Science.gov

Sample records for magnetic properties complexes

  1. Magnetic Properties of Tcnq Complexes

    NASA Astrophysics Data System (ADS)

    Qureshi, Saleem

    Available from UMI in association with The British Library. Requires signed TDF. This work can be divided up into three complementary steps. The first part of the work involved synthesis of a large number of TCNQ complexes, in particular complex salts, which are known to have promising electrical properties due to reduction in the on-site Coloumbic repulsion between the electrons. The cations used for the complexes are C12BPE (dodecyl bi pyridyl ethelenium), C10BPE, C8BPE, C6BPE, GTPP (geronyl triphenyl phosphonium), BI (butyl imidazolium), DMI (dimethyl imidazolium) and TB (toluidine blue). The second part of the project was to characterize these materials using different techniques to try to build up a knowledge of the materials. Particular interest was involved in the study of magnetic behaviour and in the later parts of the work some electrical measurements were made to try to determine the band gap, mobility and temperature dependence of conductivity. Considering the quasi-one-dimensional nature of the TCNQ salts, a theoretical model was devised based on the solution of one dimensional Heisenberg spin Hamiltonian. A computer program was developed that allowed for a numerical solution of a chain of spins in which number of spins could be varied. The Hamiltonian could be solved for up to 12 spins, the maximum allowable by the ICL 2900 computer at Crips computer centre of the University of Nottingham. The program allowed the user to input the coupling energy and alternation parameter between adjacent spins. The results from this program were used to explain magnetic behaviour of the TCNQ complexes prepared during this work.

  2. Modulation of homochiral Dy(III) complexes: single-molecule magnets with ferroelectric properties.

    PubMed

    Li, Xi-Li; Chen, Chun-Lai; Gao, Yu-Liang; Liu, Cai-Ming; Feng, Xiang-Li; Gui, Yang-Hai; Fang, Shao-Ming

    2012-11-12

    Homochiral Dy(III) complexes: by changing the ligand-to-metal ratio, enantiomeric pairs of a Dy(III) complex of different nuclearity could be obtained. The mono- and dinuclear complexes exhibit characteristics of single-molecule magnets and different slow magnetic relaxation processes. In addition, the dinuclear complexes exhibit ferroelectric behavior, thus representing the first chiral polynuclear lanthanide-based single-molecule magnets with ferroelectric properties.

  3. Complex magnetic properties in multilayer rare earth oxypnictides

    NASA Astrophysics Data System (ADS)

    Wang, Jiakui; Marcinkova, Andrea; Chen, Chih-Wei; Morosan, Emilia; Morosan Group Team

    2014-03-01

    Intensive research interest on layered transition metal pnictide materials was stimulated by the discovery of high temperature superconductivity in Fe-pnictides a few years ago. To study the relationship between superconductivity, crystal structure and magnetism, and to search for novel superconductors of better application potential, more transition metal pnictides are worth investigating. In this talk, I will discuss physical properties of members of a particular class of layered oxypnictides, with four transition metal pnictogen layers per unit cell. While varying the rare earth ion, we find that one compound is a low temperature superconductor (Tc 1.7 K), and others show diverse magnetic properties, including ferromagnetic or antiferromagnetic order, or spin glass behavior. I will show our observation from measurements of DC and AC magnetization, specific heat and resistivity. The understanding of the physical properties of these isostructual compounds may serve as a guide in the search for superconductivity in these systems. This work is supported by MURI-AFOSR and Rice University.

  4. Ab initio calculations on the magnetic properties of transition metal complexes

    SciTech Connect

    Bodenstein, Tilmann; Fink, Karin

    2015-12-31

    We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.

  5. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    SciTech Connect

    Baba, Shintaro; Suzuki, Atsushi Oku, Takeo

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electric field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.

  6. Structural, magnetic and luminescent properties of lanthanide complexes with N-salicylideneglycine.

    PubMed

    Vančo, Ján; Trávníček, Zdeněk; Kozák, Ondřej; Boča, Roman

    2015-04-28

    A series of anionic heavy lanthanide complexes, involving the N-salicylideneglycinato(2-) Schiff base ligand (salgly) and having the general formula K[Ln(salgly)₂(H₂O)₂]∙H₂O (1-6), where Ln stands for Gd, Tb, Dy, Ho, Er and Tm, was prepared using the one-pot template synthesis. The complexes were thoroughly characterized by elemental and Thermogravimetric/Differential Thermal Analyses (TG/DTA), Fourier Transform Infrared Spectroscopy (FT-IR), and photoluminescence spectroscopies, electrospray-ionization mass spectrometry, and their magnetic properties were studied by temperature-dependent dc magnetic measurements using the superconducting quantum interference device (SQUID). The X-ray structure of the terbium(III) complex (2), representing the unique structure between the lanthanide complexes of N-salicylideneamino acids, was determined. The results of spectral and structural studies revealed the isostructural nature of the prepared complexes, in which the lanthanide ion is octacoordinated by two O,N,O-donor salgly ligands and two aqua ligands. The analysis of magnetic data confirmed that the complexes behave as paramagnets obeying the Curie law. The results of photoluminescence spectral studies of the complexes showed the different origin in their luminescent properties between the solid state and solution. An antenna effect of the Schiff base ligand was observed in a powder form of the complex only, while it acts as a fluorophore in a solution.

  7. Structural, Magnetic and Luminescent Properties of Lanthanide Complexes with N-Salicylideneglycine

    PubMed Central

    Vančo, Ján; Trávníček, Zdeněk; Kozák, Ondřej; Boča, Roman

    2015-01-01

    A series of anionic heavy lanthanide complexes, involving the N-salicylideneglycinato(2-) Schiff base ligand (salgly) and having the general formula K[Ln(salgly)2(H2O)2]∙H2O (1–6), where Ln stands for Gd, Tb, Dy, Ho, Er and Tm, was prepared using the one-pot template synthesis. The complexes were thoroughly characterized by elemental and Thermogravimetric/Differential Thermal Analyses (TG/DTA), Fourier Transform Infrared Spectroscopy (FT-IR), and photoluminescence spectroscopies, electrospray-ionization mass spectrometry, and their magnetic properties were studied by temperature-dependent dc magnetic measurements using the superconducting quantum interference device (SQUID). The X-ray structure of the terbium(III) complex (2), representing the unique structure between the lanthanide complexes of N-salicylideneamino acids, was determined. The results of spectral and structural studies revealed the isostructural nature of the prepared complexes, in which the lanthanide ion is octacoordinated by two O,N,O-donor salgly ligands and two aqua ligands. The analysis of magnetic data confirmed that the complexes behave as paramagnets obeying the Curie law. The results of photoluminescence spectral studies of the complexes showed the different origin in their luminescent properties between the solid state and solution. An antenna effect of the Schiff base ligand was observed in a powder form of the complex only, while it acts as a fluorophore in a solution. PMID:25927576

  8. Complex Nano-objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis.

    PubMed

    Meffre, Anca; Mehdaoui, Boubker; Connord, Vincent; Carrey, Julian; Fazzini, Pier Francesco; Lachaize, Sébastien; Respaud, Marc; Chaudret, Bruno

    2015-05-13

    Addition of Co2(Co)9 and Ru3(CO)12 on preformed monodisperse iron(0) nanoparticles (Fe(0) NPs) at 150 °C under H2 leads to monodisperse core-shell Fe@FeCo NPs and to a thin discontinuous Ru(0) layer supported on the initial Fe(0) NPs. The new complex NPs were studied by state-of-the-art transmission electron microscopy techniques as well as X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. These particles display large heating powers (SAR) when placed in an alternating magnetic field. The combination of magnetic and surface catalytic properties of these novel objects were used to demonstrate a new concept: the possibility of performing Fischer-Tropsch syntheses by heating the catalytic nanoparticles with an external alternating magnetic field.

  9. Syntheses, crystal structures, magnetic and luminescence properties of five novel lanthanide complexes of nitronyl nitroxide radical

    SciTech Connect

    Wang, Ya-Li; Gao, Yuan-Yuan; Ma, Yue; Wang, Qing-Lun; Li, Li-Cun; Liao, Dai-Zheng

    2013-06-01

    Five novel Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized, characterized structurally and magnetically: [Ln(hfac)₃(NITPh-3-Br-4-OMe)₂] (Ln(III)=Eu(1), Gd(2), Tb(3), Dy(4), Ho(5); hfac=hexafluoroacetylacetonate; and NITPh-3-Br-4-OMe=2-3´-Br-4´-methoxyphenyl-4,4,5,5 -tetramethylimidazoline-1-oxyl-3-oxide). The single-crystal structures analyses show that these complexes have similar mononuclear tri-spin structures, in which central Ln(III) ions are all eight coordinated by three hfac molecules and two NITPh-3-Br-4-OMe radicals. The variable-temperature magnetic susceptibility studies reveal the antiferromagnetic interactions between the paramagnetic ions (Ln(III) and radicals) in complexes 1, 2, 3 and 5 and ferromagnetic interaction in complex 4. The luminescence characterizations of complexes Eu(1), Tb(3) and Dy(4) are also studied in this paper. - Graphical abstract: Using a novel halogen phenyl-substituted nitronyl-nitroxide radical, we obtained and characterized five isostructural lanthanide mononuclear tri-spin compounds. Highlights: • A new halogen phenyl-substituted nitronyl-nitroxide radical was designed. • Five new Ln(III) radical complexes have been synthesized and characterized. • The reasonable evaluation the magnetic interactions between Ln(III) ions and radical is meaningful. • These complexes show good luminescent properties.

  10. CORRELATION BETWEEN THE OPTICAL AND MAGNETIC PROPERTIES OF FERRIC N-ACETYLATED HEME OCTAPEPTIDE COMPLEXES

    SciTech Connect

    Yang, E.K.; Sauer, K.

    1980-05-01

    The room temperature magnetic susceptibility of the complexes of the ferric N-acetylated heme octapeptide (N-H8PT) from horse heart cytochrome c is known to be generally consistent with the absorption and magnetic circular dichroism (MCD) spectra of these complexes. However, the N-acetylated methionine complex of the N-H8PT, which has axial coordination identical to that of the parent molecule, is found to exhibit a thermal mixture of high spin (S=5/2) and low spin (S=1/2) states. The temperature dependence of the magnetic susceptibility of the N-acetylmethionine complex yields {Delta}H{sup 0} = -7.6kca1/mole and {Delta}S° = -25.9 e.u. for a high to low spin transition. The electron spin resonance (ESR) spectrum of the N-acetylmethionine complex indicates a low spin ground state, with g values at 1.51, 2.31, and 2.91, which are distinct from those of cytochrome c. The axial ({Delta}) and rhombic (V) distortion parameters of the {sup 2}T{sub 2g} state correspond to 2.96{lambda} and 1.94{lambda}, respectively, where {lambda} is the spin-orbit coupling constant. A model is proposed to account for the uniqueness of the N-acetylmethionine complex: a change in the Fe-S distance may play a role in regulating the redox properties of cytochrome c.

  11. Heptacopper(II) and dicopper(II)-adenine complexes: synthesis, structural characterization, and magnetic properties

    DOE PAGES

    Leite Ferreira, B. J. M.; Brandão, Paula; Dos Santos, A. M.; ...

    2015-07-13

    The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu7(μ2-OH2)6(μ3-O)6(adenine)6(NO3)26H2O (1) and [Cu2(μ2-H2O)2(adenine)2(H2O)4](NO3)42H2O (2) are reported. We composed the heptanuclear compound of a central octahedral CuO6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn-Teller distorted octahedral coordination characteristic of a d9 center. Our study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-clustermore » interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.« less

  12. Heptacopper(II) and dicopper(II)-adenine complexes: synthesis, structural characterization, and magnetic properties

    SciTech Connect

    Leite Ferreira, B. J. M.; Brandão, Paula; Dos Santos, A. M.; Gai, Z.; Cruz, C.; Reis, M. S.; Santos, T. M.; Félix, V.

    2015-07-13

    The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu72-OH2)63-O)6(adenine)6(NO3)26H2O (1) and [Cu22-H2O)2(adenine)2(H2O)4](NO3)42H2O (2) are reported. We composed the heptanuclear compound of a central octahedral CuO6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn-Teller distorted octahedral coordination characteristic of a d9 center. Our study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.

  13. Electrical, magnetic, and thermal properties of the δ-FeZn10 complex intermetallic phase

    NASA Astrophysics Data System (ADS)

    Jazbec, S.; Koželj, P.; Vrtnik, S.; Jagličić, Z.; Popčević, P.; Ivkov, J.; Stanić, D.; Smontara, A.; Feuerbacher, M.; Dolinšek, J.

    2012-08-01

    We report the electrical, magnetic, and thermal properties of the δ-FeZn10 phase in the zinc-rich domain of the Fe-Zn system. The δ-FeZn10 phase possesses high structural complexity typical of complex metallic alloys: a giant unit cell comprising 556 atoms, polyhedral atomic order with icosahedrally coordinated environments, fractionally occupied lattice sites, and statistically disordered atomic clusters that introduce intrinsic disorder into the structure. Structural disorder results in suppression of the electrical and heat transport phenomena, making δ-FeZn10 a poor electrical and thermal conductor. Structural complexity results in a complex electronic structure that is reflected in the opposite signs of the thermoelectric power and the Hall coefficient. The δ-FeZn10 phase is paramagnetic down to the lowest investigated temperature of 2 K with a significant interspin coupling of antiferromagnetic type. Specific heat indicates the formation of short-range-ordered spin clusters at low temperatures, very likely a precursor of a phase transition to a collective magnetic state that would take place below 2 K. The magnetoresistance of δ-FeZn10 is sizeable, amounting to 1.5% at 2 K in a 9-T field. The electrical resistivity exhibits a maximum at about 220 K, and its temperature dependence could be explained by the theory of slow charge carriers, applicable to metallic systems with weak dispersion of the electronic bands, where the electron motion changes from ballistic to diffusive upon heating.

  14. Magnetic properties of copper(II) complexes containing peptides. Crystal structure of [Cu(phe-leu)

    NASA Astrophysics Data System (ADS)

    Sanchiz, J.; Kremer, C.; Torre, M. H.; Facchin, G.; Kremer, E.; Castellano, E. E.; Ellena, J.

    2006-09-01

    A novel copper(II) complex containing the peptide phe-leu has been prepared and characterized. The crystal structure of [Cu(phe-leu)] ( 1) was determined by X-ray diffraction. The presence of carboxylate and amido bridges allows the formation of an extended 2D arrangement. This structure is similar to those found in [Cu(gly-val)] · 1/2H 2O ( 2), [Cu(val-gly)] ( 3), [Cu(val-phe)] ( 4), and [Cu(phe-phe)] ( 5). The magnetic properties of compounds 1- 5 were studied and analyzed comparatively. The experimental data show that the magnetic interactions are mainly transmitted through μ 2-COO - bridges, being ferromagnetic for 1 and 3, and antiferromagnetic for 2, 4 and 5.

  15. Syntheses, structure, magnetic and thermodynamics property of novel lanthanide complexes with nitronyl nitroxide radical

    NASA Astrophysics Data System (ADS)

    Song, Mei-Ying; Hou, Yi-Fang; Wen, Long-Mei; Wang, Shu-Ping; Yang, Shu-Tao; Zhang, Jian-Jun; Geng, Li-Na; Shi, Shi-Kao

    2016-03-01

    Four new nitronyl nitroxide radical-Ln(III) complexes, Ln(hfac)3(NITPhSCF3)2 (Ln(III) = Sm(1), Gd(2), Tb(3), Dy(4); NITPhSCF3 = 2-(4-trifluoromethylthiophenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl- 3-oxide; hfac = hexafluoroacetylacetonate), have been synthesized and characterized. They are isostructural, which show mononuclear tri-spin structures. The central Ln(III) ion is eight-coordinated by three hfac anions and two NITPhSCF3 molecules. Direct-current magnetic study shows that there exist ferromagnetic interactions between Gd(III) ion and radicals (NITPhSCF3) with JGd-Rad = 1.61 cm-1, and antiferromagnetic interactions between radicals with JRad-Rad = -2.83 cm-1 in complex 2. The magnetic analysis with the rough approximate model show that a ferromagnetic coupling exists between Tb(III) and radical in 3, while a antiferromagnetic coupling between Dy(III) and radical in 4. The thermodynamics properties of four complexes were studied with differential scanning calorimetry (DSC), such as heat capacity, thermodynamic functions (HT-H298.15K), (ST-S298.15K), and (GT-G298.15K).

  16. Selected spectroscopic and magnetic properties of lanthanide complexes in polyimide XU-218

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; Shillady, D. D.; Vallarino, L. M.; Gootee, W. A.; Smailes, D. L.

    1987-01-01

    Polyimide XU-218 films containing approximately 5 wt pct of Eu(III), Gd(III), Tb(III), and Er(III) were prepared, and the effects of complexing each of the metals with the following four ligands were investigated: N-phenylphthalamate (NPPA), 2,4-pentanedionate (AcAc), 1,3-diphenyl 1,3-propanedionate (DBM), and a new hexa-aza-macrocyclic (MAC) ligand. The tris-chelated complexes of the mononegative ligands NPPA, AcAc, and DBM produced transparent, flexible films, which had magnetic and spectral properties very similar to those of the parent lanthanide complexes, while complexes of MAC showed problems due to the presence of lattice water and yielded dark brittle films. AcAc caused little or no effect on the glass transition temperature (Tg), while NPPA and DBM complexes lowered Tg to 269-290 C, and MAC indicated moisture by inflexion at 95-100 C with a true Tg at 320 C. All lanthanide-containing films were paramagnetic.

  17. Structural and magnetic properties of cobalt(II) complexes with pyridinecarboxamide ligands

    NASA Astrophysics Data System (ADS)

    Dojer, Brina; Pevec, Andrej; Belaj, Ferdinand; Jagličić, Zvonko; Kristl, Matjaž; Drofenik, Miha

    2014-11-01

    The synthesis and characterization of two new cobalt(II) coordination compounds with nicotinamide (nia) and isonicotinamide (isn) are reported. The products were characterized magnetically, structurally by single-crystal X-ray diffraction analysis and spectrally by FT-IR spectroscopy. Using the reaction of cobalt(II) acetate tetrahydrate and nicotinamide in methanol we obtained light-red crystals of the mononuclear complex [Co(nia)2(H2O)4](CH3COO)2·2H2O (1). The synthesis in a system cobalt(II) acetate dihydrathe, isonicotinamide and dimethylformamide-methanol mixture gave a new dinuclear coordination compound with the formula [Co2(CH3COO)4(isn)4]·2C3H7NO (2). In both compounds a trans arrangement of pyridinecarboxamide ligands was found. Intermolecular hydrogen bonds in the crystal structures of both complexes are discussed. The magnetic properties were studied between 2 K and 300 K giving the result μeff = 4.6 BM for 1 and μeff = 4.7 BM for 2 in the paramagnetic region.

  18. Synthesis, crystal structure and magnetic properties of a novel copper(II) complex with sulfoisophthalic acid

    NASA Astrophysics Data System (ADS)

    Kurc, Teresa; Videnova-Adrabinska, Veneta; Turowska-Tyrk, Ilona; Duczmal, Marek; Jerzykiewicz, Maria

    2013-12-01

    A new Cu(II) complex, [Cu2(μ2-OH2)2(HSIP)2(H2O)6] (H3SIP = 5-sulfoisophthalic acid), has been synthesized and characterized by single crystal X-ray diffraction, EPR spectroscopy (X- (9.5 GHz) and Q-band (35 GHz)) and magnetic measurements. The solid state structure of the complex consists of coordination dimers [Cu2(μ2-OH2)2(HSIP)2(H2O)6] which are hydrogen bonded into 3D network. The neighbouring metal ions form a rare example of centrosymetric dinuclear core [Cu2(μ2-OH2)2] with equatorial - axial positions of the bridging ligands. The coordination dimers are organized into inorganic monolayers via water-sulfonate hydrogen bond intractions, and further linked in 3D structure via carboxylic-carboxylic hydrogen bond intractions. The magnetic properties and EPR spectra are discussed in terms of crystal structure features. The X- and Q-band EPR spectra exhibit fine structure signals due to S = 1 and the simulated parameters indicate small zero field splitting parameter Dexp (-0.035 cm-1) dominated by Ddip (-0.031 cm-1). A usually forbidden ΔMs = 2 line of lower intensity is observed in the half field region at about 150 mT. The susceptibility data have been analyzed using a spin-ladder model with both ferromagnetic (rungs) and antiferromagnetic (legs) coupling.

  19. Complexity in the structural and magnetic properties of almost multiferroic EuTi O3

    NASA Astrophysics Data System (ADS)

    Guguchia, Z.; Salman, Z.; Keller, H.; Roleder, K.; Köhler, J.; Bussmann-Holder, A.

    2016-12-01

    In a number of recent publications hidden magnetic properties at high temperatures have been reported for EuTi O3 (ETO), which orders antiferromagnetically below TN=5.7 K . In addition, structural phase transitions have been discovered which correlate with the magnetic responses and can be tuned by a magnetic field. In order to identify the magnetic properties of ETO at temperatures well above TN, low-energy muon-spin rotation (μSR) experiments have been performed on thin films of ETO which exhibit all properties observed in bulk materials and are thus well suited to conclude about the magnetic order of the bulk. The μSR data reveal anomalies at 282 and 200 K related to the structural phase transitions in accordance with birefringence results. In addition, a transition to some kind of magnetic order below 100 K was observed as previously indirectly deduced from conductivity and dielectric constant measurements.

  20. Modeling the magnetic properties of lanthanide complexes: relationship of the REC parameters with Pauling electronegativity and coordination number.

    PubMed

    Baldoví, José J; Gaita-Ariño, Alejandro; Coronado, Eugenio

    2015-07-28

    In a previous study, we introduced the Radial Effective Charge (REC) model to study the magnetic properties of lanthanide single ion magnets. Now, we perform an empirical determination of the effective charges (Zi) and radial displacements (Dr) of this model using spectroscopic data. This systematic study allows us to relate Dr and Zi with chemical factors such as the coordination number and the electronegativities of the metal and the donor atoms. This strategy is being used to drastically reduce the number of free parameters in the modeling of the magnetic and spectroscopic properties of f-element complexes.

  1. Electronic and magnetic properties of bimetallic ytterbocene complexes: the impact of bridging ligand geometry.

    PubMed

    Carlson, Christin N; Veauthier, Jacqueline M; John, Kevin D; Morris, David E

    2008-01-01

    Bimetallic ytterbocene complexes with bridging N-heterocylic ligands have been studied extensively in recent years due to their potential applications ranging from molecular wires to single-molecule magnets. Herein, we review our recent results for a series of ytterbocene polypyridyl bimetallic complexes to highlight the versatility and tunability of these systems based on simple changes in bridging ligand geometry. Our work has involved structural, electrochemical, optical, and magnetic measurements with the goal of better understanding the electronic and magnetic communication between the two ytterbium metal centers in this new class of bimetallics.

  2. Structures and magnetic properties of dysprosium complexes: the effect of crystallization temperature.

    PubMed

    Guo, Mei; Wang, Yue; Wu, Jianfeng; Zhao, Lang; Tang, Jinkui

    2017-01-03

    Two new dysprosium complexes, [Dy(H5L)(NO3)2(CH3OH)2]·4CH3OH (1) and [Dy2(H5L)2(NO3)4(H2O)2]·10CH3OH (2), were isolated from the reaction of a novel 1,8-naphthalenediol-based ligand N,N'-((1,8-dihydroxynaphthalene-2,7-diyl)bis(methanylylidene))bis(2-hydroxybenzohydrazide), H6L with dysprosium(iii) nitrate upon crystallization at different temperatures. Because of a low-symmetrical coordination environment, both complexes display only field-induced single molecular magnetic (SMM) behavior. Interestingly, complex 2 containing two dysprosium ions shows field-induced multiple relaxation processes, whereas only one relaxation process is observed for complex 1. The remarkably different behavior observed in 2 is mainly ascribed to the weak intra- or intermolecular interactions between the two Dy(III) centres in this complex.

  3. Solvent dependent reactivities of di-, tetra- and hexanuclear manganese complexes: syntheses, structures and magnetic properties.

    PubMed

    Yang, Hua; Cao, Fan; Li, Dacheng; Zeng, Suyuan; Song, You; Dou, Jianmin

    2015-04-14

    An unusual solvent effect on the synthesis of five manganese complexes [Mn2(L1)2(Py)4](), [Mn2(L1)2(DMSO)4](), [Mn4(L2)4(OH)4](), [Mn4(L3)2(DMSO)7(H2O)](), and [Mn6O2(L4)4(OAc)2(OMe)2(DMSO)4]·MeOH] (), (H3L1 = 5-(2-oxyphenyl)-pyrazole-3-carboxylic acid; H2L2 = 5-(2-oxyphenyl)-pyrazole-3-carboxylic acid amide; H4L3 = di-[5-(2-oxyphenyl)-pyrazole]-3-hydroxamic ether; and H2L4 = 5-(2-oxyphenyl)-pyrazole-3-carboxylic acid methyl ester) has been reported. Five complexes have been characterized by X-ray single crystal diffraction, IR, element analysis, thermogravimetric analysis and UV-vis spectra. The analysis reveals that complexes and are isostructural with a bimetallic six-membered ring and L1 from the decomposition of the original H4ppha (H4ppha = 5-(2-hydroxyphenyl)-pyrazole-3-hydroxamic acid) ligand. Complexes and are two tetranuclear clusters, and possesses an aza12-metallacrown-4 core with L2 from the amide functionalization of the decomposition L1; while represents a novel linear [Mn4N8O2] core with L3 from the condensation of L1 and H4ppha. Complex is the first Mn6 cluster linked by two stacked, off-set 8-azametallacrown-3 subunits with [M-N-N-M-N-N-M-O] connectivity, and L4 derived from the esterification of L1. The magnetic behaviour of complexes show the dominant antiferromagnetic interactions between metal centers, whereas complex further reveals the coexistence of antiferromagnetic and ferromagnetic interactions, and slow magnetic relaxation at T < 6 K with S = 4 ground state, as well as field induced magnetization saturation.

  4. Synthesis, magnetic properties and dynamic behavior of cobalt complexes with an anthracene-containing dioxolene ligand.

    PubMed

    Katayama, Koichi; Hirotsu, Masakazu; Kinoshita, Isamu; Teki, Yoshio

    2014-09-21

    The anthracene-functionalized cobalt complexes [Co(L)(TPA)]PF6 (1) and [Co(L)(Me(n)TPA)]PF6 (2, n = 1; 3, n = 2; 4, n = 3) were synthesized by the combination of 9-(3,4-dihydroxyphenyl)anthracene (H2L) and tris(2-pyridylmethyl)amine (TPA) or its derivatives (Me(n)TPA, n = 1, 2, 3). Characterization of complexes 1-4 was performed by UV-vis absorption, IR, (1)H NMR, and magnetic susceptibility measurements. In the solid state, the variable-temperature magnetic susceptibility data showed that complex 1 is low-spin cobalt(III) catecholate (Co(III)(LS)-Cat), while complex 4 is high-spin cobalt(II) semiquinonate (Co(II)(HS)-SQ) in the range 4.5-400 K. The susceptibility data of complexes 2 and 3 suggested valence tautomerism between the Co(III)(LS)-Cat and Co(II)(HS)-SQ forms. Light-induced valence tautomerism was observed in complexes 2 and 3 at 5 K by photo-irradiation. In solution, the temperature dependence of (1)H NMR spectra of 1 and 2 showed an equilibrium between their geometrical isomers.

  5. Synthesis, structural analysis, and magnetic properties of ethylmalonate-manganese(II) complexes.

    PubMed

    Déniz, Mariadel; Pasán, Jorge; Ferrando-Soria, Jesús; Fabelo, Oscar; Cañadillas-Delgado, Laura; Yuste, Consuelo; Julve, Miguel; Cano, Joan; Ruiz-Pérez, Catalina

    2011-11-07

    Five manganese(II) complexes of formulas [Mn(2)(Etmal)(2)(H(2)O)(2)(L)](n) (1-4) and {[Mn(Etmal)(2)(H(2)O)][Mn(H(2)O)(4)]}(n) (5) with H(2)Etmal = ethylmalonic acid (1-5) and L = 1,2-bis(4-pyridyl)ethane (bpa) (1), 4,4'-azobispyridine (azpy) (2), 4,4'-bipyridyl (4,4'-bpy) (3), and 1,2-bis(4-pyridyl)ethylene (bpe) (4) were synthesized and structurally characterized by single crystal X-ray diffraction. Their thermal behavior and variable-temperature magnetic properties were also investigated. The structure of the compounds 1-4 consists of corrugated layers of aquamanganese(II) units with intralayer carboxylate-ethylmalonate bridges in the anti-syn (equatorial-equatorial) coordination mode which are linked through bis-monodentate bpa (1), azpy (2), 4,4'-bpy (3), and bpe (4) ligands to build up a three-dimensional (3D) framework. The structure of compound 5 is made up by zigzag chains of manganese(II) ions with a regular alternation of [Mn(H(2)O)(4)](2+) and chiral (either Δ or λ enantiomeric forms) [Mn(Etmal)(2)(H(2)O)](2-) units within each chain. In contrast to the bidentate/bis-monodentate coordination mode of the Etmal ligand in 1-4, it adopts the bidentate/monodentate coordination mode in 5 with the bridging carboxylate-ethylmalonate also exhibiting the anti-syn conformation but connecting one equatorial and an axial position from adjacent metal centers. The manganese-manganese separation through the carboxylate-ethylmalonate bridge in 1-5 vary in the range 5.3167(4)-5.5336(7) Å. These values are much shorter than those across the extended bis-monodentate N-donors in 1-4 with longest/shortest values of 11.682(3) (3)/13.9745(9) Å (4). Compounds 1-5 exhibit an overall antiferromagnetic behavior, where the exchange pathway is provided by the carboxylate-ethylmalonate bridge. Monte Carlo simulations based on the classical spin approach (1-5) were used to successfully reproduce the magnetic data of 1-5.

  6. Phthalocyanine supported dinuclear Ln(III) complexes: the solvent-induced change of magnetic properties in dysprosium(iii) analogues.

    PubMed

    Ge, Jing-Yuan; Wang, Hai-Ying; Li, Jing; Xie, Jia-Ze; Song, You; Zuo, Jing-Lin

    2017-02-24

    Three dinuclear lanthanide complexes, [Ln2(thd)4Pc]·2C6H6 (Hthd = 2,2,6,6-tetramethylheptanedione, Ln = Sm (1), Tb (2), Dy (3)), have been synthesized based on phthalocyanine (Pc). They can be reversibly transformed into [Ln2(thd)4Pc] (Ln = Sm (1'), Tb (2'), Dy (3')) via desolvation and resolvation of the lattice benzene molecules. This change generates dramatic influences on the structural and magnetic properties of the dysprosium analogue. In complex 3, one crystallographically independent metal center is observed, and it exhibits a single relaxation process of magnetization with an energy barrier of 55.7 K. Upon desolvation, the resulting complex 3' contains two types of metal centers, and shows the field-induced single-molecule magnetic behavior with two thermally activated magnetic relaxation processes. The anisotropy barriers for 3' are as high as 63.3 K and 109.6 K, respectively. This work confirms that the solvated molecules can finely tune the magnetic relaxation mechanisms.

  7. Spectroscopic and magnetic properties of solvatochromic complex of Cu2+ and novel 3H-indolium derivative.

    PubMed

    Gąsiorowska, Monika; Typek, Janusz; Soroka, Jacek Adam; Sawicka, Marta Justyna; Wróblewska, Elwira Katarzyna; Guskos, Niko; Żołnierkiewicz, Grzegorz

    2014-04-24

    A new solvatochromic complex of copper (II) and 3H-indolium (HQIndol) with the formula (HQIndol)3Cu has been synthesised and characterised by elemental analysis, UV-vis, IR spectroscopies, electron paramagnetic resonance (EPR), and static magnetic susceptibility and conductance measurements. The stoichiometry of complex has been determined as 1:3 (M:L) and the binding constant was calculated to be 5.86×10(16) mol(-1) L at 25 °C in CH3OH. Magnetization measurements indicate that (HQIndol)3Cu sample is paramagnetic with spin S=1/2 for which phase transition from paramagnetic to antiferromagnetic has been registered at TN=2.5 K. The symmetry of the EPR spectrum points to elongated tetragonal octahedral geometry of the complex. Examined heterochelate exhibits solvatochromic properties. Blue shift of the vis absorption band with increased solvent polarity is observed, Δν‾max in examined solvents amounts to 1466 cm(-1).

  8. Syntheses, structures and magnetic properties of four-spin Mn-Imino nitroxide radical complexes

    NASA Astrophysics Data System (ADS)

    Lv, Xue-Hui; Yang, Shuai-Liang; Li, Yuan-Xia; Zhang, Chen-Xi; Wang, Qing-Lun

    2017-04-01

    Based on the nitroxide radicals, four-spin complexes [Mn(hfac)2(IMpPhCl)]2·NITpPhCl (1) and [Mn(hfac)2(IMmPhCl)]2·NITmPhCl (2) (IMpPhCl = 2-(4'-chlorophenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl, IMmPhCl = 2-(3'-chlorophenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl, hfac = hexafluoroacetylacetonate) have been synthesized and characterized by single-crystal X-ray diffraction. The X-ray crystal structure analyses show that the structures of the two compounds are similar and the imino nitroxide radical ligand acts as a bridge ligand linking two Mn(II) ions through the oxygen atom of the N-O group to form a four-spin system. Two kinds of nitroxide radicals: nitronyl nitroxide and imino nitroxide radicals coexist in the cyclic Mn(II) complexes. The magnetic studies show that there exists an antiferromagnetic interaction between Mn(II) ions and the imino nitroxide radical ligands, which is explained by spin polarization mechanism. The antiferromagnetic interaction of Mn-Rad in complex 2 (J1 = -9.36 cm-1) is stronger than that in complex 1 (J1 = -9.19 cm-1), which is consistent with crystal structure of complexes (The bond length of the shortest Mn-O in complex 2 (2.1625 Å) is smaller than complex 1 (2.1898 Å)).

  9. Structures and magnetic properties of transition metal complexes involving 2,2'-bipyridin-6-yl nitroxide

    NASA Astrophysics Data System (ADS)

    Ondo, Akihiro; Ishida, Takayuki

    2017-01-01

    New complexes doubly chelated with two paramagnetic ligands, [MII(6bpyNO)2](ClO4)2•xCH3OH [M = Mn (x = 0.53), Ni (x = 1); 6bpyNO = 2,2'-bipyridin-6-yl tert-butyl nitroxide] were prepared. The X-ray crystallographic analysis revealed the isomorphous [M(6bpyNO)2]2+ structure. The magnetic measurements clarified antiferromagnetic 2JMn-rad/kB = -112(2) K and ferromagnetic 2JNi-rad/kB = +384(4) K, based on a symmetrical model H = -2JM-rad(SM•Srad1+SM•Srad2). The coupling mechanism is explained in terms of the 3d5 and 3d8 spin configurations leading to the dπ-pπoverlap in the Mn complex and the dσ-pπ orthogonal arrangement in the Ni complex along the metal-radical bonds.

  10. Direct comparison of the magnetic and electronic properties of samarocene and ytterbocene terpyridine complexes.

    PubMed

    Veauthier, Jacqueline M; Schelter, Eric J; Carlson, Christin N; Scott, Brian L; Da Re, Ryan E; Thompson, J D; Kiplinger, Jaqueline L; Morris, David E; John, Kevin D

    2008-07-07

    A new complex, Cp* 2Sm(tpy) ( 1, where Cp* = C 5Me 5, tpy = 2,2':6',2''-terpyridine) and its one-electron oxidized congener [Cp* 2Sm(tpy)]PF 6 ([ 1] (+)) have been synthesized and characterized with the aim of comparing their electronic and magnetic behavior to the known ytterbium analogues: Cp* 2Yb(tpy) ( 2) and [Cp* 2Yb(tpy)]OTf ([ 2] ( + )). These new samarium complexes have been characterized using single-crystal X-ray diffraction, (1)H NMR spectroscopy, cyclic voltammetry, optical spectroscopy, and bulk magnetic susceptibility measurements. All data for 1 indicate a Sm(III)-tpy* (-)[(4f) (5)-(pi*) (1)] ground-state electronic configuration similar to that found previously for 2 [(4f) (13)-(pi*) (1)]. Structural comparisons reveal that there are no significant changes in the overall geometries associated with the neutral and cationic samarium and ytterbium congeners aside from those anticipated based upon the lanthanide contraction. The redox potentials for the divalent Cp* 2Ln(THF) n precursors ( E 1/2(Sm (2+)) = -2.12 V, E 1/2(Yb (2+)) = -1.48 V) are consistent with established trends, the redox potentials (metal-based reduction and ligand-based oxidation) for 1 are nearly identical to those for 2. The correlation in the optical spectra of 1 and 2 is excellent, as expected for this ligand-radical based electronic structural assignment, but there does appear to be a red-shift ( approximately 400 cm (-1)) in all of the bands of 1 relative to those of 2 that suggests a slightly greater stabilization of the pi* level(s) in the samarium(III) complex compared to that in the ytterbium(III) complex. Similar spectroscopic overlap is observed for the monocationic complexes [ 1] (+) and [ 2] (+). Bulk magnetic susceptibility measurements for 1 reveal significantly different behavior than that of 2 due to differences in the electronic-state structure of the two metal ions. The implications of these differences in magnetic behavior are discussed.

  11. One-dimensional Co(II)/Ni(II) complexes of 2-hydroxyisophthalate: Structures and magnetic properties

    SciTech Connect

    Wang, Kai; Zou, Hua-Hong; Chen, Zi-Lu; Zhang, Zhong; Sun, Wei-Yin; Liang, Fu-Pei

    2015-03-15

    The solvothermal reactions of 2-hydroxyisophthalic acid (H{sub 3}ipO) with M(NO{sub 3}){sub 2}∙6H{sub 2}O (M=Co, Ni) afforded two complexes [Co{sub 2}(HipO){sub 2}(Py){sub 2}(H{sub 2}O){sub 2}] (1) and [Ni(HipO)(Py)H{sub 2}O] (2) (Py=pyridine). They exhibit similar zig-zag chain structures with the adjacent two metal centers connected by a anti-syn bridging carboxylate group from the HipO{sup 2−} ligand. The magnetic measurements reveal the dominant antiferromagnetic interactions and spin-canting in 1 while ferromagnetic interactions in 2. Both of them exhibit magnetocaloric effect (MCE) with the resulting entropy changes (−ΔS{sub m}) of 12.51 J kg{sup −1} K{sup −1} when ΔH=50 kOe at 3 K for 1 and 11.01 J kg{sup −1} K{sup −1} when ΔH=50 kOe at 3 K for 2, representing the rare examples of one-dimensional complexes with MCE. - Graphical abstract: Synopsis: Two Co(II)/Ni(II) complexes with zig-zag chain structures have been reported. 1-Co shows cant-antiferromagnetism while 2-Ni shows ferromagnetism. Magnetocaloric effect is also found in both of them. - Highlights: • Two one-dimensional Co(II)/Ni(II) complexes were solvothermally synthesized. • The Co-complex exhibits canted antiferromagnetism. • The Ni-complex exhibits ferromagnetism. • Both of the complexes display magnetocaloric effect.

  12. Dinuclear complexes formed by hydrogen bonds: synthesis, structure and magnetic and electrochemical properties.

    PubMed

    Williams, Alan Francis; Granelli, Matteo; Downward, Alan M; Huber, Robin; Guenée, Laure; Besnard, Céline; Krämer, Karl W; Decurtins, Silvio; Liu, Shi-Xia; Thompson, Laurence K

    2017-03-20

    The synthesis is reported of a series of homo- and hetero-dinuclear octahedral complexes of the ligand 1, 1,2-bis(1-methyl-benzimidazol-2-yl) ethanol, where the two metal centres are linked by hydrogen bonds between coordinated alcohols and coordinated alkoxides. Homonuclear divalent M(II)M(II), mixed valent M(II)M(III) and heteronuclear M(II)M'(III) species are prepared. The complexes have been characterised by X-ray crystallography and show unusually short O…O distances for the hydrogen bonds. Magnetic measurements show the hydrogen bond bridges can lead to ferromagnetic or antiferromagnetic coupling. The electrochemistry of the dinuclear species is significantly different from the mononuclear systems: the latter show irreversible waves in cyclic voltammograms as a result of the need to couple proton and electron transfer. The dinuclear species, in contrast, show reversible waves which are attributed to rapid intramolecular proton transfer facilitated by the hydrogen bonded structure.

  13. Sandwich transitional metal complexes with tungstobismuthates and 1-methylimidazole ligands: Syntheses, structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Xu, Lin; Gao, Guanggang; Li, Fengyan; Jiang, Ning

    2008-04-01

    Two novel sandwich-type coordination compounds of tungstobismuthate Na 9[{Na(H 2O) 2} 3{Co II(mim)} 3(Bi IIIW VI9O 33) 2]·36H 2O ( 1) and Na 7H 2[{Na(H 2O) 2} 3{Mn II(mim)} 3(Bi IIIW VI9O 33) 2]·21H 2O ( 2) (mim = 1-methylimidazole) have been synthesized in alkaline aqueous solution. Their composition and structures were established by elemental analyses, IR spectra, and single crystal X-ray diffraction. These two complexes consist of two tri-vacant [α-B-Bi IIIW VI9O 33] 9- moieties linked through three Cu II or Mn II and three Na + ions. These Na + cations around the complex anion were bonded with some terminal and bridging oxo atoms from the complex anion and water molecules. In addition to tungstobismuthate ligands, 1-methylimidazoles also coordinate to sandwich transitional metal ions. Magnetic measurement indicates the existence of antiferromagnetic interaction between the trimeric transitional metal ions for 1 and 2.

  14. Theoretical study of magnetic properties of oxovanadium(IV) complex self-assemblies with tetradentate Schiff base ligands.

    PubMed

    Matsuoka, Naoki; Tsuchimoto, Masanobu; Yoshioka, Naoki

    2011-07-07

    The theoretical study of the magnetic properties of oxovanadium(IV) complex self-assemblies with tetradentate Schiff base ligands is discussed on the basis of DFT calculations. Large negative spin densities are found on the axial oxygens of the various oxovanadium(IV) complexes. The relationship between the effective exchange parameters J(ab) and the geometrical parameters for these complexes was studied by changing the position of the neighboring molecules for the purpose of clarifying the mechanism of the ferromagnetic coupling. The intermolecular ferromagnetic interaction of the oxovanadium(IV) complexes with tetradentate Schiff base ligands is significantly affected by the formation of polymeric octahedral structures in the solid state. The overlap between the 2p orbitals of the axial oxygen and the 3d orbitals of the adjacent vanadium is effective for the ferromagnetic coupling. On the other hand, the effect of overlap between the vanadium 3d(xy) orbitals is too small to lead to magnetic coupling. It was revealed that the intermolecular ferromagnetic interaction of the polynuclear oxovanadium(IV) complexes is significantly affected by the spin polarization on the axial oxygen.

  15. Structural, Magnetic and Electronic Properties of the Sr2CoNbO6 Complex Perovskite

    NASA Astrophysics Data System (ADS)

    Rendón Ramírez, J. M.; Almanza M., O. A.; Cardona, R.; Landínez Téllez, D. A.; Roa-Rojas, J.

    2013-11-01

    We report a study of crystallographic parameters of the Sr2CoNbO6 double perovskite obtained from Rietveld analysis of X-ray diffraction data and electronic properties predictions using the density functional theory (DFT). The Sr2CoNbO6 material was prepared by the citrate precursor method. Diffraction analysis reveal that this material crystallizes in a structure which is tetragonal with lattice parameters a = 5.5960(3) Å and c = 7.9881(1) Å (space group I4/m). The density of states of Sr2CoNbO6 tetragonal distorted structure was calculated using DFT within the generalized gradient approximation. Results predict the semiconductor characteristics of this material which is majority due to the 3d-Co orbital with a energy gap of 0.2 eV. Structural lattice parameters obtained from the Rietveld refinement present a matching of 97% with that obtained from the Structure Prediction Diagnostic Software and 98% with the theoretical DFT results. Measurements of magnetization as a function of temperature evidence the occurrence of a magnetic ordering transition at T = 220 K and a marked irreversibility with a blocking temperature of 250 K for applied fields up to 100 Oe, which disappears for higher fields. Electronic paramagnetic resonance experiments evidence that the valence Co3+ is the most possible in the synthesized material.

  16. Targeted crystal growth of rare Earth intermetallics with synergistic magnetic and electrical properties: structural complexity to simplicity.

    PubMed

    Schmitt, Devin C; Drake, Brenton L; McCandless, Gregory T; Chan, Julia Y

    2015-03-17

    The single-crystal growth of extended solids is an active area of solid-state chemistry driven by the discovery of new physical phenomena. Although many solid-state compounds have been discovered over the last several decades, single-crystal growth of these materials in particular enables the determination of physical properties with respect to crystallographic orientation and the determination of properties without possible secondary inclusions. The synthesis and discovery of new classes of materials is necessary to drive the science forward, in particular materials properties such as superconductivity, magnetism, thermoelectrics, and magnetocalorics. Our research is focused on structural characterization and determination of physical properties of intermetallics, culminating in an understanding of the structure-property relationships of single-crystalline phases. We have prepared and studied compounds with layered motifs, three-dimensional magnetic compounds exhibiting anisotropic magnetic and transport behavior, and complex crystal structures leading to intrinsically low lattice thermal conductivity. In this Account, we present the structural characteristics and properties that are important for understanding the magnetic properties of rare earth transition metal intermetallics grown with group 13 and 14 metals. We present phases adopting the HoCoGa5 structure type and the homologous series. We also discuss the insertion of transition metals into the cuboctahedra of the AuCu3 structure type, leading to the synthetic strategy of selecting binaries to relate to ternary intermetallics adopting the Y4PdGa12 structure type. We provide examples of compounds adopting the ThMn12, NaZn13, SmZn11, CeCr2Al20, Ho6Mo4Al43, CeRu2Al10, and CeRu4Al16-x structure types grown with main-group-rich self-flux methods. We also discuss the phase stability of three related crystal structures containing atoms in similar chemical environments: ThMn12, CaCr2Al10, and YbFe2Al10. In

  17. Rhenium(IV)-copper(II) heterobimetallic complexes with a bridge malonato ligand. Synthesis, crystal structure, and magnetic properties.

    PubMed

    Cuevas, Alicia; Chiozzone, Raúl; Kremer, Carlos; Suescun, Leopoldo; Mombrú, Alvaro; Armentano, Donatella; De Munno, Giovanni; Lloret, Francesc; Cano, Juan; Faus, Juan

    2004-11-29

    The Re(IV) complex [ReCl4(mal)]2-, in the form of two slightly different salts, (AsPh4)1.5(HNEt3)0.5[ReCl4(mal)] (1a) and (AsPh4)(HNEt3)[ReCl4(mal)] (1b), and the Re(IV)-Cu(II) bimetallic complexes [ReCl4(mu-mal)Cu(phen)2].CH3CN (2), [ReCl4(mu-mal)Cu(bpy)2] (3), and [ReCl4(mu-mal)Cu(terpy)] (4) (mal=malonate dianion, AsPh4=tetraphenylarsonium cation, HNEt3=triethylammonium cation, phen=1,10-phenanthroline, bpy=2,2'-bipyridine and terpy=2,2':6',2' '-terpyridine) have been synthesized and the structures of 1a, 1b, 2, and 3 determined by single-crystal X-ray diffraction. The structures of 1a and 1b are made up of discrete [ReCl4(mal)]2- anions and AsPh4+ and HNEt3+ cations, held together by electrostatic forces and hydrogen bonds. The Re(IV) atom is surrounded by four chloride anions and a bidentate malonate group, in a distorted octahedral environment. The structure of 2 consist of neutral dinuclear units [ReCl4(mu-mal)Cu(phen)2], with the metal ions united through a bridge carboxilato. The environment of Re(IV) is nearly identical to that in the mononuclear complex, and Cu(II) is five coordinate, being surrounded by four nitrogen atoms of two bidentate phen ligands and one oxygen atom of the malonato ligand. In 3, there are also dinuclear units, [ReCl4(mu-mal)Cu(bpy)2], but the Cu(II) ions complete a distorted octahedral coordination by binding with the free malonato oxygen atom of a neighbor unit, resulting in an infinite chain. The magnetic properties of 1-4 were also investigated in the temperature range 2.0-300 K. The magnetic behavior of 1a and 1b is as expected for a Re(IV) complex with a large value of the zero-field splitting (2D ca. 110 cm(-1)). For the bimetallic complexes, the magnetic coupling between Re(IV) and Cu(II) is antiferromagnetic in 2 (J=-0.39 cm(-1)), ferromagnetic in 4 (J=+1.51 cm(-1)), and nearly negligible in 3 (J=-0.09 cm(-1)).

  18. Optical and magnetic properties of La1-xGaxFeO3 nanoparticles synthesized by polymerization complex method

    NASA Astrophysics Data System (ADS)

    Hunpratub, Sitchai; Karaphun, Attaphol; Phokha, Sumalin; Swatsitang, Ekaphan

    2016-09-01

    La1-xGaxFeO3 (x = 0.0, 0.1, 0.2, 0.3 and 0.4) nanoparticles were synthesized by polymerization complex method. X-ray diffraction (XRD) results reveal a pure orthorhombic phase structure. Increasing of Ga content, resulting in the decrease of average crystallite sizes calculated by XRD from 58.4 ± 5.9 to 13.4 ± 4.3 nm and the average particle sizes estimated by transmission electron microscope (TEM) images from 70.2 ± 4.5 to 21.4 ± 8.5 nm. The optical band gaps determined by UV-vis spectra showed a redshift from 2.145 to 1.954 eV that originates from surface effect caused by Ga substitution. The magnetic properties were investigated using a vibrating sample magnetometer (VSM). The room temperature hysteresis loops of La1-xGaxFeO3 nanopowders indicate the antiferromagnetic behavior of pure sample and all doped samples of ferromagnetic behavior with the enhancement of coercive field (Hc), remanence (Mr) and magnetization (M) due to the more disordering spins induced at the surface of particle. It is evident from field cool (FC) measurement of La0.6Ga0.4FeO3 sample that the Curie temperature (Tc) is above 350 K.

  19. Enantiopure tetranuclear iron(III) complexes using chiral reduced Schiff base ligands: synthesis, structure, spectroscopy, magnetic properties, and DFT studies.

    PubMed

    Singh, Reena; Banerjee, Atanu; Colacio, Enrique; Rajak, Kajal Krishna

    2009-06-01

    Four new tetranuclear iron(III) complexes of formula [{Fe(L)(2)}(3)Fe], 1-4, have been prepared by reacting [Fe(ClO(4))(3)].6H(2)O with H(2)L in methanol. Here, L(2-) is the deprotonated form of N-(2-hyrdoxybenzyl)-l-valinol (H(2)L(1)), N-(2-hyrdoxybenzyl)-l-leucinol (H(2)L(2)), N-(5-chloro-2-hyrdoxybenzyl)-l-leucinol (H(2)L(3)), and N-(2-hyrdoxybenzyl)-l-phenylalaninol (H(2)L(4)). The complexes are prepared in an enantiomeric pure form. The complexes have been characterized with the help of IR, UV-vis, circular dichroism (CD), (1)H, and elemental analyses. The complex [{Fe(L(2))(2)}(3)Fe].CH(3)OH.2H(2)O, 2.CH(3)OH.2H(2)O, crystallizes in enantiomeric pure form containing a propeller-like Fe(4)O(6) core. (1)H and CD spectral studies of the four species are consistent with the structural similarities of the complexes in solution. Variable-temperature magnetic susceptibility of one case shows an intramolecular antiferromagnetic coupling between the Fe(III) ions. Magnetic measurements are in accord with the S = 5 ground state and suggest single molecular magnet behavior. The magnetic exchange coupling constant between the iron centers within the molecule is interpreted using broken-symmetry density functional theory calculation.

  20. Dinuclear metal(ii)-acetato complexes based on bicompartmental 4-chlorophenolate: syntheses, structures, magnetic properties, DNA interactions and phosphodiester hydrolysis.

    PubMed

    Massoud, Salah S; Ledet, Catherine C; Junk, Thomas; Bosch, Simone; Comba, Peter; Herchel, Radovan; Hošek, Jan; Trávníček, Zdeněk; Fischer, Roland C; Mautner, Franz A

    2016-08-09

    A series of dinuclear metal(ii)-acetato complexes: [Ni2(μ-L(Cl)O)(μ2-OAc)2](PF6)·3H2O (1), [Ni2(μ-L(Cl)O)(μ2-OAc)2](ClO4)·CH3COCH3 (2), [Cu2(μ-L(Cl)O)(μ2-OAc)(ClO4)](ClO4) (3), [Cu2(μ-L(Cl)O)(OAc)2](PF6)·H2O (4), [Zn2(μ-L(Cl)O)(μ2-OAc)2](PF6) (5) and [Mn2(L(Cl)-O)(μ2-OAc)2](ClO4)·H2O (6), where L(Cl)O(-) = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-chlorophenolate, were synthesized. The complexes were structurally characterized by spectroscopic techniques and single crystal X-ray crystallography. Six-coordinate geometries with doubly bridged acetato ligands were found in Ni(ii), Zn(ii) and Mn(ii) complexes 1, 2, 5 and 6, whereas with Cu(ii) complexes a five-coordinate species was obtained with 4, and mixed five- and six-coordinate geometries with a doubly bridged dimetal core were observed in 3. The magnetic properties of complexes 1-4 and 6 were studied at variable temperatures and revealed weak to very weak antiferromagnetic interactions in 1, 2, 4 and 6 (J = -0.55 to -9.4 cm(-1)) and ferromagnetic coupling in 3 (J = 15.4 cm(-1)). These results are consistent with DFT calculations performed at the B3LYP/def2-TZVP(-f) level of theory. Under physiological conditions, the interaction of the dinculear complexes 1-5 with supercoiled plasmid ds-DNA did not show any pronounced nuclease activity, but Ni(ii) complexes 1 and 2 revealed a strong ability to unwind the supercoiled conformation of ds-DNA. The mechanistic studies performed on the interaction of the Ni(ii) complexes with DNA demonstrated the important impact of the nickel(ii) ion in the unwinding process. In combination with the DNA study, the phosphatase activity of complexes 1, 3, and 5 was examined by the phosphodiester hydrolysis of bis(2,4-dinitrophenol)phosphate (BDNPP) in the pH range of 5.5-10.5 at 25 °C. The Michaelis-Menten kinetics performed at pH 7 and 10.7 showed that catalytic efficiencies kcat/KM (kcat = catalytic rate constant, KM = substrate binding constant) decrease in the order

  1. Synthesis, crystal structures, magnetic and luminescent properties of unique 1D p-ferrocenylbenzoate-bridged lanthanide complexes

    NASA Astrophysics Data System (ADS)

    Yan, P. F.; Zhang, F. M.; Li, G. M.; Zhang, J. W.; Sun, W. B.; Suda, M.; Einaga, Y.

    2009-07-01

    Treatments of p-ferrocenylbenzoate [ p-NaOOCH 4C 6Fc, Fc=( η5-C 5H 5)Fe( η5-C 5H 4)] with Ln(NO 3) 3· nH 2O afford seven p-ferrocenylbenzoate lanthanide complexes {[ Ln(OOCH 4C 6Fc) 2( μ2-OOCH 4C 6Fc) 2(H 2O) 2](H 3O)} n [ Ln=Ce ( 1), Pr ( 2), Sm ( 3), Eu ( 4), Gd ( 5), Tb ( 6) and Dy ( 7)]. X-ray crystallographic analysis reveals that the isomorphous complexes {[Ce(OOCH 4C 6Fc) 2( μ2-OOCH 4C 6Fc) 2(H 2O) 2](H 3O)} n ( 1) and {[Pr(OOCH 4C 6Fc) 2( μ2-OOCH 4C 6Fc) 2(H 2O) 2](H 3O)} n ( 2) form a unique 1D double-bridged infinite chain structure bridged by μ2-OOCH 4C 6Fc groups. Each Ln(III) ion adopts a dodecahedron coordination environment with eight coordinated oxygen atoms from two terminal monodentate coordinated FcC 6H 4COO - units, two terminal monodentate coordinated H 2O molecules and four μ2- -OOCH 4C 6Fc units. The luminescent spectra reveal that only 4 and 6 exhibit characteristic emissions of lanthanide ions, Eu(III) and Tb(III) ions, respectively. The variable-temperature magnetic properties of 5 and 7 suggest that a ferromagnetic coupling between spin carriers may exist in 5.

  2. Chondrule magnetic properties

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.; Obryan, M. V.

    1994-01-01

    The topics discussed include the following: chondrule magnetic properties; chondrules from the same meteorite; and REM values (the ratio for remanence initially measured to saturation remanence in 1 Tesla field). The preliminary field estimates for chondrules magnetizing environments range from minimal to a least several mT. These estimates are based on REM values and the characteristics of the remanence initially measured (natural remanence) thermal demagnetization compared to the saturation remanence in 1 Tesla field demagnetization.

  3. Uranyl and uranyl-3d block cation complexes with 1,3-adamantanedicarboxylate: crystal structures, luminescence, and magnetic properties.

    PubMed

    Thuéry, Pierre; Rivière, Eric; Harrowfield, Jack

    2015-03-16

    The reaction of 1,3-adamantanedicarboxylic acid (LH2) with uranyl nitrate under solvo-hydrothermal conditions, either alone or in the presence of additional metal cations (Co(2+), Ni(2+), or Cu(2+)) gives a series of nine complexes displaying a wide range of architectures. While [UO2(L)(H2O)]·1.25CH3CN (1) and [UO2(L)(DMF)] (2) are one-dimensional (1D) species analogous to that previously known, [H2NMe2]2[(UO2)2(L)3]·1.5H2O (3), which includes dimethylammonium counterions generated in situ, is a three-dimensional (3D) framework, and [UO2(L)(NMP)] (4) (NMP = N-methyl-2-pyrrolidone) is a braid-shaped 1D polymer. When 3d block metal ions are present and bound to 2,2'-bipyridine (bipy) coligands, their role is reduced to that of decorating species attached to uranyl-containing 1D polymers, as in [UO2M(L)2(bipy)2]·0.5H2O with M = Co (5) or Ni (6), and [(UO2)2Cu2(L)3(NO3)2(bipy)2]·0.5H2O (9), or of counterions, as in [Ni(bipy)3][(UO2)4(O)2(L)3]·3H2O (7), in which a two-dimensional (2D) assembly is built from tetranuclear uranyl-containing building units. In contrast, the heterometallic 3D framework [UO2Cu(L)2] (8) can be isolated in the absence of bipy. The emission spectra measured in the solid state display the usual uranyl vibronic fine structure, with various degrees of resolution and quenching, except for that of complex 7, which shows emission from the nickel(II) centers. The magnetic properties of complexes 5, 6, 8, and 9 were investigated, showing, in particular, the presence of zero-field splitting effects in 6 and weak antiferromagnetic interactions in 9.

  4. Synthesis, crystal structures, magnetic and luminescent properties of unique 1D p-ferrocenylbenzoate-bridged lanthanide complexes

    SciTech Connect

    Yan, P.F.; Zhang, F.M.; Li, G.M.; Zhang, J.W.; Sun, W.B.; Suda, M.; Einaga, Y.

