatment using Photodynamic Therapy (PDT) and Hyperthermia (HPT). Chlorophyllin was obtained from alkaline extraction of Ilex paraguariensis following molybdenum insertion from hydrolysis with molybdate sodium. Fluorescence quantum yield (Φf) of Mo-Chl/dimethyl-sulphoxide (DMSO) was lower than 0.1, with a lifetime of 5.0 ns, as obtained from time-correlated single-photon counting technique. The oxygen quantum yield of Mo-Chl was carried out using laser flash-photolysis studies in homogeneous medium saturated with O2(g) (ΦΔ = 0.50). Cellular viability was also evaluated via the classical MTT assay using gingival fibroblasts cells as a biological model. Studies performed with the complex Mo-Chl (5.0 μmol.L-1)/MF at different magnetic nanoparticle concentrations (ranging from 1012 to 1015 particle.mL-1) revealed a cellular viability of approximately 95% for the ideal magnetic material concentration of 1×10 particle.mL-1. The present study shows that natural photosensitizers molecules Mo-Chl used in association with magnetic nanoparticles represent a promising generation of drug developed to work synergistically in the treatment of neoplastic tissues using PDT and HPT.

  18. Sequential Enrichment with Titania-coated Magnetic Mesoporous Hollow Silica Microspheres and Zirconium Arsenate-modified Magnetic Nanoparticles for the Study of Phosphoproteome of HL60 Cells

    PubMed Central

    Yu, Qiong-Wei; Li, Xiao-Shui; Xiao, Yongsheng; Guo, Lei; Zhang, Fan; Cai, Qian; Feng, Yu-Qi; Yuan, Bi-Feng; Wang, Yinsheng

    2014-01-01

    As one of the most important types of post-translational modifications, reversible phosphorylation of proteins plays crucial roles in a large number of biological processes. However, owing to the relatively low abundance and dynamic nature of phosphorylation and the presence of the unphosphorylated peptides in large excess, phosphopeptide enrichment is indispensable in large-scale phosphoproteomic analysis. Metal oxides including titanium dioxide have become prominent affinity materials to enrich phosphopeptides prior to their analysis using liquid chromatography-mass spectrometry (LC-MS). In the current study, we established a novel strategy, which encompassed strong cation exchange chromatography, sequential enrichment of phosphopeptides using titania-coated magnetic mesoporous hollow silica microspheres (TiO2/MHMSS) and zirconium arsenate-modified magnetic nanoparticles (ZrAs-Fe3O4@SiO2), and LC-MS/MS analysis, for the proteome-wide identification of phosphosites of proteins in HL60 cells. In total, we were able to identify 11579 unique phosphorylation sites in 3432 unique proteins. Additionally, our results suggested that TiO2/MHMSS and ZrAs-Fe3O4@SiO2 are complementary in phosphopeptide enrichment, where the two types of materials displayed preferential binding of peptides carrying multiple and single phosphorylation sites, respectively. PMID:25262027

  19. Folic acid-conjugated polyethylene glycol-coated magnetic nanoparticles for doxorubicin delivery in cancer chemotherapy: Preparation, characterization and cytotoxicity on HeLa cell line.

    PubMed

    Erdem, M; Yalcin, S; Gunduz, U

    2016-10-10

    Conventional chemotherapy is the most valid method to cope with cancer; however, it has serious drawbacks such as decrease in production of blood cells or inflammation of the lining of the digestive tract. These side effects occur since generally the drugs used in chemotherapy are distributed evenly within the body of the patient and cannot distinguish the cancer cells from the healthy ones. In this study, folic acid (FA)-conjugated, polyethylene-coated magnetic nanoparticles (FA-MNPs), and doxorubicin (Dox)-loaded formulation (Dox-FA-MNPs) were prepared. The cytotoxicity of these nanoparticles on HeLa and Dox-resistant HeLa cells was investigated. Magnetic nanoparticles (MNPs), polyethylene glycol (PEG)-coated MNPs (PEG-MNPs), and FA-MNPs were successfully synthesized and characterized by several methods. Dox loading of FA-MNPs and release profile of Dox from the nanoparticles were studied. Cytotoxic effects of FA-MNPs and Dox-FA-MNPs on HeLa cells were analyzed. MNPs, PEG-MNPs, and FA-MNPs all had small sizes and supermagnetic behavior. High amounts of Dox could be loded onto the nanoparticles (290 μgmL(-1)). In 24 h, 15.7% of Dox was released from the Dox-FA-MNPs. The release was increased in acidic conditions (pH 4.1). Internalization studies showed that FA-MNPs and Dox-FA-MNPs were taken up efficiently by HeLa cells. The investigation of cytotoxicity of the particles indicated that 38-500 μgmL(-1) Dox-FA-MNPs significantly decreased the proliferation of HeLa cells compared to FA-MNPs. Due to their size, magnetic properties, internalization, drug release, and cytotoxicity characteristics, the MNPs prepared in this study may have potential application as a drug delivery system in cancer chemotherapy.

  20. Magnetic Nanoparticle Sensors

    PubMed Central

    Koh, Isaac; Josephson, Lee

    2009-01-01

    Many types of biosensors employ magnetic nanoparticles (diameter = 5–300 nm) or magnetic particles (diameter = 300–5,000 nm) which have been surface functionalized to recognize specific molecular targets. Here we cover three types of biosensors that employ different biosensing principles, magnetic materials, and instrumentation. The first type consists of magnetic relaxation switch assay-sensors, which are based on the effects magnetic particles exert on water proton relaxation rates. The second type consists of magnetic particle relaxation sensors, which determine the relaxation of the magnetic moment within the magnetic particle. The third type is magnetoresistive sensors, which detect the presence of magnetic particles on the surface of electronic devices that are sensitive to changes in magnetic fields on their surface. Recent improvements in the design of magnetic nanoparticles (and magnetic particles), together with improvements in instrumentation, suggest that magnetic material-based biosensors may become widely used in the future. PMID:22408498

  1. Efficacy of heat generation in CTAB coated Mn doped ZnFe2O4 nanoparticles for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Raland, R. D.; Borah, J. P.

    2017-01-01

    Manganese doped Zinc ferrite (Mn-ZnFe2O4, where Mn  =  0%, 3%, 5% and 7%) nanoparticles were synthesized by a simple co-precipitation method. CTAB (cetyltrimethylammonium bromide) was used as a surfactant to inhibitgrowth and agglomeration. In this work, we have discussed on the influence of CTAB and Mn doping in tailoring the structural and magnetic properties of Mn-ZnFe2O4 nanoparticles for the effective application of magnetic hyperthermia. X-ray diffraction (XRD) pattern confirmed the formation of cubic spinel structure of Mn-ZnFe2O4 nanoparticles. Lattice parameter and x-ray densities were obtained from the Rietveld refinement of the XRD pattern. The presence of CTAB as a stabilizing layer adsorbed on the surface of the nanoparticles were confirmed by transmission electron microscope (TEM) and Raman vibrational spectrum. The saturation magnetization showsan increasing trend with Mn addition owing to cationic re-distribution and an increase super-exchange interaction between the two sub-lattices. Superparamagnetic behaviorof Mn-ZnFe2O4 nanoparticles were confirmed by temperature-dependent zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves. The efficiency of induction heating measured by its specific absorption rate (SAR) and intrinsic loss power (ILP) value varies as a function of saturation magnetization. It has been hypothesized that the maximum generation of heat arises from Neel relaxation mechanism. The optimum generation of heat of Mn-ZnFe2O4 nanoparticle is determined by the higher frequency (f  =  337 kHz) range and maximum concentration of Mn doping.

  2. Magnetic and Mössbauer spectroscopy studies of hollow microcapsules made of silica-coated CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lyubutin, I. S.; Gervits, N. E.; Starchikov, S. S.; Lin, Chun-Rong; Tseng, Yaw-Teng; Shih, Kun-Yauh; Wang, Cheng-Chien; Chen, I.-Han; Ogarkova, Yu L.; Korotkov, N. Yu

    2016-01-01

    The hollow microcapsules made of silica-coated CoFe2O4 nanoparticles were synthesized using chemical co-precipitation, followed by the sol-gel method. Poly(MMA-co-MAA) microspheres were used as a core template which can be completely removed after annealing at 450 °C. The microcapsules are monodisperse with the outer diameter of about 450 nm and the thickness of the shell is about 50 nm. The nanoparticles of Co-ferrite are single crystalline. The size of the nanoparticles and magnetic properties of CoFe2O4/SiO2 hollow spheres can be tuned with high accuracy at the annealing stage. The Mössbauer data indicate that CoFe2O4 ferrite is an inverse spinel, in which Fe3+ and Co2+ ions are distributed in both octahedral and tetrahedral sites with the inversion degree close to the bulk ferrite value. At low temperature the CoFe2O4/SiO2 nanoparticles are in antiferromagnetic (AFM) state due to the canted or triangular magnetic structure. Under heating in the applied field, AFM structure transforms to the ferrimagnetic (FM) structure, that increases the magnetization. The Mössbauer data revealed that the small size CoFe2O4/SiO2 particles do not show superparamagnetic behavior, but they transit to the paramagnetic state by the jump-like first order magnetic transition (JMT). This effect is a specific property of the magnetic nanoparticles isolated by inert material. The suggested method of synthesis can be modified with various bio-ligands on the silane surface, and such materials can find many applications in diagnostics and bio-separation.

  3. Layer-by-Layer Assembled Milk Protein Coated Magnetic Nanoparticle Enabled Oral Drug Delivery with High Stability in Stomach and Enzyme-Responsive Release in Small Intestine

    PubMed Central

    Huang, Jing; Shu, Qing; Wang, Liya; Wu, Hui; Wang, Andrew Y.; Mao, Hui

    2014-01-01

    We report a novel drug delivery system composed of layer-by-layer (LBL) milk protein casein (CN) coated iron oxide nanoparticles. Doxorubicin (DOX) and indocyanine green (ICG) were selected as model drug molecules, which were incorporated into the inner polymeric layer, and subsequently coated with casein. The resulting casein coated iron oxide nanoparticles (CN-DOX/ICG-IO) were stable in the acidic gastric condition with the presence of gastric protease. On the other hand, the loaded drugs were released when the casein outer layer was gradually degraded by the intestinal protease in the simulated intestine condition. Such unique properties enable maintenance of the bioactivity of the drugs and thus enhance the drug delivery efficiency. Ex vivo experiments showed that the LBL CN-DOX-IO improved the translocation of DOX across microvilli and its absorption in the small intestine sacs. In vivo imaging of mice that were orally administered with these LBL CN-ICG-IO nanostructures further confirmed that the reported drug delivery vehicles could pass the stomach without significant degradation, and then accumulated in the small intestine. In addition, the magnetic iron oxide nanoparticle core offered an MRI contrast enhancing capability for in vivo imaging guided drug delivery. Therefore, the reported LBL CN-DOX/ICG-IO is a promising oral drug delivery nanoplatform, especially for drugs that are poorly soluble in water or degradable in the gastric environment. PMID:25477177

  4. Effect of composition and coating on the interparticle interactions and magnetic hardness of MFe2O4 (M = Fe, Co, Zn) nanoparticles.

    PubMed

    Virumbrales-Del Olmo, M; Delgado-Cabello, A; Andrada-Chacón, A; Sánchez-Benítez, J; Urones-Garrote, E; Blanco-Gutiérrez, V; Torralvo, M J; Sáez-Puche, R

    2017-03-22

    Single domain superparamagnetic ferrite nanoparticles with the composition MFe2O4 (M = Fe, Co, Zn) have been prepared by thermal decomposition of metal acetylacetonates in diphenyl ether or dibenzyl ether, using oleic acid in the presence of oleylamine as a stabilizing agent. The Fe, Co and Zn ferrite nanoparticles are monodisperse with diameters of 4.9, 4.4 and 4.7 nm, respectively. The TG and IR results indicate that four or six carboxylate groups per nm(2) are bonded at the surface of the particles acting as chelating and/or bridging bidentate ligands depending on the composition. The oleate groups minimize the interparticle interactions in Fe and Zn ferrite samples, while in the Co ferrite sample dipolar interactions produce broad maxima in the ZFC and energy barriers distribution curves. The inversion degree has been estimated from the Raman spectra and the obtained x values have been used to calculate the saturation magnetization and compare them with the experimental MS values. Compared to bulk materials, the magnetization value is higher for the Zn ferrite sample due to its mixed spinel cation distribution. For the Co ferrite sample, and probably for the Fe one, the low value of saturation magnetization seems to be due to the surface disordered layer of canted spins. Compared to non-coated nanoparticles with the same composition and similar size, the oleate groups, covalently bonded to the superficial cations, increase the anisotropy field and decrease the magnetization.

  5. Polyethylene magnetic nanoparticle: a new magnetic material for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chatterjee, Jhunu; Haik, Yousef; Chen, Ching-Jen

    2002-05-01

    Polyethylene magnetic nanoparticles were synthesized by nonsolvent and temperature induced crystallization along with ultrasonication. Low molecular weight polyethylene wax and maghemite were used for forming the composite particles. These particles were further coated with avidin. The nanoparticles are characterized using STEM, AFM and SQUID. Nanomagnetic particles were found to have two distinct morphologies and have superparamagnetic properties.

  6. Oleate-based hydrothermal preparation of CoFe2O4 nanoparticles, and their magnetic properties with respect to particle size and surface coating

    NASA Astrophysics Data System (ADS)

    Repko, Anton; Vejpravová, Jana; Vacková, Taťana; Zákutná, Dominika; Nižňanský, Daniel

    2015-09-01

    We present a facile and high-yield synthesis of cobalt ferrite nanoparticles by hydrothermal hydrolysis of Co-Fe oleate in the presence of pentanol/octanol/toluene and water at 180 or 220 °C. The particle size (6-10 nm) was controlled by the composition of the organic solvent and temperature. Magnetic properties were then investigated with respect to the particle size and surface modification with citric acid or titanium dioxide (leading to hydrophilic particles). The as-prepared hydrophobic nanoparticles (coated by oleic acid) had a minimum inter-particle distance of 2.5 nm. Their apparent blocking temperature (estimated as a maximum of the zero-field-cooled magnetization) was 180 K, 280 K and 330 K for the particles with size of 6, 9 and 10.5 nm, respectively. Replacement of oleic acid on the surface by citric acid decreased inter-particle distance to less than 1 nm, and increased blocking temperature by ca. 10 K. On the other hand, coating with titanium dioxide, supported by nitrilotri(methylphosphonic acid), caused increase of the particle spacing, and lowering of the blocking temperature by ca. 20 K. The CoFe2O4@TiO2 nanoparticles were sufficiently stable in water, methanol and ethanol. The particles were also investigated by Mössbauer spectroscopy and alternating-current (AC) susceptibility measurements, and their analysis with Vögel-Fulcher and power law. Effect of different particle coating and dipolar interactions on the magnetic properties is discussed.

  7. Dual immobilization and magnetic manipulation of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Jian, Z. F.; Horng, H. E.; Hong, Chin-Yih; Yang, H. C.; Wu, C. C.; Lee, Y. H.

    By suitably bio-functionalizing the surfaces, magnetic nanoparticles are able to bind specific biomolecules, and may serve as vectors for delivering bio-entities to target tissues. In this work, the synthesis of bio-functionalized magnetic nanoparticles with two kinds of bio-probes is developed. Here, the stem cell is selected as a to-be-delivered bio-entity and infarcted myocardium is the target issue. Thus, cluster designation-34 (CD-34) on stem cell and creatine kinase-MB (CK-MB) (or troponin I) on infarcted myocardium are the specific biomolecules to be bound with bio-functionalized magnetic nanoparticles. In addition to demonstrating the co-coating of two kinds of bio-probes on a magnetic nanoparticle, the feasibility of manipulation on bio-functionalized magnetic nanoparticles by external magnetic fields is investigated.

  8. Biocompatible phosphatidylcholine bilayer coated on magnetic nanoparticles and their application in the extraction of several polycyclic aromatic hydrocarbons from environmental water and milk samples.

    PubMed

    Zhang, Shengxiao; Niu, Hongyun; Zhang, Yuanyuan; Liu, Junshen; Shi, Yali; Zhang, Xiaole; Cai, Yaqi

    2012-05-18

    In this work, phosphatidylcholine (PC) was coated on magnetic nanoparticles to form lipid bilayer as solid-phase extraction (SPE) sorbents for the enrichment of polycyclic aromatic hydrocarbons (PAHs) from environmental water and milk samples. The lipid bilayer was coated on Fe(3)O(4) nanoparticles using a modified dry lipid film hydration method. The resulted Fe(3)O(4)/PC could be readily isolated from solution with a magnet, and exhibited excellent adsorption performance to organic pollutants. Only 0.1g of sorbents was enough to extract PAHs from 500 mL aqueous solution, and 6 mL of acetonitrile was required to desorb them. The method was fast and relied on 10 min extraction time and 5 min magnetic separation. The proposed method was successfully applied to determine PAHs in some environmental water and milk samples. The detection limit was in the range of 0.2-0.6 ng L(-1). The recoveries of the spiked water samples ranged from 89% to 115% with relative standard deviations (RSD) varying from 1% to 8%. For spiked milk samples, RSD was satisfactory (1-9%), but the recoveries were relatively low (42-62%). We show the potentials of Fe(3)O(4)/PC sorbents in environmental water and biological sample analyses.

  9. CpG oligodeoxynucleotide-loaded PAMAM dendrimer-coated magnetic nanoparticles promote apoptosis in breast cancer cells.

    PubMed

    Taghavi Pourianazar, Negar; Gunduz, Ufuk

    2016-03-01

    One major application of nanotechnology in cancer treatment involves designing nanoparticles to deliver drugs, oligonucleotides, and genes to cancer cells. Nanoparticles should be engineered so that they could target and destroy tumor cells with minimal damage to healthy tissues. This research aims to develop an appropriate and efficient nanocarrier, having the ability of interacting with and delivering CpG-oligodeoxynucleotides (CpG-ODNs) to tumor cells. CpG-ODNs activate Toll-like receptor 9 (TLR9), which can generate a signal cascade for cell death. In our study, we utilized three-layer magnetic nanoparticles composed of a Fe3O4 magnetic core, an aminosilane (APTS) interlayer and a cationic poly(amidoamine) (PAMAM) dendrimer. This will be a novel targeted delivery system to enhance the accumulation of CpG-ODN molecules in tumor cells. The validation of CpG-ODN binding to DcMNPs was performed using agarose gel electrophoresis, UV-spectrophotometer, XPS analyses. Cytotoxicity of conjugates was assessed in MDA-MB231 and SKBR3 cancer cells based on cell viability by XTT assay and flow cytometric analysis. Our results indicated that the synthesized DcMNPs having high positive charges on their surface could attach to CpG-ODN molecules via electrostatic means. These nanoparticles with the average sizes of 40±10nm bind to CpG-ODN molecules efficiently and induce cell death in MDA-MB231 and SKBR3 tumor cells and could be considered a suitable targeted delivery system for CpG-ODN in biomedical applications. The magnetic core of these nanoparticles represents a promising option for selective drug targeting as they can be concentrated and held in position by means of an external magnetic field.

  10. Synthesis and characterization of magnetite nanoparticles coated with lauric acid

    SciTech Connect

    Mamani, J.B.; Costa-Filho, A.J.; Cornejo, D.R.; Vieira, E.D.; Gamarra, L.F.

    2013-07-15

    Understanding the process of synthesis of magnetic nanoparticles is important for its implementation in in vitro and in vivo studies. In this work we report the synthesis of magnetic nanoparticles made from ferrous oxide through coprecipitation chemical process. The nanostructured material was coated with lauric acid and dispersed in aqueous medium containing surfactant that yielded a stable colloidal suspension. The characterization of magnetic nanoparticles with distinct physico-chemical configurations is fundamental for biomedical applications. Therefore magnetic nanoparticles were characterized in terms of their morphology by means of TEM and DLS, which showed a polydispersed set of spherical nanoparticles (average diameter of ca. 9 nm) as a result of the protocol. The structural properties were characterized by using X-ray diffraction (XRD). XRD pattern showed the presence of peaks corresponding to the spinel phase of magnetite (Fe{sub 3}O{sub 4}). The relaxivities r{sub 2} and r{sub 2}* values were determined from the transverse relaxation times T{sub 2} and T{sub 2}* at 3 T. Magnetic characterization was performed using SQUID and FMR, which evidenced the superparamagnetic properties of the nanoparticles. Thermal characterization using DSC showed exothermic events associated with the oxidation of magnetite to maghemite. - Highlights: • Synthesis of magnetic nanoparticles coated with lauric acid • Characterization of magnetic nanoparticles • Morphological, structural, magnetic, calorimetric and relaxometric characterization.

  11. Super magnetic nanoparticles NiFe2O4, coated with aluminum-nickel oxide sol-gel lattices to safe, sensitive and selective purification of his-tagged proteins.

    PubMed

    Mirahmadi-Zare, Seyede Zohreh; Allafchian, Alireza; Aboutalebi, Fatemeh; Shojaei, Pendar; Khazaie, Yahya; Dormiani, Kianoush; Lachinani, Liana; Nasr-Esfahani, Mohammad-Hossein

    2016-05-01

    Super magnetic nanoparticle NiFe2O4 with high magnetization, physical and chemical stability was introduced as a core particle which exhibits high thermal stability (>97%) during the harsh coating process. Instead of multi-stage process for coating, the magnetic nanoparticles was mineralized via one step coating by a cheap, safe, stable and recyclable alumina sol-gel lattice (from bohemite source) saturated by nickel ions. The TEM, SEM, VSM and XRD imaging and BET analysis confirmed the structural potential of NiFe2O4@NiAl2O4 core-shell magnetic nanoparticles for selective and sensitive purification of His-tagged protein, in one step. The functionality and validity of the nickel magnetic nanoparticles were attested by purification of three different bioactive His-tagged recombinant fusion proteins including hIGF-1, GM-CSF and bFGF. The bonding capacity of the nickel magnetics nanoparticles was studied by Bradford assay and was equal to 250 ± 84 μg Protein/mg MNP base on protein size. Since the metal ion leakage is the most toxicity source for purification by nickel magnetic nanoparticles, therefor the nickel leakage in purified final protein was determined by atomic absorption spectroscopy and biological activity of final purified protein was confirmed in comparison with reference. Also, in vitro cytotoxicity of nickel magnetic nanoparticles and trace metal ions were investigated by MTS assay analysis. The results confirmed that the synthesized nickel magnetic nanoparticles did not show metal ion toxicity and not affected on protein folding.

  12. Magnetic, Fluorescence and Transition Metal Ion Response Properties of 2,6-Diaminopyridine Modified Silica-Coated Fe₃O₄ Nanoparticles.

    PubMed

    Zhai, Yunhui; Song, Ruijuan; Zhang, Changhu; He, Qun; Han, Quan; Qu, Yingjuan

    2016-08-15

    Multi-functional nanoparticles possessing magnetic, fluorescence and transition metal ion response properties were prepared and characterized. The particles have a core/shell structure that consists of silica-coated magnetic Fe₃O₄ and 2,6-diaminopyridine anchored on the silica surface via organic linker molecules. The resultant nanoparticles were found by transmission electron microscopy to be well-dispersed spherical particles with an average diameter of 10-12 nm. X-ray diffraction analysis suggested the existence of Fe₃O₄ and silica in/on the particle. Fourier transform infrared spectra revealed that 2,6-diaminopyridine molecules were successfully covalently bonded to the surface of magnetic composite nanoparticles. The prepared particles possessed an emission peak at 364 nm with an excitation wavelength of 307 nm and have a strong reversible response property for some transition metal ions such as Cu(2+) and Zn(2+). This new material holds considerable promise in selective magneto separation and optical determination applications.

  13. Superexchange coupling on oleylsarcosine-coated magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Bakuzis, A. F.; Pereira, A. R.; Santos, J. G.; Morais, P. C.

    2006-04-01

    Room temperature ferromagnetic resonance was used to investigate particle-particle interaction in magnetic fluid samples containing magnetite nanoparticles surface coated with dimercaptosuccinic acid (DMSA) or oleylsarcosine (OLEL). The DMSA sample showed a decrease of the magnetic resonance field (MRF) increasing the nanoparticle concentration (phi), whereas the OLEL sample showed the opposite behavior. The DMSA MRF concentration dependence was explained using a dipolar interaction model beyond the point dipole approximation. In addition, the magnetic resonance spectra of the OLEL sample showed an optical mode suggesting an antiferromagnetic superexchange coupling between magnetic nanoparticles forming dimers.

  14. Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field.

    PubMed

    Majouga, Alexander; Sokolsky-Papkov, Marina; Kuznetsov, Artem; Lebedev, Dmitry; Efremova, Maria; Beloglazkina, Elena; Rudakovskaya, Polina; Veselov, Maxim; Zyk, Nikolay; Golovin, Yuri; Klyachko, Natalia; Kabanov, Alexander

    2015-01-01

    The possibility of remotely inducing a defined effect on NPs by means of electromagnetic radiation appears attractive. From a practical point of view, this effect opens horizons for remote control of drug release systems, as well as modulation of biochemical functions in cells. Gold-coated magnetite nanoparticles are perfect candidates for such application. Herein, we have successfully synthesized core-shell NPs having magnetite cores and gold shells modified with various sulphur containing ligands and developed a new, simple and robust procedure for the purification of the resulting nanoparticles. The carboxylic groups displayed at the surface of the NPs were utilized for NP conjugation with a model enzyme (ChT). In the present study, we report the effect of the low-frequency AC magnetic field on the catalytic activity of the immobilized ChT. We show that the enzyme activity decreases upon exposure of the NPs to the field. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging.

    PubMed

    Xue, Sihan; Wang, Yao; Wang, Mengxing; Zhang, Lu; Du, Xiaoxia; Gu, Hongchen; Zhang, Chunfu

    2014-01-01

    In this study, a novel magnetic resonance imaging (MRI)/computed tomography (CT)/fluorescence trifunctional probe was prepared by loading iodinated oil into fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (i-fmSiO4@SPIONs). Fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) were prepared by growing fluorescent dye-doped silica onto superparamagnetic iron oxide nanoparticles (SPIONs) directed by a cetyltrimethylammonium bromide template. As prepared, fmSiO4@SPIONs had a uniform size, a large surface area, and a large pore volume, which demonstrated high efficiency for iodinated oil loading. Iodinated oil loading did not change the sizes of fmSiO4@SPIONs, but they reduced the MRI T2 relaxivity (r2) markedly. I-fmSiO4@SPIONs were stable in their physical condition and did not demonstrate cytotoxic effects under the conditions investigated. In vitro studies indicated that the contrast enhancement of MRI and CT, and the fluorescence signal intensity of i-fmSiO4@SPION aqueous suspensions and macrophages, were intensified with increased i-fmSiO4@SPION concentrations in suspension and cell culture media. Moreover, for the in vivo study, the accumulation of i-fmSiO4@SPIONs in the liver could also be detected by MRI, CT, and fluorescence imaging. Our study demonstrated that i-fmSiO4@SPIONs had great potential for MRI/CT/fluorescence trimodal imaging.

  16. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging

    PubMed Central

    Xue, Sihan; Wang, Yao; Wang, Mengxing; Zhang, Lu; Du, Xiaoxia; Gu, Hongchen; Zhang, Chunfu

    2014-01-01

    In this study, a novel magnetic resonance imaging (MRI)/computed tomography (CT)/fluorescence trifunctional probe was prepared by loading iodinated oil into fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (i-fmSiO4@SPIONs). Fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) were prepared by growing fluorescent dye-doped silica onto superparamagnetic iron oxide nanoparticles (SPIONs) directed by a cetyltrimethylammonium bromide template. As prepared, fmSiO4@SPIONs had a uniform size, a large surface area, and a large pore volume, which demonstrated high efficiency for iodinated oil loading. Iodinated oil loading did not change the sizes of fmSiO4@SPIONs, but they reduced the MRI T2 relaxivity (r2) markedly. I-fmSiO4@SPIONs were stable in their physical condition and did not demonstrate cytotoxic effects under the conditions investigated. In vitro studies indicated that the contrast enhancement of MRI and CT, and the fluorescence signal intensity of i-fmSiO4@SPION aqueous suspensions and macrophages, were intensified with increased i-fmSiO4@SPION concentrations in suspension and cell culture media. Moreover, for the in vivo study, the accumulation of i-fmSiO4@SPIONs in the liver could also be detected by MRI, CT, and fluorescence imaging. Our study demonstrated that i-fmSiO4@SPIONs had great potential for MRI/CT/fluorescence trimodal imaging. PMID:24904212

  17. Solvothermal synthesis of MnFe2O4 nanoparticles: The role of polymer coating on morphology and magnetic properties

    NASA Astrophysics Data System (ADS)

    Aslibeiki, B.; Kameli, P.; Ehsani, M. H.; Salamati, H.; Muscas, G.; Agostinelli, E.; Foglietti, V.; Casciardi, S.; Peddis, D.

    2016-02-01

    Manganese spinel ferrite nanoparticles were synthesized by a solvothermal route based on high temperature decomposition of metal nitrates in the presence of different contents of Triethylene glycol. This simple and low cost method can be applied to prepare large quantities of nanoparticles (tens of grams). Powder X-ray diffraction (PXRD) and Transmission Electron Microscopy (TEM) confirmed that nanoparticles with a good crystalline quality were obtained. A good agreement between the average particle size calculated by PXRD and TEM was observed. Fourier-transform infrared spectra showed that polymer molecules have the tendency to form bonds with the surface of ferrite nanoparticles reducing the surface spin disorder, and then enhancing the saturation magnetization (MS). Therefore, much higher MS value (up to ∼91 emu/g at 5 K) was observed compared with that of bare nanoparticles without surfactant. The blocking temperature showed a remarkable shift to lower values with increasing the polymer starting amount. In addition, by increasing the polymer initial content, a more homogeneous size distribution was obtained and the initial strongly interacting superspin glass behavior changed to a weakly interacting superparamagnetic state.

  18. The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe2+) in ambient atmosphere

    NASA Astrophysics Data System (ADS)

    Mahmed, N.; Heczko, O.; Lancok, A.; Hannula, S.-P.

    2014-03-01

    The synthesis of iron oxide nanoparticles, i.e., magnetite was attempted by using only ferrous ion (Fe2+) as a magnetite precursor, under an ambient atmosphere. The room temperature reverse co-precipitation method was used, by applying two synthesis protocols. The freshly prepared iron oxide was also immediately coated with Stöber silica (SiO2) layer, forming the coreshell structure. The phase, stoichiometry, crystallite and the particle size of the synthesized powders were determined by using X-ray diffraction (XRD) and transmission electron microscope (TEM), while the magnetic and oxidation behaviors were studied by using the vibrating sample magnetometer (VSM) and Mössbauer spectroscopy. Based on the results, the bare iron oxide nanoparticles are in the stoichiometry between the magnetite and the maghemite stoichiometry, i.e., oxidation occurs. This oxidation is depending on the synthesis protocols used. With the silica coating, the oxidation can be prevented, as suggested by the fits of Mössbauer spectra and low temperature magnetic measurement.

  19. Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent

    PubMed Central

    Chen, Su-Ching; Duan, Kow-Jen

    2015-01-01

    β-Galactosidase was immobilized on chitosan-coated magnetic Fe3O4 nanoparticles and was used to produce galactooligosaccharides (GOS) from lactose. Immobilized enzyme was prepared with or without the coupling agent, tris(hydroxymethyl)phosphine (THP). The two immobilized systems and the free enzyme achieved their maximum activity at pH 6.0 with an optimal temperature of 50 °C. The immobilized enzymes showed higher activities at a wider range of temperatures and pH. Furthermore, the immobilized enzyme coupled with THP showed higher thermal stability than that without THP. However, activity retention of batchwise reactions was similar for both immobilized systems. All the three enzyme systems produced GOS compound with similar concentration profiles, with a maximum GOS yield of 50.5% from 36% (w·v−1) lactose on a dry weight basis. The chitosan-coated magnetic Fe3O4 nanoparticles can be regenerated using a desorption/re-adsorption process described in this study. PMID:26047337

  20. Rapid detection of Staphylococcus aureus in dairy and meat foods by combination of capture with silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification.

    PubMed

    Chen, Xingxing; Wu, Xiaoli; Gan, Min; Xu, Feng; He, Lihua; Yang, Dong; Xu, Hengyi; Shah, Nagendra P; Wei, Hua

    2015-03-01

    Staphylococcus aureus is one of the main pathogens in dairy and meat products; therefore, developing a highly sensitive and rapid method for its detection is necessary. In this study, a quantitative detection method for Staph. aureus was developed using silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification. First, genomic DNA was extracted from lysed bacteria using silica-coated magnetic nanoparticles and amplified using thermophilic helicase-dependent isothermal amplification. After adding the nucleic-acid dye SYBR Green I to the amplicons, the fluorescence intensity was observed using a UV lamp or recorded using a fluorescence spectrophotometer. This detection system had a detection limit of 5×10(0) cfu/mL in pure culture and milk-powder samples and 5×10(1) cfu/mL in pork samples using a UV light in less than 2h. In addition, a good linear relationship was obtained between fluorescence intensity and bacterial concentrations ranging from 10(2) to 10(4) cfu/mL under optimal conditions. Furthermore, the results from contaminated milk powder and pork samples suggested that the detection system could be used for the quantitative analysis of Staph. aureus and applied potentially to the food industry for the detection of this pathogen. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent.

    PubMed

    Chen, Su-Ching; Duan, Kow-Jen

    2015-06-03

    β-Galactosidase was immobilized on chitosan-coated magnetic Fe3O4 nanoparticles and was used to produce galactooligosaccharides (GOS) from lactose. Immobilized enzyme was prepared with or without the coupling agent, tris(hydroxymethyl)phosphine (THP). The two immobilized systems and the free enzyme achieved their maximum activity at pH 6.0 with an optimal temperature of 50 °C. The immobilized enzymes showed higher activities at a wider range of temperatures and pH. Furthermore, the immobilized enzyme coupled with THP showed higher thermal stability than that without THP. However, activity retention of batchwise reactions was similar for both immobilized systems. All the three enzyme systems produced GOS compound with similar concentration profiles, with a maximum GOS yield of 50.5% from 36% (w · v(-1)) lactose on a dry weight basis. The chitosan-coated magnetic Fe3O4 nanoparticles can be regenerated using a desorption/re-adsorption process described in this study.

  2. Polydopamine-coated magnetic nanoparticles for isolation and enrichment of estrogenic compounds from surface water samples followed by liquid chromatography-tandem mass spectrometry determination.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Piovesana, Susy; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2016-06-01

    Estrogens, phytoestrogens, and mycoestrogens may enter into the surface waters from different sources, such as effluents of municipal wastewater treatment plants, industrial plants, and animal farms and runoff from agricultural areas. In this work, a multiresidue analytical method for the determination of 17 natural estrogenic compounds, including four steroid estrogens, six mycoestrogens, and seven phytoestrogens, in river water samples has been developed. (Fe3O4)-based magnetic nanoparticles coated by polydopamine (Fe3O4@pDA) were used for dispersive solid-phase extraction, and the final extract was analyzed by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. The Fe3O4 magnetic nanoparticles were prepared by a co-precipitation procedure, coated by pDA, and characterized by scanning electron microscopy, infrared spectroscopy, and elemental analysis. The sample preparation method was optimized in terms of extraction recovery, matrix effect, selectivity, trueness, precision, method limits of detection, and method limits of quantification (MLOQs). For all the 17 analytes, recoveries were >70 % and matrix effects were below 30 % when 25 mL of river water sample was treated with 90 mg of Fe3O4@pDA nanoparticles. Selectivity was tested by spiking river water samples with 50 other compounds (mycotoxins, antibacterials, conjugated hormones, UV filters, alkylphenols, etc.), and only aflatoxins and some benzophenones showed recoveries >60 %. This method proved to be simple and robust and allowed the determination of natural estrogenic compounds belonging to different classes in surface waters with MLOQs ranging between 0.003 and 0.1 μg L(-1). Graphical Abstract Determination of natural estrogenic compounds in water by magnetic solid phase extraction followed by liquid chromatography-tandem mass spectrometry analysis.

  3. Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy.

    PubMed

    Wu, Ming; Zhang, Da; Zeng, Yongyi; Wu, Lingjie; Liu, Xiaolong; Liu, Jingfeng

    2015-03-20

    In this paper, a core–shell nanocomposite of clusters of superparamagnetic iron oxide nanoparticles coated with poly(dopamine) (SPION clusters@PDA) is fabricated as a magnetic field-directed theranostic agent that combines the capabilities of highly sensitive magnetic resonance imaging (MRI) and photothermal cancer therapy. The highly concentrated SPION cluster core is suitable for sensitive MRI due to its superparamagnetic properties, and the poly(dopamine) coating layer can induce cancer cell death under near-infrared (NIR) laser irradiation because of the photothermal conversion ability of PDA. MRI scanning reveals that the nanocomposite has relatively high r2 and r2(*) relaxivities, and the r2(*) values are nearly threefold higher than the r2 values because of the clustering of the SPIONs in the nanocomposite core. Due to the rapid response to magnetic field gradients, enhanced cellular uptake of our nanocomposite mediated by an external magnetic field can be achieved, thus producing significantly enhanced local photothermal killing efficiency against cancer cells under NIR irritation.

  4. Nanoparticles affect PCR primarily via surface interactions with PCR components: using amino-modified silica-coated magnetic nanoparticles as a main model

    USDA-ARS?s Scientific Manuscript database

    Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic n...

  5. Removal of Radioactive Cesium Using Prussian Blue Magnetic Nanoparticles

    PubMed Central

    Jang, Sung-Chan; Hong, Sang-Bum; Yang, Hee-Man; Lee, Kune-Woo; Moon, Jei-Kwon; Seo, Bum-Kyoung; Huh, Yun Suk; Roh, Changhyun

    2014-01-01

    Radioactive cesium (137Cs) has inevitably become a human concern due to exposure from nuclear power plants and nuclear accident releases. Many efforts have been focused on removing cesium and the remediation of the contaminated environment. In this study, we elucidated the ability of Prussian blue-coated magnetic nanoparticles to eliminate cesium from radioactive contaminated waste. Thus, the obtained Prussian blue-coated magnetic nanoparticles were then characterized and examined for their physical and radioactive cesium adsorption properties. This Prussian blue-coated magnetic nanoparticle-based cesium magnetic sorbent can offer great potential for use in in situ remediation. PMID:28344255

  6. Magnetic nanoparticle temperature estimation.

    PubMed

    Weaver, John B; Rauwerdink, Adam M; Hansen, Eric W

    2009-05-01

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 degree K between 20 and 50 degrees C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  7. Magnetic nanoparticle temperature estimation

    PubMed Central

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-01-01

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 °K between 20 and 50 °C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution. PMID:19544801

  8. Properties and biomedical applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Regmi, Rajesh Kumar

    Magnetic nanoparticles have a number of unique properties, making them promising agents for applications in medicine including magnetically targeted drug delivery, magnetic hyperthermia, magnetic resonance imaging, and radiation therapy. They are biocompatible and can also be coated with biocompatible surfactants, which may be further functionalized with optically and therapeutically active molecules. These nanoparticles can be manipulated with non-invasive external magnetic field to produce heat, target specific site, and monitor their distribution in vivo. Within this framework, we have investigated a number of biomedical applications of these nanoparticles. We synthesized a thermosensitive microgel with iron oxide adsorbed on its surface. An alternating magnetic field applied to these nanocomposites heated the system and triggered the release of an anticancer drug mitoxantrone. We also parameterized the chain length dependence of drug release from dextran coated iron oxide nanoparticles, finding that both the release rate and equilibrium release fraction depend on the molecular mass of the surfactant. Finally, we also localized dextran coated iron oxide nanoparticles labeled with tat peptide to the cell nucleus, which permits this system to be used for a variety of biomedical applications. Beyond investigating magnetic nanoparticles for biomedical applications, we also studied their magnetohydrodynamic and dielectric properties in solution. Magnetohydrodynamic properties of ferrofluid can be controlled by appropriate selection of surfactant and deielctric measurement showed magnetodielectric coupling in this system. We also established that some complex low temperature spin structures are suppressed in Mn3O4 nanoparticles, which has important implications for nanomagnetic devices. Furthermore, we explored exchange bias effects in Ni-NiO core-shell nanoparticles. Finally, we also performed extensive magnetic studies in nickel metalhydride (NiMH) batteries to

  9. Evaluation of magnetic nanoparticles coated by 5-fluorouracil imprinted polymer for controlled drug delivery in mouse breast cancer model.

    PubMed

    Hashemi-Moghaddam, Hamid; Kazemi-Bagsangani, Saeed; Jamili, Mahdi; Zavareh, Saeed

    2016-01-30

    Nanoparticles (NPs) have been extensively investigated to improve delivery efficiency of therapeutic and diagnostic agents. In this study, magnetic molecularly imprinted polymer (MIP) was synthesized by using polydopamine. Synthesized MIP was used for controlled 5-fluorouracil (5-FU) delivery in a spontaneous model of breast adenocarcinoma in Balb/c mice in the presence of an external magnetic field. Antitumor effectiveness of 5-FU imprinted polymer (5-FU-IP) was evaluated in terms of tumor-growth delay, tumor-doubling time, inhibition ratio, and histopathology. Results showed higher efficacy of 5-FU-IP in the presence of magnetic field upon suppressing tumor growth than free 5-FU and 5-FU-IP without magnetic field. The 5-FU and Fe distribution among tissues were evaluated by high-performance liquid chromatography and flame atomic absorption spectrometry, respectively. The obtained results, showed significantly deposition of 5-FU in the 5-FU-IP treated group with magnetic field. Thus, magnetic 5-FU-IP is promising for breast cancer therapy with high efficacy.

  10. Bioresponsive polymer coating on nanoparticles

    NASA Astrophysics Data System (ADS)

    Laemthong, Tunyaboon

    Nanotechnology incorporated with molecular biology became a promising way to treat cancer. The size of nanoparticles enables them to overcome the side effects noticed in cancer treatment like chemotherapy and surgery. Various types and shapes of nanoparticles have been synthesized and used in drug delivery to tumor sites. However, one of problems of using these nanoparticles is the aggregation after injecting them into human body due to flow rate of bloodstream. The coagulation and aggregation will result in clogging blood vessel and lower therapeutic efficacy. In this thesis, a solution to the aggregation problem was proposed, which is coating biopolymer on nanoparticles (NPs). The experimental sections covered synthesis and characterization of breast cancer specific targeting drug-encapsulated NPs and biopolymer coating on the surface of Au-Fe3O4 NPs for thermal therapy. Furthermore, in vitro studies of these NPs with breast cancer cells were also included. The specific targeting anticancer drug-encapsulated NRs showed significant inhibition in BT-474 breast cancer cell growth. The Au-Fe3O4 NPs has a possibility to treat cancer cells using the thermal therapy approach.

  11. Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles.

    PubMed

    Lin, Run; Li, Yuancheng; MacDonald, Tobey; Wu, Hui; Provenzale, James; Peng, Xingui; Huang, Jing; Wang, Liya; Wang, Andrew Y; Yang, Jianyong; Mao, Hui

    2017-02-01

    Detecting circulating tumor cells (CTCs) with high sensitivity and specificity is critical to management of metastatic cancers. Although immuno-magnetic technology for in vitro detection of CTCs has shown promising potential for clinical applications, the biofouling effect, i.e., non-specific adhesion of biomolecules and non-cancerous cells in complex biological samples to the surface of a device/probe, can reduce the sensitivity and specificity of cell detection. Reported herein is the application of anti-biofouling polyethylene glycol-block-allyl glycidyl ether copolymer (PEG-b-AGE) coated iron oxide nanoparticles (IONPs) to improve the separation of targeted tumor cells from aqueous phase in an external magnetic field. PEG-b-AGE coated IONPs conjugated with transferrin (Tf) exhibited significant anti-biofouling properties against non-specific protein adsorption and off-target cell uptake, thus substantially enhancing the ability to target and separate transferrin receptor (TfR) over-expressed D556 medulloblastoma cells. Tf conjugated PEG-b-AGE coated IONPs exhibited a high capture rate of targeted tumor cells (D556 medulloblastoma cell) in cell media (58.7±6.4%) when separating 100 targeted tumor cells from 1×10(5) non-targeted cells and 41 targeted tumor cells from 100 D556 medulloblastoma cells spiked into 1mL blood. It is demonstrated that developed nanoparticle has higher efficiency in capturing targeted cells than widely used micron-sized particles (i.e., Dynabeads(®)). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A new type of silica-coated Gd2(CO3)3:Tb nanoparticle as a bifunctional agent for magnetic resonance imaging and fluorescent imaging

    NASA Astrophysics Data System (ADS)

    Wu, Yanli; Xu, Xianzhu; Tang, Qun; Li, Yongxiu

    2012-05-01

    We report a new type of dual modal nanoprobe to combine optical and magnetic resonance bioimaging. A simple reverse microemulsion method and coating process was introduced to synthesize silica-coated Gd2(CO3)3:Tb nanoparticles, and the particles, with an average diameter of 16 nm, can be dispersed in water. As in vitro cell imaging of the nanoprobe shows, the nanoprobe accomplishes delivery to gastric SGC7901 cancer cells successfully in a short time, as well as NCI-H460 lung cancer cells. Furthermore, it presents no evidence of cell toxicity or adverse affect on kidney cell growth under high dose, which makes the nanoprobe’s optical bioimaging modality available. The possibility of using the nanoprobe for magnetic resonance imaging is also demonstrated, and the nanoprobe displays a clear T1-weighted effect and could potentially serve as a bimodal T1-positive contrast agent. Therefore, the new nanoprobe formed from carbonate nanoprobe doped with rare earth ions provides the dual modality of optical and magnetic resonance imaging.

  13. Application of methyl silane coated iron oxide magnetic nanoparticles for solid-phase extraction and determination of fat-soluble vitamins by high performance liquid chromatography.

    PubMed

    Momenbeik, Fariborz; Yazdani, Elham

    2015-01-01

    Methyl silane coated Fe3O4 magnetic nanoparticles were used for simultaneous extraction of the fat-soluble vitamins (FSVs). The amounts of extracted vitamins were determined by HPLC. The synthesized Fe3O4 nanoparticles were coated with silica and then modified with trimethoxymethylsilane (TMMS). The prepared particles were characterized by different methods. The best amounts of silica and TMMS in sorbent synthesis were 1.2 and 0.5 mL, respectively. The optimum pH values for the sample solution and washing buffer were 5 and 3, respectively. Application of 100 mg sorbent, 700 μL tetrahydrofuran, 5-fold dilution of the sample solution, and 1 min for sorption and desorption times were among the best conditions. At the optimum conditions, the calibration plots for each vitamin were obtained with good linearity (R(2) >0.9992) and suitable linear ranges. This method has a low LOD (<76.1 μg/mL), acceptable repeatability (RSD <5.63%) and reproducibility (RSD <4.71%), and good accuracy (recovery >90.3%). Preconcentration of low concentrations of vitamin D3 was performed, and results showed 3.7 times greater sensitivity after preconcentration. Finally, the amounts of the FSVs in pharmaceutical formulations were determined using the proposed method, and results showed good agreement with those reported by manufacturers.

  14. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on label-free amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction

    USDA-ARS?s Scientific Manuscript database

    A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogen...

  15. Siderophore coated magnetic iron nanoparticles: Rational designing of water soluble nanobiosensor for visualizing Al(3+) in live organism.

    PubMed

    Raju, M; Srivastava, Sakshi; Nair, Ratish R; Raval, Ishan H; Haldar, Soumya; Chatterjee, Pabitra B

    2017-11-15

    This article aims to establish the judicious use of iron-binding chemistry of microbial chelators in order to functionalize the surface of iron nanoparticles to develop non-toxic nanobiosensor. Anchoring a simple siderophore 2,3-dihydroxybenzoylglycine (H3L), which bears catechol and carboxyl functionalities in tandem, on to the surface of Fe3O4 nanoparticles has developed a unique nanobiosensor HL-FeNPs which showed highly selective and sensitive detection of Al(3+) in 100% water at physiological pH. The biosensor HL-FeNPs, with 20nM limit of detection, behaves reversibly and instantly. In-vivo bio-imaging in live brine shrimp Artemia confirmed that HL-FeNPs could be used as fluorescent biomarker for Al(3+) in live whole organisms. Magnetic nature of the nanosensor enabled HL-FeNPs to remove excess Al(3+) by using external magnet. To our knowledge, the possibility of microbial chelator in the practical development of Al(3+) selective nanobiosensor is unprecedented. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Phenyl-functionalized silica-coated magnetic nanoparticles for the extraction of chlorobenzenes, and their determination by GC-electron capture detection.

    PubMed

    Saraji, Mohammad; Khaje, Nasrin

    2013-03-01

    We have prepared a solid phase for the extraction of chlorobenzenes (CBs) by coating magnetic (Fe3 O4 ) nanoparticles with silica via a sol-gel process using a mixture of tetraethoxysilane and triethoxyphenylsilane. The nanoparticles were characterized by SEM, energy-dispersive spectroscopy, and X-ray diffractometry. The nanoparticles were used for the extraction of 1,4-dichlorobenzene (1,4-DCB), 1,2,3-trichlorobenzene (1,2,3-TCB), 1,2,4-trichlorobenzene (1,2,4-TCB), and 1,2,3,4-tetrachlorobenzene (1,2,3,4-TeCB) from water, followed by their determination by GC-electron capture detection. Under optimal conditions, enrichment factors ranging from 220 to 360 were obtained. All determination coefficients (r(2)) are >0.99, and linear response is found in range 0.025-1.5 μg/L (at the lower end), and 6-120 μg/L (at the higher end). Detection limits are 6, 10, 11, and 500 ng/L for 1,2,3,4-TeCB, 1,2,4-TCB, 1,2,3-TCB, and 1,4-DCB, respectively. All RSDs are <6% (for n = 5). The method was successfully applied to the determination of CBs in environmental water samples.

  17. In-tube magnetic solid phase microextraction of some fluoroquinolones based on the use of sodium dodecyl sulfate coated Fe3O4 nanoparticles packed tube.

    PubMed

    Manbohi, Ahmad; Ahmadi, Seyyed Hamid

    2015-07-23

    In-tube magnetic solid phase microextraction (in-tube MSPME) of fluoroquinolones from water and urine samples based on the use of sodium dodecyl sulfate (SDS) coated Fe3O4 nanoparticles packed tube has been reported. After the preparation of Fe3O4 nanoparticles (NPs) by a batch synthesis, these NPs were introduced into a stainless steel tube by a syringe and then a strong magnet was placed around the tube, so that the Fe3O4 NPs were remained in the tube and the tube was used in the in-tube SPME-HPLC/UV for the analysis of fluoroquinolones in water and urine samples. Plackett-Burman design was employed for screening the variables significantly affecting the extraction efficiency. Then, the significant factors were more investigated by Box-Behnken design. Calibration curves were linear (R(2)>0.990) in the range of 0.1-1000μgL(-1) for ciprofloxacin (CIP) and 0.5-500μgL(-1) for enrofloxacin (ENR) and ofloxacin (OFL), respectively. LODs for all studied fluoroquinolones ranged from 0.01 to 0.05μgL(-1). The main advantages of this method were rapid and easy automation and analysis, short extraction time, high sensitivity, possibility of fully sorbent collection after analysis, wide linear range and no need to organic solvents in extraction. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions.

    PubMed

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang

    2015-08-30

    A novel molecularly imprinted polymer (MIP)-coated magnetic TiO2 nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC-MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, "green" and low-cost degradation of CR in industrial printing and dyeing wastewater.

  19. Synthesis and characterization of silane coated magnetic nanoparticles/glycidylmethacrylate-grafted-maleated cyclodextrin composite hydrogel as a drug carrier for the controlled delivery of 5-fluorouracil.

    PubMed

    Anirudhan, Thayyath S; Divya, Peethambaran L; Nima, Jayachandran

    2015-10-01

    A novel drug delivery system (DDS), 3-methacryloxypropyl trimethoxy silane coated magnetic nanoparticles polymerized with glycidylmethacrylate-grafted-maleated cyclodextrin (MPTMS-MNP-poly-(GMA-g-MACD)) was prepared in the presence of ethyleneglycoldimethacrylate as cross-linker and a,a'-azobisisobutyronitrile as initiator and characterized by means of SEM, FT-IR, XRD, DLS, VSM and TEM. The encapsulation efficiency (EE) and drug loading efficiency (DLE) of the DDS were tested using various formulations of DDS. The DDS showed activity against gram positive and negative bacteria. The cytotoxicity studies were also performed using MCF-7 (human breast carcinoma) cells and found that the drug carrier is biocompatible and it shows sustained and controlled release of drug to the targeted site. The drug release mechanism was found to obey non-Fickian diffusion (n=0.709) method where polymer relaxation and drug diffusion played important roles in drug release. In this DDS, advantages of core magnetic nanoparticles and host-guest interactions of β-CD were combined for the controlled delivery of 5-Fluorouracil (5-FU) to maintain the therapeutic index of the drug.

  20. A simple and sensitive methodology for voltammetric determination of valproic acid in human blood plasma samples using 3-aminopropyletriethoxy silane coated magnetic nanoparticles modified pencil graphite electrode.

    PubMed

    Zabardasti, Abedin; Afrouzi, Hossein; Talemi, Rasoul Pourtaghavi

    2017-07-01

    In this work, we have prepared a nano-material modified pencil graphite electrode for the sensing of valproic acid (VA) by immobilization 3-aminopropyletriethoxy silane coated magnetic nanoparticles (APTES-MNPs) on the pencil graphite surface (PGE). Electrochemical studies indicated that the APTES-MNPs efficiently increased the electron transfer kinetics between VA and the electrode and the free NH2 groups of the APTES on the outer surface of magnetic nanoparticles can interact with carboxyl groups of VA. Based on this, we have proposed a sensitive, rapid and convenient electrochemical method for VA determination. Under the optimized conditions, the reduction peak current of VA is found to be proportional to its concentration in the range of 1.0 (±0.2) to 100.0 (±0.3) ppm with a detection limit of 0.4 (±0.1) ppm. The whole sensor fabrication process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods with using [Fe(CN)6](3-/4-)as an electrochemical redox indicator. The prepared modified electrode showed several advantages such as high sensitivity, selectivity, ease of preparation and good repeatability, reproducibility and stability. The proposed method was applied to determination of valproic acid in blood plasma samples and the obtained results were satisfactory accurate. Copyright © 2017. Published by Elsevier B.V.

  1. Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples

    NASA Astrophysics Data System (ADS)

    Chen, Jieping; Zhu, Xiashi

    2015-02-01

    Three hydrophobic ionic liquids (ILs) including 1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6), 1-hexyl-3-methyl-imidazole hexafluorophosphate ([HMIM]PF6), and 1-octyl-3-methylimidazole hexafluoro-phosphate ([OMIM]PF6) coated Fe3O4@SiO2 nanoparticles with core-shell structure to prepare magnetic solid phase extraction agent (Fe3O4@SiO2@ILs) and establish a new method of magnetic solid phase extraction (MSPE) coupled with UV spectrometry for separation/analysis of linuron. The results showed that linuron was adsorbed rapidly by Fe3O4@SiO2@[OMIM]PF6 and eluanted by ethanol. Under the optimal conditions, preconcentration factor of the proposed method was 10-fold. The linear range, detection limit, correlation coefficient (R) and relative standard deviation (RSD) were found to be 0.04-20.00 μg mL-1, 5.0 ng mL-1, 0.9993 and 2.8% (n = 3, c = 4.00 μg mL-1), respectively. The Fe3O4@SiO2 nanoparticles could be used repeatedly for 10 times. This proposed method has been successfully applied to the determination of linuron in food samples.

  2. MAGNETIC NANOPARTICLE HYPERTHERMIA IN CANCER TREATMENT

    PubMed Central

    Giustini, Andrew J.; Petryk, Alicia A.; Cassim, Shiraz M.; Tate, Jennifer A.; Baker, Ian; Hoopes, P. Jack

    2013-01-01

    The activation of magnetic nanoparticles (mNPs) by an alternating magnetic field (AMF) is currently being explored as technique for targeted therapeutic heating of tumors. Various types of superparamagnetic and ferromagnetic particles, with different coatings and targeting agents, allow for tumor site and type specificity. Magnetic nanoparticle hyperthermia is also being studied as an adjuvant to conventional chemotherapy and radiation therapy. This review provides an introduction to some of the relevant biology and materials science involved in the technical development and current and future use of mNP hyperthermia as clinical cancer therapy. PMID:24348868

  3. Construction of a sensitive and selective sensor for morphine using chitosan coated Fe3O4 magnetic nanoparticle as a modifier.

    PubMed

    Dehdashtian, Sara; Gholivand, Mohammad Bagher; Shamsipur, Mojtaba; Kariminia, Samira

    2016-01-01

    A simple and sensitive sensor based on carbon paste electrode (CPE) modified by chitosan-coated magnetic nanoparticle (CMNP) was developed for the electrochemical determination of morphine (MO). The proposed sensor was characterized with scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrooxidation of MO was studied on modified carbon paste electrode using cyclic voltammetry, chronoamperometry and differential pulse voltammetry as diagnostic techniques. The oxidation peak potential of morphine on the CMNP/CPE appeared at 380 mV which was accompanied with smaller overpotential and increase in oxidation peak current compared to that obtained on the bare carbon paste electrode (CPE). Under optimum conditions the sensor provides two linear DPV responses in the range of 10-2000 nM and 2-720 μM for MO with a detection limit of 3 nM. The proposed sensor was successfully applied for monitoring of MO in serum and urine samples and satisfactory results were obtained.