    2009-07-15

    Treatments of p-ferrocenylbenzoate [p-NaOOCH{sub 4}C{sub 6}Fc, Fc=(eta{sup 5}-C{sub 5}H{sub 5})Fe(eta{sup 5}-C{sub 5}H{sub 4})] with Ln(NO{sub 3}){sub 3}.nH{sub 2}O afford seven p-ferrocenylbenzoate lanthanide complexes {l_brace}[Ln(OOCH{sub 4}C{sub 6}Fc){sub 2}(mu{sub 2}-OOCH{sub 4}C{sub 6}Fc){sub 2}(H{sub 2}O){sub 2}](H{sub 3}O){r_brace}{sub n} [Ln=Ce (1), Pr (2), Sm (3), Eu (4), Gd (5), Tb (6) and Dy (7)]. X-ray crystallographic analysis reveals that the isomorphous complexes {l_brace}[Ce(OOCH{sub 4}C{sub 6}Fc){sub 2}(mu{sub 2}-OOCH{sub 4}C{sub 6}Fc){sub 2}(H{sub 2}O){sub 2}](H{sub 3}O){r_brace}{sub n} (1) and {l_brace}[Pr(OOCH{sub 4}C{sub 6}Fc){sub 2}(mu{sub 2}-OOCH{sub 4}C{sub 6}Fc){sub 2}(H{sub 2}O){sub 2}](H{sub 3}O){r_brace}{sub n} (2) form a unique 1D double-bridged infinite chain structure bridged by mu{sub 2}-OOCH{sub 4}C{sub 6}Fc groups. Each Ln(III) ion adopts a dodecahedron coordination environment with eight coordinated oxygen atoms from two terminal monodentate coordinated FcC{sub 6}H{sub 4}COO{sup -} units, two terminal monodentate coordinated H{sub 2}O molecules and four mu{sub 2}-{sup -}OOCH{sub 4}C{sub 6}Fc units. The luminescent spectra reveal that only 4 and 6 exhibit characteristic emissions of lanthanide ions, Eu(III) and Tb(III) ions, respectively. The variable-temperature magnetic properties of 5 and 7 suggest that a ferromagnetic coupling between spin carriers may exist in 5. - Graphical abstract: Seven p-ferrocenylbenzoate lanthanide coordination polymers were synthesized. Given is the perspective view of a unique 1D double-bridged infinite chain structure of 1, excitation and emission spectra of 6 and plots of chi{sub m}T vs. T and chi{sub m}{sup -1} vs. T of 5.

  5. Magnetic adsorbent constructed from the loading of amino functionalized Fe3O4 on coordination complex modified polyoxometalates nanoparticle and its tetracycline adsorption removal property study

    NASA Astrophysics Data System (ADS)

    Ou, Jinzhao; Mei, Mingliang; Xu, Xinxin

    2016-06-01

    A magnetic polyoxometalates based adsorbent has been synthesized successfully through the loading of amino functionalized Fe3O4 (NH2-Fe3O4) on nanoparticle of a coordination complex modified polyoxometalates (CC/POMNP). FTIR illustrate there exist intense hydrogen bonds between NH2-Fe3O4 and CC/POMNP, which keep the stability of this adsorbent. At room temperature, this adsorbent exhibits ferromagnetic character with saturation magnetization of 8.19 emu g-1, which provides prerequisite for fast magnetic separation. Water treatment experiment illustrates this POM based magnetic adsorbent exhibits high adsorption capacity on tetracycline. The adsorption process can be described well with Temkin model, which illustrates the interaction between adsorbent and tetracycline plays the dominated role in tetracycline removal. The rapid, high efficient tetracycline adsorption ability suggests this POM based magnetic adsorbent exhibits promising prospect in medical and agriculture waste water purification. A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH2-Fe3O4 on coordination complex modified polyoxometalates

  6. Constant Electric and Magnetic Fields Effect on the Structuring and Thermomechanical and Thermophysical Properties of Nanocomposites Formed from Pectin-Cu2+-Polyethyleneimine Interpolyelectrolyte-Metal Complexes

    NASA Astrophysics Data System (ADS)

    Demchenko, V.; Shtompel', V.; Riabov, S.; Lysenkov, E.

    2015-12-01

    Applying wide-angle X-ray scattering method, thermomechanical analysis, and differential scanning calorimetry, the structural organization and properties of nanocomposites formed by chemical reduction of Cu2+ cations in the interpolyelectrolyte-metal complex (pectin-Cu2+-polyethyleneimine) under the influence of a constant magnetic and electric fields have been studied. It has been found that the chemical reduction of Cu2+ cations in the interpolyelectrolyte-metal complex bulk under constant electric and magnetic fields leads to formation of nanocomposite consisting of interpolyelectrolyte complex, including pectin-polyethyleneimine and nanoparticles of the metal Cu phase, whereas nanocomposite with Cu/Cu2O nanoparticles is formed in original state (without any field). It was observed that, under constant field, nanocomposites obtained have higher structural glass-transition temperatures and thermal stability.

  7. Magnetic properties of the Fe{sup II} spin crossover complex in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol)

    SciTech Connect

    Suzuki, Atsushi; Iguchi, Motoi; Oku, Takeo; Fujiwara, Motoyasu

    2010-04-15

    Influence of chemical substitution in the Fe{sup II} spin crossover complex on magnetic properties in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol) as a protective colloid was investigated near its high spin/low spin (HS/LS) phase transition. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiple spin states between the quintet (S=2) states to single state (S=0) across the excited triplet state (S=1). Magnetic parameters of gradual shifts of anisotropy g-tensor supported by the molecular distortion of the spin crossover complex would arise from a Jahn-Teller effect regarding ligand field theory on the basis of a B3LYP density functional theory using electron spin resonance (ESR) spectrum and X-ray powder diffraction. - Graphical abstract: AFM surface image of the emulsion particles with the spin crossover complex.

  8. Seven phenoxido-bridged complexes encapsulated by 8-hydroxyquinoline Schiff base derivatives and β-diketone ligands: single-molecule magnet, magnetic refrigeration and luminescence properties.

    PubMed

    Wang, Shi-Yu; Wang, Wen-Min; Zhang, Hong-Xia; Shen, Hai-Yun; Jiang, Li; Cui, Jian-Zhong; Gao, Hong-Ling

    2016-02-28

    Seven dinuclear complexes based on 8-hydroxyquinoline Schiff base derivatives and β-diketone ligands, [RE2(hfac)4L2] (RE = Y (1), Gd (2), Tb (3), Dy (4), Ho (5), Er (6) and Lu (7); hfac(-) = hexafluoroacetylacetonate; HL = 2-[(4-chloro-phenylimino)-methyl]-8-hydroxyquinoline), have been synthesized, and structurally and magnetically characterized. Complexes 1-7 have similar dinuclear structures, in which each RE(III) ion is eight coordinated by two L(-) and two hfac(-) ligands in a distorted dodecahedron geometry. The luminescence spectra indicate that complex 3 exhibits characteristic Tb(III) ion luminescence, while 1 and 7 show HL ligand luminescence. The magnetic studies reveal that 2 features a magnetocaloric effect with the magnetic entropy change of -ΔSm = 16.83 J kg(-1) K(-1) at 2 K for ΔH = 8 T, and 4 displays slow magnetic relaxation behavior with the anisotropic barrier of 6.7 K and pre-exponential factor τ0 = 5.3 × 10(-6) s.

  9. Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation

    NASA Astrophysics Data System (ADS)

    Chibotaru, L. F.; Ungur, L.

    2012-08-01

    A methodology for the rigorous nonperturbative derivation of magnetic pseudospin Hamiltonians of mononuclear complexes and fragments based on ab initio calculations of their electronic structure is described. It is supposed that the spin-orbit coupling and other relativistic effects are already taken fully into account at the stage of quantum chemistry calculations of complexes. The methodology is based on the establishment of the correspondence between the ab initio wave functions of the chosen manifold of multielectronic states and the pseudospin eigenfunctions, which allows to define the pseudospin Hamiltonians in the unique way. Working expressions are derived for the pseudospin Zeeman and zero-field splitting Hamiltonian corresponding to arbitrary pseudospins. The proposed calculation methodology, already implemented in the SINGLE_ANISO module of the MOLCAS-7.6 quantum chemistry package, is applied for a first-principles evaluation of pseudospin Hamiltonians of several complexes exhibiting weak, moderate, and very strong spin-orbit coupling effects.

  10. Synthesis of a novel heptacoordinated Fe(III) dinuclear complex: experimental and theoretical study of the magnetic properties.

    PubMed

    Craig, Gavin A; Barrios, Leoní A; Sánchez Costa, José; Roubeau, Olivier; Ruiz, Eliseo; Teat, Simon J; Wilson, Chick C; Thomas, Lynne; Aromí, Guillem

    2010-05-28

    A new functionalized bis-pyrazol-pyridine ligand has been prepared by reaction with hydrazine of the corresponding bis-β-diketone precursor, also unprecedented. The aerobic reaction of this ligand with ferrous thiocyanate in the presence of ascorbic or oxalic acid affords the dinuclear complex of seven-coordinate Fe(III), [Fe₂(H₄L2)₂(ox)(NCS)₄] (1), as revealed by single crystal X-ray diffraction. This may represent an entry into a new family of [Fe₂] compounds with heptacoordinate metal centres. The capacity of this unusual chromophore to undergo magnetic super-exchange was investigated by means of bulk magnetization and DFT calculations. Both approaches confirmed the presence of antiferromagnetic interactions within the molecule. The theoretical investigation has served to describe the magnetic orbitals of Fe(III) in this unusual coordination geometry, as well as the exchange mechanism. A brief review of the scarce number of iron heptacoordinate complexes reported in the literature is also included and discussed.

  11. A series of rare earth complexes with novel non-interpenetrating 3D networks: synthesis, structures, magnetic and optical properties.

    PubMed

    Wei, Xiao-Hua; Yang, Lin-Yan; Liao, Sheng-Yun; Zhang, Ming; Tian, Jin-Lei; Du, Pei-Yao; Gu, Wen; Liu, Xin

    2014-04-21

    A series of metal-organic framework {Ln(BCPBA)(H2O)}n {Ln = Nd (1), Sm (2), Eu (3), Tb (4), Dy (5)}; {[Ln(BCPBA)(H2O)](H2O)}n {Ln = Pr (6), Gd (7)} have been synthesized through the hydrothermal synthesis method. These compounds possess non-interpenetrating 3D networks with 10.1438 Å× 17.9149 Å rhombic channels along the [001] direction. The results of temperature-dependent magnetic susceptibility measurements indicate that compounds 4 and 7 exhibit Ln(III)Ln(III) antiferromagnetic interactions, while compound 5 exhibits Ln(III)Ln(III) ferromagnetic interactions. Frequency dependent out-of-phase signals were observed in alternating current (ac) magnetic susceptibility measurements which indicate that they have slow magnetic relaxation characteristics. The luminescent properties of 1, 2, 3, 4, and 5 are also discussed. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, compound 4 has longer fluorescence lifetime (τ1 = 400.0000 ms, τ2 = 1143.469 ms) and higher quantum yield (Φ = 42%) compared with other compounds.

  12. Genesis of supported carbon-coated Co nanoparticles with controlled magnetic properties, prepared by decomposition of chelate complexes

    NASA Astrophysics Data System (ADS)

    Tarasov, Konstantin; Beaunier, Patricia; Che, Michel; Marceau, Eric; Li, Yanling

    2011-05-01

    Following procedures formerly developed for the preparation of supported heterogeneous catalysts, carbon-coated cobalt nanoparticles dispersed on porous alumina have been prepared by impregnation of γ-Al2O3 with (NH4)2[Co(EDTA)] and thermal decomposition in inert atmosphere. Below 350 °C, Co(II) ions are complexed in a hexa-coordinated way by the EDTA ligand. The thermal treatment at 400-900 °C leads to the EDTA ligand decomposition and recovering of the support porosity, initially clogged by the impregnated salt. According to X-ray absorption spectroscopy, and due to in situ redox reactions between the organic ligand and Co(II), both oxidic and metallic cobalt phases are formed. Characterisation by transmission electron microscopy, X-ray diffraction and magnetic measurements reveals that an increase in the treatment temperature leads to an increase of the degree of cobalt reduction as well as to a growth of the cobalt metal particles. As a consequence, the samples prepared at 400-700 °C exhibit superparamagnetism and a saturation magnetisation of 1.7-6.5 emu g-1 at room temperature, whilst the sample prepared at 900 °C has a weak coercivity (0.1 kOe) and a saturation magnetisation of 12 emu g-1. Metal particles are homogeneously dispersed on the support and appear to be protected by carbon; its elimination by a heating in H2 at 400 °C is demonstrated to cause sintering of the metal particles. The route investigated here can be of interest for obtaining porous magnetic adsorbents or carriers with high magnetic moments and low coercivities, in which the magnetic nanoparticles are protected from chemical aggression and sintering by their coating.

  13. Stereochemistry for engineering spin crossover: structures and magnetic properties of a homochiral vs. racemic [Fe(N3O2)(CN)2] complex.

    PubMed

    Wang, Qiang; Venneri, Shari; Zarrabi, Niloofar; Wang, Hongfeng; Desplanches, Cédric; Létard, Jean-François; Seda, Takele; Pilkington, Melanie

    2015-04-21

    The Schiff-base condensation of the R,R-(+)-diamine () with 2,6-diacetyl pyridine in the presence of Fe(II) affords the macrocyclic complex [Fe(dpN3O2)(CN)2] () (dp = diphenyl) with ligand centred chirality comprising of a 1 : 1 mixture of LS 6- and HS 7-coordinate Fe(II) centres. Variable temperature magnetic susceptibility and Mössbauer studies reveal that () undergoes an incomplete thermal SCO transition with a T1/2 = 250 K as well as a LIESST effect. In contrast its racemic counterpart () comprises of mostly LS Fe(II) and exhibits no LIESST properties.

  14. Magnetic Properties of Antiferromagnetic Iron Oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Guyodo, Y. J.; Till, J. L.; Lagroix, F.; Bonville, P.; Penn, R. L.; Sainctavit, P.; Carvallo, C.; ona-Nguema, G.; Morin, G.

    2013-12-01

    Weakly magnetic iron oxyhydroxides such as ferrihydrite, lepidocrocite or goethite are commonly found in diverse geological and environmental setting, including ground waters and streams, sediments, soils, or acid mine drainage. These minerals take part in multiple biological and abiological processes, and can evolve to more magnetic phases such as hematite, maghemite, or magnetite. Therefore, they represent key minerals with regard to paleoclimate, paleoenvironmental, and paleomagnetic studies. At this meeting, we will present low temperature magnetic properties acquired on fully characterized synthetic samples. The complex nature of the magnetism of these minerals is revealed by comparing magnetic data with other types of characterizations such as high-resolution transmission electron microscopy or synchrotron X-ray magnetic circular dichroism (XMCD), or by studying the early-stages of solid-state alteration (under oxidizing or reducing atmosphere). In particular, we will present recent results about the presence of ferri-magnetic nano-clusters in lepidocrocite, and about uncompensated magnetic moments in goethite nanoparticles.

  15. Crystal structure and magnetic properties of two isomeric three-dimensional pyromellitate-containing cobalt(II) complexes.

    PubMed

    Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Delgado, Fernando S; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2008-09-15

    The hydrothermal preparation, crystal structure determination, and magnetic study of two isomers made up of 1,2,4,5-benzenetetracarboxylate and high-spin Co(II) ions of formula [Co2(bta)(H2O)4]n x 2n H2O (1 and 2; H4bta = 1,2,4,5-benzenetetracarboxylic acid) are reported. 1 and 2 are three-dimensional compounds whose structures can be described as (4,4) rectangular layers of trans-diaquacobalt(II) units with the bta(4-) anion acting as tetrakis-monodentate ligand through the four carboxylate groups, which are further connected through other trans-[Co(H2O)2](2+) (1) and planar [Co(H2O)4](2+) (2) entities, with the bridging units being a carboxylate group in either the anti-syn (1) or syn-syn (2) conformations and a water molecule (2). The study of the magnetic properties of 1 and 2 in the temperature range 1.9-300 K shows the occurrence of weak antiferromagnetic interactions between the high-spin Co(II) ions, with the strong decrease of chi(M)T upon cooling being mainly due to the depopulation of the higher energy Kramers doublets of the six-coordinated Co(II) ions. The computed values of the exchange coupling between the Co(II) ions across anti-syn carboxylate (1) and syn-syn carboxylate/water (2) bridges are J = -0.060 (1) and -1.90 (2) cm(-1) (with the Hamiltonian being defined as H = -Jsigma(i,j)S(i) x S(j)). These values follow the different conformations of the carboxylate bridge in 1 (anti-syn) and 2 (syn-syn) with the occurrence of a double bridge in 2 (water/carboxylate).

  16. A new coordination mode of (E)-3-(3-hydroxyl-phenyl)-acrylic acid in copper complex: Crystal structure and magnetic properties

    SciTech Connect

    Jin, Xin; Zhou, Pei; Zheng, Chunying; Li, Hui

    2015-05-15

    A copper complex ([Cu(py){sub 2}(L){sub 2}]·2CH{sub 3}OH){sub n} (HL=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (1) with acrylic acid ligand was synthesized and structurally analyzed by IR, elemental analysis, TGA and the single-crystal X-ray diffraction methods. It is the first time to find that phenolic hydroxyl of L coordinates to Cu(II). Complex 1 exhibits 1D chain by a double-bridge of ligands, and the 3D supramolecular framework in complex 1 is constructed by π–π stacking interactions and van der Waals Contacts among the 1D chains. The magnetic properties of complex 1 have been studied. - Graphical abstract: A copper complex based on (E)-3-(3-hydroxyl-phenyl)-acrylic acid in a novel coordinated way was synthesized and a ferromagnetic exchange interactions between neighboring Cu(II) ions has be achieved. - Highlights: • A new copper complex with acrylic acid ligand was synthesized and analyzed. • We find the phenolic hydroxyl of MCA ligand coordinates to metal ion firstly. • A ferromagnetic exchange interactions between Cu(II) ions has been achieved.

  17. Syntheses, crystal structures, electronic spectra and magnetic properties of two ion-pair charge transfer complexes based on [Ni(mnt)2]-

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Yi; Chen, Xuan-Rong; Yang, Qing-Cheng; Xue, Chen; Tao, Jian-Qing; Liu, Jian-Lan; Ren, Xiao-Ming

    2017-01-01

    Two new bimetallic ion-pair complexes 1 and 2 with general formula [M(phen)3][Ni(mnt)2]2 (phen = 1, 10-phenanthroline, mnt2- = maleonitriledithiolate; M = Ni2+, Fe2+ for 1 and 2), have been prepared and characterized by IR, elemental analysis, single crystal X-ray diffraction, UV-vis-NIR spectra and magnetic measurements. The structural determination reveals that the crystals of two ion-pair complexes, with monoclinic space group C2/c, have similar cell parameters and the [M(phen)3]2+ cations and the [Ni(mnt)2]- anions are packed by forming alternate layers. Thermogravimetric (TG) analyses revealed that 1 and 2 are thermally stable up to ∼170 °C. UV-vis-NIR spectra discloses that two complexes exhibit sizable absorption in near-IR region because of ion-pair charge transfer (IPCT) transitions in 1 and 2. Investigation of the magnetic properties 1 shows Curie-Weiss-type paramagnetic behavior in the temperature range 2-400 K. For 2, the paramagnetic behavior above ∼40 K indicated the [Fe(phen)3]2+ ion has a low-spin state and the weak Curie-Weiss type tail below 40 K results from a trace amount of paramagnetic [Ni(mnt)2]- species.

  18. Synthesis and magnetic properties of a new family of macrocyclic M(II)3Ln(III) complexes: insights into the effect of subtle chemical modification on single-molecule magnet behavior.

    PubMed

    Feltham, Humphrey L C; Clérac, Rodolphe; Ungur, Liviu; Vieru, Veacheslav; Chibotaru, Liviu F; Powell, Annie K; Brooker, Sally

    2012-10-15

    Thirteen tetranuclear mixed-metal complexes of the hexaimine macrocycle (L(Pr))(6-) have been prepared in a one-pot 3:1:3:3 reaction of copper(II) acetate hydrate, the appropriate lanthanide(III) nitrate hydrate, 1,4-diformyl-2,3-dihydroxybenzene (1), and 1,3-diaminopropane. The resulting family of copper(II)-lanthanide(III) macrocyclic complexes has the general formula Cu(II)(3)Ln(III)(L(Pr))(NO(3))(3)·solvents (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Tb, Ho, Er, Tm, or Yb). X-ray crystal structure determinations carried out on [Cu(3)Ce(L(Pr))(NO(3))(3)(MeOH)(3)] and [Cu(3)Dy(L(Pr))(NO(3))(3)(MeOH)(3)] confirmed that the large Ln(III) ion is bound in the central O(6) site and the three square pyramidal Cu(II) ions in the outer N(2)O(2) sites (apical donor either nitrate anion or methanol molecule) of the Schiff base macrocycle. Only the structurally characterized Cu(3)Tb complex, reported earlier, is a single-molecule magnet (SMM): the other 12 complexes do not exhibit an out-of-phase ac susceptibility signal or hysteresis of magnetization in a dc field. Ab initio calculations allowed us to rationalize the observed magnetic properties, including the significant impact of subtle chemical modification on SMM behavior. Broken-symmetry density functional theory (BS-DFT) calculations show there is a subtle structural balance as to whether the Cu···Cu exchange coupling is ferro- or antiferromagnetic. Of the family of 13 magnetically characterized tetranuclear Cu(II)(3)Ln(III) macrocyclic complexes prepared, only the Tb(III) complex is an SMM: the theoretical reasons for this are discussed.

  19. Dinuclear and heptanuclear complexes of copper(II) with 7-azaindole ligand: synthesis, characterization, magnetic properties, and biological activity.

    PubMed

    Przyojski, Jacob A; Myers, Nicole N; Arman, Hadi D; Prosvirin, Andrey; Dunbar, Kim R; Natarajan, Mohan; Krishnan, Manickam; Mohan, Sumathy; Walmsley, Judith A

    2013-10-01

    Three new complexes of Cu(II) with 7-azaindole have been synthesized and characterized, a dicopper compound, [Cu(C7H5N2)2(H2O)]2·2CH3CN, 1, and two heptacopper compounds [Cu7(C7H5N2)6(μ3-OH)6(μ2-H2O)2(μ2-CH3OH)4](CH3COO)2·2C7H8·6CH3OH, 2, and [Cu7(C7H5N2)5(CH3COO)(μ3-OH)6(μ2-H2O)4(μ2-CH3OH)2](CH3COO)2, 4. The structure of 2 is monoclinic and it crystallizes in the P21/c space group: a=13.475(4)Å; b=12.945(4)Å; c=23.392(7)Å; β=91.232(6)°. It contains a unique Cu7O12 core in which a central Cu(II) is situated at an inversion center and is bonded to 6 other Cu(II) ions via bridging oxygen atoms from OH(-), H2O, and CH3OH groups. Anionic 7-azaindole ligands bridge between adjacent outer Cu(II) ions and all Cu(II) ions have distorted octahedral coordination geometries. Variable temperature magnetic susceptibility measurements revealed the presence of antiferromagnetic exchange interactions between Cu(II) ions which leads to an S=5/2 ground state at 1.8K. Cytotoxicity and cell proliferation activities of the Cu compounds using human tongue squamous cell carcinoma and normal cells revealed that the compounds stimulated proliferation in both types of cells.

  20. Heterotrimetallic oxalato-bridged ReIV2MII complexes (M=Mn, Co, Ni, Cu): synthesis, crystal structure, and magnetic properties.

    PubMed

    Martínez-Lillo, José; Delgado, Fernado S; Ruiz-Pérez, Catalina; Lloret, Francesc; Julve, Miguel; Faus, Juan

    2007-04-30

    The use of the (NBu4)2[ReIVCl4(ox)] mononuclear species as a ligand toward divalent first row transition metal ions in the presence of imidazole affords the new trinuclear compounds of formula (NBu4)2[{ReIVCl4(mu-ox)}2MII(Him)2] [NBu4+=tetra-n-butylammonium cation, ox=oxalate dianion, Him=imidazole; M=Mn (1), Co (2), Ni (3), Cu (4)] whose preparation, crystal structures, and magnetic properties are reported. 1-4 are isostructural complexes which are made up of discrete trinuclear [{ReIVCl4(mu-ox)}2MII(Him)2]2- anions and bulky NBu4+ cations. The Re and M atoms exhibit somewhat distorted octahedral surroundings which are built by four chloro and two oxalate oxygens (Re) and two imidazole nitrogen and four oxalate oxygen atoms (M), the central M atom being linked to the two peripheral Re atoms through bis-bidentate oxalate. The values of the Re...M separation across bridging oxalate vary in the range 5.646(2) (M=Ni) to 5.794(2) A (M=Mn). Magnetic susceptibility measurements on polycrystalline samples of 1-4 in the temperature range 1.9-300 K show the occurrence of significant intramolecular antiferro- (1) and ferromagnetic (2-4) interactions. The nature and magnitude of the magnetic coupling in 1-4 are qualitatively understood through orbital symmetry considerations.

  1. Three tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole and different aromatic carboxylates: Assembly, structures, electrochemical and magnetic properties

    SciTech Connect

    Wang, Xiu-Li; Zhao, Wei; Zhang, Ju-Wen; Lu, Qi-Lin

    2013-02-15

    Three new tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole (atrz) and three types of aromatic carboxylates, [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(DNBA){sub 6}] (1), [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(1,3-BDC){sub 3}]{center_dot}2H{sub 2}O (2) and [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(SIP){sub 2}]{center_dot}4H{sub 2}O (3) (HDNBA=3,5-dinitrobenzoic acid, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid and NaH{sub 2}SIP=sodium 5-sulfoisophthalate), have been hydrothermally synthesized and structurally characterized. Complex 1 displays a single-molecular Cu{sup II}{sub 4} cluster structure, which is further connected by the intermolecular hydrogen-bonding interactions to form a 2D supramolecular layer. In 2, there also exist tetranuclear Cu{sup II}{sub 4} clusters, which are linked by the 1,3-BDC anions to give a 3D NaCl-type framework. In 3, the Cu{sup II}{sub 4} clusters are connected by the carboxyl and sulfo groups of SIP anions to generate 3D (4,8)-connected framework with a (4{sup 10}{center_dot}6{sup 14}{center_dot}8{sup 4})(4{sup 5}{center_dot}6){sub 2} topology. The atrz ligand conduces to the construction of tetranuclear copper(II) clusters and the carboxylates with different non-carboxyl substituent show important effects on the final structures of the title complexes. The electrochemical and magnetic properties of 1-3 have been investigated. - Graphical abstract: Three tetranuclear copper(II) cluster-based complexes based on different carboxylates have been synthesized under hydrothermal conditions. The carboxylate anions play a key role in the formation of three different structures. Highlights: Black-Right-Pointing-Pointer Three new tetranuclear copper(II) cluster-based complexes have been obtained. Black-Right-Pointing-Pointer The atrz conduces to the construction of tetranuclear copper(II) clusters. Black-Right-Pointing-Pointer Carboxylates show important effect on the structures of

  2. Influence of Tuned Linker Functionality on Modulation of Magnetic Properties and Relaxation Dynamics in a Family of Six Isotypic Ln2 (Ln = Dy and Gd) Complexes.

    PubMed

    Mukherjee, Soumya; Lu, Jingjing; Velmurugan, Gunasekaran; Singh, Shweta; Rajaraman, Gopalan; Tang, Jinkui; Ghosh, Sujit K

    2016-11-07

    A coordination complex family comprising of six new dinuclear symmetric lanthanide complexes, namely, [Ln2(Lx)2(L')2(CH3OH)2]·yG (H2Lx: three related yet distinct Schiff-base linkers; x = 1-3, according to the nomenclature of the Schiff-base linker employed herein. HL': 2,6-dimethoxyphenol. yG refers to crystallographically assigned guest solvent species in the respective complexes; y = number of solvent molecules; Ln(III) = Dy/Gd) were isolated employing a mixed-ligand strategy stemming out of a strategic variation of the functionalities introduced among the constituent Schiff-base linkers. The purposeful introduction of three diverse auxiliary groups with delicate differences in their electrostatic natures affects the local anisotropy and magnetic coupling of Ln(III) ion-environment in the ensuing Ln2 dinuclear complexes, consequentially resulting into distinctly dynamical magnetic behaviors among the investigated new-fangled family of isotypic Ln2 complexes. Among the entire family, subtle alterations in the chemical moieties render two of the Dy2 analogues to behave as single molecule magnets, while the other Dy2 congener merely exhibits slow relaxation of the magnetization. The current observation marks one of the rare paradigms, wherein magnetic behavior modulation was achieved by virtue of the omnipresent influence of subtly tuned linker functionalities among the constituent motifs of the lanthanide nanomagnets. To rationalize the observed difference in the magnetic coupling, density functional theory and ab initio calculations (CASSCF/RASSI-SO/POLY_ANISO) were performed on all six complexes. Subtle difference in the bond angles leads to difference in the J values observed for Gd2 complexes, while difference in the tunnel splitting associated with the structural alterations lead to variation in the magnetization blockade in the Dy2 complexes.

  3. Magnetic Properties of the DNA-Quaternary Ammonium Surfactant Complexes Studied by EMR Spectroscopy and SQUID Measurement

    DTIC Science & Technology

    2008-09-24

    USA 1.1 Introduction 1.2 Experimental 1.2.1 Preparation of DNA-Q Complexes 1.2.2 Instrumentation 1.3 Results and Discussion 1.3.1 Structure of DNA-Q...extremely broad EMR signal and the magnitude of the S-shaped M-H curve. In this work, therefore, we prepared DNA-quaternary ammonium (Q+) surfactant... Preparation of DNA-Q Complexes Salmon sperm DNA (0.130 g; 1.0×10−7 mol, purchased from Aldrich Chemi- cal) of 2000 base-pairs was dissolved in 100 mL of 0.1M

  4. Coligand-regulated assembly, fluorescence, and magnetic properties of Co(II) and Cd(II) complexes with a non-coplanar dicarboxylate

    SciTech Connect

    Xin, Ling-Yun; Liu, Guang-Zhen; Ma, Lu-Fang; Wang, Li-Ya

    2013-10-15

    A non-coplanar dicarboxylate ndca (H{sub 2}ndca=5-norbornene-2,3-dicarboxylic acid), combining with various dipyridyl-typed tectons, constructs six Cd(II)/Co(II) coordination polymers under hydrothermal conditions, namely [Co(ndca)(H{sub 2}O)]{sub n} (1), ([Co(ndca)(bpe)(H{sub 2}O)]·H{sub 2}O){sub n} (2), [Co(ndca)(bpa){sub 0.5}(H{sub 2}O)]{sub n} (3), [Cd(ndca)(bpe)(H{sub 2}O)]{sub n} (4), ([Cd(ndca)(bpa)(H{sub 2}O)]·0.5H{sub 2}O){sub n} (5), and ([Cd(ndca)(bpp) (H{sub 2}O)]·H{sub 2}O){sub n} (6) (bpe=1,2-di(4-pyridyl)ethylene, bpa=1,2-bi(4-pyridyl)ethane, and bpp=1,3-bis(4-pyridyl)propane). All these compounds contain various metal(II)–carboxylate motifs, including carboxylate binuclear (2, 4, 5), carboxylate chain (1, 6) and carboxylate layer (3), which are further extended by dipyridyl-typed coligands to afford a vast diversity of the structures with 2D pyknotic layers (1, 6), 2D open layer (5), 2D→3D interpenetrated networks (2,4), and 3D pillared-layer framework (3), respectively. In addition, fluorescent spectra of Cd(II) complexes and magnetic properties of Co(II) complexes are also given. - Graphical abstract: Six various cadmium(II)/cobalt(II)–organic frameworks were constructed by 5-norbornene-2,3-dicarboxylic acid and different bis(pyridine) rod-like tectons, and Cd (II) complexes exhibit blue–violet emissions, whereas Co (II) complexes show antiferromagnetic behaviours. Display Omitted.

  5. Synthesis, structure, and single-molecule magnetic properties of rare-earth sandwich complexes with mixed phthalocyanine and Schiff base ligands.

    PubMed

    Wang, Hailong; Cao, Wei; Liu, Tao; Duan, Chunying; Jiang, Jianzhuang

    2013-02-11

    Double- and quadruple-decker complexes of rare-earth metals with mixed phthalocyanine and Schiff base ligands have been synthesized and structurally and magnetically characterized. These complexes (see picture: Dy pink, Ca green, N blue, C black) extend the scope of sandwich-type tetrapyrrole-based rare-earth molecular materials.

  6. Coligand-regulated assembly, fluorescence, and magnetic properties of Co(II) and Cd(II) complexes with a non-coplanar dicarboxylate

    NASA Astrophysics Data System (ADS)

    Xin, Ling-Yun; Liu, Guang-Zhen; Ma, Lu-Fang; Wang, Li-Ya

    2013-10-01

    A non-coplanar dicarboxylate ndca (H2ndca=5-norbornene-2,3-dicarboxylic acid), combining with various dipyridyl-typed tectons, constructs six Cd(II)/Co(II) coordination polymers under hydrothermal conditions, namely [Co(ndca)(H2O)]n (1), {[Co(ndca)(bpe)(H2O)]·H2O}n (2), [Co(ndca)(bpa)0.5(H2O)]n (3), [Cd(ndca)(bpe)(H2O)]n (4), {[Cd(ndca)(bpa)(H2O)]·0.5H2O}n (5), and {[Cd(ndca)(bpp) (H2O)]·H2O}n (6) (bpe=1,2-di(4-pyridyl)ethylene, bpa=1,2-bi(4-pyridyl)ethane, and bpp=1,3-bis(4-pyridyl)propane). All these compounds contain various metal(II)-carboxylate motifs, including carboxylate binuclear (2, 4, 5), carboxylate chain (1, 6) and carboxylate layer (3), which are further extended by dipyridyl-typed coligands to afford a vast diversity of the structures with 2D pyknotic layers (1, 6), 2D open layer (5), 2D→3D interpenetrated networks (2,4), and 3D pillared-layer framework (3), respectively. In addition, fluorescent spectra of Cd(II) complexes and magnetic properties of Co(II) complexes are also given.

  7. A Hirshfeld surface analysis, supramolecular structure and magnetic properties of a new Cu(II) complex with the 4-amino-6-methoxypyrimidine ligand

    NASA Astrophysics Data System (ADS)

    Nbili, W.; Kaabi, K.; Ferenc, W.; Cristovão, B.; Lefebvre, F.; Jelsch, Christian; Ben Nasr, Cherif

    2017-02-01

    A new Cu(II) complex with the bridge bidentate ligand 4-amino-6-methoxypyrimidine, [Cu(C5H7N3O)(H2O)(NO3)2], has been prepared at room temperature and characterized by single crystal X-ray diffraction and IR spectroscopy. The compound crystallizes in the monoclinic space group C2/c with lattice parameters a = 17.783 (4), b = 11.131 (3), c = 12.594 (3) Å, β = 117.616 (3)°, V = 2209.0 (9) Å3 and Z = 8. The Cu(II) cation is hexa-coordinated, in distorted octahedral fashion, by two nitrogen atoms of two 4-amino-6-methoxypyrimidine ligands, one water oxygen atom and three oxygen atoms of two nitrate anions. In the atomic arrangement, the organic ligands and the 6-connected Cu centers are linked with each other to give a 1-D corrugated chain running along the b-axis direction. The chains are interconnected via Osbnd H⋯O, Csbnd H⋯O, Nsbnd H⋯O hydrogen bonds to form a three dimensional network. The analysis of contacts on the Hirshfeld surface shows that the crystal packing is driven mainly by the electrostatic interactions: the coordination of Cu(II) by O and N as well as strong hydrogen bonds. The vibrational absorption bands were identified by infrared spectroscopy. Magnetic properties were also studied to characterize the complex.

  8. Tuning the Magnetic Properties of Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Jamison, Andrew C.; Litvinov, Dmitri; Willson, Richard C.; Lee, T. Randall

    2013-01-01

    The tremendous interest in magnetic nanoparticles (MNPs) is reflected in published research that ranges from novel methods of synthesis of unique nanoparticle shapes and composite structures to a large number of MNP characterization techniques, and finally to their use in many biomedical and nanotechnology-based applications. The knowledge gained from this vast body of research can be made more useful if we organize the associated results to correlate key magnetic properties with the parameters that influence them. Tuning these properties of MNPs will allow us to tailor nanoparticles for specific applications, thus increasing their effectiveness. The complex magnetic behavior exhibited by MNPs is governed by many factors; these factors can either improve or adversely affect the desired magnetic properties. In this report, we have outlined a matrix of parameters that can be varied to tune the magnetic properties of nanoparticles. For practical utility, this review focuses on the effect of size, shape, composition, and shell-core structure on saturation magnetization, coercivity, blocking temperature, and relaxation time. PMID:23912237

  9. Novel heterometallic metal-azido complex synthesized by "one-step" reaction: synthetic strategy and magnetic properties

    NASA Astrophysics Data System (ADS)

    Jiao, Yong-Kun; Li, Xiu-Ping; Zhao, Cui; Wang, Hai-Chao; Xue, Min; Zhao, Jiong-Peng; Liu, Fu-Chen

    2013-06-01

    A novel heterometallic complex, [Ni2Mn(N3)2(nic)4·(H2O)2]n (1) (nic=nicotinate), was obtained by assembling MnCl2·4H2O, Ni(NO3)2·6H2O, NaN3 and nicotinic acid with a "one step" synthetic strategy—hydrothermal reaction. The 3D structure of the complex can be described as end-on (EO) azido and syn,syn carboxylates mixed bridged by alternate Ni-Mn-Ni trimers linked by the nicotinate. Dominant ferromagnetic interactions were observed between the NiII and MnII ions in the trimer.

  10. Two-dimensional layer architecture assembled by Keggin polyoxotungstate, Cu(II)-EDTA complex and sodium linker: Synthesis, crystal structures, and magnetic properties

    SciTech Connect

    Liu Hong; Xu Lin Gao Guanggang; Li Fengyan; Yang Yanyan; Li Zhikui; Sun Yu

    2007-05-15

    Reaction of Keggin polyoxotungstate with copper(II)-EDTA (EDTA=ethylenediamine tetraacetate) complex under mild conditions led to the formation of hybrid inorganic-organic compounds Na{sub 4}(OH)[(Cu{sub 2}EDTA)PW{sub 12}O{sub 40}].17H{sub 2}O (1) and Na{sub 4}[(Cu{sub 2}EDTA)SiW{sub 12}O{sub 40}].19H{sub 2}O (2). The single-crystal X-ray diffraction analyses reveal their two structural features: (1) one-dimensional chain structure consisting of Keggin polyoxotungstate and copper(II)-EDTA complex; (2) Two-dimensional layer architecture assembled by the one-dimensional chain structure and sodium linker. The results of magnetic measurements in the temperature range 300-2 K indicated the existence of ferromagnetic exchange interactions between the Cu{sup II} ions for both compounds. In addition, TGA analysis, IR spectra, and electrochemical properties were also investigated to well characterize these two compounds. - Graphical abstract: Two new polyoxometalate-based hybrids, Na{sub 4}(OH)[Cu{sub 2}(EDTA)PW{sub 12}O{sub 40}].17H{sub 2}O (1) and Na{sub 4}[Cu{sub 2}(EDTA)SiW{sub 12}O{sub 40}].19H{sub 2}O (2), have been synthesized and structurally characterized, which consist of one-dimensional chain structure assembled by Keggin polyoxotungstate and copper(II)-EDTA complex. The chains are further connected to form two-dimensional layer architecture assembled by the one-dimensional chain structure and sodium linker.

  11. Synthesis, structure, and magnetic properties of (6-9)-nuclear Ni(II) trimethylacetates and their heterospin complexes with nitroxides.

    PubMed

    Ovcharenko, Victor; Fursova, Elena; Romanenko, Galina; Eremenko, Igor; Tretyakov, Evgeny; Ikorskii, Vladimir

    2006-07-10

    New polynuclear nickel trimethylacetates [Ni6(OH)4(C5H9O2)8(C5H10O2)4] (6), [Ni7(OH)7(C5H9O2)7(C5H10O2)6(H2O)] x 0.5 C6H14 x 0.5 H2O (7), [Ni8(OH)4(H2O)2(C5H9O2)12] (8), and [Ni9(OH)6(C5H9O2)12(C5H10O2)4] x C5H10O2 x 3 H2O (9), where C5H9O2 is trimethylacetate and C5H10O2 is trimethylacetic acid, have been found. Their structures were determined by X-ray crystallography. Because of their high solubility in low-polarity organic solvents, compounds 6-9 reacted with stable organic radicals to form the first heterospin compounds based on polynuclear Ni(II) trimethylacetate and nitronyl nitroxides containing pyrazole (L(1)-L(3)), methyl (L(4)), or imidazole (L(5)) substituent groups, respectively, in side chain [Ni7(OH)5(C5H9O2)9(C5H10O2)2(L(1))2(H2O)] x 0.5 C6H14 x H2O (6+1a), [Ni7(OH)5(C5H9O2)9(C5H10O2)2(L2)2(H2O)] x H2O (6+1b), [Ni7(OH)5(C5H9O2)9(C5H10O2)2(L(3))2(H2O)] x H2O (6+1c), [Ni6(OH)3(C5H9O2)9(C5H10O2)4(L(4))] x 1.5 C6H14 (6''), and [Ni4OH)3(C5H9O2)5(C5H10O2)4(L(5))] x 1.5 C7H8 (4). Their structures were also determined by X-ray crystallography. Although Ni(II) trimethylacetates may have varying nuclearity and can change their nuclearity during recrystallization or interactions with nitroxides, this family of compounds is easy to study because of its topological relationship. For any of these complexes, the polynuclear framework may be derived from the [Ni6] polynuclear fragment {Ni6(mu4-OH)2(mu3-OH)2(mu2-C5H9O2-O,O')6(mu2-C5H9O2-O,O)(mu4-C5H9O2-O,O,O',O')(C5H10O2)4}, which is shaped like an open book. On the basis of this fragment, the structure of 7-nuclear compounds (7 and 6+1a-c) is conveniently represented as the result of symmetric addition of other mononuclear fragments to the four Ni(II) ions lying at the vertexes of the [Ni6] open book. The 9-nuclear complex is formed by the addition of trinuclear fragments to two Ni(II) ions lying on one of the lateral edges of the [Ni6] open book. This wing of the 9-nuclear complex preserves its structure in

  12. Magnetic signatures of serpentinization at ophiolite complexes

    NASA Astrophysics Data System (ADS)

    Bonnemains, D.; Carlut, J.; Escartín, J.; Mével, C.; Andreani, M.; Debret, B.

    2016-08-01

    We compare magnetic properties of 58 variably serpentinized peridotites from three ophiolite complexes (Pindos, Greece; Oman; Chenaillet, France) and the mid-Atlantic Ridge near the Kane fracture zone (MARK). The Pindos and Oman sites show low susceptibility and remanence (K < 0.02 SI; Ms < 0.4 Am2/kg), while the Chenaillet and MARK sites show instead high susceptibility and remanence (K up to 0.15 SI; Ms up to 6 Am2/kg), regardless of serpentinization degree. Petrographic observations confirm that Pindos and Oman samples contain serpentine with very little magnetite, while Chenaillet and MARK samples display abundant magnetite in serpentine mesh cells. Bulk rock analyses show similar amounts of ferric iron at a given serpentinization degree, suggesting that iron is oxidized during the serpentinization reaction in both cases, but that its distribution among phases differs. Microprobe analyses show iron-rich serpentine minerals (5-7 wt % FeO) in low-susceptibility samples, while iron-poor serpentine minerals (2-4 wt % FeO) occur in high susceptibility samples. The contrasted magnetic properties between the two groups of sites thus reflect different iron partitioning during serpentinization, that must be related to distinct conditions at which the serpentinization reaction takes place. We propose that magnetic properties of ophiolitic serpentinites can be used as a proxy to differentiate between high temperature serpentinization (>˜250-300°C) occurring at the axis (i.e., Chenaillet, similar to serpentinites from magmatically poor mid-ocean ridges), from lower temperature serpentinization (<˜200-250°C), likely occurring off axis and possibly during obduction (i.e., Pindos and Oman). At both settings, serpentinization can result in significant hydrogen release.

  13. Probing the magnetic and magnetothermal properties of M(II)-Ln(III) complexes (where M(II) = Ni or Zn; Ln(III) = La or Pr or Gd).

    PubMed

    Ahmed, Naushad; Das, Chinmoy; Vaidya, Shefali; Srivastava, Anant Kumar; Langley, Stuart K; Murray, Keith S; Shanmugam, Maheswaran

    2014-12-14

    We establish the coordination potential of the Schiff base ligand (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate (H2L)) via the isolation of various M(II)-Ln(III) complexes (where M(II) = Ni or Zn and Ln(III) = La or Pr or Gd). Single crystals of these five complexes were isolated and their solid state structures were determined by single crystal X-ray diffraction. Structural determination revealed molecular formulae of [NiGd(HL)2(NO3)3] (1), [NiPr(HL)2(NO3)3] (2) and [Ni2La(HL)4(NO3)](NO3)2 (3), [Zn2Gd(HL)4(NO3)](NO3)2 (4), and [Zn2Pr(HL)4(NO3)](NO3)2 (5). Complexes and were found to be neutral heterometallic dinuclear compounds, whereas 3-5 were found to be linear heterometallic trinuclear cationic complexes. Direct current (dc) magnetic susceptibility and magnetization measurements conclusively revealed that complexes 1 and 4 possess a spin ground state of S = 9/2 and 7/2 respectively. Empirically calculated ΔχMT derived from the variable temperature susceptibility data for all complexes undoubtedly indicates that the Ni(II) ion is coupled ferromagnetically with the Gd(III) ion, and antiferromagnetically with the Pr(III) ion in 1 and 2 respectively. The extent of the exchange interaction for was estimated by fitting the magnetic susceptibility data using the parameters (g = 2.028, S = 9/2, J = 1.31 cm(-1) and zJ = +0.007), supporting the phenomenon observed in an empirical approach. Similarly using a HDVV Hamiltonian, the magnetic data of 3 and 4 were fitted, yielding parameters g = 2.177, D = 3.133 cm(-1), J = -0.978 cm(-1), (for 3) and g = 1.985, D = 0.508 cm(-1) (for 4). The maximum change in magnetic entropy (-ΔSm) estimated from the isothermal magnetization data for was found to be 5.7 J kg(-1) K(-1) (ΔB = 7 Tesla) at 7.0 K, which is larger than the -ΔSm value extracted from 4 of 3.5 J kg(-1) K(-1) (ΔB = 7 Tesla) at 15.8 K, revealing the importance of the exchange interaction in increasing the overall ground state of a molecule for

  14. Structure of the oxygen-evolving complex of photosystem II: information on the S(2) state through quantum chemical calculation of its magnetic properties.

    PubMed

    Pantazis, Dimitrios A; Orio, Maylis; Petrenko, Taras; Zein, Samir; Lubitz, Wolfgang; Messinger, Johannes; Neese, Frank

    2009-08-21

    Twelve structural models for the S(2) state of the oxygen-evolving complex (OEC) of photosystem II are evaluated in terms of their magnetic properties. The set includes ten models based on the 'fused twist' core topology derived by polarized EXAFS spectra and two related models proposed in recent mechanistic investigations. Optimized geometries and spin population analyses suggest that Mn(iii), which is most often identified with the manganese ion at site D, is always associated with a penta-coordinate environment, unless a chloride is directly ligated to the metal. Exchange coupling constants were determined by broken-symmetry density functional theory calculations and the complete spectrum of magnetic sublevels was obtained by direct diagonalization of the Heisenberg Hamiltonian. Seven models display a doublet ground state and are considered spectroscopic models for the ground state corresponding to the multiline signal (MLS) of the S(2) state of the OEC, whereas the remaining five models display a sextet ground state and could be related to the g = 4.1 signal of the S(2) state. It is found that the sign of the exchange coupling constant between the Mn centres at positions A and B of the cluster is directly related to the ground state multiplicity, implying that interconversion between the doublet and sextet can be induced by only small structural perturbations. The recently proposed quantum chemical method for the calculation of (55)Mn hyperfine coupling constants is subsequently applied to the S(2) MLS state models and the quantities that enter into the individual steps of the procedure (site-spin expectation values, intrinsic site isotropic hyperfine parameters and projected (55)Mn isotropic hyperfine constants) are analyzed and discussed in detail with respect to the structural and electronic features of each model. The current approach performs promisingly. It reacts sensitively to structural distortions and hence may be able to distinguish between different

  15. Magnetism of the oceanic crust: Evidence from ophiolite complexes

    SciTech Connect

    Banerjee, S.K.

    1980-07-10

    The magnetic properties of six ophiolite complexes from around the world, ranging in age from Jurassic to Miocene, are presented. An emphasis is placed in our study on the petrologic and isotopic data from these ophiolite complexes in order to determine first whether the rock samples presently available represent the pristine ocean crust or whether they have been altered subaerially since their formation. Five of the ophiolites are found to be acceptable, and the conclusion is overwhelmingly in favor of a marine magnetic source layer that includes not only the pillow lavas but also the underlying dikes and gabbro. At the moment, however, our observations do not suggest that the magnetic contributions of the basaltic dikes should be overlooked in favor of gabbro. A second important conclusion is that nearly pure magnetite could indeed be a magnetic carrier which contributes to marine magnetic anomanies. It only awaits discovery by deeper ocean crustal penetration by future Deep Sea Drilling Project legs.

  16. Magnetic properties of friction stir processed composite

    SciTech Connect

    Das, Shamiparna; Martinez, Nelson Y.; Das, Santanu; Mishra, Rajiv S.; Grant, Glenn J.; Jana, Saumyadeep; Polikarpov, Evgueni

    2016-03-29

    There are many existing inspection systems each with their own advantages and drawbacks. These usually comprise of semi-remote sensors which frequently causes difficulty in reaching complex areas of a component. This study proposes to overcome that difficulty by developing embedded functional composites. Through this route, embedding can be achieved in virtually any component part and can be periodically interrogated by a reading device. The “reinforcement rich” processed areas can then be utilized to record properties like strain, temperature, stress state etc. depending on the reinforcement material. In this work, friction stir processing (FSP) was utilized to fabricate a magnetostrictive composite by embedding galfenol particles into a nonmagnetic aluminum (Al) matrix. It targets to develop a composite that produces strain in a varying magnetic field. Reinforcements were observed to be distributed uniformly in the matrix. Magnetization curves were studied using a vibrating sample magnetometer (VSM). A simple and cheap setup was developed to measure the magnetostrictive strain of the composites. Important factors affecting the magnetic properties were identified and ways to improve the magnetic properties discussed.

  17. Low-dimensional compounds containing cyanido groups. XXVIII. Crystal structure, spectroscopic and magnetic properties of two copper(II) tetracyanidoplatinate complexes with 1,2-diaminopropane

    NASA Astrophysics Data System (ADS)

    Vavra, Martin; Potočňák, Ivan; Dušek, Michal; Čižmár, Erik; Ozerov, Mykhaylo; Zvyagin, Sergei A.

    2015-05-01

    Violet crystals of {[Cu(pn)2]2[Pt(CN)4]}[Pt(CN)4]·2H2O (1, pn=1,2-diaminopropane) and blue crystals of [Cu(pn)Pt(CN)4]n·nH2O (2) were prepared under hydrothermal conditions and characterized using elemental analysis, IR and UV-vis spectroscopy and by X-ray crystal structure analysis. Different number of ν(C≡N) absorption bands of these two compounds reflects their different structures. An X-ray crystal structure analysis has shown that complex 1 is of ionic character and is formed from trinuclear [Cu(pn)2-Pt(CN)4-Cu(pn)2]2+ complex cation and discrete [Pt(CN)4]2- anion together with two molecules of crystal water. On the other hand, complex 2 is of polymeric character and is formed by 2D networks of [Cu(pn)Pt(CN)4]n composition and completed by n molecules of crystal water. Magnetic measurements show the presence of a weak antiferromagnetic exchange interaction in complex 1 (Θ=-0.2 K), while the magnetic susceptibility of complex 2 is well described by the model of uniform S=1/2 spin chain with exchange interaction J/kB=-1.64 K.

  18. Low-dimensional compounds containing cyanido groups. XXVIII. Crystal structure, spectroscopic and magnetic properties of two copper(II) tetracyanidoplatinate complexes with 1,2-diaminopropane

    SciTech Connect

    Vavra, Martin; Potočňák, Ivan; Dušek, Michal; Čižmár, Erik; Ozerov, Mykhaylo; Zvyagin, Sergei A.

    2015-05-15

    Violet crystals of ([Cu(pn){sub 2}]{sub 2}[Pt(CN){sub 4}])[Pt(CN){sub 4}]·2H{sub 2}O (1, pn=1,2-diaminopropane) and blue crystals of [Cu(pn)Pt(CN){sub 4}]{sub n}·nH{sub 2}O (2) were prepared under hydrothermal conditions and characterized using elemental analysis, IR and UV–vis spectroscopy and by X-ray crystal structure analysis. Different number of ν(C≡N) absorption bands of these two compounds reflects their different structures. An X-ray crystal structure analysis has shown that complex 1 is of ionic character and is formed from trinuclear [Cu(pn){sub 2}–Pt(CN){sub 4}–Cu(pn){sub 2}]{sup 2+} complex cation and discrete [Pt(CN){sub 4}]{sup 2–} anion together with two molecules of crystal water. On the other hand, complex 2 is of polymeric character and is formed by 2D networks of [Cu(pn)Pt(CN){sub 4}]{sub n} composition and completed by n molecules of crystal water. Magnetic measurements show the presence of a weak antiferromagnetic exchange interaction in complex 1 (Θ=–0.2 K), while the magnetic susceptibility of complex 2 is well described by the model of uniform S=1/2 spin chain with exchange interaction J/k{sub B}=–1.64 K. - Graphical abstract: Two complexes of different structural types from the system Cu(II) – 1,2–diaminopropane – [Pt(CN){sub 4}]{sup 2–} have been isolated. These were characterized by IR and UV–VIS spectroscopy, X–ray crystal structure analysis together with the magnetic measurements. On one hand ([Cu(pn){sub 2}]{sub 2}[Pt(CN){sub 4}])[Pt(CN){sub 4}]∙2H{sub 2}O is of ionic character and is formed from trinuclear complex cation and discrete anion together with two molecules of crystal water. On the other hand, [Cu(pn)Pt(CN){sub 4}]{sub n}∙nH{sub 2}O is of polymeric character and is formed by 2D networks of [Cu(pn)Pt(CN){sub 4}]{sub n} composition and completed by n molecules of crystal water. - Highlights: • Two complexes of different compositions from one system have been isolated. • First complex is of

  19. Synthesis, crystal structures and magnetic properties of cyanide- and phenolate-bridged [M(III)NiII]2 tetranuclear complexes (M=Fe and Cr).

    PubMed

    Toma, Liviu; Toma, Luminita Marilena; Lescouëzec, Rodrigue; Armentano, Donatella; De Munno, Giovanni; Andruh, Marius; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2005-04-21

    The binuclear complex NiII2L(H2O)2(ClO4)2(1) and the neutral tetranuclear bimetallic compounds [{M(III)(phen)(CN)4}2{NiII2L(H2O)2}].2CH3CN with M=Fe (2) and Cr (3)[H2L=11,23-dimethyl-3,7,15,19-tetraazatricyclo[19.3.1.1(9,13)]hexacosa-2,7,9,11,13(26),14,19,21(25),22,24-decaene-25,26-diol] have been synthesized and the structures of and determined by single crystal X-ray diffraction. and are isostructural compounds whose structure is made up of centrosymmetric binuclear cations [Ni2(L)(H2O)2]2+ and two peripheral [M(phen)(CN)4]- anions [M=Fe (2) and Cr (3)] acting as monodentate ligands towards the nickel atoms through one of their four cyanide nitrogen atoms. The environment of the metal atoms in 2 and 3 is six-coordinated: two phen-nitrogen and four cyanide-carbon atoms at the iron and chromium atoms and a water molecule, one cyanide-nitrogen and two phenolate-oxygens and two imine-nitrogens from the binucleating ligand L2- at the nickel atom build distorted octahedral surroundings. The values of the FeNi and CrNi separations through the single cyanide bridge are 5.058(1) and 5.174(2)A respectively, whereas the Ni-Ni distances across the double phenolate bridge are 3.098(2)(2) and 3.101(1) A (3). The magnetic properties of have been investigated in the temperature range 1.9-290 K. The magnetic behaviour of corresponds to that of an antiferromagnetically coupled nickel(II) dimer with J=-61.0(1) cm-1, the Hamiltonian being defined as H=-J S(A).S(B). An overall antiferromagnetic behaviour is observed for and with a low-lying singlet spin state. The values of the intramolecular magnetic couplings are J(Fe-Ni)=+17.4(1) cm-1 and J(Ni-Ni(a))=-44.4(1) cm-1 for and J(Cr-Ni)=+11.8(1) cm-1 and J(Ni-Ni(a))=-44.6(1) cm-1 for [H=-J(M-Ni)(S(M).S(Ni)+S(Ma).S(Nia))-J(Ni-Nia)S(Ni)S(Nia)]. Theoretical calculations using methods based on density functional theory (DFT) have been employed on in order to analyze the efficiency of the exchange pathways involved and also to substantiate

  20. Magnetic modeling of the Bushveld Igneous Complex

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Cole, J.; Letts, S. A.; Finn, C.; Torsvik, T. H.; Lee, M. D.

    2009-12-01

    Magnetic modeling of the 2.06 Ga Bushveld Complex presents special challenges due a variety of magnetic effects. These include strong remanence in the Main Zone and extremely high magnetic susceptibilities in the Upper Zone, which exhibit self-demagnetization. Recent palaeomagnetic results have resolved a long standing discrepancy between age data, which constrain the emplacement to within 1 million years, and older palaeomagnetic data which suggested ~50 million years for emplacement. The new palaeomagnetic results agree with the age data and present a single consistent pole, as opposed to a long polar wander path, for the Bushveld for all of the Zones and all of the limbs. These results also pass a fold test indicating the Bushveld Complex was emplaced horizontally lending support to arguments for connectivity. The magnetic signature of the Bushveld Complex provides an ideal mapping tool as the UZ has high susceptibility values and is well layered showing up as distinct anomalies on new high resolution magnetic data. However, this signature is similar to the highly magnetic BIFs found in the Transvaal and in the Witwatersrand Supergroups. Through careful mapping using new high resolution aeromagnetic data, we have been able to map the Bushveld UZ in complicated geological regions and identify a characteristic signature with well defined layers. The Main Zone, which has a more subdued magnetic signature, does have a strong remanent component and exhibits several magnetic reversals. The magnetic layers of the UZ contain layers of magnetitite with as much as 80-90% pure magnetite with large crystals (1-2 cm). While these layers are not strongly remanent, they have extremely high magnetic susceptibilities, and the self demagnetization effect must be taken into account when modeling these layers. Because the Bushveld Complex is so large, the geometry of the Earth’s magnetic field relative to the layers of the UZ Bushveld Complex changes orientation, creating

  1. The magnetic properties of the hollow cylindrical ideal remanence magnet

    NASA Astrophysics Data System (ADS)

    Bjørk, R.

    2016-10-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet.

  2. Mononuclear thiocyanate containing nickel(II) and binuclear azido bridged nickel(II) complexes of N4-coordinate pyrazole based ligand: Syntheses, structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Solanki, Ankita; Monfort, Montserrat; Kumar, Sujit Baran

    2013-10-01

    Two mononuclear nickel(II) complexes [NiL1(NCS)2] (1) and [NiL2(NCS)2] (2) and two azido bridged binuclear nickel(II) complexes [Ni(()2()2] (3) and [Ni(()2()2] (4), where L1, L2, L1‧ and L2‧ are N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1), N,N-bis((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2), N,N-diethyl-N‧-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1‧) and N-((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2‧) have been synthesized and characterized by microanalyses and physico-chemical methods. Single crystal X-ray diffraction analyses revealed that complexes 1 and 2 are mononuclear NCS- containing Ni(II) complex with octahedral geometry and complexes 3 and 4 are end-on (μ-1,1) azido bridged binuclear Ni(II) complexes with distorted octahedral geometry. Variable temperature magnetic studies of the complexes 3 and 4 display ferromagnetic interaction with J values 19 and 32 cm-1, respectively.