  4. Generation of drugs coated iron nanoparticles through high energy ball milling

    SciTech Connect

    Radhika Devi, A.; Murty, B. S.; Chelvane, J. A.; Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  5. Generation of drugs coated iron nanoparticles through high energy ball milling

    NASA Astrophysics Data System (ADS)

    Radhika Devi, A.; Chelvane, J. A.; Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh; Murty, B. S.

    2014-03-01

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  6. Biotemplated magnetic nanoparticle arrays.

    PubMed

    Galloway, Johanna M; Bramble, Jonathan P; Rawlings, Andrea E; Burnell, Gavin; Evans, Stephen D; Staniland, Sarah S

    2012-01-23

    Immobilized biomineralizing protein Mms6 templates the formation of uniform magnetite nanoparticles in situ when selectively patterned onto a surface. Magnetic force microscopy shows that the stable magnetite particles maintain their magnetic orientation at room temperature, and may be exchange coupled. This precision-mixed biomimetic/soft-lithography methodology offers great potential for the future of nanodevice fabrication. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sulfonic acid-functionalized silica-coated magnetic nanoparticles as an efficient reusable catalyst for the synthesis of 1-substituted 1H-tetrazoles under solvent-free conditions.

    PubMed

    Naeimi, Hossein; Mohamadabadi, Samaneh

    2014-09-14

    Regarding green chemistry goals, silica-coated magnetite nanoparticles open up a new avenue to introduce a very useful and efficient system for facilitating catalyst recovery in different organic reactions. Therefore, in this paper the preparation of sulfonic acid-functionalized silica-coated magnetic nanoparticles with core-shell structure (Fe3O4@silica sulfonic acid) is presented by using Fe3O4 spheres as the core and silica sulfonic acid nanoparticles as the shell. The catalyst was characterized by infrared spectroscopy, scanning electron microscopy, X-ray diffraction analysis, dynamic light scattering, thermogravimetric analysis and vibrating sample magnetometry. Nanocatalyst can be recovered using an external magnet and reused for subsequent reactions 6 times without noticeable deterioration in catalytic activity.

  8. Multicore Magnetic Nanoparticles Coated with Oligomeric Micelles: Characterization and Potential for the Extraction of Contaminants over a Wide Polarity Range.

    PubMed

    Naous, Mohamed; García-Gómez, Diego; López-Jiménez, Francisco José; Bouanani, Farida; Lunar, María Loreto; Rubio, Soledad

    2017-01-17

    Oligomeric micelles from sodium undecylenate (oSUD) were chemisorbed to magnetic iron oxide nanoparticles (MNPs) through a single-step synthetic route involving the simultaneous nanoparticle formation and functionalization in an aqueous medium. The resulting spherical nanoparticles (MNPs-oSUD) consisted of a concatenation of iron oxide cores, with an average size of 7.7 nm, bound by oSUD micelles (particle average diameter of ca. 200 nm). Micellar coverage was ∼50% of the MNP-oSUD (by weight) and offered multiple retention mechanisms (e.g., dispersion, hydrogen bonding, polar, and ionic) for solute solubilization while keeping it intact during analyte elution. The high density of micelles and variety of interactions provided by this sorbent rendered it highly efficient for the extraction of aromatic amines in a wide polarity range (log Kow values from -0.80 to 4.05) from textiles, urine, and wastewater. Extraction took 5 min, no cleanup or evaporation of the extracts was needed and the method, based on LC-MS/MS quantitation, proved matrix-independent. Recoveries for 17 aromatic amines in samples were in the range of 93%-123% while those with negative log Kow values were in the range of 69%-87%. Detection limits for aromatic amines in textiles (0.007-2 mg kg(-1)) were well below the limits legislated by the European Union (EU) (30 mg kg(-1)) and those in urine and wastewater (0.004-1.5 μg L(-1)) were at the level usually found in real-world applications. All the analyzed samples were positive in aromatic amines. The easy synthesis and excellent extraction properties of MNPs-oSUD anticipate their high potential not only for multiresidue analysis but also in other fields such as water remediation.

  9. Polypyrrole-coated magnetic nanoparticles as an efficient adsorbent for RB19 synthetic textile dye: Removal and kinetic study.

    PubMed

    Shanehsaz, Maryam; Seidi, Shahram; Ghorbani, Yousefali; Shoja, Seyed Mohammad Reza; Rouhani, Shohre

    2015-01-01

    The present work deals with the first attempt to study the removal of synthetic textile dye, reactive blue 19 (RB19), using the magnetic Fe3O4 nanoparticles modified by pyrrole (PPy@Fe3O4 MNPs) as an efficient adsorbent. The nanoadsorbent was synthesized using chemical co-precipitation. Scanning electron microscopy and FT-IR were used to characterize nanoparticles. Factors affecting the dye adsorption including the pH of the dye solution, amount of adsorbent and contact time were also further investigated. Sorption of the RB19 on PPy@Fe3O4 MNPs reached to equilibrium at contact time less than 10 min and fitted well to the Langmuir adsorption model with a maximum adsorption capacity of 112.36 mg g(-1). Experiments for adsorption kinetic were carried out and the data fitted well according to a pseudo-second-order kinetic model. Moreover, the MNPs were recovered with over than 90% efficiency using methanol as elution agent.

  10. Magnetoacoustic Sensing of Magnetic Nanoparticles.

    PubMed

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-11

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  11. Magnetoacoustic Sensing of Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G.; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-01

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  12. Synthesis of Polymer-Coated Magnetic Nanoparticles from Red Mud Waste for Enhanced Oil Recovery in Offshore Reservoirs

    NASA Astrophysics Data System (ADS)

    Nguyen, T. P.; Le, U. T. P.; Ngo, K. T.; Pham, K. D.; Dinh, L. X.

    2016-07-01

    Buried red mud waste from groundwater refineries can cause pollution. The aim of this paper is to utilize this mud for the synthesis of Fe3O4 magnetic nanoparticles (MNPs). Then, MNPs are encapsulated by a copolymer of methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonate via oleic acid linker. MNPs are prepared by a controlled co-precipitation method in the presence of a dispersant and surface-modified agents to achieve a high hydrophobic or hydrophilic surface. Mini-emulsion polymerization was conducted to construct a core-shell structure with MNPs as core and the copolymer as shell. The core-shell structure of the obtained particles enables them to disperse well in brine and to stabilize at high-temperature environments. The chemical structures and morphology of this nanocomposite were investigated by Fourier transform infrared spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. The thermal stability of the nanocomposite was evaluated via a thermogravimetric analysis method for the solid state and an annealing experiment for the liquid state. The nanocomposite is about 14 nm, disperses well in brine and is thermally stable in the solid state. The blends of synthesized nanocomposite and carboxylate surfactant effectively reduced the interfacial tension between crude oil and brine, and remained thermally stable after 31 days annealed at 100°C. Therefore, a nanofluid of copolymer/magnetic nanocomposite can be applied as an enhanced oil recovery agent for harsh environments in offshore reservoirs.

  13. Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode.

    PubMed

    Khoshfetrat, Seyyed Mehdi; Mehrgardi, Masoud A

    2017-04-01

    The increasing demands for early, accurate and ultrasensitive diagnosis of cancers demonstrate the importance of the development of new amplification strategies or diagnostic technologies. In the present study, an aptamer-based electrochemical biosensor for ultrasensitive and selective detection of leukemia cancer cells has been introduced. The thiolated sgc8c aptamer was immobilized on gold nanoparticles-coated magnetic Fe3O4 nanoparticles (Apt-GMNPs). Ethidium bromide (EB), intercalated into the stem of the aptamer hairpin, provides the read-out signal for the quantification of the leukemia cancer cells. After introduction of the leukemia cancer cells onto the Apt-GMNPs, the hairpin structure of the aptamer is disrupted and the intercalator molecules are released, resulting in a decrease of the electrochemical signal. The immobilization of nitrogen-doped graphene nanosheets on the electrode surface provides an excellent platform for amplifying the read-out signal. Under optimal conditions, the aptasensor exhibits a linear response over a wide dynamic range of leukemia cancer cells from 10 to 1×10(6)cellmL(-1). The present protocol provides a highly sensitive, selective, simple, and robust method for early stage detection of leukemia cancer. Furthermore, the fabricated aptasensor was successfully used for the detection of leukemia cancer cells in complex media such as human blood plasma, without any serious interference. Copyright © 2016. Published by Elsevier B.V.

  14. Structural dependence of the efficiency of functionalization of silica-coated FeOx magnetic nanoparticles studied by ATR-IR

    NASA Astrophysics Data System (ADS)

    Vargas, Angelo; Shnitko, Ivan; Teleki, Alexandra; Weyeneth, Stephen; Pratsinis, Sotiris E.; Baiker, Alfons

    2011-01-01

    The efficiency of propylamino functionalization of magnetic silica-coated FeOx nanoparticles prepared by different methods, including coprecipitation and flame aerosol synthesis, has been evaluated by attenuated total reflection infrared spectroscopy (ATR-IR) combined with a specific surface reaction, thus revealing the availability of the grafted functional groups. Large differences in the population of reactive groups were observed for the investigated materials, underlining the tight relation between the structure of nanoparticles and their suitability for organic functionalization. The materials possessed different core structure, surface area, and porosity, as evidenced by transmission electron microscopy and nitrogen adsorption-desorption isotherms. Grafting of aminopropyl groups using a standard procedure based on reaction with (3-aminopropyl)trimethoxysilane as source of the propylamino groups was performed, followed by classical dry analysis methods to determine the specific concentration of the organic functional groups (in mmol g-1 of material). ATR-IR spectroscopy in a specially constructed reactor cell was applied as wet methodology to determine the chemically available amount of such functional groups, showing that the materials possess largely different loading capacity, with a variability of up to 70% in the chemical availability of the organic functional group. The amount of (3-aminopropyl)trimethoxysilane used for functionalization was optimized, thus reaching a saturation limit characteristic of the material.

  15. Stabilizing Alginate Confinement and Polymer Coating of CO-Releasing Molecules Supported on Iron Oxide Nanoparticles To Trigger the CO Release by Magnetic Heating.

    PubMed

    Meyer, Hajo; Winkler, Felix; Kunz, Peter; Schmidt, Annette M; Hamacher, Alexandra; Kassack, Matthias U; Janiak, Christoph

    2015-12-07

    Maghemite (Fe2O3) iron oxide nanoparticles (IONPs) were synthesized, modified with covalent surface-bound CO-releasing molecules of a tri(carbonyl)-chlorido-phenylalaninato-ruthenium(II) complex (CORM), and coated with a dextran polymer. The time- and temperature-dependent CO release from this CORM-3 analogue was followed by a myoglobin assay. A new measurement method for the myoglobin assay was developed, based on confining "water-soluble" polymer-coated Dextran500k@CORM@IONP particles in hollow spheres of nontoxic and easily prepared calcium alginate. Dropping a mixture of Dextran500k@CORM@IONP and sodium alginate into a CaCl2 solution leads to stable hollow spheres of Ca(2+) cross-linked alginate which contain the Dextran500k@CORM@IONP particles. This "alginate-method" (i) protects CORM-3 analogues from rapid CO-displacement reactions with a protein, (ii) enables a spatial separation of the CORM from its surrounding myoglobin assay with the alginate acting as a CO-permeable membrane, and (iii) allows the use of substances with high absorptivity (such as iron oxide nanoparticles) in the myoglobin assay without interference in the optical path of the UV cell. Embedding the CORM@IONP nanoparticles in the alginate vessel represents a compartmentation of the reactive component and allows for close contact with, yet facile separation from, the surrounding myoglobin assay. The half-life of the CO release from Dextran500k@CORM@IONP particles surrounded by alginate was determined to be 890 ± 70 min at 20 °C. An acceleration of the CO release occurs at higher temperature with a half-life of 172 ± 27 min at 37 °C and 45 ± 7 min at 50 °C. The CO release can be triggered in an alternating current magnetic field (31.7 kA m(-1), 247 kHz, 39.9 mT) through local magnetic heating of the susceptible iron oxide nanoparticles. With magnetic heating at 20 °C in the bulk solution, the half-life of CO release from Dextran500k@CORM@IONP particles decreased to 155 ± 18 min

  16. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer.

    PubMed

    Azhdarzadeh, Morteza; Atyabi, Fatemeh; Saei, Amir Ata; Varnamkhasti, Behrang Shiri; Omidi, Yadollah; Fateh, Mohsen; Ghavami, Mahdi; Shanehsazzadeh, Saeed; Dinarvand, Rassoul

    2016-07-01

    Favorable physiochemical properties and the capability to accommodate targeting moieties make superparamegnetic iron oxide nanoparticles (SPIONs) popular theranostic agents. In this study, we engineered SPIONs for magnetic resonance imaging (MRI) and photothermal therapy of colon cancer cells. SPIONs were synthesized by microemulsion method and were then coated with gold to reduce their cytotoxicity and to confer photothermal capabilities. Subsequently, the NPs were conjugated with thiol modified MUC-1 aptamers. The resulting NPs were spherical, monodisperse and about 19nm in size, as shown by differential light scattering (DLS) and transmission electron microscopy (TEM). UV and X-ray photoelectron spectroscopy (XPS) confirmed the successful gold coating. MTT results showed that Au@SPIONs have insignificant cytotoxicity at the concentration range of 10-100μg/ml (P>0.05) and that NPs covered with protein corona exerted lower cytotoxicity than bare NPs. Furthermore, confocal microscopy confirmed the higher uptake of aptamer-Au@SPIONs in comparison with non-targeted SPIONs. MR imaging revealed that SPIONs produced significant contrast enhancement in vitro and they could be exploited as contrast agents. Finally, cells treated with aptamer-Au@SPIONs exhibited a higher death rate compared to control cells upon exposure to near infrared light (NIR). In conclusion, MUC1-aptamer targeted Au@SPIONs could serve as promising theranostic agents for simultaneous MR imaging and photothermal therapy of cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Immobilization of Chlamydomonas reinhardtii CLH1 on APTES-Coated Magnetic Iron Oxide Nanoparticles and Its Potential in the Production of Chlorophyll Derivatives.

    PubMed

    Yen, Chih-Chung; Chuang, Yao-Chen; Ko, Chia-Yun; Chen, Long-Fang O; Chen, Sheau-Shyang; Lin, Chia-Jung; Chou, Yi-Li; Shaw, Jei-Fu

    2016-07-26

    Recombinant Chlamydomonas reinhardtii chlorophyllase 1 (CrCLH1) that could catalyze chlorophyll hydrolysis to chlorophyllide and phytol in vitro was successfully expressed in Escherichia coli. The recombinant CrCLH1 was immobilized through covalent binding with a cubic (3-aminopropyl) triethoxysilane (APTES) coating on magnetic iron oxide nanoparticles (MIONPs), which led to markedly improved enzyme performance and decreased biocatalyst costs for potential industrial application. The immobilized enzyme exhibited a high immobilization yield (98.99 ± 0.91 mg/g of gel) and a chlorophyllase assay confirmed that the immobilized recombinant CrCLH1 retained enzymatic activity (722.3 ± 50.3 U/g of gel). Biochemical analysis of the immobilized enzyme, compared with the free enzyme, showed higher optimal pH and pH stability for chlorophyll-a hydrolysis in an acidic environment (pH 3-5). In addition, compared with the free enzyme, the immobilized enzyme showed higher activity in chlorophyll-a hydrolysis in a high temperature environment (50-60 °C). Moreover, the immobilized enzyme retained a residual activity of more than 64% of its initial enzyme activity after 14 cycles in a repeated-batch operation. Therefore, APTES-coated MIONP-immobilized recombinant CrCLH1 can be repeatedly used to lower costs and is potentially useful for the industrial production of chlorophyll derivatives.

  18. Study on iron oxide nanoparticles coated with glucose-derived polymers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Herea, D. D.; Chiriac, H.; Lupu, N.; Grigoras, M.; Stoian, G.; Stoica, B. A.; Petreus, T.

    2015-10-01

    This study reports an approach for a facile one-step synthesis of magnetic nanoparticles (MNPs) coated with glucose-derived polymers (GDP) through a mechanochemical hydrothermal process for biomedical applications. Polymer-coated magnetic nanoparticles (Fe2O3/Fe3O4), with sizes below 10 nm, exhibited superparamagnetic behavior, with a specific magnetization saturation value of about 40 emu/g, and a maximum specific absorption rate (SAR) of 30 W/g in AC magnetic fields. Depending on the intensity of the applied AC magnetic field, a temperature of 42 °C can be achieved in 4-17 min. The surface polymerized layer affords functional hydroxyl groups for binding to biomolecules containing carboxyl, thiol, or amino groups, thereby making the coated nanoparticles feasible for bio-conjugation. In vitro cytotoxicity evaluation pointed out that a relatively high concentration of polymer-coated magnetic nanoparticles (GDP-MNPs) did not induce severe cell alteration, suggesting a good biocompatibility.

  19. Magnetic Nanoparticles for Cancer Diagnosis and Therapy

    PubMed Central

    Yigit, Mehmet V.; Moore, Anna

    2013-01-01

    Nanotechnology is evolving as a new field that has a potentially high research and clinical impact. Medicine, in particular, could benefit from nanotechnology, due to emerging applications for noninvasive imaging and therapy. One important nanotechnological platform that has shown promise includes the so-called iron oxide nanoparticles. With specific relevance to cancer therapy, iron oxide nanoparticle-based therapy represents an important alternative to conventional chemotherapy, radiation, or surgery. Iron oxide nanoparticles are usually composed of three main components: an iron core, a polymer coating, and functional moieties. The biodegradable iron core can be designed to be superparamagnetic. This is particularly important, if the nanoparticles are to be used as a contrast agent for noninvasive magnetic resonance imaging (MRI). Surrounding the iron core is generally a polymer coating, which not only serves as a protective layer but also is a very important component for transforming nanoparticles into biomedical nanotools for in vivo applications. Finally, different moieties attached to the coating serve as targeting macromolecules, therapeutics payloads, or additional imaging tags. Despite the development of several nanoparticles for biomedical applications, we believe that iron oxide nanoparticles are still the most promising platform that can transform nanotechnology into a conventional medical discipline. PMID:22274558

  20. Surface spins disorder in uncoated and SiO2 coated maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeb, F.; Nadeem, K.; Shah, S. Kamran Ali; Kamran, M.; Gul, I. Hussain; Ali, L.

    2017-05-01

    We studied the surface spins disorder in uncoated and silica (SiO2) coated maghemite (γ-Fe2O3) nanoparticles using temperature and time dependent magnetization. The average crystallite size for SiO2 coated and uncoated nanoparticles was about 12 and 29 nm, respectively. Scanning electron microscopy (SEM) showed that the nanoparticles are spherical in shape and well separated. Temperature scans of zero field cooled (ZFC)/field cooled (FC) magnetization measurements showed lower average blocking temperature (TB) for SiO2 coated maghemite nanoparticles as compared to uncoated nanoparticles. The saturation magnetization (Ms) of SiO2 coated maghemite nanoparticles was also lower than the uncoated nanoparticles and is attributed to smaller average crystallite size of SiO2 coated nanoparticles. For saturation magnetization vs. temperature data, Bloch's law (M(T)= M(0).(1- BTb)) was fitted well for both uncoated and SiO2 coated nanoparticles and yields: B =3×10-7 K-b, b=2.22 and B=0.0127 K-b, b=0.57 for uncoated and SiO2 coated nanoparticles, respectively. Higher value of B for SiO2 coated nanoparticles depicts decrease in exchange coupling due to enhanced surface spins disorder (broken surface bonds) as compared to uncoated nanoparticles. The Bloch's exponent b was decreased for SiO2 coated nanoparticles which is due to their smaller average crystallite size or finite size effects. Furthermore, a sharp increase of coercivity at low temperatures (<25 K) was observed for SiO2 coated nanoparticles which is also due to contribution of increased surface anisotropy or frozen surface spins in these smaller nanoparticles. The FC magnetic relaxation data was fitted to stretched exponential law which revealed slower magnetic relaxation for SiO2 coated nanoparticles. All these measurements revealed smaller average crystallite size and enhanced surface spins disorder in SiO2 coated nanoparticles than in uncoated γ-Fe2O3 nanoparticles.

  1. Adsorption of Pb and Zn from binary metal solutions and in the presence of dissolved organic carbon by DTPA-functionalised, silica-coated magnetic nanoparticles.

    PubMed

    Hughes, D L; Afsar, A; Harwood, L M; Jiang, T; Laventine, D M; Shaw, L J; Hodson, M E

    2017-09-01

    The ability of diethylenetriaminepentaacetic acid (DTPA)-functionalised, silica-coated magnetic nanoparticles to adsorb Pb and Zn from single and bi-metallic metal solutions and from solutions containing dissolved organic carbon was assessed. In all experiments 10 mL solutions containing 10 mg of nanoparticles were used. For single metal solutions (10 mg L(-1) Pb or Zn) at pH 2 to 8, extraction efficiencies were typically >70%. In bi-metallic experiments, examining the effect of a background of either Zn or Pb (0.025 mmol L(-1)) on the adsorption of variable concentrations (0-0.045 mmol L(-1)) of the other metal (Pb or Zn, respectively) adsorption was well modelled by linear isotherms (R(2) > 0.60; p ≤ 0.001) and Pb was preferentially adsorbed relative to Zn. In dissolved organic carbon experiments, the presence of fulvic acid (0, 2.1 and 21 mg DOC L(-1)) reduced Pb and Zn adsorption from 0.01, 0.1 and 1.0 mmol L(-1) solutions. However, even at 21 mg DOC L(-1) fulvic acid, extraction efficiencies from 0.01 to 0.1 mmol L(-1) solutions remained >80% (Pb) and >50% (Zn). Decreases in extraction efficiency were significant between initial metal concentrations of 0.1 and 1.0 mmol L(-1) indicating that at metal loadings between c. 100 mg kg(-1) and 300 mg kg(-1) occupancy of adsorption sites began to limit further adsorption. The nanoparticles have the potential to perform effectively as metal adsorbents in systems containing more than one metal and dissolved organic carbon at a range of pH values. Copyright © 2017. Published by Elsevier Ltd.

  2. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging

    PubMed Central

    Unterweger, Harald; Janko, Christina; Schwarz, Marc; Dézsi, László; Urbanics, Rudolf; Matuszak, Jasmin; Őrfi, Erik; Fülöp, Tamás; Bäuerle, Tobias; Szebeni, János; Journé, Clément; Boccaccini, Aldo R; Alexiou, Christoph; Lyer, Stefan; Cicha, Iwona

    2017-01-01

    Iron oxide-based contrast agents have been in clinical use for magnetic resonance imaging (MRI) of lymph nodes, liver, intestines, and the cardiovascular system. Superparamagnetic iron oxide nanoparticles (SPIONs) have high potential as a contrast agent for MRI, but no intravenous iron oxide-containing agents are currently approved for clinical imaging. The aim of our work was to analyze the hemocompatibility and immuno-safety of a new type of dextran-coated SPIONs (SPIONdex) and to characterize these nanoparticles with ultra-high-field MRI. Key parameters related to nanoparticle hemocompatibility and immuno-safety were investigated in vitro and ex vivo. To address concerns associated with hypersensitivity reactions to injectable nanoparticulate agents, we analyzed complement activation-related pseudoallergy (CARPA) upon intravenous administration of SPIONdex in a pig model. Furthermore, the size-tunability of SPIONdex and the effects of size reduction on their biocompatibility were investigated. In vitro, SPIONdex did not induce hemolysis, complement or platelet activation, plasma coagulation, or leukocyte procoagulant activity, and had no relevant effect on endothelial cell viability or endothelial–monocytic cell interactions. Furthermore, SPIONdex did not induce CARPA even upon intravenous administration of 5 mg Fe/kg in pigs. Upon SPIONdex administration in mice, decreased liver signal intensity was observed after 15 minutes and was still detectable 24 h later. In addition, by changing synthesis parameters, a reduction in particle size <30 nm was achieved, without affecting their hemo- and biocompatibility. Our findings suggest that due to their excellent biocompatibility, safety upon intravenous administration and size-tunability, SPIONdex particles may represent a suitable candidate for a new-generation MRI contrast agent. PMID:28769560

  3. Chitosan magnetic nanoparticles for drug delivery systems.

    PubMed

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  4. Polyimide-coated magnetic nanoparticles as a sorbent in the solid-phase extraction of polycyclic aromatic hydrocarbons in seawater samples.

    PubMed

    Mehdinia, Ali; Haddad, Hosein; Mozaffari, Shahla

    2016-09-01

    Magnetic polyimide poly(4,4'-oxydiphenylene-pyromellitimide) nanoparticles were successfully synthesized and developed for the solid-phase extraction of polycyclic aromatic hydrocarbons in seawater samples. The aromatic rings of polyimide coating provided a good adsorption capacity (28.3-42.5 mg/g) for polycyclic aromatic hydrocarbons because of the π-π stacking interaction. The developed method was used as a simple, fast, and efficient extraction and preconcentration technique for the trace analysis of polycyclic aromatic hydrocarbons. The high chemical, physical and thermal stability, excellent reusability, and good magnetic properties are the merits of the sorbent. High preconcentration factors (41-63) were obtained. The sorbent was also characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectrometry, transmission electron microscopy, and vibrating sample magnetometry. After optimizing several appropriate extraction parameters, the results indicated that the extraction recoveries of polycyclic aromatic hydrocarbons were in the range of 61.6-94.7%, with relative standard deviations between 2.9 and 5.4%, the calibration graph was linear in the concentration range of 1-100 μg/L (r > 0.9991) with limit of detection in the range of 0.15-0.19 μg/L (n = 3). Seawater samples were analyzed as real samples and good recoveries (68.5-99.5%) were obtained at different spiked values. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Label-free fluorescent detection of thrombin activity based on a recombinant enhanced green fluorescence protein and nickel ions immobilized nitrilotriacetic acid-coated magnetic nanoparticles.

    PubMed

    Wang, Ming; Lei, Chunyang; Nie, Zhou; Guo, Manli; Huang, Yan; Yao, Shouzhuo

    2013-11-15

    Herein, a novel label-free fluorescent assay has been developed to detect the activity of thrombin and its inhibitor, based on a recombinant enhanced green fluorescence protein (EGFP) and Ni(2+) ions immobilized nitrilotriacetic acid-coated magnetic nanoparticles (Ni(2+)-NTA MNPs). The EGFP, containing a thrombin cleavage site and a hexahistidine sequence (His-tag) at its N-terminal, was adsorbed onto Ni(2+)-NTA MNPs through Ni(2+)-hexahistidine interaction, and dragged out of the solution by magnetic separation. Thrombin can selectively digest EGFP accompanied by His-tag peptide sequence leaving, and the resulting EGFP cannot be captured by Ni(2+)-NTA MNPs and kept in supernatant. Hence the fluorescence change of supernatant can clearly represent the activity of thrombin. Under optimized conditions, such assay showed a relatively low detection limit (3.0×10(-4) U mL(-1)), and was also used to detect the thrombin inhibitor, Hirudin, and further applied to detect thrombin activity in serum. Combined with the satisfactory reusability of Ni(2+)-NTA MNPs, our method presents a promising candidate for simple, sensitive, and cost-saving protease activity detecting and inhibitor screening.

  6. Evaluation of oxidative response and tissular damage in rat lungs exposed to silica-coated gold nanoparticles under static magnetic fields

    PubMed Central

    Ferchichi, Soumaya; Trabelsi, Hamdi; Azzouz, Inès; Hanini, Amel; Rejeb, Ahmed; Tebourbi, Olfa; Sakly, Mohsen; Abdelmelek, Hafedh

    2016-01-01

    The purpose of our study was the evaluation of toxicological effects of silica-coated gold nanoparticles (GNPs) and static magnetic fields (SMFs; 128 mT) exposure in rat lungs. Animals received a single injection of GNPs (1,100 µg/kg, 100 nm, intraperitoneally) and were exposed to SMFs, over 14 days (1 h/day). Results showed that GNPs treatment induced a hyperplasia of bronchus-associated lymphoid tissue. Fluorescence microscopy images showed that red fluorescence signal was detected in rat lungs after 2 weeks from the single injection of GNPs. Oxidative response study showed that GNPs exposure increased malondialdehyde level and decreased CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in rat lungs. Furthermore, the histopathological study showed that combined effects of GNPs and SMFs led to more tissular damages in rat lungs in comparison with GNPs-treated rats. Interestingly, intensity of red fluorescence signal was enhanced after exposure to SMFs indicating a higher accumulation of GNPs in rat lungs under magnetic environment. Moreover, rats coexposed to GNPs and SMFs showed an increased malondialdehyde level, a fall of CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in comparison with GNPs-treated group. Hence, SMFs exposure increased the accumulation of GNPs in rat lungs and led to more toxic effects of these nanocomplexes. PMID:27354800

  7. Ionic liquid-modified silica-coated magnetic nanoparticles: promising adsorbents for ultra-fast extraction of paraquat from aqueous solution.