  3. Synthesis, spectroscopy, thermal analysis, magnetic properties and biological activity studies of Cu(II) and Co(II) complexes with Schiff base dye ligands.

    PubMed

    Ahmadi, Raziyeh Arab; Amani, Saeid

    2012-05-29

    Three azo group-containing Schiff base ligands, namely 1-{3-[(3-hydroxypropylimino) methyl]-4-hydroxyphenylazo}-4-nitrobenzene (2a), 1-{3-[(3-hydroxypropylimino) methyl]-4-hydroxyphenylazo}-2-chloro-4-nitrobenzene (2b) and 1-{3-[(3-hydroxypropylimino) methyl]-4-hydroxyphenylazo}-4-chloro-3-nitrobenzene (2c) were prepared. The ligands were characterized by elemental analysis, FTIR spectroscopy, UV-Vis spectroscopy, ¹³C- and ¹H-NMR spectroscopy and thermogravimetric analysis. Next the corresponding copper(II) and cobalt(II) metal complexes were synthesized and characterized by the physicochemical and spectroscopic methods of elemental analysis, FTIR spectroscopy, UV-Vis spectroscopy, magnetic moment measurements, and thermogravimetric analysis (TGA) and (DSC). The room temperature effective magnetic moments of complexes are 1.45, 1.56, 1.62, 2.16, 2.26 and 2.80 B.M. for complexes 3a, 3b, 3c, 4a 4b, and 4c, respectively, indicating that the complexes are paramagnetic with considerable electronic communication between the two metal centers.

  4. Properties of asymmetric magnetic reconnection

    SciTech Connect

    Birn, J.; Borovsky, J. E.; Hesse, M.

    2008-03-15

    Properties of magnetic reconnection are investigated in two-dimensional, resistive magnetohydrodynamic (MHD) simulations of current sheets separating plasmas with different magnetic field strengths and densities. Specific emphasis is on the influence of the external parameters on the reconnection rate. The effect of the dissipation in the resistive MHD model is separated from this influence by evaluating resistivity dependence together with the dependence on the background parameters. Two scenarios are considered, which may be distinguished as driven and nondriven reconnection. In either scenario, the maximum reconnection rate (electric field) is found to depend on appropriate hybrid expressions based on a magnetic field strength and an Alfven speed derived from the characteristic values in the two inflow regions. The scaling compares favorably with an analytic formula derived recently by Cassak and Shay [Phys. Plasmas 14, 102114 (2007)] applied to the regime of fast reconnection. An investigation of the energy flow and conversion in the vicinity of the reconnection site revealed a significant role of enthalpy flux generation, in addition to the expected conversion of Poynting flux to kinetic energy flux. This enthalpy flux generation results from Ohmic heating as well as adiabatic, that is, compressional heating. The latter is found more important when the magnetic field strengths in the two inflow regions are comparable in magnitude.

  5. Terbium(III) and yttrium(III) complexes with pyridine-substituted nitronyl nitroxide radical and different β-diketonate ligands. Crystal structures and magnetic and luminescence properties.

    PubMed

    Lannes, Anthony; Intissar, Mourad; Suffren, Yan; Reber, Christian; Luneau, Dominique

    2014-09-15

    A terbium(III) complex of nitronyl nitroxide free radical 2-(2-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro1H-imidazolyl-1-oxy-3-oxide (NIT2Py), [Tb(acac)3NIT2Py]·0.5H2O (3) (acac = acetylacetonate), was synthesized for comparison with the previously reported [Tb(hfac)3NIT2Py]·0.5C7H16 (1) (hfac = hexafluoroacetylacetonate), together with their yttrium analogues [Y(hfac)3NIT2Py]·0.5C7H16 (2) and [Y(acac)3NIT2Py]·0.5H2O (4). The crystal structures show that in all complexes the nitronyl nitroxide radical acts as a chelating ligand. Magnetic studies show that 3 like 1 exhibits slow relaxation of magnetization at low temperature, suggesting single-molecule magnet behavior. The luminescence spectra show resolved vibronic structure with the main interval decreasing from 1600 cm(-1) to 1400 cm(-1) between 80 and 300 K. This effect is analyzed quantitatively using experimental Raman frequencies.

  6. A novel single pot synthesis of binuclear copper(II) complexes of macrocyclic and macroacyclic compartmental ligands: Structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmay; Banu, Kazi Sabnam; Banerjee, Arpita; Ribas, Joan; Majee, Adinath; Nethaji, Munirathinam; Das, Debasis

    2007-05-01

    Two binuclear copper(II) complexes one (complex 1) with a macrocyclic ligand (H 2L1) and other (complex 2) with a macroacyclic (end-off type) compartmental ligand (HL2) have been synthesized from single pot template synthesis involving copper(II) nitrate, 1,2-diaminoethane, 4-methyl-2,6-diformylphenol, and sodium azide. Structure analysis of complex 1 reveals that there are actually two half molecules present in the asymmetric unit and so two complexes (molecule-I and molecule-II) are present in unit cell, although they show slight differences. The two Cu(II) centers are in distorted square pyramidal coordination environment with two endogenous phenoxo bridges provided by the phenolate of H 2L1 having Cu-Cu separations of 2.9133(10) Å and 2.9103(10) in the two molecules. In complex 2 the coordination environments around two Cu(II) centers are asymmetric, Cu1 is in distorted square pyramidal environment whereas, the coordination environment around Cu2 is distorted octahedral. The two Cu(II) centers in complex 2 are connected by two different kinds of bridges, one is endogenous phenoxo bridge provided by the phenolate of the ligand HL2 and the other is exogenous azido bridge (μ -1,1 type) with Cu-Cu distance of 3.032(10) Å. Variable temperature magnetic studies show that two Cu(II) centers in both the complexes are strongly antiferromagnetically coupled with J = -625 ± 5 cm -1 and J = -188.6 ± 1 cm -1 for complex 1 and 2, respectively.

  7. Synthesis, structure, magnetic properties and biological activity of supramolecular copper(II) and nickel(II) complexes with a Schiff base ligand derived from vitamin B6.

    PubMed

    Mukherjee, Tirtha; Costa Pessoa, João; Kumar, Amit; Sarkar, Asit R

    2013-02-21

    Three new complexes of Cu(II) and Ni(II), [Cu(II)(H(2)pydmedpt)](2+)·2Cl(-) (1), [Ni(II)(H(2)pydmedpt)](2+)·2Cl(-) (2) and [Ni(II)(pydmedpt)(OH)](-)·K(+) (3) of the Schiff base ligand [H(2)pydmedpt](2+)·2Cl(-) were synthesized by the in situ reaction of pyridoxal (pyd), a vitamer of vitamin B(6), N,N-bis[3-aminopropyl]methylamine (medpt) and copper(II) acetate or nickel(II) acetate, respectively. The molecular structures of 1 and 2 were determined by single crystal X-ray diffraction studies. The structure of 3 in the solid state was inferred by elemental analysis, diffuse reflectance spectrum, variable temperature magnetic moment studies and DFT calculations. The binding of the Schiff base ligand to the metal centers involves two phenolato oxygens, two imine nitrogens and one amine nitrogen. The coordination geometry around Cu in 1 is distorted square pyramidal and that around the Ni atom in 2 is intermediate between square-pyramidal and trigonal-bipyramidal. In the crystals the compounds form supramolecular one dimensional chain structures stabilized by hydrogen bonding and π-π stacking interactions. Variable temperature magnetic moment data of 2 indicate the presence of a momomeric high spin Ni(II) centre in the complex. The solid state diffuse reflectance spectrum, conductance and elemental analysis suggest that 3 is a Ni(II) complex with a tetragonally distorted octahedral field, the sixth position being occupied by the oxygen atom of a hydroxyl group. The variable temperature magnetic moment of 3 indicates the presence of a ferromagnetic dinuclear species (29.2%) along with the major monomeric species, the intra-dimer exchange term J value being 14.3 cm(-1). The competitive binding of 1 and 2 with DNA was studied in the concentration range 40 to 400 μM, the apparent binding constants being K = 2.9 × 10(3) and 6.7 × 10(3) M(-1), respectively. Human Serum Albumin (HSA) binding studies were carried out at concentrations of 800-1000 μM and 400-500

  8. Two novel macroacyclic schiff bases containing bis-N 2O 2 donor set and their binuclear complexes: synthesis, spectroscopic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Karaoglu, Kaan; Baran, Talat; Serbest, Kerim; Er, Mustafa; Degirmencioglu, Ismail

    2009-03-01

    Herein, we report two novel macroacyclic Schiff bases derived from tetranaphthaldehyde derivative compound and their binuclear Mn(II), Ni(II), Cu(II) and Zn(II) complexes. The structures of the compounds have been proposed by elemental analyses, spectroscopic data i.e. IR, 1H and 13C NMR, UV-Vis, electrospray ionisation mass spectra, molar conductivities and magnetic susceptibility measurements. The stoichiometries of the complexes derived from mass and elemental analysis correspond to the general formula [M 2L(ClO 4) n](ClO 4) 4-n, (where M is Mn(II), Ni(II), Cu(II), Zn(II) and L represents the Schiff base ligands).

  9. Modeling Magnetic Properties in EZTB

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul

    2007-01-01

    A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.

  10. A cyanide-bridged trinuclear Fe(II)-Ru(II)-Fe(II) complex with three stable states: synthesis, crystal structures, electronic couplings and magnetic properties.

    PubMed

    Ma, Xiao; Hu, Sheng-Min; Tan, Chun-Hong; Wen, Yue-Hong; Zhu, Qi-Long; Shen, Chao-Jun; Sheng, Tian-Lu; Wu, Xin-Tao

    2012-10-21

    Treatment of trans-(Ph-tpy)Ru(PPh(3))(CN)(2) (Ph-tpy = 4'-phenyl-2,2':6',2''-terpyridine, PPh(3) = triphenylphosphine) with 2 equiv of Cp(dppe)Fe(NCCH(3))Br (dppe = bis(diphenylphosphino)ethane) in the presence of NH(4)PF(6) produced a trinuclear cyanide-bridged complex, trans-[Cp(dppe)Fe(CN)(Ph-tpy)Ru(PPh(3))(CN)Fe(dppe)Cp][PF(6)](2) (1[PF(6)](2)). Its one-electron oxidation product (1[PF(6)](3)) and two-electron-oxidation product (1[PF(6)](4)) were obtained by oxidation with (Cp)(2)FePF(6) and AgPF(6), respectively. Firstly, the crystal structures of the cyanide-bridged complexes with three stable states were fully characterized. The reversible electrochemistry measurement of 1(2)(+) shows the presence of a long range intervalence interaction between the external iron centres. Both 1(3)(+) and 1(4)(+) were considered to be Class II mixed valence complexes according to the classification of Robin and Day. Magnetic analysis indicated the presence of a moderately strong antiferromagnetic coupling between the two remote Fe(III) ions across the Fe-NC-Ru-CN-Fe array in 1(4)(+). This proves that the Ru(II)-dicyano complex is a bridging ligand that can transmit electro- and magneto-communication.

  11. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia

    PubMed Central

    Obaidat, Ihab M.; Issa, Bashar; Haik, Yousef

    2015-01-01

    Localized magnetic hyperthermia using magnetic nanoparticles (MNPs) under the application of small magnetic fields is a promising tool for treating small or deep-seated tumors. For this method to be applicable, the amount of MNPs used should be minimized. Hence, it is essential to enhance the power dissipation or heating efficiency of MNPs. Several factors influence the heating efficiency of MNPs, such as the amplitude and frequency of the applied magnetic field and the structural and magnetic properties of MNPs. We discuss some of the physics principles for effective heating of MNPs focusing on the role of surface anisotropy, interface exchange anisotropy and dipolar interactions. Basic magnetic properties of MNPs such as their superparamagnetic behavior, are briefly reviewed. The influence of temperature on anisotropy and magnetization of MNPs is discussed. Recent development in self-regulated hyperthermia is briefly discussed. Some physical and practical limitations of using MNPs in magnetic hyperthermia are also briefly discussed. PMID:28347000

  12. Coherent transport through spin-crossover magnet Fe2 complexes

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Xie, Rong; Wang, Weiyi; Li, Qunxiang; Yang, Jinlong

    2015-12-01

    As one of the most promising building blocks in molecular spintronics, spin crossover (SCO) complexes have attracted increasing attention due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, we explore the electronic structures and transport properties of SCO magnet Fe2 complexes with three different spin-pair configurations, namely [LS-LS], [LS-HS], and [HS-HS], by performing extensive density functional theory calculations combined with the non-equilibrium Green's function technique. Our calculations clearly reveal that the SCO magnet Fe2 complexes should display two-step spin transitions triggered by external stimuli, i.e. temperature or light, which confirm the previous phenomenological model and agree well with previous experimental measurements. Based on the calculated transport results, we observe a nearly perfect spin-filtering effect and negative differential resistance (NDR) behavior integrated in the SCO magnet Fe2 junction with the [HS-HS] configuration. The current through the [HS-HS] SCO magnet Fe2 complex under a small bias voltage is mainly contributed by the spin-down electrons, which is significantly larger than those of the [LS-LS] and [LS-HS] cases. The bias-dependent transmissions are responsible for the observed NDR effect. These theoretical findings suggest that SCO Fe2 complexes hold potential applications in molecular spintronic devices.As one of the most promising building blocks in molecular spintronics, spin crossover (SCO) complexes have attracted increasing attention due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, we explore the electronic structures and transport properties of SCO magnet Fe2 complexes with three different spin-pair configurations, namely [LS-LS], [LS-HS], and [HS-HS], by performing extensive density functional theory calculations combined with the non-equilibrium Green's function technique. Our calculations clearly reveal that the SCO

  13. Two new complexes of Lanthanide(III) ion with the N3O2-donor Schiff base ligand: Synthesis, crystal structure, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Gao, Xu-Sheng; Jiang, Xia; Yao, Cheng

    2016-12-01

    Two rare earth coordination complexes, [Dy(DAPBH)NO3(H2O)2]ṡ(NO3)2 (1), La(DAPBH)(NO3)3 (2) (where DAPBH = 2, 6-diacetylpyridine benzoyhydrazone), have been synthesized and characterized. Single crystal structural analysis revealed that the Dy3+ ion is nine-coordinated with three N-atoms and two O-atoms from pentadentate DAPBH ligand, two O-atoms from one nitrate and other two O-atoms from two water molecules, and the coordination sphere features as a capped tetragonal antiprism in 1, while the La3+ ion is bound to six O atoms from three nitrate counter ions, three N-atoms and two O-atoms from a pentadentate DAPBH ligand to form a tricapped tetragonal antiprism coordination geometry in 2. Variable-temperature magnetic susceptibility measurements showed the existence of weak antiferromagnetic interaction in 1.

  14. Interface magnetism in complex oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Srikanth, Hariharan

    2008-03-01

    Magnetic oxides are an important class of materials from the perspectives of fundamental physics and technological applications. Advances in growth of high quality thin films and epitaxial oxide heterostructures over the years, have led to the realization of ideal condensed matter systems in which the complex and rich physics associated with cooperative phenomena can be explored. Examples of coupled phenomena in heterostructures include exchange bias effects, magnetoelectric coupling and interplay between magnetism and superconductivity. In this talk, I will focus on three classes of oxide heterostructures --PLD-grown M-type barium hexaferrite(BaM)/barium strontium titanate(BST), CVD-grown CrO2/Cr2O3 bilayers and high-pressure sputtered LCMO/YBCO films. The common theme is the magnetic coupling across the interfaces. I will demonstrate that dynamic susceptibility and kinetic inductance experiments using a sensitive tunnel-diode oscillator (TDO) are effective probes of such coupled effects. In the case of CrO2/Cr2O3 and LCMO/YBCO, the interface coupling results in anomalous anisotropy, exchange bias in the former and complex interaction between the LCMO magnetism and YBCO vortex lattice in the latter. In BaM/BST heterostructures, I will discuss how interfacial coupling influences the microwave response that is both electrically and magnetically tunable.

  15. First-principles determination of magnetic properties

    NASA Astrophysics Data System (ADS)

    Wu, Ruqian; Yang, Zongxian; Hong, Jisang

    2003-02-01

    First-principles density functional theory calculations have achieved great success in the exciting field of low-dimension magnetism, in explaining new phenomena observed in experiments as well as in predicting novel properties and materials. As known, spin-orbit coupling (SOC) plays an extremely important role in various magnetic properties such as magnetic anisotropy, magnetostriction, magneto-optical effects and spin-dynamics. Using the full potential linearized augmented plane wave approach, we have carried out extensive investigations for the effects of SOC in various materials. Results of selected examples, such as structure and magnetic properties of Ni/Cu(001), magnetism and magnetic anisotropy in magnetic Co/Cu(001) thin films, wires and clusters, magnetostriction in FeGa alloys and magneto-optical effects in Fe/Cr superlattices, are discussed.

  16. Competitive coordination aggregation for V-shaped [Co3] and disc-like [Co7] complexes: synthesis, magnetic properties and catechol oxidase activity.

    PubMed

    Singha Mahapatra, Tufan; Basak, Dipmalya; Chand, Santanu; Lengyel, Jeff; Shatruk, Michael; Bertolasi, Valerio; Ray, Debashis

    2016-09-14

    Unique dependence on the nature of metal salt and reaction conditions for coordination assembly reactions of varying architecture and nuclearity have been identified in V-shaped [Co3L4] and planar disc-like [Co7L6] compounds: [CoL2(μ-L)2(μ-OH2)2(CF3CO2)2] (1) and [Co(μ-L)6(μ-OMe)6]Cl2 (2) (HL = 2-{(3-ethoxypropylimino)methyl}-6-methoxyphenol). At room temperature varying reaction conditions, cobalt-ligand ratios and use of different bases allowed unique types of coordination self-assembly. The synthetic marvel lies in the nature of aggregation with respect to the two unrelated cores in 1 and 2. Complex 1 assumes a V-shaped arrangement bound to L(-), water and a trifluoroacetate anion, while 2 grows around a central Co(II) ion surrounded by a {Co} hexagon bound to methoxide and L(-). Magnetic measurements revealed that the intermetallic interactions are antiferromagnetic in nature in the case of complex 1 and ferromagnetic in the case of 2 involving high spin cobalt(ii) ions with stabilization of the high-spin ground state in the latter case. In MeCN solutions complexes 1 and 2 showed catalytic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBCH2) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ) in air. The kinetic study in MeCN revealed that with respect to the catalytic turnover number (kcat) 2 is more effective than 1 for oxidation of 3,5-DTBCH2.

  17. Dinuclear and 1D iron(III) Schiff base complexes bridged by 4-salicylideneamino-1,2,4-triazolate: X-ray structures and magnetic properties.

    PubMed

    Herchel, Radovan; Pavelek, Lubomír; Trávníček, Zdeněk

    2011-11-28

    Four new iron(III) complexes were obtained by the reaction of 4-salicylideneamino-1,2,4-triazole (Hsaltrz) and selected dinuclear μ-oxo-bridged iron(III) Schiff base complexes [{FeL(4)}(2)(μ-O)], where L(4) represents a terminal tetradentate dianionic Schiff-base ligand. X-ray structural analysis revealed a novel bridging mode of κN,κO of the saltrz ligand to form dinuclear complexes [{Fe(salen)(μ-saltrz)}(2)]·CH(3)OH (1) (H(2)salen = N,N'-ethylenebis(salicylimine)) and [{Fe(salpn)(μ-saltrz)}(2)] (2) (H(2)salpn = N,N'-1,2-propylenbis(salicylimine)), whereas one-dimensional (1D) zig-zag chains were formed in the case of [{Fe(salch)(μ-saltrz)}·0.5CH(3)OH](n) (3) (H(2)salch = N,N'-cyclohexanebis(salicylimine)) and [Fe(salophen)(μ-saltrz)](n) (4) (H(2)salophen = N,N'-o-phenylenebis(salicylimine)). It was also shown that the rigidity of the terminal ligand L(4) can be considered as the key factor for the molecular dimensionality of the products. The thorough magnetic analysis based on SQUID experiments, including the isotropic exchange and the zero-field splitting of both temperature and field dependent data, was performed for dimeric (1 and 2) and also for polymeric compounds (3 and 4) and revealed weak antiferromagnetic exchange mediated by the saltrz anions with much larger D-parameter (|D|≫|J|).

  18. Magnetic properties of carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Lähderanta, E.; Lashkul, A. V.; Lisunov, K. G.; Zherebtsov, D. A.; Galimov, D. M.; Titkov, A. N.

    2012-08-01

    Magnetization M (T, B) of powder and glassy samples containing carbon nanoparticles is investigated in the interval of temperatures T between ~ 3 - 300 K and magnetic fields B up to 5 T. Low-field magnetization, M (T), exhibits a strong magnetic irreversibility, which is suppressed above the field of ~ 1 T. The dependence of M (B) saturates at high temperatures above B ~ 2 T, magnetic hysteresis is observed already at 300 K. The values of the saturation magnetization, the coercivity field and the maximum blocking temperature are obtained. Analysis of the experimental data gives evidence for concentration of the magnetization close to the surface of the particles, which is consistent with the origin of magnetism in nanocarbon presumably due to intrinsic disorder and surface defects.

  19. Mono- and dinuclear iron complexes of bis(1-methylimidazol-2-yl)ketone (bik): structure, magnetic properties, and catalytic oxidation studies.

    PubMed

    Bruijnincx, Pieter C A; Buurmans, Inge L C; Huang, Yuxing; Juhász, Gergely; Viciano-Chumillas, Marta; Quesada, Manuel; Reedijk, Jan; Lutz, Martin; Spek, Anthony L; Münck, Eckard; Bominaar, Emile L; Klein Gebbink, Robertus J M

    2011-10-03

    The newly synthesized dinuclear complex [Fe(III)(2)(μ-OH)(2)(bik)(4)](NO(3))(4) (1) (bik, bis(1-methylimidazol-2-yl)ketone) shows rather short Fe···Fe (3.0723(6) Å) and Fe-O distances (1.941(2)/1.949(2) Å) compared to other unsupported Fe(III)(2)(μ-OH)(2) complexes. The bridging hydroxide groups of 1 are strongly hydrogen-bonded to a nitrate anion. The (57)Fe isomer shift (δ = 0.45 mm s(-1)) and quadrupole splitting (ΔE(Q) = 0.26 mm s(-1)) obtained from Mössbauer spectroscopy are consistent with the presence of two identical high-spin iron(III) sites. Variable-temperature magnetic susceptibility studies revealed antiferromagnetic exchange (J = 35.9 cm(-1) and H = JS(1)·S(2)) of the metal ions. The optimized DFT geometry of the cation of 1 in the gas phase agrees well with the crystal structure, but both the Fe···Fe and Fe-OH distances are overestimated (3.281 and 2.034 Å, respectively). The agreement in these parameters improves dramatically (3.074 and 1.966 Å) when the hydrogen-bonded nitrate groups are included, reducing the value calculated for J by 35%. Spontaneous reduction of 1 was observed in methanol, yielding a blue [Fe(II)(bik)(3)](2+) species. Variable-temperature magnetic susceptibility measurements of [Fe(II)(bik)(3)](OTf)(2) (2) revealed spin-crossover behavior. Thermal hysteresis was observed with 2, due to a loss of cocrystallized solvent molecules, as monitored by thermogravimetric analysis. The hysteresis disappears once the solvent is fully depleted by thermal cycling. [Fe(II)(bik)(3)](OTf)(2) (2) catalyzes the oxidation of alkanes with t-BuOOH. High selectivity for tertiary C-H bond oxidation was observed with adamantane (3°/2° value of 29.6); low alcohol/ketone ratios in cyclohexane and ethylbenzene oxidation, a strong dependence of total turnover number on the presence of O(2), and a low retention of configuration in cis-1,2-dimethylcyclohexane oxidation were observed. Stereoselective oxidation of olefins with dihydrogen

  20. Malonate-containing manganese(III) complexes: synthesis, crystal structure, and magnetic properties of AsPh4[Mn(mal)2(H2O)2].

    PubMed

    Delgado, Fernando S; Kerbellec, Nicolas; Ruiz-Pérez, Catalina; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2006-02-06

    The novel manganese(III) complexes PPh4[Mn(mal)2(H2O)2] (1) and AsPh4[Mn(mal)2(H2O)2] (2) (PPh4+ = tetraphenylphosphonium cation, AsPh4+ = tetraphenylarsonium cation, and H2mal = malonic acid) have been prepared, and the structure of 2 was determined by X-ray diffraction analysis. 2 is a mononuclear complex whose structure is made up of trans-diaquabis(malonato)manganate(III) units and tetraphenylarsonium cations. Two crystallographically independent manganese(III) ions (Mn(1) and Mn(2)) occur in 2 that exhibit elongated octahedral surroundings with four oxygen atoms from two bidentate malonate groups in equatorial positions (Mn(1)-O = 1.923(6) and 1.9328(6) A and Mn(2)-O = 1.894(6) and 1.925(6) A) and two trans-coordinated water molecules in the axial sites (Mn(1)-Ow = 2.245(6) A and Mn(2)-Ow = 2.268(6) A). The [Mn(mal)2(H2O)2]- units are linked through hydrogen bonds involving the free malonate-oxygen atoms and the coordinated water molecules to yield a quasi-square-type anionic layer growing in the ab plane. The shortest intralayer metal-metal separations are 7.1557(7) and 7.1526(7) A (through the edges of the square). The anionic sheets are separated from each other by layers of AsPh4+ where sextuple- and double-phenyl embraces occur. The magnetic behavior of 1 and 2 in the temperature range 1.9-290 K reveals the occurrence of weak intralayer ferromagnetic interactions (J = +0.081(1) (1) and +0.072(2) cm(-1) (2)). These values are compared to those of the weak antiferromagnetic coupling [J = -0.19(1) cm(-1)], which is observed in the chain compound K2[Mn(mal)2(MeOH)2][Mn(mal)2] (3), where the exchange pathway involves the carboxyate-malonate bridge in the anti-syn conformation. The structure of 3 was reported elsewhere. Theoretical calculations on fragment models of 2 and 3 were performed to analyze and substantiate both the nature and magnitude of the magnetic couplings observed.

  1. Mono- and Dinuclear Iron Complexes of Bis(1-methylimidazol-2-yl)ketone (bik): Structure, Magnetic Properties and Catalytic Oxidation Studies

    PubMed Central

    Bruijnincx, Pieter C. A.; Buurmans, Inge L. C.; Huang, Yuxing; Juhász, Gergely; Viciano-Chumillas, Marta; Quesada, Manuel; Reedijk, Jan; Lutz, Martin; Spek, Anthony L.; Münck, Eckard; Bominaar, Emile L.; Klein Gebbink, Robertus J. M.

    2011-01-01

    The newly synthesized dinuclear complex [FeIII2(μ-OH)2(bik)4](NO3)4 (1) (bik, bis(1-methylimidazol-2-yl)ketone) shows rather short Fe···Fe (3.0723(6) Å) and Fe–O distances (1.941(2)/1.949(2) Å) compared to other unsupported FeIII2(μ-OH)2 complexes. The bridging hydroxide groups of 1 are strongly hydrogen bonded to a nitrate anion. The 57Fe isomer shift (δ = 0.45 mm s−1) and quadrupole splitting (ΔEQ = 0.26 mm s−1) obtained from Mössbauer spectroscopy are consistent with the presence of two identical high-spin iron(III) sites. Variable temperature magnetic susceptibility studies revealed antiferromagnetic exchange (J = 35.9 cm−1 and = JS1·S2) of the metal ions. The optimized DFT geometry of the cation of 1 in the gas phase agrees well with the crystal structure, but both the Fe···Fe and Fe-OH distances are overestimated (3.281 and 2.034 Å, respectively). The agreement in these parameters improves dramatically (3.074 and 1.966 Å) when the hydrogen-bonded nitrate groups are included, reducing the value calculated for J by 35%. Spontaneous reduction of 1 was observed in methanol, yielding a blue [FeII(bik)3]2+ species. Variable temperature magnetic susceptibility measurements of [FeII(bik)3](OTf)2 (2) revealed spin crossover behavior. Thermal hysteresis was observed with 2, due to a loss of co-crystallized solvent molecules, as monitored by thermogravimetric analysis. The hysteresis disappears once the solvent is fully depleted by thermal cycling. [FeII(bik)3](OTf)2 (2) catalyzes the oxidation of alkanes with t-BuOOH. High selectivity for tertiary C-H bond oxidation was observed with adamantane (3°/2° value of 29.6); low alcohol/ketone ratios in cyclohexane and ethylbenzene oxidation, a strong dependence of total turnover number on the presence of O2, and a low retention of configuration in cis-1,2-dimethylcyclohexane oxidation were observed. Stereoselective oxidation of olefins with dihydrogen peroxide yielding epoxides was observed under

  2. Effective magnetization of the dust particles in a complex plasma

    NASA Astrophysics Data System (ADS)

    Kählert, Hanno

    2012-10-01

    The large mass and size of the dust particles in a complex plasma has several advantages, including low characteristic frequencies on the order of a few Hz and the ability to record their motion with video cameras. However, these properties pose major difficulties for achieving strong magnetization. While the light electrons and ions can be magnetized by (superconducting) magnets, magnetizing the heavy dust component is extremely challenging. Instead of further increasing the magnetic field strengths or decreasing the particle size, we use the analogy between the Lorentz force and the Coriolis force experienced by particles in a rotating reference frame to create ``effective magnetic fields'' which is a well-established technique in the field of trapped quantum gases [1]. To induce rotation in a complex plasma, we take advantage of the neutral drag force, which allows to transmit the motion of a rotating neutral gas to the dust particles [2]. The equations of motion in the rotating frame agree with those in a stationary gas except for the additional centrifugal and Coriolis forces [3]. Due to the slow rotation frequencies (˜ Hz) and contrary to the situation in a strong magnetic field, only the properties of the heavy dust particles are notably affected. Experiments with a rotating electrode realize the desired velocity profile for the neutral gas and allow us to verify the efficiency of the concept [3].[4pt] This work was performed in collaboration with J. Carstensen, M. Bonitz, H. L"owen, F. Greiner, and A. Piel.[4pt] [1] A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009)[0pt] [2] J. Carstensen, F. Greiner, L.-J. Hou, H. Maurer, and A. Piel, Phys. Plasmas 16, 013702 (2009)[0pt] [3] H. K"ahlert, J. Carstensen, M. Bonitz, H. L"owen, F. Greiner, and A. Piel, submitted for publication, arXiv:1206.5073

  3. Mononuclear single-molecule magnets: tailoring the magnetic anisotropy of first-row transition-metal complexes.

    PubMed

    Gomez-Coca, Silvia; Cremades, Eduard; Aliaga-Alcalde, Núria; Ruiz, Eliseo

    2013-05-08

    Magnetic anisotropy is the property that confers to the spin a preferred direction that could be not aligned with an external magnetic field. Molecules that exhibit a high degree of magnetic anisotropy can behave as individual nanomagnets in the absence of a magnetic field, due to their predisposition to maintain their inherent spin direction. Until now, it has proved very hard to predict magnetic anisotropy, and as a consequence, most synthetic work has been based on serendipitous processes in the search for large magnetic anisotropy systems. The present work shows how the property can be predicted based on the coordination numbers and electronic structures of paramagnetic centers. Using these indicators, two Co(II) complexes known from literature have been magnetically characterized and confirm the predicted single-molecule magnet behavior.

  4. Influence of carboxylic acid type on microstructure and magnetic properties of polymeric complex sol-gel driven NiFe2O4

    NASA Astrophysics Data System (ADS)

    Hessien, M. M.; Mostafa, Nasser Y.; Abd-Elkader, Omar H.

    2016-01-01

    Citric, oxalic and tartaric acids were used for synthesis of NiFe2O4 using polymeric complex precursor route. The dry precursor gels were calcined at various temperatures (400-1100 °C) for 2 h. All carboxylic acids produce iron-deficient NiFe2O4 with considerable amount of α-Fe2O3 at 400 °C. Increase in the annealing temperature caused reaction of α-Fe2O3 with iron-deficient ferrite phase. The amount of initially formed α-Fe2O3 is directly correlated with stability constant and inversely correlated with the decomposition temperature of Fe(III) carboxylate precursors. In case of tartaric acid precursor, single phase of the ferrite was obtained at 450 °C. However, in case of oxalic acid and citric acid precursors, single phase ferrite was obtained at 550 °C and 700 °C, respectively. The lattice parameters were increased with increasing annealing temperature and with decreasing the amount of α-Fe2O3. Maximum saturation magnetization (55 emu/g) was achieved using tartaric acid precursor annealed at 1100 °C.

  5. Origin of Magnetic Properties in Amorphous Metals.

    DTIC Science & Technology

    1979-12-01

    Magnetic Properties of Fe-Ni-B Amorphous Alloys," F. E. Luborsky, J. L. Walter, and H. H. Liebermann , IEEE Trans. on Magnetics MAG-15, 909 (1979). Also GE...Report 78CRD132. 2. "Formation and Magnetic Properties of Fe-B-Si Amorphous Alloys," F. E. Luborsky, J. J. Becker, J. L. Walter, and H. H. Liebermann ...Amorphous Alloys," F. E. Luborsky and H. H. Liebermann , J. Appl. Phys., to appear. Also GE Report 79CRD177. 4. "The Effect of Temperature on Magnetic

  6. Magnetic properties of high-density patterned magnetic media

    NASA Astrophysics Data System (ADS)

    Gurovich, B. A.; Prikhodko, K. E.; Kuleshova, E. A.; Yu Yakubovsky, A.; Meilikhov, E. Z.; Mosthenko, М. G.

    2010-10-01

    Structures of patterned magnetic media (PMM) with a density of 100-155 Gb/in. 2 have been prepared using the original method of selective removal of atoms making use of irradiation by an accelerated ion beam for producing patterns of materials whose chemical and physical properties are different from those of the matrix. Magnetic hysteresis loops for cobalt PMM structures with Co bit sizes of 40×15, 30×15, and 15×15 nm 2 show linear increase of coercivity with bit anisotropy factor. Consecutive reversals of nanobit magnetizations in bit ensembles have been visualized by the MFM technique, which allows one to reconstruct corresponding magnetic hysteresis loops.

  7. Structures and magnetic properties of an antiferromagnetically coupled polymeric copper(II) complex and ferromagnetically coupled hexanuclear nickel(II) clusters.

    PubMed

    Tandon, Santokh S; Bunge, Scott D; Sanchiz, Joaquin; Thompson, Laurence K

    2012-03-05

    Reactions between 2,6-diformyl-4-methylphenol (DFMF) and tris(hydroxymethyl) aminomethane (THMAM = H(3)L2) in the presence of copper(II) salts, CuX(2) (X = CH(3)CO(2)(-), BF(4)(-), ClO(4)(-), Cl(-), NO(3)(-)) and Ni(CH(3)CO(2))(2) or Ni(ClO(4))(2)/NaC(6)H(5)CO(2), sodium azide (NaN(3)), and triethylamine (TEA), in one pot self-assemble giving a coordination polymer consisting of repeating pentanuclear copper(II) clusters {[Cu(2)(H(5)L(2-))(μ-N(3))](2)[Cu(N(3))(4)]·2CH(3)OH}(n) (1) and hexanuclear Ni(II) complexes [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(CH(3)CO(2))(2)]·6C(3)H(7)NO·C(2)H(5)OH (2) and [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(C(6)H(5)CO(2))(2)]·3C(3)H(7)NO·3H(2)O·CH(3)OH (3). In 1, H(5)L(2-) and in 2 and 3 H(3)L1(-) and HL2(2-) represent doubly deprotonated, singly deprotonated, and doubly deprotonated Schiff-base ligands H(7)L and H(4)L1 and a tripodal ligand H(3)L2, respectively. 1 has a novel double-stranded ladder-like structure in which [Cu(N(3))(4)](2-) anions link single chains comprised of dinuclear cationic subunits [Cu(2)(H(5)L(2-))(μ-N(3))](+), forming a 3D structure of interconnected ladders through H bonding. Nickel(II) clusters 2 and 3 have very similar neutral hexanuclear cores in which six nickel(II) ions are bonded to two H(4)L1, two H(3)L2, four μ-azido, and two μ-CH(3)CO(2)(-)/μ-C(6)H(5)CO(2)(-) ligands. In each structure two terminal dinickel (Ni(2)) units are connected to the central dinickel unit through four doubly bridging end-on (EO) μ-azido and four triply bridging μ(3)-methoxy bridges organizing into hexanuclear units. In each terminal dinuclear unit two nickel centers are bridged through one μ-phenolate oxygen from H(3)L1(-), one μ(3)-methoxy oxygen from HL2(2-), and one μ-CH(3)CO(2)(-) (2)/μ-C(6)H(5)CO(2)(-) (3) ion. Bulk magnetization measurements on 1 show moderately strong antiferromagnetic coupling within the [Cu(2)] building block (J(1) = -113.5 cm(-1)). Bulk magnetization measurements on 2

  8. Synthesis, Crystal Structures, and Magnetic Properties of Two Novel Cyanido-Bridged Heterotrimetallic {Cu(II)Mn(II)Cr(III)} Complexes.

    PubMed

    Alexandru, Maria-Gabriela; Visinescu, Diana; Shova, Sergiu; Andruh, Marius; Lloret, Francesc; Julve, Miguel

    2017-02-20

    The self-assembly process between the heteroleptic [Cr(III)(phen)(CN)4](-) and [Cr(III)(ampy)(CN)4](-) metalloligands and the heterobimetallic {Cu(II)(valpn)Mn(II)}(2+) tecton afforded two heterotrimetallic complexes of formula [{Cu(II)(valpn)Mn(II)(μ-NC)2Cr(III)(phen)(CN)2}2{(μ-NC)Cr(III)(phen)(CN)3}2]·2CH3CN (1) and {[Cu(II)(valpn)Mn(II)(μ-NC)2Cr(III)(ampy)(CN)2]2·2CH3CN}n (2) [phen = 1,10-phenanthroline, ampy = 2-aminomethylpyridine, and H2valpn = 1,3-propanedyilbis(2-iminomethylene-6-methoxyphenol)]. The crystal structure of 1 consists of neutral Cu(II)2Mn(II)2Cr(III)4 octanuclear units, where two [Cr(phen)(CN)4](-) anions act as bis-monodentate ligands through cyanide groups toward two manganese(II) ions from two [Cu(II)(valpn)Mn(II)](2+) units to form a [{Cu(valpn)Mn}2Cr2(CN)4](6+) square motif. Two [Cr(phen)(CN)4](-) pendant anions in 1 are bound to the copper(II) ions with cis-trans geometry with respect to the bridging [Cr(phen)(CN)4](-) anion. Compound 2 is a sheet-like coordination polymer, where chains constituted by {Cr(III)(ampy)(CN)4} spacers act as bis-monodentate ligands toward the manganese(II) ions belonging to the {Cu(II)(valpn)Mn(II)} nodes, which are interlinked by another {Cr(III)(ampy)(CN)4} unit that acts as a bridge between the copper(II) and manganese(II) ions of adjacent chains. Magnetic susceptibility measurements in the temperature range of 1.9-300 K were performed for 1 and 2. An overall antiferromagnetic behavior is observed for 1, the ground spin state being described by a spin triplet from the square motif plus two magnetically isolated spin triplets from the two peripheral chromium(III) ions. Ferrimagnetic chains with interacting spins 1/2 (resulting spin of the trimetallic {Cu(II)(valpn)Mn(II)(μ-NC)Cr(III)} fragment) and 3/2 (spin from the bis-monodentate [Cr(III)(ampy)(CN)4](-) with weak interchain ferromagnetic interactions across the cyanide bridge between the chromium(III) and the copper(II) ion from adjacent chains [

  9. Design of magnetic coordination complexes for quantum computing.

    PubMed

    Aromí, Guillem; Aguilà, David; Gamez, Patrick; Luis, Fernando; Roubeau, Olivier

    2012-01-21

    A very exciting prospect in coordination chemistry is to manipulate spins within magnetic complexes for the realization of quantum logic operations. An introduction to the requirements for a paramagnetic molecule to act as a 2-qubit quantum gate is provided in this tutorial review. We propose synthetic methods aimed at accessing such type of functional molecules, based on ligand design and inorganic synthesis. Two strategies are presented: (i) the first consists in targeting molecules containing a pair of well-defined and weakly coupled paramagnetic metal aggregates, each acting as a carrier of one potential qubit, (ii) the second is the design of dinuclear complexes of anisotropic metal ions, exhibiting dissimilar environments and feeble magnetic coupling. The first systems obtained from this synthetic program are presented here and their properties are discussed.

  10. Thermoelectric Properties of Complex Zintl Phases

    NASA Astrophysics Data System (ADS)

    Snyder, G. Jeffrey

    2008-03-01

    Complex Zintl phases make ideal thermoelectric materials because they can exhibit the necessary ``electron-crystal, phonon-glass'' properties required for high thermoelectric efficiency. Complex crystal structures can lead to high thermoelectric figure of merit (zT) by having extraordinarily low lattice thermal conductivity. A recent example is the discovery that Yb14MnSb11, a complex Zintl compound, has twice the zT as the SiGe based material currently in use at NASA. The high temperature (300K - 1300K) electronic properties of Yb14MnSb11 can be understood using models for heavily doped semiconductors. The free hole concentration, confirmed by Hall effect measurements, is set by the electron counting rules of Zintl and the valence of the transition metal (Mn^+2). Substitution of nonmagnetic Zn^+2 for the magnetic Mn^+2 reduces the spin-disorder scattering and leads to increased zT (10%). The reduction of spin-disorder scattering is consistent with the picture of Yb14MnSb11 as an underscreened Kondo lattice as derived from low temperature measurements. The hole concentration can be reduced by the substitution of Al^+3 for Mn^+2, which leads to an increase in the Seebeck coefficient and electrical resistivity consistent with models for degenerate semiconductors. This leads to further improvements (about 25%) in zT and a reduction in the temperature where the zT peaks. The peak in zT is due to the onset of minority carrier conduction and can be correlated with reduction in Seebeck coefficient, increase in electrical conductivity and increase in thermal conductivity due to bipolar thermal conduction.

  11. Magnetic properties of nanosize iron clusters

    SciTech Connect

    Venturini, E.L.; Wilcoxon, J.P.; Newcomer, P.P.

    1993-12-31

    Isolated, monodisperse {alpha}-Fe clusters between 1.4 and 15 nm in diameter were prepared inside inverse micelles using an oil-continuous, nonaqueous system. The magnetic properties of these clusters were studied in a SQUID magnetometer as a function of cluster size, temperature and applied magnetic field. The blocking temperature, coercive field and remanent moment of 12.5 nm Fe clusters in inverse micelles are significantly lower than those reported for clusters of similar {alpha}-Fe core size but with a surface oxide. The novel synthesis technique may yield metallic clusters with essentially intrinsic magnetic properties.

  12. General study on the crystal, electronic and band structures, the morphological characterization, and the magnetic properties of the Sr{sub 2}DyRuO{sub 6} complex perovskite

    SciTech Connect

    Triana, C.A.; Landínez Téllez, D.A.; Roa-Rojas, J.

    2015-01-15

    A comprehensive investigation of the general properties of the Sr{sub 2}DyRuO{sub 6} complex perovskite was undertaken. Crystal structure characterization performed by X-ray diffraction measurements and Rietveld analysis allowed establishing that the material crystallizes in a distorted monoclinic perovskite-like structure belonging to the P2{sub 1}/n (#14) space group, with alternating distribution of Dy{sup 3} {sup +} (2c: 0, 0.5, 0) and Ru{sup 5} {sup +} (2d: 0.5, 0, 0). Because of the mismatch in the ionic radii, the DyO{sub 6} and RuO{sub 6} octahedra are forced to tilt around the cubic directions so as to optimize the Sr–O inter-atomic bond lengths. Morphological characterization carried out by scanning electron microscopy indicated a particle size D = 37.17 nm and an activation energy Q = 109.8 kJ/mol. Semi-quantitative compositional study, performed through energy-dispersive X-ray experiments, corroborated that the pure phase of the Sr{sub 2}DyRuO{sub 6} was correctly obtained. Magnetic properties determined from the fit of the Curie–Weiss law to the curves of magnetic susceptibility as a function of temperature showed that Sr{sub 2}DyRuO{sub 6} exhibits an antiferromagnetic-like behavior at low temperatures as a consequence of a magnetic transition at T = 38 K. Data collected with respect to the field dependence of the magnetization showed the existence of a weak ferromagnetic moment relationship with antiferromagnetic-like behavior. Density functional theory allowed establishing the optimum electronic structure for Sr{sub 2}DyRuO{sub 6}, and the study of the density of states showed that Dy{sup 3} {sup +} and Ru{sup 5} {sup +} are responsible for the magnetic character of the compound, with the prediction that at T = 0 K it behaves as a half-metallic material. The spin magnetic moment of the cell is close to 16 μ{sub B}, and the integer number of Bohr magneton is a signature of half-metallic character. Evolution of crystal structure at high

  13. Synthesis, Crystal Structures, Magnetic Properties, and Theoretical Investigation of a New Series of Ni(II)-Ln(III)-W(V) Heterotrimetallics: Understanding the SMM Behavior of Mixed Polynuclear Complexes.

    PubMed

    Vieru, Veacheslav; Pasatoiu, Traian D; Ungur, Liviu; Suturina, Elizaveta; Madalan, Augustin M; Duhayon, Carine; Sutter, Jean-Pascal; Andruh, Marius; Chibotaru, Liviu F

    2016-12-05

    blocking in complexes with fewer axial Ln ions. Further analysis has shown that, in the absence of ZFS on Ni ion, all compounds in the two series (except those containing Y and Gd) would be SMMs. The same situation arises for perfectly axial ZFS on Ni(II) with the main anisotropy axis parallel to the main magnetic axis of Ln(III) ions. In all other cases the ZFS on Ni(II) will worsen the SMM properties. The general conclusion is that the design of efficient SMMs on the basis of such complexes should involve isotropic or weekly anisotropic metal ions, such as Mn(II), Fe(III), etc., along with strongly axial lanthanides.

  14. High-pressure synthesis, structural and complex magnetic properties of the ordered double perovskite Pb2NiReO6.

    PubMed

    Stoyanova-Lyubenova, Teodora; Dos santos-García, Antonio J; Urones-Garrote, Esteban; Torralvo, María José; Alario-Franco, Miguel Á

    2014-01-21

    The ordered double perovskite Pb2NiReO6 has been prepared at 6 GPa and temperatures ranging from 1273 to 1373 K. Its crystal structure determined by X-ray powder diffraction and selected area electron diffraction shows monoclinic symmetry with centrosymmetric space group I2/m (a = 5.6021(1) Å, b = 5.6235(1) Å, c = 7.9286(1) Å and β = 90.284°(1)). High angle annular dark field microscopy studies reveal the existence of compositional microdomains. The compound displays a re-entrant spin-glass transition from a ferrimagnetic ordering below T(N) ~ 37 K between the Re(+5) and Ni(+3) (high spin configuration) magnetic sublattices to a spin-glass configuration. Magnetic field dependent magnetization measurements revealed wasp-waisted hysteresis loops at 5 K. These shaped features originate from the antiferromagnetic/ferromagnetic (AFM/FM) competing interactions.

  15. Tailoring Magnetic Properties in Bulk Nanostructured Solids

    NASA Astrophysics Data System (ADS)

    Morales, Jason Rolando

    Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally

  16. Gadolinium(III) complexes as MRI contrast agents: ligand design and properties of the complexes.

    PubMed

    Hermann, Petr; Kotek, Jan; Kubícek, Vojtech; Lukes, Ivan

    2008-06-21

    Magnetic resonance imaging is a commonly used diagnostic method in medicinal practice as well as in biological and preclinical research. Contrast agents (CAs), which are often applied are mostly based on Gd(III) complexes. In this paper, the ligand types and structures of their complexes on one side and a set of the physico-chemical parameters governing properties of the CAs on the other side are discussed. The solid-state structures of lanthanide(III) complexes of open-chain and macrocyclic ligands and their structural features are compared. Examples of tuning of ligand structures to alter the relaxometric properties of gadolinium(III) complexes as a number of coordinated water molecules, their residence time (exchange rate) or reorientation time of the complexes are given. Influence of the structural changes of the ligands on thermodynamic stability and kinetic inertness/lability of their lanthanide(III) complexes is discussed.

  17. Effects of nanoparticle coatings on the activity of oncolytic adenovirus-magnetic nanoparticle complexes.

    PubMed

    Tresilwised, Nittaya; Pithayanukul, Pimolpan; Holm, Per Sonne; Schillinger, Ulrike; Plank, Christian; Mykhaylyk, Olga

    2012-01-01

    Limitations to adenovirus infectivity can be overcome by association with magnetic nanoparticles and enforced infection by magnetic field influence. Here we examined three core-shell-type iron oxide magnetic nanoparticles differing in their surface coatings, particle sizes and magnetic properties for their ability to enhance the oncolytic potency of adenovirus Ad520 and to stabilize it against the inhibitory effects of serum or a neutralizing antibody. It was found that the physicochemical properties of magnetic nanoparticles are critical determinants of the properties which govern the oncolytic productivities of their complexes with Ad520. Although high serum concentration during infection or a neutralizing antibody had strong inhibitory influence on the uptake or oncolytic productivity of the naked virus, one particle type was identified which conferred high protection against both inhibitory factors while enhancing the oncolytic productivity of the internalized virus. This particle type equipped with a silica coating and adsorbed polyethylenimine, displaying a high magnetic moment and high saturation magnetization, mediated a 50% reduction of tumor growth rate versus control upon intratumoral injection of its complex with Ad520 and magnetic field influence, whereas Ad520 alone was inefficient. The correlations between physical properties of the magnetic particles or virus complexes and oncolytic potency are described herein.

  18. Magnetic Properties of Electrically Contacted Fe4 Molecular Magnets

    NASA Astrophysics Data System (ADS)

    Burgess, Jacob; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Totti, Frederico; Ninova, Silviya; Yan, Shichao; Choi, Deung-Jang; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-03-01

    Single molecule magnets (SMMs) are often large and fragile molecules. This poses challenges for the construction of SMM based spintronics. Device geometries with two electronic leads contacting a molecule may be explored via scanning tunneling microscopy (STM). The Fe4 molecule stands out as a robust, thermally evaporable SMM, making it ideal for such an experiment. Here we present the first STM investigations of individual Fe4 molecules thermally evaporated onto a monolayer of Cu2N on a Cu (100) crystal. Using inelastic electron tunneling spectroscopy (IETS), spin excitations in single Fe4 molecules can be detected at meV energies. Analysis using a Spin Hamiltonian allows extraction of magnetic properties of individual Fe4 molecules, and investigation of the influence of the electronic leads. The tip and sample induce small changes in the magnetic properties of Fe4 molecules, making Fe4 a promising candidate for the development of spintronics devices based on SMMs.

  19. Magnetic properties of magnetoactive spin clusters

    SciTech Connect

    Khamzin, A. M.; Nigmatullin, R. R.

    2010-01-15

    A simple model is proposed for describing magnetic properties of magnetoactive nanoclusters, which permits exact analytic solution. Exact expressions are obtained for thermodynamic characteristics of the model, which hold in the entire range of temperatures, magnetic fields, and interaction parameters. It is found that in the case of easy-axis anisotropy, the field dependence of magnetization of a nanocluster consisting of N particles with a spin of 1/2 has [N/2] fractional plateaus ([ Horizontal-Ellipsis ] is the integer part) corresponding to polarized phases with ruptures singlet pairs. A nonmonotonic behavior observed for the magnetic susceptibility of an easy-plane cluster is typical of gap magnets. The spin gap between the ground state and excited states is proportional to the anisotropy parameter.

  20. Structural properties, electric response and magnetic behaviour of La2SrFe2CoO9 triple complex perovskite

    NASA Astrophysics Data System (ADS)

    Casallas, F.; Vera, E.; Landínez, D.; Parra, C.; Roa, J.

    2016-02-01

    The triple perovskite La2SrFe2CoO9 was prepared by the solid state reaction method from the high purity precursor powders La2O3, SrCO3, Fe2O3, Co2O3 (99.9%). The crystalline structure was studied by X-ray diffraction experiments and Rietveld refinement analysis. Results reveal that this material crystallizes in an orthorhombic triple perovskite belonging to the space group Pnma (#62) with lattice constants a=5.491978(2)Ǻ, b=7.719842(2)Ǻ and c=5.436260(3)Ǻ. The granular surface morphology was studied from images of Scanning Electron Microscopy. The electric response was studied by the Impedance Spectroscopy technique from 10.0mHz up to 0.1MHz, at different temperatures (77-300K). Measurements of magnetization as a function of temperature permitted to determine the occurrence of a paramagnetic - ferromagnetic transition for a Curie temperature of 280K, which suggests it application in nanoelectronic devices. From the fit of the magnetic response with the Curie- Weiss equation it was concluded that the effective magnetic moment is particularly large due to the contribution of La, Fe and Co cations.

  1. Crystal structure and magnetic properties of complex oxides Mg{sub 4-x}Ni{sub x}Nb{sub 2}O{sub 9}, 0{<=}x{<=}4

    SciTech Connect

    Tarakina, N.V. Nikulina, E.A.; Hadermann, J.; Kellerman, D.G.; Tyutyunnik, A.P.; Berger, I.F.; Zubkov, V.G.; Van Tendeloo, G.

    2007-11-15

    In the Mg{sub 4-x}Ni{sub x}Nb{sub 2}O{sub 9} (0{<=}x{<=}4) system two ranges of solid solution have been found. One of the solid solutions has a corundum-related structure type (space group P3-barc1); the second one adopts the II-Ni{sub 4}Nb{sub 2}O{sub 9} structure type (space group Pbcn). The unit cell constants and atomic positions have been determined and refined using neutron powder diffraction data. Electron diffraction and high-resolution transmission electron microscopy (HRTEM) from MgNi{sub 3}Nb{sub 2}O{sub 9} crystals identify the presence of planar defects and the intergrowth of several (structurally related) phases. The magnetic susceptibility of Mg{sub 3}NiNb{sub 2}O{sub 9}, measured in the temperature range T=2-300 K, shows no indications of magnetic ordering at low temperatures, while for MgNi{sub 3}Nb{sub 2}O{sub 9} there is a magnetic ordering at temperatures below 45.5 K. - Graphical abstract: HREM image showing planar defects in MgNi{sub 3}Nb{sub 2}O{sub 9} and their schematic representation.

  2. Synthesis, magnetic and microstructural properties of Alnico magnets with additives

    NASA Astrophysics Data System (ADS)

    Ahmad, Zubair; Liu, Zhongwu; ul Haq, A.

    2017-04-01

    The phase formation, crystal structure, crystallographic texture, microstructure and magnetic properties of Alnico-8 alloys with varying Co and Nb content have been investigated and presented. Alnico-8 alloys were fabricated by induction melting and casting techniques. Magnetic properties in the alloys were induced by optimized thermomagnetic treatment and subsequent aging. The 37.9Fe-32Co-14Ni-7.5Al-3.1Cu-5.5Ti alloy exhibits coercivity of 110 kA/m, remanence of 0.66 T and energy product of 31.2 kJ/m3. The addition of 35 wt% Co in conjunction with 1.5 wt% Nb to 37.9Fe-14Ni-7.5Al-3.1Cu-5.5Ti alloys led to increase the magnetic properties, especially coercivity. The enhancement of the coercivity is attributed to ideal shape anisotropy and optimum mass fraction of ferromagnetic Fe-Co rich particles, which are 25-30 nm in diameter and 300-350 nm in length. The 33.4Fe-35Co-14Ni-7.5Al-5.5Ti-3.1Cu-1.5 Nb alloy yields the optimum magnetic properties of coercivity of 141.4 kA/m, remanence of 0.83 T and energy product of 42.4 kJ/m3. The good magnetic properties in the studied alloys are attributed to the nanostructured microstructure comprising textured Fe-Co-Nb rich α1 phase and Al-Ni-Cu rich α2 phase.

  3. Magnetic properties of nanocrystalline transition metals

    NASA Astrophysics Data System (ADS)

    Aus, Martin J.

    1999-09-01

    In the past decade, considerable attention has been devoted to the nanoprocessing of magnetic materials to enhance specific magnetic properties. For nanocrystalline materials in which the grain size approaches the dimensions of the domain wall thickness of conventional materials, considerable changes in magnetic behaviour are expected. In the present work, various electrodeposited ferromagnetic nanocrystalline pure metals and alloys were characterized by using a vibrating sample magnetometer. The systems investigated include pure Ni and Co as well as alloys of Ni-P, Ni-Fe and Co-Fe. These studies explored the effect of gram size on coercivity, indicating that the crystallographic texture is more significant than gram size. In addition, these studies reported, for the first time, that saturation magnetization of pore-free electroplated bulk nanocrystalline transition metals and their alloys is relatively little affected by grain size. In contrast, previously reported results for ultra-fine particles and nanomaterials produced from compacted powders showed a strong decrease in saturation magnetization with decreasing grain size. The difference in results for pore-free electrodeposits and ultrafine particles/compacted powders has been attributed to antiferromagnetic surface oxide layers, which is a direct result of large internal porosity in the latter group of materials. Further magnetic studies were completed on nanocrystalline electrodeposits produced by magnetoelectrohydrolysis. The effects of applied magnetic field strength and substrate orientation on saturation magnetization and coercivity of Ni-Fe and Co were explored. The results have shown that both nanoprocessing and electroplating in a magnetic field can improve soft magnetic properties by lowering the coercivity. Thermomagnetic studies examined saturation magnetization as a function of temperature, Curie temperature and coercivity changes during annealing. The Curie temperatures of electrodeposited

  4. Copper(II) coordination chain complex with the 2,5-bis(2-pyridyl)-1,3,4-thiadiazole ligand and an asymmetric μ2-1,1-azido double-bridged: Synthesis, crystal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Laachir, Abdelhakim; Guesmi, Salaheddine; Saadi, Mohamed; El Ammari, Lahcen; Mentré, Olivier; Vezin, Hervé; Colis, Silviu; Bentiss, Fouad

    2016-11-01

    A new asymmetric μ2-1,1-azido double bridged cooper (II), with 2,5-bis(2-pyridyl)-1,3,4-thiadiazole (L), has been synthesized and characterized using single crystal X-ray diffraction, FT-IR, UV-Visible spectroscopic and magnetic measurements. The asymmetric unit of the title compound contains half molecule of formula, C12H8CuN10S, which crystallizes in the triclinic system, space group P 1 bar , with a = 6.5916 (4)Å, b = 10.6905 (7) Å, c = 11.5037 (7) Å, α = 106.508 (3)°, β = 105.538 (3)°, γ = 90.233 (4)°, V = 745.99 (8) Å3 and Z = 2. The structure consists of two [CuN5] prismatic polyhedra linked together by edge-sharing to build up a [Cu2N8] dimer arranged in chain. The connectivity along the chain is performed by Nsbnd N edge sharing between dimers. In the crystal, the molecules are linked together by Csbnd H⋯N hydrogen bonds and by π---π interactions between parallel pyridyl rings of neighboring molecules. The interpretation of FT-IR and UV-Vis spectra is consistent with the crystal structure determined by X-ray diffraction. The magnetic properties of the complex confirm the picture of an alternated … Cu-J1-Cu ….J2 … Cu-J1-Cu … magnetic chains. We found in the dimers weak antiferromagnetic exchange interactions J1/k = -5.9 (1) k and between them J2/k = -2.3 k.

  5. New application of complex magnetic materials to the magnetic refrigerant in an Ericsson magnetic refrigerator

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Kuzuhara, T.; Shashi, M.; Inomata, K.; Tomokiyo, A.

    1987-11-01

    A complex new magnetic refrigerant, suitable for the ideal Ericsson cycle, has been investigated. Above 15 K, it is necessary to use ferromagnets as a magnetic refrigerant. However, temperature variation for the magnetic entropy change in a homogeneous ferromagnet is not suitable for the Ericsson cycle. The present paper verifies, from theoretical analysis, that a complex ferromagnetic material, for instance, (ErAl2)0.312 (HoAl2)0.198 (Ho/0.5/Dy/0.5/Al2)0.490, has the most suitable characteristics for the ideal Ericsson cycle, including two kinds of isomagnetic field processes. On the basis of the above consideration, a sintered layer structural complex has been prepared, composed of three kinds of RAl(2.15) layers, where R's are rare-earth atoms. From specific heat measurements made on this complex, its entropy and entropy change have been determined. It has been concluded that the complex magnetic material is the most hopeful refrigerant for the Ericsson cycle.

  6. Linear and nonlinear magnetic properties of ferrofluids

    NASA Astrophysics Data System (ADS)

    Szalai, I.; Nagy, S.; Dietrich, S.

    2015-10-01

    Within a high-magnetic-field approximation, employing Ruelle's algebraic perturbation theory, a field-dependent free-energy expression is proposed which allows one to determine the magnetic properties of ferrofluids modeled as dipolar hard-sphere systems. We compare the ensuing magnetization curves, following from this free energy, with those obtained by Ivanov and Kuznetsova [Phys. Rev. E 64, 041405 (2001), 10.1103/PhysRevE.64.041405] as well as with new corresponding Monte Carlo simulation data. Based on the power-series expansion of the magnetization, a closed expression for the magnetization is also proposed, which is a high-density extension of the corresponding equation of Ivanov and Kuznetsova. From both magnetization equations the zero-field susceptibility expression due to Tani et al. [Mol. Phys. 48, 863 (1983), 10.1080/00268978300100621] can be obtained, which is in good agreement with our MC simulation results. From the closed expression for the magnetization the second-order nonlinear magnetic susceptibility is also derived, which shows fair agreement with the corresponding MC simulation data.

  7. Magnetic properties and energy-mapping analysis.

    PubMed

    Xiang, Hongjun; Lee, Changhoon; Koo, Hyun-Joo; Gong, Xingao; Whangbo, Myung-Hwan

    2013-01-28

    The magnetic energy levels of a given magnetic solid are closely packed in energy because the interactions between magnetic ions are weak. Thus, in describing its magnetic properties, one needs to generate its magnetic energy spectrum by employing an appropriate spin Hamiltonian. In this review article we discuss how to determine and specify a necessary spin Hamiltonian in terms of first principles electronic structure calculations on the basis of energy-mapping analysis and briefly survey important concepts and phenomena that one encounters in reading the current literature on magnetic solids. Our discussion is given on a qualitative level from the perspective of magnetic energy levels and electronic structures. The spin Hamiltonian appropriate for a magnetic system should be based on its spin lattice, i.e., the repeat pattern of its strong magnetic bonds (strong spin exchange paths), which requires one to evaluate its Heisenberg spin exchanges on the basis of energy-mapping analysis. Other weaker energy terms such as Dzyaloshinskii-Moriya (DM) spin exchange and magnetocrystalline anisotropy energies, which a spin Hamiltonian must include in certain cases, can also be evaluated by performing energy-mapping analysis. We show that the spin orientation of a transition-metal magnetic ion can be easily explained by considering its split d-block levels as unperturbed states with the spin-orbit coupling (SOC) as perturbation, that the DM exchange between adjacent spin sites can become comparable in strength to the Heisenberg spin exchange when the two spin sites are not chemically equivalent, and that the DM interaction between rare-earth and transition-metal cations is governed largely by the magnetic orbitals of the rare-earth cation.

  8. Effects of occupation-numbers in (3d-5d) and U energy on transport and magnetic properties of complex perovskites Pb2MReO6 (M = Cr, Mn and Fe) by LSDA and LSDA + U methods

    NASA Astrophysics Data System (ADS)

    Musa Saad H.-E., M.

    2017-02-01

    Three compounds of lead-based complex perovskites Pb2MReO6 (M = Cr, Mn and Fe) have been investigated in detail based on density functional theory (DFT) using local spin density approximation (LSDA) and (LSDA + U) methods. By introducing a series of 3d-ions in M-site, the number of valence electrons that occupied the 3d-orbitals can be increased from Cr3+(3d3) to Mn2+(3d5) and Fe3+(3d5), and this beside the effect of energy U are the main factors that influenced the physical properties of Pb2MReO6. Magnetic and electronic calculations showed that all Pb2MReO6 compounds have ferrimagnetic half-metallic (FI-HM) properties. FI-HM are attributed to the M (3d)-Re (5d) hybridization through the strong 180° super-exchange (SE) interaction via the long-range pathway M (3d)↑-O (2p)-Re (5d)↓, in conformity with both Pauli Exclusion principles and Goodenough-Kanamori rules. This result is interpreted within a scenario where the Re (5d) states play a crucial role in the FI-HM ground state.

  9. Magnetic properties of Martian surface material

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  10. Magnetic Properties of 3D Printed Toroids

    NASA Astrophysics Data System (ADS)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  11. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We

  12. Properties of magnetically attractive experimental resin composites.

    PubMed

    Hirano, S; Yasukawa, H; Nomoto, R; Moriyama, K; Hirasawa, T

    1996-12-01

    SUS444 stainless steel filled chemically cured resin composites that can attract magnet were fabricated. The filler was treated with various concentrations of silane. The experimental composite was easy to handle and showed a good shelf life. The maximal properties obtained are as follows; The attraction force to a magnetic attachment was 1/3-1/4 lower than the commercially available magnet-keeper system for dental magnetic attachment. Flexural strength and Knoop hardness of the composite were 76MPa (7.7 kgf/mm2) and 64 KHN. These values were lower than the commercially available chemically cured composite used as a reference. Eluted metal from the composite in 1% lactic acid solution for 7 days showed 0.7 mg/cm2, but in 0.9% NaCl solution for 7 days, it could not be detected.

  13. Electronic properties of complex nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen

    Nanostructured materials have brought an unprecedented opportunity for advancement in many fields of human endeavor and in applications. Nanostructures are a new research field which may revolutionize people's everyday life. In the Thesis, I have used theoretical methods including density functional theory (DFT), molecular dynamic simulations (MD) and tight-binding methods to explore the structural, mechanical and electronic properties of various nanomaterials. In all this, I also paid attention to potential applications of these findings. First, I will briefly introduce the scientific background of this Thesis, including the motivation for the study of a boron enriched aluminum surface, novel carbon foam structures and my research interest in 2D electronics. Then I will review the computational techniques I used in the study, mostly DFT methods. In Chapter 3, I introduce an effective way to enhance surface hardness of aluminum by boron nanoparticle implantation. Using boron dimers to represent the nanoparticles, the process of boron implantation is modeled in a molecular dynamics simulation of bombarding the aluminum surface by energetic B 2 molecules. Possible metastable structures of boron-coated aluminum surface are identified. Within these structures, I find that boron atoms prefer to stay in the subsurface region of aluminum. By modeling the Rockwell indentation process, boron enriched aluminum surface is found to be harder than the pristine aluminum surface by at least 15%. In Chapter 4, I discuss novel carbon structures, including 3D carbon foam and related 2D slab structures. Carbon foam contains both sp 2 and sp3 hybridized carbon atoms. It forms a 3D honeycomb lattice with a comparable stability to fullerenes, suggesting possible existence of such carbon foam structures. Although the bulk 3D foam structure is semiconducting, an sp2 terminated carbon surface could maintain a conducting channel even when passivated by hydrogen. To promote the experimental

  14. Magnetic dipole discharges. I. Basic properties

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Teodorescu-Soare, C. T.; Ionita, C.; Schrittwieser, R.

    2013-08-15

    A simple discharge is described which uses a permanent magnet as a cold cathode and the metallic chamber wall as an anode. The magnet's equator is biased strongly negative, which produces secondary electrons due to the impact of energetic ions. The emitted electrons are highly confined by the strong dipolar magnetic field and the negative potential in the equatorial plane of the magnet. The emitted electrons ionize near the sheath and produce further electrons, which drift across field lines to the anode while the nearly unmagnetized ions are accelerated back to the magnet. A steady state discharge is maintained at neutral pressures above 10{sup −3} mbar. This is the principle of magnetron discharges, which commonly use cylindrical and planar cathodes rather than magnetic dipoles as cathodes. The discharge properties have been investigated in steady state and pulsed mode. Different magnets and geometries have been employed. The role of a background plasma has been investigated. Various types of instabilities have been observed such as sheath oscillations, current-driven turbulence, relaxation instabilities due to ionization, and high frequency oscillations created by sputtering impulses, which are described in more detail in companion papers. The discharge has also been operated in reactive gases and shown to be useful for sputtering applications.

  15. Thermophysical and Magnetic Properties of Carbon Beads Containing Cobalt Nanocrystallites

    NASA Astrophysics Data System (ADS)

    Izydorzak, M.; Skumiel, A.; Leonowicz, M.; Kaczmarek-Klinowska, M.; Pomogailo, A. D.; Dzhardimalieva, G. I.

    2012-04-01

    Magnetic Co-beads were fabricated in the course of a three-step procedure comprising preparation of a metal-acrylamide complex, followed by frontal polymerization and finally pyrolysis of the polymer. The composites obtained were composed of cobalt nanocrystallites stabilized in a carbon matrix built of disordered graphite. The crystallite size, material morphology, fraction of the magnetic component, and thus the magnetic properties can be tailored by a proper choice of the processing variables. The samples were subjected to an alternating magnetic field of different strengths ( H = 0 to 5 kA · m-1) at a frequency of f = 500 kHz. From the calorimetric measurements, we concluded that the relaxation processes dominate in the heat generation mechanism for the beads pyrolyzed at 773 K. For the beads pyrolyzed at 1073 K, significant values of magnetic properties, such as the coercive force and remanence give substantial contribution to the energy losses for hysteresis. The specific absorption coefficient ( SAR) related to the cobalt mass unit for the 1073 K pyrolyzed beads {({SAR} = 1340 W \\cdot g^{-1 }_cobalt)} is in very good conformity with the results obtained by other authors. The effective density power loss, caused by eddy currents, can be neglected for heating processes applied in magnetic hyperthermia. The Co-beads can potentially be applied for hyperthermia treatment.

  16. Measurement of dielectric and magnetic properties of soil

    SciTech Connect

    Patitz, W.E.; Brock, B.C.; Powell, E.G.

    1995-11-01

    The possibility of subsurface imaging using SAR technology has generated a considerable amount of interest in recent years. One requirement for the successful development of a subsurface imagin system is an understanding of how the soil affects the signal. In response to a need for an electromagnetic characterization of the soil properties, the Radar/Antenna department has developed a measurement system which determines the soils complex electric permittivity and magnetic permeability at UHF frequencies. The one way loss in dB is also calculated using the measured values. There are many reports of measurements of the electric properties of soil in the literature. However, most of these are primarily concerned with measuring only a real dielectric constant. Because some soils have ferromagnetic constituents it is desirable to measure both the electric and magnetic properties of the soil.

  17. Magnetic circular dichroism of porphyrin lanthanide M3+ complexes.

    PubMed

    Andrushchenko, Valery; Padula, Daniele; Zhivotova, Elena; Yamamoto, Shigeki; Bouř, Petr

    2014-10-01

    Lanthanide complexes exhibit interesting spectroscopic properties yielding many applications as imaging probes, natural chirality amplifiers, and therapeutic agents. However, many properties are not fully understood yet. Therefore, we applied magnetic circular dichroism (MCD) spectroscopy, which provides enhanced information about the underlying electronic structure to a series of lanthanide compounds. The metals in the M(3+) state included Y, La, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu; the spectra were collected for selected tetraphenylporphin (TPP) and octaethylporphin (OEP) complexes in chloroform. While the MCD and UV-VIS absorption spectra were dominated by the porphyrin signal, metal binding significantly modulated them. MCD spectroscopy was found to be better suited to discriminate between various species than absorption spectroscopy alone. The main features and trends in the lanthanide series observed in MCD and absorption spectra of the complexes could be interpreted at the Density Functional Theory (DFT) level, with effective core potentials on metal nuclei. The sum over state (SOS) method was used for simulation of the MCD intensities. The combination of the spectroscopy and quantum-chemical computations is important for understanding the interactions of the metals with the organic compounds.

  18. Thermophysical and Magnetic Properties of Carbon Beads Containing Nickel Nanocrystallites

    NASA Astrophysics Data System (ADS)

    Skumiel, A.; Izydorzak, M.; Leonowicz, M.; Pomogailo, A. D.; Dzhardimalieva, G. I.

    2011-09-01

    Ferromagnetic and superparamagnetic nickel nanocrystallites, stabilized in a carbon matrix, were prepared by a three-step procedure including formation of a Ni acrylamide complex, followed by frontal polymerization and pyrolysis of the polymer at various temperatures. It was found that the procedure applied enables fabrication of magnetic beads containing metallic nanocrystallites embedded in a carbon matrix. The size of the crystallites, their morphology, volume fraction, and magnetic properties can be tailored by the pyrolysis temperature. The size of the crystallites affects their behavior in an external magnetic field, i.e., a heating process is the most effective for a sample pyrolyzed at 873 K. The revealed H n-type dependence of the temperature increase rate, (d T/d t) t=0, on the amplitude of the magnetic field indicates the presence of both superparamagnetic and ferromagnetic particles in all the samples studied since n > 2. For the superparamagnetic particles, the heating mechanism is associated with Néel relaxation. For the lower values of the magnetic field amplitude, H < H 0, the relaxation losses dominate whereas for the opposite case, H > H 0, the magnetic hysteresis is the main source of thermal energy losses. The composites containing magnetic Ni nanocrystallites entrapped in a carbon matrix can be potentially applied for hyperthermia treatment.

  19. Magnetic Properties of Ubiquitous yet Underrated Antiferromagnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guyodo, Y. J.; Till, J. L.; Lagroix, F.; Bonville, P.; Penn, R.; Sainctavit, P.; Ona-Nguema, G.; Morin, G.

    2013-05-01

    Ferrihydrite, lepidocrocite and goethite are antiferromagnetic, weakly "ferromagnetic" iron oxyhydroxides that are commonly found in diverse environments, including ground waters and streams, sediments, soils, or acid mine drainage. One of them, ferrihydrite, constitutes the mineral core of ferritin, a vital iron storage protein. Iron oxyhydroxides take part in multiple biological and abiological processes, and can evolve, under changing environmental or geological conditions, to more magnetic phases such as hematite, maghemite, or magnetite. Therefore, they represent key minerals with regard to paleoclimate, paleoenvironmental, and paleomagnetic studies. We will present low temperature magnetic properties acquired on fully characterized synthetic iron oxyhydroxides. The complex nature of the magnetism of these minerals is revealed by comparing magnetic data with other types of characterizations such as high-resolution transmission electron microscopy or synchrotron X-ray magnetic circular dichroism (XMCD), or when the early-stages of solid-state alteration (under oxidizing or reducing atmosphere) are studied. In particular, we will present resent results about the structure of 6-line ferrihydrite, about the possible presence of ferri-magnetic nano-clusters in lepidocrocite, and about uncompensated magnetic moments in goethite nanoparticles.

  20. Effect of Chloride Depletion on the Magnetic Properties and the Redox Leveling of the Oxygen-Evolving Complex in Photosystem II.

    PubMed

    Amin, Muhamed; Pokhrel, Ravi; Brudvig, Gary W; Badawi, Ashraf; Obayya, S S A

    2016-05-12

    Chloride is an essential cofactor in the oxygen-evolution reaction that takes place in photosystem II (PSII). The oxygen-evolving complex (OEC) is oxidized in a linear four-step photocatalytic cycle in which chloride is required for the OEC to advance beyond the S2 state. Here, using density functional theory, we compare the energetics and spin configuration of two different states of the Mn4CaO5 cluster in the S2 state: state A with Mn1(3+) and B with Mn4(3+) with and without chloride. The calculations suggest that model B with an S = 5/2 ground state occurs in the chloride-depleted PSII, which may explain the presence of the EPR signal at g = 4.1. Moreover, we use multiconformer continuum electrostatics to study the effect of chloride depletion on the redox potential associated with the S1/S2 and S2/S3 transitions.

  1. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Infrared studies of oxygen-related complexes in electron-irradiated Cz-Si

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Feng; Yan, Wen-Bo; Chen, Hong-Jian; Cui, Hui-Ying; Li, Yang-Xian

    2009-07-01

    This paper investigates the infrared absorption spectra of oxygen-related complexes in silicon crystals irradiated with electron (1.5 MeV) at 360 K. Two groups of samples with low [Oi] = 6.9 × 1017 cm-3 and high [Oi] = 1.06 × 1018 cm-3 were used. We found that the concentration of the VO pairs have different behaviour to the annealing temperature in different concentration of oxygen specimen, it is hardly changed in the higher concentration of oxygen specimen. It was also found that the concentration of VO2 in lower concentration of oxygen specimen gets to maximum at 450 °C and then dissapears at 500 °C, accompanied with the appearing of VO3. For both kinds of specimens, the concentration of VO3 reachs to maximum at 550 °C and does not disappear completely at 600 °C.

  2. Magnetic properties of heterotrophic bacteria (abstract)

    NASA Astrophysics Data System (ADS)

    Verkhovceva, Nadezda V.; Glebova, Irina N.; Romanuk, Anatoly V.

    1994-05-01

    The magnetic properties (magnetic susceptibility and saturation magnetization) of six species of heterotrophic bacteria were studied: alcaligenes faecalis 81, arthrobacter globiformis BKM 685, bacillus cereus 8, leptothrix pseudo-ochracea D-405, proteus vulgaris 14, and seliberia stellata. It has been shown that the magnetic properties of bacteria depend on (1) the peculiarity of the micro-organism (species-specific and connected with cultivation conditions); (2) the source of the iron in the media. Most of the bacteria are diamagnetic in media with a minimum of iron (χ∞=-7.2-0.3×10-6 sm3/g). The spore forming species (bacillus cereus) has increased diamagnetism. Usually the bacteria are paramagnetic in iron-containing media because they concentrate into Fe compounds. The paramagnetism of the iron-concentrating species (anthrobacter globiformis -χpar=2.4×10-6, leptothrix pseudo-ochtracea χpar=11.0×10-6 and seliberia stellata χpar=3.2×10-6 sm3/g) depends, in general, on magnetically ordered compounds. Iron compounds not accumulated by proteus vulgaris and these species are always diamagnetic .

  3. Magnetic properties of ZnO nanoparticles.

    PubMed

    Garcia, M A; Merino, J M; Fernández Pinel, E; Quesada, A; de la Venta, J; Ruíz González, M L; Castro, G R; Crespo, P; Llopis, J; González-Calbet, J M; Hernando, A

    2007-06-01

    We experimentally show that it is possible to induce room-temperature ferromagnetic-like behavior in ZnO nanoparticles without doping with magnetic impurities but simply inducing an alteration of their electronic configuration. Capping ZnO nanoparticles ( approximately 10 nm size) with different organic molecules produces an alteration of their electronic configuration that depends on the particular molecule, as evidenced by photoluminescence and X-ray absorption spectroscopies and altering their magnetic properties that varies from diamagnetic to ferromagnetic-like behavior.

  4. Structure and Magnetic Properties of Lanthanide Nanocrystals

    SciTech Connect

    Dickerson, James Henry

    2014-06-01

    We have had considerable success on this project, particularly in the understanding of the relationship between nanostructure and magnetic properties in lanthanide nanocrystals. We also have successfully facilitated the doctoral degrees of Dr. Suseela Somarajan, in the Department of Physics and Astronomy, and Dr. Melissa Harrison, in the Materials Science Program. The following passages summarize the various accomplishments that were featured in 9 publications that were generated based on support from this grant. We thank the Department of Energy for their generous support of our research efforts in this area of materials science, magnetism, and electron microscopy.

  5. Properties of Magnetic Reconnection as a function of magnetic shear

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Daughton, W. S.; Karimabadi, H.; Li, H.; Gary, S. P.; Guo, F.

    2013-12-01

    Observations of reconnection events at the Earth's magnetopause and in the solar wind show that reconnection occurs for a large range in magnetic shear angles extending to the very low shear limit 1. Here we report a fully kinetic study of the influence of the magnetic shear on details of reconnection such as its structure and rate. In previous work, we found that the electron diffusion region bifurcates into two or more distinct layers in regimes with weak magnetic shear2, a new feature that may be observable by NASA's up-coming Magnetospheric Multiscale mission. In this work, we have systematically extended the study to lower shear cases and found a new regime, where the reconnection electric field becomes much smaller and the properties of the reconnection changes significantly. We will discuss the role of various physics mechanisms in determining the observed scaling of the reconnection rate, including the dispersive properties of the waves in the system, the dissipation mechanisms and the tearing instability. 1 J. T. Goslings and T. D. Phan. APJL 763, L39, 2013 2 Yi-Hsin Liu et al. Phys. Rev. Lett. 110 , 265004, 2013

  6. Magnetic properties of artificially synthesized ferritins

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Lee, H. I.; Cho, S.-B.; Yoon, S.; Suh, B. J.; Jang, Z. H.; St. Pierre, T. G.; Kim, S.-W.; Kim, K.-S.

    2005-05-01

    Human ferritin homopolymers with H or L subunits (rHF and rLF) were genetically engineered in E coli. Apoferritins were then reconstituted with 2000 Fe atoms. A big difference was observed in the rates of iron uptake, whereas the mean core size was similar in rHF and rLF. Magnetization of the recombinant human ferritins were measured as functions of temperature and field. The blocking temperature TB(H) at low fields is considerably higher in rLF than in rHF. From the fit of M(H ) data to a modified Langevin function: M(H )=M0L(μpH/kBT)+χaH, the effective magnetic moment μp is found to be much larger in rLF than in rHF. Experimental data demonstrate that the magnetic properties, in particular, the uncompensated spins of ferritin core are related to the biomineralization process in ferritins.

  7. Magnetic properties and microstructure of bulk Nd-Fe-B magnets solidified in magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, C.; Lai, Y. S.; Hsieh, C. C.; Chang, W. C.; Chang, H. W.; Sun, A. C.

    2011-04-01

    The Nd-Fe-B bulk magnets with a slab shape of 0.9 × 4 × 15 mm3 were prepared by injection casting into a copper mold. The effects of applying a magnetic field during the casting process on the magnetic properties and microstructure of Nd9.5Fe71.5Ti2.5Zr0.5Cr1B14.5C0.5 alloy have been studied. The results show that the sample cast with magnetic field has a stronger (00L) texture of Nd2Fe14B phase with the c-axis perpendicular to the slab plane than the sample cast without magnetic field. The intensity of the texture weakens from surface to inner region of the bulk magnets. Applying a magnetic field during the casting process is helpful to refine the grain size effectively. As a result, the magnetic properties are improved from Br = 5.8 kG, iHc = 6.5 kOe, and (BH)max = 5.9 MGOe for thesample cast without magnetic field to Br = 6.1 kG, iHc = 10.3 kOe, and (BH)max = 7.3 MGOe for the sample cast with a 3.7 kOe magnetic field.

  8. A N2(3-) radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K.

    PubMed

    Rinehart, Jeffrey D; Fang, Ming; Evans, William J; Long, Jeffrey R

    2011-09-14

    The synthesis and magnetic properties of three new N(2)(3-) radical-bridged dilanthanide complexes, {[(Me(3)Si)(2)N](2)(THF)Ln}(2)(μ-η(2):η(2)-N(2))(-) (Ln = Tb, Ho, Er), are reported. All three display signatures of single-molecule-magnet behavior, with the terbium congener exhibiting magnetic hysteresis at 14 K and a 100 s blocking temperature of 13.9 K. The results show how synergizing the strong magnetic anisotropy of terbium(III) with the effective exchange-coupling ability of the N(2)(3-) radical can create the hardest molecular magnet discovered to date. Through comparisons with non-radical-bridged ac magnetic susceptibility measurements, we show that the magnetic exchange coupling hinders zero-field fast relaxation pathways, forcing thermally activated relaxation behavior over a much broader temperature range.

  9. Magnetic and dielectric properties of lunar samples

    NASA Technical Reports Server (NTRS)

    Strangway, D. W.; Pearce, G. W.; Olhoeft, G. R.

    1977-01-01

    Dielectric properties of lunar soil and rock samples showed a systematic character when careful precautions were taken to ensure there was no moisture present during measurement. The dielectric constant (K) above 100,000 Hz was directly dependent on density according to the formula K = (1.93 + or - 0.17) to the rho power where rho is the density in g/cc. The dielectric loss tangent was only slightly dependent on density and had values less than 0.005 for typical soils and 0.005 to 0.03 for typical rocks. The loss tangent appeared to be directly related to the metallic ilmenite content. It was shown that magnetic properties of lunar samples can be used to study the distribution of metallic and ferrous iron which shows systematic variations from soil type to soil type. Other magnetic characteristics can be used to determine the distribution of grain sizes.

  10. Physical and magnetic properties of magnetic nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Mohtasebzadeh, Abdul Rahman

    Using Scanning Electron Microscope (SEM) , Atomic Force Microscope (AFM) and Vibrating Sample Magnetometer (VSM) I studied magnetic-field directed selfassembly of magnetic nanoparticles into patterned arrays on the surface of perpendicular magnetic recording media. A controllable machine was used to coat super paramagnetic nano particles onto the surface of perpendicular recording media for different time intervals. Self assembled nano particles on the surface of the media, were transferred to a polymer layer to observe physical properties. Results from imaging shows that the average width and height of arrays is increasing as a function of time. Width of arrays with assembly time varies from 100nm at 5 minutes to 500nm at 120 minutes. Similarly, height changes from 13nm at 5 minutes to 37nm at 120 minutes. Therefore the pattern aspect ratio changes from 8:1 at 5 minutes to 14:1 at 120 minutes. For large widths compared with pattern spacing, array interaction appears as a slope change in VSM hysteresis loops. The hypothesis is that the difference in slope as a function of time for two cases; patterns oriented parallel and perpendicular to the external field is caused by array interaction; in other words wider patterns interact with each other more than narrower patterns.

  11. Paleoenvironmental conditions in a Travertine Complex deduced from rock magnetism

    NASA Astrophysics Data System (ADS)

    Reinders, Jan; Hambach, Ulrich

    We present a rock magnetic study on ca. 100 specimens from a 7.5 m travertine section (BMH) and a parallel 1.0 m profile (BMP) to evaluate vertical and lateral variations. Concentration dependent parameters and inter-parametric ratios point to varying redox conditions through time and space suggesting local paleoenvironmental rather than paleoclimatic control of the rock magnetic properties.

  12. Non-destructive evaluation of mechanical properties of magnetic materials

    SciTech Connect

    Kankolenski, K.P.; Hua, S.Z.; Yang, D.X.; Hicho, G.E.; Swartzendruber, L.J.; Zang, Z.; Chopra, H.D.

    2000-07-01

    A magnetic-based non-destructive evaluation (NDE) method, which employs Barkhausen effect and measurement of the hysteresis loops, is used to correlate the magnetic and mechanical properties of ultra low carbon (ULC) steel. In particular, the NDE method was used to detect small deviations from linearity that occur in the stress-strain curve well below the 0.2% offset strain, and which generally defines the yield point in materials. Results show that three parameters: jumpsum and jumpsum rate (derived from the Barkhausen spectrum), and the relative permeability (derived from the B-H loops) varies sensitively with small permanent strains, and can be related to the plastic deformation in ULC steels. Investigation of micromagnetic structure revealed that plastic deformation leaves a residual stress state in the samples; the associated magneto-elastic energy makes the favorable easy axis of magnetization in a given grain to be the one that lies closest to the tensile axis. The consequence of this realignment of domains is that wall motion becomes intergranular in nature (as opposed to intragranular in unstrained samples). As a result, the more complex grain boundaries instead of dislocations, become the dominant pinning sites for domain walls. These observations provide a microscopic interpretation of the observed changes in the measured magnetic properties.

  13. Synthesis, crystal structures and magnetic properties of bis(μ-dialkoxo)-bridged linear trinuclear copper(II) complexes with aminoalcohol ligands: a theoretical/experimental magneto-structural study.

    PubMed

    Seppälä, Petri; Colacio, Enrique; Mota, Antonio J; Sillanpää, Reijo

    2012-03-07

    The bis(μ-dialkoxo)-bridged trinuclear copper(II) complexes [Cu(3)(ap)(4)(ClO(4))(2)EtOH] (1), [Cu(3)(ap)(4)(NO(3))(2)] (2), [Cu(3)(ap)(4)Br(2)] (3) and [Cu(3)(ae)(4)(NO(3))(2)] (4) (ae = 2-aminoethanolato and ap = 3-aminopropanolato) have been synthesised via self-assembly from chelating aminoalcohol ligands with the corresponding copper(II) salts. The complexes are characterised by single-crystal X-ray diffraction analyses and variable temperature magnetic measurements. The crystal structures of complexes 1-4 consist of slightly bent linear or linear trinuclear [Cu(3)(aa)(4)](2+) (aa = aminoalcoholato) units to which the perchlorate, nitrate or bromide anions are weakly coordinated. The adjacent trinuclear units of 1-4 are connected together by hydrogen bonds and bridging nitrate or bromide anions resulting in the formation of 2D layers. Magnetic studies of 1, 2 and 4 show that J values vary from -379 to +36.0 cm(-1) as the Cu-O-Cu angle (θ) and the out-of-plane shift of the carbon atom of the bridging alkoxo group (τ) vary from 103.7 to 94.4° and from 0.9 to 35.5°, respectively. Magnetic exchange coupling constants calculated by DFT methods are of the same nature and magnitude as the experimental ones. For complexes 1, 2 and 4, which have complementarity effects between the θ and τ angles (small θ values are associated with large τ values and vice versa), an almost linear relationship between the calculated J values with θ angles could be established, thus supporting that the θ and τ angles are the two key structural factors that determine the magnetic exchange coupling for such a type of compounds. Complex 3 does not obey this linear correlation because of the existence of counter-complementarity effects between these angles (small θ values are associated with small τ values and vice versa). It is of interest that the theoretical calculations for the magnetic exchange interaction between next-nearest neighbours indicate that the usual

  14. Final Report: Nanoscale Dynamical Heterogeneity in Complex Magnetic Materials

    SciTech Connect

    Kevan, Stephen

    2016-05-27

    A magnetic object can be demagnetized by dropping it on a hard surface, but what does ‘demagnetized’ actually mean? In 1919 Heinrich Barkhausen proved the existence of magnetic domains, which are regions of uniform magnetization that are much larger than atoms but much smaller than a macroscopic object. A material is fully magnetized when domain magnetizations are aligned, while it is demagnetized when the domain magnetizations are randomly oriented and the net magnetization is zero. The heterogeneity of a demagnetized object leads to interesting questions. Magnets are unstable when their poles align, and stable when their poles anti-align, so why is the magnetized state ever stable? What do domains look like? What is the structure of a domain wall? How does the magnetized state transform to the demagnetized state? How do domains appear and disappear? What are the statistical properties of domains and how do these vary as the domain pattern evolves? Some of these questions remain the focus of intense study nearly a century after Barkhausen’s discovery. For example, just a few years ago a new kind of magnetic texture called a skyrmion was discovered. A skyrmion is a magnetic domain that is a nanometer-scale, topologically protected vortex. ‘Topologically protected’ means that skyrmions are hard to destroy and so are stable for extended periods. Skyrmions are characterized by integral quantum numbers and are observed to move with little dissipation and so could store and process information with very low power input. Our research project uses soft x-rays, which offer very high magnetic contrast, to probe magnetic heterogeneity and to measure how it evolves in time under external influences. We will condition a soft x-ray beam so that the wave fronts will be coherent, that is, they will be smooth and well-defined. When coherent soft x-ray beam interacts with a magnetic material, the magnetic heterogeneity is imprinted onto the wave fronts and projected into

  15. A measurement setup for acquiring the local magnetic properties of plastically deformed soft magnetic materials

    SciTech Connect

    Bi Shasha; Sutor, Alexander; Lerch, Reinhard; Xiao Yunshi

    2011-04-01

    This paper introduces a new measurement setup for extraction of the local magnetic properties. With the help of finite element method simulations, modifications are made on the previous double-C-yoke method. Small dimension measuring coils are applied in the stray field produced by the magnetic circuit to evaluate the local magnetic properties of the specified part of the specimen. Through the measurements with the plastically deformed materials at different temperatures, it indicates that the magnetic properties of soft magnetic materials are quite sensitive to plastic straining. After high-temperature thermal treatment on the plastically deformed specimen, the local magnetic properties exhibit an obvious recovery.

  16. Hygroscopic properties of magnetic recording tape

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1976-01-01

    Relative humidity has been recognized as an important environmental factor in many head-tape interface phenomena such as headwear, friction, staining, and tape shed. Accordingly, the relative humidity is usually specified in many applications of tape use, especially when tape recorders are enclosed in hermetically sealed cases. Normally, the relative humidity is believed regulated by humidification of the fill gas to the specification relative humidity. This study demonstrates that the internal relative humidity in a sealed case is completely controlled by the time-dpendence of the hygroscopic properties of the pack of magnetic recording tape. Differences are found in the hygroscopic properties of the same brand of tape, which apparently result from aging, and which may have an effect on the long-term humidity-regulating behavior in a sealed case, and on the occurrence of head-tape interface phenomena from the long-term use of the tape. Results are presented on the basic hygroscopic properties of magnetic tape, its humidity-regulating behavior in a sealed case, and a theoretical commentary on the relative humidity dependence of head-wear by tape, is included.

  17. Electrical properties of complex tungsten bronze ceramics

    NASA Astrophysics Data System (ADS)

    Padhee, R.; Das, Piyush R.

    2014-09-01

    This paper highlights the electrical properties of two new complex tungsten bronze ceramics (K2Pb2Eu2W2Ti4Nb4O30 and K2Pb2Pr2W2Ti4Nb4O30) which were prepared by high temperature mixed oxide method. Variation of impedance parameters with temperature (27-500 °C) and frequency (1 kHz to 5 MHz) shows the grain and grain boundary effects in the samples. The variation of dielectric parameters with frequency is also studied. The ac conductivity variation with temperature clearly exhibits that the materials have thermally activated transport properties of Arrhenius type.

  18. Magnetic properties of arrays of electrodeposited nanowires

    NASA Astrophysics Data System (ADS)

    Ross, C. A.; Hwang, M.; Shima, M.; Smith, Henry I.; Farhoud, M.; Savas, T. A.; Schwarzacher, W.; Parrochon, J.; Escoffier, W.; Bertram, H. Neal; Humphrey, F. B.; Redjdal, M.

    2002-08-01

    The fabrication and magnetic properties of arrays of short nanowires are reviewed. The arrays consist of electrodeposited ferromagnetic cylinders with aspect ratios of up to 3 and diameters of 57-180 nm. Their hysteresis loops are characterized and their remanent states are related to the predictions of a three-dimensional micromagnetic model, which shows a transition from a single-domain 'flower' state to a lower-remanence 'vortex' state with increasing diameter. The shapes of the array hysteresis loops are governed by interactions between the particles. The switching fields of small Ni cylinders can be described using a dynamic micromagnetic model.

  19. Research into europium complexes as magnetic resonance imaging contrast agents (Review)

    PubMed Central

    HAN, GUOCAN; DENG, YANGWEI; SUN, JIHONG; LING, JUN; SHEN, ZHIQUAN

    2015-01-01

    Europium (Eu) is a paramagnetic lanthanide element that possesses an outstanding luminescent property. Eu complexes are ideal fluorescence imaging (FI) agents. Eu2+ has satisfactory relaxivity and optical properties, and can realize magnetic resonance (MRI)-FI dual imaging applications when used with appropriate cryptands that render it oxidatively stable. By contrast, based on the chemical exchange saturation transfer (CEST) mechanism, Eu3+ complexes can provide enhanced MRI sensitivity when used with optimal cryptands, incorporated into polymeric CEST agents or blended with Gd3+. Eu complexes are promising in MRI-FI dual imaging applications and have a bright future. PMID:26136858

  20. Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes

    SciTech Connect

    Guihéry, Nathalie; Ruamps, Renaud; Maurice, Rémi

    2015-12-31

    Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimization of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.

  1. Frequency-Dependent Properties of Magnetic Nanoparticle Crystals

    SciTech Connect

    Majetich, Sara

    2016-05-17

    In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magnetic order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500

  2. The symmetry properties of planetary magnetic fields

    SciTech Connect

    Raedler, K.H. ); Ness, N.F. )

    1990-03-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of Earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For Earth, Jupiter, and Saturn the centered dipole, quadrupole, and octupole contributions are included, while at Uranus, only the dipole and quadrupole contributoins are considered. The magnetic fields are analyzed by decomposing them into those parts which have simple symmetry properties with respect to the rotation axis and the equatorial plane. It is found that there are a number of common features of the magnetic fields of Earth and Jupiter. Compared to Earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis, by now rather well known, but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets. The implications of these results for dynamo models are discussed. With a vgiew to Cowling's theorem the symmetry of the fields is investigated with respect to not only the rotation axis but also to other axes intersecting the plaentary center. Surprisingly, the high degree of asymmetry of the Uranian field that is observed with respect to the rotation axis reduces considerably to being compare to that for Earth or Jupiter when the appropriate axis is employed.

  3. Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition.

    PubMed

    Dupuis, V; Khadra, G; Hillion, A; Tamion, A; Tuaillon-Combes, J; Bardotti, L; Tournus, F

    2015-11-14

    In this paper, we present some specific chemical and magnetic order obtained very recently on characteristic bimetallic nanoalloys prepared by mass-selected Low Energy Cluster Beam Deposition (LECBD). We study how the competition between d-atom hybridization, complex structure, morphology and chemical affinity affects their intrinsic magnetic properties at the nanoscale. The structural and magnetic properties of these nanoalloys were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of the nanoalloys we observe different magnetic responses compared to their bulk counterparts. In particular, we show how specific relaxation in nanoalloys impacts their magnetic anisotropy; and how finite size effects (size reduction) inversely enhance their magnetic moment.

  4. Magnetic properties of some rare-earth nanostuctured aluminates

    NASA Astrophysics Data System (ADS)

    Lovchinov, V.; Petrov, D.; Simeonova, P.; Angelov, B.

    2010-11-01

    Nanocrystalline single-phase RAlO3 (R = Nd, Sm, Eu, Dy, Gd) has been prepared by modified Pechini's method. Malic acid has been used for the first time as a new complexing agent in the sol-gel process. It has facilited a low temperature synthesis of the compound. The characterization of the nanoparticles has been carried out by different methods. Using Physical Property Measurement System (PPMS-9 QD) the temperature and magnetic dependency of the susceptibility and magnetization of the nanostuctured aluminates were measured. The obtained results were compared with the existing ones for the single crystals and powder specimens of the same aluminates. The differences observed have been discussed in the framework of the molecular field theory for a two-sublattice system.

  5. Obtaining the magnetic susceptibility of the heme complex from DFT calculations

    NASA Astrophysics Data System (ADS)

    Pereira, L. M. O.; Resende, S. M.; Leite Alves, H. W.

    2016-09-01

    Magnetic field interactions with particles, as observed in magnetophoresis, are becoming important tool to understand the nature of the iron role in heme molecular complex, besides other useful applications. Accurate estimations of some macroscopic magnetic properties from quantum mechanical calculations, such as the magnetic susceptibility, can also check the reliability of the heme microscopic models. In this work we report, by using the Stoner criterion, a simple way to obtain the magnetic susceptibility of the heme complex from Density Functional Theory calculations. Some of our calculated structural properties and electronic structure show good agreement with both the available experimental and theoretical data, and the results show that its groundstate is a triplet 3A state. From the obtained results, we have evaluated the exchange interaction energy, J = 0.98 eV, the associated magnetic energy gain, Δ EM =-0.68 eV, and the magnetic susceptibility, χ0=1.73 ×10-6 cm3/mol for the heme alone (with uncompleted Fe ligands). If we consider the heme complex with the two histidine residues (completing the Fe ligands), we have then obtained χ0=5.27 ×10-12 cm3/g, which is in good agreement with experimental magnetophoresis data.

  6. Magnetic colloid by PLA: Optical, magnetic and thermal transport properties

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Shahi, A. K.; Gopal, Ram

    2015-08-01

    Ferrofluids of cobalt and cobalt oxide nanoparticles (NPs) have been successfully synthesized using liquid phase-pulse laser ablation (LP-PLA) in ethanol and double distilled water, respectively. The mechanism of laser ablation in liquid media and formation process for Co target in double distilled water (DDW) and ethanol are speculated based on the reactions between laser generated highly nascent cobalt species and vaporized solvent media in a confined high temperature and pressure at the plume-surrounding liquid interface region. Optical absorption, emission, vibrational and rotational properties have been investigated using UV-vis absorption, photoluminescence (PL) and Fourier transform-infra red (FT-IR) spectroscopy, respectively. In this study optical band gap of cobalt oxide ferrofluids has been engineered using different pulse energy of Nd:YAG laser in the range of (2.80-3.60 eV). Vibrating sample magnetometer (VSM) is employed to determine the magnetic properties of ferrofluids of cobalt and cobalt oxide NPs while their thermal conductivities are examined using rotating disc method. Ferrofluids have gained enormous curiosity due to many technological applications, i.e. drug delivery, coolant and heating purposes.

  7. Effects Of Hydrothermal Alteration On Magnetic Properties And Magnetic Signatures - Implications For Predictive Magnetic Exploration Models

    NASA Astrophysics Data System (ADS)

    Clark, D.

    2012-12-01

    Magnetics is the most widely used geophysical method in hard rock exploration and magnetic surveys are an integral part of exploration programs for many types of mineral deposit, including porphyry Cu, intrusive-related gold, volcanic-hosted epithermal Au, IOCG, VMS, and Ni sulfide deposits. However, the magnetic signatures of ore deposits and their associated mineralized systems are extremely variable and exploration that is based simply on searching for signatures that resemble those of known deposits and systems is rarely successful. Predictive magnetic exploration models are based upon well-established geological models, combined with magnetic property measurements and geological information from well-studied deposits, and guided by magnetic petrological understanding of the processes that create, destroy and modify magnetic minerals in rocks. These models are designed to guide exploration by predicting magnetic signatures that are appropriate to specific geological settings, taking into account factors such as tectonic province; protolith composition; post-formation tilting/faulting/ burial/ exhumation and partial erosion; and metamorphism. Patterns of zoned hydrothermal alteration are important indicators of potentially mineralized systems and, if properly interpreted, can provided vectors to ore. Magnetic signatures associated with these patterns at a range of scales can provide valuable information on prospectivity and can guide drilling, provided they are correctly interpreted in geological terms. This presentation reviews effects of the important types of hydrothermal alteration on magnetic properties within mineralized systems, with particular reference to porphyry copper and IOCG deposits. For example, an unmodified gold-rich porphyry copper system, emplaced into mafic-intermediate volcanic host rocks (such as Bajo de la Alumbrera, Argentina) exhibits an inner potassic zone that is strongly mineralized and magnetite-rich, which is surrounded by an outer

  8. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex

    NASA Astrophysics Data System (ADS)

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; El-Reash, Gaber Abu; Breedlove, Brian K.; Yamashita, Masahiro

    2016-03-01

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule.

  9. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex

    PubMed Central

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; El-Reash, Gaber Abu; Breedlove, Brian K.; Yamashita, Masahiro

    2016-01-01

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule. PMID:27026506

  10. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex.

    PubMed

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; Abu El-Reash, Gaber; Breedlove, Brian K; Yamashita, Masahiro

    2016-03-30

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule.

  11. A Study of Magnetic Properties of Magnetotactic Bacteria

    PubMed Central

    Wajnberg, E.; de Souza, L. H. Salvo; de Barros, Henrique G. P. Lins; Esquivel, Darci M. S.

    1986-01-01

    The first direct measurements of magnetic properties of magnetotactic bacteria from natural samples are presented. Measurements were made at 4.2 K, using a Superconducting Quantum Interfering Device (SQUID) magnetometer. From the magnetization results an anisotropy is obtained that is typical of magnetized ferro- or ferri-magnetic materials. The average magnetic moment of the bacteria determined from the results is in good agreement with the estimated moment from electron microscopy. ImagesFIGURE 2 PMID:19431685

  12. [Magnetic therapy for complex treatment of chronic periodontal disease].

    PubMed

    P'yanzina, A V

    2017-01-01

    The aim of the study was to elaborate the methodology of magnetic therapy for complex treatment of chronic periodontal disease (CPD). The study included 60 patients aged 35 to 65 years with moderate CPD divided in 2 groups. Patients in group 1 (controls) received impulse carbonate irrigation for 12 min №10, group 2 additionally received magnetic therapy for 5 min №10 in maxillary and mandibular areas.

  13. PHYSICAL PROPERTIES OF COMPLEX C HALO CLOUDS

    SciTech Connect

    Hsu, W.-H.; Putman, M. E.; Peek, J. E. G.; Heitsch, F.; Clark, S. E.; Stanimirovic, S.

    2011-02-15

    Observations from the Galactic Arecibo L-band Feed Array H I (GALFA-H I) Survey of the tail of Complex C are presented and the halo clouds associated with this complex are cataloged. The properties of the Complex C clouds are compared to clouds cataloged at the tail of the Magellanic Stream to provide insight into the origin and destruction mechanism of Complex C. Magellanic Stream and Complex C clouds show similarities in their mass distributions (slope = -0.7 and -0.6 log (N( log (mass)))/ log (mass), respectively) and have a common line width of 20-30 km s{sup -1} (indicative of a warm component), which may indicate a common origin and/or physical process breaking down the clouds. The clouds cataloged at the tail of Complex C extend over a mass range of 10{sup 1.1}-10{sup 4.8} M{sub sun}, sizes of 10{sup 1.2}-10{sup 2.6} pc, and have a median volume density and pressure of 0.065 cm{sup -3} and (P/k) = 580 K cm{sup -3}. We do not see a prominent two-phase structure in Complex C, possibly due to its low metallicity and inefficient cooling compared to other halo clouds. Assuming that the Complex C clouds are in pressure equilibrium with a hot halo medium, we find a median halo density of 5.8 x 10{sup -4} cm{sup -3}, which given a constant distance of 10 kpc is at a z-height of {approx}3 kpc. Using the same argument for the Stream results in a median halo density of 8.4 x 10-{sup 5} (60 kpc/d) cm{sup -3}. These densities are consistent with previous observational constraints and cosmological simulations. We also assess the derived cloud and halo properties with three-dimensional grid simulations of halo H I clouds and find that the temperature is generally consistent within a factor of 1.5 and the volume densities, pressures, and halo densities are consistent within a factor of three.

  14. Exchange bias in ferrite hollow nanoparticles originated by complex internal magnetic structure

    NASA Astrophysics Data System (ADS)

    De Biasi, Emilio; Lima, Enio, Jr.; Vargas, Jose M.; Zysler, Roberto D.; Arbiol, Jordi; Ibarra, Alfonso; Goya, Gerardo F.; Ibarra, M. Ricardo

    2015-10-01

    Iron-oxide hollow nanospheres (HNS) may present unusual magnetic behavior as a consequence of their unique morphology. Here, we report the unusual magnetic behavior of HNS that are 9 nm in diameter. The magnetic properties of HNS originate in their complex magnetic structure, as evidenced by Mössbauer spectroscopy and magnetization measurements. We observe a bias in the hysteresis when measured at very low temperature in the field cooling protocol (10 kOe). In addition, dc (static) and ac (dynamic) magnetization measurements against temperature and applied field reveal a frustrated order of the system below 10 K. High-resolution transmission electron microscopy (HRTEM) studies reveal that the HNS are composed of small crystalline clusters of about 2 nm in diameter, which behave as individual magnetic entities. Micromagnetic simulations (using conjugate gradient in order to minimize the total energy of the system) reproduce the experimentally observed magnetic behavior. The model considers the hollow particles as constituted by small ordered clusters embedded in an antiferromagnetic environment (spins localized outside the clusters). In addition, the surface spins (in both inner and outer surfaces of the HNS) are affected by a local surface anisotropy. The strong effective magnetic anisotropy field of the clusters induces the bias observed when the system is cooled in the presence of a magnetic external field. This effect propagates through the exchange interaction into the entire particle.

  15. Magnetic Properties of the Chelyabinsk meteorite

    NASA Astrophysics Data System (ADS)

    Bezaeva, N. S.; Badyukov, D. D.; Nazarov, M. A.; Rochette, P.; Feinberg, J. M.

    2013-12-01

    The Chelyabinsk meteorite (the fall of February 15, 2013; Russia) is a LL5 ordinary chondrite. Numerous (thousands) stones fell as a shower to the south and the south-west of the city of Chelyabinsk. The stones consist of two intermixed lithologies, with the majority (2/3) being a light lithology with a typical chondritic texture and shock stage S4 (~30 GPa). The second lithology (1/3) is an impact melt breccia (IMB) consisting of blackened chondrite fragments embedded in a fine-grained matrix. We investigated the magnetic properties of the meteorite stones collected immediately after the fall by the expedition of the Vernadsky Institute, Moscow. The low-field magnetic susceptibility (χ0) of 174 fragments (135 chondritic and 39 IMB) weighing >3 g was measured. Each sample was measured three times in mutually perpendicular directions to average anisotropy. Also hysteresis loops (saturation magnetization Ms, coercivity Bc) and back-field remanence demagnetization curves (coercivity of remanence Bcr) in the temperature range from 10K to 700°C and other characteristics of some pieces (NRM, SIRM with their thermal and alternating field demagnetization spectra) were acquired. The mean logχ0 is 4.57×0.09 (s.d.) for the light lithology and 4.65×0.09 (s.d.) (×10-9 m3/kg) for the IMB, indicating that IMB is slightly richer in metal than the light chondritic lithology. According to [1], Chelyabinsk is three times more magnetic than the average LL5 fall, but similar to other metal-rich LL5 (e.g., Paragould, Aldsworth, Bawku, Richmond), as well as L/LL chondrites (e.g., Glanerbrug, Knyahinya, Qidong). The estimation of metal content from the Ms value gives 3.7 wt.% for the light fragments and 4.1 wt.% for IMB whereas the estimation from χ0 yields overestimated contents, e.g., 6.9 wt.% for the light lithology. Thermomagnetic curves Ms(T) up to 800°C identify the main magnetic carriers at room temperature (T0) and above as taenite and kamacite (no tetrataenite found), in

  16. Thermal properties of composite materials: a complex systems approximation

    NASA Astrophysics Data System (ADS)

    Carrillo, J. L.; Bonilla, Beatriz; Reyes, J. J.; Dossetti, Victor

    We propose an effective media approximation to describe the thermal diffusivity of composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy, the thermal diffusivity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal diffusivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a significant difference in the thermal properties of the anisotropic samples, compared to the isotropic randomly distributed. We correlate some measures of the complexity of the inclusion structure with the observed thermal response through a multifractal analysis. In this way, we are able to describe, and at some extent predict, the behavior of the thermal diffusivity in terms of the lacunarity and other measures of the complexity of these samples Partial Financial Support by CONACyT México and VIEP-BUAP.

  17. Magnetic and magnetoelastic properties of amorphous ribbons

    SciTech Connect

    Chiriac, H.; Ciobotaru, I.; Mohorianu, S.

    1994-03-01

    A phenomenological model for the magnetic and magnetoelastic behavior of the field-annealed magnetostrictive ribbon is proposed. The basic hypothesis is that the magnetic domain coupling energy due to the inhomogeneity inherent to amorphous state is dependent on the reduced magnetization. The model takes into account the anisotropy energy, Zeeman energy, magnetoelastic energy and magnetic domain coupling energy. The magnetization, engineering magnetostriction and Young`s modulus are derived as continuous functions of the applied magnetic field and stress.

  18. Hot magnetized nuclear matter: Thermodynamic and saturation properties

    NASA Astrophysics Data System (ADS)

    Rezaei, Z.; Bordbar, G. H.

    2017-03-01

    We have used a realistic nuclear potential, AV_{18}, and a many-body technique, the lowest-order constraint variational (LOCV) approach, to calculate the properties of hot magnetized nuclear matter. By investigating the free energy, spin polarization parameter, and symmetry energy, we have studied the temperature and magnetic field dependence of the saturation properties of magnetized nuclear matter. In addition, we have calculated the equation of state of magnetized nuclear matter at different temperatures and magnetic fields. It was found that the flashing temperature of nuclear matter decreases by increasing the magnetic field. In addition, we have studied the effect of the magnetic field on liquid gas phase transition of nuclear matter. The liquid gas coexistence curves, the order parameter of the liquid gas phase transition, and the properties of critical point at different magnetic fields have been calculated.

  19. Hexaferrite M (Co, Ti) magnetic properties optimization

    SciTech Connect

    Autissier, D.; Rousselle, D.; Podembski, A.

    1995-09-01

    Barium hexaferrites are anisotropic iron oxides which can present high values of permeability. We have studied Ba (Co, Ti){sub x}Fe{sub 12-2x}O{sub 19} compositions. Powders are synthesized using the ceramic method: stoichiometric amounts of basic components are ground and fired at high temperature (1170{degrees}C) to obtain the desired phase. The powders are then ground for 6 hours in order to reduce the particle size. The slurry is cast in a plaster matrix. This matrix is rotated between the poles of a stationary electromagnet. Fields of approximately 500 Oe are used for the orientation procedure. Samples are then sintered for different temperatures between 1200 and 1300{degrees}C. We present results (magnetization, permeability, permittivity, orientation rate) obtained for diverse compositions (1.1magnetic properties, orientation rate, microstructure.

  20. Thermoelectric Properties of Complex Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Cain, Tyler Andrew

    Thermoelectrics are a promising energy conversion technology for power generation and cooling systems. The thermal and electrical properties of the materials at the heart of thermoelectric devices dictate conversion efficiency and technological viability. Studying the fundamental properties of potentially new thermoelectric materials is of great importance for improving device performance and understanding the electronic structure of materials systems. In this dissertation, investigations on the thermoelectric properties of a prototypical complex oxide, SrTiO3, are discussed. Hybrid molecular beam epitaxy (MBE) is used to synthesize La-doped SrTiO3 thin films, which exhibit high electron mobilities and large Seebeck coefficients resulting in large thermoelectric power factors at low temperatures. Large interfacial electron densities have been observed in SrTiO3/RTiO 3 (R=Gd,Sm) heterostructures. The thermoelectric properties of such heterostructures are investigated, including the use of a modulation doping approach to control interfacial electron densities. Low-temperature Seebeck coefficients of extreme electron-density SrTiO3 quantum wells are shown to provide insight into their electronic structure.

  1. Magnetic memory in an isotopically enriched and magnetically isolated mononuclear dysprosium complex.

    PubMed

    Pointillart, Fabrice; Bernot, Kevin; Golhen, Stéphane; Le Guennic, Boris; Guizouarn, Thierry; Ouahab, Lahcène; Cador, Olivier

    2015-01-26

    The influence of nuclear spin on the magnetic hysteresis of a single-molecule is evidenced. Isotopically enriched Dy(III) complexes are synthesized and an isotopic dependence of their magnetic relaxation is observed. This approach is coupled with tuning of the molecular environment through dilution in an amorphous or an isomorphous diamagnetic matrix. The combination of these approaches leads to a dramatic enhancement of the magnetic memory of the molecule. This general recipe can be efficient for rational optimization of single-molecule magnets (SMMs), and provides an important step for their integration into molecule-based devices.

  2. Determination of the Magnetic Moments of Transition Metal Complexes Using Rare Earth Magnets

    NASA Astrophysics Data System (ADS)

    de Berg, Kevin C.; Chapman, Kenneth J.

    2001-05-01

    This paper describes how powerful neodymium magnets and an electronic balance can be used to determine magnetic moments and susceptibilities of transition metal complexes. The technique is an improvement on one previously reported (J. Chem. Educ. 1998, 75, 61) and allows the effect of temperature on paramagnetism to be studied. Results consistent with the Curie law are reported and a theoretical background to the measurement of magnetic moments is given to explain why magnetic field strength and its gradient are important to the technique described.

  3. Synthesis and characterization of dopamine substitue tripodal trinuclear [(salen/salophen/salpropen)M] (Mdbnd Cr(III), Mn(III), Fe(III) ions) capped s-triazine complexes: Investigation of their thermal and magnetic properties

    NASA Astrophysics Data System (ADS)

    Uysal, Şaban; Koç, Ziya Erdem

    2016-04-01

    In this work, we aimed to synthesize and characterize a novel tridirectional ligand including three catechol groups and its novel tridirectional-trinuclear triazine core complexes. For this purpose, we used melamine (2,4,6-triamino-1,3,5-triazine) (MA) as starting material. 2,4,6-tris(4-carboxybenzimino)-1,3,5-triazine (II) was synthesized by the reaction of an equivalent melamine (I) and three equivalent 4-carboxybenzaldehyde. 4,4‧,4″-((1E,1‧E,1″E)-((1,3,5-triazine-2,4,6-triyl)tris(azanylylidene))tris(methanylylidene))tris(N-(3,4-dihydroxyphenethyl)benzamide) L (IV) was synthesized by the reaction of one equivalent (II) and three equivalent dopamine (3,4-dihydroxyphenethylamine) (DA) by using two different methods. (II, III, IV) and nine novel trinuclear Cr(III), Mn(III) and Fe(III) complexes of (IV) were characterized by means of elemental analyses, 1H NMR, FT-IR spectrometry, LC-MS (ESI+) and thermal analyses. The metal ratios of the prepared complexes were performed using Atomic Absorption Spectrophotometry (AAS). We also synthesized novel tridirectional-trinuclear systems and investigated their effects on magnetic behaviors of [salen, salophen, salpropen Cr(III)/Mn(III)/Fe(III)] capped complexes. The complexes were determined to be low-spin distorted octahedral Mn(III) and Fe(III), and distorted octahedral Cr(III) all bridged by catechol group.

  4. Dielectric and magnetic anisotropy of a nematic ytterbium complex

    SciTech Connect

    Dobrun, L. A. Sakhatskii, A. S.; Kovshik, A. P.; Ryumtsev, E. I.; Kolomiets, I. P.; Knyazev, A. A.; Galyametdinov, Yu. G.

    2015-05-15

    The sign and the magnitude of the dielectric anisotropy of an ytterbium-based paramagnetic nematic liquid crystal complex, namely, tris[1-(4-(4-propylcyclohexyl)phenyl)octane-1,3-dione]-[5,5'-di (heptadecile)-2,2'-bipyridine]ytterbium, are determined. The temperature dependence of the permittivity components of the complex is obtained in the temperature range of a nematic phase. The sign of the anisotropy of the magnetic susceptibility of this compound is experimentally determined.

  5. Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles

    SciTech Connect

    Mao, Yuanbing; Parsons, Jason; McCloy, John S.

    2013-03-31

    Double perovskite La2BMnO6 (B = Ni and Co) nanoparticles with average particle size of ~50 nm were synthesized using a facile, environmentally friendly, scalable molten-salt reaction at 700 °C in air. Their structural and morphological properties were characterized by x-ray diffraction and transmission electron microscopy. Magnetic properties were evaluated using dc magnetic M-T and M-H, and ac magnetic susceptibility versus frequency, temperature, and field. The magnetization curve shows a paramagnetic-ferromagnetic transition at TC ~275 and 220 K for La2NiMnO6 (LNMO) and La2CoMnO6 (LCMO) nanoparticles, respectively. ac susceptibility revealed that the LCMO had a single magnetic transition indicative of Co2+-O2--Mn4+ ordering, whereas the LNMO showed more complex magnetic behavior suggesting a re-entrant spin glass.

  6. Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles.