    PubMed

    Latifeh, Farzad; Yamini, Yadollah; Seidi, Shahram

    2016-03-01

    In the present study, ionic liquid-modified silica-coated magnetic nanoparticles (Fe3O4@SiO2@IL) were synthesized and applied as adsorbents for extraction and determination of paraquat (PQ) followed by high-performance liquid chromatography. For assurance of the extraction efficiency, the obtained results were compared with those obtained by bared magnetic nanoparticles (MNPs). Experimental design and response surface methodology were used for optimization of different parameters which affect extraction efficiency of paraquat using both adsorbents. Under the optimized conditions, extraction recoveries in the range of 20-25 and 35-40 % with satisfactory repeatability values (RSDs%, n = 4) less than 5.0 % were obtained for bared MNPs and Fe3O4@SiO2@IL, respectively. The limits of detection were 0.1 and 0.25 μg/L using Fe3O4@SiO2@IL and bared MNPs, respectively. The linearity was obtained in the range of 0.25 to 25 μg/L and 0.5 to 25 μg/L for Fe3O4@SiO2@IL and bared MNPs, respectively, with the coefficients of determination better than 0.9950. Finally, Fe3O4@SiO2@IL was chosen as superior adsorbent due to more dispersion ability, higher extraction recovery, lower detection limit, as well as better linearity and repeatability. Calculated errors (%) were in the range of 3 to 10 % depicting acceptable accuracy for the analysis of PQ by the proposed method. Finally, the method was successfully applied for extraction and determination of PQ in some water and countryside soil samples.

  8. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Proma; Neogi, Sudarsan

    2017-09-01

    Applications of different types of magnetic nanoparticles for biomedical purposes started a long time back. The concept of surface functionalization of the iron oxide nanoparticles with antibiotics is a novel technique which paves the path for further application of these nanoparticles by virtue of their property of superparamagnetism. In this paper, we have synthesized novel iron oxide nanoparticles surface functionalized with Gentamicin. The average size of the particles, concluded from the HR-TEM images, came to be around 14 nm and 10 nm for unmodified and modified nanoparticles, respectively. The magnetization curve M(H) obtained for these nanoparticles are typical of superparamagnetic nature and having almost zero values of coercivity and remanance. The release properties of the drug coated nanoparticles were studied; obtaining an S shaped profile, indicating the initial burst effect followed by gradual sustained release. In vitro investigations against various gram positive and gram negative strains viz Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis indicated significant antibacterial efficiency of the drug-nanoparticle conjugate. The MIC values indicated that a small amount like 0.2 mg ml‑1 of drug capped particles induce about 98% bacterial death. The novelty of the work lies in the drug capping of the nanoparticles, which retains the superparamagnetic nature of the iron oxide nanoparticles and the medical properties of the drug simultaneously, which is found to extremely blood compatible.

  9. The effect of polyvinyl alcohol (PVA) coating on structural, magnetic properties and spin dynamics of Ni0.3Zn0.7Fe2O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Rahimi, M.; Kameli, P.; Ranjbar, M.; Salamati, H.

    2013-12-01

    In this study, the structural and magnetic properties of uncoated and polyvinyl alcohol (PVA) coated Ni0.3Zn0.7Fe2O4 ferrite nanoparticles were studied using powder X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared spectroscopy (FTIR) and magnetic measurements. The XRD patterns indicate that the crystalline structure is single phase cubic spinel and the spinel structure is retained after PVA coating. Also, after PVA coating, the crystallite size (from Scherrer formula) increases from 17 to 24 nm. The dc magnetization measurements revealed that both samples exhibit no hysteretic behavior at room temperature, symptomatic of the superparamagnetic behavior. The estimated values of zυ, τ0 and T0, using the critical slowing down model, confirm the observed variation of freezing temperatures. AC susceptibility measurements showed the magnetic responses are frequency dependent, as an applicable potential in cancer therapy. The relative sensitivity of samples to the variation of applied frequency, as an important parameter in hyperthermia based therapy, increases by coating Ni0.3Zn0.7Fe2O4 nanoparticles with PVA.

  10. Magnetic nanoparticles for theragnostics

    PubMed Central

    Shubayev, Veronica I.; Pisanic, Thomas R.; Jin, Sungho

    2009-01-01

    Engineered magnetic nanoparticles (MNPs) represent a cutting-edge tool in medicine because they can be simultaneously functionalized and guided by a magnetic field. Use of MNPs has advanced magnetic resonance imaging (MRI), guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cell tracking and bioseparation. Integrative therapeutic and diagnostic (i.e., theragnostic) applications have emerged with MNP use, such as MRI-guided cell replacement therapy or MRI-based imaging of cancer-specific gene delivery. However, mounting evidence suggests that certain properties of nanoparticles (e.g., enhanced reactive area, ability to cross cell and tissue barriers, resistance to biodegradation) amplify their cytotoxic potential relative to molecular or bulk counterparts. Oxidative stress, a 3-tier paradigm of nanotoxicity, manifests in activation of reactive oxygen species (ROS) (tier I), followed by a pro-inflammatory response (tier II) and DNA damage leading to cellular apoptosis and mutagenesis (tier III). In vivo administered MNPs are quickly challenged by macrophages of the reticuloendothelial system (RES), resulting in not only neutralization of potential MNP toxicity but also reduced circulation time necessary for MNP efficacy. We discuss the role of MNP size, composition and surface chemistry in their intracellular uptake, biodistribution, macrophage recognition and cytotoxicity, and review current studies on MNP toxicity, caveats of nanotoxicity assessments and engineering strategies to optimize MNPs for biomedical use. PMID:19389434

  11. Refinement of Magnetite Nanoparticles by Coating with Organic Stabilizers

    PubMed Central

    Cîrcu, Monica; Nan, Alexandrina; Borodi, Gheorghe; Liebscher, Jürgen; Turcu, Rodica

    2016-01-01

    Magnetite nanoparticles are of great importance in nanotechnology and nanomedicine and have found manifold applications. Here, the effect of coating of magnetite nanoparticles with organic stabilizers, such as O-phosphoryl ethanolamine, glycerol phosphate, phospho-l-ascorbic acid, phospho-d,l-serine, glycolic acid, lactic acid, d,l-malic acid, and d,l-mandelic acid was studied. Remarkably, this procedure led to an improvement of saturation magnetization in three cases rather than to an unfavorable decrease as usually observed. Detailed X-ray powder diffraction investigations revealed that changes in the average crystallite occurred in the coating process. Surprisingly, changes of the average crystallite sizes in either direction were further observed, when the exposure time to the stabilizer was increased. These results imply a new mechanism for the well-known coating of magnetite nanoparticles with stabilizers. Instead of the hitherto accepted simple anchoring of the stabilizers to the magnetite nanoparticle surfaces, a more complex recrystallization mechanism is likely, wherein partial re-dispersion of magnetite moieties from the nanoparticles and re-deposition are involved. The results can help producers and users of magnetite nanoparticles to obtain optimal results in the production of core shell magnetite nanoparticles. PMID:28335356

  12. The effect of coating on heat generation properties of Iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan

    Magnetic nanoparticles have attracted more and more attention for their potential application as heating agents in cancer hyperthermia. The effectiveness of cancer hyperthermia can be increased by using particles that have a higher heat generation rate, quantified by specific absorption rate (SAR), at a smaller applied field. In order to optimize the functionality of nanoparticles as heating agents, it is essential to have a comprehensive understanding of factors that may influence SAR including coating and aggregation. In all biomedical applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration and add functionality. Coatings may profoundly influence particles' clustering behavior and magnetic properties. Yet its effect on the heat generation rate of the nanoparticles has been scarcely investigated. In this context, a systematic investigation was carried out in this dissertation in order to understand the impact of the surface coating of magnetic nanoparticles on their heat generation rate. The study also includes investigation of normal nerve cell viability in presence of biofunctionalized magnetic nanoparticles with and without exposure to magnetic heating. Commercially available suspensions of iron oxide nanoparticles with a diameter of approximately 10 nm and different coatings relevant to biomedical applications such as aminosilane, carboxymethyl-dextran, protein A, biotin were extensively characterized. First of all, magnetic phase reduction of magnetite nanoparticles was examined by studying the discrepancy between the volume fraction of magnetic phase calculated from magnetization curve and the magnetic core concentration obtained from Tiron chelation test. The findings indicated that coatings might interact with the surface atoms of the magnetic core and form a magnetically disordered layer reducing the total amount of the magnetic phase. Secondly, the impact of coating and aggregation

  13. Facile synthesis of zwitterionic polymer-coated core-shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides

    NASA Astrophysics Data System (ADS)

    Chen, Yajing; Xiong, Zhichao; Zhang, Lingyi; Zhao, Jiaying; Zhang, Quanqing; Peng, Li; Zhang, Weibing; Ye, Mingliang; Zou, Hanfa

    2015-02-01

    Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have been extensively utilized for glycopeptide enrichment. However, the low amount of immobilized hydrophilic groups on the affinity material has limited its specificity, detection sensitivity and binding capacity in the capture of glycopeptides. Herein, a novel affinity material was synthesized to improve the binding capacity and detection sensitivity for glycopeptides by coating a poly(2-(methacryloyloxy)ethyl)-dimethyl-(3-sulfopropyl) ammonium hydroxide (PMSA) shell onto Fe3O4@SiO2 nanoparticles, taking advantage of reflux-precipitation polymerization for the first time (denoted as Fe3O4@SiO2@PMSA). The thick polymer shell endows the nanoparticles with excellent hydrophilic property and several functional groups on the polymer chains. The resulting Fe3O4@SiO2@PMSA demonstrated an outstanding ability for glycopeptide enrichment with high selectivity, extremely high detection sensitivity (0.1 fmol), large binding capacity (100 mg g-1), high enrichment recovery (above 73.6%) and rapid magnetic separation. Furthermore, in the analysis of real complicated biological samples, 905 unique N-glycosylation sites from 458 N-glycosylated proteins were reliably identified in three replicate analyses of a 65 μg protein sample extracted from mouse liver, showing the great potential of Fe3O4@SiO2@PMSA in the detection and identification of low-abundance N-linked glycopeptides in biological samples.Highly selective and efficient capture of glycosylated proteins and peptides from complex biological samples is of profound significance for the discovery of disease biomarkers in biological systems. Recently, hydrophilic interaction liquid chromatography (HILIC)-based functional materials have

  14. Extraordinary Hall-effect in colloidal magnetic nanoparticle films

    NASA Astrophysics Data System (ADS)

    Ben Gur, Leah; Tirosh, Einat; Segal, Amir; Markovich, Gil; Gerber, Alexander

    2017-03-01

    Colloidal nickel nanoparticles (NPs) coated with polyvinylpyrrolidone (PVP) were synthesized. The nanoparticle dispersions were deposited on substrates and dried under mild heating to form conductive films. The films exhibited very small coercivity, nearly metallic conductivity, and a significant extraordinary Hall effect signal. This method could be useful for preparing simple, printed magnetic field sensors with the advantage of relatively high sensitivity around zero magnetic field, in contrast to magnetoresistive sensors, which have maximal field sensitivity away from zero magnetic field.

  15. Ac magnetic susceptibility study of in vivo nanoparticle biodistribution

    NASA Astrophysics Data System (ADS)

    Gutiérrez, L.; Mejías, R.; Barber, D. F.; Veintemillas-Verdaguer, S.; Serna, C. J.; Lázaro, F. J.; Morales, M. P.

    2011-06-01

    We analysed magnetic nanoparticle biodistribution, before and after cytokine conjugation, in a mouse model by ac susceptibility measurements of the corresponding resected tissues. Mice received repeated intravenous injections of nanoparticle suspension for two weeks and they were euthanized 1 h after the last injection. In general, only 10% of the total injected nanoparticles after multiple exposures were found in tissues. The rest of the particles may probably be metabolized or excreted by the organism. Our findings indicate that the adsorption of interferon to DMSA-coated magnetic nanoparticles changes their biodistribution, reducing the presence of nanoparticles in lungs and therefore their possible toxicity. The specific targeting of the particles to tumour tissues by the use of an external magnetic field has also been studied. Magnetic nanoparticles were observed by transmission electron microscopy in the targeted tissue and quantified by ac magnetic susceptibility.

  16. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  17. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    PubMed

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  18. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    PubMed

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.

  19. Magnetic nanoparticle-based drug delivery for cancer therapy.

    PubMed

    Tietze, Rainer; Zaloga, Jan; Unterweger, Harald; Lyer, Stefan; Friedrich, Ralf P; Janko, Christina; Pöttler, Marina; Dürr, Stephan; Alexiou, Christoph

    2015-12-18

    Nanoparticles have belonged to various fields of biomedical research for quite some time. A promising site-directed application in the field of nanomedicine is drug targeting using magnetic nanoparticles which are directed at the target tissue by means of an external magnetic field. Materials most commonly used for magnetic drug delivery contain metal or metal oxide nanoparticles, such as superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs consist of an iron oxide core, often coated with organic materials such as fatty acids, polysaccharides or polymers to improve colloidal stability and to prevent separation into particles and carrier medium [1]. In general, magnetite and maghemite particles are those most commonly used in medicine and are, as a rule, well-tolerated. The magnetic properties of SPIONs allow the remote control of their accumulation by means of an external magnetic field. Conjugation of SPIONs with drugs, in combination with an external magnetic field to target the nanoparticles (so-called "magnetic drug targeting", MDT), has additionally emerged as a promising strategy of drug delivery. Magnetic nanoparticle-based drug delivery is a sophisticated overall concept and a multitude of magnetic delivery vehicles have been developed. Targeting mechanism-exploiting, tumor-specific attributes are becoming more and more sophisticated. The same is true for controlled-release strategies for the diseased site. As it is nearly impossible to record every magnetic nanoparticle system developed so far, this review summarizes interesting approaches which have recently emerged in the field of targeted drug delivery for cancer therapy based on magnetic nanoparticles.

  20. Biological coating of paper using silver nanoparticles.

    PubMed

    Ghorbani, Hamid Reza

    2014-12-01

    The capacity of Ag nanoparticles to destroy various micro-organisms makes it one of the most powerful antimicrobial agents, an attractive feature against antibiotic resistant bacteria. Here, a simple method to develop coating of colloidal silver on paper using a biological method is presented. The coated paper was studied by scanning electron microscopy, X-ray diffraction technique and atomic absorption spectroscopy. The antibacterial activity of the coated paper against Escherichia coli and Staphylococcus aureus was measured by agar diffusion method. This study shows the potential use of the coated paper as a food antimicrobial packing material for longer shelf life.

  1. Tuning the magnetism of ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Viñas, S. Liébana; Simeonidis, K.; Li, Z.-A.; Ma, Z.; Myrovali, E.; Makridis, A.; Sakellari, D.; Angelakeris, M.; Wiedwald, U.; Spasova, M.; Farle, M.

    2016-10-01

    The importance of magnetic interactions within an individual nanoparticle or between adjacent ones is crucial not only for the macroscopic collective magnetic behavior but for the AC magnetic heating efficiency as well. On this concept, single-(MFe2O4 where M=Fe, Co, Mn) and core-shell ferrite nanoparticles consisting of a magnetically softer (MnFe2O4) or magnetically harder (CoFe2O4) core and a magnetite (Fe3O4) shell with an overall size in the 10 nm range were synthesized and studied for their magnetic particle hyperthermia efficiency. Magnetic measurements indicate that the coating of the hard magnetic phase (CoFe2O4) by Fe3O4 provides a significant enhancement of hysteresis losses over the corresponding single-phase counterpart response, and thus results in a multiplication of the magnetic hyperthermia efficiency opening a novel pathway for high-performance, magnetic hyperthermia agents. At the same time, the existence of a biocompatible Fe3O4 outer shell, toxicologically renders these systems similar to iron-oxide ones with significantly milder side-effects.

  2. Feasibility of TEOS coated CoFe2O4 nanoparticles to a GMR biosensor agent for single molecular detection.

    PubMed

    Tang, Shao Qiang; Moon, Seung Je; Park, Ki Ho; Paek, Sun Ha; Chung, Kyung-Won; Bae, Seongtae

    2011-01-01

    Magnetic properties of 200 nm ferrimagnetic CoFe2O4 nanoparticles before and after coating with TEOS were explored and compared to soft ferrimagnetic MgFe2O4 nanoparticles (200 nm) to evaluate the feasibility as an in-vitro GMR SV (giant magnetoresistance spin-valve) biosensor agent for single molecular detection (SMD). It was found that the magnetic degradation (or variation) of TEOS coated CoFe2O4 and MgFe2O4 nanoparticles are dominantly affected by the chemical dispersion process, which is carried out in the oleic acid (OA), oleylamine (OL), or OA+OL surfactant, before starting major coating process. In addition, the TEOS coating thickness controlled by TEOS concentration and pH level in the buffer solution prominently influenced on the magnetic degradation of TEOS coated nanoparticles. According to the experimental analysis results, the magnetic degradation of TEOS coated nanoparticles is mainly attributed to the variation of particle dipole interaction caused by the degree of particle aggregation depending on TEOS coating process conditions. The TEOS coated CoFe2O4 nanoparticles exhibited a higher magnetic stability for a GMR biosensor agent, e.g., small variation of remnant magnetization, saturation magnetization and magnetic coercivity, than that of MgFe2O4 nanoparticles at the different coating process conditions. The physical and chemical analysis confirmed that this is primarily due to its higher magnetic anisotropy. The experimentally verified high biocompatibility as well as the stably maintained magnetic properties of TEOS coated CoFe2O4 nanoparticles demonstrate that CoFe2O4 nanoparticles can be considered as one of the promising ferrimagnetic nanoparticle sensor agent for an SMD GMR SV biosensor.

  3. Substrate independent silver nanoparticle based antibacterial coatings.

    PubMed

    Taheri, Shima; Cavallaro, Alex; Christo, Susan N; Smith, Louise E; Majewski, Peter; Barton, Mary; Hayball, John D; Vasilev, Krasimir

    2014-05-01

    Infections arising from bacterial adhesion and colonization on medical device surfaces are a significant healthcare problem. Silver based antibacterial coatings have attracted a great deal of attention as a potential solution. This paper reports on the development of a silver nanoparticles based antibacterial surface that can be applied to any type of material surface. The silver nanoparticles were surface engineered with a monolayer of 2-mercaptosuccinic acid, which facilitates the immobilization of the nanoparticles to the solid surface, and also reduces the rate of oxidation of the nanoparticles, extending the lifetime of the coatings. The coatings had excellent antibacterial efficacy against three clinically significant pathogenic bacteria i.e. Staphylococcus epidermidis, Staphylococcus aureus and Pseudomonas aeruginosa. Studies with primary human fibroblast cells showed that the coatings had no cytotoxicity in vitro. Innate immune studies in cultures of primary macrophages demonstrated that the coatings do not significantly alter the level of expression of pro-inflammatory cytokines or the adhesion and viability of these cells. Collectively, these coatings have an optimal combination of properties that make them attractive for deposition on medical device surfaces such as wound dressings, catheters and implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Pulsed Plasma Synthesis of Iron and Nickel Nanoparticles Coated by Carbon for Medical Applications

    NASA Astrophysics Data System (ADS)

    Abdullaeva, Zhypargul; Omurzak, Emil; Iwamoto, Chihiro; Ihara, Hirotaka; Subban Ganapathy, Hullathy; Sulaimankulova, Saadat; Koinuma, Michio; Mashimo, Tsutomu

    2013-01-01

    Fe and Ni magnetic nanoparticles coated by carbon were synthesized between the Fe-Fe and Ni-Ni metal electrodes, submerged in ethanol using pulsed plasma in a liquid method. Iron coated carbon (Fe@C) nanoparticles have an average size of 32 nm, and Ni@C nanoparticles are 40 nm. Obtained samples exhibit a well-defined crystalline structure of the inner Fe and Ni cores, encapsulated in the graphitic carbon coatings. Cytotoxicity studies performed on the MCF-7 (breast cancer) cell line showed small toxicity about 88-74% at 50 µg/mL of Fe@C and Ni@C nanoparticles, which can be significant criteria for use them in medical cancer treatment. In addition, appropriate sizes, good magnetic properties and well-organized graphitic carbon coatings are highlight merits of Fe@C and Ni@C nanoparticles synthesized by pulsed plasma.

  5. Polyvalent Folate-Dendrimer-Coated Iron Oxide Theranostic Nanoparticles for Simultaneous Magnetic Resonance Imaging and Precise Cancer Cell Targeting.

    PubMed

    Luong, Duy; Sau, Samaresh; Kesharwani, Prashant; Iyer, Arun K

    2017-04-10

    The low therapeutic index of conventional chemotherapy and poor prognosis of patients diagnosed with metastatic cancers are prompting clinicians to adopt newer strategies to simultaneously detect cancer lesions at an early stage and to precisely deliver anticancer drugs to tumor sites. In this study, we employed a novel strategy to engineer a polyvalent theranostic nanocarrier consisting of superparamagnetic iron oxide nanoparticle core (SPIONs) decorated with folic acid-polyamidoamine dendrimers surface (FA-PAMAM). In addition, a highly potent hydrophobic anticancer agent 3,4-difluorobenzylidene-curcumin (CDF) was coloaded in the FA-PAMAM dendrimer to increase its solubility and assess its therapeutic potentials. The resulting targeted nanoparticles (SPIONs@FA-PAMAM-CDF) exhibited high MR contrast. When tested on folate receptor overexpressing ovarian (SKOV3) and cervical (HeLa) cancer cells, the CDF loaded targeted nanoformulations showed higher accumulation with a better anticancer activity as compared to the nontargeted counterparts, possibly due to multivalent folate receptor binding interaction with cells overexpressing the target. The results were corroborated by observation of a larger population of cells undergoing apoptosis due to upregulation of tumor suppressor phosphatase and tensis homologue (PTEN), caspase 3, and inhibition of NF-κB in groups treated with the targeted formulations, which further confirmed the ability of the multivalent theranostic nanoparticles for simultaneous imaging and therapy of cancers.

  6. Synthesis of polydopamine as a new and biocompatible coating of magnetic nanoparticles for delivery of doxorubicin in mouse breast adenocarcinoma.

    PubMed

    Zavareh, Saeed; Mahdi, Milad; Erfanian, Soheyla; Hashemi-Moghaddam, Hamid

    2016-11-01

    Carrier-mediated drug delivery systems can be used to increase the intracellular concentration of drugs in cancerous cells, thereby improving drug biodistribution and minimizing unwanted side effects. This study aimed to investigate the effect of synthesized magnetic molecularly imprinted polydopamine for controlled doxorubicin (DOX) delivery in a breast adenocarcinoma model of BALB/c mice with an external magnetic field. The synthesized DOX-imprinted polydopamine (DOX-IP) was characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The efficacy of DOX-IP in tumor growth suppression was assessed in terms of tumor growth delay, tumor doubling time, inhibition ratio, and histopathology. High-performance liquid chromatography and flame atomic absorption spectrometry were performed to investigate the drug distribution among tissues. The findings showed higher efficacy of DOX-IP with magnetic field in suppressing tumor growth than free DOX and DOX-IP without magnetic field. Significantly high DOX concentration in tumor tissue was found in the DOX-IP group with magnetic field. Magnetic DOX-IP demonstrates effective tumor-targeted drug delivery in a mouse model of breast cancer.

  7. Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Roca, A. G.; Carmona, D.; Miguel-Sancho, N.; Bomatí-Miguel, O.; Balas, F.; Piquer, C.; Santamaría, J.

    2012-04-01

    We report here a detailed structural and magnetic study of different silica nanocapsules containing uniform and highly crystalline maghemite nanoparticles. The magnetic phase consists of 5 nm triethylene glycol (TREG)- or dimercaptosuccinic acid (DMSA)-coated maghemite particles. TREG-coated nanoparticles were synthesized by thermal decomposition. In a second step, TREG ligands were exchanged by DMSA. After the ligand exchange, the ζ potential of the particles changed from - 10 to - 40 mV, whereas the hydrodynamic size remained constant at around 15 nm. Particles coated by TREG and DMSA were encapsulated in silica following a sol-gel procedure. The encapsulation of TREG-coated nanoparticles led to large magnetic aggregates, which were embedded in coalesced silica structures. However, DMSA-coated nanoparticles led to small magnetic clusters inserted in silica spheres of around 100 nm. The final nanostructures can be described as the result of several competing factors at play. Magnetic measurements indicate that in the TREG-coated nanoparticles the interparticle magnetic interaction scenario has not dramatically changed after the silica encapsulation, whereas in the DMSA-coated nanoparticles, the magnetic interactions were screened due to the function of the silica template. Moreover, the analysis of the AC susceptibility suggests that our systems essentially behave as cluster spin glass systems.

  8. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    NASA Astrophysics Data System (ADS)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  9. Nanoparticle-textured surfaces from spin coating.

    PubMed

    Weiss, R A; Zhai, X; Dobrynin, A V

    2008-05-20

    Rough surfaces composed of discrete but relatively uniform nanoparticles were prepared from a lightly sulfonated polystyrene ionomer by spin coating from tetrahydrofuran (THF) or a THF/methanol mixture onto a silica surface. The particle morphology is consistent with the spinodal decomposition of the film surface occurring during spin coating. The particles are well wetted to the silica, and if heated for a long time above the ionomer's glass-transition temperature, the particles flow and coalesce into a smooth, homogeneous film.

  10. Detection of viability of transplanted beta cells labeled with a novel contrast agent - polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles by magnetic resonance imaging.

    PubMed

    Zhang, Bo; Jiang, Biao; Chen, Ying; Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Hui; Zhai, Chuanxin; Wu, Yulian

    2012-01-01

    Islets can be visualized on MRI by labeling with superparamagnetic contrast agent during the transplantation procedure. However, whether the signal intensity reflects the cell number and cellular viability has not been determined. We used a self-synthesized novel superparamagnetic contrast agent -polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles (PVP-SPIO) - to label β-TC-6 cells (a mouse insulinoma cell line) or primary islets with commercial Feridex as a control. The labeling efficiency of two agents was compared by Prussian blue staining, intracellular iron content determination and MR scanning. Cells were exposed to hypoxia, high-glucose or exogenous H₂O₂ stimulation before/after PVP-SPIO labeling. Normal and injured cells were also transplanted into renal subcapsule. A clinically used 3.0 T MR scan was performed in vitro and 24 h post-transplantation to investigate the correlation between cellular viability and signal. Our PVP-SPIO displayed superior biocompatibility and magnetic properties. All of the cells could be labeled at 100 µg/ml iron concentration after 24 h incubation. At 100 µg/ml iron concentration, 1 × 10⁵ β cells labeled with PVP-SPIO could already be visualized in vitro by MRI, less than the detection threshold of Feridex. There existed a linear correlation between the number of labeled cells and R₂ value on the T₂ -weighted images. The signal intensity and the intracellular iron content declined along with the decreased viability of labeled cells. There was also a significant difference in signal intensity between injured and normal labeled cells after transplantation. From these results, we concluded that PVP-SPIO possessed superior cell labeling efficiency, and β cells could be labeled without compromising viability and function. The signal intensity on MRI might be a useful predictor to evaluate the number and the viability of PVP-SPIO-labeled cells.

  11. Direct electrochemistry and electrocatalysis of heme proteins immobilised in carbon-coated nickel magnetic nanoparticle-chitosan-dimethylformamide composite films in room-temperature ionic liquids.

    PubMed

    Wang, Ting; Wang, Lu; Tu, Jiaojiao; Xiong, Huayu; Wang, Shengfu

    2013-12-01

    The direct electrochemistry and electrocatalysis of heme proteins entrapped in carbon-coated nickel magnetic nanoparticle-chitosan-dimethylformamide (CNN-CS-DMF) composite films were investigated in the hydrophilic ionic liquid [bmim][BF4]. The surface morphologies of a representative set of films were characterised via scanning electron microscopy. The proteins immobilised in the composite films were shown to retain their native secondary structure using UV-vis spectroscopy. The electrochemical performance of the heme proteins-CNN-CS-DMF films was evaluated via cyclic voltammetry and chronoamperometry. A pair of stable and well-defined redox peaks was observed for the heme protein films at formal potentials of -0.151 V (HRP), -0.167 V (Hb), -0.155 V (Mb) and -0.193 V (Cyt c) in [bmim][BF4]. Moreover, several electrochemical parameters of the heme proteins were calculated by nonlinear regression analysis of the square-wave voltammetry. The addition of CNN significantly enhanced not only the electron transfer of the heme proteins but also their electrocatalytic activity toward the reduction of H2O2. Low apparent Michaelis-Menten constants were obtained for the heme protein-CNN-CS-DMF films, demonstrating that the biosensors have a high affinity for H2O2. In addition, the resulting electrodes displayed a low detection limit and improved sensitivity for detecting H2O2, which indicates that the biocomposite film can serve as a platform for constructing new non-aqueous biosensors for real detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Biomolecule-coated metal nanoparticles on titanium.