    PubMed

    Mao, Yuanbing; Parsons, Jason; McCloy, John S

    2013-06-07

    Double perovskite La2BMnO6 (B = Ni and Co) nanoparticles with average particle size of ~50 nm were synthesized using a facile, environmentally friendly, and scalable molten-salt reaction at 700 °C in air. Their structural and morphological properties were characterized by X-ray diffraction and transmission electron microscopy. Their magnetic properties were evaluated and compared using dc magnetic M-T and M-H, and ac magnetic susceptibility versus frequency, temperature, and field for the first time. The dc magnetization curves show paramagnetic-ferromagnetic transitions at TC∼ 275 and 220 K for La2NiMnO6 (LNMO) and La2CoMnO6 (LCMO) nanoparticles, respectively. ac susceptibility revealed that the LCMO nanoparticles had a single magnetic transition indicative of Co(2+)-O(2-)-Mn(4+) ordering, whereas the LNMO nanoparticles showed more complex magnetic behaviors suggesting a re-entrant spin glass.

  7. Transport and magnetic properties in topological materials

    NASA Astrophysics Data System (ADS)

    Liang, Tian

    The notion of topology has been the central topic of the condensed matter physics in recent years, ranging from 2D quantum hall (QH) and quantum spin hall (QSH) states, 3D topological insulators (TIs), topological crystalline insulators (TCIs), 3D Dirac/Weyl semimetals, and topological superconductors (TSCs) etc. The key notion of the topological materials is the bulk edge correspondence, i.e., in order to preserve the symmetry of the whole system (bulk+edge), edge states must exist to counter-compensate the broken symmetry of the bulk. Combined with the fact that the bulk is topologically protected, the edge states are robust due to the bulk edge correspondence. This leads to interesting phenomena of chiral edge states in 2D QH, helical edge states in 2D QSH, "parity anomaly'' (time reversal anomaly) in 3D TI, helical edge states in the mirror plane of TCI, chiral anomaly in Dirac/Weyl semimetals, Majorana fermions in the TSCs. Transport and magnetic properties of topological materials are investigated to yield intriguing phenomena. For 3D TI Bi1.1Sb0.9Te 2S, anomalous Hall effect (AHE) is observed, and for TCI Pb1-x SnxSe, Seebeck/Nernst measurements reveal the anomalous sign change of Nernst signals as well as the massive Dirac fermions. Ferroelectricity and pressure measurements show that TCI Pb1-xSnxTe undergoes quantum phase transition (QPT) from trivial insulator through Weyl semimetal to anomalous insulator. Dirac semimetals Cd3As2, Na 3Bi show interesting results such as the ultrahigh mobility 10 7cm2V-1s-1 protected from backscattering at zero magnetic field, as well as anomalous Nernst effect (ANE) for Cd3As2, and the negative longitudinal magnetoresistance (MR) due to chiral anomaly for Na3Bi. In-plane and out-of-plane AHE are observed for semimetal ZrTe5 by in-situ double-axes rotation measurements. For interacting system Eu2Ir2O7, full angle torque magnetometry measurements reveal the existence of orthogonal magnetization breaking the symmetry of

  8. Magnetic Properties of Lunar Geologic Terranes: New Statistical Results

    NASA Technical Reports Server (NTRS)

    Halekas, J. S.; Mitchell, D. L.; Lin, R. P.; Frey, S.; Hood, L. L.; Acuna, M. H.; Binder, A.

    2002-01-01

    We use global magnetic field data and digitized geologic maps to determine the magnetic properties of lunar terranes. Average fields vary by a factor of 100 from demagnetized impact basins and craters to strongly magnetized antipodal regions. Additional information is contained in the original extended abstract.

  9. Magnetic properties of frictional volcanic materials

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    During dome-building volcanic eruptions, highly viscous magma extends through the upper conduit in a solid-like state. The outer margins of the magma column accommodate the majority of the strain, while the bulk of the magma is able to extrude, largely undeformed, to produce magma spines. Spine extrusion is often characterised by the emission of repetitive seismicity, produced in the upper <1 km by magma failure and slip at the conduit margins. The rheology of the magma controls the depth at which fracture can occur, while the frictional properties of the magma are important in controlling subsequent marginal slip processes. Upon extrusion, spines are coated by a carapace of volcanic fault rocks which provide insights into the deeper conduit processes. Frictional samples from magma spines at Mount St. Helens (USA), Soufriere Hills (Montserrat) and Mount Unzen (Japan) have been examined using structural, thermal and magnetic analyses to reveal a history of comminution, frictional heating, melting and cooling to form volcanic pseudotachylyte. Pseudotachylyte has rarely been noted in volcanic materials, and the recent observation of its syn-eruptive formation in dome-building volcanoes was unprecedented. The uniquely high thermal conditions of volcanic environments means that frictional melt remains at elevated temperatures for longer than usual, causing slow crystallisation, preventing the development of some signature "quench" characteristics. As such, rock-magnetic tests have proven to be some of the most useful tools in distinguishing pseudotachylytes from their andesite/ dacite hosts. In volcanic pseudotachylyte the mass normalised natural remanent magnetisation (NRM) when further normalised with the concentration dependent saturation remanence (Mrs) was found to be higher than the host rock. Remanence carriers are defined as low coercive materials across all samples, and while the remanence of the host rock displays similarities to an anhysteretic remanent

  10. Magnetic properties of biomineral particles produced by bacteria Klebsiella oxytoca

    NASA Astrophysics Data System (ADS)

    Raĭkher, Yu. L.; Stepanov, V. I.; Stolyar, S. V.; Ladygina, V. P.; Balaev, D. A.; Ishchenko, L. A.; Balasoiu, M.

    2010-02-01

    Ferrihydrite nanoparticles (2-5 nm in size) produced by bacteria Klebsiella oxytoca in the course of biomineralization of iron salt solutions from a natural medium exhibit unique magnetic properties: they are characterized by both the antiferromagnetic order inherent in a bulk ferrihydrite and the spontaneous magnetic moment due to the decompensation of spins in sublattices of a nanoparticle. The magnetic susceptibility enhanced by the superantiferromagnetism effect and the magnetic moment independent of the magnetic field provide the possibility of magnetically controlling these natural objects. This has opened up the possibilities for their use in nanomedicine and bioengineering. The results obtained from measurements of the magnetic properties of the ferrihydrite produced by Klebsiella oxytoca in its two main crystalline modifications are reported, and the data obtained are analyzed theoretically. This has made it possible to determine numerical values of the magnetic parameters of real biomineral nanoparticles.

  11. Modeling of magnetic properties of polymer bonded Nd-Fe-B magnets with surface modifications

    NASA Astrophysics Data System (ADS)

    Xiao, Jun; Otaigbe, Joshua U.; Jiles, David C.

    2000-07-01

    The effects of surface modification on the magnetic properties of polymer-bonded Nd-Fe-B magnets have been studied. Two sets of Nd-Fe-B powders, coated and uncoated, were blended and compression molded with polyphenylene sulfide in isotropic form. Their magnetic properties were measured using a Helmholtz coil and a SQUID. The results showed that the effect of the coating significantly improved the irreversible loss in flux and energy product of the polymer-bonded magnets. The results have been interpreted using an isotropic model of hysteresis that takes into account energy losses. The modeling showed that the presence of soft magnetic materials in the Nd-Fe-B powders caused by oxidation reduces the interaction among magnetic particles, however, the coating treatment alters the magnetic properties by increasing the remanence of polymer-bonded magnets via increasing the interparticle coupling coefficient.

  12. Structural Electronic and Magnetic Properties of Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Continenza, Alessandra

    1990-01-01

    This work is focussed on the structural, electronic and magnetic properties of semiconductor interfaces. The issues and the interest involved in these particular systems are various and have engaged both the scientific and the technological community for more than three decades. The technological interest toward semiconductors is obviously related to device applications while the scientific interest is mainly focussed on the understanding of some characteristic properties, such as potential barriers, carrier properties and band gaps, and how these can be modified by changing different external factors, such as epitaxial growth, strain effects, junctions and doping. A complete knowledge and understanding of these complex issues is, in fact, the basic requirement necessary in order to achieve the ability to "tune" basic properties "at will" and designing the "ad hoc" material for each different device application. We have performed a study of the magnetic, structural and electronic properties of a few particular examples of semiconductor interfaces and heterojunctions namely, rm Fe_{n}/(ZnSe)_ {m}, rm(InAs)_{n }/(InP)_{n} and rm( alpha-Sn)_{n}/(CdTe)_{n }, using the all-electron full-potential linearized augmented plane wave (FLAPW) method. Together with a study of the interface properties, we present results of calculations performed on all the pure constituents, in order to provide comparisons and to better understand how the bulk properties are modified by the interface. In particular, we have analyzed how the properties of these structures can be tailored by changing quantities such as the superlattice periodicity, the epitaxial strain and the interface morphology. We found that the relevance of these factors changes depending on the particular material under study and that it is possible, indeed, to model the characteristics electronic and transport properties of each structure by properly tuning the growth conditions. Our results are in very good agreement with

  13. Inorganic anion-dependent assembly of zero-, one-, two- and three-dimensional Cu(II)/Ag(I) complexes under the guidance of the HSAB theory: Synthesis, structure, and magnetic property

    NASA Astrophysics Data System (ADS)

    Liu, Yaru; Xing, Zhiyan; Zhang, Xiao; Liang, Guorui

    2017-02-01

    To systematically explore the influence of inorganic anions on building coordination complexes, five novel complexes based on 1-(benzotriazole-1-methyl)-2-propylimidazole (bpmi), [Cu(bpmi)2(Ac)2]·H2O (1), [Cu(bpmi)2(H2O)2]·2NO3·2H2O (2), [Cu(bpmi)(N3)2] (3), [Ag(bpmi)(NO3)] (4) and [Cu3(bpmi)2(SCN)4(DMF)] (5) (Ac-=CH3COO-, DMF=N,N-Dimethylformamide) are synthesized through rationally introducing Cu(II) salts and Ag(I) salt with different inorganic anions. X-ray single-crystal analyses reveal that these complexes show interesting structural features from mononuclear (1), one-dimensional (2 and 3), two-dimensional (4) to three-dimensional (5) under the influence of inorganic anions with different basicities. The structural variation can be explained by the hard-soft-acid-base (HSAB) theory. Magnetic susceptibility measurement indicates that complex 3 exhibits an antiferromagnetic coupling between adjacent Cu(II) ions.

  14. Structural tailoring effects on the magnetic behavior of symmetric and asymmetric cubane-type Ni complexes.

    PubMed

    Ponomaryov, Alexey N; Kim, Namseok; Hwang, Jaewon; Nojiri, Hiroyuki; van Tol, Johan; Ozarowski, Andrew; Park, Jena; Jang, Zeehoon; Suh, Byoungjin; Yoon, Sungho; Choi, Kwang-Yong

    2013-06-01

    Using two kinds of carboxylate ligands with small but significant differences in steric size, symmetric and asymmetric Fe(II) and Ni(II) cubanes have been synthesized in a controlled fashion. Fast sweeping pulsed field measurements showed magnetization hysteresis loops for two cubane-type molecular complexes, [Ni4(μ-OMe)4(O2CAr(4F-Ph))4(HOMe)8] and [Ni4(μ-OMe)4(O2CAr(Tol))4(HOMe)6], thus suggesting single-molecule magnet behavior. To differentiate the magnetic properties between the symmetric and asymmetric cubanes, detailed electron paramagnetic resonance (EPR) measurements were performed. From the EPR data, taken at various frequencies and temperatures, zero-field splitting parameters D, E, and other higher-order parameters for both cubane samples were extracted. Compared to the symmetric Ni-cubane, the asymmetric one shows an increase in the D and E values by about 20%, thereby suggesting structural engineering effects on the magnetic properties. By using the magnetic parameters determined by EPR, a static magnetization curve at 2 K and a temperature dependence of the magnetic susceptibility were simulated. A good agreement between theoretical and experimental data confirms the validity of the values obtained from EPR measurements.

  15. Magnetic properties of superconducting Bi/Ni bilayers

    NASA Astrophysics Data System (ADS)

    Zhou, Hexin; Gong, Xinxin; Jin, Xiaofeng

    2017-01-01

    The magnetic properties of an unexpected superconducting bilayer consisting of non-superconducting Bi and ferromagnetic Ni have been investigated. A large magnetization signal is observed when the sample is cooled below the superconducting transition temperature in zero magnetic field, which has the same direction with the magnetization of the adjacent Ni layer. Interestingly, this Bi/Ni bilayer shows opposite responses to external magnetic field in zero field cooling (ZFC) process and field cooling (FC) process. It behaves diamagnetically in ZFC while paramagnetically in FC. Besides, magnetic hysteresis loops below the superconducting transition temperature show flux pinning and flux jumping effects.

  16. Synthesis of the first heterometalic star-shaped oxido-bridged MnCu3 complex and its conversion into trinuclear species modulated by pseudohalides (N3(-), NCS- and NCO-): structural analyses and magnetic properties.

    PubMed

    Biswas, Saptarshi; Naiya, Subrata; Gómez-García, Carlos J; Ghosh, Ashutosh

    2012-01-14

    A tetra-nuclear, star-shaped hetero-metallic copper(II)-manganese(II) complex, [{CuL(H(2)O)}(2)(CuL)Mn](ClO(4))(2) (1) has been synthesized by reacting the "complex as ligand" [CuL] with Mn(ClO(4))(2) where H(2)L is the tetradentate di-Schiff base derived from 1,3-propanediamine and 2-hydroxyacetophenone. Upon treatment with the polyatomic anions azide, cyanate, or thiocyanate in methanol medium, complex 1 transforms into the corresponding trinuclear species [(CuL)(2)Mn(N(3))(2)] (2), [(CuL)(2)Mn(NCO)(2)] (3) and [(CuL)(2)Mn(NCS)(2)] (4). All four complexes have been structurally and magnetically characterized. In complex 1 the central Mn(II) ion is encapsulated by three terminal [CuL] units through the formation of double phenoxido bridges between Mn(II) and each Cu(II). In complexes 2-4 one of the CuL units is replaced by a couple of terminal azide, N-bonded cyanate or N-bonded thiocyanate ions respectively and the central Mn(II) ion is connected to two terminal Cu(II) ions through a double asymmetric phenoxido bridge. Variable temperature magnetic susceptibility measurements show the presence of moderate ferrimagnetic exchange interactions in all the cases mediated through the double phenoxido bridges with J values (H = -JS(i)S(i + 1)) of -41.2, -39.8 and -12.6 cm(-1) (or -40.5 and -12.7 cm(-1) if we use a model with two different exchange coupling constants) for the tetranuclear MnCu(3) cluster in compound 1 and -20.0, -17.3 and -32.5 cm(-1) for the symmetric trinuclear MnCu(2) compounds 2-4. These ferrimagnetic interactions lead to spin ground states of 1 (5/2 - 3*1/2) for compound 1 and 3/2 (5/2 - 2*1/2) for compounds 2-4.

  17. Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.

    PubMed

    Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V

    2016-06-08

    Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.

  18. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface

    SciTech Connect

    Forst, M.; Wilkins, S. B.; Caviglia, A. D.; Scherwitz, R.; Mankowsky, R.; Zubko, P.; Khanna, V.; Bromberger, H.; Chuang, Y. -D.; Lee, W. S.; Schlotter, W. F.; Turner, J. J.; Dakovski, G. L.; Minitti, M. P.; Robinson, J.; Clark, S. R.; Jaksch, D.; Triscone, J. -M.; Hill, J. P.; Dhesi, S. S.; Cavalleri, A.

    2015-07-06

    Static strain in complex oxide heterostructures1,2 has been extensively used to engineer electronic and magnetic properties at equilibrium3. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically4. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion. Lastly, light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.

  19. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface

    DOE PAGES

    Forst, M.; Wilkins, S. B.; Caviglia, A. D.; ...

    2015-07-06

    Static strain in complex oxide heterostructures1,2 has been extensively used to engineer electronic and magnetic properties at equilibrium3. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically4. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion.more » Lastly, light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.« less

  20. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface

    NASA Astrophysics Data System (ADS)

    Caviglia, Andrea

    Static strain in complex oxide heterostructures has been extensively used to engineer electronic and magnetic properties at equilibrium. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion. Light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism.

  1. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface.

    PubMed

    Först, M; Caviglia, A D; Scherwitzl, R; Mankowsky, R; Zubko, P; Khanna, V; Bromberger, H; Wilkins, S B; Chuang, Y-D; Lee, W S; Schlotter, W F; Turner, J J; Dakovski, G L; Minitti, M P; Robinson, J; Clark, S R; Jaksch, D; Triscone, J-M; Hill, J P; Dhesi, S S; Cavalleri, A

    2015-09-01

    Static strain in complex oxide heterostructures has been extensively used to engineer electronic and magnetic properties at equilibrium. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion. Light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.

  2. Mimicking the magnetic properties of rare earth elements using superatoms.

    PubMed

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A W

    2015-04-21

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel "magic boron" counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters.

  3. Understanding and controlling complex states arising from magnetic frustration

    SciTech Connect

    Zapf, Vivien

    2012-06-01

    Much of our national security relies on capabilities made possible by magnetism, in particular the ability to compute and store huge bodies of information as well as to move things and sense the world. Most of these technologies exploit ferromagnetism, i.e. the global parallel alignment of magnetic spins as seen in a bar magnet. Recent advances in computing technologies, such as spintronics and MRAM, take advantage of antiferromagnetism where the magnetic spins alternate from one to the next. In certain crystal structures, however, the spins take on even more complex arrangements. These are often created by frustration, where the interactions between spins cannot be satisfied locally or globally within the material resulting in complex and often non-coplanar spin textures. Frustration also leads to the close proximity of many different magnetic states, which can be selected by small perturbations in parameters like magnetic fields, temperature and pressure. It is this tunability that makes frustrated systems fundamentally interesting and highly desirable for applications. We move beyond frustration in insulators to itinerant systems where the interaction between mobile electrons and the non-coplanar magnetic states lead to quantum magneto-electric amplification. Here a small external field is amplified by many orders of magnitude by non-coplanar frustrated states. This greatly enhances their sensitivity and opens broader fields for applications. Our objective is to pioneer a new direction for condensed matter science at the Laboratory as well as for international community by discovering, understanding and controlling states that emerge from the coupling of itinerant charges to frustrated spin textures.

  4. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy

    PubMed Central

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-01-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10−16 emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications. PMID:27174466

  5. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy.

    PubMed

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-05-13

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10(-16) emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications.

  6. Magnetic Properties of Strontium Hexaferrite Nanostructures Measured with Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Song, Jie; Saura-Múzquiz, Matilde; Besenbacher, Flemming; Christensen, Mogens; Dong, Mingdong

    2016-05-01

    Magnetic property is one of the important properties of nanomaterials. Direct investigation of the magnetic property on the nanoscale is however challenging. Herein we present a quantitative measurement of the magnetic properties including the magnitude and the orientation of the magnetic moment of strontium hexaferrite (SrFe12O19) nanostructures using magnetic force microscopy (MFM) with nanoscale spatial resolution. The measured magnetic moments of the as-synthesized individual SrFe12O19 nanoplatelets are on the order of ~10-16 emu. The MFM measurements further confirm that the magnetic moment of SrFe12O19 nanoplatelets increases with increasing thickness of the nanoplatelet. In addition, the magnetization directions of nanoplatelets can be identified by the contrast of MFM frequency shift. Moreover, MFM frequency imaging clearly reveals the tiny magnetic structures of a compacted SrFe12O19 pellet. This work demonstrates the mesoscopic investigation of the intrinsic magnetic properties of materials has a potential in development of new magnetic nanomaterials in electrical and medical applications.

  7. Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles

    NASA Astrophysics Data System (ADS)

    Stepanov, G. V.; Borin, D. Yu; Bakhtiiarov, A. V.; Storozhenko, P. A.

    2017-03-01

    Hybrid magnetic elastomers belonging to the family of magnetorheological elastomers contain magnetically hard components and are of the utmost interest for the development of semiactive and active damping devices as well as actuators and sensors. The processes of magnetizing of such elastomers are accompanied by structural rearrangements inside the material. When magnetized, the elastomer gains its own magnetic moment resulting in changes of its magneto-mechanical properties, which remain permanent, even in the absence of external magnetic fields. Influenced by the magnetic field, magnetized particles move inside the matrix forming chain-like structures. In addition, the magnetically hard particles can rotate to align their magnetic moments with the new direction of the external field. Such an elastomer cannot be demagnetized by the application of a reverse field.

  8. Magnetism in nanoparticles: tuning properties with coatings.

    PubMed

    Crespo, Patricia; de la Presa, Patricia; Marín, Pilar; Multigner, Marta; Alonso, José María; Rivero, Guillermo; Yndurain, Félix; González-Calbet, José María; Hernando, Antonio

    2013-12-04

    This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications.

  9. Electronic and magnetic properties of nanoribbons

    NASA Astrophysics Data System (ADS)

    Fernando, Gayanath; Zhang, Zhiwei; Kocharian, Armen

    We have performed tight-binding calculations with open boundary conditions on a set of twisted nanoribbons (4x100), monitoring the band structure as a function of the twist angle θ. When this angle is zero, the ribbon is rectangular and when it is 60 degrees, the ribbon is cut from a honeycomb lattice. Depending on the parameters of the tight-binding model and the filling factor, semi-metallic or insulating behavior is observed. We have also studied the electronic structure of such ribbons due to the adsorption of small atoms such as nitrogen, a magnetic field and the Rashba spin-orbit interaction. The role of the adsorbed atoms and the Rashba term with regard to the conducting properties and the symmetry breaking of the ribbons will be discussed in some detail. In addition, the effects of electronic correlations on selected small ribbons will be examined. The authors acknowledge the computing facilities provided by the Center for Functional Nanomaterials, Brookhaven National Laboratory supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  10. Magnetic properties of 1 : 4 complexes of CoCl2 and pyridines carrying carbenes (S(0) = 4/2, 6/2, and 8/2) in diluted frozen solution; influence of carbene multiplicity on heterospin single-molecule magnets.

    PubMed

    Karasawa, Satoru; Nakano, Kimihiro; Tanokashira, Jun-ichi; Yamamoto, Noriko; Yoshizaki, Takahito; Koga, Noboru

    2012-11-28

    The microcrystalline sample of a parent complex, [CoCl(2)(py)(4)], showed a single-molecule magnet (SMM) behavior with an effective activation barrier, U(eff)/k(B), of 16 K for reversal of the magnetism in the presence of a dc field of 3 kOe. Pyridine ligands having 2-4 diazo moieties, DYpy; Y = 2, 3l, 3b, and 4, were prepared and confirmed to be quintet, septet, septet, and nonet in the ground state, respectively, after irradiation. The 1 : 4 complexes, CoCl(2)(DYpy)(4); Y = 2, 3l, 3b, and 4 in frozen solutions after irradiation showed the magnetic behaviors of SMMs with total spin multiplicity, S(total) = 17/2, 25/2, 25/2, and 33/2, respectively. Hysteresis loops depending on the temperature were observed and the values of coercive force, H(c), at 1.9 K were 12, 8.4, 11, and 8.1 kOe for CoCl(2)(CYpy)(4); Y = 2, 3l, 3b, and 4, respectively. In dynamic magnetic susceptibility experiments, ac magnetic susceptibility data obeyed the Arrhenius law to give U(eff)/k(B) values of 94, 92, 93, and 87 K for CoCl(2)(CYpy)(4); Y = 2, 3l, 3b, and 4, respectively, while the relaxation times for CoCl(2)(CYpy)(4); Y = 2 and 3l, obtained by dc magnetization decay in the range of 3.5-1.9 K slightly deviated downward from Arrhenius plots on cooling. The dynamic magnetic behaviors for CoCl(2)(CYpy)(4) including [CoCl(2)(py)(4)] and CoCl(2)(C1py)(4) suggested that the generated carbenes interacted with the cobalt ion to increase the relaxation time, τ(q), due to the spin quantum tunneling magnetization, which became larger with increasing S(total) of the complex.

  11. Magnetic properties of nanocomposites formed by magnetic nanoparticles embedded in a non-magnetic matrix: a simulation approach.

    PubMed

    Serna, J Ceballos; Restrepo-Parra, E; Rojas, J C Riaño

    2012-06-01

    In this work, simulations of magnetic properties of nanocomposites formed by magnetic nanoparticles embedded in a non magnetic matrix are presented. These simulations were carried by means of the Monte Carlo Method and Heisenberg model. Properties as magnetization and Hysteresis loops were obtained varying different parameters as the nanoparticle size, distance between nanoparticles and temperature. The model employed includes interaction between ions belonging to each nanoparticle and also the interaction between nanoparticles. Results show that the magnetization and the coercive force decrease as a function of the nanoparticles distance.

  12. Syntheses, structures, and magnetic properties of a family of heterometallic heptanuclear [Cu5Ln2] (Ln = Y(III), Lu(III), Dy(III), Ho(III), Er(III), and Yb(III)) complexes: observation of SMM behavior for the Dy(III) and Ho(III) analogues.

    PubMed

    Chandrasekhar, Vadapalli; Dey, Atanu; Das, Sourav; Rouzières, Mathieu; Clérac, Rodolphe

    2013-03-04

    Sequential reaction of the multisite coordination ligand (LH3) with Cu(OAc)2·H2O, followed by the addition of a rare-earth(III) nitrate salt in the presence of triethylamine, afforded a series of heterometallic heptanuclear complexes containing a [Cu5Ln2] core {Ln = Y(1), Lu(2), Dy(3), Ho(4), Er(5), and Yb(6)}. Single-crystal X-ray crystallography reveals that all the complexes are dicationic species that crystallize with two nitrate anions to compensate the charge. The heptanuclear aggregates in 1-6 are centrosymmetrical complexes, with a hexagonal-like arrangement of six peripheral metal ions (two rare-earth and four copper) around a central Cu(II) situated on a crystallographic inversion center. An all-oxygen environment is found to be present around the rare-earth metal ions, which adopt a distorted square-antiprismatic geometry. Three different Cu(II) sites are present in the heptanuclear complexes: two possess a distorted octahedral coordination sphere while the remaining one displays a distorted square-pyramidal geometry. Detailed static and dynamic magnetic properties of all the complexes have been studied and revealed the single-molecule magnet behavior of the Dy(III) and Ho(III) derivatives.

  13. Magnetic properties of the Bay of Islands ophiolite suite and implications for the magnetization of oceanic crust

    USGS Publications Warehouse

    Swift, B. Ann; Johnson, H. Paul

    1984-01-01

    Rock magnetic properties, opaque mineralogy, and degree of metamorphism were determined for 101 unoriented samples from the North Arm and Blow-Me-Down massifs of the Bay of Islands ophiolite complex, Newfoundland. The weathered and metamorphosed extrusive basalt samples have a weak, secondary magnetization arising from oxidation and exsolution of ilmenite of unknown origin. The initial magnetization of the underlying sheeted dike complex appears to have been destroyed by hydrothermal alteration soon after formation. The magnetic intensity of the gabbroic samples increases as the degree of alteration increases, with the highly altered upper metagabbros having an average intensity of 3×10−3 emu/c3. Because magnetization of the metagabbro samples is related to nonpervasive, variable alteration, these crustal units are unlikely to make a significant contribution to lineated magnetic anomalies. A compilation of our results and other studies suggests a model in which oceanic crust magnetization results from an upper extrusive basalt source layer, roughly 600 m thick, with no contribution from a deeper source layer recognizable from these Bay of Islands data.

  14. Measurement and modelling of magnetic properties of soft magnetic composite material under 2D vector magnetisations

    NASA Astrophysics Data System (ADS)

    Guo, Y. G.; Zhu, J. G.; Zhong, J. J.

    2006-07-01

    This paper reports the measurement and modelling of magnetic properties of SOMALOY TM 500, a soft magnetic composite (SMC) material, under different 2D vector magnetisations, such as alternating along one direction, circularly and elliptically rotating in a 2D plane. By using a 2D magnetic property tester, the B- H curves and core losses of the SMC material have been measured with different flux density patterns on a single sheet square sample. The measurements can provide useful information for modelling of the magnetic properties, such as core losses. The core loss models have been successfully applied in the design of rotating electrical machines with SMC core.

  15. Magnetic properties of stainless steels at room and cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Oxley, Paul; Goodell, Jennifer; Molt, Robert

    2009-07-01

    The magnetic properties of ten types of ferritic and martensitic stainless steels have been measured at room temperature and at 77 K. The steel samples studied were in the annealed state as received from the manufacturer. Our room temperature measurements indicate significantly harder magnetic properties than those quoted in the ASM International Handbook, which studied fully annealed stainless steel samples. Despite having harder magnetic properties than fully annealed steels some of the as-received steels still display soft magnetic properties adequate for magnetic applications. The carbon content of the steels was found to affect the permeability and coercive force, with lower-carbon steels displaying significantly higher permeability and lower coercive force. The decrease in coercive force with reduced carbon content is attributed to fewer carbide inclusions which inhibit domain wall motion. Cooling to 77 K resulted in harder magnetic properties. Averaged over the ten steels tested the maximum permeability decreased by 8%, the coercive force increased by 14%, and the residual and saturation flux densities increased by 4% and 3%, respectively. The change in coercive force when cooled is comparable to the theoretical prediction for iron, based on a model of domain wall motion inhibited by inclusions. The modest changes of the magnetic properties indicate that the stainless steels can still be used in magnetic applications at very low temperatures.

  16. The electric properties of low-magnetic-loss magnetic composites containing Zn-Ni-Fe particles

    NASA Astrophysics Data System (ADS)

    Hidaka, Nobuhiro; Ishitsuka, Masayuki; Shirakata, Yasushi; Teramoto, Akinobu; Ohmi, Tadahiro

    2009-10-01

    Recently, magnetic composites consisting of magnetic particles dispersed in a polymer matrix have been widely discussed for miniaturizing high-frequency electronic components such as antennae. Previously, we investigated the influence of the manufacturing process on the homogeneous dispersion of magnetic particles in the polymer and on the magnetic properties of the magnetic composites. In order to miniaturize electronic components, it is crucial to be able to independently control the permeability and permittivity in magnetic composites. This paper investigates the anisotropy and frequency dependence of the dielectric properties of magnetic composites fabricated from 20 vol% Zn5Ni75Fe20 flaked particles. The permittivity of magnetic composites fabricated from Zn5Ni75Fe20 flaked particles is anisotropic: at 1 GHz, the relative permittivities parallel and perpendicular to the plane of the specimens are 27.2 and 16.9, respectively. The permittivity varied little between frequencies of 50 MHz and 10 GHz.

  17. Structural and Magnetic Properties of Co-Mn-Sb Thin films

    SciTech Connect

    Meinert, M.; Schmalhorst, J.-M.; Ebke, D.; Liu, N. N.; Thomas, A.; Reiss, G.; Kanak, J.; Stobiecki, T.; Arenholz, E.

    2009-12-17

    Thin Co-Mn-Sb films of different compositions were investigated and utilized as electrodes in alumina based magnetic tunnel junctions with CoFe counterelectrode. The preparation conditions were optimized with respect to magnetic and structural properties. The Co-Mn-Sb/Al-O interface was analyzed by x-ray absorption spectroscopy and magnetic circular dichroism with particular focus on the element-specific magnetic moments. Co-Mn-Sb crystallizes in different complex cubic structures depending on its composition. The magnetic moments of Co and Mn are ferromagnetically coupled in all cases. A tunnel magnetoresistance ratio of up to 24% at 13 K was found and indicates that Co-Mn-Sb is not a ferromagnetic half-metal. These results are compared to recent works on the structure and predictions of the electronic properties.

  18. High-pressure synthesis and magnetic properties of complex oxide Y{sub 2}Cd{sub 2/3}Re{sub 4/3}O{sub 7}

    SciTech Connect

    Bazuev, G.V. . E-mail: bazuev@ihim.uran.ru; Chupakhina, T.I.; Zubkov, V.G.; Tyutyunnik, A.P.; Zainulin, Yu. G.; Neifeld, E.A.; Kadyrova, N.I.

    2006-04-13

    A new complex oxide Y{sub 2}Cd{sub 2/3}Re{sub 4/3}O{sub 7} with hexagonal cell parameters a = 7.3564(2) A, c = 17.7092(5) A (space group P3{sub 1}21, z = 6, zirkelite structure type) was synthesized from Y{sub 3}ReO{sub 8}, ReO{sub 2}, metallic Re and CdO under pressure 6 GPa and temperature 1500 deg. C. Magnetic susceptibility measured in the temperature range from 2 to 300 K depends little on temperature above {approx}50 K and is indicative of a delocalized or intermediate character of d electrons of Re{sup 5+} cations.

  19. Correlation of magnetic properties with deformation in electrical steels

    NASA Astrophysics Data System (ADS)

    Papadopoulou, S.

    2016-03-01

    This paper investigates the utilization of magnetic Barkhausen Noise (MBN) and hysteresis loops methods for the non-destructive characterization of deformed electrical steel samples. For this reason electrical steel samples were subjected to uniaxial tensile tests on elastic and plastic region of deformations. Both the MBN and hysteresis loops were measured. The results shown a strong degradation of the magnetic properties on plastically strains. This was attributed to the irreversible movement of the magnetic domain walls, due to the presence of high dislocation density. The resulting magnetic properties were further evaluated by examining the microstructure of the deformed samples by using scanning electron microscopy.

  20. Structure and magnetic properties of Zn-Ti-substituted Ba-ferrite particles for magnetic recording

    NASA Astrophysics Data System (ADS)

    Wang, C. S.; Wei, F. L.; Lu, M.; Han, D. H.; Yang, Z.

    1998-03-01

    The formation process of Zn-Ti-doped Ba-ferrite particles was investigated by the X-ray diffraction technique, transmission electron microscope and magnetic measurements. The effects of heating temperature Th and the Zn-Ti substitution x on the microstructure and magnetic properties of BaFe 12-2 xZn xTi x O 19 particles with x=0.10-0.80 were studied. The temperature dependence of magnetic properties of these particles was measured.

  1. Magnetic and magnetothermal properties and the magnetic phase diagram of high purity single crystalline terbium along the easy magnetization direction

    SciTech Connect

    Zverev, V. I.; Tishin, A. M.; Chernyshov, A. S.; Mudryk, Ya; Gschneidner Jr., Karl A.; Pecharsky, Vitalij K.

    2014-01-21

    The magnetic and magnetothermal properties of a high purity terbium single crystal have been re-investigated from 1.5 to 350 K in magnetic fields ranging from 0 to 75 kOe using magnetization, ac magnetic susceptibility and heat capacity measurements. The magnetic phase diagram has been refined by establishing a region of the fan-like phase broader than reported in the past, by locating a tricritical point at 226 K, and by a more accurate definition of the critical fields and temperatures associated with the magnetic phases observed in Tb.

  2. Magnetic properties in an alternating-spin ferromagnetic Ising chain

    NASA Astrophysics Data System (ADS)

    Eloy, D.; Ramos, F. B.

    2011-08-01

    Using the transfer matrix technique, we investigated the magnetic properties of a ferromagnetic Ising chain with alternating-spins ( S, S') and single-ion anisotropy. We have calculated some physical quantities of interest such as the z component of the total magnetization per particle ( m) and magnetic susceptibility. In the regime of low temperatures, we observed the existence of magnetization plateaus. We constructed the phase diagrams of the magnetization in terms of the magnetic field and of the single-ion anisotropy for the case {1}/{2}≤(S,S')≤{9}/{2}. We were able to find a general rule for the magnetic transitions. We observed that the saturation value of the magnetization is msat=(S+S')/2.

  3. Deep structure of the Mount Amram igneous complex, interpretation of magnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Shirman, Boris; Rybakov, Michael; Beyth, Michael; Mushkin, Amit; Ginat, Hanan

    2015-03-01

    The Mt Amram igneous complex (AIC) represents northern tip of the Neoproterozoic Arabian Nubian Shield (ANS). For the first time the AIC deep structure was studied using the gravity, aero and ground magnetic, magnetic susceptibility and density measurements and geological data. Analysing all available data at the Amram area we concluded what only monzonite body can be reason for gravity high and coinciding reduced to pole (RTP) maximum. Geological knowledge allowed suggesting its intrusive character and compact body form. Cluster of inverse solutions (Werner deconvolution) localized this body as initial model for forward modelling. Further iterations (23/4-D forward modelling) clarified the monzonite geometry and properties; the modelling allowed also to investigate the non-uniqueness and estimate also the confident intervals for final solution. The research consists three interconnected stages. At the detailed scale, ground magnetic data suggested three magmatic blocks of few hundred meters shifted dextral about 100 m along the Zefunut fault. Estimated accuracy for geometry of the magnetic bodies is a few tens metres. At the middle scale, quantitative gravity and magnetic interpretations provide model of the monzonite body, which is an order of magnitude more than the volume of the felsic rhyolites and granite rocks. Boundary of the whole monzonite body was estimated with accuracy as a hundred meters. As a result we suggest that the parent magma for the AIC is the monzonite, similar to the model suggested for the Timna Igneous Complex 12 km north of the AIC. The model developed can be applied to evaluate the subsurface volumes of the mafic magmatic rocks in adjacent locations. At the regional scale for exposed the Sinai and Arab Saudi Precambrian crystalline shield our approach allows to understand the apparent contradiction between geological predominantly granite composition (low magnetic rocks) and magnetic data. The aeromagnetic data show number strong

  4. Complex polarization propagator calculations of magnetic circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Solheim, Harald; Ruud, Kenneth; Coriani, Sonia; Norman, Patrick

    2008-03-01

    It is demonstrated that the employment of the nonlinear complex polarization propagator enables the calculation of the complete magnetic circular dichroism spectra of closed-shell molecules, including at the same time both the so-called Faraday A and B terms. In this approach, the differential absorption of right and left circularly polarized light in the presence of a static magnetic field is determined from the real part of the magnetic field-perturbed electric dipole polarizability. The introduction of the finite lifetimes of the electronically excited states into the theory results in response functions that are well behaved in the entire spectral region, i.e., the divergencies that are found in conventional response theory approaches at the transition energies of the system are not present. The applicability of the approach is demonstrated by calculations of the ultraviolet magnetic circular dichroism spectra of para-benzoquinone, tetrachloro-para-benzoquinone, and cyclopropane. The present results are obtained with the complex polarization propagator approach in conjunction with Kohn-Sham density functional theory and the standard adiabatic density functionals B3LYP, CAM-B3LYP, and BHLYP.

  5. Magnetic properties of synthetic eumelanin--preliminary results.

    PubMed

    Cano, M E; Castañeda-Priego, R; Gil-Villegas, A; Sosa, M A; Schio, P; de Oliveira, A J A; Chen, F; Baffa, O; Graeff, C F O

    2008-01-01

    We report an experimental and theoretical study of magnetic properties of synthetic eumelanin. The magnetization curves are determined by using both a vibrating sample magnetometer and a superconducting quantum interferometer device in an extended range of magnetic fields ranging from -10 kOe to 10 kOe at different temperatures. We find that the eumelanin magnetization can be qualitatively explained in terms of a simple model of dipolar spheres with an intrinsic magnetic moment. The latter one is experimentally measured by using X-band electron paramagnetic resonance. Our findings indicate that synthetic melanins are superparamagnetic.

  6. Magnetic Properties of Nanoparticle Matrix Composites

    DTIC Science & Technology

    2015-06-02

    been optimized for each composition of Fe-Pt and their spin isomers have been studied to find the magnetic moments of the lowest energy structures ...numbers in brackets below the structures refer to the energy (eV) relative to the lowest energy isomer and the magnetic moment (µB). Red (blue) balls...Approved for public release; distribution is unlimited. Distribution is unlimited structures . The magnetic moments increase systematically by 4µB when a

  7. Di- and tetra-nuclear copper(II), nickel(II), and cobalt(II) complexes of four bis-tetradentate triazole-based ligands: synthesis, structure, and magnetic properties.

    PubMed

    Olguín, Juan; Kalisz, Marguerite; Clérac, Rodolphe; Brooker, Sally

    2012-05-07

    Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state

  8. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    SciTech Connect

    Xu, Jianlong; Xie, Dan E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling E-mail: RenTL@mail.tsinghua.edu.cn; Zeng, Min; Gao, Xingsen; Zhao, Yonggang

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  9. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Jianlong; Xie, Dan; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling; Zeng, Min; Gao, Xingsen; Zhao, Yonggang

    2015-06-01

    We report a potential way to effectively improve the magnetic properties of BiFeO3 (BFO) nanoparticles through Mg2+ ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  10. FeNi-based magnetic layered nanostructures: Magnetic properties and giant magnetoimpedance

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Svalov, A. V.; Fernandez, E.; Garcia-Arribas, A.; Barandiaran, J. M.

    2010-05-01

    Magnetic properties and the magnetoimpedance (MI) effect were studied for a series of [Fe20Ni80/Ti]n/Fe20Ni80 (n=0 to 5) nanostructures, prepared by dc magnetron sputtering. The thickness of the FeNi layers was selected as 170 nm in order to avoid the appearance of the "transcritical" state that takes place for thicker layers. First, the influence of the Ti layer thickness was determined for n=1 trilayers, with Ti layers ranging from 2 to 20 nm. The minimum coercivity corresponded to a Ti layer of about 6 nm. Second, the magnetic properties and MI responses were studied for different [FeNi/Ti]n/FeNi structures at a fixed Ti layer thickness of 6 nm. The complex impedance was measured for a frequency range of 1-300 MHz. The highest value of the MI was obtained in the sample [FeNi/Ti]5/FeNi with the largest total thickness.

  11. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    NASA Astrophysics Data System (ADS)

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-04-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH)max of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  12. Observation of complex magnetic behaviour in calcium doped neodymium manganites

    NASA Astrophysics Data System (ADS)

    Sudakshina, B.; Devi Chandrasekhar, K.; Yang, H. D.; Vasundhara, M.

    2017-02-01

    Crystal structure and magnetic properties of polycrystalline Nd1-x Ca x MnO3 (x  =  0.0, 0.2, 0.3, 0.33, 0.4, 0.5, 0.6 and 0.8) manganites were investigated. The fine structural refinement using GSAS was found to undergo a transition from Pnma reflections to Pbnm reflections associated with the Ca substitution at x  =  0.3. The magnetic ordering of these compounds witnessed distinct magnetic phases with variations of Ca substitution. Magnetic ordering of the parent compound, NdMnO3, was found as A-type antiferromagnetic (AFM) in accordance with the earlier reports, which progressively undergoes to canted A-type AFM for x  =  0.2, pseudo CE-type AFM for the intermediate compositions, i.e. x  =  0.3 to x  =  0.5 and CE-type AFM for x  >  0.5. The x  =  0.2 compound exhibited ferromagnetic like (weak AFM) behaviour, and the critical exponent study reinforced the magnetic inhomogeneity of the compound. Hysteresis curves of all the compounds measured at different temperatures implied the presence of metamagnetic like transitions for the intermediate compositions (0.3  ⩽  x  ⩽  0.5). Relative cooling power (RCP) value of Nd0.8Ca0.2MnO3 was observed to be 900 J Kg-1, at the higher magnetic field, making it a promising candidate for magnetic refrigeration applications.

  13. Viking magnetic properties experiment - Extended mission results

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.; Collinson, D. W.; Arvidson, R. E.; Cates, P. M.

    1979-01-01

    The backhoe magnets on Viking Lander (VL) 2 were successfully cleaned, followed by a test involving successive insertions of the cleaned backhoe into the surface. Rapid saturation of the magnets confirmed evidence from primary mission results that the magnetic mineral in the Martian surface is widely distributed, most probably in the form of composite particles of magnetic and nonmagnetic minerals. An image of the VL 2 backhoe taken via the X4 magnifying mirror demonstrates the fine-grained nature of the attracted magnetic material. The presence of maghemite and its occurrence as a pigment in, or a thin coating on, all mineral particles or as discrete, finely divided and widely distributed crystallites, are consistent with data from the inorganic analysis experiments and with laboratory simulations of results of the biology experiments on Mars.

  14. Cis-trans isomerism in diphenoxido bridged dicopper complexes: role of crystallized water to stabilize the cis isomer, variation in magnetic properties and conversion of both into a trinuclear species.

    PubMed

    Biswas, Apurba; Drew, Michael G B; Diaz, Carmen; Bauzá, Antonio; Frontera, Antonio; Ghosh, Ashutosh

    2012-10-21

    The trans-[Cu(2)L(2)Cl(2)] (1), and cis-[Cu(2)L(2)Cl(2)]·H(2)O (2) isomers of a diphenoxido bridged Cu(2)O(2) core have been synthesized using a tridentate reduced Schiff base ligand 2-[(2-dimethylamino-ethylamino)-methyl]-phenol. The geometry around Cu(II) is intermediate between square pyramid and trigonal bipyramid (Addison parameter, τ = 0.463) in 1 but nearly square pyramidal (τ = 0.049) in 2. The chloride ions are coordinated to Cu(II) and are trans oriented in 1 but cis oriented in 2. Both isomers have been optimized using density functional theory (DFT) calculations and it is found that the trans isomer is 7.2 kcal mol(-1) more favorable than the cis isomer. However, the hydrogen bonding interaction of crystallized water molecule with chloride ions compensates for the energy difference and stabilizes the cis isomer. Both complexes have been converted to a very rare phenoxido-azido bridged trinuclear species, [Cu(3)L(2)(μ(1,1)-N(3))(2)(H(2)O)(2)(ClO(4))(2)] (3) which has also been characterized structurally. All the complexes are antiferromagnetically coupled but the magnitude of the coupling constants are significantly different (J = -156.60, -652.31, and -31.54 cm(-1) for 1, 2, 3 and respectively). Density functional theory (DFT) calculations have also been performed to gain further insight into the qualitative theoretical interpretation on the overall magnetic behavior of the complexes.

  15. EM Properties of Magnetic Minerals at RADAR Frequencies

    NASA Technical Reports Server (NTRS)

    Stillman, D. E.; Olhoeft, G. R.

    2005-01-01

    Previous missions to Mars have revealed that Mars surface is magnetic at DC frequency. Does this highly magnetic surface layer attenuate RADAR energy as it does in certain locations on Earth? It has been suggested that the active magnetic mineral on Mars is titanomaghemite and/or titanomagnetite. When titanium is incorporated into a maghemite or magnetite crystal, the Curie temperature can be significantly reduced. Mars has a wide range of daily temperature fluctuations (303K - 143K), which could allow for daily passes through the Curie temperature. Hence, the global dust layer on Mars could experience widely varying magnetic properties as a function of temperature, more specifically being ferromagnetic at night and paramagnetic during the day. Measurements of EM properties of magnetic minerals were made versus frequency and temperature (300K- 180K). Magnetic minerals and Martian analog samples were gathered from a number of different locations on Earth.

  16. Magnetic properties of a nanoribbon: An effective-field theory

    NASA Astrophysics Data System (ADS)

    Wang, Jiu-Ming; Jiang, Wei; Zhou, Chen-Long; Shi, Zuo; Wu, Chuang

    2017-02-01

    An effective-field theory is proposed to study magnetic properties of a nanoribbon. The model consists of a core spin-3/2 and shell spin-2 with a ferrimagnetic exchange coupling, which is described by transverse Ising model with the anisotropy. Based on the differential operator technique, the magnetization and the susceptibility formulas of the nanoribbon are given. Numerical results of the magnetization, the susceptibility, the hysteresis loop of the system are discussed for specific values of the parameters. Magnetization plateaus exhibits on the magnetization curves at low temperature. The exchange coupling, the anisotropy and the transverse field have important roles in the magnetic properties for the nanoribbon. Results may provide some guidance to design in the nanoribbons.

  17. The magnetic properties of powdered and compacted microcrystalline permalloy

    NASA Astrophysics Data System (ADS)

    Kollár, P.; Olekšáková, D.; Füzer, J.; Kováč, J.; Roth, S.; Polański, K.

    2007-03-01

    The aim of this work is to investigate the magnetic properties of powdered and compacted microcrystalline Ni-Fe (81 wt% of Ni) permalloy. It was found by investigating the influence of mechanical milling on the magnetic properties of powder samples prepared by milling of the ribbon that the alloy remains a solid solution with stable structure during the whole milling process. With decreasing particle size the rotation of magnetization vector gradually becomes dominant magnetization process and thus coercivity increases. After compaction of the powder by uniaxial hot pressing the magnetic contact between powder particles is recreated and for resulting bulk the displacement of the domain walls becomes dominant magnetization process with coercivity of 11 A/m (comparable with the coercivity of conventional permalloy).

  18. Magnetic properties of cobalt ferrite synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Allaedini, Ghazaleh; Tasirin, Siti Masrinda; Aminayi, Payam

    2015-05-01

    In this study, the magnetic properties of nanocrystalline cobalt ferrite synthesized via the hydrothermal method have been investigated. The structural properties of the produced powders were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The observed XRD pattern confirmed the spinel/cubic structure of the prepared cobalt ferrite. The SEM pictures show that the simple hydrothermal method produces uniform sphere-shaped nanopowders. Moreover, infrared spectroscopy was used to confirm the formation of cobalt ferrite particles. Magnetic hysteresis was measured using a vibrating sample magnetometer in a maximum field of 10 kOe. The magnetization of the prepared nanoparticles was investigated, and the saturation magnetization ( M s), remanence ( M r), and coercivity ( H c) were derived from the hysteresis loops. The results revealed that the cobalt ferrite nanoparticles synthesized via the simple hydrothermal method exhibit superior magnetic properties.

  19. Thermodynamic Properties of Organometallic Dihydrogen Complexes for Hydrogen Storage Applications

    NASA Astrophysics Data System (ADS)

    Abrecht, David Gregory

    appropriate ranges for hydrogen storage applications. Simulated thermodynamic values for Fe complexes were found to significantly underestimate experimental behavior, demonstrating the importance of the magnetic spin state of the molecule to hydrogen binding properties.

  20. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-05-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δ n) and figure of merit of optical properties ( Q = Δ n/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of Q R exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field.

  1. [Synthesis, characterization and NIR luminescence properties of erbium organic complexes].

    PubMed

    Wang, Huai-shan; Qian, Guo-dong; Wang, Min-quan; Luo, Yong-shi; Lin, Jiu-ling

    2005-03-01

    Several erbium organic complexes, hydrated erbium binary complexes with acetylacetone (AcAc) or dibenzoylmethane (DBM), erbium ternary complexes derived from 1,10-phenanthroline (Phen) with acetylacetone (AcAc), dibenzoylmethane (DBM) or trifluoroacetylacetone (TFA), were synthesized and identified by elemental analysis. The UV-Vis absorption and FTIR spectra measurements have been employed for all the erbium complexes. Near infrared (NIR) photoluminescence properties, such as luminescence intensity and effective bandwidth, of the erbium complexes were also studied. As a result, the erbium ternary complex with AcAc and Phen exhibits the most excellent luminescence properties among those investigated complexes.

  2. Investigation on microstructure and magnetic properties of Sm2Co17 magnets aged at high temperature

    NASA Astrophysics Data System (ADS)

    Feng, Haibo; Chen, Hongsheng; Guo, Zhaohui; Pan, Wei; Zhu, Minggang; Li, Wei

    2011-04-01

    The Sm2Co17 magnet is the most promising candidate for high temperature applications. The microstructure evolutions and losses in the magnetic properties of the magnet in high temperature aging status have been investigated. The Sm(CobalFe0.22Cu0.068Zr0.025)7.75 magnets were prepared using the conventional powder sintering method. The magnet samples were isothermally aged at 500°C, 600 °C, and 700 °C for 72 h, respectively. The magnetic properties and the demagnetization curve were kept invariable for the magnet samples aged at 500 °C. The coercivity Hcj of the magnet samples decreased with increasing aging temperature. The Hcj decreased from 29.2 kOe for the original status samples to 10.8 kOe for the samples aged at 700 °C. The cell structure in the magnet is not destroyed after aging at 700 °C for 72 h. The deterioration of the magnetic properties and the demagnetization-curve squareness was caused by an increasing lattice mismatch between the 2:17R cell phase and the cell-boundary 1:5H phase, and by an increasing cell diameter for the magnet sample aged at a high temperature.

  3. Exchange coupling and anisotropy effects on the low temperature magnetization dynamics in rare-earth dioxolene complexes

    NASA Astrophysics Data System (ADS)

    Amjad, Asma; Poneti, Giordano; Sottini, Silvia; Dei, Andrea; Sorace, Lorenzo

    The prelude of relevant magnetic coupling in f-element based complexes is actively pursued to improve the single-molecule magnetic features. However, a quantitative analysis of magnetic properties of exchange-coupled anisotropic rare-earth based complexes is often hampered owing to the comparable magnitude of the crystal field with the magnetic coupling. In this study, we investigated the properties of complexes containing different ligands with comparable molecular structures and ligand field strengths. Comparative low-temperature magnetic and EPR study of homologous LnIIISemiquinonate (LnSQ) and LnIIITropolonate (LnTrp) complexes, where Ln = Dy, Tb is investigated. Single-crystal EPR revealed that the direct exchange coupling in DySQ resulted in a highly anisotropic pseudo-triplet state. An out-of-phase susceptibility signal was observed for TbTrp only in the presence of an external magnetic field. Furthermore, the dynamics revealed slow relaxation of magnetization in the DySQ at low temperature which upon comparative study with the dynamics of the related DyTrp revealed a not so simple dependence on the crystal field effects of the coordination sphere of the lanthanide.

  4. Magnetic Anomalies and Rock Magnetic Properties Related to Deep Crustal Rocks of the Athabasca Granulite Terrane, Northern Canada

    NASA Astrophysics Data System (ADS)

    Brown, L. L.; Williams, M. L.

    2010-12-01

    The Athabasca granulite terrane in northernmost Saskatchewan, Canada is an exceptional exposure of lower crustal rocks having experienced several high temperature events (ca 800C) during a prolonged period of deep-crustal residence (ca 1.0 GPa) followed by uplift and exhumation. With little alteration since 1.8 Ga these rocks allow us to study ancient lower crustal lithologies. Aeromagnetic anomalies over this region are distinct and complex, and along with other geophysical measurements, define the Snowbird Tectonic zone, stretching NE-SW across northwestern Canada, separating the Churchill province into the Hearne (mid-crustal rocks, amphibolite facies) from the Rae (lower crust rocks, granulite facies). Distinct magnetic highs and lows appear to relate roughly to specific rock units, and are cut by mapped shear zones. Over fifty samples from this region, collected from the major rock types, mafic granulites, felsic granulites, granites, and dike swarms, as well as from regions of both high and low magnetic anomalies, are being used to investigate magnetic properties. The intention is to investigate what is magnetic in the lower crust and how it produces the anomalies observed from satellite measurements. The samples studied reveal a wide range of magnetic properties with natural remanent magnetization ranging from an isolated high of 38 A/m to lows of 1 mA/m. Susceptibilities also range over several orders of magnitude, from 1 to 1 x10-4 SI. Magnetite is identified in nearly all samples using both low and high temperature measurements, but concentrations are generally very low. Hysteresis properties on 41 samples reveal nearly equal numbers of samples represented by PSD and MD grains, with a few samples (N=6) plotting in or close to the SD region. Low temperature measurements indicate that most samples contain magnetite, showing a marked Verway transition around 120K. Also identified in nearly half of the samples is pyrrhotite, noted by low temperature

  5. Electronic and magnetic properties of Am and Cm

    SciTech Connect

    Edelstein, N.

    1985-02-01

    A review of the present status of the analyses of the optical spectra of Am and Cm in various oxidation states is given. From these analyses, the magnetic properties of the ground states of these ions can be determined. These predicted values are compared with the various magnetic measurements available.

  6. Elastic properties of DNA linked flexible magnetic filaments

    NASA Astrophysics Data System (ADS)

    Ērglis, K.; Zhulenkovs, D.; Sharipo, A.; Cēbers, A.

    2008-05-01

    Elastic properties of magnetic filaments linked by DNA in solutions of univalent and bivalent salts with different pH values are investigated through their deformation in an external field. A strong dependence of the bending modulus in bivalent salt solution on the pH is shown. Experimental results are interpreted on the basis of the magnetic elastica.

  7. Synthesis and Magnetic Properties of CoPt Nanoparticles

    NASA Astrophysics Data System (ADS)

    Trung, Truong Thanh; Nhung, Do Thi; Nam, Nguyen Hoang; Luong, Nguyen Hoang

    2016-07-01

    Magnetic nanoparticles CoPt were prepared by the chemical reduction of cobalt (II) chloride and chloroplatinic acid, then the samples were ultrasonicated for 2 h. After annealing at various temperatures from 400°C to 700°C for 1 h, the samples showed hard magnetic properties with coercivity up to 1.15 kOe at room temperature.

  8. Synthesis and magnetic properties of nickel nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Jaiveer; Patel, Tarachand; Kaurav, Netram; Okram, Gunadhor S.

    2016-05-01

    Monodisperse nickel nanoparticles (Ni-NPs) were synthesized via a thermal decomposition process. The NPs were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). They were spherical with mean diameter of 4 nm. Zero field cooled (ZFC) and field cooled (FC) magnetization versus temperature data displayed interesting magnetic interactions. ZFC showed a peak at 4.49 K, indicating the super paramagnetic behavior. Magnetic anisotropic constant was estimated to be 4.62×105 erg/cm3 and coercive field was 168 Oe at 3 K.

  9. Magnetic porous composite material: Synthesis and properties

    NASA Astrophysics Data System (ADS)

    Peretyat'ko, P. I.; Kulikov, L. A.; Melikhov, I. V.; Perfil'ev, Yu. D.; Pal', A. F.; Timofeev, M. A.; Gudoshnikov, S. A.; Usov, N. A.

    2015-10-01

    A new method of obtaining magnetic porous composite materials is described, which is based on the self-propagating high-temperature synthesis (SHS) in the form of solid-phase combustion. The SHS process involves transformation of the nonmagnetic α-Fe2O3 particles (contained in the initial mixture) into magnetic Fe3O4 particles. The synthesized material comprises a porous carbonaceous matrix with immobilized Fe3O4 particles. The obtained composite has been characterized by electron microscopy, X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. The sorption capacity of the porous material has been studied.

  10. Synthesis, crystal structure and magnetic properties of a novel heterobimetallic rhenium(IV)-dysprosium(III) chain.

    PubMed

    Pejo, Carolina; Guedes, Guilherme P; Novak, Miguel A; Speziali, Nivaldo L; Chiozzone, Raúl; Julve, Miguel; Lloret, Francesc; Vaz, Maria G F; González, Ricardo

    2015-06-08

    The use of the mononuclear rhenium(IV) precursor [ReBr5 (H2 pydc)](-) (H2 pydc=3,5-pyridinedicarboxylic acid) as a metalloligand towards dysprosium(III) afforded the first heterobimetallic Re(IV) -Dy(III) complex. Crystal structures and static and dynamic magnetic properties of both rhenium-containing species are reported herein. The 5d-4f compound shows an extended 1D structure and the AC magnetic measurements reveal frequency dependence at low temperature suggesting slow relaxation of the magnetization.

  11. Evolution of magnetic properties in the solid solution UCo1-xPdx Ge

    NASA Astrophysics Data System (ADS)

    Gralak, D.; Zaleski, A. J.; Tran, V. H.

    2016-10-01

    We have investigated the evolution of magnetic properties in pseudo-ternary UCo1-xPdxGe (x=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) intermetallics by measurements of ac-magnetic susceptibility and dc-magnetization. The measured samples have been prepared by arc-melting and characterized by powder X-ray diffraction and X-ray energy-dispersive electron spectroscopy technique. Rietveld refinements of the X-ray patterns indicate that the pseudo-ternaries crystallize in the orthorhombic TiNiSi-type structure with Pnma space group as the parent UCoGe and UPdGe compounds do. The magnetic measurements reveal that in addition to an increase in 5f-electron localization degree with increasing Pd concentration, an interesting magnetic phase diagram, which is more complex than that expected from the gradual change in magnetic ground state due to the substitution. Three compositional ranges with different magnetic properties have been established; the coexistence of spin-glass and itinerant-electron ferromagnetic orderings for x ≤ 0.3 , antiferromagnetic order occurs in the range 0.4 ≤ x ≤ 0.7 , and a complex ferromagnetic structure of more localized 5f moments takes place in x ≥ 0.8 . The evolution of magnetic ground states in UCo1-xPdxGe is discussed in terms of interplay between cooperative magnetic interactions. We consider also implications of increasing conduction electrons upon the Pd substitution in Ruderman-Kittel-Kasuya-Yosida interactions, which would give rise to the evolution of magnetic properties in UCo1-xPdxGe pseudo-ternaries.