    PubMed

    Christensen, Stephen L; Chatt, Amares; Zhang, Peng

    2012-02-07

    Immobilizations of nanoparticles and biomolecules on biocompatible substrates such as titanium are two promising approaches to bringing new functionalities to Ti-based biomaterials. Herein, we used a variety of X-ray spectroscopic techniques to study and better understand metal-thiolate interactions in biofunctionalized metal nanoparticle systems supported on Ti substrates. Using a facile one-step procedure, a series of Au nanoparticle samples with varied biomolecule coatings ((2-mercatopropionyl)glycine (MPG) and bovine serum albumin (BSA)) and biomolecule concentrations are prepared. Ag and Pd systems are also studied to observe change with varying metal composition. The structure and properties of these biomolecule-coated nanoparticles are investigated with scanning electron microscopy (SEM) and element-specific X-ray techniques, including extended X-ray absorption fine structure (Au L(3)-edge), X-ray absorption near-edge structure (Au L(3), Ag L(3), Pd L(3), and S K-edge), and X-ray photoelectron spectroscopy (Au 4f, Ag 3d, Pd 3d, and S 2p core level). It was found that, by comparison of SEM and X-ray spectroscopy results, the coating of metal nanoparticles with varying model biomolecule systems can have a significant effect on both surface coverage and organization. This work offers a facile chemical method for bio- and nanofunctionalization of Ti substrates as well as provides a physical picture of the structure and bonding of biocoated metal nanoparticles, which may lead to useful applications in orthopedics and biomedicine.

  13. Canted spin structure and the first order magnetic transition in CoFe2O4 nanoparticles coated by amorphous silica

    NASA Astrophysics Data System (ADS)

    Lyubutin, I. S.; Starchikov, S. S.; Gervits, N. E.; Korotkov, N. Yu.; Dmitrieva, T. V.; Lin, Chun-Rong; Tseng, Yaw-Teng; Shih, Kun-Yauh; Lee, Jiann-Shing; Wang, Cheng-Chien

    2016-10-01

    The functional polymer (PMA-co-MAA) latex microspheres were used as a core template to prepare magnetic hollow spheres consisting of CoFe2O4/SiO2 composites. The spinel type crystal structure of CoFe2O4 ferrite is formed under annealing, whereas the polymer cores are completely removed after annealing at 450 °C. Magnetic and Mössbauer spectroscopy measurements reveal very interesting magnetic properties of the CoFe2O4/SiO2 hollow spheres strongly dependent on the particle size which can be tuned by the annealing temperature. In the ground state of low temperatures, the CoFe2O4 nanoparticles are in antiferromagnetic state due to the canted magnetic structure. Under heating in the applied field, the magnetic structure gradually transforms from canted to collinear, which increases the magnetization. The Mössbauer data revealed that the small size CoFe2O4/SiO2 particles (2.2-4.3 nm) do not show superparamagnetic behavior but transit from the magnetic to the paramagnetic state by a jump-like magnetic transition of the first order This effect is a specific property of the magnetic nanoparticles isolated by inert material, and can be initiated by internal pressure creating at the particle surface. The suggested method of synthesis can be modified with various bio-ligands on the silane surface, and such materials can find many applications in diagnostics and bio-separation.

  14. Magnetic Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Jing, Ying

    Nanotechnology is revolutionizing human's life. Synthesis and application of magnetic nanoparticles is a fast burgeoning field which has potential to bring significant advance in many fields, for example diagnosis and treatment in biomedical area. Novel nanoparticles to function efficiently and intelligently are in desire to improve the current technology. We used a magnetron-sputtering-based nanocluster deposition technique to synthesize magnetic nanoparticles in gas phase, and specifically engineered nanoparticles for different applications. Alternating magnetic field heating is emerging as a technique to assist cancer treatment or drug delivery. We proposed high-magnetic-moment Fe3Si particles with relatively large magnetic anisotropy energy should in principle provide superior performance. Such nanoparticles were experimentally synthesized and characterized. Their promising magnetic properties can contribute to heating performance under suitable alternating magnetic field conditions. When thermal energy is used for medical treatment, it is ideal to work in a designed temperature range. Biocompatible and "smart" magnetic nanoparticles with temperature self-regulation were designed from both materials science and biomedicine aspects. We chose Fe-Si material system to demonstrate the concept. Temperature dependent physical property was adjusted by tuning of exchange coupling between Fe atoms through incorporation of various amount of Si. The magnetic moment can still be kept in a promising range. The two elements are both biocompatible, which is favored by in-vivo medical applications. A combination of "smart" magnetic particles and thermo-sensitive polymer were demonstrated to potentially function as a platform for drug delivery. Highly sensitive diagnosis for point-of-care is in desire nowadays. We developed composition- and phase-controlled Fe-Co nanoparticles for bio-molecule detection. It has been demonstrated that Fe70Co30 nanoparticles and giant

  15. A novel strategy for functionalizable photoluminescent magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yan, Huan; Sung, Baeckkyoung; Kim, Min-Ho; Kim, Chanjoong

    2014-12-01

    This study presents functionalizable photoluminescent magnetic iron oxide nanoparticles (PLMNPs) produced by heating magnetic nanoparticles coated with non-photoluminescent hydrophilic poly(acrylic acid) (PAA) but without any add-on photoluminescent chemicals. The photoluminescence of PLMNPs is originated from a carbon nanodot layer that is converted from the PAA polymer coating layer during the heating process. Interestingly, PLMNPs are more photo-stable than conventional organic dyes. Further functionalization of PLMNPs is easily achieved through the coupling reaction with carboxyl groups of the coating layer on the surface. PLMNPs can be remotely heated by applying an alternating magnetic field due to the superparamagnetism, and are found to have good heating efficiency. All these advantages make these nanoparticles appealing for various biomedical applications, such as dual modality imaging and hyperthermia treatment.

  16. Photo-Switching of Magnetization in Iron Nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Aqtash, Nabil; Hostetter, Alexander; Sabirianov, Renat

    2012-02-01

    We report the theoretical studies of light induced switching in core-shell nanoparticles. The core of the nanoparticle is made of Fe coated with the shell of azobenzene. The latter is a photochromic material with the reversible trans-cis photoisomerization upon irradiation by UV and visible light. The magnetization of nanoparticles can be reversibly switched by using specific wavelengths of light. trans-cis photoisomerization of azobenzene induces both the change in surface local magnetic moments and alters the exchange interactions on the surfaces of the nanoparticles. These two mechanisms can lead to induced magnetization switchable by light pulse. We study the effects of photoisomerization of azobenzene on iron (Fe) nanoparticle. Ab initio calculations using SIESTA code show that the ferromagnetic (FM) and antiferromagnetic (AFM) exchange interaction in Fe dimer increase by 40% due to photoisomerization of azobenzene. While an infinite flat Fe monolayer shows variation on the exchange interactions on the surfaces as result of photoisomerization. The local magnetic moments of Fe sheet increase by 6% due to photoisomerization. Using an ab initio parameterization of magnetic interactions, we propose statistical model based on competing exchange interactions for the investigation of Fe nanoparticle magnetization. We performed Monte Carlo simulations of magnetization of the core-shell nanoparticle as a function of temperature. The results show that Fe nanoparticles magnetization at room temperature can change by at least 40% due to photoisomerization of azobenzene.

  17. Simulation of magnetic coatings on textile fibers

    NASA Astrophysics Data System (ADS)

    Blachowicz, T.; Ehrmann, A.

    2016-08-01

    While the properties of conductive fibres and coatings on textiles can easily be measured and calculated, magnetic coatings of fibres, yarns and fabrics still lack descriptions of their physical properties. Since magnetic textiles can be used for a variety of applications, from magnetic filters to invisible water-marks to magnetic coils and sensors, simulations would be supportive to understand and utilize their properties. The article gives an overview of different coatings on textile fibres, varying the magnetic materials as well as the fibre composition, giving rise to the interactions between neighbouring coated fibres. In this way, it is possible to understand the strong shape anisotropy which must be taken into account when the magnetic properties of textiles are to be tailored. Additionally, the differences between several possible magnetic coating materials become visible. This study can help adjusting the magnetic properties of textile fabrics to a desired application.

  18. Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery

    NASA Astrophysics Data System (ADS)

    Tansık, Gülistan; Yakar, Arzu; Gündüz, Ufuk

    2014-01-01

    One of the main problems of current cancer chemotherapy is the lack of selectivity of anti-cancer drugs to tumor cells, which leads to systemic toxicity and adverse side effects. In order to overcome these limitations, researches on controlled drug delivery systems have gained much attention. Nanoscale-based drug delivery systems provide tumor targeting. Among many types of nanocarriers, superparamagnetic nanoparticles with their biocompatible polymer coatings can be targeted to an intented site by an external magnetic field. Thus, the drug can be carried to the targeted site safely. The aim of this study is to prepare poly( dl-lactic- co-glycolic acid) (PLGA)-coated magnetic nanoparticles and load anti-cancer drug, doxorubicin to them. For this purpose, magnetite (Fe3O4) iron oxide nanoparticles were synthesized as a magnetic core material (MNP) and then coated with oleic acid. Oleic acid-coated MNP (OA-MNP) was encapsulated into PLGA. Effects of different OA-MNP/PLGA ratios on magnetite entrapment efficiency were investigated. Doxorubicin-loaded magnetic polymeric nanoparticles (DOX-PLGA-MNP) were prepared. After the characterization of prepared nanoparticles, their cytotoxic effects on MCF-7 cell line were studied. PLGA-coated magnetic nanoparticles (PLGA-MNP) had a proper size and superparamagnetic character. The highest magnetite entrapment efficiency of PLGA-MNP was estimated as 63 % at 1:8 ratio. Cytotoxicity studies of PLGA-MNP did not indicate any notable cell death between the concentration ranges of 2 and 125 μg/ml. Drug loading efficiency was estimated as 32 %, and it was observed that DOX-PLGA-MNP showed significant cytotoxicity on MCF-7 cells compared to PLGA-MNP. The results showed that prepared nanoparticles have desired size and superparamagnetic characteristics without serious toxic effects on cells. These nanoparticles may be suitable for targeted drug delivery applications.

  19. Determination of Montelukast in Plasma Using β - Cyclodextrins Coated on CoFe2O4 Magnetic Nanoparticles in Luminol-H2O2 Chemiluminescence System Optimized by Doehlert Design.

    PubMed

    Samadi-Maybodi, Abdolraouf; Bakhtiar, Alireza; Fatemi, Mohammad Hossein

    2016-05-01

    A novel chemiluminescence method using β - cyclodextrins coated on CoFe2O4 magnetic nanoparticles is proposed for the chemiluminometric determination of montelukast in plasma. The effect of coated β - cyclodexterinon CoFe2O4 magnetic nanoparticles in the chemiluminescence of luminol-H2O2 system was investigated. It was found that β - cyclodexterin coated on CoFe2O4 magnetic nanoparticles could greatly enhance the chemiluminescence of the luminol-H2O2 system. Doehlert design was applied in order to optimize the number of experiments to be carried out to ascertain the possible interactions between the parameters and their effects on the chemiluminescence emission intensity. This design was selected because the levels of each variable may vary in a very efficient way with few experiments. Doehlert design and response surface methodology have been employed for optimization pH and concentrations of the components. Results showed under the optimized experimental conditions, the relative CL intensity (ΔI) is increased linearly in the concentration range of 0.003-0.586 μgml(-1) of montelukast with limit of detection (LOD) 1.09 × 10(-4) μgml(-1) at S/N ratio of 3, limit of quantitative (LOQ) 3.59 × 10(-4) μgml(-1) and the relative standard deviation 2.63 %. The method has been successfully applied to the determination of montelukast in plasma of human body. Results specified that relative chemiluminescence intensity (ΔI) has good proportional with the montelukast concentration with R(2) = 0.99979. The test of the recovery efficiency for known amounts of montelukast was also performed, the recoveries range obtained from 98.2 to 103.3 %, with RSDs of <4 % indicated that the proposed method was reliable.

  20. Percolation Magnetism in Ferroelectric Nanoparticles.

    PubMed

    Golovina, Iryna S; Lemishko, Serhii V; Morozovska, Anna N

    2017-12-01

    Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe(3+) ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  1. Percolation Magnetism in Ferroelectric Nanoparticles

    NASA Astrophysics Data System (ADS)

    Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.

    2017-06-01

    Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  2. Photodegradation of Eosin Y Using Silver-Doped Magnetic Nanoparticles

    PubMed Central

    Alzahrani, Eman

    2015-01-01

    The purification of industrial wastewater from dyes is becoming increasingly important since they are toxic or carcinogenic to human beings. Nanomaterials have been receiving significant attention due to their unique physical and chemical properties compared with their larger-size counterparts. The aim of the present investigation was to fabricate magnetic nanoparticles (MNPs) using a coprecipitation method, followed by coating with silver (Ag) in order to enhance the photocatalytic activity of the MNPs by loading metal onto them. The fabricated magnetic nanoparticles coated with Ag were characterised using different instruments such as a scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDAX) spectroscopy, and X-ray diffraction (XRD) analysis. The average size of the magnetic nanoparticles had a mean diameter of about 48 nm, and the average particle size changed to 55 nm after doping. The fabricated Ag-doped magnetic nanoparticles were used for the degradation of eosin Y under UV-lamp irradiation. The experimental results revealed that the use of fabricated magnetic nanoparticles coated with Ag can be considered as reliable methods for the removal of eosin Y since the slope of evaluation of pseudo-first-order rate constant from the slope of the plot between ln⁡(Co/C) and the irradiation time was found to be linear. Ag-Fe3O4 nanoparticles would be considered an efficient photocatalyst to degrade textile dyes avoiding the tedious filtration step. PMID:26617638

  3. Targeted polymeric magnetic nanoparticles for brain imaging

    NASA Astrophysics Data System (ADS)

    Kirthivasan, Bharat; Singh, Dhirender; Raut, Sangram; Bommana, Murali Mohan; Squillante, Emilio, III; Sadoqi, Mostafa

    2012-03-01

    The purpose of this study was to develop targeted polymeric magnetic nanoparticle system for brain imaging. Near infrared dye indocyanine green (ICG) or p-gycoprotein substrate rhodamine 123 (Rh123) were encapsulated along with oleic acid coated magnetic nanoparticles (OAMNP) in a matrix of poly(lactide-co-glycolide) (PLGA) and methoxy poly(ethyleneglycol)-poly(lactide) (Met-PEG-PLA). The nanoparticles were evaluated for morphology, particle size, dye content and magnetite content. The in vivo biodistribution study was carried out using three groups of six male Sprague Dawley rats each. Group I received a saline solution containing the dye, group II received dye-loaded polymeric magnetic nanoparticles without the aid of a magnetic field, and group III received dye-loaded polymeric magnetic nanoparticles with a magnet (8000 G) placed on the head of the rat. After a preset exposure period, the animals were sacrificed and dye concentration was measured in the brain, liver, kidney, lungs and spleen homogenates. Brain sections were fixed, cryotomed and visualized using fluorescence microscopy. The particles were observed to be spherical and had a mean size of 220 nm. The encapsulation efficiency for OAMNP was 57%, while that for ICG was 56% and for Rh123 was 45%. In the biodistribution study, while the majority of the dose for all animals was found in the liver, kidneys and spleen, group III showed a significantly higher brain concentration than the other two groups (p < 0.001). This result was corroborated by the fluorescence microscopy studies, which showed enhanced dye penetration into the brain tissue for group III. Further studies need to be done to elucidate the exact mechanism responsible for the increased brain uptake of dye to help us understand if the magnetic nanoparticles actually penetrate the blood brain barrier or merely deliver a massive load of dye just outside it, thereby triggering passive diffusion into the brain parenchyma. These results reinforce

  4. Surface chemical characterization of nanoparticle coated paperboard

    NASA Astrophysics Data System (ADS)

    Stepien, Milena; Saarinen, Jarkko J.; Teisala, Hannu; Tuominen, Mikko; Aromaa, Mikko; Kuusipalo, Jurkka; Mäkelä, Jyrki M.; Toivakka, Martti

    2012-01-01

    The chemical composition of nanoparticle coated paperboard surfaces was characterized. The deposition of SiO2 and TiO2 nanoparticles induced changes in wetting properties of the paperboard surface: a superhydrophilic surface was created by SiO2 nanoparticles and a superhydrophobic surface by TiO2 nanoparticles. Both X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements were used to study the surface properties of the samples. The low and high resolution XPS spectra were collected to evaluate the chemical composition before and after nanoparticle deposition. The SiO2 nanocoated sample has the highest values of both O to C and C2 to C1 ratios, which indicates a high relative amount of hydroxyl groups. On the other hand, carbon C1 peak which represents the hydrocarbon type of bonds, is on higher level for TiO2 when compared to the SiO2 nanocoated sample. This may be related to the replacement of hydroxyl groups by aliphatic chains on the superhydrophobic surface of TiO2 nanoparticle coated sample.

  5. Enzymatic Synthesis of Magnetic Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C.; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S.; Litvinov, Dmitri; Lee, T. Randall; Willson, Richard C.

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425

  6. Enzymatic synthesis of magnetic nanoparticles.

    PubMed

    Kolhatkar, Arati G; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S; Litvinov, Dmitri; Lee, T Randall; Willson, Richard C

    2015-04-03

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing.

  7. Magnetic nanoparticles in medical nanorobotics

    NASA Astrophysics Data System (ADS)

    Martel, Sylvain

    2015-02-01

    Medical nanorobotics is a field of robotics that exploits the physics at the nanoscale to implement new functionalities in untethered robotic agents aimed for ultimate operations in constrained physiological environments of the human body. The implementation of such new functionalities is achieved by embedding specific nano-components in such robotic agents. Because magnetism has been and still widely used in medical nanorobotics, magnetic nanoparticles (MNP) in particular have shown to be well suited for this purpose. To date, although such magnetic nanoparticles play a critical role in medical nanorobotics, no literature has addressed specifically the use of MNP in medical nanorobotic agents. As such, this paper presents a short introductory tutorial and review of the use of magnetic nanoparticles in the field of medical nanorobotics with some of the related main functionalities that can be embedded in nanorobotic agents.

  8. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles.

    PubMed

    Araujo, J F D F; Bruno, A C; Louro, S R W

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10(-8) Am(2) was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  9. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    SciTech Connect

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-15

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer’s sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10{sup −8} Am{sup 2} was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  10. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  11. Magnetic hyperthermia with hard-magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kashevsky, Bronislav E.; Kashevsky, Sergey B.; Korenkov, Victor S.; Istomin, Yuri P.; Terpinskaya, Tatyana I.; Ulashchik, Vladimir S.

    2015-04-01

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner-Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner-Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body.

  12. The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity

    PubMed Central

    Wydra, Robert J.; Rychahou, Piotr G.; Evers, B. Mark; Anderson, Kimberly W.; Dziubla, Thomas D.; Hilt, J. Zach

    2015-01-01

    Monosaccharide coated iron oxide nanoparticles were developed to selectively target colon cancer cell lines for magnetically mediated energy delivery therapy. The nanoparticles were prepared using a coupling reaction to attach the glucose functional group to the iron oxide core, and functionality was confirmed with physicochemical characterization techniques. The targeted nanoparticles were internalized into CT26 cells at a greater extent than non-targeted nanoparticles, and the nanoparticles were shown to be localized within lysosomes. Cells with internalized nanoparticles were exposed to an AMF to determine the potential to delivery therapy. Cellular ROS generation and apoptotic cell death was enhanced with field exposure. The nanoparticle coatings inhibit the Fenton-like surface generation of ROS suggesting a thermal or mechanical effect is more likely the source of the intracellular effect. PMID:26143604

  13. Lipidoid-coated Iron Oxide Nanoparticles for Efficient DNA and siRNA delivery

    PubMed Central

    Jiang, Shan; Eltoukhy, Ahmed A.; Love, Kevin T.; Langer, Robert

    2014-01-01

    The safe, targeted and effective delivery of gene therapeutics remains a significant barrier to their broad clinical application. Here we develop a magnetic nucleic acid delivery system composed of iron oxide nanoparticles and cationic lipid-like materials termed lipidoids. Coated nanoparticles are capable of delivering DNA and siRNA to cells in culture. The mean hydrodynamic size of these nanoparticles was systematically varied and optimized for delivery. While nanoparticles of different sizes showed similar siRNA delivery efficiency, nanoparticles of 50–100 nm displayed optimal DNA delivery activity. The application of an external magnetic field significantly enhanced the efficiency of nucleic acid delivery, with performance exceeding that of the commercially available lipid-based reagent, Lipofectamine 2000. The iron oxide nanoparticle delivery platform developed here offers the potential for magnetically guided targeting, as well as an opportunity to combine gene therapy with MRI imaging and magnetic hyperthermia. PMID:23394319

  14. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery.

    PubMed

    Jiang, Shan; Eltoukhy, Ahmed A; Love, Kevin T; Langer, Robert; Anderson, Daniel G

    2013-03-13

    The safe, targeted and effective delivery of gene therapeutics remains a significant barrier to their broad clinical application. Here we develop a magnetic nucleic acid delivery system composed of iron oxide nanoparticles and cationic lipid-like materials termed lipidoids. Coated nanoparticles are capable of delivering DNA and siRNA to cells in culture. The mean hydrodynamic size of these nanoparticles was systematically varied and optimized for delivery. While nanoparticles of different sizes showed similar siRNA delivery efficiency, nanoparticles of 50-100 nm displayed optimal DNA delivery activity. The application of an external magnetic field significantly enhanced the efficiency of nucleic acid delivery, with performance exceeding that of the commercially available lipid-based reagent, Lipofectamine 2000. The iron oxide nanoparticle delivery platform developed here offers the potential for magnetically guided targeting, as well as an opportunity to combine gene therapy with MRI imaging and magnetic hyperthermia.

  15. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery.

    PubMed

    Ding, Yongling; Shen, Shirley Z; Sun, Huadong; Sun, Kangning; Liu, Futian; Qi, Yushi; Yan, Jun

    2015-03-01

    In this study, a novel hydrogel, chitosan (CS) crosslinked carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe3O4 magnetic nanoparticles was synthesized for delivering hydrophobic anticancer drug 5-fluorouracil (CS-CDpoly-MNPs). Carboxymethyl-β-cyclodextrin being grafted on the Fe3O4 nanoparticles (CDpoly-MNPs) contributed to an enhancement of adsorption capacities because of the inclusion abilities of its hydrophobic cavity with insoluble anticancer drugs through host-guest interactions. Experimental results indicated that the amounts of crosslinking agent and bonding times played a crucial role in determining morphology features of the hybrid nanocarriers. The nanocarriers exhibited a high loading efficiency (44.7±1.8%) with a high saturation magnetization of 43.8emu/g. UV-Vis spectroscopy results showed that anticancer drug 5-fluorouracil (5-Fu) could be successfully included into the cavities of the covalently linked CDpoly-MNPs. Moreover, the free carboxymethyl groups could enhance the bonding interactions between the covalently linked CDpoly-MNPs and anticancer drugs. In vitro release studies revealed that the release behaviors of CS-CDpoly-MNPs carriers were pH dependent and demonstrated a swelling and diffusion controlled release. A lower pH value led to swelling effect and electrostatic repulsion contributing to the protonation amine impact of NH3(+), and thus resulted in a higher release rate of 5-Fu. The mechanism of 5-Fu encapsulated into the magnetic chitosan nanoparticles was tentatively proposed.

  16. Magnetic nanoparticles for applications in oscillating magnetic field

    SciTech Connect

    Peeraphatdit, Chorthip

    2009-01-01

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific

  17. Magnetic properties of carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Lähderanta, E.; Lashkul, A. V.; Lisunov, K. G.; Zherebtsov, D. A.; Galimov, D. M.; Titkov, A. N.

    2012-08-01

    Magnetization M (T, B) of powder and glassy samples containing carbon nanoparticles is investigated in the interval of temperatures T between ~ 3 - 300 K and magnetic fields B up to 5 T. Low-field magnetization, M (T), exhibits a strong magnetic irreversibility, which is suppressed above the field of ~ 1 T. The dependence of M (B) saturates at high temperatures above B ~ 2 T, magnetic hysteresis is observed already at 300 K. The values of the saturation magnetization, the coercivity field and the maximum blocking temperature are obtained. Analysis of the experimental data gives evidence for concentration of the magnetization close to the surface of the particles, which is consistent with the origin of magnetism in nanocarbon presumably due to intrinsic disorder and surface defects.

  18. Magnetic solid phase extraction using ionic liquid-coated core-shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of Rhodamine B in food samples.

    PubMed

    Chen, Jieping; Zhu, Xiashi

    2016-06-01

    Three hydrophobic ionic liquids (ILs) (1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6), 1-hexyl-3-methyl-imidazole hexafluoro-phosphate ([HMIM]PF6), and 1-octyl-3-methylimidazole hexafluorophosphate ([OMIM]PF6)) were used to coat Fe3O4@SiO2 nanoparticles (NPs) with core-shell structures to prepare magnetic solid phase extraction (MSPE) agents (Fe3O4@SiO2@IL). A novel method of MSPE coupled with high-performance liquid chromatography for the separation/analysis of Rhodamine B was then established. The results showed that Rhodamine B was adsorbed rapidly on Fe3O4@SiO2@[OMIM]PF6 and was released using ethanol. Under optimal conditions, the pre-concentration factor for the proposed method was 25. The linear range, limit of detection (LOD), correlation coefficient (R), and relative standard deviation (RSD) were found to be 0.50-150.00 μgL(-1), 0.08 μgL(-1), 0.9999, and 0.51% (n=3, c=10.00 μgL(-1)), respectively. The Fe3O4@SiO2 NPs could be re-used up to 10 times. The method was successfully applied to the determination of Rhodamine B in food samples.

  19. Magnetic nanoparticles for "smart liposomes".

    PubMed

    Nakayama, Yoshitaka; Mustapić, Mislav; Ebrahimian, Haleh; Wagner, Pawel; Kim, Jung Ho; Hossain, Md Shahriar Al; Horvat, Joseph; Martinac, Boris

    2015-12-01

    Liposomal drug delivery systems (LDDSs) are promising tools used for the treatment of diseases where highly toxic pharmacological agents are administered. Currently, destabilising LDDSs by a specific stimulus at a target site remains a major challenge. The bacterial mechanosensitive channel of large conductance (MscL) presents an excellent candidate biomolecule that could be employed as a remotely controlled pore-forming nanovalve for triggered drug release from LDDSs. In this study, we developed superparamagnetic nanoparticles for activation of the MscL nanovalves by magnetic field. Synthesised CoFe2O4 nanoparticles with the radius less than 10 nm were labelled by SH groups for attachment to MscL. Activation of MscL by magnetic field with the nanoparticles attached was examined by the patch clamp technique showing that the number of activated channels under ramp pressure increased upon application of the magnetic field. In addition, we have not observed any cytotoxicity of the nanoparticles in human cultured cells. Our study suggests the possibility of using magnetic nanoparticles as a specific trigger for activation of MscL nanovalves for drug release in LDDSs.

  20. Carbon coated nickel nanoparticles produced in high-frequency arc plasma at ambient pressure

    NASA Astrophysics Data System (ADS)

    Vnukova, Natalia; Dudnik, Alexander; Komogortsev, Sergey; Velikanov, Dmitry; Nemtsev, Ivan; Volochaev, Michael; Osipova, Irina; Churilov, Grigory

    2017-10-01

    The nickel particles with the mean size about 10-20 nm coated with carbon were extracted by the treatment of the carbon condensate with nitric and hydrochloric acids. The initial carbon condensate containing nickel nanoparticles with a graphite conversion was synthesized in the high-frequency carbon-helium arc plasma at ambient pressure with the nickel nanoparticles as a catalyst. The nickel content in the nanoparticles was 84.6 wt%. Magnetic properties of the nanoparticles are characterized by the high hysteresis and thermal stability. The sample of compacted nanoparticles is characterized by electrical resistance much higher than it in of compacted initial condensate.

  1. Sheddable Coatings for Long-Circulating Nanoparticles

    PubMed Central

    Romberg, Birgit; Hennink, Wim E.