  12. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  13. QUANTIFYING THE MOTION OF MAGNETIC PARTICLES IN EXCISED TISSUE: EFFECT OF PARTICLE PROPERTIES AND APPLIED MAGNETIC FIELD

    PubMed Central

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-01-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 µm diameter) with four different coatings (starch, chitosan, lipid, PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields. PMID:26120240

  14. QUANTIFYING THE MOTION OF MAGNETIC PARTICLES IN EXCISED TISSUE: EFFECT OF PARTICLE PROPERTIES AND APPLIED MAGNETIC FIELD.

    PubMed

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 µm diameter) with four different coatings (starch, chitosan, lipid, PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  15. Correlation Between Domain Behavior and Magnetic Properties of Materials

    SciTech Connect

    Leib, Jeffrey Scott

    2003-01-01

    Correlation between length scales in the field of magnetism has long been a topic of intensive study. The long-term desire is simple: to determine one theory that completely describes the magnetic behavior of matter from an individual atomic particle all the way up to large masses of material. One key piece to this puzzle is connecting the behavior of a material's domains on the nanometer scale with the magnetic properties of an entire large sample or device on the centimeter scale. In the first case study involving the FeSiAl thin films, contrast and spacing of domain patterns are clearly related to microstructure and stress. Case study 2 most clearly demonstrates localized, incoherent domain wall motion switching with field applied along an easy axis for a square hysteresis loop. In case study 3, axis-specific images of the complex Gd-Si-Ge material clearly show the influence of uniaxial anisotropy. Case study 4, the only study with the sole intent of creating domain structures for imaging, also demonstrated in fairly simple terms the effects of increasing stress on domain patterns. In case study 5, it was proven that the width of magnetoresistance loops could be quantitatively predicted using only MFM. When all of the case studies are considered together, a dominating factor seems to be that of anisotropy, both magneticrostaylline and stress induced. Any quantitative bulk measurements heavily reliant on K coefficients, such as the saturation fields for the FeSiAl films, Hc in cases 1, 3, and 5, and the uniaxial character of the Gd5(Si2Ge2), transferred to and from the domain scale quite well. In-situ measurements of domain rotation and switching, could also be strongly correlated with bulk magnetic properties, including coercivity, Ms, and hysteresis loop shape. In most cases, the qualitative nature of the domain structures, when properly considered, matched quite well to what might have been expected from

  16. Thermodynamic and magnetic properties of the layered triangular magnet NaNiO2

    NASA Astrophysics Data System (ADS)

    Baker, P. J.; Lancaster, T.; Blundell, S. J.; Brooks, M. L.; Hayes, W.; Prabhakaran, D.; Pratt, F. L.

    2005-09-01

    We report muon-spin rotation, heat capacity, magnetization, and ac magnetic susceptibility measurements of the magnetic properties of the layered spin- 1/2 antiferromagnet NaNiO2 . These show the onset of long-range magnetic order below TN=19.5K . Rapid muon depolarization, persisting from TN to about 5 K above TN , is consistent with the presence of short-range magnetic order. The temperature and frequency dependence of the ac susceptibility suggests that magnetic clusters persist above 25 K and that their volume fraction decreases with increasing temperature. A frequency dependent peak in the ac magnetic susceptibility at Tsf=3K is observed, consistent with a slowing of spin fluctuations at this temperature. A partial magnetic phase diagram is deduced.

  17. Influence of the anions on the structure and magnetic properties of a series of bis(μ-diphenoxo)-bridged linear trinuclear copper(II) complexes: an experimental and theoretical study.

    PubMed

    Botana, Luis; Ruiz, José; Seco, José Manuel; Mota, Antonio J; Rodríguez-Diéguez, Antonio; Sillanpää, Reijo; Colacio, Enrique

    2011-12-14

    The reaction of H(2)L (N,N'-dimethyl-N,N'-bis(2-hydroxy-3-methoxy-5-methylbenzyl)-ethylenediamine) with different copper salts, in methanol and using a H(2)L/Cu = 2 : 3 molar ratio, led to four new bis(μ-diphenoxo)-bridged Cu(3) complexes of general formula [{Cu(S)(μ-L)}(2)Cu(H(2)O)(2n)]X(2) (S = CH(3)OH, n = 1 and X = BF(4)(-) for (1) or ClO(4)(-) for (2); S = Br(3)(-) anion and n = 1 without any X species for (3); S = H(2)O, n = 0 and X = NO(3)(-) for (4)). The use in the same reaction conditions of 4,4'-bipyridine (4,4'-bipy) as connector led to the chain complex [{Cu(μ-4,4'-bipy)(0.5)(μ-L)}(2)Cu(H(2)O)(2n)](ClO(4))(2)·17H(2)O (5). The structure of the centrosymmetric trinuclear unit in (1)-(5) consists of two [Cu(L)] fragments connected through two phenoxo bridging groups to the central copper(II) ion giving rise to a linear arrangement of the copper(II) ions, where the ligand acts in a compartmental form wrapping the metal centre with a N(2)O(2) tetradentate bridging mode. The coordination polyhedron of the symmetrically related external copper atoms exhibits a geometry very close to square-pyramidal, whereas the central copper(II) atom displays either a tetragonally elongated octahedral geometry or a square-planar geometry. Owing to the steric hindrance promoted by the methoxy groups at the phenyl rings, the whole Cu(3) structure is not planar but folded along the line connecting the phenoxo bridging oxygen atoms of the same ligand. Temperature dependence of the magnetic susceptibility of complexes (1)-(5) was measured, showing strong antiferromagnetic interactions between the central and external atoms through the bis(μ-phenoxo) groups. DFT calculations were also performed (a) to support the experimental values of the coupling constant (J(1)) between the nearest-neighbouring copper atoms, (b) to determine the magnitude of the interactions between next-nearest copper(II) atoms (J(2)) and (c) to study magneto-structural correlations for this kind of bis

  18. Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway.

    PubMed

    Nishida, Keiji; Silver, Pamela A

    2012-01-01

    Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s) that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID) magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1), as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply.

  19. Magnetic properties of Ni substituted Y-type barium ferrite

    NASA Astrophysics Data System (ADS)

    Won, Mi Hee; Kim, Chul Sung

    2014-05-01

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba2Co2-xNixFe12O22 (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (Ms) decreases with Ni contents. Ni2+, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co2+ having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba2Co1.5Ni0.5Fe12O22 shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature TC is increased with Ni contents, while TS is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3bVI, 6cIV*, 6cVI, 18hVI, 6cIV, and 3aIV sites at below TC. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe3+ and obtained the isomer shift (δ), magnetic hyperfine field (Hhf), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna applications in UHF band.

  20. Magnetic properties of Ni substituted Y-type barium ferrite

    SciTech Connect

    Won, Mi Hee; Kim, Chul Sung

    2014-05-07

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba{sub 2}Co{sub 2−x}Ni{sub x}Fe{sub 12}O{sub 22} (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (M{sub s}) decreases with Ni contents. Ni{sup 2+}, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co{sup 2+} having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba{sub 2}Co{sub 1.5}Ni{sub 0.5}Fe{sub 12}O{sub 22} shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature T{sub C} is increased with Ni contents, while T{sub S} is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3b{sub VI}, 6c{sub IV}*, 6c{sub VI}, 18h{sub VI}, 6c{sub IV}, and 3a{sub IV} sites at below T{sub C}. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe{sup 3+} and obtained the isomer shift (δ), magnetic hyperfine field (H{sub hf}), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna

  1. Six-coordinate lanthanide complexes: slow relaxation of magnetization in the dysprosium(III) complex.

    PubMed

    Na, Bo; Zhang, Xue-Jing; Shi, Wei; Zhang, Yi-Quan; Wang, Bing-Wu; Gao, Chen; Gao, Song; Cheng, Peng

    2014-11-24

    A series of six-coordinate lanthanide complexes {(H3O)[Ln(NA)2]⋅H2O}n (H2NA=5-hydroxynicotinic acid; Ln=Gd(III) (1⋅Gd); Tb(III) (2⋅Tb); Dy(III) (3⋅Dy); Ho(III) (4⋅Ho)) have been synthesized from aqueous solution and fully characterized. Slow relaxation of the magnetization was observed in 3⋅Dy. To suppress the quantum tunneling of the magnetization, 3⋅Dy diluted by diamagnetic Y(III) ions was also synthesized and magnetically studied. Interesting butterfly-like hysteresis loops and an enhanced energy barrier for the slow relaxation of magnetization were observed in diluted 3⋅Dy. The energy barrier (Δ(τ)) and pre-exponential factor (τ0) of the diluted 3⋅Dy are 75 K and 4.21×10(-5) s, respectively. This work illustrates a successful way to obtain low-coordination-number lanthanide complexes by a framework approach to show single-ion-magnet-like behavior.

  2. Magnetic exchange interaction in gadolinium(III) complex having aliphatic nitroxide radical TEMPO

    SciTech Connect

    Nakamura, Takeshi; Ishida, Takayuki

    2016-02-01

    We synthesized a new compound, [Gd(hfac){sub 3}(MeOH)(TEMPO)] (TEMPO = 2,2,6,6-tetramethylpiperidin-1-oxyl; Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) with the metal/radical ratio of 1/1. This compound has an advantage in the magnetic analysis, because the exchange coupling system is described with a unique coupling parameter J, when compared to the structure and magnetic properties of the previous TEMPO and related complexes. The X-ray crystal structure analysis of [Gd(hfac){sub 3}(MeOH)(TEMPO)] revealed the N-O and Gd-O(N) bond lengths are 1.299(9) and 2.307(5) Å, respectively, and the Gd-O-N angle is 149.4(5)°. The magnetic study clarified the Gd{sup 3+}-radical antiferromagnetic interaction of 2J/k{sub B} = −3.5(1) K.

  3. A new Cu–cysteamine complex: structure and optical properties

    SciTech Connect

    Ma, Lun; Chen, Wei; Schatte, Gabriele; Wang, Wei; Joly, Alan G.; Huang, Yining; Sammynaiken, Ramaswami; Hossu, Marius

    2014-06-07

    Here we report the structure and optical properties of a new Cu–cysteamine complex (Cu–Cy) with a formula of Cu3Cl(SR)2 (R ¼ CH2CH2NH2). This Cu–Cy has a different structure from a previous Cu–Cy complex, in which both thio and amine groups from cysteamine bond with copper ions. Single-crystal X-ray diffraction and solid-state nuclear magnetic resonance results show that the oxidation state of copper in Cu3Cl(SR)2 is +1 rather than +2. Further, Cu3Cl(SR)2 has been observed to show intense photoluminescence and X-ray excited luminescence. More interesting is that Cu3Cl(SR)2 particles can produce singlet oxygen under irradiation by light or X-ray. This indicates that Cu3Cl(SR)2 is a new photosensitizer that can be used for deep cancer treatment as X-ray can penetrate soft tissues. All these findings mean that Cu3Cl(SR)2 is a new material with potential applications for lighting, radiation detection and cancer treatment.

  4. Magnetic properties of alluvial soils polluted with heavy metals

    NASA Astrophysics Data System (ADS)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on

  5. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  6. Thermal to electricity conversion using thermal magnetic properties

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  7. Structural and Magnetic Properties of Thin Film of Iron Nitride

    NASA Astrophysics Data System (ADS)

    Kayani, Zohra Nazir; Riaz, Saira; Naseem, Shahzad

    2014-12-01

    The nano-crystalline iron nitride films with a mixture of γ-Fe4N, ɛFe3N and αFe2N phases were synthesized on copper substrate by sol-gel technology. The structure, morphology and magnetic properties of the samples were characterized using X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometer. The films are ferromagnetic at room temperature. Magnetic properties such as coercive forces and saturation magnetization were found to be 398 Oestered and 32.92 emu/cm3, respectively.

  8. Preparation and Magnetic Properties of MnBi/Co Nanocomposite Magnets

    NASA Astrophysics Data System (ADS)

    Nguyen, Truong Xuan; Vuong, Oanh Kim Thi; Nguyen, Hieu Trung; Nguyen, Vuong Van

    2017-02-01

    The method of synthesis and the magnetic properties of MnBi/Co nanocomposite magnets prepared with a combination of the magnetically hard MnBi alloy and semi-hard Co nanowires (CoNWs) have been investigated. The MnBi alloys were produced by arc-melting and temperature-gradient-driven annealing techniques. The CoNWs with high spontaneous magnetization M s (125 emu/g) and large aspect ratio α (5 ÷ 10) were synthesized by the solvothermal method. The nanocomposite MnBi/Co powder mixtures were cold ball-milled, aligned in an 18-kOe-field and warm-compacted into bulk magnets at 300°C under a uniaxial pressure of 2000 psi for 10 min. The magnetization and coercivity of the nanocomposite magnets were improved due to the intrinsic high magnetization and shape anisotropy of the CoNWs. The energy product, (BH)max, of the MnBi/Co nanocomposite magnets with 15 wt.% CoNWs reached its highest value of 4.8 MGOe. The simulation of magnetic properties of MnBi/Co magnets is also discussed in detail.

  9. Defective graphene and nanoribbons: electronic, magnetic and structural properties

    NASA Astrophysics Data System (ADS)

    Guerra, Thiago; Azevedo, Sérgio; Machado, Marcelo

    2016-03-01

    We make use of first-principles calculations, based on the density functional theory (DFT), to investigate the alterations at the structural, energetic, electronic and magnetic properties of graphene and zigzag graphene nanoribbons (ZGNRs) due to the inclusion of different types of line and punctual defects. For the graphene it is found that the inclusion of defects breaks the translational symmetry of the crystal with drastic changes at its electronic structure, going from semimetallic to semiconductor and metallic. Regarding the magnetic properties, no magnetization is observed for the defective graphene. We also show that the inclusion of defects at ZGNRs is a good way to create and control pronounced peaks at the Fermi level. Furthermore, defective ZGNRs structures show magnetic moment by supercell up to 2.0 μ B . For the non defective ZGNRs is observed a switch of the magnetic coupling between opposite ribbon edges from the antiferromagnetic to the ferrimagnetic and ferromagnetic configurations.

  10. Characterizing the Properties of Coronal Magnetic Null Points

    NASA Astrophysics Data System (ADS)

    Barnes, Graham; DeRosa, Marc; Wagner, Eric

    2015-08-01

    The topology of the coronal magnetic field plays a role in a wide range of phenomena, from Coronal Mass Ejections (CMEs) through heating of the corona. One fundamental topological feature is the null point, where the magnetic field vanishes. These points are natural sites of magnetic reconnection, and hence the release of energy stored in the magnetic field. We present preliminary results of a study using data from the Helioseismic and Magnetic Imager aboard NASA's Solar Dynamics Observatory to characterize the properties and evolution of null points in a Potential Field Source Surface model of the coronal field. The main properties considered are the lifetime of the null points, their distribution with height, and how they form and subsequently vanish.This work is supported by NASA/LWS Grant NNX14AD45G, and by NSF/SHINE grant 1357018.

  11. Magnetic properties of ErN films

    NASA Astrophysics Data System (ADS)

    Meyer, C.; Ruck, B. J.; Preston, A. R. H.; Granville, S.; Williams, G. V. M.; Trodahl, H. J.

    2010-07-01

    We report a magnetization study of stoichiometric ErN nanocrystalline films grown on Si and protected by a GaN passivating layer. According to the temperature dependence of the resistivity the films are heavily doped semiconductors. Above 100 K the magnetization data fit well to a Curie-Weiss behavior with a moment expected within the free-ion ErJ={15}/{2} multiplet. Below 50 K the Curie-Weiss plot steepens to an effective moment corresponding to that in the crystal-field determined quartet ground state, and develops a clear paramagnetic Curie-Weiss temperature of about 4.5 K. Zero-field- and field-cooled magnetization curves and the AC susceptibility firmly establish a ferromagnetic ground state within that multiplet below a Curie temperature of 6.3±0.7 K. Due to the (1 1 1) texture of the film the comparison between the magnetization behavior, when the field is applied parallel and perpendicular to the film plane, gives new information about the magnetic structure. An arrangement of the moments according to the model derived from neutron diffraction for bulk HoN is strongly suggested.

  12. Metastable epitaxial magnets: A study of growth and magnetic properties

    NASA Astrophysics Data System (ADS)

    Wu, Stella Zhong

    1997-11-01

    Recent advancement in the information storage industry is demanding more fundamental understanding of magnetic systems, especially the magnetic thin films, surfaces, and interfaces. In this work, we were focusing on ultrathin ferromagnetic thin films of Ni on Cu(100), Cu(110) and Cu(111) single crystal substrates, and FeNi and CoNi binary alloy films on Cu(100) with varying atomic concentration. The growth of these films by molecular beam epitaxy was monitored using a number of experimental techniques. A pseudomorphic layer-by-layer growth was achieved which resulted in an fcc metastable crystalline structure with a ferromagnetic phase. The magnetic anisotropy behavior of these thin films was monitored using surface magneto-optic Kerr effect magnetometer at both polar and longitudinal geometries, and various spin reorientation transitions were found. The measurements of Curie temperature as a variation of film thickness as well as atomic concentration resulted in the proposal of a finite-size scaling law. By using this scaling law, the bulk Curie temperature for these metastable fcc binary alloys can be extrapolated, showing that Fe atoms exist in a low-spin ferromagnetic phase. In the Ni films, a dimensionality crossover from bulk to a 2-dimensional system at a few monolayer thickness was established. By alloying, we have been able to tune the electron occupation number in the 3d band. Combined with the 3d electronic band structure information we have gained by using ultraviolet photoemission spectroscopy study of these systems at normal emission, a conclusion of continuous band filling in CoNi alloy system was drawn. However, FeNi films show a different behavior at a certain composition. The recent collaboration with synchrotron radiation facility has enabled us to quantitatively characterize the spin moment and orbital moment from each element. An x-ray magnetic circular dichroism (XMCD) study was performed on CoNi alloy system, and resulted in the conclusion of

  13. Controlling electronic and magnetic properties of ultra narrow multilayered nanowires

    NASA Astrophysics Data System (ADS)

    Panigrahi, Puspamitra

    Interest in the study of magnetic/non-magnetic multilayered structures took a giant leap since Grunberg and his group established that the interlayer exchange coupling (IEC) is a function of the non-magnetic spacer width. This interest was further fuelled by the discovery of the phenomenal Giant Magnetoresistance (GMR) effect. In fact, in 2007 Albert Fert and Peter Grunberg were awarded the Nobel Prize in Physics for their contribution to the discovery of GMR. GMR is the key property that is being used in the read-head of the present day computer hard drive as it requires a high sensitivity in the detection of magnetic field. The recent increase in demand for device miniaturization encouraged researchers to look for GMR in nanoscale multilayered structures. In this context, one dimensional (1-D) multilayered nanowire structure has shown tremendous promise as a viable candidate for ultra sensitive read head sensors. In fact, the phenomenal giant magnetoresistance (GMR) effect, which is the novel feature of the currently used multilayered thin film, has already been observed in multilayered nanowire systems at ambient temperature. Geometrical confinement of the supper lattice along the 2-dimensions (2-D) to construct the 1-D multilayered nanowire prohibits the minimization of magnetic interaction-offering a rich variety of magnetic properties in nanowire that can be exploited for novel functionality. In addition, introduction of non-magnetic spacer between the magnetic layers presents additional advantage in controlling magnetic properties via tuning the interlayer magnetic interaction. Despite of a large volume of theoretical works devoted towards the understanding of GMR and IEC in super lattice structures, limited theoretical calculations are reported in 1-D multilayered systems. Thus to gauge their potential application in new generation magneto-electronic devices, in this thesis, I have discussed the usage of first principles density functional theory (DFT) in

  14. Dysprosium complexes and their micelles as potential bimodal agents for magnetic resonance and optical imaging.

    PubMed

    Debroye, Elke; Laurent, Sophie; Vander Elst, Luce; Muller, Robert N; Parac-Vogt, Tatjana N

    2013-11-18

    Six diethylene triamine pentaacetic acid (DTPA) bisamide derivatives functionalized with p-toluidine (DTPA-BTolA), 6-aminocoumarin (DTPA-BCoumA), 1-naphthalene methylamine (DTPA-BNaphA), 4-ethynylaniline (DTPA-BEthA), p-dodecylaniline (DTPA-BC12PheA) and p-tetradecyl-aniline (DTPA-BC14PheA) were coordinated to dysprosium(III) and the magnetic and optical properties of the complexes were examined in detail. The complexes consisting of amphiphilic ligands (DTPA-BC12PheA and DTPA-BC14PheA) were further assembled into mixed micelles. Upon excitation into the ligand levels, the complexes display characteristic Dy(III) emission with quantum yields of 0.3-0.5% despite the presence of one water molecule in the first coordination sphere. A deeper insight into the energy-transfer processes has been obtained by studying the photophysical properties of the corresponding Gd(III) complexes. Since the luminescence quenching effect is decreased by the intervention of non-ionic surfactant, quantum yields up to 1% are obtained for the micelles. The transverse relaxivity r2 per Dy(III) ion at 500 MHz and 310 K reaches a maximum value of 27.4 s(-1) mM(-1) for Dy-DTPA-BEthA and 36.0 s(-1) mM(-1) for the Dy-DTPA-BC12PheA assemblies compared with a value of 0.8 s(-1) mM(-1) for Dy-DTPA. The efficient T2 relaxation, especially at high magnetic field strengths, is sustained by the high magnetic moment of the dysprosium ion, the coordination of water molecules with slow water exchange kinetics and long rotational correlation times. These findings open the way to the further development of bimodal optical and magnetic resonance imaging probes starting from single lanthanide compounds.

  15. Structural and electronic dependence of the single-molecule-magnet behavior of dysprosium(III) complexes.

    PubMed

    Campbell, Victoria E; Bolvin, Hélène; Rivière, Eric; Guillot, Regis; Wernsdorfer, Wolfgang; Mallah, Talal

    2014-03-03

    We investigate and compare the magnetic properties of two isostructural Dy(III)-containing complexes. The Dy(III) ions are chelated by hexadentate ligands and possess two apical bidendate nitrate anions. In dysprosium(III) N,N'-bis(imine-2-yl)methylene-1,8-diamino-3,6-dioxaoctane (1), the ligand's donor atoms are two alkoxo, two pyridine, and two imine nitrogen atoms. Dysprosium(III) N,N'-bis(amine-2-yl)methylene-1,8-diamino-3,6-dioxaoctane (2) is identical with 1 except for one modification: the two imine groups have been replaced by amine groups. This change has a minute effect on the structure and a larger effect the magnetic behavior. The two complexes possess slow relaxation of the magnetization in the presence of an applied field of 1000 Oe but with a larger barrier for reorientation of the magnetization for 1 (Ueff/kB = 50 K) than for 2 (Ueff/kB = 34 K). First-principles calculations using the spin-orbit complete active-space self-consistent-field method were performed and allowed to fit the experimental magnetization data. The calculations gave the energy spectrum of the 2J + 1 sublevels issued from the J = 15/2 free-ion ground state. The lowest-lying sublevels were found to have a large contribution of MJ = ±15/2 for 1, while for 2, MJ = ±13/2 was dominant. The observed differences were attributed to a synergistic effect between the electron density of the ligand and the small structural changes provoked by a slight alteration of the coordination environment. It was observed that the stronger ligand field (imine) resulted in complex 1 with a larger energy barrier for reorientation of the magnetization than 2.

  16. Nuclear magnetic resonance properties of lunar samples.

    NASA Technical Reports Server (NTRS)

    Kline, D.; Weeks, R. A.

    1972-01-01

    Nuclear magnetic resonance spectra of Na-23, Al-27, and P-31 in fines samples 10084,60 and 14163,168 and in crystalline rock samples 12021,55 and 14321,166, have been recorded over a range of frequencies up to 20 MHz. A shift in the field at which maximum absorption occurs for all of the spectra relative to the field at which maximum absorption occurs for terrestrial analogues is attributed to a sample-dependent magnetic field at the Na, Al, and P sites opposing the laboratory field. The magnitude of these fields internal to the samples is sample dependent and varies from 5 to 10 G. These fields do not correlate with the iron content of the samples. However, the presence of single-domain particles of iron distributed throughout the plagioclase fraction that contains the principal fraction of Na and Al is inferred from electron magnetic resonance spectra shapes.

  17. Magnetic, structural and computational studies on transition metal complexes of a neurotransmitter, histamine

    NASA Astrophysics Data System (ADS)

    Kaştaş, Gökhan; Paşaoğlu, Hümeyra; Karabulut, Bünyamin

    2011-08-01

    In this study, the transition metal complexes of histamine (His) prepared with oxalate (Ox), that is, [Cu(His)(Ox)(H 2O)], [Zn(His)(Ox)(H 2O)] (or [Zn(His)(Ox)]·(H 2O)), [Cd(His)(Ox)(H 2O) 2] and [Co(His)(Ox)(H 2O)], are investigated experimentally and computationally as part of ongoing studies on the mode of complexation, the tautomeric form and non-covalent interactions of histamine in supramolecular structures. The structural properties of prepared complexes are experimentally studied by X-ray diffraction (XRD) technique and Fourier transform infrared (FT-IR) spectroscopy and computationally by density functional theory (DFT). The magnetic properties of the complexes are investigated by electron paramagnetic resonance (EPR) technique. The [Cu(His)(Ox)(H 2O)] complex has a supramolecular structure constructed by two different non-covalent interactions as hydrogen bond and C-H⋯π interactions. EPR studies on [Cu(His)(Ox)(H 2O)], Cu 2+-doped [Zn(His)(Ox)(H 2O)] and [Cd(His)(Ox)(H 2O) 2] complexes show that the paramagnetic centers have axially symmetric g values. It is also found that the ground state of the unpaired electrons in the complexes is dominantly d and unpaired electrons' life time is spent over this orbital.

  18. Magnetic properties of 42CrMo4 steel

    NASA Astrophysics Data System (ADS)

    Bulin, T.; Svabenska, E.; Hapla, M.; Roupcova, P.; Ondrusek, C.; Schneeweiss, O.

    2017-02-01

    Low alloyed high-grade chrome-molybdenum ferritic steel was investigated from the point of views of magnetic properties in dependence on heat and mechanical treatment. This steel can be used as components of magnetic circuits or some parts in electrical equipment. The basic information on structure and phase composition was obtained by optical and scanning electron microscopy, X-ray Powder Diffraction and Mössbauer Spectroscopy. The temperature stability of the material was proved by measurements of temperature dependences of magnetic moment. The magnetic parameters were obtained by measuring of magnetic hysteresis loops in dependence on saturation field and their frequencies. The results are discussed from the point of view of possible applications as a magnetic material in the very extremely environment, where high mechanical stresses and elevated temperatures can occur.

  19. Magnetic and microstructural properties of Fe3O4-coated Fe powder soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Jo Sunday, Katie; Hanejko, Francis G.; Taheri, Mitra L.

    2017-02-01

    Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and possess high melting temperatures, thus providing adequate electrical barriers between metallic particles. In this work, iron powder was coated with Fe3O4 particles via mechanical milling, then compacted and cured in an inert gas environment. We find density and coercivity to improve with increasing temperatures; however, core loss greatly increases, which is attributed to the formation of a more conductive iron-oxide phase and less resistive Fe volume. Our work begins to exemplify the unique qualities and potential for ferrite-based coatings using traditional powder metallurgy techniques and higher curing temperatures for electromagnetic devices.

  20. Complex conductivity of UTX compounds in high magnetic fields

    SciTech Connect

    Mielke, Charles H; Mcdonald, Ross D; Zapf, Vivien; Altarawneh, M M; Lacerda, A; Alsmadi, A M; Alyones, S; Chang, S; Adak, S; Kothapalli, K; Nakotte, H

    2009-01-01

    We have performed rf-skin depth (complex-conductivity) and magnetoresistance measurements of anti ferromagnetic UTX compounds (T=Ni and X=Al, Ga, Ge) in applied magnetic fields up to 60 T applied parallel to the easy directions. The rf penetration depth was measured by coupling the sample to the inductive element of a resonant tank circuit and then, measuring the shifts in the resonant frequency {Delta}f of the circuit. Shifts in the resonant frequency {Delta}f are known to be proportional to the skin depth of the sample and we find a direct correspondence between the features in {Delta}f and magnetoresistance. Several first-order metamagnetic transitions, which are accompanied by a drastic change in {Delta}f, were observed in these compounds. In general, the complex-conductivity results are consistent with magnetoresistance data.

  1. Magnetic properties of a classical XY spin dimer in a "planar" magnetic field

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion; Prenga, Dode

    2016-10-01

    Single-molecule magnetism originates from the strong intra-molecular magnetic coupling of a small number of interacting spins. Such spins generally interact very weakly with the neighboring spins in the other molecules of the compound, therefore, inter-molecular spin couplings are negligible. In certain cases the number of magnetically coupled spins is as small as a dimer, a system that can be considered the smallest nanomagnet capable of storing non-trivial magnetic information on the molecular level. Additional interesting patterns arise if the spin motion is confined to a two-dimensional space. In such a scenario, clusters consisting of spins with large-spin values are particularly attractive since their magnetic interactions can be described well in terms of classical Heisenberg XY spins. In this work we calculate exactly the magnetic properties of a nanomagnetic dimer of classical XY spins in a "planar" external magnetic field. The problem is solved by employing a mathematical approach whose idea is the introduction of auxiliary spin variables into the starting expression of the partition function. Results for the total internal energy, total magnetic moment, spin-spin correlation function and zero-field magnetic susceptibility can serve as a basis to understand the magnetic properties of large-spin dimer building blocks.

  2. Magnetic and Electrical Properties of Ferromagnetic Semiconductors,

    DTIC Science & Technology

    magnetism and of the mechanism of the electronic conductivity of ferromagnetic semiconductors in connection with their chemical composition and crystalline ... structure . The basic groups of oxide compounds of 4f- and 3d-transition metals with maximum spin values were selected for the studies in this work. The

  3. Magnetic Properties of Radiation Damage in Pu

    SciTech Connect

    McCall, S; Fluss, M J; Chung, B W; McElfresh, M; Chapline, G; Jackson, D

    2004-10-27

    First, we review earlier studies reporting possible magnetic characteristics for radiation defects in Pu. We then report, for {alpha}-Pu, two studies of the excess magnetic susceptibility (EMS) due to radiation damage, as a function of time and temperature. We have observed several annealing stages associated with the EMS of the accumulated self-damage and we report that annealing begins at {approx}31K, while below that temperature the displacement damage from self-irradiation of the Pu alpha particle emission and the U recoil are immobile. A detailed investigation was made of this EMS well below the first annealing stage as a function of temperature (2K < T < 15K) and time in a magnetic field of 2T. A linear increase in magnetic susceptibility is seen as a function of time for all isotherms. The excess susceptibility per alpha decay, determined from a linear fit of the slope of the time dependent EMS, is reasonably described with a Curie-Weiss law exhibiting a small negative Weiss temperature. We conclude by describing some future experiments in light of the present results.

  4. Statistical thermodynamics of magnetic fluids. Monte Carlo calculation of the magnetic properties

    SciTech Connect

    Berkovskii, B.M.; Kalikmanov, V.I.; Filinov, V.S.

    1988-07-01

    An approach is proposed, and a modification of the Monte Carlo method is presented, for the calculation of the equilibrium thermodynamic properties of a magnetic fluid. The magnetization and mean energy are calculated. It is shown that the behavior of these properties differs from Langevin behavior, as a result of taking particle interactions into account. The results obtained are in good agreement with experimental data.

  5. Catalytic Transfer of Magnetism using a Neutral Iridium Phenoxide Complex

    PubMed Central

    Ruddlesden, Amy J.; Mewis, Ryan E.; Green, Gary G. R.; Whitwood, Adrian C.; Duckett, Simon B.

    2016-01-01

    A novel neutral iridium carbene complex Ir(κC,O-L1)(COD) (1) [where COD = cyclooctadiene and L1 = 3-(2-methylene-4-nitrophenolate)-1-(2,4,6-trimethylphenyl) imidazolylidene] with a pendant alkoxide ligand has been prepared and characterized. It contains a strong Ir-O bond and X-ray analysis reveals a distorted square planar structure. NMR spectroscopy reveals dynamic solution state behavior commensurate with rapid seven-membered ring flipping. In CD2Cl2 solution, under hydrogen at low temperature, this complex dominates although it exists in equilibrium with a reactive iridium dihydride cyclooctadiene complex. 1 reacts with pyridine and H2 to form neutral Ir(H)2(κC,O-L1)(py)2 which also exists in two conformers that differ according to the orientation of the seven-membered metallocycle and whilst its Ir-O bond remains intact, the complex undergoes both pyridine and H2 exchange. As a consequence, when placed under parahydrogen, efficient polarization transfer catalysis (PTC) is observed via the Signal Amplification By Reversible Exchange (SABRE) approach. Due to the neutral character of this catalyst, good hyperpolarization activity is shown in a wide range of solvents for a number of substrates. These observations reflect a dramatic improvement in solvent tolerance of SABRE over that reported for the best PTC precursor IrCl(IMes)(COD). For THF, the associated 1H NMR signal enhancement for the ortho proton signal of pyridine shows an increase of 600-fold at 298 K. The level of signal enhancement can be increased further through warming or varying the magnetic field experienced by the sample at the point of catalytic magnetization transfer.

  6. Analysis of the vector magnetic fields of complex sunspots

    NASA Technical Reports Server (NTRS)

    Patty, S. R.

    1981-01-01

    An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.

  7. Encoding complexity within supramolecular analogues of frustrated magnets

    NASA Astrophysics Data System (ADS)

    Cairns, Andrew B.; Cliffe, Matthew J.; Paddison, Joseph A. M.; Daisenberger, Dominik; Tucker, Matthew G.; Coudert, François-Xavier; Goodwin, Andrew L.

    2016-05-01

    The solid phases of gold(I) and/or silver(I) cyanides are supramolecular assemblies of inorganic polymer chains in which the key structural degrees of freedom—namely, the relative vertical shifts of neighbouring chains—are mathematically equivalent to the phase angles of rotating planar (‘XY’) spins. Here, we show how the supramolecular interactions between chains can be tuned to mimic different magnetic interactions. In this way, the structures of gold(I) and/or silver(I) cyanides reflect the phase behaviour of triangular XY magnets. Complex magnetic states predicted for this family of magnets—including collective spin-vortices of relevance to data storage applications—are realized in the structural chemistry of these cyanide polymers. Our results demonstrate how chemically simple inorganic materials can behave as structural analogues of otherwise inaccessible ‘toy’ spin models and also how the theoretical understanding of those models allows control over collective (‘emergent’) phenomena in supramolecular systems.

  8. Magnetic properties of solid oxygen under pressure (Review Article)

    NASA Astrophysics Data System (ADS)

    Freiman, Yu. A.

    2015-11-01

    Solid oxygen is a unique crystal combining properties of a simple molecular solid and a magnet. Unlike ordinary magnets, the exchange interaction in solid oxygen acts on a background of weak Van der Waals forces, providing a significant part of the total lattice energy. Therefore, the magnetic and lattice properties of solid oxygen are very closely related. This manifests itself in a very rich phase diagram and numerous anomalies of thermal, magnetic and optical properties. Low-temperature low-pressure α-O2 is a two-sublattice collinear Neel antiferromagnet. At a pressure of ˜6 GPa, α-O2 is transformed into δ-O2, in which three different magnetic structures are realized upon increasing temperature. At ˜8 GPa δ-O2 is transformed into ɛ-O2. In this transition, O2 molecules combine into four-molecule clusters (O2)4. This transformation is accompanied by a magnetic collapse. This review describes the evolution of the magnetic structure with increasing pressure, and analyzes the causes behind this behavior.

  9. Electronic, magnetic and topological properties of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Quan, Yundi

    Transition metal oxides have been the ideal platform for designing materials with exotic properties due to the complex interplay between spin, charge, and orbital degrees of freedom which can be fine-tuned by varying pressure, temperature, and external magnetic field to give rise to novel phases. Transition metal oxides are also a challenge from the theoretical point of view. The (semi)local density approximation for the exchange correlation functional that is often used in density functional calculations fails to adequately describe the many-body effects of 3d and 4f electrons thereby leading to underestimated band gaps. Several techniques, such as hybrid functionals, dynamical mean field theory, and DFT+U, have been developed over the past few decades to account for the many-body effects of 3d and 4f electrons. The DFT+U method, which will be used extensively throughout this thesis, has proved to be very successful in modeling gap opening, structure optimization and predicting transport properties. Rare earth nickelates have attracted a lot of attention in recent years due to their complex phase diagram that arises from the competition between spin, charge, and orbital degrees of freedom. Of particular interest is the metal-insulator transition that occurs upon cooling for RNiO3 (R=rare earth, except for La) which was found to be accompanied by symmetry lowering, later theorized as the evidence for charge ordering. By using first principles calculations, we found that the charge difference between Ni ions in the "charge-ordered" phase is negligibly small, while various aspects such as core energy levels, spectral weight immediately above and below the Fermi level, and magnetic moments do differ. Using Wannier function analysis, the charge states of Ni ions in the lower symmetry structure are systematically studied and found to correlated to the number of Wannier charge centers at the Ni site. The same approach was applied to study the charge states of Ag I and Ag

  10. Magnetic compensation, field-dependent magnetization reversal, and complex magnetic ordering in Co2TiO4

    NASA Astrophysics Data System (ADS)

    Nayak, S.; Thota, S.; Joshi, D. C.; Krautz, M.; Waske, A.; Behler, A.; Eckert, J.; Sarkar, T.; Andersson, M. S.; Mathieu, R.; Narang, V.; Seehra, M. S.

    2015-12-01

    The complex nature of magnetic ordering in the spinel C o2Ti O4 is investigated by analyzing the temperature and magnetic field dependence of its magnetization (M ), specific heat (Cp), and ac magnetic susceptibilities χ' and χ″. X-ray diffraction of the sample synthesized by the solid-state reaction route confirmed the spinel structure whereas x-ray photoelectron spectroscopy shows its electronic structure to be C o2Ti O4=[C o2 +] [C o3 +T i3 +] O4 . From analysis of the temperature dependence of the dc paramagnetic susceptibility, the magnetic moments μ (A ) =3.87 μB and μ (B ) =5.19 μB on the A and B sites are determined with μ (B ) in turn yielding μ (T i3 +) =1.73 μB and μ (C o3 +) =4.89 μB . Analysis of the dc and ac susceptibilities combined with the weak anomalies observed in the Cp vs T data shows the existence of a quasi-long-range ferrimagnetic state below TN˜47.8 K and a compensation temperature Tcomp˜32 K , the latter characterized by sign reversal of magnetization with its magnitude depending on the applied magnetic field and the cooling protocol. Analysis of the temperature dependence of M (field cooled) and M (zero field cooled) data and the hysteresis loop parameters is interpreted in terms of large spin clusters. These results in C o2Ti O4 , significantly different from those reported recently in isostructural C o2Sn O4=[C o2 +] [C o2 +S n4 +] O4 , warrant further investigations of its magnetic structure using neutron diffraction.

  11. Synthesis, Characterization, In Vitro Cytotoxicity, and Apoptosis-Inducing Properties of Ruthenium(II) Complexes

    PubMed Central

    Xu, Li; Zhong, Nan-Jing; Xie, Yang-Yin; Huang, Hong-Liang; Jiang, Guang-Bin; Liu, Yun-Jun

    2014-01-01

    Two new Ru(II) complexes, [Ru(bpy)2(FAMP)](ClO4)2 1 and 2, are synthesized and characterized by elemental analysis, electrospray mass spectrometry, and 1H nuclear magnetic resonance. The in vitro cytotoxicities and apoptosis-inducing properties of these complexes are extensively studied. Complexes 1 and 2 exhibit potent antiproliferative activities against a panel of human cancer cell lines. The cell cycle analysis shows that complexes 1 and 2 exhibit effective cell growth inhibition by triggering G0/G1 phase arrest and inducing apoptosis by mitochondrial dysfunction. The in vitro DNA binding properties of the two complexes are investigated by different spectrophotometric methods and viscosity measurements. PMID:24804832

  12. One-, Two-, and Three-Dimensional Heterospin Complexes Consisting of 4-(N-tert-Butyloxylamino)pyridine (4NOpy), Dicyanamide Ion (DCA), and 3d Metal Ions: Crystal Structures and Magnetic Properties of [M(II)(4NOpy)x(DCA)y(CH3CN)z]n (M = Mn, Co, Ni, Cu, Zn).

    PubMed

    Ogawa, Hiraku; Mori, Koya; Murashima, Kensuke; Karasawa, Satoru; Koga, Noboru

    2016-01-19

    Solutions of 3d metal ion salts, M(NO3)2, 4-(N-tert-butyloxylamino)pyridine (4NOpy), and dicyanamide (DCA) in CH3CN were mixed to afford single crystals of the polymeric complexes [M(II)(4NOpy)x(DCA)y(CH3CN)z]n (M(II) = Mn (1), Co (2), Ni (3), Cu (4a and 4b), Zn (5)). X-ray crystallography revealed that the crystal structures are a three-dimensional (3-D) network for 1, 2-D networks for 2, 3, 4a, and 5, and a 1-D chain for 4b. Crystals of 2, 3, 4a, and 5 contained CH3CN molecules as crystal solvents, which were readily desorbed in the ambient atmosphere. After desorption of the CH3CN molecules, the crystal structures of 2 and 3 were confirmed to be slightly shrunk without destruction of the crystal lattice. Crystals of 2, 3, 4a, and 5 after desorption of crystal solvents were used for investigations of the magnetic properties. Complex 1 showed antiferromagnetic interactions to form a ferrimagnetic chain and exhibited the magnetic behavior of a 2-D (or 3-D) spin-canted antiferromagnet with TN = 12 K. Complex 2 containing anisotropic Co(II) ions also showed the behavior of a 1-D (or 2-D) spin-canted antiferromagnet with TN = 6 K. In 3, 4a, and 4b, the aminoxyl of 4NOpy ferromagnetically interacted with the metal ion with coupling constants of JM-NO/kB = 45, 45, and 43 K, respectively. In 5, the magnetic couplings between the aminoxyls in 4NOpy through the diamagnetic Zn(II) ion were weakly antiferromagntic (JNO-NO = -1.2 K). DCA might be a weak antiferromagnetic connector for the metal chains.

  13. The synthesis, structure, magnetic and luminescent properties of a new tetranuclear dysprosium (III) cluster

    SciTech Connect

    Chen, Yen-Han; Tsai, Yun-Fan; Lee, Gene-Hsian; Yang, En-Che

    2012-01-15

    The synthesis and characterization of [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} (1), a new tetranuclear dysprosium (III) complex, is described. The compound was characterized by its X-ray structure, magnetic properties as well as the luminescent spectra. The compound crystallizes in a P1-bar space group with a zig-zag linear form of geometry. The ac magnetic susceptibilities of the molecule indicate that it is a magnetic molecule with a slow magnetization relaxation. The molecule also exhibits an emission spectrum that was confirmed to be ligand based. These results indicate that this molecule has both a slow magnetization relaxation (that could be potentially a SMM) and luminescent properties. - Graphical Abstract: A new tetranuclear dysprosium (III) complex [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} is synthesized and reported in this paper. This molecule has luminescence and can potentially act as a SMM. Highlights: Black-Right-Pointing-Pointer A new designed ligand (dhampH{sub 5}) was syntheisized. Black-Right-Pointing-Pointer A new tetra-dysprosium cluster [Dy{sub 4}(dhampH{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}){sub 2} was made. Black-Right-Pointing-Pointer Slow magnetization relaxation phenomenon was observed. Black-Right-Pointing-Pointer Ligand-based luminescence was observed.

  14. Heteronuclear (Co-Ca, Co-Ba) 2,3-pyridinedicarboxylate complexes: synthesis, structure and physico-chemical properties.

    PubMed

    Lazarescu, Ana; Shova, Sergiu; Bartolome, Juan; Alonso, Pablo; Arauzo, Ana; Balu, Alina M; Simonov, Yuri A; Gdaniec, Maria; Turta, Constantin; Filoti, George; Luque, Rafael

    2011-01-14

    Three pyridine 2,3-dicarboxylate complexes have been synthesized and characterized by IR spectroscopy, thermal analysis and single crystal X-ray diffractometry. Their magnetic properties have also been studied by EPR and magnetisation measurements. The decomposition of such complexes in air leads to the generation of mixed metal oxides, as confirmed by powder X-ray diffraction.

  15. Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands.

    PubMed

    Pugh, Thomas; Tuna, Floriana; Ungur, Liviu; Collison, David; McInnes, Eric J L; Chibotaru, Liviu F; Layfield, Richard A

    2015-07-01

    Single-molecule magnets are a type of coordination compound that can retain magnetic information at low temperatures. Single-molecule magnets based on lanthanides have accounted for many important advances, including systems with very large energy barriers to reversal of the magnetization, and a di-terbium complex that displays magnetic hysteresis up to 14 K and shows strong coercivity. Ligand design is crucial for the development of new single-molecule magnets: organometallic chemistry presents possibilities for using unconventional ligands, particularly those with soft donor groups. Here we report dysprosium single-molecule magnets with neutral and anionic phosphorus donor ligands, and show that their properties change dramatically when varying the ligand from phosphine to phosphide to phosphinidene. A phosphide-ligated, trimetallic dysprosium single-molecule magnet relaxes via the second-excited Kramers' doublet, and, when doped into a diamagnetic matrix at the single-ion level, produces a large energy barrier of 256 cm(-1) and magnetic hysteresis up to 4.4 K.

  16. Influencing the properties of dysprosium single-molecule magnets with phosphorus donor ligands

    PubMed Central

    Pugh, Thomas; Tuna, Floriana; Ungur, Liviu; Collison, David; McInnes, Eric J.L.; Chibotaru, Liviu F.; Layfield, Richard A.

    2015-01-01

    Single-molecule magnets are a type of coordination compound that can retain magnetic information at low temperatures. Single-molecule magnets based on lanthanides have accounted for many important advances, including systems with very large energy barriers to reversal of the magnetization, and a di-terbium complex that displays magnetic hysteresis up to 14 K and shows strong coercivity. Ligand design is crucial for the development of new single-molecule magnets: organometallic chemistry presents possibilities for using unconventional ligands, particularly those with soft donor groups. Here we report dysprosium single-molecule magnets with neutral and anionic phosphorus donor ligands, and show that their properties change dramatically when varying the ligand from phosphine to phosphide to phosphinidene. A phosphide-ligated, trimetallic dysprosium single-molecule magnet relaxes via the second-excited Kramers' doublet, and, when doped into a diamagnetic matrix at the single-ion level, produces a large energy barrier of 256 cm−1 and magnetic hysteresis up to 4.4 K. PMID:26130418

  17. The symmetry properties of planetary magnetic fields

    NASA Technical Reports Server (NTRS)

    Raedler, Karl-Heinz; Ness, Norman F.

    1990-01-01

    This paper provides a comparative study of the geometrical structures of the magnetic fields of earth, Jupiter, Saturn, and Uranus, starting from the traditional multipolar representations of these fields. For earth, Jupiter, and Saturn, the centered dipole, quadrupole, and octupole contributions are included, while at Uranus only the dipole and quadrupole contributions are considered. It is found that there are a number of common features of the magnetic fields of earth and Jupiter. Compared to earth and Jupiter, the Saturnian field exhibits not only a high degree of symmetry about the rotation axis but also a high degree of antisymmetry about the equatorial plane. The Uranian field shows strong deviations from both such symmetries. Nevertheless, there remain features common to all four planets.

  18. Magnetic properties of nano-composite particles

    NASA Astrophysics Data System (ADS)

    Xu, Xia

    Chemical synthesis routes for hollow spherical BaFe12O 19, hollow mesoporous spherical BaFe12O19, worm-shape BaFe12O19 and FeCo particles were developed. These structured particles have great potentials for the applications including magnetic recording medium, catalyst support, and energy storage. Magnetically exchange coupled hard/soft SrFe12O19/FeCo and MnBi/FeCo composites were synthesized through a newly proposed process of magnetic self-assembly. These exchange coupled composites can be potentially used as rare-earth free permanent magnets. Hollow spherical BaFe12O19 particles (shell thickness ˜5 nm) were synthesized from eth-ylene glycol assisted spray pyrolysis. Hollow mesoporous spherical BaFe12O19 particles (shell thickness ˜100 nm) were synthesized from ethanol assisted spray pyrolysis, followed by alkaline ethylene glycol etching at 185 °C. An alpha-Fe2O3 and BaCO3 nanoparticle mixture was synthesized with reverse microemulsion, followed by annealing at 900 °C for 2 hours to get worm-shape BaFe 12O19 particles, which consisted of 3-7 stacked hexagonal plates. FeCo nanoparticles were synthesized by reducing FeCl2 and CoCl2 in diphenyl ether with n-butyllithium at 200 °C in an inert gas environment. The surfactant of oleic acid was used in the synthesis to make particles well dispersed in nonpolar solvents (such as hexane). SrFe12O19/FeCo core/shell particles were prepared through a magnetic self-assembly process. The as-synthesized soft FeCo nanoparticles were magnetically attracted by hard SrFe12O19 parti-cles, forming a SrFe12O19/FeCo core/shell structure. The magnetic self-assembly mechanism was confirmed by applying alternating-current demagnetization to the core/shell particles, which re-sulted in a separation of SrFe 12O19 and FeCo particles. MnBi/FeCo composites were synthesized, and the exchange coupling between MnBi and FeCo phases was demonstrated by smooth magnetic hysteresis loop of MnBi/FeCo composites. The thermal stability of Mn

  19. Basic magnetic properties of bituminous coal

    USGS Publications Warehouse

    Alexander, C.C.; Thorpe, A.N.; Senftle, F.E.

    1979-01-01

    Magnetic susceptibility and other static magnetic parameters have been measured on a number of bituminous coals from various locations in the United States. The paramagnetic Curie constant correlates negatively with carbon concentration on a moisture-free basis. The major contribution to the total paramagnetism comes from the mineral matter rather than from free radicals or broken bonds. Analysis of the data indicates that the specific paramagnetism is generally lower in the mineral matter found in high-ash compared to low-ash coal. A substantial number of the coal specimens tested also had a ferromagnetic susceptibility which appeared to be associated with magnetite. Magnetite and ??-iron spherules, possibly of meteoritic or volcanic origin, were found in several specimens. ?? 1979.

  20. Recent advances in magnetic nanoparticles with bulk-like properties

    NASA Astrophysics Data System (ADS)

    Batlle, Xavier

    2013-03-01

    Magnetic nanoparticles (NP) are an excellent example of nanostructured materials and exhibit fascinating properties with applications in high-density recording and biomedicine. Controlling the effects of the nanostructure and surface chemistry and magnetism at the monolayer level have become relevant issues. As the size is reduced below 100 nm, deviations from bulk behavior have been attributed to finite-size effects and changes in the magnetic ordering at the surface, thus giving rise to a significant decrease in the magnetization and increase in the magnetic anisotropy. The existence of a surface spin glass-like state due to magnetic frustration has been widely suggested in ferrimagnetic NP. However, in this talk, we will show that high crystal quality magnetite Fe3-xO4 NP of about a few nanometers in diameter and coated with different organic surfactants display bulk-like structural, magnetic and electronic properties. Magnetic measurements, transmission electron microscopy, X-ray absorption and magnetic circular dichroism and Monte Carlo simulations, evidenced that none of the usual particle-like behavior is observed in high quality NP of a few nm. Consequently, the magnetic and electronic disorder phenomena typically observed in those single-phase ferrimagnetic NP should not be considered as an intrinsic effect. We also performed a real-space characterization at the sub-nanometer scale, combining scanning transmission electron microscopy, electron energy loss spectroscopy and electron magnetic chiral dichroism. For the first time, we found that the surface magnetization is as high as about 70% of that of the core. The comparison to density functional theory suggested the relevance of the strong surface bond between the Fe ions and the organic surfactant. All the foregoing demonstrates the key role of both the crystal quality and surface bond on the physical properties of ferrimagnetic NP and paves the way to the fabrication of the next generation of NP with

  1. Microstructure and magnetic properties of FINEMET nanowires

    NASA Astrophysics Data System (ADS)

    Chiriac, H.; Corodeanu, S.; Óvári, T.-A.; Lupu, N.

    2013-05-01

    FINEMET (Fe73.5Cu1Nb3Si13.5B9) glass-coated nanowires and submicron wires with metallic nucleus diameters (Φm) between 100 and 500 nm and the glass coating thickness (tg) of 5 μm are reported for the first time. The microstructure of annealed ultrathin glass-coated wires evolves into a nanocrystalline one (DO3 nanograins of 10-20 nm embedded into the residual amorphous matrix) after annealing at 550 °C and 600 °C for 60 min. Despite the similar size of the nanograins, the volume occupied by them relative to the total volume increases from 50%-53% after annealing at 550 °C to 63%-65% after annealing at 600 °C, due to the increase in their number. This is reflected in a more accurate manner in the domain wall velocity measurements than in variation of the magnetic characteristics such as M(H), relative magnetic permeability or switching field. The magnetically softest nanocrystalline phase is formed at larger values of annealing temperature (Ta) for thinner wires, since larger temperature is needed to grow a sufficient number of DO3 grains at distances below the exchange length among them.

  2. Synthesis and magnetic properties of a novel ferrite organogel

    NASA Astrophysics Data System (ADS)

    Li, Sichu; John, Vijay T.; Irvin, Glen C.; Rachakonda, Suguna H.; McPherson, Gary L.; O'Connor, Charles J.

    1999-04-01

    A novel magnetic organogel that can be considered a precursor example of a magnetoresponsive gel is reported. The gel is formed by the bridging of ferrite containing anionic bis(2-ethlhexyl) sodium sulfosuccinate reverse micelles with 2,6-dihydroxynaphthalene (2,6-DHN). The addition of 2,6-DHN leads to a room temperature quotes "freezing in" of the liquid solution to a clear organogel. Ferrite particles in the size range 10-15 nm are doped into the gel network and are thus suspended in the optically clear gel media. The magnetic properties of the gel were measured using a superconducting quantum interference device magnetometer. The results reveal that the gel exhibits superparamagnetic behavior with a blocking temperature of 6 K (at an applied field of 1000 G), and a coercivity of 850 G at 2 K. The ferrites introduced into the gel serve the function of magnetic "seeds" via which magnetic properties are acquired by the gel.

  3. Magnetic Properties of ni Nanowires Grown in Mesoporous Silicon Templates

    NASA Astrophysics Data System (ADS)

    Dolgiy, A. L.; Redko, S. V.; Yanushkevich, K. I.

    2013-05-01

    Magnetic properties of Ni nanowires electrochemically deposited into pores of mesoporous silicon template under the stationary galvanostatic regime were investigated by measuring the temperature dependence (77-700 K) of the specific magnetization σ. The measured σ values were lower with respect to that of bulk Ni. The Curie temperature, TC, derived from σ(T) for low deposition times of Ni was less (575 K) than that for bulk Ni (630 K). This is caused by dimensional effects of Ni nanoparticles.

  4. GEMAS: Unmixing magnetic properties of European agricultural soil

    NASA Astrophysics Data System (ADS)

    Fabian, Karl; Reimann, Clemens; Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Nurgaliev, Danis

    2016-04-01

    High resolution magnetic measurements provide new methods for world-wide characterization and monitoring of agricultural soil which is essential for quantifying geologic and human impact on the critical zone environment and consequences of climatic change, for planning economic and ecological land use, and for forensic applications. Hysteresis measurements of all Ap samples from the GEMAS survey yield a comprehensive overview of mineral magnetic properties in European agricultural soil on a continental scale. Low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k were measured using a Bartington MS2B sensor. Hysteresis properties were determined by a J-coercivity spectrometer, built at the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T. The resulting data are used to create the first continental-scale maps of magnetic soil parameters. Because the GEMAS geochemical atlas contains a comprehensive set of geochemical data for the same soil samples, the new data can be used to map magnetic parameters in relation to chemical and geological parameters. The data set also provides a unique opportunity to analyze the magnetic mineral fraction of the soil samples by unmixing their IRM acquisition curves. The endmember coefficients are interpreted by linear inversion for other magnetic, physical and chemical properties which results in an unprecedented and detailed view of the mineral magnetic composition of European agricultural soils.

  5. Petrophysical properties (density and magnetization) of rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia and their implications.

    PubMed

    Yang, Tao; Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data.

  6. Petrophysical Properties (Density and Magnetization) of Rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad Geophysical Profile in Mongolia and Their Implications

    PubMed Central

    Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data. PMID:24324382

  7. Dust properties and magnetic field geometry towards LDN 1570

    NASA Astrophysics Data System (ADS)

    Eswaraiah, C.; Maheswar, G.; Pandey, A. K.

    2015-03-01

    We have performed both optical linear polarimetric and photometric observations of an isolated dark globule LDN 1570 aim to study the dust polarizing and extinction properties and to map the magnetic field geometry so as to understand not only the importance of magnetic fields in formation and evolution of clouds but also the correlation of the inferred magnetic field structure with the cloud structure and its dynamics. Dust size indicators (R V and λ max ) reveal for the presence of slightly bigger dust grains towards the cloud region. The inferred magnetic field geometry, which closely follows the cloud structure revealed by Herschel images, suggest that the cloud could have been formed due to converging material flows along the magnetic field lines.

  8. Studying the magnetic properties of CoSi single crystals

    SciTech Connect

    Narozhnyi, V. N. Krasnorussky, V. N.

    2013-05-15

    The magnetic properties of CoSi single crystals have been measured in a range of temperatures T = 5.5-450 K and magnetic field strengths H {<=} 11 kOe. A comparison of the results for crystals grown in various laboratories allowed the temperature dependence of magnetic susceptibility {chi}(T) = M(T)/H to be determined for a hypothetical 'ideal' (free of magnetic impurities and defects) CoSi crystal. The susceptibility of this ideal crystal in the entire temperature range exhibits a diamagnetic character. The {chi}(T) value significantly increases in absolute value with decreasing temperature and exhibits saturation at the lowest temperatures studied. For real CoSi crystals of four types, paramagnetic contributions to the susceptibility have been evaluated and nonlinear (with respect to the field) contributions to the magnetization have been separated and taken into account in the calculations of {chi}(T).

  9. Structural and magnetic properties of granular CoPd multilayers

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Figueroa, A. I.; Bartolomé, F.; Rubín, J.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Brookes, N. B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-02-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk.

  10. Microstructure and Magnetic Properties of Bulk Nanocrystalline MnAl

    SciTech Connect

    Chaturvedi, A; Yaqub, R; Baker, I

    2014-01-22

    MnAl is a promising rare-earth free permanent magnet for technological use. We have examined the effects of consolidation by back-pressure, assisted equal channel angular extrusion processing on mechanically-milled, gas-atomized Mn-46% at. Al powder. X-ray diffraction showed both that the extruded rod consisted mostly of metastable tau phase, with some of the equilibrium gamma(2) and beta phases, and that it largely retained the as-milled nanostructure. Magnetic measurements show a coercivity of <= 4.4 kOe and a magnetization at 10 kOe of <= 40 emu/g. In addition, extrusions exhibit greater than 95% of the theoretical density. This study opens a new window in the area of bulk MnAl magnets with improved magnetic properties for technological use.

  11. Ferromagnetic coupling by orthogonal magnetic orbitals in a heterodinuclear CuIIVIV=O complex and in a homodinuclear CuIICuII complex.

    PubMed

    Glaser, Thorsten; Theil, Hubert; Liratzis, Ioannis; Weyhermüller, Thomas; Bill, Eckhard

    2006-06-26

    The heterodinuclear complex [LCuIIVIVO] 1 was synthesized by using a new unsymmetric dinucleating ligand based on 1,8-naphthalenediol, whereas the homodinuclear CuIICuII complex 2 has a bridging beta-diketimineamid unit. Here we report on the synthesis, molecular structures, and magnetic properties of 1 and 2. In the solid state, both complexes dimerize to tetranuclear entities 1(2) and 2(2). The intradimer interaction in both complexes is ferromagnetic because of the orthogonality of the magnetic orbitals (J12 = +45.6 cm(-1) in 1 and +4.8 cm(-1) in 2). The interdimer interaction in 1 is also ferromagnetic, giving a St = 2 ground state.

  12. Matrix and interaction effects on the magnetic properties of Co nanoparticles embedded in gold and vanadium.

    PubMed

    Ruano, M; Díaz, M; Martínez, L; Navarro, E; Román, E; García-Hernandez, M; Espinosa, A; Ballesteros, C; Fermento, R; Huttel, Y

    2013-01-07

    The study of the magnetic properties of Co nanoparticles (with an average diameter of 10.3 nm) grown using a gas-phase aggregation source and embedded in Au and V matrices is presented. We investigate how the matrix, the number of embedded nanoparticles (counted by coverage percentage), the interparticle interactions and the complex nanoparticles/matrix interface structure define the magnetic properties of the studied systems. A threshold coverage of 3.5% of a monolayer was found in both studied systems: below this coverage, nanoparticles behave as an assembly of independent single-domain magnetic entities with uniaxial anisotropy. Above the threshold it is found that the magnetic behavior of the systems is more matrix dependent. While magnetic relaxation and Henkel plots measurements stress the importance of the dipolar interactions and the formation of coherent clusters in the case of the Au matrix, the magnetic behavior of cobalt clusters embedded in the vanadium matrix is explained through the formation of a spin glass-like state at the V-Co interface that screens the magnetic interactions between NPs.

  13. Enhanced magnetic properties of cobalt-doped graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Kaur, Navjot; Pal, Kaushik

    2017-04-01

    We have studied structural and magnetic properties of reduced graphene nanoribbons (GNRs) and cobalt (Co)-doped GNRs. The effect of Co was also investigated on the magnetic properties of pristine GNRs, which play vital role in contribution of calculated magnetic moment. Herein, we have synthesized the pristine GNRs and Co-doped GNRs via a simple chemical refluxing process. The analysis of synthesised materials were carried out using different techniques such as Field emission scanning electron microscopy (FESEM) with EDAX analysis and X-ray diffraction pattern were confirmed the doping of Co into the GNRs. Moreover, from morphological analysis (FESEM), impurity or dopant (Co) shows as adsorbed at the surface of GNRs. Raman analysis has proved that the incorporation of Co into graphitic structure creates more defective sites. The results obtained from VSM analysis is clearly revealed that enhanced saturation magnetization (Ms) from 13.08 × 10-2 emu/g to 37.35 × 10-2 emu/g, due to the presence of unbalanced electron spins in Co which may be responsible for higher saturation magnetization in case of Co-doped GNRs as comparison of pristine GNRs. The obtained interesting magnetic properties of Co-doped GNRs create much attention towards various applications including spintronics devices and some related fields.

  14. Single crystal Processing and magnetic properties of gadolinium nickel

    SciTech Connect

    Shreve, Andrew John

    2012-01-01

    GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd2O3 W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

  15. Magnetic nanoparticles: surface effects and properties related to biomedicine applications.

    PubMed

    Issa, Bashar; Obaidat, Ihab M; Albiss, Borhan A; Haik, Yousef

    2013-10-25

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 μm), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

  16. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    PubMed Central

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

  17. Particle size dependent rheological property in magnetic fluid

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Pei, Lei; Xuan, Shouhu; Yan, Qifan; Gong, Xinglong

    2016-06-01

    The influence of the particle size on the rheological property of magnetic fluid was studied both by the experimental and computer simulation methods. Firstly, the magnetic fluids were prepared by dispersing Fe3O4 nanospheres with size varied from 40 nm to 100 nm and 200 nm in the solution. Then, the rheological properties were investigated and it was found that the relative magnetorheological effects increased with increasing the particle size. Finally, the molecular dynamic simulation was used to analyze the mechanical characteristics of the magnetic fluid and the chain-like model agreed well with the experimental result. The authentic chain-like structure observed by a microscope agreed with the simulation results. The three particles composed of the similar cluster nanostructure, thus they exhibited similar magnetic property. To this end, the unique assembling microstructures was the origination of the mechanical difference. And it was found that the higher MR (magnetorheological) effects of the large particle based magnetic fluid was originated from the stronger assembling microstructure under the applying magnetic field.

  18. Magnetic properties of superparamagnetic nanoparticles loaded into silicon nanotubes

    NASA Astrophysics Data System (ADS)

    Granitzer, Petra; Rumpf, Klemens; Gonzalez, Roberto; Coffer, Jeffery; Reissner, Michael

    2014-08-01

    In this work, the magnetic properties of silicon nanotubes (SiNTs) filled with Fe3O4 nanoparticles (NPs) are investigated. SiNTs with different wall thicknesses of 10 and 70 nm and an inner diameter of approximately 50 nm are prepared and filled with superparamagnetic iron oxide nanoparticles of 4 and 10 nm in diameter. The infiltration process of the NPs into the tubes and dependence on the wall-thickness is described. Furthermore, data from magnetization measurements of the nanocomposite systems are analyzed in terms of iron oxide nanoparticle size dependence. Such biocompatible nanocomposites have potential merit in the field of magnetically guided drug delivery vehicles.

  19. Growth, structure, morphology, and magnetic properties of Ni ferrite films

    PubMed Central

    2013-01-01

    The morphology, structure, and magnetic properties of nickel ferrite (NiFe2O4) films fabricated by radio frequency magnetron sputtering on Si(111) substrate have been investigated as functions of film thickness. Prepared films that have not undergone post-annealing show the better spinel crystal structure with increasing growth time. Meanwhile, the size of grain also increases, which induces the change of magnetic properties: saturation magnetization increased and coercivity increased at first and then decreased. Note that the sample of 10-nm thickness is the superparamagnetic property. Transmission electron microscopy displays that the film grew with a disorder structure at initial growth, then forms spinel crystal structure as its thickness increases, which is relative to lattice matching between substrate Si and NiFe2O4. PMID:23622034

  20. Magnetic properties of Fe/Zr multilayers

    SciTech Connect

    Dubowik, J.; Stobiecki, F.; Szymanski, B.

    1994-03-01

    Measurements of ferromagnetic resonance (FMR), magnetic moment, and torque curves have been made for three series of Fe/Zr multilayers (MLs) with thickness ratio of Fe to Zr sublayers equal to 2:1, 1:1, and 1:2, respectively. The authors show that Fe/Zr MLs readily yield to amorphization by a solid-state reaction (SSR) during the deposition process. Nevertheless, the resulting structure may be regarded as inhomogeneous one; there still exist some ferromagnetic phases that they relate to the Fe atoms in various surroundings.

  1. Maria Goeppert-Mayer Award Talk: Novel Magnetism and Transport in Complex Oxide Thin Films, Multilayers and Nanostructures

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuri

    2005-03-01

    In epitaxial complex oxide systems, epitaxial strain, cation substitution and nanofabrication are just some ways in which their magnetic, electronic and optical properties may be tuned. In addition, their surfaces and interfaces provide a rich playground for the exploration of novel magnetic properties not found in the bulk constituents and the development of functional interfaces to be incorporated into technological applications. We have probed magnetism in complex oxide materials through studies of epitaxial oxide thin films, nanostructures and junction devices. With our ability to control oxide film growth as well as our expertise in nanofabrication, we have been able to study the effects of surfaces and interfaces on magnetism in ultra-thin magnetic oxide films and magnetic oxide nanostructures. For example, we have found that the nature of local magnetic structure in submicron islands of colossal magnetoresistance (CMR) material reveals the importance of shape anisotropy as well as magnetostriction in determining the micromagnetics in such small CMR structures. We have also studied epitaxial oxide trilayer junctions composed of magnetite (Fe3O4) and doped manganite (La0.7Sr0.3MnO3) in which we have confirmed the theoretically predicted negative spin polarization of Fe3O4. Transport through the barrier can be understood in terms of hopping transport through localized states that preserves electron spin information.

  2. Estimation of hydrothermal deposits location from magnetization distribution and magnetic properties in the North Fiji Basin

    NASA Astrophysics Data System (ADS)

    Choi, S.; Kim, C.; Park, C.; Kim, H.

    2013-12-01

    The North Fiji Basin is belong to one of the youngest basins of back-arc basins in the southwest Pacific (from 12 Ma ago). We performed the marine magnetic and the bathymetry survey in the North Fiji Basin for finding the submarine hydrothermal deposits in April 2012. We acquired magnetic and bathymetry datasets by using Multi-Beam Echo Sounder EM120 (Kongsberg Co.) and Overhouser Proton Magnetometer SeaSPY (Marine Magnetics Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly, reduce to the pole(RTP), analytic signal and magnetization. The study areas composed of the two areas(KF-1(longitude : 173.5 ~ 173.7 and latitude : -16.2 ~ -16.5) and KF-3(longitude : 173.4 ~ 173.6 and latitude : -18.7 ~ -19.1)) in Central Spreading Ridge(CSR) and one area(KF-2(longitude : 173.7 ~ 174 and latitude : -16.8 ~ -17.2)) in Triple Junction(TJ). The seabed topography of KF-1 existed thin horst in two grabens that trends NW-SE direction. The magnetic properties of KF-1 showed high magnetic anomalies in center part and magnetic lineament structure of trending E-W direction. In the magnetization distribution of KF-1, the low magnetization zone matches well with a strong analytic signal in the northeastern part. KF-2 area has TJ. The seabed topography formed like Y-shape and showed a high feature in the center of TJ. The magnetic properties of KF-2 displayed high magnetic anomalies in N-S spreading ridge center and northwestern part. In the magnetization distribution of KF-2, the low magnetization zone matches well with a strong analytic signal in the northeastern part. The seabed topography of KF-3 presented a flat and high topography like dome structure at center axis and some seamounts scattered around the axis. The magnetic properties of KF-3 showed high magnetic anomalies in N-S spreading ridge center part. In the magnetization of KF-2, the low magnetization zone mismatches to strong analytic signal in this area. The difference of KF-3

  3. 1,2,4-Triazole Complexes XIII. Magnetic Properties of the Quasi two-dimensional Weak Ferromagnet β-nickel (II)(1,2,4-triazole)2(NCS)2

    NASA Astrophysics Data System (ADS)

    Engelfriet, D. W.; Groeneveld, W. L.; Nap, G. M.

    1980-12-01

    Powdered samples of β-Ni(trz)2(NCS)2 have been investigated by measurements of the magnetic susceptibility (in the temperature range T = 15-300 K), magnetization (at T = 4.2 K) and heat capacity (T = 1-90 K). From the magnetization measurements the material is found to be a weak ferromagnet, with a zero-field magnetic moment of ~ 0.015 μB. The ordering temperature is determined as Tc = 10.14(2) K. The susceptibility and heat capacity data are in reasonable agreement with predictions from high-temperature series expansions for the quadratic layer, S = 1, Heisenberg antiferromagnet, with an intralayer exchange constant J/k = - 4.5(1) K.

  4. Optical, magnetic and electronic properties of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Guclu, A. Devrim

    2011-03-01

    We present a theory of optical, magnetic and electronic properties of graphene quantum dots. We demonstrate that there exists a class of triangular graphene quantum dots with zigzag edges [1-8] which combines magnetic, optical and transport properties in a single-material structure. These dots exhibit robust magnetic moment and optical transitions simultaneously in the THz, visible and UV spectral ranges due to the existence of a band of degenerate states lying at the Fermi level in the middle of the energy gap [1-6]. The magnetic and optical properties[5,7] are determined by strong electron-electron and excitonic interactions in the degenerate band, treated exactly using numerical techniques combining tight-binding, DFT, Hartree-Fock and configuration interactions methods. We show that the spin polarized degenerate band leads to quenching of the absorption spectrum at half-filling, while addition of a single electron fully depolarizes all electron spins and turns the absorption on. It is thus possible to design gate and size tunable graphene quantum dots with desired optical and magnetic properties for optoelectronic and photo-voltaic applications. Collaborators: P. Potasz, O. Voznyy, M. Korkusinski, and P. Hawrylak. The author thanks NRC-CNRS CRP, Canadian Institute for Advanced Research, Institute for Microstructural Sciences, and QuantumWorks for support.

  5. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  6. In vivo brain viscoelastic properties measured by magnetic resonance elastography.

    PubMed

    Green, Michael A; Bilston, Lynne E; Sinkus, Ralph

    2008-08-01

    Magnetic resonance elastography (MRE) is a non-invasive imaging technique used to visualise and quantify mechanical properties of tissue, providing information beyond what can be currently achieved with standard MR sequences and could, for instance, provide new insight into pathological processes in the brain. This study uses the MRE technique at 3 T to extract the complex shear modulus for in vivo brain tissue utilizing a full three-dimensional approach to reconstruction, removing contributions of the dilatational wave by application of the curl operator. A calibrated phantom is used to benchmark the MRE measurements, and in vivo results are presented for healthy volunteers. The results provide data for in vivo brain storage modulus (G'), finding grey matter (3.1 kPa) to be significantly stiffer than white matter (2.7 kPa). The first in vivo loss modulus (G'') measurements show no significant difference between grey matter (2.5 kPa) and white matter (2.5 kPa).

  7. Magnetism in Complex Oxides Probed by Magnetocaloric Effect and Transverse Susceptibility

    NASA Astrophysics Data System (ADS)

    Bingham, Nicholas S.

    Magnetic oxides exhibit rich complexity in their fundamental physical properties determined by the intricate interplay between structural, electronic and magnetic degrees of freedom. The common themes that are often present in these systems are the phase coexistence, strong magnetostructural coupling, and possible spin frustration induced by lattice geometry. While a complete understanding of the ground state magnetic properties and cooperative phenomena in this class of compounds is key to manipulating their functionality for applications, it remains among the most challenging problems facing condensed-matter physics today. To address these outstanding issues, it is essential to employ experimental methods that allow for detailed investigations of the temperature and magnetic field response of the different phases. In this PhD dissertation, I will demonstrate the relatively unconventional experimental methods of magnetocaloric effect (MCE) and radio-frequency transverse susceptibility (TS) as powerful probes of multiple magnetic transitions, glassy phenomena, and ground state magnetic properties in a large class of complex magnetic oxides, including La0.7Ca0.3- xSrxMnO3 (x = 0, 0.05, 0.1, 0.2 and 0.25), Pr0.5Sr0.5MnO3, Pr1-xSrxCoO 3 (x = 0.3, 0.35, 0.4 and 0.5), La5/8- xPrxCa3/8MnO3 (x = 0.275 and 0.375), and Ca3Co2O 6. First, the influences of strain and grain boundaries, via chemical substitution and reduced dimensionality, were studied via MCE in La0.7Ca 0.3-xSrxMnO 3. Polycrystalline, single crystalline, and thin-film La0.7Ca 0.3-xSrxMnO 3 samples show a paramagnetic to ferromagnetic transition at a wide variety of temperatures as well as an observed change in the fundamental nature of the transition (i.e. first-order magnetic transition to second order magnetic transition) that is dependent on the chemical concentration and dimensionality. Systematic TS and MCE experiments on Pr0.5Sr0.5MnO 3 and Pr0.5Sr0.5CoO3 have uncovered the different nature of low

  8. Magnetic properties of heat treated bacterial ferrihydrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Krasikov, A. A.; Dubrovskiy, A. A.; Popkov, S. I.; Stolyar, S. V.; Bayukov, O. A.; Iskhakov, R. S.; Ladygina, V. P.; Yaroslavtsev, R. N.

    2016-07-01

    The magnetic properties of ferrihydrite nanoparticles, which are products of vital functions of Klebsiella oxitoca bacteria, have been studied. The initial powder containing the nanoparticles in an organic shell was subjected to low-temperature (T=160 °C) heat treatment for up to 240 h. The bacterial ferrihydrite particles exhibit a superparamagnetic behavior. Their characteristic blocking temperature increases from 26 to 80 K with the heat treatment. Analysis of the magnetization curves with regard to the magnetic moment distribution function and antiferromagnetic contribution shows that the low-temperature heat treatment enhances the average magnetic moment of a particle; i.e., the nanoparticles coarsen, probably due to their partial agglomeration during heat treatment. It was established that the blocking temperature nonlinearly depends on the particle volume. Therefore, a model was proposed that takes into account both the bulk and surface magnetic anisotropy. Using this model, the bulk and surface magnetic anisotropy constants KV≈1.7×105 erg/cm3 and KS≈0.055 erg/cm2 have been determined. The effect of the surface magnetic anisotropy of ferrihydrite nanoparticles on the observed magnetic hysteresis loops is discussed.

  9. Magnetic properties and scale-up of nanostructured cobalt carbide permanent magnetic powders

    SciTech Connect

    Zamanpour, Mehdi Bennett, Steven; Taheri, Parisa; Chen, Yajie; Harris, Vincent G.

    2014-05-07

    Co{sub x}C magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co{sub 2}C and Co{sub 3}C phases possessing magnetization values exceeding 45 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of surfactants, reaction temperature, and reaction duration on the crystallographic structure and magnetic properties of Co{sub x}C, while tetraethylene glycol was employed as a reducing agent. The role of the ratios of Co{sub 2}C and Co{sub 3}C phases in the admixture magnetic properties is discussed. The crystallographic structure and particle size of the Co{sub x}C nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties.

  10. Magnetic properties and scale-up of nanostructured cobalt carbide permanent magnetic powders

    NASA Astrophysics Data System (ADS)

    Zamanpour, Mehdi; Bennett, Steven; Taheri, Parisa; Chen, Yajie; Harris, Vincent G.

    2014-05-01

    CoxC magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co2C and Co3C phases possessing magnetization values exceeding 45 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of surfactants, reaction temperature, and reaction duration on the crystallographic structure and magnetic properties of CoxC, while tetraethylene glycol was employed as a reducing agent. The role of the ratios of Co2C and Co3C phases in the admixture magnetic properties is discussed. The crystallographic structure and particle size of the CoxC nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties.

  11. Structural and dynamical properties of complex networks

    NASA Astrophysics Data System (ADS)

    Ghoshal, Gourab

    Recent years have witnessed a substantial amount of interest within the physics community in the properties of networks. Techniques from statistical physics coupled with the widespread availability of computing resources have facilitated studies ranging from large scale empirical analysis of the worldwide web, social networks, biological systems, to the development of theoretical models and tools to explore the various properties of these systems. Following these developments, in this dissertation, we present and solve for a diverse set of new problems, investigating the structural and dynamical properties of both model and real world networks. We start by defining a new metric to measure the stability of network structure to disruptions, and then using a combination of theory and simulation study its properties in detail on artificially generated networks; we then compare our results to a selection of networks from the real world and find good agreement in most cases. In the following chapter, we propose a mathematical model that mimics the structure of popular file-sharing websites such as Flickr and CiteULike and demonstrate that many of its properties can solved exactly in the limit of large network size. The remaining part of the dissertation primarily focuses on the dynamical properties of networks. We first formulate a model of a network that evolves under the addition and deletion of vertices and edges, and solve for the equilibrium degree distribution for a variety of cases of interest. We then consider networks whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. In addition we define a simple local algorithm by which appropriate rules can be implemented in practice. Finally, we conclude our

  12. Electronic and magnetic properties of Co doped MoS2 monolayer

    PubMed Central

    Wang, Yiren; Li, Sean; Yi, Jiabao

    2016-01-01

    First principle calculations are employed to calculate the electronic and magnetic properties of Co doped MoS2 by considering a variety of defects including all the possible defect complexes. The results indicate that pristine MoS2 is nonmagnetic. The materials with the existence of S vacancy or Mo vacancy alone are non-magnetic either. Further calculation demonstrates that Co substitution at Mo site leads to spin polarized state. Two substitutional CoMo defects tend to cluster and result in the non-magnetic behaviour. However, the existence of Mo vacancies leads to uniform distribution of Co dopants and it is energy favourable with ferromagnetic coupling, resulting in an intrinsic diluted magnetic semiconductor. PMID:27052641

  13. Optical, magnetic, and microwave properties of Ni/NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Rostamnejadi, Ali; Bagheri, Saber

    2017-04-01

    In this research, the optical, magnetic, and microwave properties of NiO and Ni/NiO nanoparticles have been studied. The absorbance spectra of the samples show the electronic d-d excitations with energy band gap of about 3.8 eV. The magnetization measurement confirms the existence of ferromagnetic phase at room temperature, which could be originated from the uncompensated surface spins or ferromagnetic clusters in the antiferromagnetic ground state of NiO nanoparticles. The microwave parameters such as ac conductivity, skin depth, electric and magnetic loss tangents, attenuation constant, and reflection loss have been calculated. While both magnetic and dielectric relaxation processes have been observed in the complex permeability and permittivity, the microwave absorption is mainly attributed to the dielectric relaxation processes.

  14. Magnetic properties in polycrystalline and single crystal Ca-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Debnath, J. C.; Chen, D. P.; Shamba, P.; Wang, J. L.; Kennedy, S. J.; Campbell, S. J.; Silver, T.; Dou, S. X.

    2011-04-01

    Polycrystalline (PC) and single crystalline (SC) Ca-doped LaCoO3 (LCCO) samples with the perovskite structure were synthesized by conventional solid-state reaction and the floating-zone growth method. We present the results of a comprehensive investigation of the magnetic properties of the LCCO system. Systematic measurements have been conducted on dc magnetization, ac susceptibility, exchange-bias, and the magnetocaloric effect. These findings suggest that complex structural phases, ferromagnetic (FM), and spin-glass/cluster-spin-glass (CSG), and their transitions exist in PC samples, while there is a much simpler magnetic phase in SC samples. It was also of interest to discover that the CSG induced a magnetic field memory effect and an exchange-bias-like effect, and that a large inverse irreversible magnetocaloric effect exists in this system.

  15. Control of Magnetic Properties Across Metal to Insulator Transitions

    NASA Astrophysics Data System (ADS)

    de La Venta, Jose

    2013-03-01

    Controlling the magnetic properties of ferromagnetic (FM) thin films without magnetic fields is an on-going challenge in condensed matter physics with multiple technological implications. External stimuli and proximity effects are the most used methods to control the magnetic properties. An interesting possibility arises when ferromagnets are in proximity to materials that undergo a metal-insulator (MIT) and structural phase transition (SPT). The stress associated with the structural changes produces a magnetoelastic anisotropy in proximity coupled ferromagnetic films that allows controlling the magnetic properties without magnetic fields. Canonical examples of materials that undergo MIT and SPT are the vanadium oxides (VO2 and V2O3) . VO2 undergoes a metal/rutile to an insulator/monoclinic phase transition at 340 K. In V2O3 the transition at 160 K is from a metallic/rhombohedral to an insulating/ monoclinic phase. We have investigated the magnetic properties of different combinations of ferromagnetic (Ni, Co and Fe) and vanadium oxide thin films. The (0.32%) volume expansion in VO2 or the (1.4%) volume decrease in V2O3 across the MIT produces an interfacial stress in the FM overlayer. We show that the coercivities and magnetizations of the ferromagnetic films grown on vanadium oxides are strongly affected by the phase transition. The changes in coercivity can be as large as 168% and occur in a very narrow temperature interval. These effects can be controlled by the thickness and deposition conditions of the different ferromagnetic films. For VO2/Ni bilayers the large change in the coercivity occurring above room temperature opens the possibilities for technological applications. Work done in collaboration with Siming Wang, J. G. Ramirez, and Ivan K. Schuller. Funded by the US DoE, Office of Basic Energy Sciences, under Award FG03-87ER-45332 and the Air Force Office of Scientific Research No. FA9550-12-1-0381.

  16. Dynamical properties of transportation on complex networks

    NASA Astrophysics Data System (ADS)

    Shen, Bo; Gao, Zi-You

    2008-02-01

    We study the dynamical properties of transportation considering the topology structure of networks and congestion effects, based on a proposed simple model. We analyze the behavior of the model for finding out the relationship between the properties of transportation and the structure of network. Analysis and numerical results demonstrate that the transition from free flow to congested regime can be observed for both single link load and network load, but it is discontinuous for single link and continuous for network. We also find that networks with large average degree have small average link betweenness and are more tolerant to congestion, and networks with homogeneous structure can hold more vehicles in stationary state at the subcritical region. Furthermore, by allotting capacity with different mode to links, a manner of enhancing the performance of networks is introduced, which should be helpful in the design of traffic networks.

  17. Characterization of Magnetic Viral Complexes for Targeted Delivery in Oncology

    PubMed Central

    Almstätter, Isabella; Mykhaylyk, Olga; Settles, Marcus; Altomonte, Jennifer; Aichler, Michaela; Walch, Axel; Rummeny, Ernst J.; Ebert, Oliver; Plank, Christian; Braren, Rickmer

    2015-01-01

    Oncolytic viruses are promising new agents in cancer therapy. Success of tumor lysis is often hampered by low intra-tumoral titers due to a strong anti-viral host immune response and insufficient tumor targeting. Previous work on the co-assembly of oncolytic virus particles (VPs) with magnetic nanoparticles (MNPs) was shown to provide shielding from inactivating immune response and improve targeting by external field gradients. In addition, MNPs are detected by magnet resonance imaging (MRI) enabling non-invasive therapy monitoring. In this study two selected core-shell type iron oxide MNPs were assembled with adenovirus (Ad) or vesicular stomatitis virus (VSV). The selected MNPs were characterized by high r2 and r2* relaxivities and thus could be quantified non-invasively by 1.5 and 3.0 tesla MRI with a detection limit below 0.001 mM iron in tissue-mimicking phantoms. Assembly and cell internalization of MNP-VP complexes resulted in 81 - 97 % reduction of r2 and 35 - 82 % increase of r2* compared to free MNPs. The relaxivity changes could be attributed to the clusterization of particles and complexes shown by transmission electron microscopy (TEM). In a proof-of-principle study the non-invasive detection of MNP-VPs by MRI was shown in vivo in an orthotopic rat hepatocellular carcinoma model. In conclusion, MNP assembly and compartmentalization have a major impact on relaxivities, therefore calibration measurements are required for the correct quantification in biodistribution studies. Furthermore, our study provides first evidence of the in vivo applicability of selected MNP-VPs in cancer therapy. PMID:25897333

  18. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    PubMed Central

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  19. Complex studies of properties of nanostructured silicon

    NASA Astrophysics Data System (ADS)

    Luchenko, A. I.; Melnichenko, M. M.; Svezhentsova, K. V.; Shmyryeva, O. M.

    2006-08-01

    Nanocrystalline silicon layers ( 3â€``35nm ) have been formed upon single-crystal silicon substrates of very large area (100 cm2), multicrystalline silicon substrates and metallurgical silicon substrates by stain etching. We studied optical and structural properties of nanocrystalline silicon by photoluminescence, reflection, scanning tunnel microscopy, scanning electron microscopy, Auger electronic spectroscopy and SIMS methods. Researches of properties of nc-Si, received by a method of chemical processing, have confirmed an opportunity of creation of this multifunctional material with stable characteristics. The authors have observed the sensors systems with use of nanocrystalline silicon as a sensitive layer, which properties depend on thickness of a received layer and are controlled by parameters of technological process. On an example of the photoluminescent sensor with nc-Si layer it is shown, that such sensor can be successfully used for definition of small concentrations of toxins (pesticides phosalone 10 -8-10 -9 mol/l ), and also for specific biological pollutant, such as protein components, polysaccharides, cells used during biotechnological synthesis.

  20. Bistability properties of magnetic micro-nanowires

    NASA Astrophysics Data System (ADS)

    Baranov, S. A.; Yaltychenko, O. V.; Kanarovskii, E. Yu.

    2016-12-01

    A mathematical model that describes the process of the reversal magnetization of an amorphous microwire with the help of a large Barkhausen jump is proposed. The model has been estimated with regard to the optimization of the signal-tonoise ratio. Using nonlinear model, we studied the physical factors that cause the fluctuations of the start field. Based on the results of numerical experiments, the new data on the behavior of the start field under different conditions of a switching in a bistable ferromagnetic, including the conditions of high-frequency swapping, have been obtained and compared to the existing data. The results obtained do not contradict the existing physical concepts concerning a domain wall motion and are more general and realistic in a comparison with the previous model.

  1. Magnetic properties of nanoclusters embedded in a matrix

    NASA Astrophysics Data System (ADS)

    Sabiryanov, Renat; Qiang, You; Jaswal, Siataram; Sellmyer, David

    2001-03-01

    The technological demand to use smaller devices propelled studies of the properties of nanoscale magnetic clusters embedded in some medium. We present theoretical analysis of the magnetic behavior of the monodispersed Co nanoclusters embedded into Cu matrix. Co cluster embedded in Cu matrix, prepared by using beam deposition technique, show that (i) magnetizationof the Co clusters (M) is always much lower than the magnetization of bulk Co, (ii) M increases with the increase of the size of the co cluster (clusters between 300 atoms and 9000) were considered), (iii) magnetization of Co clusters decreases with the increase of the volume concentration of Co clusters at the same size of the single cluster. In order to understand this behavior we performed ab-initio calculations of the electronic structure and magnetic properties of small Co clusters embedded in Cu matrix using tight-binding linear-muffin-tin-orbitals and recursion method. The calculation for single Co cluster (1-321 atoms) show that the magnetic moments of inner atoms in the Co cluster is close to the Co bulk value while 2-3 outer shells have reduced moment (up to 20magnetization of the cluster increase with the size of the cluster as the surface effect but the total magnetic moment is much closer to the bulk value than experimental data. We found that interaction between clusters are very strong and oscillate with the distance between two clusters causing frustration in the system. We present model that takes the interdiffusion at the interface into account. The Monte Carlo simulations of the finite temperature magnetic behavior of the system will be presented.

  2. Magnetic properties of xenoliths from Yakut kimberlite pipes

    NASA Astrophysics Data System (ADS)

    Tselebrovskiy, Alexey; Maksimochkin, Valeriy

    2014-05-01

    Lower continental crust is poorly known due to its limited availability. One source of information about the formation of the lower crust is the study of xenoliths found in kimberlites, mainly peridotites, eclogites and other rocks made by the kimberlite magma to the surface from great depths. Magnetic methods can solve problems related on the one hand, the definition of the phase composition of natural ferrimagnetics responsible for the magnetic properties of rocks, and on the other - with the establishment of the thermodynamic conditions in which they were formed - their genesis. For example, in [1, 2], there were differences in the magnetic properties of kimberlites taken from tubes with different diamond productivity. In this work, studies have been conducted of the magnetic properties and mineralogy of xenoliths from 10 Yakut kimberlit pipes, courtesy of Doctor of Geological and Mineralogical Sciences V. K. Garanin. Found that the natural remanent magnetization (NRM) and magnetic susceptibility (k0) of the investigated samples varies widely: NRM = (0.002-12.59) A/m, k0 = (0.23-59.9)*10-3 SI. Magnetic properties vary by species: average NRM peridotites (0.002-0.32) A/m order of magnitude smaller eclogitic rocks (0.58-12.59) A/m. Thermomagnetic analysis (TMA) of the test samples showed the presence of xenoliths of the ferromagnetic phase with a Curie point close to Tc magnetite. Because of the high correlation between the values of NRM, k0 and ferrimagnetic saturation magnetization (SM) can be inferred that the magnetic properties of the rocks studied at temperatures above ambient is basically determined by the concentration of magnetite in them. Besides magnetite TMA were also identified ferrimagnetic phase with Curie temperatures from -50°C to -125°C. Mineralogical analysis performed on three samples of peridotite tubes Udachnaya, Yubileynaya and Mir and two samples of eclogite tubes Udachnaya and Komsomolskaya, showed that at temperatures below room

  3. Effects of heat treatment on crystallographic and magnetic properties of magnetic steels

    NASA Astrophysics Data System (ADS)

    Battistini, L.; Benasciutti, R.; Tassi, A.

    1994-05-01

    The keeper and the head of a modern electrovalve for electronic injection can be succesfully realized using AISI 430 ferromagnetic steel. Important improvements in the performance of the device, mainly in terms of its regularity and energy savings, are possible by means of a better comprehension of the origins of the steel's magnetic properties. The magnetic behaviour of the AISI 430 steel upon different heat treatments was investigated, looking for the best compromise between time saving in the heat treatments and the ensuing magnetic properties of the material. In particular, the relationships between the structural effects of the heat treatments and the magnetic behaviour of the samples were studied. Values of the coercive force Hc, residual induction Br, maximum permeability μ max and the approach to saturation values for H and B were determined by mean of a computerized permeameter, based on a Sanford-Bennet closed yoke for differently shaped samples.

  4. Stimuli responsive hybrid magnets: tuning the photoinduced spin-crossover in Fe(III) complexes inserted into layered magnets.

    PubMed

    Clemente-León, Miguel; Coronado, Eugenio; López-Jordà, Maurici; Waerenborgh, João C; Desplanches, Cédric; Wang, Hongfeng; Létard, Jean-François; Hauser, Andreas; Tissot, Antoine

    2013-06-12

    The insertion of a [Fe(sal2-trien)](+) complex cation into a 2D oxalate network in the presence of different solvents results in a family of hybrid magnets with coexistence of magnetic ordering and photoinduced spin-crossover (LIESST effect) in compounds [Fe(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]·CHCl3 (1·CHCl3), [Fe(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]·CHBr3 (1·CHBr3), and [Fe(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]·CH2Br2 (1·CH2Br2). The three compounds crystallize in a 2D honeycomb anionic layer formed by Mn(II) and Cr(III) ions linked through oxalate ligands and a layer of [Fe(sal2-trien)](+) complexes and solvent molecules (CHCl3, CHBr3, or CH2Br2) intercalated between the 2D oxalate network. The magnetic properties and Mössbauer spectroscopy indicate that they undergo long-range ferromagnetic ordering at 5.6 K and a spin crossover of the intercalated [Fe(sal2-trien)](+) complexes at different temperatures T1/2. The three compounds present a LIESST effect with a relaxation temperature TLIESST inversely proportional to T1/2. The isostructural paramagnetic compound, [Fe(III)(sal2-trien)][Zn(II)Cr(III)(ox)3]·CH2Cl2 (2·CH2Cl2) was also prepared. This compound presents a partial spin crossover of the inserted Fe(III) complex as well as a LIESST effect. Finally, spectroscopic characterization of the Fe(III) doped compound [Ga0.99Fe0.01(sal2trien)][Mn(II)Cr(III)(ox)3]·CH2Cl2 (3·CH2Cl2) shows a gradual and complete thermal spin crossover and a LIESST effect on the isolated Fe(III) complexes. This result confirms that cooperativity is not a necessary condition to observe the LIESST effect in an Fe(III) compound.

  5. Lanthanide macrocyclic complexes, 'quantum dyes': optical properties and significance

    NASA Astrophysics Data System (ADS)

    Vallarino, Lidia M.; Harlow, Patrick M.; Leif, Robert C.

    1993-05-01

    Macrocylic complexes of the lanthanide (III) ions were functionalized to permit their attachment to antibodies, nucleic acid probes, and any other species capable of specific binding. The Eu(III) complex was found to possess a combination of properties (water solubility, inertness to metal release, ligand-sensitized luminescence, reactive peripheral functionalities) that make it suitable as a luminescent marker for bio-substrates. Its coupling to avidin was achieved, and the properties of the resulting conjugate were investigated.

  6. Dependence of the magnetic properties on the alignment magnetic field for NdFeB bonded magnets made from anisotropic HDDR powders

    NASA Astrophysics Data System (ADS)

    Gao, R. W.; Zhang, J. C.; Zhang, D. H.; Dai, Y. Y.; Meng, X. H.; Wang, Z. M.; Zhang, Y. J.; Liu, H. Q.

    1999-01-01

    The dependence of the hard magnetic properties on the alignment magnetic field for Nd(Fe,Co)B bonded magnets made from anisotropic HDDR powders is studied. The experimental results demonstrate that addition of a little Ga can induce a strong magnetic anisotropy in the HDDR magnetic powders. The application of an alignment magnetic field while the powders are bonded can increase the remanence, the coercivity and the maximum energy product in different degrees and the hard magnetic properties of the magnet are obviously improved with increasing alignment field.

  7. Electronic and magnetic properties of orthorhombic iron selenide

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.

    2016-02-01

    Iron orbitals in orthorhombic iron selenide (FeSe) can produce chargelike multipoles that are polar (parity-odd). Orbitals in question include Fe (3 d ), Fe (4 p ), and p -type ligands that participate in transport properties and bonding. The polar multipoles may contribute weak, space-group forbidden Bragg spots to diffraction patterns collected with x rays tuned in energy to a Fe atomic resonance (Templeton & Templeton scattering). Ordering of conventional, axial magnetic dipoles does not accompany the tetragonal-orthorhombic structural phase transition in FeSe, unlike other known iron-based superconductors. We initiate a new line of inquiry for this puzzling property of orthorhombic FeSe, using a hidden magnetic order that belongs to the m'm'm' magnetic crystal class. It is epitomized by the absence of ferromagnetism and axial magnetic dipoles and the appearance of magnetic monopoles and magnetoelectric quadrupoles. A similar magnetic order occurs in cuprate superconductors, yttrium barium copper oxide and Hg1201, where it was unveiled with the Kerr effect and in Bragg diffraction patterns revealed by polarized neutrons.

  8. Magnetic Properties of Different-Aged Chernozemic Soils

    NASA Astrophysics Data System (ADS)

    Fattakhova, Leysan; Shinkarev, Alexandr; Kosareva, Lina; Nourgaliev, Danis; Shinkarev, Aleksey; Kondrashina, Yuliya

    2016-04-01

    We investigated the magnetic properties and degree of mineral weathering in profiles of different-aged chernozemic soils derived from a uniform parent material. In this work, layer samples of virgin leached chernozem and chernozemic soils formed on the mound of archaeological earthy monument were used. The characterization of the magnetic properties was carried out on the data of the magnetometry and differential thermomagnetic analysis. The evaluation of the weathering degree was carried out on a loss on ignition, cation exchange capacity and X-ray phase analysis on the data of the original soil samples and samples of the heavy fraction of minerals. It was found that the magnetic susceptibility enhancement in humus profiles of newly formed chernozemic soils lagged significantly behind the organic matter content enhancement. This phenomenon is associated with differences in kinetic parameters of humus formation and structural and compositional transformation of the parent material. It is not enough time of 800-900 years to form a relatively "mature" magnetic profile. These findings are well consistent with the chemical kinetic model (Boyle et al., 2010) linking the formation of the soils magnetic susceptibility with the weathering of primary Fe silicate minerals. Different-aged chernozemic soils are at the first stage of formation of a magnetic profile when it is occur an active production of secondary ferrimagnetic minerals from Fe2+ released by primary minerals.

  9. Anomalous magnetic properties of mechanically milled cobalt oxide nanoparticles.

    PubMed

    Mishra, S R; Dubenko, I; Losby, J; Ghosh, l K; Khan, M; Ali, N

    2005-12-01

    Defect induced magnetic properties of CoO nanoparticles produced via mechanical ball milling have been assessed by detailed magnetic measurements. A progressive decrease in the particle size and a concomitant increase in the induced strain have been observed with the milling times. The mechanically milled nanoparticles of CoO exhibit anomalous magnetic properties such as FM hysteresis when compared with the unmilled CoO sample. The presence of weak ferromagnetism, with a highest value of magnetization of 0.532 emu/g at 10 K in the 100 h milled sample, is attributed to the uncompensated surface spins resulting from induced surface defects via mechanical milling. The ZFC coercive force, measured at 10 K, increases with milling time reaching a maximum value of 1066 Oe for the 100 h milled sample. The temperature dependent field-cooled (FC) and zero-field-cooled (ZFC) magnetic measurements indicate a presence of an exchange bias field arising from uncompensated moments generated by mechanical strain and the antiferromagnetic (AFM) core. The exchange bias field measured at 10 K reaches a value 210 Oe for the 50 h milled sample and decreases upon prolonged milling. The exchange bias field vanishes at a temperature approximately 200 K, a temperature much lower than the Neel temperature of CoO (TN approximately 291 K). The observed anomalous magnetic behavior of CoO could be interpreted in terms of the exchanged bias FM-AFM model.

  10. Magnetic properties of maraging steels in relation to nickel concentration

    SciTech Connect

    Ahmed, M.; Nasim, I.; Ayub, H.; Hasnain, K.

    1995-07-01

    Magnetic properties of maraging steels have been investigated as a function of nickel concentration. The alloys nickel content varied from 12 to 24 wt pct, while other alloying constituents were kept at a level maintained in the 18Ni-2,400 MPA-grade maraging steel. The magnetic properties were determined following aging for 1 hour in the temperature range of 450 to 750 C. In every alloy investigated, the coercive field increased with aging temperature, reaching a maximum around 670 C {+-} 30 C. The saturation magnetization values were lowest around temperatures where maximum coercive field was observed. The coercive field increased from {approximately}55 to {approximately}175 Oe ({approximately}4,380 to {approximately} 13,900 amp/meter) and the corresponding saturation magnetization decreased from {approximately}18,500 to {approximately}4,000 G ({approximately}1.85 to {approximately}0.4 T) in the alloys containing 12 and 24 wt pct Ni, respectively. The reverted austenite increased from 25 vol pct at 12 wt pct Ni to 10 vol pct at 24 wt pct Ni. The hardness and Charpy impact strength of the alloys have also been determined. An attempt has been made to correlate magnetic properties with different phase transformations occurring in maraging steels.

  11. GEMAS: Mineral magnetic properties of European agricultural soils

    NASA Astrophysics Data System (ADS)

    Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Fabian, Karl; Nourgaliev, Danis; Reimann, Clemens

    2015-04-01

    The GEMAS survey of European agricultural soil provides a unique opportunity to create the first comprehensive overview of mineral magnetic properties in agricultural soil on a continental scale. Samples from the upper 20 cm were taken in large agricultural fields (Ap-sample) at a density of 1 site/2500 km2. After air drying and sieving to < 2 mm, low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k was measured on 2500 samples using a Bartington MS2B sensor to obtain frequency dependence of magnetic susceptibility kfd. Hysteresis properties are determined using a J coercivity spectrometer, built in the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T, taking approximately 15 minutes. This allows to measure a wide range of magnetic parameters for large sample collections. Because the GEMAS geochemical atlas provides a comprehensive set of geochemical measurements characterizing the individual soil samples, the new data allow to study magnetic parameters in relation to chemical and geological parameters. The results show a clear large scale spatial distribution with e.g. broad distinct lows of k over sandy sediments of the last glaciation in central northern Europe and other sedimentary basins. More localized positive k anomalies occur near young volcanism, or old basalts exposed on the surface. On the other hand, frequency dependence of k displays a much more scattered behavior, indicating either high noise level, or large local variability. Clearly distinguishable, small-scale patterns in the randomized data set indicate that the latter is more likely. This indicates that local influences on soil magnetic properties, including anthropogenic effects, may be easier detected by frequency dependence

  12. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement

    PubMed Central

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  13. Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Wu, Shen; Sun, Aizhi; Zhai, Fuqiang; Wang, Jin; Zhang, Qian; Xu, Wenhuan; Logan, Philip; Volinsky, Alex A.

    2012-03-01

    This paper focuses on novel iron-based soft magnetic composites synthesis utilizing high thermal stability silicone resin to coat iron powder. The effect of an annealing treatment on the magnetic properties of synthesized magnets was investigated. The coated silicone insulating layer was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Silicone uniformly coated the powder surface, resulting in a reduction of the imaginary part of the permeability, thereby increasing the electrical resistivity and the operating frequency of the synthesized magnets. The annealing treatment increased the initial permeability, the maximum permeability, and the magnetic induction, and decreased the coercivity. Annealing at 580 °C increased the maximum permeability by 72.5%. The result of annealing at 580 °C shows that the ferromagnetic resonance frequency increased from 2 kHz for conventional epoxy resin coated samples to 80 kHz for the silicone resin insulated composites.

  14. Intrinsic Magnetism and Collective Magnetic Properties of Size-Selected Nanoparticles

    NASA Astrophysics Data System (ADS)

    Antoniak, C.; Friedenberger, N.; Trunova, A.; Meckenstock, R.; Kronast, F.; Fauth, K.; Farle, M.; Wende, H.

    Using size-selected spherical FePt nanoparticles and cubic Fe/Fe-oxide nanoparticles as examples, we discuss the recent progress in the determination of static and dynamic properties of nanomagnets. Synchroton radiation-based characterisation techniques in combination with detailed structural, chemical and morphological investigations by transmission and scanning electron microscopy allow the quantitative correlation between element-specific magnetic response and spin structure on the one hand and shape, crystal and electronic structure of the particles on the other hand. Examples of measurements of element-specific hysteresis loops of single 18 nm sized nanocubes are discussed. Magnetic anisotropy of superparamagnetic ensembles and their dynamic magnetic response are investigated by ferromagnetic resonance as a function of temperature at different microwave frequencies. Such investigations allow the determination of the magnetic relaxation and the extraction of the average magnetic anisotropy energy density of the individual particles.

  15. Geometric properties of the magnetic Laplacian on the Euclidean 4-space

    SciTech Connect

    Kazmierowski, Dominique; Zinoun, Azzouz; Intissar, Ahmed

    2010-12-15

    When the four-dimensional Euclidean space is endowed with a covariant derivative that is either self-dual or antiself-dual and of constant curvature, the corresponding magnetic Laplacian is closely related to the sub-Laplacian of the quaternionic Heisenberg group. Some geometric properties of this operator are studied. In particular, it is proved that there exists a canonical orthogonal complex structure which provides a factorization in the sense of Schroedinger.

  16. Magnetic properties of tephras from Lake Van (Eastern Turkey)

    NASA Astrophysics Data System (ADS)

    Makaroglu, Ozlem; Caǧatay, Namık; Pesonen, Lauri J.; Orbay, Naci

    2013-04-01

    Here we present magnetic properties of tephra layers in the cores taken from Lake Van, Eastern Anatolia, Turkey. Lake Van is the fourth largest terminal Lake in the world by volume (607 km3). It is 460 m deep and has a salinity of 21.4 per mil and a pH of 9.81. It is located on the East Anatolian Plateau with present day water level of 1648 m.a.s.l., and surrounded by large stratovolcanoes Nemrut, Suphan, Tendurek, and Ararat to the west and north. It has accumulated varved-sediments with tephra units, which all provide important paleoenvironmental records. After a seismic survey, four different locations were selected for coring in Lake Van, with water depths varying between 60 m and 90 m. Four cores having between 3 and 4.8 m length were analyzed for for element geochemistry using XRF Core Scanner analysis. The sub-samples were taken into plastic boxes with a volume of 6.4 cm3 for mineral magnetic analysis. The mineral magnetic measurements included magnetic susceptibility (χ), anhysteretic remanent magnetisation (ARM), isothermal remanent magnetisation (IRM), hysteresis properties and thermomagnetic analyses. According to the mineral magnetic measurements and geochemical analysis, we identified the five tephra layers (T1-T5). These tephra units were correlated with the previously varve-dated units of Landmann et al. (2011). The varve ages of the tephra layers were used to obtain the age-depth model for the cores. According to the age models the cores extend back to 9500 ka BP (varve years). Down-core profiles of all the magnetic properties are highly correlatable between different cores, suggesting that the magnetic records are of regional character. ARM values are found to be more convenient than χ values for correlating the tephra layers. The hysteresis parameters of samples taken from these layers indicate that they are within Pseudo Single Domain range. IRM curves show that low coersivity magnetic minerals are dominated in all tephra layers. Measurements

  17. Mobile testing complex based on an explosive magnetic generator

    NASA Astrophysics Data System (ADS)

    Shurupov, A. V.; Kozlov, A. V.; Gusev, A. N.; Shurupova, N. P.; Zavalova, V. E.; Chulkov, A. N.; Bazelyan, E. M.

    2015-01-01

    A mobile testing complex prototype on the basis of an explosive magnetic generator (MTC EMG) is developed to simulate a lightning current pulse. The main element of this complex is a current pulse generator comprising a EMG with a pulse transformer for energy release into the load. The electric chain of the MTC EMG is theoretically analyzed taking into consideration energy losses in active resistances in the primary circuit of the transformer and the inductive-resistive nature of the load, which resulted in the minimization of energy losses in the primary circuit depending on the electric chain parameters. It was found that, if the energy losses are minimized, the efficiency of transferring the EMG energy into the load exceeds 50%. As a result of the field tests of the MTC EMG, its basic characteristics were determined and the waveforms of the current pulses and voltages in the load were obtained. It is shown that the results of the mathematical simulation of current pulses in the load are in good agreement with the experimental data.

  18. Transport properties of interacting magnetic islands in tokamak plasmas

    SciTech Connect

    Gianakon, T.A.; Callen, J.D.; Hegna, C.C.

    1993-10-01

    This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly non-overlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to: a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficient which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.

  19. Graph-topological approach to magnetic properties of benzenoid hydrocarbons.

    PubMed

    Ciesielski, Arkadiusz; Krygowski, Tadeusz M; Cyrański, Michał K; Dobrowolski, Michał A; Aihara, Jun-ichi

    2009-12-28

    Application of topological properties and graph theory to benzenoid hydrocarbons allowed us to construct an effective approach interpreting ring current formation in molecules when exposed to an external magnetic field. Transformation of unexcited canonical structures for molecules of 34 benzenoid hydrocarbons into circuit structures and then to directed circuit structures allowed us to define global magnetic characteristics (GMC). GMC/n(2) values correlate very well with exaltation of magnetic susceptibility DeltaLambda/n(2) (computed at the CSGT/B3LYP/6-311G** level of theory by using optimized geometries at the B3LYP/6-311G** DFT level) with cc = 0.993. If the approach is applied to individual rings, then the correlation between local magnetic characteristics (LMC) for 129 various rings of 34 benzenoid hydrocarbons and NICS(1) works with cc = -0.975.

  20. Effect of interactions on edge property measurements in magnetic multilayers

    NASA Astrophysics Data System (ADS)

    McMichael, Robert; Zhu, Meng

    2010-03-01

    The edges of patterned thin films are important, especially in magnetic nanostructures. In previous work, it has been shown that the magnetic properties of film edges in Ni80Fe20 (Py) stripe arrays can be measured with a precision of a few percent using the ferromagnetic resonance (FMR) of localized edge modes. In this work, we extend this measurement technique to multilayer films, showing the effects of interactions between edge modes in the magnetic layers. We fabricate magnetic multilayer stripes consisting of 10 nm Py / x Cu / 20 nm Py, where x ranges from 1 nm to 20 nm, and we find that the edge saturation fields of both Py layers increase as the spacer is reduced, indicating enhanced magnetostatic interactions. An approximate analytical model based on the static dipolar interactions is used to simulate experimental and micromagnetic model data.

  1. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  2. Thermodynamic properties of the magnetized Coulomb crystal lattices

    NASA Astrophysics Data System (ADS)

    Kozhberov, A. A.

    2016-08-01

    It is thought that Coulomb crystals of ions with hexagonal close-packed lattice may form in the crust of strongly-magnetized neutron stars (magnetars). In this work we are trying to verify this prediction assuming that the direction of the magnetic field corresponds to the minimum of the zero-point energy. We also continue a detailed study of vibration modes and thermodynamic properties of magnetized Coulomb crystals in a wide range of temperatures and magnetic fields. It is demonstrated that the total Helmholtz free energy of the body-centered cubic Coulomb crystal is always lower than that of the Coulomb crystal with hexagonal close-packed or face-centered cubic lattice, which casts doubt on the hypothesis above.

  3. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles.

    PubMed

    Araujo, J F D F; Bruno, A C; Louro, S R W

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10(-8) Am(2) was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  4. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    SciTech Connect

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-15

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer’s sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10{sup −8} Am{sup 2} was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  5. Transport and magnetic properties of CMR manganites with antidot arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Du, Kai; Niu, Jiebin; Wei, Wengang; Chen, Jinjie; Yin, Lifeng; Shen, Jian

    2014-03-01

    We fabricated and characterized a series of manganites thin film samples with different densities of antidots. With increasing antidot density, the samples show higher MIT temperature and lower resistivity under zero and low magnetic fields. These differences become smaller and finally vanished when the magnetic field is large enough to melt the charge ordered phase in the system, which is expected in our theoretical explanations. We believe that emerging edge states at the ring of antidotes play a significant role for observed metal-insulator transition and electrical transport properties, which are of great importance of real storage and sensor device design. Magnetic property measurements and theoretical simulation also support the conclusion. These results open up new ways to control and tune the strongly correlated oxides without introduce any new material or field.

  6. Preparation and electrical properties of oil-based magnetic fluids

    NASA Astrophysics Data System (ADS)

    Sartoratto, P. P. C.; Neto, A. V. S.; Lima, E. C. D.; Rodrigues de Sá, A. L. C.; Morais, P. C.

    2005-05-01

    This paper describes an improvement in the preparation of magnetic fluids for electrical transformers. The samples are based on surface-coated maghemite nanoparticles dispersed in transformer insulating oil. Colloidal stability at 90°C was higher for oleate-grafted maghemite-based magnetic fluid, whereas decanoate and dodecanoate-grafted samples were very unstable. Electrical properties were evaluated for samples containing 0.80%-0.0040% maghemite volume fractions. Relative permittivity varied from 8.8 to 2.1 and the minimum value of the loss factor was 12% for the most diluted sample. The resistivity falls in the range of 0.7-2.5×1010Ωm, whereas the ac dielectric strength varied from 70to79kV. These physical characteristics reveal remarkable step forward in the properties of the magnetic fluid samples and may result in better operation of electrical transformers.

  7. Influence of Barium Hexaferrite on Magnetic Properties of Hydroxyapatite Ceramics.

    PubMed

    Jarupoom, P; Jaita, P

    2015-11-01

    Hydroxyapatite (HA) powders was derived from natural bovine bone by sequence of thermal processes. The barium hexaferrite (BF) find magnetic powders were added into HA powders in ratio of 1-3 vol.%. The HA-BF ceramics were prepared by a solid state reaction method and sintered at 1250 degrees C for 2 h. Effects of BF additive on structural, physical and magnetic properties of HA ceramics were investigated. X-ray diffraction revealed that all HA-BF samples showed a main phase of high purity hydroxyapatite [Ca10(PO4)6(OH)2] with calcium and phosphate molar ratio of 1.67. The addition of BF into HA inhibited grain growth and caused an improvement of mechanical properties. The M-H hysteresis loops also showed an improvement in magnetic behavior for higher content of BF. Moreover, in vitro bioactivity test indicated that the 2-3 vol.% sample may be suitable for biological applications.

  8. Transport properties of graphene under periodic and quasiperiodic magnetic superlattices

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Wang, Shun-Jin; Wang, Yong-Long; Jiang, Hua; Li, Wen

    2013-08-01

    We study the transmission of Dirac electrons through the one-dimensional periodic, Fibonacci, and Thue-Morse magnetic superlattices (MS), which can be realized by two different magnetic blocks arranged in certain sequences in graphene. The numerical results show that the transmission as a function of incident energy presents regular resonance splitting effect in periodic MS due to the split energy spectrum. For the quasiperiodic MS with more layers, they exhibit rich transmission patterns. In particular, the transmission in Fibonacci MS presents scaling property and fragmented behavior with self-similarity, while the transmission in Thue-Morse MS presents more perfect resonant peaks which are related to the completely transparent states. Furthermore, these interesting properties are robust against the profile of MS, but dependent on the magnetic structure parameters and the transverse wave vector.

  9. Single-molecule magnet behavior in 2,2’-bipyrimidine-bridged dilanthanide complexes

    PubMed Central

    Schramm, Frank; Pineda, Eufemio Moreno; Lan, Yanhua; Fuhr, Olaf; Chen, Jinjie; Isshiki, Hironari; Wernsdorfer, Wolfgang; Wulfhekel, Wulf

    2016-01-01

    Summary A series of 2,2’-bipyrimidine-bridged dinuclear lanthanide complexes with the general formula [Ln(tmhd)3]2bpm (tmhd = 2,2,6,6-tetramethyl-3,5-heptanedionate, bpm = 2,2’-bipyrimidine, Ln = Gd(III), 1; Tb(III), 2; Dy(III), 3; Ho(III), 4 and Er(III), 5) has been synthesized and characterized. Sublimation of [Tb(tmhd)3]2bpm onto a Au(111) surface leads to the formation of a homogeneous film with hexagonal pattern, which was studied by scanning tunneling microscopy (STM). The bulk magnetic properties of all complexes have been studied comprehensively. The dynamic magnetic behavior of the Dy(III) and Er(III) compounds clearly exhibits single molecule magnet (SMM) characteristics with an energy barrier of 97 and 25 K, respectively. Moreover, micro-SQUID measurements on single crystals confirm their SMM behavior with the presence of hysteresis loops. PMID:26925361

  10. Complex fuzzy set-valued complex fuzzy measures and their properties.

    PubMed

    Ma, Shengquan; Li, Shenggang

    2014-01-01

    Let F*(K) be the set of all fuzzy complex numbers. In this paper some classical and measure-theoretical notions are extended to the case of complex fuzzy sets. They are fuzzy complex number-valued distance on F*(K), fuzzy complex number-valued measure on F*(K), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction, autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued measures. Properties of fuzzy complex number-valued measures are studied in detail.

  11. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    SciTech Connect

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra; Albrecht, Ole; Merkt, Ulrich; Meier, Guido

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopy and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.

  12. Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Felicia, Leona J.; Philip, John

    2014-02-01

    We investigate the effect of multiwalled carbon nanotubes (MWCNTs) on the magnetorheological properties of an oil based magnetic nanofluid (ferrofluid). The shear resistant plateau observed in a pure ferrofluid disappears when 0.5 wt % of MWCNT is incorporated. The yield stress values of the composite system are slightly smaller than that of the pure system. This shows that the presence of carbon nanotubes (CNTs) weakens the magnetic field induced microstructure of the ferrofluid due to their interaction that affects the hydrodynamic and magnetic interactions between the dispersed nanoparticles. Interestingly, the Mason number plots for both the pure and composite system show scaling of the viscosity curves onto a single master curve for magnetic fields of 80 mT and above while deviations are observed for lower magnetic fields. The weakening of the ferrofluid microstructure in the presence of CNTs is further evident in the amplitude sweep measurements where the linear viscoelastic region develops only at a higher magnetic field strength compared to lower magnetic fields in pure ferrofluids. These results are useful for tailoring ferrofluids with a faster response for various applications.

  13. Confinining properties of QCD in strong magnetic backgrounds

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; D'Elia, Massimo; Mariti, Marco; Mesiti, Michele; Negro, Francesco; Rucci, Andrea; Sanfilippo, Francesco

    2017-03-01

    Strong magnetic backgrounds are known to modify QCD properties at a nonperturbative level. We discuss recent lattice results, obtained for Nf = 2 + 1 QCD with physical quark masses, concerning in particular the modifications and the anisotropies induced at the level of the static quark-antiquark potential, both at zero and finite temperature.