    2007-01-01

    Nanoparticles, such as liposomes, polymeric micelles, lipoplexes and polyplexes are frequently studied as targeted drug carrier systems. The ability of these particles to circulate in the bloodstream for a prolonged period of time is often a prerequisite for successful targeted delivery. To achieve this, hydrophilic ‘stealth’ polymers, such as poly(ethylene glycol) (PEG), are used as coating materials. Such polymers shield the particle surface and thereby reduce opsonization by blood proteins and uptake by macrophages of the mononuclear phagocyte system. Yet, after localizing in the pathological site, nanoparticles should deliver their contents in an efficient manner to achieve a sufficient therapeutic response. The polymer coating, however, may hinder drug release and target cell interaction and can therefore be an obstacle in the realization of the therapeutic response. Attempts have been made to enhance the therapeutic efficacy of sterically stabilized nanoparticles by means of shedding, i.e. a loss of the coating after arrival at the target site. Such an ‘unmasking’ process may facilitate drug release and/or target cell interaction processes. This review presents an overview of the literature regarding different shedding strategies that have been investigated for the preparation of sterically stabilized nanoparticulates. Detach mechanisms and stimuli that have been used are described. PMID:17551809

  2. Phase Transformation in Silica-Coated FePt Nanoparticles

    NASA Astrophysics Data System (ADS)

    Colak, Levent; Hadjipanayis, George

    2009-03-01

    The A1 to L10 phase transformation has been examined in silica-coated FePt particles. The nanoparticles were synthesized by reduction of platinum acetylacetonate (Pt (acac) 2) followed by thermal decomposition of iron pentacarbonyl (Fe(CO)5) in the presence of oleic acid (OA) and oleyl amine (OY) as surfactants at low temperature ^[1]. The monodispersed FePt nanoparticles, with a size of 5.8 nm were then coated with silica (SiO2) shells ^[2] . The thickness of the silica shell could be controlled between 7.5-25 nm. The coated particles were subjected to thermal processing at 800 C for various amounts of times. No significant sintering was observed up to 2 hours of annealing for the shell thickness of 15.0 nm. In some silica-coated samples an increase in the particle size was observed after annealing. Selected Area Diffraction analysis and magnetic measurements showed the development of ordered L10 structure. Coercivity values up to 15 kOe at 7K are obtained. The phase transformation is currently being examined in other samples annealed at different times and temperatures and the results will be reported.1.Levent Colak and George C. Hadjipanayis, Nanotechnology 19 (2008) 235703.2.M. Aslam, L. Fu, S. Li, Vinayak P. Dravid, Journal of Colloid and Interface Science 290 (2005) 444--449.

  3. Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane.

    PubMed

    Manna, Joydev; Akbayrak, Serdar; Özkar, Saim

    2017-08-16

    Nickel(0) nanoparticles supported on cobalt ferrite (Ni(0)/CoFe2O4), polydopamine coated cobalt ferrite (Ni(0)/PDA-CoFe2O4) or silica coated cobalt ferrite (Ni(0)/SiO2-CoFe2O4) are prepared and used as catalysts in hydrogen generation from the hydrolysis of ammonia borane at room temperature. Ni(0)/CoFe2O4 (4.0% wt. Ni) shows the highest catalytic activity with a TOF value of 38.3min(-1) in hydrogen generation from the hydrolysis of ammonia borane at 25.0±0.1°C. However, the initial catalytic activity of Ni(0)/CoFe2O4 catalyst is not preserved in subsequent runs of hydrolysis. Coating the surface of cobalt ferrite support with polydopamine or silica leads to a significant improvement in the stability of catalysts. The TOF values of Ni(0)/PDA-CoFe2O4 and Ni(0)/SiO2-CoFe2O4 are found to be 7.6 and 5.3min(-1), respectively, at 25.0±0.1°C. Ni(0)/PDA-CoFe2O4 catalyst shows high reusability as compared to the Ni(0)/CoFe2O4 and Ni(0)/SiO2-CoFe2O4 catalysts in hydrolytic dehydrogenation of ammonia borane at room temperature. All the catalysts are characterized by using a combination of various advanced analytical techniques. The results reveal that nickel nanoparticles with an average size of 12.3±0.7nm are well dispersed on the surface of PDA-CoFe2O4. . Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Magnetite Nanoparticles Coated with Rifampicin and Chlortetracycline for Drug Delivery Applications

    SciTech Connect

    Nadejde, Claudia; Ciurlica, Ecaterina Foca-nici; Creanga, Dorina; Carlescu, Aurelian; Badescu, Vasile

    2010-12-02

    Four types of biocompatible magnetic fluids based on superparamagnetic nanoparticles with Fe{sub 3}O{sub 4} cores were functionalized with antibiotics (rifampicin or chlortetracycline) as potential candidates for in vivo biomedical applications, such as magnetically controlled drug delivery. The synthesis consisted in coprecipitation of iron oxide in basic, as well as in acid medium, followed by the dispersion of the resulted magnetite nanoparticles in aqueous solution containing the antibiotic. The chosen method to prepare the magnetite-core/drug-shell systems avoided intermediate organic coating of the magnetic nanoparticles. Comparative analysis of the rheological features of the aqueous magnetic fluid samples was performed. The structural features of the coated magnetic particles were investigated by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometry (VSM). Good crystallinity and adequate stability in time were evidenced. Drug delivery curves were spectrophotometrically provided.

  5. Study of maghemite nanoparticles as prepared and coated with DMSA using Mössbauer spectroscopy with a high velocity resolution

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Ushakov, M. V.; Semionkin, V. A.; Lima, E. C. D.; Morais, P. C.

    2014-04-01

    Study of maghemite nanoparticles, native and coated with DMSA as magnetic fluid for biomedical applications, was carried out using Mössbauer spectroscopy with a high velocity resolution at 295 and 90 K. The obtained results demonstrated differences in Mössbauer hyperfine parameters for uncoated and DMSA-coated nanoparticles which were related to the interactions of DMSA molecules with Fe3+ ions on maghemite nanoparticle's surface.

  6. Nonextensivity in magnetic nanoparticle ensembles

    NASA Astrophysics Data System (ADS)

    Binek, Ch.; Polisetty, S.; He, Xi; Mukherjee, T.; Rajesh, R.; Redepenning, J.

    2006-08-01

    A superconducting quantum interference device and Faraday rotation technique are used to study dipolar interacting nanoparticles embedded in a polystyrene matrix. Magnetization isotherms are measured for three cylindrically shaped samples of constant diameter but various heights. Detailed analysis of the isotherms supports Tsallis’ conjecture of a magnetic equation of state that involves temperature and magnetic field variables scaled by the logarithm of the number of magnetic nanoparticles. This unusual scaling of thermodynamic variables, which are conventionally considered to be intensive, originates from the nonextensivity of the Gibbs free energy in three-dimensional dipolar interacting particle ensembles. Our experimental evidence for nonextensivity is based on the data collapse of various isotherms that require scaling of the field variable in accordance with Tsallis’ equation of state.

  7. Magnetic Separation Dynamics of Colloidal Magnetic Nanoparticles

    SciTech Connect

    Kaur, M.; Huijin Zhang,; You Qiang,

    2013-01-01

    Surface functionalized magnetic nanoparticles (MNPs) are appealing candidates for analytical separation of heavy metal ions from waste water and separation of actinides from spent nuclear fuel. This work studies the separation dynamics and investigates the appropriate magnetic-field gradients. A dynamic study of colloidal MNPs was performed for steady-state flow. Measurements were conducted to record the separation time of particles as a function of magnetic field gradient. The drag and magnetic forces play a significant role on the separation time. A drop in saturation magnetization and variation of particle size occurs after surface functionalization of the MNPs; these are the primary factors that affect the separation time and velocity of the MNPs. The experimental results are correlated to a theoretical one-dimensional model.

  8. Modeling and simulation of magnetic nanoparticle sensor.

    PubMed

    Makiranta, Jarkko; Lekkala, Jukka

    2005-01-01

    Sensitivity and detection limit of a magnetic nanoparticle sensor is modeled and simulated. A micro coil generates an alternating magnetic field which excites magnetic nanoparticles in its vicinity. A concentric sensing coil applies Faraday's law of induction measuring the excited magnetization of the magnetic particles at high frequency. A differential measurement compensates disturbances and the influence of the driving microcoil leaving only the signal caused by the magnetic particles. The sensing system can be used for detection of magnetic nanoparticle labels in immunological point of care diagnostics. The paper shows simulation results for a microcoil system capable of detecting a single superparamagnetic nanoparticle.

  9. Magnetic nanoparticles: surface effects and properties related to biomedicine applications.

    PubMed

    Issa, Bashar; Obaidat, Ihab M; Albiss, Borhan A; Haik, Yousef

    2013-10-25

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 μm), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

  10. Nanoparticles for magnetic biosensing systems

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Novoselova, Iu. P.; Schupletsova, V. V.; Andrade, R.; Dunec, N. A.; Litvinova, L. S.; Safronov, A. P.; Yurova, K. A.; Kulesh, N. A.; Dzyuman, A. N.; Khlusov, I. A.

    2017-06-01

    The further development of magnetic biosensors requires a better understanding of the interaction between living systems and magnetic nanoparticles (MNPs). We describe our experience of fabrication of stable ferrofluids (FF) using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. Their morphofunctional responses in the Fe concentration range 2-1000 maximum tolerated dose revealed no cytotoxicity.

  11. Design and Application of Magnetic-based Theranostic Nanoparticle Systems

    PubMed Central

    Wadajkar, Aniket S.; Menon, Jyothi U.; Kadapure, Tejaswi; Tran, Richard T.; Yang, Jian; Nguyen, Kytai T.

    2013-01-01

    Recently, magnetic-based theranostic nanoparticle (MBTN) systems have been studied, researched, and applied extensively to detect and treat various diseases including cancer. Theranostic nanoparticles are advantageous in that the diagnosis and treatment of a disease can be performed in a single setting using combinational strategies of targeting, imaging, and/or therapy. Of these theranostic strategies, magnetic-based systems containing magnetic nanoparticles (MNPs) have gained popularity because of their unique ability to be used in magnetic resonance imaging, magnetic targeting, hyperthermia, and controlled drug release. To increase their effectiveness, MNPs have been decorated with a wide variety of materials to improve their biocompatibility, carry therapeutic payloads, encapsulate/bind imaging agents, and provide functional groups for conjugation of biomolecules that provide receptor-mediated targeting of the disease. This review summarizes recent patents involving various polymer coatings, imaging agents, therapeutic agents, targeting mechanisms, and applications along with the major requirements and challenges faced in using MBTN for disease management. PMID:23795343

  12. Peptide-functionalized magnetic nanoparticles for cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Hauser, Anastasia Kruse

    Lung cancer is one of the leading causes of cancer deaths in the United States. Radiation and chemotherapy are conventional treatments, but they result in serious side effects and the probability of tumor recurrence remains high. Therefore, there is an increasing need to enhance the efficacy of conventional treatments. Magnetic nanoparticles have been previously studied for a variety of applications such as magnetic resonance imaging contrast agents, anemia treatment, magnetic cell sorting and magnetically mediated hyperthermia (MMH). In this work, dextran coated iron oxide nanoparticles were developed and functionalized with peptides to target the nanoparticles to either the extracellular matrix (ECM) of tumor tissue or to localize the nanoparticles in subcellular regions after cell uptake. The magnetic nanoparticles were utilized for a variety of applications. First, heating properties of the nanoparticles were utilized to administer hyperthermia treatments combined with chemotherapy. The nanoparticles were functionalized with peptides to target fibrinogen in the ECM and extensively characterized for their physicochemical properties, and MMH combined with chemotherapy was able to enhance the toxicity of chemotherapy. The second application of the nanoparticles was magnetically mediated energy delivery. This treatment does not result in a bulk temperature rise upon actuation of the nanoparticles by an alternating magnetic field (AMF) but rather results in intracellular damage via friction from Brownian rotation or nanoscale heating effects from Neel relaxations. The nanoparticles were functionalized with a cell penetrating peptide to facilitate cell uptake and lysosomal escape. The intracellular effects of the internalized nanoparticles alone and with activation by an AMF were evaluated. Iron concentrations in vivo are highly regulated as excess iron can catalyze the formation of the hydroxyl radical through Fenton chemistry. Although often a concern of using iron

  13. Polyaspartate coated magnetite nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Aurich, Konstanze; Schwalbe, Manuela; Clement, Joachim H.; Weitschies, Werner; Buske, Norbert

    2007-04-01

    The use of magnetic nanoparticles (MNP) in biomedical applications is subject to specific conditions. Special demands such as non-toxic core material and a biocompatible shell are prerequisites. These are fulfilled with magnetite cores and amino acid shell material, which provide different functional groups for coupling biomolecules as presented here. In this study the biocompatibility was tested by using breast cancer cell lines and leukocytes from peripheral blood. Functionalization with antibodies and the binding experiments detected by magneto-optical relaxation measurements confirm the bonding capacity and demonstrate the application of the presented MNP in magnetic immunoassays or magnetic drug targeting.

  14. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells

    SciTech Connect

    Kunzmann, Andrea; Andersson, Britta; Vogt, Carmen; Feliu, Neus; Ye Fei; Gabrielsson, Susanne; Toprak, Muhammet S.; Buerki-Thurnherr, Tina; Laurent, Sophie; Vahter, Marie; Krug, Harald; Muhammed, Mamoun; Scheynius, Annika; Fadeel, Bengt

    2011-06-01

    Engineered nanoparticles are being considered for a wide range of biomedical applications, from magnetic resonance imaging to 'smart' drug delivery systems. The development of novel nanomaterials for biomedical applications must be accompanied by careful scrutiny of their biocompatibility. In this regard, particular attention should be paid to the possible interactions between nanoparticles and cells of the immune system, our primary defense system against foreign invasion. On the other hand, labeling of immune cells serves as an ideal tool for visualization, diagnosis or treatment of inflammatory processes, which requires the efficient internalization of the nanoparticles into the cells of interest. Here, we compare novel monodispersed silica-coated iron oxide nanoparticles with commercially available dextran-coated iron oxide nanoparticles. The silica-coated iron oxide nanoparticles displayed excellent magnetic properties. Furthermore, they were non-toxic to primary human monocyte-derived macrophages at all doses tested whereas dose-dependent toxicity of the smaller silica-coated nanoparticles (30 nm and 50 nm) was observed for primary monocyte-derived dendritic cells, but not for the similarly small dextran-coated iron oxide nanoparticles. No macrophage or dendritic cell secretion of pro-inflammatory cytokines was observed upon administration of nanoparticles. The silica-coated iron oxide nanoparticles were taken up to a significantly higher degree when compared to the dextran-coated nanoparticles, irrespective of size. Cellular internalization of the silica-coated nanoparticles was through an active, actin cytoskeleton-dependent process. We conclude that these novel silica-coated iron oxide nanoparticles are promising materials for medical imaging, cell tracking and other biomedical applications.

  15. Preferential magnetic nanoparticle uptake by bone marrow derived macrophages sub-populations: effect of surface coating on polarization, toxicity, and in vivo MRI detection

    NASA Astrophysics Data System (ADS)

    Al Faraj, Achraf

    2013-07-01

    Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of different diseases, which make them attractive vehicles to deliver contrast agents or drugs for diagnostic or therapeutic purposes. In this study, the effect of polyethylene glycol functionalization of magnetic iron oxide nanoparticles and their further surface modification with carboxylic groups on bone marrow-derived M1 and M2 macrophages phenotype, labeling efficiency, uptake mechanism, biocompatibility, and their in vivo MR detection was assessed. An enhanced labeling efficiency was observed for carboxylic surface-modified superparamagnetic iron oxide (SPIO) compared to PEGylated SPIO and to a higher extent to plain SPIO along with a higher uptake by M2 subsets. Magnetic nanoparticles were found located in the periphery of the vesicles dispersed in the cytoplasm in TEM. Investigation of the labeling mechanism by inhibiting different uptake pathways revealed that endocytosis via scavenger receptor A, a process known to be clathrin mediated, plays a central role in the cellular uptake kinetics of both macrophages subpopulations. Biocompatibility evaluation showed no variation in cell viability and mitochondrial membrane potential with a low release of ROS. Flow cytometry and measurement of iNOS and Arginase 1 activity as marker of M1 and M2 macrophages polarization confirmed that magnetic labeling of macrophages subsets did not affect their polarization. In addition, no variation was observed in the biodistribution of magnetic iron oxide-labeled M1 and M2 macrophages subsets when monitored using noninvasive magnetic resonance imaging with a better detection for the enhanced SPIO-PEG-COOH-labeled cells.

  16. No aging phenomena in ferrofluids: the influence of coating on interparticle interactions of maghemite nanoparticles.

    PubMed

    Rabias, Ioannis; Fardis, Michael; Devlin, Eamonn; Boukos, Nikos; Tsitrouli, Danai; Papavassiliou, George

    2008-05-01

    The influence of coating on interparticle interactions in ferrofluids has been investigated using various techniques such as Mossbauer spectroscopy, magnetometry, transmission electron microscopy, photon correlation spectroscopy, X-ray diffraction, X-ray photoelectron, and resonance micro-Raman spectroscopy. Aging and spin-glass-like behavior was investigated in frozen ferrofluids of various concentrations from dense, initial value of 40 mg of coated nanoparticles per 1 mL of water, to dilute 1:10 (4 mg/mL). The as-prepared nanoparticles, core size 7-8 nm, were subsequently coated with a gummic acid corona of 20 nm thickness, which was observed to prevent agglomeration and to delay aggregation even in dense ferrofluids. The resulting separation of magnetic cores due to the coating eliminated all magnetic interparticle interaction mechanisms, such as exchange and dipoledipole, thus ensuring no aging effects of the magnetic particle system, as manifested in particle agglomeration and precipitation.

  17. Gold nanoparticles-coated magnetic microspheres as affinity matrix for detection of hemoglobin A1c in blood by microfluidic immunoassay.

    PubMed

    Chen, Shao-Peng; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-08-15

    A novel microfluidic immunoassay system for specific detection of hemoglobin A1c (HbA1c) was developed based on a three-component shell/shell/core structured magnetic nanocomposite Au/chitosan/Fe(3)O(4), which was synthesized with easy handling feature of Fe(3)O(4) by magnet, high affinity for gold nanoparticles of chitosan and good immobilization ability for anti-human hemoglobin-A1c antibody (HbA1c mAb) of assembled colloidal gold nanoparticles. The resulting HbA1c mAb/Au/chitosan/Fe(3)O(4) magnetic nanoparticles were then introduced into microfluidic devices coupled with a gold nanoband microelectrode as electrochemical detector. After that, three-step rapid immunoreactions were carried out in the sequence of HbA1c, anti-human hemoglobin antibodies (Hb mAb) and the secondary alkaline phosphatase (AP)-conjugated antibody within 20 min. The current response of 1-naphtol obtained from the reaction between the secondary AP-conjugated antibody and 1-naphthyl phosphate (1-NP) increased proportionally to the HbA1c concentration. Under optimized electrophoresis and detection conditions, HbA1c responded linearly in the concentration of 0.05-1.5 μg mL(-1), with the detection limit of 0.025 μg mL(-1). This system was successfully employed for detection of HbA1c in blood with good accuracy and renewable ability. The proposed method proved its potential use in clinical immunoassay of HbA1c.

  18. Biocompatible core-shell magnetic nanoparticles for cancer treatment

    SciTech Connect

    Sharma, Amit M.; Qiang, You; Meyer, Daniel R.; Souza, Ryan; Mcconnaughoy, Alan; Muldoon, Leslie; Baer, Donald R.

    2008-04-01

    Non-toxic magnetic nanoparticles (MNPs) have expanded the treatment delivery options in the medical world. With a size range from 2 to 200 nm MNPs can be compiled with most of the small cells and tissues in living body. Monodispersive iron-iron oxide core shell nanoparticles were prepared in our novel cluster deposition system. This unique method of preparing the core shell MNPs gives nanoparticles very high magnetic moment. We tested the nontoxicity and uptake of MNPs coated with/without dextrin by incubating them with rat LX-1 small cell lung cancer cells (SCLC). Since core iron enhances the heating effect [7] the rate of oxidation of iron nanoparticles was tested in deionized water at certain time interval. Both coated and noncoated MNPs were successfully uptaken by the cells, indicating that the nanoparticles were not toxic. The stability of MNPs was verified by X-ray diffraction (XRD) scan after 0, 24, 48, 96, 204 hours. Due to the high magnetic moment offered by MNPs produced in our lab, we predict that even in low applied external alternating field desired temperature can be reached in cancer cells in comparison to the commercially available nanoparticles. Moreover, our MNPs do not require additional anti-coagulating agents and provide a cost effective means of treatment with significantly lower dosage in the body in comparison to commercially available nanoparticles.

  19. Modeling of nanoparticle coatings for medical applications

    NASA Astrophysics Data System (ADS)

    Haume, Kaspar; Mason, Nigel J.; Solov'yov, Andrey V.

    2016-09-01

    Gold nanoparticles (AuNPs) have been shown to possess properties beneficial for the treatment of cancerous tumors by acting as radiosensitizers for both photon and ion radiation. Blood circulation time is usually increased by coating the AuNPs with poly(ethylene glycol) (PEG) ligands. The effectiveness of the PEG coating, however, depends on both the ligand surface density and length of the PEG molecules, making it important to understand the structure of the coating. In this paper the thickness, ligand surface density, and density of the PEG coating is studied with classical molecular dynamics using the software package MBN Explorer. AuNPs consisting of 135 atoms (approximately 1.4 nm diameter) in a water medium have been studied with the number of PEG ligands varying between 32 and 60. We find that the thickness of the coating is only weakly dependent on the surface ligand density and that the degree of water penetration is increased when there is a smaller number of attached ligands.

  20. Polyaniline-coated chitosan-functionalized magnetic nanoparticles: Preparation for the extraction and analysis of endocrine-disrupting phenols in environmental water and juice samples.

    PubMed

    Jiang, Xilan; Cheng, Jing; Zhou, Hongbin; Li, Feng; Wu, Wenlin; Ding, Kerong

    2015-08-15

    In the present study, chitosan (CHI) functionalized Fe3O4 magnetic microspheres coated with polyaniline (PANI) were synthesized for the first time. The chitosan-functionalized magnetic microspheres (Fe3O4@CHI) were synthesized by a co-precipitation method, and then aniline was polymerized on the magnetic core. The obtained Fe3O4@CHI@PANI microspheres were spherical core-shell structure with uniform size at about 100nm with 20-30nm diameter core. The microspheres had a high saturation magnetization of 32emu g(-)(1), which was sufficient for magnetic separation. The obtained Fe3O4@CHI@PANI magnetic microspheres were applied as magnetic adsorbents for the extraction of aromatic compounds via π-π interaction between polyaniline shell and aromatic compounds. Three endocrine-disrupting phenols, including bisphenol A (BPA), 2, 4-dichlorophenol (2, 4-DCP), and triclosan (TCS) were selected as the model analytes to verify the extraction ability of Fe3O4@CHI@PANI. The hydrophilic chitosan-functionalized Fe3O4 core (Fe3O4@CHI) improved the dispersibility of Fe3O4@CHI@PANI microspheres, and then improve its extraction efficiency. The dominant parameters affecting enrichment efficiency were investigated and optimized. Under optimal condition, the proposed method was evaluated, and applied to the analysis of phenols in real water and juice samples. The results demonstrated the method based on Fe3O4@CHI@PANI magnetic microspheres had good linearity (R(2)>0.996), and limits of detection (0.10-0.13ng mL(-1)), high repeatability (RSD<6.6%) and good recovery (85.0-106.7%). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Particle Size Control of Polyethylene Glycol Coated Fe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivasan, B.; Bonder, M. J.; Zhang, Y.; Gallo, D.; Hadjipanayis, G. C.

    2006-03-01

    Recent interest in Fe nanoparticles with high magnetization is driven by their potential use in biomedical applications such as targeted drug delivery, MRI contrast enhancement and hyperthermia treatment of cancer. This study looks at the use of a polyethylene glycol (PEG) solution to mediate the particle size and therefore control the coercivity of the resulting nanoparticles. Iron nanoparticles were synthesized using an aqueous sodium borohydride reduction of ferrous chloride by a simultaneous introduction of reagents in a Y- junction. The resulting product was collected in a vessel containing a 15 mg/ml carboxyl terminated polyethylene glycol (cPEG) in ethyl alcohol solution located under the Y junction. By varying the length of tubing below the Y junction, the particle size was varied from 5-25 nm. X-ray diffraction data indicates the presence of either amorphous Fe-B or crystalline alpha Fe, depending on the molar ratio of reagents. Magnetic measurements indicate the particles are ferromagnetic with values of coercivity ranging from 200-500 Oe and a saturation magnetization in range of 70-110 emu/g. The XRD shows that the particles are not affected by the polymer coating.

  2. Polyoxometalate-stabilized, water dispersible Fe2Pt magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Seemann, K. M.; Bauer, A.; Kindervater, J.; Meyer, M.; Besson, C.; Luysberg, M.; Durkin, P.; Pyckhout-Hintzen, W.; Budisa, N.; Georgii, R.; Schneider, C. M.; Kögerler, P.

    2013-02-01

    Magnetic Fe2Pt core-shell nanoparticles with 2 nm cores were synthesized with a monolayer coating of silicotungstate Keggin clusters. The core-shell composition is substantiated by structural analysis performed using high-resolution scanning transmission electron microscopy (HR-STEM) and small angle X-ray scattering (SAXS) in a liquid suspension. The molecular metal oxide cluster shell introduces an enhanced dispersibility of the magnetic Fe-Pt core-shell nanoparticles in aqueous media and thereby opens up new routes to nanoparticle bio-functionalization, for example, using pre-functionalized polyoxometalates.Magnetic Fe2Pt core-shell nanoparticles with 2 nm cores were synthesized with a monolayer coating of silicotungstate Keggin clusters. The core-shell composition is substantiated by structural analysis performed using high-resolution scanning transmission electron microscopy (HR-STEM) and small angle X-ray scattering (SAXS) in a liquid suspension. The molecular metal oxide cluster shell introduces an enhanced dispersibility of the magnetic Fe-Pt core-shell nanoparticles in aqueous media and thereby opens up new routes to nanoparticle bio-functionalization, for example, using pre-functionalized polyoxometalates. Electronic supplementary information (ESI) available: Details of materials, methods and experiments. See DOI: 10.1039/c3nr33374d

  3. Mixed hemimicelles solid-phase extraction of cephalosporins in biological samples with ionic liquid-coated magnetic graphene oxide nanoparticles coupled with high-performance liquid chromatographic analysis.

    PubMed

    Wu, Jianrong; Zhao, Hongyan; Xiao, Deli; Chuong, Pham-Huy; He, Jia; He, Hua

    2016-07-08

    A novel mixed hemimicelles solid phase extraction based on magnetic graphene oxide (Fe3O4/GO) and ionic liquid (IL) was developed for the simultaneous extraction and determination of trace cephalosporins in spiked human urine. The high surface area and excellent adsorption capacity of the graphene oxide after modification with1-hexadecyl-3-methylmidazoliumbromide(C16mimBr) were utilized adequately in the solid phase extraction(SPE) process. A comprehensive study of the parameters affecting the extraction recovery, such as the zeta-potential of magnetic graphene oxide, amounts of magnetic graphene oxide and surfactant, pH of solution, ionic strength, extraction time, and desorption condition were optimized. A comparative study on the use of different surfacant-coated Fe3O4/GO NPs as sorbents was presented. Good linearity (R(2)>0.9987) for all calibration curves was obtained. The LODs were ranged between 0.6 and 1.9ng mL(-1) for the cephalosporins and the LOQs were 1.5 to 5.5, respectively. Satisfactory recoveries(84.3% to 101.7%)and low relative standard deviations from 1.7% to 6.3% in biological matrices were achieved. The mixed hemimicelles magnetic SPE (MSPE) method based on ILs and Fe3O4/GO NPs magnetic separation has ever been successfully used for pretreatment of complex biological samples.

  4. Temperature dependent dissipation in magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Regmi, R.; Naik, A.; Thakur, J. S.; Vaishnava, P. P.; Lawes, G.

    2014-05-01

    We parameterized the temperature dependent magnetic dissipation of iron oxide nanoparticles fixed in a frozen aqueous solution in an ac magnetic field. The magnetic power dissipated can be modeled by considering only Neel relaxation. This dissipation increased monotonically with temperature, increasing by approximately 50% between -40 °C and -10 °C. These experimental results provide quantitative confirmation for the Neel model of magnetic dissipative heating for nanoparticles rigidly confined in a solid matrix. We also find substantial temperature dependence in the magnetic dissipation of nanoparticles suspended in a liquid, which has important consequences for potential applications of magnetic nanoparticles for hyperthermia.

  5. Magnetic nanoparticles based on iron coated carbon produced from the reaction of Fe2O3 with CH4: a Mössbauer study

    NASA Astrophysics Data System (ADS)

    Tristão, Juliana C.; Silva, Aline A.; Ardisson, José D.; Lago, Rochel M.

    2010-01-01

    In this work, it was investigated the production of magnetic nanoparticles encapsulated with carbon by the reaction of hematite and methane by Temperature Programmed Reaction up to 950°C. XRD and Mössbauer analyses showed that the materials prepared at 600°C and 700°C are mainly composed of magnetite and small amounts of hematite α -Fe2O3 with particle size of 30-40 nm. At higher temperatures, the spectra also display two central doublets corresponding to wüstite phase (Fe1 - x O). The materials were also characterized by magnetization measurements, BET surface area, thermal analysis (TG) and SEM. These materials can be prepared by a simple and low cost process and show great potential to be used as adsorbents and catalyst support.

  6. Novel hybrid coatings with controlled wettability by composite nanoparticle aggregation

    NASA Astrophysics Data System (ADS)

    Hritcu, Doina; Dodi, Gianina; Iordache, Mirabela L.; Draganescu, Dan; Sava, Elena; Popa, Marcel I.

    2016-11-01

    The aim of this study is to evaluate novel hybrid materials as potential candidates for producing coatings with hierarchical roughness and controlled wetting behaviour. Magnetite (Fe3O4) nanoparticles obtained by co-precipitation were embedded in matrices synthesized by radical graft co-polymerization of butyl acrylate (BA), butyl methacrylate (BMA), hexyl acrylate (HA) or styrene (ST) with ethylene glycol di-methacrylate (EGDMA) onto previously modified chitosan bearing surface vinyl groups. The resulting composite particles were characterized regarding their average size, composition and magnetic properties. Hybrid thin films containing suspension of composite particles in ethanol and pre-hydrolysed hexadecyltrimethoxysilane (HDTS) as a coupling/crosslinking agent were deposited by spin coating or spraying. The films were cured by heating and subsequently characterized regarding their morphology (scanning electron microscopy), contact angle with water and adhesion to substrate (scratch test). The structure-property relationship is discussed.

  7. Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications

    SciTech Connect

    Kaur, Navjot Chudasama, Bhupendra

    2015-05-15

    Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe{sub 3}O{sub 4}) nanoparticles and their coating with SiO{sub 2} is reported. Fe{sub 3}O{sub 4} nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identical to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.

  8. Synthesis and characterization of Bodipy functionalized magnetic iron oxide nanoparticles for potential bioimaging applications.

    PubMed

    Topel, Seda Demirel; Topel, Önder; Bostancıoğlu, R Beklem; Koparal, A Tansu

    2015-04-01

    Multifunctional magnetic nanoparticles were synthesized for potential bio-imaging applications. Uniform PEI coated magnetic Fe3O4 (PEI-Fe3O4) nanoparticles were prepared by a modified co-precipitation method and then covalently conjugated with a fluorophore molecule, Bodipy-5 by the DCC/DMAP coupling reaction. The covalent binding of Bodipy-5 to the PEI coated magnetic Fe3O4 nanoparticles were confirmed by means of FTIR and XPS measurements. The imaging ability of the Bodipy coated magnetic nanoparticles was determined on two human cancer cells, A549 (human lung adenocarcinoma epithelial) and Ishikawa (endometrial adenocarcinoma), for the first time. Cytotoxicity of BOD-MNPs was evaluated in both cancer cells and healthy human umbilical vein endothelial cell line (HUVEC) by standard MTT (3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. In vitro activities of the nanoparticles were also investigated.

  9. [Magnetic nanoparticles and intracellular delivery of biopolymers].

    PubMed

    Kornev, A A; Dubina, M V

    2014-03-01

    The basic methods of intracellular delivery of biopolymers are present in this review. The structure and synthesis of magnetic nanoparticles, their stabilizing surfactants are described. The examples of the interaction of nanoparticles with biopolymers such as nucleic acids and proteins are considered. The final part of the review is devoted to problems physiology and biocompatibility of magnetic nanoparticles.

  10. Tailoring magnetic properties of core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Sun, Shouheng; Li, J.; Wang, Z. L.; Liu, J. P.

    2004-08-01

    Bimagnetic FePt /MFe2O4(M =Fe,Co) core/shell nanoparticles are synthesized via high-temperature solution phase coating of 3.5nm FePt core with MFe2O4 shell. The thickness of the shell is controlled from 0.5 to 3nm. An assembly of the core/shell nanoparticles shows a smooth magnetization transition under an external field, indicating effective exchange coupling between the FePt core and the oxide shell. The coercivity of the FePt /Fe3O4 particles depends on the volume ratio of the hard and soft phases, consistent with previous theoretical predictions. These bimagnetic core/shell nanoparticles represent a class of nanostructured magnetic materials with their properties tunable by varying the chemical composition and thickness of the coating materials.

  11. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    PubMed Central

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

  12. Cell labeling with magnetic nanoparticles: opportunity for magnetic cell imaging and cell manipulation.

    PubMed

    Kolosnjaj-Tabi, Jelena; Wilhelm, Claire; Clément, Olivier; Gazeau, Florence

    2013-01-01

    This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo.

  13. Insulator coated magnetic nanoparticulate composites with reduced core loss and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Zhang, Yide (Inventor); Wang, Shihe (Inventor); Xiao, Danny (Inventor)

    2004-01-01

    A series of bulk-size magnetic/insulating nanostructured composite soft magnetic materials with significantly reduced core loss and its manufacturing technology. This insulator coated magnetic nanostructured composite is comprises a magnetic constituent, which contains one or more magnetic components, and an insulating constituent. The magnetic constituent is nanometer scale particles (1-100 nm) coated by a thin-layered insulating phase (continuous phase). While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase (or coupled nanoparticles) provide the desired soft magnetic properties, the insulating material provides the much demanded high resistivity which significantly reduces the eddy current loss. The resulting material is a high performance magnetic nanostructured composite with reduced core loss.

  14. Monolayer coated gold nanoparticles for delivery applications

    PubMed Central

    Rana, Subinoy; Bajaj, Avinash; Mout, Rubul; Rotello, Vincent M.

    2011-01-01

    Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery. PMID:21925556

  15. Magnetic solid-phase extraction based on a polydopamine-coated Fe3 O4 nanoparticles absorbent for the determination of bisphenol A, tetrabromobisphenol A, 2,4,6-tribromophenol, and (S)-1,1'-bi-2-naphthol in environmental waters by HPLC.

    PubMed

    Li, Jia-Yuan; Long, Xing-Yu; Yin, He-Xing; Qiao, Jun-Qin; Lian, Hong-Zhen

    2016-07-01

    Polydopamine-coated Fe3 O4 magnetic nanoparticles synthesized through a facile solvothermal reaction and the self-polymerization of dopamine have been employed as a magnetic solid-phase extraction sorbent to enrich four phenolic compounds, bisphenol A, tetrabromobisphenol A, (S)-1,1'-bi-2-naphthol and 2,4,6-tribromophenol, from environmental waters followed by high-performance liquid chromatographic detection. Various parameters of the extraction were optimized, including the pH of the sample matrix, the amount of polydopamine-coated Fe3 O4 sorbent, the adsorption time, the enrichment factor of analytes, the elution solvent, and the reusability of the nanoparticles sorbent. The recoveries of these phenols in spiked water samples were 62.0-112.0% with relative standard deviations of 0.8-7.7%, indicating the good reliability of the magnetic solid-phase extraction with high-performance liquid chromatography method. In addition, the extraction characteristics of the magnetic polydopamine-coated Fe3 O4 nanoparticles were elucidated comprehensively. It is found that there are hydrophobic, π-π stacking and hydrogen bonding interactions between phenols and more dispersible polydopamine-coated Fe3 O4 in water, among which hydrophobic interaction dominates the magnetic solid-phase extraction performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Biomedical Applications of Magnetic Nanoparticles: Delivering Genes and Remote Control of Cells

    NASA Astrophysics Data System (ADS)

    Dobson, Jon

    2013-03-01

    The use of magnetic micro- and nanoparticles for biomedical applications was first proposed in the 1920s as a way to measure the rehological properties of the cell's cytoplasm. Since that time, magnetic micro- and nanoparticle synthesis, coating and bio-functionalization have advanced significantly, as have the applications for these particles. Magnetic micro- and nanoparticles are now used in a variety of biomedical techniques such as targeted drug delivery, MRI contrast enhancement, gene transfection, immno-assay and cell sorting. More recently, magnetic micro- and nanoparticles have been used to investigate and manipulate cellular processes both in vitro and in vivo. This talk will focus on magnetic nanoparticle targeting to and actuation of cell surface receptors to control cell signaling cascades to control cell behavior. This technology has applications in disease therapy, cell engineering and regenerative medicine. The use of magnetic nanoparticles and oscillating magnet arrays for enhanced gene delivery will also be discussed.

  17. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    NASA Astrophysics Data System (ADS)

    Xi, Dong; Luo, XiaoPing; Lu, QiangHua; Yao, KaiLun; Liu, ZuLi; Ning, Qin

    2008-03-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method.

  18. Nano-magnetic particles used in biomedicine: core and coating materials.

    PubMed

    Karimi, Z; Karimi, L; Shokrollahi, H

    2013-07-01

    Magnetic nanoparticles for medical applications have been developed by many researchers. Separation, immunoassay, drug delivery, magnetic resonance imaging and hyperthermia are enhanced by the use of suitable magnetic nanoparticles and coating materials in the form of ferrofluids. Due to their low biocompatibility and low dispersion in water solutions, nanoparticles that are used for biomedical applications require surface treatment. Various kinds of coating materials including organic materials (polymers), inorganic metals (gold, platinum) or metal oxides (aluminum oxide, cobalt oxide) have been attracted during the last few years. Based on the recent advances and the importance of nanomedicine in human life, this paper attempts to give a brief summary on the different ferrite nano-magnetic particles and coatings used in nanomedicine.

  19. Assembly of responsive-shape coated nanoparticles at water surfaces

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Grest, Gary S.

    2014-04-01

    Nanoparticle (NP) assembly and aggregation can be controlled using a variety of organic coatings that bind to the nanoparticle surface and alter its affinity for solvent and other particles. We show that surprisingly simple short chain polymer coatings can be effectively used to selectively control the aggregation of very small nanoparticles by taking advantage of the environment-responsive shape produced by the coating's spontaneous asymmetry on high-curvature nanoparticles. Using extremely long molecular dynamics simulations of alkanethiol coated Au nanoparticles, we show that varying the terminal groups of a nanoparticle coating dramatically alters the coating shape at the water liquid-vapor interface, producing very different assembly morphologies. NPs with CH3-terminated coatings assemble into short linear groupings with a highly aligned structure at early time and then form more disordered clusters as these linear groupings further assemble. NPs with COOH-terminated coatings assemble into dimers and disordered clumps with no preferred alignment at short time and longer disordered chains of particles at longer times. We also find that the responsive shape of the coating continues to adapt to local environment during assembly. The orientations of chains within NP coatings are significantly different when the NPs are arranged in aggregates than when they are isolated.

  20. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance

    PubMed Central

    Ma, L L; Borwankar, A U; Willsey, B W; Yoon, K Y; Tam, J O; Sokolov, K V; Feldman, M D; Milner, T E; Johnston, K P

    2013-01-01

    A homologous series of Au-coated iron oxide nanoparticles, with hydrodynamic diameters smaller than 60 nm was synthesized with very low Auto-iron mass ratios as low as 0.15. The hydrodynamic diameter was determined by dynamic light scattering and the composition by atomic absorption spectroscopy and energy dispersive x-ray spectroscopy (EDS). Unusually low Au precursor supersaturation levels were utilized to nucleate and grow Au coatings on iron oxide relative to formation of pure Au nanoparticles. This approach produced unusually thin coatings, by lowering autocatalytic growth of Au on Au, as shown by transmission electron microscopy (TEM). Nearly all of the nanoparticles were attracted by a magnet indicating a minimal amount of pure Au particles The coatings were sufficiently thin to shift the surface plasmon resonance (SPR) to the near infrared (NIR), with large extinction coefficients., despite the small particle hydrodynamic diameters, observed from dynamic light scattering to be less than 60 nm. PMID:23238021

  1. The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles

    PubMed Central

    2011-01-01

    The suitability of magnetic nanoparticles (MNPs) to act as heat nano-sources by application of an alternating magnetic field has recently been studied due to their promising applications in biomedicine. The understanding of the magnetic relaxation mechanism in biocompatible nanoparticle systems is crucial in order to optimize the magnetic properties and maximize the specific absorption rate (SAR). With this aim, the SAR of magnetic dispersions containing superparamagnetic magnetite nanoparticles bio-coated with polyacrylic acid of an average particle size of ≈10 nm has been evaluated separately by changing colloidal parameters such as the MNP concentration and the viscosity of the solvent. A remarkable decrease of the SAR values with increasing particle concentration and solvent viscosity was found. These behaviours have been discussed on the basis of the magnetic relaxation mechanisms involved. PACS: 80; 87; 87.85jf PMID:21711915

  2. Magnetically enhanced high-specificity virus detection using bio-activated magnetic nanoparticles with antibodies as labeling markers.

    PubMed

    Yang, S Y; Wang, W C; Lan, C B; Chen, C H; Chieh, J J; Horng, H E; Hong, Chin-Yih; Yang, H C; Tsai, C P; Yang, C Y; Cheng, I C; Chung, W C

    2010-03-01

    This study describes magnetically driven suppression of cross-reactions among molecules. First, the magnetic nanoparticles are coated with bio-probes and dispersed in liquid. The bio-probes can then bind with homologous or heterologous bio-targets. When alternating-current (ac) magnetic fields are applied, magnetic nanoparticles rotate driven by ac magnetic fields. Thus, the bio-targets bound on the surface of magnetic nanoparticles experience a centrifugal force. The centrifugal force can be manipulated by adjusting the angular frequency of the rotating magnetic nanoparticles. The angular frequency is determined by the applied ac magnetic field frequency. Since the binding force for good binding is much higher than that of poor binding, frequency manipulation is needed for the centrifugal force to be higher than the poor-binding force but lower than the good-binding force. Therefore, poor binding which contributes to cross reactions between molecules can be suppressed efficiently by control of the ac magnetic field frequency.

  3. Determination of triazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent.

    PubMed

    Zhao, Guangying; Song, Shuangju; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2011-12-05

    In this paper, a graphene-based Fe(3)O(4) magnetic nanoparticles (G-Fe(3)O(4) MNPs) was used as the adsorbent for the magnetic solid-phase extraction of some triazine herbicides (atrazine, prometon, propazine and prometryn) in environmental water samples followed by high performance liquid chromatography-diode array detection (HPLC-DAD). After the extraction, the adsorbent can be conveniently separated from the aqueous samples by an external magnet. The main factors influencing the extraction efficiency including the amount of the MNPs, the extraction time, the pH of sample solution, and desorption conditions were studied and optimized. Under the optimized experimental conditions, a good linearity was observed in the range of 0.1-50.0 ng mL(-1) for all the analytes, with the correlation coefficients (r) ranging from 0.9996 to 0.9999. The limits of detection of the method ranged between 0.025 and 0.040 ng mL(-1). Good reproducibility was obtained with the relative standard deviations below 5.2%. The developed method was applied to the analysis of the triazine herbicides in different water samples (lake, river and reservoir). The recoveries of the method were in the range between 89.0% and 96.2%.

  4. Scaling relations for magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Landeros, P.; Escrig, J.; Altbir, D.; Laroze, D.; D'Albuquerque E Castro, J.; Vargas, P.

    2005-03-01

    A detailed investigation of the scaling relations recently proposed [J. d’Albuquerque e Castro, D. Altbir, J. C. Retamal, and P. Vargas, Phys. Rev. Lett. 88, 237202 (2002)] to study the magnetic properties of nanoparticles is presented. Analytical expressions for the total energy of three characteristic internal configurations of the particles are obtained, in terms of which the behavior of the magnetic phase diagram for those particles upon scaling of the exchange interaction is discussed. The exponent η in scaling relations is shown to be dependent on the geometry of the vortex core, and results for specific cases are presented.

  5. Non-rare earth magnetic nanoparticles

    DOEpatents

    Carpenter, Everett E.; Huba, Zachary J.; Carroll, Kyler J.; Farghaly, Ahmed; Khanna, Shiv N.; Qian, Meichun; Bertino, Massimo

    2017-09-26

    Continuous flow synthetic methods are used to make single phase magnetic metal alloy nanoparticles that do not contain rare earth metals. Soft and hard magnets made from the magnetic nanoparticles are used for a variety of purposes, e.g. in electric motors, communication devices, etc.

  6. Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles.

    PubMed

    Rieffel, James; Chen, Feng; Kim, Jeesu; Chen, Guanying; Shao, Wei; Shao, Shuai; Chitgupi, Upendra; Hernandez, Reinier; Graves, Stephen A; Nickles, Robert J; Prasad, Paras N; Kim, Chulhong; Cai, Weibo; Lovell, Jonathan F

    2015-03-11

    Hexamodal imaging using simple nanoparticles is demonstrated. Porphyrin-phospholipids are used to coat upconversion nanoparticles in order to generate a new biocompatible material. The nanoparticles are characterized in vitro and in vivo for imaging via fluorescence, upconversion, positron emission tomography, computed tomography, Cerenkov luminescence, and photoacoustic tomography.

  7. Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs).

    PubMed

    Can, Hatice Kaplan; Kavlak, Serap; ParviziKhosroshahi, Shahed; Güner, Ali

    2017-04-20

    Dextran-coated iron oxide nanoparticles (DIONPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging (MRI) contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. This paper reports the experimental detail for preparation, characterization and investigation of thermal and dynamical mechanical characteristics of the dextran-coated Fe3O4 magnetic nanoparticles. In our work, DIONPs were prepared in a 1:2 ratio of Fe(II) and Fe(III) salt in the HCl solution with NaOH at given temperature. The obtained dextran-coated iron-oxide nanoparticles structure-property correlation was characterized by spectroscopic methods; attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and XRD. Coating dextran on the iron-oxide proof of important peaks can be seen from the ATR-FTIR. Dramatic crystallinity increment can be observed from the XRD pattern of the iron-oxide dextran nanoparticles. The thermal analysis was examined by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Dynamical mechanical properties of dextran nanoparticles were analysed by dynamic mechanical analysis (DMA). Thermal stability of the iron oxide dextran nanoparticles is higher than that of the dextran.

  8. Simultaneous hyperthermia and doxorubicin delivery from polymer-coated magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Iglesias, G. R.; Delgado, A. V.; González-Caballero, F.; Ramos-Tejada, M. M.

    2017-06-01

    In this work, the hyperthermia response, (i.e., heating induced by an externally applied alternating magnetic field) and the simultaneous release of an anti-cancer drug (doxorubicin) by polymer-coated magnetite nanoparticles have been investigated. After describing the setup for hyperthermia measurements in suspensions of magnetic nanoparticles, the hyperthermia (represented by the rate of suspension heating and, ultimately, by the specific absorption rate or SAR) of magnetite nanoparticles (both bare and polymer-coated as drug nanocarriers) is discussed. The effect of the applied ac magnetic field on doxorubicin release is also studied, and it is concluded that the field does not interfere with the release process, demonstrating the double functionality of the investigated particles.

  9. Magnetic nanoparticles for gene and drug delivery

    PubMed Central

    McBain, Stuart C; Yiu, Humphrey HP; Dobson, Jon

    2008-01-01

    Investigations of magnetic micro- and nanoparticles for targeted drug delivery began over 30 years ago. Since that time, major progress has been made in particle design and synthesis techniques, however, very few clinical trials have taken place. Here we review advances in magnetic nanoparticle design, in vitro and animal experiments with magnetic nanoparticle-based drug and gene delivery, and clinical trials of drug targeting. PMID:18686777

  10. Iron oxide magnetic nanoparticles: A short review

    NASA Astrophysics Data System (ADS)

    Hasany, S. F.; Rehman, A.; Jose, R.; Ahmed, I.

    2012-11-01

    Magnetic nanoparticles have been enjoying great importance and wide scale applications during the last two decades due to their specific characteristics and applications. Iron oxide magnetic nanoparticles with appropriate surface chemistry have been implied in numerous applications such as biomedicine and cancer therapy, catalysis and in magnetic separation techniques. This review summarizes recent commercial, industrial and bio-engineering applications and brief study of the methods for the preparation of iron oxide magnetic nanoparticles with a control over the size, morphology and the magnetic properties. Some future applications of microwave irradiation for magnetic particle synthesis are also addressed.

  11. Applications of Bacterial Magnetic Nanoparticles in Nanobiotechnology.

    PubMed

    Chen, Chuanfang; Wang, Pingping; Li, Linlin

    2016-03-01

    The bacterial magnetic nanoparticle (BMP) has been well researched in nanobiotechnology as a new magnetic crystal. The BMPs are extracted from magnetotactic bacteria and under precise biological control. Compared with engineered magnetic nanoparticles synthesized by chemical approaches, BMPs have the properties of large production, monodispersity, high crystallinity, and close-to-bulk magnetization, which enable BMPs to be the highly promising magnetic nanoparticles for nanobiotechnology. In this paper, we review the biomedical applications of BMPs in magnetic hyperthermia, drug treatment with tumour and bioseparation. In addition, the biodistribution and toxicity are also reviewed.

  12. Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications.

    PubMed

    Grüttner, Cordula; Müller, Knut; Teller, Joachim; Westphal, Fritz

    2013-12-01

    A summary of recent developments in the synthesis, stabilisation and coating of magnetic iron oxide nanoparticles for hyperthermia applications is presented. Methods for synthesis in aqueous, organic and microemulsion systems are reviewed together with the resulting heating rates of the nanoparticles. Different stabilisation mechanisms for iron oxide nanoparticles from aqueous and organic media are discussed as intermediates for further coating and functionalisation. Coating with silica and/or polysaccharides is mainly used for design of nanoparticles especially for targeted hyperthermia application. These coatings permit versatile functionalisation as a basis for conjugating biomolecules, e.g. antibodies or peptides. Various strategies to conjugate biomolecules on the particle surface are discussed, with emphasis on methods that preserve biofunctionality after immobilisation. The efficiency of established methods such as carbodiimide coupling and oriented conjugation strategies is compared with new developments such as the bioorthogonal approaches that are based on the cycloaddition of strain-promoted alkynes with azides or nitrones. For targeted hyperthermia applications the study of the formation of a protein corona around nanoparticles with site-specific biomolecules on the surface is essential to achieve improved circulation times in the blood and reduced non-specific uptake by non-targeted organs for a high specific accumulation in the target tissue.

  13. Synthesis and Characterization of Polymer-Templated Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamakloe, Beatrice

    This research reports on the investigation into the synthesis and stabilization of iron oxide nanoparticles for theranostic applications using amine-epoxide polymers. Although theranostic agents such as magnetic nanoparticles have been designed and developed for a few decades, there is still more work that needs to be done with the type of materials that can be used to stabilize or functionalize these particles if they are to be used for applications such as drug delivery, imaging and hyperthermia. For in-vivo applications, it is crucial that organic coatings enclose the nanoparticles in order to prevent aggregation and facilitate efficient removal from the body as well as protect the body from toxic material. The objective of this thesis is to design polymer coated magnetite nanoparticles with polymers that are biocompatible and can stabilize the iron oxide nanoparticle to help create mono-dispersed particles in solution. It is desirable to also have these nanoparticles possess high magnetic susceptibility in response to an applied magnetic field. The co-precipitation method was selected because it is probably the simplest and most efficient chemical pathway to obtain magnetic nanoparticles. In literature, cationic polymers such as Polyethylenimine (PEI), which is the industry standard, have been used to stabilize IONPs because they can be used in magnetofections to deliver DNA or RNA. PEI however is known to interact very strongly with proteins and is cytotoxic, so as mentioned previously the Iron Oxide nanoparticles (IONPs) synthesized in this study were stabilized with amine-epoxide polymers because of the limitations of PEI. Four different amine-epoxide polymers which have good water solubility, biodegradability and less toxic than PEI were synthesized and used in the synthesis and stabilization of the magnetic nanoparticles and compared to PEI templated IONPs. These polymer-templated magnetic nanoparticles were also characterized by size, surface charge, Iron

  14. A magnonic gas sensor based on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Matatagui, D.; Kolokoltsev, O. V.; Qureshi, N.; Mejía-Uriarte, E. V.; Saniger, J. M.

    2015-05-01

    In this paper, we propose an innovative, simple and inexpensive gas sensor based on the variation in the magnetic properties of nanoparticles due to their interaction with gases. To measure the nanoparticle response a magnetostatic spin wave (MSW) tunable oscillator has been developed using an yttrium iron garnet (YIG) epitaxial thin film as a delay line (DL). The sensor has been prepared by coating a uniform layer of CuFe2O4 nanoparticles on the YIG film. The unperturbed frequency of the oscillator is determined by a bias magnetic field, which is applied parallel to the YIG film and perpendicularly to the wave propagation direction. In this device, the total bias magnetic field is the superposition of the field of a permanent magnet and the field associated with the layer of magnetic nanoparticles. The perturbation produced in the magnetic properties of the nanoparticle layer due to its interaction with gases induces a frequency shift in the oscillator, allowing the detection of low concentrations of gases. In order to demonstrate the ability of the sensor to detect gases, it has been tested with organic volatile compounds (VOCs) which have harmful effects on human health, such as dimethylformamide, isopropanol and ethanol, or the aromatic hydrocarbons like benzene, toluene and xylene more commonly known by its abbreviation (BTX). All of these were detected with high sensitivity, short response time, and good reproducibility.

  15. A magnonic gas sensor based on magnetic nanoparticles.

    PubMed

    Matatagui, D; Kolokoltsev, O V; Qureshi, N; Mejía-Uriarte, E V; Saniger, J M

    2015-06-07

    In this paper, we propose an innovative, simple and inexpensive gas sensor based on the variation in the magnetic properties of nanoparticles due to their interaction with gases. To measure the nanoparticle response a magnetostatic spin wave (MSW) tunable oscillator has been developed using an yttrium iron garnet (YIG) epitaxial thin film as a delay line (DL). The sensor has been prepared by coating a uniform layer of CuFe2O4 nanoparticles on the YIG film. The unperturbed frequency of the oscillator is determined by a bias magnetic field, which is applied parallel to the YIG film and perpendicularly to the wave propagation direction. In this device, the total bias magnetic field is the superposition of the field of a permanent magnet and the field associated with the layer of magnetic nanoparticles. The perturbation produced in the magnetic properties of the nanoparticle layer due to its interaction with gases induces a frequency shift in the oscillator, allowing the detection of low concentrations of gases. In order to demonstrate the ability of the sensor to detect gases, it has been tested with organic volatile compounds (VOCs) which have harmful effects on human health, such as dimethylformamide, isopropanol and ethanol, or the aromatic hydrocarbons like benzene, toluene and xylene more commonly known by its abbreviation (BTX). All of these were detected with high sensitivity, short response time, and good reproducibility.

  16. Optimization of preparation of chitosan-coated iron oxide nanoparticles for biomedical applications by chemometrics approaches

    NASA Astrophysics Data System (ADS)

    Honary, Soheila; Ebrahimi, Pouneh; Rad, Hossein Asgari; Asgari, Mahsa

    2013-08-01

    Functionalized magnetic nanoparticles are used in several biomedical applications, such as drug delivery, magnetic cell separation, and magnetic resonance imaging. Size and surface properties of iron oxide nanoparticles are the two important factors which could dramatically affect the nanoparticle efficiency as well as their stability. In this study, the chemometrics approach was applied to optimize the coating process of iron oxide nanoparticles. To optimize the size of nanoparticles, the effect of two experimental parameters on size was investigated by means of multivariate analysis. The factors considered were chitosan molecular weight and chitosan-to-tripolyphosphate concentration ratio. The experiments were performed according to face-centered cube central composite response surface design. A second-order regression model was obtained which characterized by both descriptive and predictive abilities. The method was optimized with respect to the percent of Z average diameter's increasing after coating as response. It can be concluded that experimental design provides a suitable means of optimizing and testing the robustness of iron oxide nanoparticle coating method.

  17. PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application

    SciTech Connect

    Jadhav, S.V.; Nikam, D.S.; Khot, V.M.; Mali, S.S.; Hong, C.K.; Pawar, S.H.

    2015-04-15

    La{sub 0.7}Sr{sub 0.3}MnO{sub 3} magnetic nanoparticles are synthesized by a solution combustion method and functionalised with polyvinyl alcohol and polyethylene glycol. The induction heating characteristics of coated magnetic nanoparticles (42 °C) were observed at a reasonably low concentration (5 mg/mL). Remarkably, coated magnetic nanoparticles exhibited a promisingly high specific absorption rate with varying magnetic field and constant frequency. The surface analysis is carried out by X-ray photoelectron spectroscopy. A reduction in the agglomeration of the particles was observed when the magnetic nanoparticles were functionalised with polyvinyl alcohol or polyethylene glycol and can be confirmed by transmission electron microscopy and dynamic light scattering studies. Vibrating sample magnetometer measurements indicate superparamagnetic behaviour at room temperature before and after coating. Colloidal stability revealed a considerably higher zeta potential value for coated system. In vitro cytotoxicity test of the magnetic nanoparticles indicates that coated nanoparticles have no significant effect on cell viability within the tested concentrations (1–5 mg mL{sup -1}) as compared to uncoated La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. All these findings explore the potentiality of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanoparticles for magnetic fluid hyperthermia. - Highlights: • Surface functionalization of LSMO nanoparticles — first time with PVA • Surface functionalization of LSMO nanoparticles — first time with PEG • BSA protein — first time used as dispersion medium for stability of LSMO nanoparticles • The heating ability observed at low concentration • Improved efficiency of magnetic fluid hyperthermia treatment with surfactants.

  18. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2010-01-01

    Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological cells, or chemotherapeutic drugs for magnetic drug delivery. Magnetic field-flow fractionation (MgFFF) has the potential for determining the distribution of the magnetic material among the particles in a given sample. MgFFF differs from most other forms of field-flow fractionation in that the magnetic field that brings about particle separation induces magnetic dipole moments in the nanoparticles, and these potentially can interact with one another and perturb the separation. This aspect is examined in the present work. Samples of magnetic nanoparticles were analysed under different experimental conditions to determine the sensitivity of the method to variation of conditions. The results are shown to be consistent and insensitive to conditions, although magnetite content appeared to be somewhat higher than expected. PMID:20732895

  19. Magnetic nanoparticles for medical applications: Progress and challenges

    NASA Astrophysics Data System (ADS)

    Doaga, A.; Cojocariu, A. M.; Constantin, C. P.; Hempelmann, R.; Caltun, O. F.

    2013-11-01

    Magnetic nanoparticles present unique properties that make them suitable for applications in biomedical field such as magnetic resonance imaging (MRI), hyperthermia and drug delivery systems. Magnetic hyperthermia involves heating the cancer cells by using magnetic particles exposed to an alternating magnetic field. The cell temperature increases due to the thermal propagation of the heat induced by the nanoparticles into the affected region. In order to increase the effectiveness of the treatment hyperthermia can be combined with drug delivery techniques. As a spectroscopic technique MRI is used in medicine for the imaging of tissues especially the soft ones and diagnosing malignant or benign tumors. For this purpose ZnxCo1-xFe2O4 ferrite nanoparticles with x between 0 and 1 have been prepared by co-precipitation method. The cristallite size was determined by X-ray diffraction, while the transmission electron microscopy illustrates the spherical shape of the nanoparticles. Magnetic characterizations of the nanoparticles were carried out at room temperature by using a vibrating sample magnetometer. The specific absorption rate (SAR) was measured by calorimetric method at different frequencies and it has been observed that this value depends on the chemical formula, the applied magnetic fields and the frequency. The study consists of evaluating the images, obtained from an MRI facility, when the nanoparticles are dispersed in agar phantoms compared with the enhanced ones when Omniscan was used as contrast agent. Layer-by-layer technique was used to achieve the necessary requirement of biocompatibility. The surface of the magnetic nanoparticles was modified by coating it with oppositely charged polyelectrolites, making it possible for the binding of a specific drug.

  20. Magnetic nanoparticles for medical applications: Progress and challenges

    SciTech Connect

    Doaga, A.; Cojocariu, A. M.; Constantin, C. P.; Caltun, O. F.; Hempelmann, R.

    2013-11-13

    Magnetic nanoparticles present unique properties that make them suitable for applications in biomedical field such as magnetic resonance imaging (MRI), hyperthermia and drug delivery systems. Magnetic hyperthermia involves heating the cancer cells by using magnetic particles exposed to an alternating magnetic field. The cell temperature increases due to the thermal propagation of the heat induced by the nanoparticles into the affected region. In order to increase the effectiveness of the treatment hyperthermia can be combined with drug delivery techniques. As a spectroscopic technique MRI is used in medicine for the imaging of tissues especially the soft ones and diagnosing malignant or benign tumors. For this purpose Zn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} ferrite nanoparticles with x between 0 and 1 have been prepared by co-precipitation method. The cristallite size was determined by X-ray diffraction, while the transmission electron microscopy illustrates the spherical shape of the nanoparticles. Magnetic characterizations of the nanoparticles were carried out at room temperature by using a vibrating sample magnetometer. The specific absorption rate (SAR) was measured by calorimetric method at different frequencies and it has been observed that this value depends on the chemical formula, the applied magnetic fields and the frequency. The study consists of evaluating the images, obtained from an MRI facility, when the nanoparticles are dispersed in agar phantoms compared with the enhanced ones when Omniscan was used as contrast agent. Layer-by-layer technique was used to achieve the necessary requirement of biocompatibility. The surface of the magnetic nanoparticles was modified by coating it with oppositely charged polyelectrolites, making it possible for the binding of a specific drug.

  1. Preparation of polydopamine-coated magnetic nanoparticles for dispersive solid-phase extraction of water-soluble synthetic colorants in beverage samples with HPLC analysis.

    PubMed

    Chai, Weibo; Wang, Huijuan; Zhang, Ying; Ding, Guosheng

    2016-01-01

    A facile and sensitive dispersive solid-phase extraction (D-SPE) method for the extraction and enrichment of four representative synthetic colorants prior to high performance liquid chromatography analysis was introduced. As highly efficient adsorbents, polydopamine-coated Fe3O4 nanoparticles (Fe3O4@PDA NPs) were prepared by a simple and green procedure. Several factors affecting the extraction efficiency, mainly including the polymerization time of dopamine, pH of the sample solution, the amount of adsorbent, extraction time and the desorption conditions, were systematically studied. Under the optimized conditions, the enrichment factors for the four colorants were both higher than 176. The limits of detection (LODs) for the established d-SPE-HPLC method were found to be 0.20-0.25μgL(-1), which were lower than most chromatographic methods previously reported for synthetic colorant analysis. When used for quantitative analysis, wide linearity ranges (1-500μgL(-1) for amaranth and Ponceau 4R, and 0.80-500μgL(-1) for sunset yellow and allure red) were achieved with good correlation (R(2)≥0.9995). The developed method was also successfully applied to the analysis of colorants in beverage samples with satisfactory results, demonstrating its reliability and feasibility in real sample analysis.

  2. Determination of Organophosphorous Pesticides in Environmental Water Samples Using Surface-Engineered C18 Functionalized Silica-Coated Core-Shell Magnetic Nanoparticles-Based Extraction Coupled with GC-MS/MS Analysis.

    PubMed

    Srivastava, Neha; Kumari, Supriya; Nair, Kishore; Alam, Samsul; Raza, Syed K

    2017-05-01

    The present paper depicts a novel method based on magnetic SPE (MSPE) for the determination of organophosphorus pesticides (OPs) such as phorate, malathion, and chlorpyrifos in environmental water samples. In this study, C18 functionalized silica-coated core-shell iron oxide magnetic nanoparticles (MNPs) were used as a surface-engineered magnetic sorbent for the selective extraction of pesticides from aqueous samples, followed by GC-MS and GC-tandem MS analysis for confirmative determination of the analytes. Various important method parameters, including quantity of MNP adsorbent, volume of sample, effective time for extraction, nature of the desorbing solvent, and pH of the aqueous sample, were investigated and optimized to obtain maximum method performance. Under the optimized instrumental analysis conditions, good linearity (r2 value ≥0.994) was achieved at the concentration range of 0.5-500 μg/L. Recoveries were in the range of 79.2-96.3 and 80.4-97.5% in selective-ion monitoring and multiple reaction monitoring (MRM) modes, respectively, at the spiking concentrations of 1, 5, and 10 μg/L. MRM mode showed better sensitivity, selectivity, and low-level detection (0.5 μg/L) of analytes. The novel MSPE method is a simple, cheap, rapid, and eco-friendly method for the determination of OPs in environmental water samples.

  3. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction.

    PubMed

    Bai, Yalong; Song, Minghui; Cui, Yan; Shi, Chunlei; Wang, Dapeng; Paoli, George C; Shi, Xianming

    2013-07-17

    A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL(-1) and 13 CFU mL(-1) respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL(-1) and 25 CFU mL(-1), respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices.

  4. Synthesis of superparamagnetic iron oxide nanoparticles coated with a DDNP-carboxyl derivative for in vitro magnetic resonance imaging of Alzheimer's disease.

    PubMed

    Zhou, Jingting; Fa, Huanbao; Yin, Wei; Zhang, Jin; Hou, Changjun; Huo, Danqun; Zhang, Dong; Zhang, Haifeng

    2014-04-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) have been proposed for use in magnetic resonance imaging as versatile ultra-sensitive nanoprobes for Alzheimer's disease imaging. In this work, we synthetized an efficient contrast agent of Alzheimer's disease using 1,1-dicyano-2-[6-(dimethylamino)naphthalene-2-yl]propene (DDNP) carboxyl derivative to functionalize the surface of SPIONs. The DDNP-SPIONs are prepared by conjugating DDNP carboxyl derivative to oleic acid-treated SPIONs through ligand exchange. The structure, size distribution and magnetic property were identified by IR, TGA-DTA, XRD, TEM, Zetasizer Nano and VSM. TEM and Zetasizer Nano observations indicated that the DDNP-SPIONs are relatively mono-dispersed spherical distribution with an average size of 11.7nm. The DDNP-SPIONs were then further analyzed for their MRI relaxation properties using MR imaging and demonstrated high T2 relaxivity of 140.57s(-1)FemM(-1), and the vitro experiment that DDNP-SPIONs binding to β-Amyloid aggregates were then investigated by fluorophotometry, the results showed that the combination had induced the fluorescence enhancement of the DDNP-SPIONs and displayed tremendous promise for use as a contrast agent of Alzheimer's disease in MRI. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Equilibrium magnetization and magnetization relaxation of multicore magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ilg, Patrick

    2017-06-01

    Multicore magnetic nanoparticles show promising features for biomedical applications. Their magnetic properties, however, are not well understood to date, so that several ad hoc assumptions are often needed to interpret experimental results. Here, we present a comprehensive computer simulation study on the effect of dipolar interactions and magnetic anisotropy on the equilibrium magnetization and magnetization relaxation dynamics of monodisperse multicore magnetic nanoparticles in viscous solvents. We include thermal fluctuations of the internal Néel relaxation via the stochastic Landau-Lifshitz-Gilbert equation coupled to rotational Brownian motion of the cluster. We find that the effective magnetic moment of the cluster is reduced compared to the noninteracting case due to frustrated dipole-dipole interactions. Furthermore, the magnetization relaxation is found to proceed in a two-step fashion with a fast initial decay being followed by a long-time relaxation. For moderate dipolar interaction strengths, the latter can be approximated quite well by an exponential decay with rate given by the sum of the relaxation rates in the immobilized state and the Brownian rotation. These findings can be helpful for a better interpretation of experimental data obtained from magnetization relaxation measurements.

  6. Synthesis and Characteristics of FePt Nanoparticle Films Under In Situ-Applied Magnetic Field.

    PubMed

    Qian, Xu; Gao, Mo-Yun; Li, Ai-Dong; Zhou, Xiao-Yu; Liu, Xiao-Jie; Cao, Yan-Qiang; Li, Chen; Wu, Di

    2016-12-01

    In situ external magnetic field was applied during the synthesis of FePt nanoparticles via a chemical solution method. FePt nanoparticle films were prepared on Si by a drop-coating method with and without a magnetic field. Annealing at 700 °C in reductive atmosphere was explored to obtain ferromagnetic FePt L10 phase. The effect of in situ-applied magnetic field on the structure, morphology, and magnetic properties of FePt nanoparticle films was characterized. It is found that the applied magnetic field during the chemical synthesis of FePt nanoparticles plays a key role in the crystallinity and magnetic property of FePt nanoparticle films. As-synthesized FePt nanoparticles under the magnetic field are monodispersed and can be self-assembled over a larger area by a dropping method. The applied magnetic field during the synthesis of FePt nanoparticles not only significantly improves the nanoparticles' c-axis preferred orientation but also benefits the phase transition of FePt nanoparticles from face-centered cubic to face-centered tetragonal structure during the annealing process. The FePt nanoparticle films derived under magnetic field also show some magnetic anisotropy.

  7. Synthesis and Characteristics of FePt Nanoparticle Films Under In Situ-Applied Magnetic Field

    NASA Astrophysics Data System (ADS)

    Qian, Xu; Gao, Mo-Yun; Li, Ai-Dong; Zhou, Xiao-Yu; Liu, Xiao-Jie; Cao, Yan-Qiang; Li, Chen; Wu, Di

    2016-07-01

    In situ external magnetic field was applied during the synthesis of FePt nanoparticles via a chemical solution method. FePt nanoparticle films were prepared on Si by a drop-coating method with and without a magnetic field. Annealing at 700 °C in reductive atmosphere was explored to obtain ferromagnetic FePt L10 phase. The effect of in situ-applied magnetic field on the structure, morphology, and magnetic properties of FePt nanoparticle films was characterized. It is found that the applied magnetic field during the chemical synthesis of FePt nanoparticles plays a key role in the crystallinity and magnetic property of FePt nanoparticle films. As-synthesized FePt nanoparticles under the magnetic field are monodispersed and can be self-assembled over a larger area by a dropping method. The applied magnetic field during the synthesis of FePt nanoparticles not only significantly improves the nanoparticles' c-axis preferred orientation but also benefits the phase transition of FePt nanoparticles from face-centered cubic to face-centered tetragonal structure during the annealing process. The FePt nanoparticle films derived under magnetic field also show some magnetic anisotropy.

  8. Materials science: Magnetic nanoparticles line up

    NASA Astrophysics Data System (ADS)

    Faivre, Damien; Bennet, Mathieu

    2016-07-01

    Certain bacteria contain strings of magnetic nanoparticles and therefore align with magnetic fields. Inspired by these natural structures, researchers have now fabricated synthetic one-dimensional arrays of such particles.

  9. Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts

    PubMed Central

    Govan, Joseph; Gun’ko, Yurii K.

    2014-01-01

    Magnetic nanoparticles are a highly valuable substrate for the attachment of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nanocatalytic systems by the immobilisation of homogeneous catalysts onto magnetic nanoparticles. We discuss magnetic core shell nanostructures (e.g., silica or polymer coated magnetic nanoparticles) as substrates for catalyst immobilisation. Then we consider magnetic nanoparticles bound to inorganic catalytic mesoporous structures as well as metal organic frameworks. Binding of catalytically active small organic molecules and polymers are also reviewed. After that we briefly deliberate on the binding of enzymes to magnetic nanocomposites and the corresponding enzymatic catalysis. Finally, we draw conclusions and present a future outlook for the further development of new catalytic systems which are immobilised onto magnetic nanoparticles. PMID:28344220

  10. Ethylene glycol-assisted coating of titania on nanoparticles.

    PubMed

    Dahl, Michael; Castaneda, Fernando; Joo, Ji Bong; Reyes, Victor; Goebl, James; Yin, Yadong

    2016-06-14

    Coating titania shells onto sub-micron sized particles has been widely studied recently, with success mainly limited to objects with sizes above 50 nm. Direct coating on particles below this size has been difficult to attain especially with good control over properties such as thickness and crystallinity. Here we demonstrate that titanium-glycolate formed by reacting titanium alkoxide and ethylene glycol is an excellent precursor for coating titania on aqueous nanoparticles. The new coating method is particularly useful for its ability to coat materials lacking strong polymers or ligands which are frequently needed to facilitate typical titania coatings. We demonstrate the effectiveness of the process of coating titania on metal nanoparticles ranging from citrate-stabilized gold and silver spheres to gold nanorods and silver nanoplates, and larger particles such as SiO2 microspheres and polymer spheres. Further the thickness of these coatings can be tuned from a few nanometers to ∼40 nm through sequential coatings. These coatings can subsequently be crystallized into TiO2 through refluxing in water or by calcination to obtain crystalline shells. This procedure can be very useful for the production of TiO2 coatings with tunable thickness and crystallinity as well as for further study on the effect of TiO2 coatings on nanoparticles.

  11. Enhanced viscoelastic property of iron oxide nanoparticle decorated organoclay fluid under magnetic field

    NASA Astrophysics Data System (ADS)

    Son, You-Hwan; Jung, Youngsoo; Roh, Heesuk; Lee, Jung-Kun

    2017-08-01

    Stable hydrophobic nanocomposites of magnetic nanoparticles and clay are prepared by the self-assembly of magnetite (Fe3O4) nanoparticles on surfaces of exfoliated clay platelets. Due to the attractive interaction between hydrophobic groups, oleic acid coated nanoparticles are strongly attached to the surface of cetyl trimethylammonium cation coated clay platelets in organic media. Crystal structure and magnetic property of composite particles are examined using electron microscopy, x-ray diffractometer and vibration sample magnetometer. In addition, composite particles are dispersed in mineral oil and rheological properties of composite particle suspensions are characterized using steady-state and oscillatory measurements. Magnetite nanoparticle decorated organoclay forms a tunable network in mineral oil. When a magnetic field is applied, the composite particle fluid exhibits higher storage modulus and maintains a solid-like property at larger strain. Our results show that the viscoelastic property of the magnetite nanoparticle decorated organoclay fluid is controlled by applying external magnetic field.

  12. Titania-coated manganite nanoparticles: Synthesis of the shell, characterization and MRI properties

    NASA Astrophysics Data System (ADS)

    Jirák, Zdeněk; Kuličková, Jarmila; Herynek, Vít; Maryško, Miroslav; Koktan, Jakub; Kaman, Ondřej

    2017-04-01

    Novel procedure for coating of oxide nanoparticles with titania, employing hydrolysis and polycondensation of titanium alkoxides under high-dilution conditions and cationic surfactants, is developed and applied to magnetic cores of perovskite manganite. Bare particles of the ferromagnetic La0.65Sr0.35MnO3 phase, possessing high magnetization, M10 kOe(4.5 K) = 63.5 emu g-1, and Curie temperature, TC = 355 K, are synthesized by sol-gel procedure and subsequently coated with titania. Further, a comparative silica-coated product is prepared. In order to analyse the morphology, colloidal stability, and surface properties of these two types of coated particles, a detailed study by means of transmission electron microscopy, dynamic light scattering, zeta-potential measurements, and IR spectroscopy is carried out. The experiments on the titania-coated sample reveal a continuous though porous character of the TiO2 shell, the nature of which is amorphous but can be transformed to anatase at higher temperatures. Finally, the relaxometric study at the magnetic field of 0.5 T, performed to quantity the transverse relaxivity and its temperature dependence, reveals important differences between the titania-coated and silica-coated nanoparticles.

  13. Magnetic core-shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging.

    PubMed

    Shanavas, Asifkhan; Sasidharan, Sisini; Bahadur, Dhirendra; Srivastava, Rohit

    2017-01-15

    Hybrid nanoparticles with magnetic poly (lactide-co-glycolide) (PLGA) nanoparticle 'core', surface modified with folate-chitosan (fol-cht) conjugate 'shell' are evaluated as simultaneous anti-cancer therapeutic and MRI contrast agent. The fol-cht conjugate is prepared using carbodiimide crosslinking chemistry at an optimized folate to amine (chitosan) molar ratio for further coating on PLGA nanoparticles loaded with docetaxel and well packed super paramagnetic iron oxide nanoparticles (SPIONs). Apart from possessing a targeting moiety, the coating provides a physical barrier to avoid undesired burst release of drug and also imparts sensitivity to acidic pH, due to protonated amine group dependent decondensation of the coating and subsequent drug release. The biocompatible hybrid nanoparticles provide receptor targeted docetaxel and SPION delivery for anti-cancer therapy and magnetic resonance (MR) imaging respectively, as tested in both folate receptor positive and negative cancer cells. Enhancement in nanoparticle uptake by folate receptor positive oral cancer cells caused significant increase in docetaxel mediated cytotoxicity. While polymeric encapsulation and fol-cht coating negatively affects the magnetic property of iron oxide nanoparticles, their aggregation in the core, shortened the overall T2 relaxation time thereby enhancing the nanoparticle relaxivity to provide better in vitro MR imaging.

  14. Use of XPS to Quantify Thickness of Coatings on Nanoparticles

    SciTech Connect

    Baer, Donald R.; Wang, Yung-Cheng; Castner, David G.

    2016-03-01

    XPS and other surface sensitive methods are being increasingly used to extract quantitative information about organic and inorganic coatings and contamination on nanoparticles. The extraction of coating thickness information requires combining known information about particle diameter from other measurements, such as electron microscopy, combined with a model that includes the physical processes associated with XPS, including electron path lengths, and particle geometry. Advantages of using XPS include the sensitivity to very thin coatings (or surface contamination) and the abillity to extract important information about organic layers. Single particle information from electron microsocpy combined XPS sensitivity to determine an average coating structure and composition make a powerful combination for nanoparticle anlaysis.

  15. Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity

    NASA Astrophysics Data System (ADS)

    Kaman, Ondřej; Dědourková, Tereza; Koktan, Jakub; Kuličková, Jarmila; Maryško, Miroslav; Veverka, Pavel; Havelek, Radim; Královec, Karel; Turnovcová, Karolína; Jendelová, Pavla; Schröfel, Adam; Svoboda, Ladislav

    2016-04-01

    Magnetic oxide nanoparticles provide a fascinating tool for biological research and medicine, serving as contrast agents, magnetic carriers, and core materials of theranostic systems. Although the applications rely mostly on iron oxides, more complex oxides such as perovskite manganites may provide a much better magnetic performance. To assess the risk of their potential use, in vitro toxicity of manganite nanoparticles was thoroughly analysed and compared with another prospective system of Mn-Zn ferrite nanoparticles. Magnetic nanoparticles of La0.63Sr0.37MnO3 manganite were prepared by two distinct methods, namely the molten salt synthesis and the traditional sol-gel route, whereas nanoparticles of Mn0.61Zn0.42Fe1.97O4 ferrite, selected as a comparative material, were synthesized by a new procedure under hydrothermal conditions. Magnetic cores were coated with silica and, moreover, several samples of manganite nanoparticles with different thicknesses of silica shell were prepared. The size-fractionated and purified products were analysed using transmission electron microscopy, dynamic light scattering, measurement of the zeta-potential dependence on pH, IR spectroscopy, and SQUID magnetometry. The silica-coated products with accurately determined concentration by atomic absorption spectroscopy were subjected to a robust evaluation of their cytotoxicity by four different methods, including detailed analysis of the concentration dependence of toxicity, analysis of apoptosis, and experiments on three different cell lines. The results, comparing two manganese-containing systems, clearly indicated superior properties of the Mn-Zn ferrite, whose silica-coated nanoparticles show very limited toxic effects and thus constitute a promising material for bioapplications.

  16. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications.

    PubMed

    Gupta, Ajay Kumar; Naregalkar, Rohan R; Vaidya, Vikas Deep; Gupta, Mona

    2007-02-01

    Magnetic nanoparticles with appropriate surface coatings are increasingly being used clinically for various biomedical applications, such as magnetic resonance imaging, hyperthermia, drug delivery, tissue repair, cell and tissue targeting and transfection. This is because of the nontoxicity and biocompatibility demand that mainly iron oxide-based materials are predominantly used, despite some attempts to develop 'more magnetic nanomaterials' based on cobalt, nickel, gadolinium and other compounds. For all these applications, the material used for surface coating of the magnetic particles must not only be nontoxic and biocompatible but also allow a targetable delivery with particle localization in a specific area. Magnetic nanoparticles can bind to drugs and an external magnetic field can be applied to trap them in the target site. By attaching the targeting molecules, such as proteins or antibodies, at particles surfaces, the latter may be directed to any cell, tissue or tumor in the body. In this review, different polymers/molecules that can be used for nanoparticle coating to stabilize the suspensions of magnetic nanoparticles under in vitro and in vivo situations are discussed. Some selected proteins/targeting ligands that could be used for derivatizing magnetic nanoparticles are also explored. We have reviewed the various biomedical applications with some of the most recent uses of magnetic nanoparticles for early detection of cancer, diabetes and atherosclerosis.

  17. Polyethylene glycol coated CoFe{sub 2}O{sub 4} nanoparticles: A potential spinel ferrite for biomedical applications

    SciTech Connect

    Humbe, Ashok V.; Birajdar, Shankar D.; Jadhav, K. M.; Bhandari, J. M.; Waghule, N. N.; Bhagwat, V. R.

    2015-06-24

    The structural and magnetic properties of the polyethylene glycol (PEG) coated cobalt spinel ferrite (CoFe{sub 2}O{sub 4}) nanoparticles have been reported in the present study. CoFe{sub 2}O{sub 4} nanoparticles were prepared by sol-gel auto-combustion method using citric acid + ethylene glycol as a fuel. The prepared powder of cobalt ferrite nanoparticles was annealed at 600°C for 6h and used for further study. The structural characterization of CoFe{sub 2}O{sub 4} nanoparticles were carried out by X-ray diffraction technique. The X-ray analysis confirmed the formation of single phase cubic spinel structure. The crystallite size, Lattice constant and X-ray density of the PEG coated CoFe{sub 2}O{sub 4} nanoparticles were calculated by using XRD data. The presence of PEG on CoFe{sub 2}O{sub 4} nanoparticles and reduced agglomeration in the CoFe{sub 2}O{sub 4} nanoparticles were revealed by SEM studies. The magnetic properties were studied by pulse field hysteresis loop tracer technique at a room temperature. The magnetic parameters such as saturation magnetization, remanence magnetization, coercivity etc have been obtained. These magnetic parameters were get decreased by PEG coating.

  18. Silicon-coated gold nanoparticles nanoscopy

    NASA Astrophysics Data System (ADS)

    Danan, Yossef; Ilovitsh, Tali; Ramon, Yehonatan; Malka, Dror; Liu, Danping; Zalevsky, Zeev

    2016-07-01

    This paper presents a method for modifying the point spread function (PSF) into a doughnut-like shape, through the utilization of the plasma dispersion effect (PDE) of silicon-coated gold nanoparticles. This modified PSF has spatial components smaller than the diffraction limit, and by scanning the sample with it, super-resolution can be achieved. The sample is illuminated using two laser beams. The first is the pump, with a wavelength in the visible region that creates a change in the refractive index of the silicon coating due to the PDE. This creates a change in the localized surface plasmon resonance wavelength. Since the pump beam has a Gaussian profile, the high intensity areas of the beam experience the highest refractive index change. When the second beam (i.e., the probe) illuminates the sample with a near-infrared wavelength, this change in the refractive index is transformed into a change in the PSF profile. The ordinary Gaussian shape is transformed into a doughnut shape, with higher spatial frequencies, which enables one to achieve super-resolution by scanning the specimen using this PSF. This is a step toward the creation of a nonfluorescent nanoscope.

  19. Interfacial Behavior of Polymer Coated Nanoparticle

    NASA Astrophysics Data System (ADS)

    Qi, Luqing; Shamsijazeyi, Hadi; Mann, Jason; Verduzco, Rafael; Hirasaki, George; Rice University Team

    2015-03-01

    Oxidized carbon black (OCB) nanoparticle is functionalized with different coatings, i.e. alkyl group, polyvinyl alcohol (PVA) and partially sulfonated polyvinyl alcohol (sPVA). In oil and water systems, the functionalized nanoparticle is found to have a versatile dispersion i.e. in lower aqueous phase, in upper oil phase, or in middle phase microemulsion. Oil substitute n-octane and commercial oil IOSPAR have been test as oil phase; series of commercially available surfactant, C12-4,5 orthoxylene sulfonate(OXS), i-C13-(PO)7 -SO4Na (S13B), surfactant blend of anionic Alfoterra with nonionic Tergitol have been test as additive to help with the OCB dispersion. It is found that the OCB with sulfonated polyvinyl alcohol attachment (sPVA-OCB) stays in microemulsion; with the increase of salinity, it follows the microemulsion to go from lower phase, to middle phase, and to upper phase. The dispersion of sPVA and alkyl functionalized OCB (Cn-OCB-sPVA) is the balance of the length of alkyl and sPVA and the degree of sulfonation of PVA, depending on which, it can either disperse into microemulsion or form a separate layer. The sPVA-OCB also indicates a tolerance of high salinity; this is shown by the stable dispersion of it in blend surfactant solution of anionic Alfoterra and nonionic Tergitol at high salinity API brine(8% NaCl and 2% CaCl2). The study of different functionality on OCB dispersion can help design appropriate modified nanoparticle as additive for enhanced oil recovery either to reduce the interfacial tension between oil and water, or to stabilize microemulsion.

  20. Cytotoxicity and drug release behavior of PNIPAM grafted on silica-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Lien, Yi-Hsin; Wu, Tzong-Ming; Wu, Jhao-Huei; Liao, Jiunn-Wang

    2011-10-01

    The nanoparticles containing thermosensitive and magnetic properties were investigated for their potential use as a novel drug carrier for targeted and controlled release drug delivery system. These thermosensitive and magnetic nanoparticles were prepared by grafting thermosensitive poly ( N-isopropylacrylamide) (PNIPAM) on the surface of silica (SiO2)-coated Fe3O4 nanoparticles with the particle size of 18.8 ± 1.6 nm. Adsorption and desorption behavior of bovine serum albumin (BSA) on the surface of PNIPAM-grafted SiO2/Fe3O4 nanoparticles was studied, and the results indicated that these nanoparticles were able to absorb protein at temperature above the lower critical solution temperature (LCST) and to be desorbed below the LCST. Cytotoxicity studies conducted on Chinese hamster ovary (CHO-K1) cells using methyl tetrazolium (MTT) assays revealed that cell viability of 1 mg/mL PNIPAM-grafted nanoparticles was slightly decreased after 24 h of incubation as compared to the lower concentration of nanoparticles. Furthermore, the concentration of 0.5 mg/mL PNIPAM-grafted nanoparticles was totally biocompatible for 48 h, but had low cytotoxicity after 72 h of incubation. These PNIPAM-grafted nanoparticles did not induce morphological change in their cellularity after exposure for 24 and 108 h. These results demonstrate that PNIPAM-grafted nanoparticles are biocompatible and have potential use as drug carriers.