  14. Magnetic neutron spectroscopy of a spin-transition Mn3+ molecular complex

    NASA Astrophysics Data System (ADS)

    Ridier, Karl; Petit, Sylvain; Gillon, Béatrice; Chaboussant, Grégory; Safin, Damir A.; Garcia, Yann

    2014-09-01

    We have investigated by inelastic neutron scattering (INS), neutron diffraction, and magnetometry the magnetic properties of the mononuclear complex [Mn3+(pyrol)3(tren)] in both high-spin (5E, HS, S =2) and low-spin (3T1, LS, S =1) states. The system presents a spin transition (ST) around 47 K with a small hysteresis width (TST,↑=47.5 K and TST,↓=46 K) characteristic of an efficient collective transition process. In the HS state, the INS spectrum at 56 K and zero magnetic field is accounted for by a zero-field splitting with D =-5.73(3) cm-1 and |E|=+0.47(2) cm-1 which may be the result of a dynamic Jahn-Teller effect reported in the literature. In the LS state, a single magnetic peak at 4.87 meV is observed, still at zero field. Despite the existence of an unquenched orbital moment (L =1) in the ground 3T1 state, we argue that it may be described by a genuine S =1 spin Hamiltonian owing to the existence of a strong trigonal distortion of the Mn3+ coordination octahedron. The observed peak corresponds to a transition ΔM =+1 within the S =1 ground state split by a large single-ion anisotropy term D =+39.3 cm-1. A full spin-Hamiltonian model is proposed based on these first INS results obtained in a thermal ST molecular magnetic system.

  15. Magnetic and structural properties of manganese ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Awo-Affouda, Chaffra A.

    2007-12-01

    This thesis focuses on semiconductor based spin electronics. The integration of ferromagnetic regions into semiconductor "spintronic" devices to produce spin polarized current is a dynamic research area. One avenue is to make conventional semiconductors ferromagnetic by doping with a transition metal impurity such as Mn. For this, we first investigated the magnetic properties of Mn-implanted Si. We were able to measure above room temperature ferromagnetic hysteresis loops. The high Curie temperature obtained (>400 K), indicated that the synthesis of a technologically useful Si-based magnetic semiconductor is possible. We then focused on studying the structure of the implanted samples in order to establish a correlation between the magnetic and structural properties. The structural investigation involved secondary ion mass spectrometry, Rutherford backscattering, and transmission electron microscopy (TEM) as the main characterization techniques. The combination of the structural and magnetic studies allowed us to isolate an "active" region from which the ferromagnetism originates. We then found that the magnetic properties of the samples are strongly dependant on the interaction of the Mn atoms with the residual implant damage. The evolution of the Mn concentration profiles was also found to be closely related to the distribution of the Si lattice defects. We also observed the formation of Mn rich secondary phases at high enough annealing temperatures >800°C. However, we argued that theses crystallites cannot account for all the observed magnetic properties due to the low Curie temperature of these compounds in bulk form. We concluded that achieving a room temperature Si-based DMS has great potential but careful synthesis of this material system is needed to prevent secondary phase formation.

  16. Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    SciTech Connect

    Hu, Bo-Wen Zheng, Xiang-Yu; Ding, Cheng

    2015-12-15

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groups are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.

  17. Assessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Dávila-Ibáñez, Ana B.; Buurma, Niklaas J.; Salgueiriño, Verónica

    2013-05-01

    The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear evidence of the type of interactions established, reflects the importance of the DNA length, the nanoparticle size and the ionic strength, and permits the identification of the parameters controlling both the stability and the type of magnetoplexes formed. This information can be used to develop targeted systems with properties optimized for the various proposed applications of magnetoplexes.The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear evidence of the type of interactions established, reflects the importance of the DNA length, the nanoparticle size and the ionic strength, and permits the identification of the parameters controlling both the stability and the type of magnetoplexes formed. This information can be used to develop targeted systems with properties optimized for the various proposed applications of magnetoplexes. Electronic supplementary information (ESI) available: Experimental, description of ITC experiments, Fig. S1-S4, and Tables S1-S3. See DOI: 10.1039/c3nr34358h

  18. Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe3GeTe2

    DOE PAGES

    León-Brito, Neliza; Bauer, Eric Dietzgen; Ronning, Filip; ...

    2016-08-28

    Here, magnetic force microscopy was used to observe the magnetic microstructure of Fe3GeTe2 at 4 K on the (001) surface. The surface magnetic structure consists of a two-phase domain branching pattern that is characteristic for highly uniaxial magnets in the plane perpendicular to the magnetic easy axis. The average surface magnetic domain width Ds = 1.3 μm determined from this pattern, in combination with intrinsic properties calculated from bulk magnetization data (the saturation magnetization Ms = 376 emu/cm3 and the uniaxial magnetocrystalline anisotropy constant Ku = 1.46 × 107 erg/cm3), was used to determine the following micromagnetic parameters for Fe3GeTe2more » from phenomenological models: the domain wall energy γw = 4.7 erg/cm2, the domain wall thickness δw = 2.5 nm, the exchange stiffness constant Aex = 0.95 × 10–7 erg/cm, the exchange length lex = 2.3 nm, and the critical single domain particle diameter dc = 470 nm.« less

  19. Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe3GeTe2

    NASA Astrophysics Data System (ADS)

    León-Brito, N.; Bauer, E. D.; Ronning, F.; Thompson, J. D.; Movshovich, R.

    2016-08-01

    Magnetic force microscopy was used to observe the magnetic microstructure of Fe3GeTe2 at 4 K on the (001) surface. The surface magnetic structure consists of a two-phase domain branching pattern that is characteristic for highly uniaxial magnets in the plane perpendicular to the magnetic easy axis. The average surface magnetic domain width Ds = 1.3 μm determined from this pattern, in combination with intrinsic properties calculated from bulk magnetization data (the saturation magnetization Ms = 376 emu/cm3 and the uniaxial magnetocrystalline anisotropy constant Ku = 1.46 × 107 erg/cm3), was used to determine the following micromagnetic parameters for Fe3GeTe2 from phenomenological models: the domain wall energy γw = 4.7 erg/cm2, the domain wall thickness δw = 2.5 nm, the exchange stiffness constant Aex = 0.95 × 10-7 erg/cm, the exchange length lex = 2.3 nm, and the critical single domain particle diameter dc = 470 nm.

  20. Synthesis, characterization and magnetic properties of carbon nanotubes decorated with magnetic MIIFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, Syed Danish; Hussain, Syed Tajammul; Gilani, Syeda Rubina

    2013-04-01

    In this study, a simple, efficient and reproducible microemulsion method was applied for the successful decoration of carbon nanotubes (CNTs) with magnetic MIIFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles. The structure, composition and morphology of the prepared nanocomposite materials were characterized using X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The magnetic properties were investigated by the vibrating sample magnetometer (VSM). The SEM results illustrated that large quantity of MIIFe2O4 nanoparticles were uniformly decorated around the circumference of CNTs and the sizes of the nanoparticles ranged from 15 to 20 nm. Magnetic hysteresis loop measurements revealed that all the MIIFe2O4/CNTs nanocomposites displayed ferromagnetic behavior at 300 K and can be manipulated using an external magnetic field. The CoFe2O4/CNTs nanocomposite showed maximum value of saturation magnetization which was 37.47 emu g-1. The as prepared MIIFe2O4/CNTs nanocomposites have many potential application in magnetically guided targeted drug delivery, clinical diagnosis, electrochemical biosensing, magnetic data storage and magnetic resonance imaging.

  1. A Statistical Study of Flare Productivity Associated with Sunspot Properties in Different Magnetic Types of Active Regions

    NASA Astrophysics Data System (ADS)

    Yang, Ya-Hui; Hsieh, Min-Shiu; Yu, Hsiu-Shan; Chen, P. F.

    2017-01-01

    It is often believed that intense flares preferentially originate from the large-size active regions (ARs) with strong magnetic fields and complex magnetic configurations. This work investigates the dependence of flare activity on the AR properties and clarifies the influence of AR magnetic parameters on the flare productivity, based on two data sets of daily sunspot and flare information as well as the GOES soft X-ray measurements and HMI vector magnetograms. By considering the evolution of magnetic complexity, we find that flare behaviors are quite different in the short- and long-lived complex ARs and the ARs with more complex magnetic configurations are likely to host more impulsive and intense flares. Furthermore, we investigate several magnetic quantities and perform the two-sample Kolmogorov–Smirnov test to examine the similarity/difference between two populations in different types of ARs. Our results demonstrate that the total source field strength on the photosphere has a good correlation with the flare activity in complex ARs. It is noted that intense flares tend to occur at the regions of strong source field in combination with an intermediate field-weighted shear angle. This result implies that the magnetic free energy provided by a complex AR could be high enough to trigger a flare eruption even with a moderate magnetic shear on the photosphere. We thus suggest that the magnetic free energy represented by the source field rather than the photospheric magnetic complexity is a better quantity to characterize the flare productivity of an AR, especially for the occurrence of intense flares.

  2. Remarkable luminescence properties of lanthanide complexes with asymmetric dodecahedron structures.

    PubMed

    Miyata, Kohei; Nakagawa, Tetsuya; Kawakami, Ryuhei; Kita, Yuki; Sugimoto, Katsufumi; Nakashima, Takuya; Harada, Takashi; Kawai, Tsuyoshi; Hasegawa, Yasuchika

    2011-01-10

    The distorted coordination structures and luminescence properties of novel lanthanide complexes with oxo-linked bidentate phosphane oxide ligands--4,5-bis(diphenylphosphoryl)-9,9-dimethylxanthene (xantpo), 4,5-bis(di-tert-butylphosphoryl)-9,9-dimethylxanthene (tBu-xantpo), and bis[(2-diphenylphosphoryl)phenyl] ether (dpepo)--and low-vibrational frequency hexafluoroacetylacetonato (hfa) ligands are reported. The lanthanide complexes exhibit characteristic square antiprism and trigonal dodecahedron structures with eight-coordinated oxygen atoms. The luminescence properties of these complexes are characterized by their emission quantum yields, emission lifetimes, and their radiative and nonradiative rate constants. Lanthanide complexes with dodecahedron structures offer markedly high emission quantum yields (Eu: 55-72 %, Sm: 2.4-5.0 % in [D(6)]acetone) due to enhancement of the electric dipole transition and suppression of vibrational relaxation. These remarkable luminescence properties are elucidated in terms of their distorted coordination structures.

  3. Encapsulated Fe3O4 /Ag complexed cores in hollow gold nanoshells for enhanced theranostic magnetic resonance imaging and photothermal therapy.

    PubMed

    Lin, Adam Y; Young, Joseph K; Nixon, Ariel V; Drezek, Rebekah A

    2014-08-27

    Designed and fabrication of a novel magnetic hollow gold nanoshell complexes that incorporates iron oxide nanoparticles in the hollow interior. The combined effect of the smaller IONPs improved the overall magnetic properties of the design and MRI contrast capability. The overall complex could be synthesized in the range of 60-80 nm in diameter while still having a plasmonic peak in the near infrared region.

  4. Homometallic Dy(III) Complexes of Varying Nuclearity from 2 to 21: Synthesis, Structure, and Magnetism.

    PubMed

    Biswas, Sourav; Das, Sourav; Acharya, Joydev; Kumar, Vierandra; van Leusen, Jan; Kögerler, Paul; Herrera, Juan Manuel; Colacio, Enrique; Chandrasekhar, Vadapalli

    2017-04-11

    The synthesis, structure, and magnetic properties of four Dy(III) coordination compounds isolated as [Dy2 (LH2 )2 (μ2 -η(1) :η(1) -Piv)]Cl⋅2 MeOH⋅H2 O (1), [Dy4 (LH)2 (μ3 -OH)2 (Piv)4 (MeOH)2 ]⋅4 MeOH⋅2 H2 O (2), [Dy6 (LH2 )3 (tfa)3 (O3 PtBu)(Cl)3 ]Cl4 ⋅15.5 H2 O⋅4 MeOH⋅5 CHCl3 (3) and [Dy21 (L)7 (LH)7 (tfa)7 ]Cl7 ⋅15 H2 O⋅7 MeOH⋅12 CHCl3 (4) are reported (Piv=pivalate, tfa=1,1,1-trifluoroacetylacetone, O3 PtBu=tert-butylphosphonate). Among these, 3 displays an equilateral triangle topology with a side length of 9.541 Å and a rare pentagonal-bipyramidal Dy(3+) environment, whereas complex 4 exhibits a single-stranded nanowheel structure with the highest nuclearity known for a homometallic lanthanide cluster structure. A tentative model of the dc magnetic susceptibility and the low-temperature magnetization of compounds 1 and 2 indicates that the former exhibits weak ferromagnetic intramolecular exchange interaction between the Dy(3+) ions, whereas in the latter both intramolecular ferromagnetic and antiferromagnetic magnetic exchange interactions are present. Compounds 1, 3, and 4 exhibit frequency-dependent ac signals below 15 K at zero bias field, but without exhibiting any maximum above 2 K at frequencies up to 1400 Hz. The observed slow relaxation of the magnetization suggests that these compounds could exhibit single molecule magnet (SMM) behavior with either a thermal energy barrier for the reversal of the magnetization that is not high enough to block the magnetization above 2 K, or there exists quantum tunneling of the magnetization (QTM).

  5. On the some magnetic properties of the Earth's solid core

    NASA Astrophysics Data System (ADS)

    Golbraikh, E.

    2013-09-01

    The role of the solid part of Earth's core in the generation, stabilization and maintenance of the Earth's magnetic field and influence of this field on the properties of the solid core have not been sufficiently studied until now. It is well known that the core consists essentially of iron. In the last 10-15 years new methods were developed for the study of its properties at high pressure and temperature. As was shown in different experiments, the crystal structure of the iron is returned to the bcc state in the Earth's solid core. In this report we will discuss the possibility that the core can be in the vicinity of the Curie point. At the same time, it is shown that if the solid core temperature is somewhat higher than the Curie temperature, then the effective magnetic field generation connected with magnetic moment fluctuations near the transition point is possible. The estimate of the effective magnetic field is obtained in our work. Simultaneously, we have estimated the interaction of the solid part of the core with magnetic field generated in its fluid part.

  6. Magnetic antenna excitation of whistler modes. I. Basic properties

    SciTech Connect

    Urrutia, J. M.; Stenzel, R. L.

    2014-12-15

    Properties of magnetic loop antennas for exciting electron whistler modes have been investigated in a large laboratory plasma. The parameter regime is that of large plasma frequency compared to the cyclotron frequency and signal frequency below half the cyclotron frequency. The antenna diameter is smaller than the wavelength. Different directions of the loop antenna relative to the background magnetic field have been measured for small amplitude waves. The differences in the topology of the wave magnetic field are shown from measurements of the three field components in three spatial directions. The helicity of the wave magnetic field and of the hodogram of the magnetic vector in space and time are clarified. The superposition of wave fields is used to investigate the properties of two antennas for small amplitude waves. Standing whistler waves are produced by propagating two wave packets in opposite directions. Directional radiation is obtained with two phased loops separated by a quarter wavelength. Rotating antenna fields, produced with phased orthogonal loops at the same location, do not produce directionality. The concept of superposition is extended in a Paper II to generate antenna arrays for whistlers. These produce nearly plane waves, whose propagation angle can be varied by the phase shifting the currents in the array elements. Focusing of whistlers is possible. These results are important for designing antennas on spacecraft or diagnosing and heating of laboratory plasmas.

  7. Growth and Properties of MnxGa Magnetic Nanostructures

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle; Assaf, Badih A.; Eich, Marius; Moodera, Jagadeesh S.; Heiman, Don

    2013-03-01

    Rare-Earth (RE) magnets are becoming more expensive and less available for current applications in technology. MnxGa (x =2-3) has previously shown coercivity of > 2.5 T, close to that of RE magnets.[2] In this project, the vapor-liquid-solid (VLS) method was used to grow nanoparticles of MnxGa (x =1-3) with MBE. The goal was to study the magnetic properties as a function of reduced dimensionality. The samples were prepared by depositing a 3-6 nm layer of Au on Si, GaAs, and glass. It was found that the miscibility of Ga and Au is high, but for Mn and Au it is much lower. Therefore, during the growth process Ga was deposited on the gold catalyst followed by Mn deposition. The samples were then annealed at temperatures 100-500 °C. Nanostructures, including regions of nanowires, were found using scanning electron microscopy on all samples. The magnetic properties of the nanostructured samples were studied with SQUID magnetometry and found to have a magnetization of 200 emu/cm3. Work supported by NSF-DMR-0907007 and NSF-DMR-0819762.

  8. Thermodynamic properties of magnetic strings on a square lattice

    NASA Astrophysics Data System (ADS)

    Mol, Lucas; Oliveira, Denis Da Mata; Bachmann, Michael

    2015-03-01

    In the last years, spin ice systems have increasingly attracted attention by the scientific community, mainly due to the appearance of collective excitations that behave as magnetic monopole like particles. In these systems, geometrical frustration induces the appearance of degenerated ground states characterized by a local energy minimization rule, the ice rule. Violations of this rule were shown to behave like magnetic monopoles connected by a string of dipoles that carries the magnetic flux from one monopole to the other. In order to obtain a deeper knowledge about the behavior of these excitations we study the thermodynamics of a kind of magnetic polymer formed by a chain of magnetic dipoles in a square lattice. This system is expected to capture the main properties of monopole-string excitations in the artificial square spin ice. It has been found recently that in this geometry the monopoles are confined, but the effective string tension is reduced by entropic effects. To obtain the thermodynamic properties of the strings we have exactly enumerated all possible string configurations of a given length and used standard statistical mechanics analysis to calculate thermodynamic quantities. We show that the low-temperature behavior is governed by strings that satisfy ice rules. Financial support from FAPEMIG and CNPq (Brazilian agencies) are gratefully acknowledged.

  9. Magnetic antenna excitation of whistler modes. I. Basic properties

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2014-12-01

    Properties of magnetic loop antennas for exciting electron whistler modes have been investigated in a large laboratory plasma. The parameter regime is that of large plasma frequency compared to the cyclotron frequency and signal frequency below half the cyclotron frequency. The antenna diameter is smaller than the wavelength. Different directions of the loop antenna relative to the background magnetic field have been measured for small amplitude waves. The differences in the topology of the wave magnetic field are shown from measurements of the three field components in three spatial directions. The helicity of the wave magnetic field and of the hodogram of the magnetic vector in space and time are clarified. The superposition of wave fields is used to investigate the properties of two antennas for small amplitude waves. Standing whistler waves are produced by propagating two wave packets in opposite directions. Directional radiation is obtained with two phased loops separated by a quarter wavelength. Rotating antenna fields, produced with phased orthogonal loops at the same location, do not produce directionality. The concept of superposition is extended in a Paper II to generate antenna arrays for whistlers. These produce nearly plane waves, whose propagation angle can be varied by the phase shifting the currents in the array elements. Focusing of whistlers is possible. These results are important for designing antennas on spacecraft or diagnosing and heating of laboratory plasmas.

  10. Magnetic properties of tektites and other related impact glasses

    NASA Astrophysics Data System (ADS)

    Rochette, P.; Gattacceca, J.; Devouard, B.; Moustard, F.; Bezaeva, N. S.; Cournède, C.; Scaillet, B.

    2015-12-01

    We present a comprehensive overview of the magnetic properties of the four known tektite fields and related fully melted impact glasses (Aouelloul, Belize, Darwin, Libyan desert and Wabar glasses, irghizites, and atacamaites), namely magnetic susceptibility and hysteresis properties as well as properties dependent on magnetic grain-size. Tektites appear to be characterized by pure Fe2+ paramagnetism, with ferromagnetic traces below 1 ppm. The different tektite fields yield mostly non-overlapping narrow susceptibility ranges. Belize and Darwin glasses share similar characteristics. On the other hand the other studied glasses have wider susceptibility ranges, with median close to paramagnetism (Fe2+ and Fe3+) but with a high-susceptibility population bearing variable amounts of magnetite. This signs a fundamental difference between tektites (plus Belize and Darwin glasses) and other studied glasses in terms of oxygen fugacity and heterogeneity during formation, thus bringing new light to the formation processes of these materials. It also appears that selecting the most magnetic glass samples allows to find impactor-rich material, opening new perspectives to identify the type of impactor responsible for the glass generation.

  11. Synthesis, molecular structure and magnetic properties of a rhenium(IV) compound with catechol

    NASA Astrophysics Data System (ADS)

    Cuevas, A.; Geis, L.; Pintos, V.; Chiozzone, R.; Sanchíz, J.; Hummert, M.; Schumann, H.; Kremer, C.

    2009-03-01

    A novel Re(IV) complex containing catechol as ligand has been prepared and characterized. The crystal structure of (HNEt 3)(NBu 4)[ReCl 4(cat)]·H 2cat was determined. The rhenium ion presents a distorted octahedral geometry, being bonded to a bidentate catecholate group and four chloride anions. The magnetic properties of the complex were studied, a /2 D/ (the energy gap between ±3/2 and ±1/2 Kramers doublets) value of 190(10) cm -1. This is the largest /2 D/ value reported for Re(IV) up to now.

  12. Statistical Properties of Magnetic Reconnection in MHD turbulence

    NASA Astrophysics Data System (ADS)

    Servidio, Sergio; Matthaeus, William; Cassak, Paul; Shay, Michael; Dmitruk, Pablo

    2009-11-01

    Magnetic reconnection is an integral part of MHD turbulence[1] in that the fragmentation of magnetic eddies into smaller structures necessarily involves change of magnetic topology. To better understand this relationship, recently the properties of thousands of magnetic reconnection events in moderate Reynolds number MHD turbulence have been studied [1] using 2D spectral method simulations of compressible and incompressible MHD. Reconnection between magnetic islands, different in size and energy, occurs locally and sporadically in time. The associated reconnection rates are distributed over a wide range of values and scale with the geometry of the diffusion region. Matching classical turbulence analysis with the Sweet-Parker theory, the main statistical features of these multi-scale reconnection events are identified. Magnetic reconnection in turbulence can be described through an asymmetric Sweet-Parker model, in which the parameters that control the reconnection rates are determined by turbulence itself. This new and general perspective on reconnection is relevant in space and astrophysical systems, where plasma is generally in a fully nonlinear regime. [1] W. Matthaeus and S. Lamkin, Phys. Fluids, 29, 2513 (1986). [2] S. Servidio et al, PRL, 102, 115003 (2009).

  13. A Study of the Magnetic and Thermal Properties of Ln

    SciTech Connect

    Harada, Daijitsu; Hinatsu, Yukio

    2001-05-01

    Crystal structures, and magnetic, electric, and thermal properties of fluorite related compounds Ln{sub 3}RuO{sub 7} (Ln=Sm, Eu) have been investigated. For Eu{sub 3}RuO{sub 7}, a magnetic transition due to Ru{sup 5+} ions is found at T{sub N}=22.5 K on the susceptibility-temperature curve. Specific heat measurements also exhibit a {lambda}-type anomaly at the same temperature. The Moessbauer spectrum measured at 10 K shows broadening of the line corresponding to magnetic splitting. For Sm{sub 3}RuO{sub 7}, two magnetic anomalies have been observed at 10.5 and 22.5 K from its magnetic susceptibility measurements. Below 22.5 K Ru{sup 5+} ions are antiferromagnetically coupled, and when the temperature is decreased through 10.5 K the ordering of Sm{sup 3+} ions occurs rapidly. Specific heat measurements show first-order transition peaks at T=280 and 190 K for Eu{sub 3}RuO{sub 7} and Sm{sub 3}RuO{sub 7}, respectively. T he results of magnetic susceptibility and electric resistivity measurements indicate that these transitions are structural phase transitions.

  14. Electronic and magnetic properties of DUT-8(Ni).

    PubMed

    Trepte, Kai; Schwalbe, Sebastian; Seifert, Gotthard

    2015-07-14

    First principles calculations using density functional theory (DFT) have been performed to investigate the electronic and magnetic properties of DUT-8(Ni) (DUT - Dresden University of Technology). This flexible metal-organic framework (MOF) exists in two crystalline forms: DUT-8(Ni)open and DUT-8(Ni)closed. To identify the energetically favoured magnetic ordering, the density of states (DOS) and the energy difference between a low-spin (LS) and a high-spin (HS) coupling ΔELS-HS for those crystalline structures have been computed. Calculations on supercells have been carried out to include a variety of different magnetic couplings beyond a single unit cell. Several molecular model systems have been employed to further investigate the magnetic behaviour by introducing a diversity of chemical environments to the magnetic centers. The magnetic ground state of both crystalline structures has been found to be the low-spin state (S = 0). This low-spin ordering can be seen in the DOS as well as from ΔELS-HS calculations. Additionally, the calculations on the supercells confirm that the local character of the ordering (i.e. within the Ni dimers) is the most favoured one. However, the model systems indicate a change from the low-spin (S = 0) to a high-spin (S ≠ 0) ordering by introducing certain alterations into the chemical environment. Such alterations could be incorporated into the crystalline systems which should lead to similar results.

  15. Electronic and magnetic properties of small rhodium clusters

    SciTech Connect

    Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.

  16. Monte Carlo simulation of magnetic domain structure and magnetic properties near the morphotropic phase boundary.

    PubMed

    Wei, Songrui; Yang, Sen; Wang, Dong; Song, Xiaoping; Ke, Xiaoqin; Gao, Yipeng; Liao, Xiaoqi; Wang, Yunzhi

    2017-03-08

    The morphotropic phase boundary (MPB), which is the boundary separating a tetragonal phase from a rhombohedral phase by varying the composition or mechanical pressure in ferroelectrics, has been studied extensively for decades because it can lead to strong enhancement of piezoelectricity. Recently, a parallel ferromagnetic MPB was experimentally reported in the TbCo2-DyCo2 ferromagnetic system and this discovery proposes a new way to develop potential materials with giant magnetostriction. However, the role of magnetic domain switching and spin reorientation near the MPB region is still unclear. For the first time, we combine micromagnetic theory with Monte Carlo simulation to investigate the evolution of magnetic domain structures and the corresponding magnetization properties near the MPB region. It is demonstrated that the magnetic domain structure and the corresponding magnetization properties are determined by the interplay among anisotropy energy, magnetostatic energy and exchange energy. If the anisotropy energy barrier is large compared with the magnetostatic energy barrier and the exchange energy barrier, the MPB region is a T and R mixed structure and magnetic domain switching is the dominant mechanism. If the anisotropy energy barrier is small, the MPB region will also contain M phases and spin reorientation is the dominant mechanism. Our work could provide a guide for the design of advanced ferromagnetic materials with enhanced magnetostriction.

  17. Optical Writing of Magnetic Properties by Remanent Photostriction.

    PubMed

    Iurchuk, V; Schick, D; Bran, J; Colson, D; Forget, A; Halley, D; Koc, A; Reinhardt, M; Kwamen, C; Morley, N A; Bargheer, M; Viret, M; Gumeniuk, R; Schmerber, G; Doudin, B; Kundys, B

    2016-09-02

    We present an optically induced remanent photostriction in BiFeO_{3}, resulting from the photovoltaic effect, which is used to modify the ferromagnetism of Ni film in a hybrid BiFeO_{3}/Ni structure. The 75% change in coercivity in the Ni film is achieved via optical and nonvolatile control. This photoferromagnetic effect can be reversed by static or ac electric depolarization of BiFeO_{3}. Hence, the strain dependent changes in magnetic properties are written optically, and erased electrically. Light-mediated straintronics is therefore a possible approach for low-power multistate control of magnetic elements relevant for memory and spintronic applications.

  18. Optical Writing of Magnetic Properties by Remanent Photostriction

    NASA Astrophysics Data System (ADS)

    Iurchuk, V.; Schick, D.; Bran, J.; Colson, D.; Forget, A.; Halley, D.; Koc, A.; Reinhardt, M.; Kwamen, C.; Morley, N. A.; Bargheer, M.; Viret, M.; Gumeniuk, R.; Schmerber, G.; Doudin, B.; Kundys, B.

    2016-09-01

    We present an optically induced remanent photostriction in BiFeO3 , resulting from the photovoltaic effect, which is used to modify the ferromagnetism of Ni film in a hybrid BiFeO3/Ni structure. The 75% change in coercivity in the Ni film is achieved via optical and nonvolatile control. This photoferromagnetic effect can be reversed by static or ac electric depolarization of BiFeO3 . Hence, the strain dependent changes in magnetic properties are written optically, and erased electrically. Light-mediated straintronics is therefore a possible approach for low-power multistate control of magnetic elements relevant for memory and spintronic applications.

  19. Magnetic properties of metastable Fe Pd alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Yabe, Hiromasa; O'Handley, Robert C.; Kuji, Toshiro

    2007-03-01

    Metastable Fe-Pd powder samples with various Pd content were synthesized by mechanical alloying. Their fundamental properties, i.e., structure, magnetization and coercive fore are discussed. The saturation magnetizations of the metastable Fe-Pd powders gradually decreases with increasing Pd content. The coercive forces observed in as-milled samples are all less than 40 Oe. However, some of the heat-treated samples, notably, Pd content around 55 at% with L1 0 structure, shows Hc up to 1589 Oe.

  20. Aging of magnetic properties in MgO films

    SciTech Connect

    Balcells, Ll.; Konstantinovic, Z.; Martinez, B.; Beltran, J. I.; Martinez-Boubeta, C.; Arbiol, J.

    2010-12-20

    In this work we report on the magnetic behavior of MgO thin films prepared by sputtering. A severe aging process of the ferromagnetic properties is detected in magnetic samples exposed to ambient atmosphere. However, ferromagnetism can be successively switched on again by annealing samples in vacuum. We suggest this behavior reflects the key role played by defects in stabilizing ferromagnetism in MgO films and is likely to be closely related to the hydrogen-driven instability of V-type centers in this material.

  1. Magnetic properties of unrusted steel drums from laboratory and field-magnetic measurements

    SciTech Connect

    Ravat, D.

    1996-09-01

    Detection and precise location of buried ferromagnetic objects and estimation of the type and quantity of the objects are becoming increasingly important in environmental investigations worldwide. If laboratory-derived magnetizations were used to model steel drums, the models would under-estimate the resulting magnetic anomalies considerably and, in turn, would overestimate the number of buried drums at an environmental investigation site. Apparent bulk magnetization values for unrusted vertically oriented 55 and 30 gallon drums have been calculated (i.e., the values corrected for the effect of shape demagnetization of the drums). These range from {approximately}90 to {approximately}125 SI units for volume susceptibility and from {approximately} 325 to {approximately} 2,750 A/m for remanent magnetization (based on eight 55 gallon and four 30 gallon drums). Further deviations in these values could arise from the and thickness of the steel and variations in manufacturing conditions affecting magnetizations. From the point of view of modeling the drums, at most source-to-observation distances applicable to environmental investigations, the equivalent source method is able to approximate the observed anomalies of steel drums better than the 3-D modeling method. With two years of rusting, magnetic anomalies of some of the drums have reduced, while in other drums they have slightly increased. The overall magnetic changes caused by rusting appear to be more complex than anticipated, at least in the initial phase of rusting.

  2. Magnetic and microstructural properties of nanocrystalline exchange coupled PrFeB permanent magnets

    NASA Astrophysics Data System (ADS)

    Goll, D.; Seeger, M.; Kronmüller, H.

    1998-05-01

    Nanocrystalline exchange coupled Pr 2Fe 14B single-phase and Pr 2Fe 14B+α-Fe two-phase magnets with grain sizes of about 20 nm were produced using the melt-spinning procedure. In the stoichiometric Pr 2Fe 14B composition a significantly enhanced remanence of JR=0.95 T was achieved in comparison with conventional Pr-rich and therefore decoupled isotropic PrFeB magnets ( JR⩽0.5 JS=0.78 T). In the composite magnets with overstoichiometric Fe a further enhancement of the remanence is possible. Values up to JR=1.42 T and ( BH) max=180.7 kJ/m 3 were obtained. As there exists no spin reorientation in PrFeB magnets, our attention was not only directed to the magnetic behaviour at room temperature but also to the magnetic properties in the whole ferromagnetic temperature range. The microstructural parameters Neff, αK and αex describing the influence of the non-ideal microstructure and the effect of the exchange coupling on the coercive field were determined within the framework of the nucleation model from the temperature dependence of the coercive field. Furthermore, reversibility measurements of the demagnetization curves in the second quadrant give important information about the magnetization processes in exchange coupled magnets. Moreover, we have investigated the law of approach to ferromagnetic saturation of the single-phase magnet in comparison with the decoupled one. The magnetic results are correlated with TEM investigations of the real microstructure.

  3. Transport and magnetic properties of RTX and related compounds

    NASA Astrophysics Data System (ADS)

    Goruganti, Venkateshwarlu

    Physical properties of RTX compounds (R = Rare earth, T = Transition metal and X = main group element from B, C or N group) compounds have been studied by means of electrical resistivity, heat capacity, dc magnetization and NMR. Searching for new magnetic materials is always an interesting topic from both a technological and basic research prospective; it is even more interesting when unusual magnetic phases are observed. Ternary intermetallic plumbides are interesting because of their unconventional magnetic ordering and variety of multiple magnetic transitions. Crystalline electric fields (CEF) also strongly effect the magnetic properties of these intermetallics. To understand the phase transitions, CEF effects, and magnetic interactions, a systematic study of the RNiPb, R 2Ni2Pb, R5NiPb3 and RCuGe systems were conducted. Among the results for NdNiPb a single antiferromagnetic transition was found at 3.5K, while the superconductivity found in some ingots of this material was shown not to correspond to a bulk behavior for this phase. Nd2Ni 2Pb was shown to have a canted zero field magnetic structure with a low temperature metamagnetic transition 3 T. In NdCuGe, a 3K AF transition was found along with a corresponding magnon contribution to the specific heat and magnetic and thermodynamic behavior from which the detailed CEF configuration was obtained. In a series of measurements on recently-synthesized R 5NiPb3 (R=Ce, Nd, Gd), for Ce5NiPb 3 a transition at 48 K was found, which was confirmed to be ferromagnetic character from field dependent heat capacity and Curie-Weiss susceptibility. Nd5NiPb3 exhibits two transitions, an antiferromagnetic transition at 42 K and an apparently weak ferromagnetic canting transition at 8 K. For Gd5NiPb3, a ferro- or ferrimagnetic transition was found at 68 K. For the Ce and Nd materials metamagnetism was also observed at low temperatures. In addition, very large metallic type gamma terms were found in the specific heat, as well as a

  4. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-01

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  5. Magnetic properties of ultrathin tetragonal Heusler D022-Mn3Ge perpendicular-magnetized films

    NASA Astrophysics Data System (ADS)

    Sugihara, A.; Suzuki, K. Z.; Miyazaki, T.; Mizukami, S.

    2015-05-01

    We investigated the crystal structure and magnetic properties of Manganese-germanium (Mn3Ge) films having the tetragonal D022 structure, with varied thicknesses (5-130 nm) prepared on chromium (Cr)-buffered single crystal MgO(001) substrates. A crystal lattice elongation in the in-plane direction, induced by the lattice mismatch between the D022-Mn3Ge and the Cr buffer layer, increased with decreasing thickness of the D022-Mn3Ge layer. The films exhibited clear magnetic hysteresis loops with a squareness ratio close to unity, and a step-like magnetization reversal even at a 5-nm thickness under an external field perpendicular to the film's plane. The uniaxial magnetic anisotropy constant of the films showed a reduction to less than 10 Merg/cm3 in the small thickness range (≤20 nm), likely due to the crystal lattice elongation in the in-plane direction.

  6. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-04

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  7. Magnetic structure and Magnetic transport Properties of Graphene Nanoribbons With Sawtooth Zigzag Edges

    NASA Astrophysics Data System (ADS)

    Wang, D.; Zhang, Z.; Zhu, Z.; Liang, B.

    2014-12-01

    The magnetic structure and magnetic transport properties of hydrogen-passivated sawtooth zigzag-edge graphene nanoribbons (STGNRs) are investigated theoretically. It is found that all-sized ground-state STGNRs are ferromagnetic and always feature magnetic semiconductor properties, whose spin splitting energy gap Eg changes periodically with the width of STGNRs. More importantly, for the STGNR based device, the dual spin-filtering effect with the perfect (100%) spin polarization and high-performance dual spin diode effect with a rectification ratio about 1010 can be predicted. Particularly, a highly effective spin-valve device is likely to be realized, which displays a giant magnetoresistace (MR) approaching 1010%, which is three orders magnitude higher than the value predicted based on the zigzag graphene nanoribbons and six orders magnitude higher than previously reported experimental values for the MgO tunnel junction. Our findings suggest that STGNRs might hold a significant promise for developing spintronic devices.

  8. New pyridine-2,3,5,6-tetracarboxylato (H₄pdtc) complexes: Synthesis, crystal structures and magnetic properties of K₂[Mn(H₂O)(pdtc)]·3H₂O 1, Na₂[M₃(H₂O)₆(pdtc)₂]·6H₂O (M=Mn 2, Co 3)

    SciTech Connect

    Zheng, Yue-Qing; Zhu, Hong-Lin; Lin, Jian-Li; Xu, Wei; Hu, Fang-Hong

    2013-05-01

    Three new pyridine-2,3,5,6-tetracarboxylato (H₄pdtc) complexes K₂[Mn(H₂O)(pdtc)]·3H₂O 1, Na₂[M₃(H₂O)₆(pdtc)₂]·6H₂O (M=Mn 2, Co 3) were obtained and characterized by single-crystal X-ray diffraction methods and magnetic measurements. The characteristic building blocks of 1–3 are the pdtc bridged stair-like chains ∞¹([M(H₂O)](pdtc){sub 3/3})²⁻, which results from the six-coordinated transition metal atoms bridged by pdtc⁴⁻ ligands. The infinite chains in 1 are assembled by hydrogen bonds into 2D supramolecular networks, which are held together by (4·8²) topological K⁺–H₂O networks to complete 3D architecture. While the stair-like chains in 2 and 3 are interconnected by trans-[M(H₂O)₄]²⁺ moieties to 2D polymeric layers, which are bridged by dimeric [Na₂(μ-H₂O)₂(H₂O)₂]²⁺ moieties to build up 3D framework. The magnetic properties of 1–3 were analyzed on the basis of (i) linear trinuclear M₃ models and (ii) the free Mn²⁺ and Co²⁺ ions with the zero-field splitting effect and spin–orbit coupling effect, respectively. - Graphic abstract: Synopsis. The characteristic building blocks and magnetic model of K₂[Mn(H₂O)(pdtc)]·3H₂O 1 and Na₂[M₃(H₂O)₆(pdtc)₂]·6H₂O (M=Mn 2, Co 3). Highlights: • The characteristic building blocks of 1–3 are the pdtc bridged stair-like chains. • The compound 2 and 3 are interlinked by trans-[M(H₂O)₄]²⁺ moieties to 2D layers. • The magnetic behavior of 1 was analyzed with zero-field splitting effects. • The magnetic behaviors were modulated with linear trinuclear model for 2 and 3.

  9. Rational synthesis and magnetic properties of a family of low-dimensional heterometallic Cr-Mn complexes based on the versatile building block [Cr(2,2'-bipyridine)(CN)4]-.

    PubMed

    Zhang, Yuan-Zhu; Gao, Song; Wang, Zhe-Ming; Su, Gang; Sun, Hao-Ling; Pan, Feng

    2005-06-27

    Six heterometallic compounds based on the building block [Cr(bpy)(CN)4]- (bpy = 2,2'-bipyridine) with secondary and/or tertiary coligands as modulators, {Mn(H2O)2[Cr(bpy)(CN)4]2}n (1), {Mn(bpy)(H2O)[Cr(bpy)(CN)4]2 x H2O}n (2), [Mn(bpy)2][Cr(bpy)(CN)4]2 x 5H2O (3), {[Mn(dca)(bpy)(H2O)][Cr(bpy)(CN)4] x H2O}n (4) (dca = N(CN)2(-)), {Mn(N3)(CH3OH)[Cr(bpy)(CN)4] x 2H2O}n (5), and {Mn(bpy)(N3)(H2O)[Cr(bpy)(CN)4] x H2O}2 (6), have been prepared and characterized structurally and magnetically. X-ray crystallography reveals that the compounds 1, 2, 4, and 5 consist of one-dimensional (1D) chains with different structures: a 4,2-ribbon-like chain, a branched zigzag chain, a 2,2-CC zigzag chain, and a 3,3-ladder-like chain, respectively. It also reveals that compound 3 has a trinuclear [MnCr2] structure, and compound 6 has a tetranuclear [Mn2Cr2] square structure. Magnetic studies show antiferromagnetic interaction between Cr(III) and Mn(II) ions in all compounds. All of the chain compounds exhibit metamagnetic behaviors with different critical temperatures (Tc) and critical fields (Hc; at 1.8 K): 3.2 K and 3.0 kOe for 1; 2.3 K and 4.0 kOe for 2; 2.1 K and 1.0 kOe for 4; and 4.7 K and 5.0 kOe for 5, respectively. The noncentrosymmetric compound 2 is also a weak ferromagnet at low temperature because of spin canting. The magnetic analyses reveal Cr-Mn intermetallic magnetic exchange constants, J, of -4.7 to -9.4 cm(-1) (H = -JS(Cr) x S(Mn)). It is observed that the antiferromagnetic interaction through the Mn-N-C-Cr bridge increases as the Mn-N-C angle (theta) decreases to the range of 155-180 degrees, obeying an empirical relationship: J = -40 + 0.2theta. This result suggests that the best overlap between t(2g) (high-spin Mn(II)) and t(2g) (low-spin Cr(III)) occurs at an angle of approximately 155 degrees.

  10. Magnetic and electrical properties of In doped cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nongjai, Razia; Khan, Shakeel; Asokan, K.; Ahmed, Hilal; Khan, Imran

    2012-10-01

    Nanoparticles of CoFe2O4 and CoIn0.15Fe1.85O4 ferrites were prepared by citrate gel route and characterized to understand their structural, electrical, and magnetic properties. X-ray diffraction and Raman spectroscopy were used to confirm the formation of single phase cubic spinel structure. The average grain sizes from the Scherrer formula were below 50 nm. Microstructural features were obtained by scanning electron microscope and compositional analysis by energy dispersive spectroscopy. The hysteresis curve shows enhancement in coercivity while reduction in saturation magnetization with the substitution of In3+ ions. Enhancement of coercivity is attributed to the transition from multidomain to single domain nature. Electrical properties, such as dc resistivity as a function of temperature and ac conductivity as a function of frequency and temperature were studied for both the samples. The activation energy derived from the Arrhenius equation was found to increase in the doped sample. The dielectric constant (ɛ') and dielectric loss (tan δ) are also studied as a function of frequency and temperature. The variation of dielectric properties ɛ', tan δ, and ac conductivity (σac) with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and the hopping of charge between Fe2+ and Fe3+ as well as between Co2+ and Co3+ ions at B-sites. Magnetization and electrical property study showed its dominant dependence on the grain size.

  11. Magnetic properties of electrodeposited Ni‒P alloys with varying phosphorus content

    NASA Astrophysics Data System (ADS)

    Knyazev, A. V.; Fishgoit, L. A.; Chernavskii, P. A.; Safonov, V. A.; Filippova, S. E.

    2017-02-01

    The effect thermal treatment has on the magnetic properties (magnetization, saturation magnetization, and coercivity) of Ni‒P alloys prepared via electrodeposition is studied. The process of amorphous Ni‒P alloys devitrification is investigated by differential scanning calorimetry. The effects of chemical composition and thermal treatment on magnetic properties of the alloys are revealed.

  12. Preparation and Structural Properties of InIII–H Complexes

    PubMed Central

    Sickerman, Nathaniel S.; Henry, Renée M.; Ziller, Joseph W.

    2013-01-01

    The use of the tripodal ligands tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H3buea]3−) and the sulfonamide-based N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzene-sulfonamidato) ([MST]3−) has led to the synthesis of two structurally distinct In(III)–OH complexes. The first example of a five-coordinate indium(III) complex with a terminal hydroxide ligand, K[InIIIH3buea(OH)], was prepared by addition of In(OAc)3 and water to a deprotonated solution of H6buea. X-ray diffraction analysis, as well as FTIR and 1H NMR spectroscopic methods, provided evidence for the formation of a monomeric In(III)–OH complex. The complex contains an intramolecular hydrogen bonding (H-bonding) network involving the In(III)–OH unit and [H3buea]3− ligand, which aided in isolation of the complex. Isotope labeling studies verified the source of the hydroxo ligand as water. Treatment of the [InIIIMST] complex with a mixture of 15-crown-5 ether and NaOH led to isolation of the complex [15-crown-5⊃NaI-(μ-OH)-InIIIMST], whose solid-state structure was confirmed using X-ray diffraction methods. Nuclear magnetic resonance studies on this complex suggest it retains its heterobimetallic structure in solution. PMID:25309019

  13. Molecular Modeling and Physicochemical Properties of Supramolecular Complexes of Limonene with α- and β-Cyclodextrins.

    PubMed

    Dos Passos Menezes, Paula; Dos Santos, Polliana Barbosa Pereira; Dória, Grace Anne Azevedo; de Sousa, Bruna Maria Hipólito; Serafini, Mairim Russo; Nunes, Paula Santos; Quintans-Júnior, Lucindo José; de Matos, Iara Lisboa; Alves, Péricles Barreto; Bezerra, Daniel Pereira; Mendonça Júnior, Francisco Jaime Bezerra; da Silva, Gabriel Francisco; de Aquino, Thiago Mendonça; de Souza Bento, Edson; Scotti, Marcus Tullius; Scotti, Luciana; de Souza Araujo, Adriano Antunes

    2017-02-01

    This study evaluated three different methods for the formation of an inclusion complex between alpha- and beta-cyclodextrin (α- and β-CD) and limonene (LIM) with the goal of improving the physicochemical properties of limonene. The study samples were prepared through physical mixing (PM), paste complexation (PC), and slurry complexation (SC) methods in the molar ratio of 1:1 (cyclodextrin:limonene). The complexes prepared were evaluated with thermogravimetry/derivate thermogravimetry, infrared spectroscopy, X-ray diffraction, complexation efficiency through gas chromatography/mass spectrometry analyses, molecular modeling, and nuclear magnetic resonance. The results showed that the physical mixing procedure did not produce complexation, but the paste and slurry methods produced inclusion complexes, which demonstrated interactions outside of the cavity of the CDs. However, the paste obtained with β-cyclodextrin did not demonstrate complexation in the gas chromatographic technique because, after extraction, most of the limonene was either surface-adsorbed by β-cyclodextrin or volatilized during the procedure. We conclude that paste complexation and slurry complexation are effective and economic methods to improve the physicochemical character of limonene and could have important applications in pharmacological activities in terms of an increase in solubility.

  14. [A complexity analysis of Chinese herbal property theory: the multiple expressions of herbal property].

    PubMed

    Jin, Rui; Zhang, Bing

    2012-12-01

    Chinese herbal property is the highly summarized concept of herbal nature and pharmaceutical effect, which reflect the characteristics of herbal actions on human body. These herbal actions, also interpreted as presenting the information about pharmaceutical effect contained in herbal property on the biological carrier, are defined as herbal property expressions. However, the biological expression of herbal property is believed to possess complex features for the involved complexity of Chinese medicine and organism. Firstly, there are multiple factors which could influence the expression results of herbal property such as the growth environment, harvest season and preparing methods of medicinal herbs, and physique and syndrome of body. Secondly, there are multiple biological approaches and biochemical indicators for the expression of the same property. This paper elaborated these complexities for further understanding of herbal property. The individuality of herbs and expression factors should be well analyzed in the related studies.

  15. Complex networks as an emerging property of hierarchical preferential attachment

    NASA Astrophysics Data System (ADS)

    Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.

    2015-12-01

    Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.

  16. Magnetic nanoparticles supported ionic liquids improve firefly luciferase properties.

    PubMed

    Noori, Ali Reza; Hosseinkhani, Saman; Ghiasi, Parisa; Akbari, Jafar; Heydari, Akbar

    2014-03-01

    Ionic liquids as neoteric solvents, microwave irradiation, and alternative energy source are becoming as a solvent for many enzymatic reactions. We recently showed that the incubation of firefly luciferase from Photinus pyralis with various ionic liquids increased the activity and stability of luciferase. Magnetic nanoparticles supported ionic liquids have been obtained by covalent bonding of ionic liquids-silane on magnetic silica nanoparticles. In the present study, the effects of [γ-Fe2O3@SiO2][BMImCl] and [γ-Fe2O3@SiO2][BMImI] were investigated on the structural properties and function of luciferase using circular dichroism, fluorescence spectroscopy, and bioluminescence assay. Enzyme activity and structural stability increased in the presence of magnetic nanoparticles supported ionic liquids. Furthermore, the effect of ingredients which were used was not considerable on K(m) value of luciferase for adenosine-5'-triphosphate and also K(m) value for luciferin.

  17. Discontinuous properties of current-induced magnetic domain wall depinning

    PubMed Central

    Hu, X. F.; Wu, J.; Niu, D. X.; Chen, L.; Morton, S. A.; Scholl, A.; Huang, Z. C.; Zhai, Y.; Zhang, W.; Will, I.; Xu, Y. B.; Zhang, R.; van der Laan, G.

    2013-01-01

    The current-induced motion of magnetic domain walls (DWs) confined to nanostructures is of great interest for fundamental studies as well as for technological applications in spintronic devices. Here, we present magnetic images showing the depinning properties of pulse-current-driven domain walls in well-shaped Permalloy nanowires obtained using photoemission electron microscopy combined with x-ray magnetic circular dichroism. In the vicinity of the threshold current density (Jth = 4.2 × 1011 A.m−2) for the DW motion, discontinuous DW depinning and motion have been observed as a sequence of “Barkhausen jumps”. A one-dimensional analytical model with a piecewise parabolic pinning potential has been introduced to reproduce the DW hopping between two nearest neighbour sites, which reveals the dynamical nature of the current-driven DW motion in the depinning regime. PMID:24170087

  18. Magnetic Properties of Nanocrystalline Nickel-Cobalt Ferrites

    NASA Astrophysics Data System (ADS)

    Tiwari, D. K.; Villaseñor-Cendejas, L. M.; Thakur, A. K.

    2013-09-01

    In this study, the nanocrystalline nickel-cobalt ferrites were prepared via the citrate route method at . The samples were calcined at for 3 h. The crystalline structure and the single-phase formations were confirmed by X-ray diffraction (XRD) measurements. Prepared materials showed the cubic spinel structure with m3m symmetry and Fd3m space group. The analyses of XRD patterns were carried out using POWD software. It gave an estimation of lattice constant “” of 8.3584 Å, which was in good agreement with the results reported in JCPDS file no. 742081. The crystal size of the prepared materials calculated by Scherer’s formula was 27.6 nm and the electrical conductivity was around . The permeability component variations with frequency were realized. The magnetic properties of the prepared materials were analyzed by a vibrating sample magnetometer (VSM). It showed a saturation magnetization of and the behavior of a hard magnet.

  19. Magnetic properties of Al/57Fe/Cr multilayers

    NASA Astrophysics Data System (ADS)

    Jani, Snehal; Lakshmi, N.; Jain, Vishal; Reddy, V. R.; Gupta, Ajay; Venugopalan, K.

    2013-06-01

    Conversion Electron Mössbauer Spectroscopy (CEMS) and DC magnetization are used to compare magnetic properties of as-deposited multilayer (MLS) and Fe2CrAl thin film made from Al/57Fe/Cr MLS deposited by ion beam sputtering and then annealed in UHV. Interdiffusion of elements on annealing sample-1 at 500°C leads to formation of a single, disordered film of Fe2CrAl as evidenced by hyperfine field values obtained by CEMS in the film which compares well with that in bulk Fe2CrAl. CEMS also shows contributions from Fe, Fe/Cr and Fe/Al interfaces in the MLS. Saturation magnetization of as-deposited sample-1 is much less than pure Fe due to reduced Fe thickness because of interface formation and also reduction in Fe-Fe interaction due to intervening Al and Cr layers.

  20. Magnetic properties of X-ray bright points. [in sun

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Harvey, J. W.; Vaiana, G. S.

    1977-01-01

    Using high-resolution Kitt Peak National Observatory magnetograms and sequences of simultaneous S-054 soft X-ray solar images, the properties of X-ray bright points (XBP) and ephemeral active regions (ER) are compared. All XBP appear on the magnetograms as bipolar features, except for very recently emerged or old and decayed XBP. The separation of the magnetic bipoles is found to increase with the age of the XBP, with an average emergence growth rate of 2.2 plus or minus 0.4 km per sec. The total magnetic flux in a typical XBP living about 8 hr is found to be about two times ten to the nineteenth power Mx. A proportionality is found between XBP lifetime and total magnetic flux, equivalent to about ten to the twentieth power Mx per day of lifetime.

  1. Structure and magnetic properties of nanostructured Ni-ferrite

    NASA Astrophysics Data System (ADS)

    Albuquerque, A. S.; Ardisson, J. D.; Macedo, W. A. A.; López, J. L.; Paniago, R.; Persiano, A. I. C.

    2001-05-01

    The structural and magnetic properties of NiFe 2O 4 ultrafine powders synthesized by coprecipitation, a nonconventional method of preparation, were investigated. The samples were obtained by annealing at relatively low temperatures (300-600°C) and characterized by X-ray diffraction, Mössbauer spectroscopy, and vibrating sample magnetometry. The average particle diameter ranges from 4 to 15 nm, as determined by X-ray diffraction. All nanometric powder samples presented strong superparamagnetic relaxation at room temperature and reduced magnetic hyperfine fields at -193°C. Magnetometry measurements indicated different magnetic behavior related with crystallinity of samples, coercivity as high as 168 Oe at 27°C, value that is nearly two times higher than coercivity of bulk Ni-ferrite.

  2. Magnetic Properties and Hyperfine Interactions in Iron Containing Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Unruh, Karl Marlin

    Amorphous samples of Fe(,x)B(,100-x) (30 (LESSTHEQ) x (LESSTHEQ) 90), Fe(,x)Ag(,100-x) (40 (LESSTHEQ) x (LESSTHEQ) 50), and Fe(,x)Zr(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 93) have been prepared, and their magnetic properties and hyperfine interactions studied by ('57)Fe Mossbauer spectroscopy. Each system is representative of either Fe-metalloid (Fe-B), Fe-noble metal (Fe-Ag), or Fe-early transition metal (Fe -Zr) amorphous alloys. Therefore, by studying these three amorphous solids an overview is obtained, not only of the properties of the individual alloys, but also of the wider class of alloys of which they are representative. The amorphous Fe-B and Fe-Zr systems have been successfully fabricated over very wide ranges in composition, allowing the evolution of the magnetic properties and hyperfine interactions to be systematically studied. As a result it has been possible to determine the critical concentration for magnetic order (x(,c)). It has been shown that the loss of magnetic order below x(,c) is the result of the reduction and eventual disappearance of the Fe moment. The isomer shifts (IS) and quadrupole splittings (QS) have also been determined over wide composition ranges. This has led to the observation of a maximum in IS with decreasing Fe concentration in amorphous alloys of Fe and B. On the other hand, IS in the amorphous Fe-Zr alloys has been found to decrease monotonically over the same concentration range. In the paramagnetic region all the samples display quadrupole split doublets characteristic of site symmetries lower than cubic. It has been found that the observed asymmetry in the quadrupole spectra can be correlated with the relative changes in IS and QS as a function of composition. Amorphous alloys of Fe and Ag have been prepared for the first time and have been found to be stable at room temperature. The somewhat unusual magnetic properties of these alloys suggests that they may be simpler magnetically than previously studied magnetic

  3. Synthesis of metal-Bis(N-(3-ethylphenyl)-pyridine-2-acetyl-hydrazine complexes and evaluation of their magnetic and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Singh, Jagvir; Kumari, Kamelesh; Singh, Prashant; Mehrotra, Gopal K.; Singh, Netra Pal

    2012-07-01

    Manganese (II), Cobalt (II), Nickel (II) and Copper (II) complexes, having the general composition [M(L)2X2], have been synthesized [where L= Bis(N-(3-ethylphenyl)-pyridine-2-acetyl-hydrazine (L), and X = Cl-] and have been characterized by elemental analysis, molar conductance, magnetic moments, FTIR, 1H & 13C NHR and UV/visible studies. The possible geometries of the complexes were assigned on the basis of electronic magnetic and infrared spectral studies. Molar conductance values of these complexes show non electrolytic natures. The ligand, as well as their complexes, also shows the significant antimicrobial properties.

  4. Magnetic microstructure and magnetic properties of spark plasma sintered NdFeB magnets

    NASA Astrophysics Data System (ADS)

    Huang, Y. L.; Wang, Y.; Hou, Y. H.; Wang, Y. L.; Wu, Y.; Ma, S. C.; Liu, Z. W.; Zeng, D. C.; Tian, Y.; Xia, W. X.; Zhong, Z. C.

    2016-02-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) technique using melt-spun ribbons as starting materials. A distinct two-zone structure with coarse grain zone and fine grain zone was formed in the SPSed magnets. Multi-domain particle in coarse grain zone and exchange interaction domain for fine grain zone were observed. Intergranular non-magnetic phase was favorable to improve the coercivity due to the enhancement of domain wall pinning effects and increased exchange-decouple. The remanent polarization of 0.83 T, coercivity of 1516 kA/m, and maximum energy product of 118 kJ/m3 are obtained for an isotropic magnet.

  5. Magnetic and electronic properties of porphyrin-based molecular nanowires

    SciTech Connect

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Zhao, Xiang; Wang, Wei-Wei

    2016-01-15

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  6. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    SciTech Connect

    Hu, Tao; Hong, Jisang

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.

  7. Magnetic and electronic properties of porphyrin-based molecular nanowires

    NASA Astrophysics Data System (ADS)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Wang, Wei-Wei; Zhao, Xiang

    2016-01-01

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  8. Size-dependent magnetic properties of branchlike nickel oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Li, Dongsheng; Yang, Deren

    2017-01-01

    Branchlike nickel oxide nanocrystals with narrow size distribution are obtained by a solution growth method. The size-dependent of magnetic properties of the nickel oxides were investigated. The results of magnetic characterization indicate that the NiO nanocrystals with size below 12.8 nm show very weak ferromagnetic state at room temperature due to the uncompensated spins. Both of the average blocking temperature (Tb) and the irreversible temperature (Tirr) increase with the increase of nanoparticle sizes, while both the remnant magnetization and the coercivity at 300 K increase with the decrease of the particle sizes. Moreover, the disappearance of two-magnon (2M) band and redshift of one-phonon longitudinal (1LO) and two-phonon LO in vibrational properties due to size reduction are observed. Compared to the one with the spherical morphological, it is also found that nano-structured nickel oxides with the branchlike morphology have larger remnant magnetization and the coercivity at 5 K due to their larger surface-to-volume ratio and greater degree of broken symmetry at the surface or the higher proportion of broken bonds.

  9. Structural, dielectric and magnetic properties of Ni substituted zinc ferrite

    NASA Astrophysics Data System (ADS)

    Kumbhar, S. S.; Mahadik, M. A.; Mohite, V. S.; Rajpure, K. Y.; Kim, J. H.; Moholkar, A. V.; Bhosale, C. H.

    2014-08-01

    NixZn1-xFe2O4 ferrite has been synthesized by the ceramic method using Ni CO3, ZnO, Fe2O3 precursors. The influence of Ni content on the structural, morphological, electrical and magnetic properties of NixZn1-xFe2O4 ferrites is studied. The X-ray diffraction (XRD) analysis reveals that the samples are polycrystalline with spinel cubic structure. The SEM images of NixZn1-xFe2O4 ferrite show that the grain size decreases with an increase in the Ni content. The tetrahedral and octahedral vibrations in the samples are studied by IR spectra. Frequency dependence of dielectric constant shows dielectric dispersion due to the Maxwell-Wagner type of interfacial polarization. Conduction mechanism due to polarons has been analyzed by measuring the AC conductivity. Impedance spectroscopy is used to study the electrical behavior. Magnetic properties of NixZn1-xFe2O4 are studied by using hysteresis loop measurement. The maximum value of saturation magnetization of 132.8 emu/g obtained for the composition, x=0.8, is attributed to magnetic moment of Fe3+ ions.

  10. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    USGS Publications Warehouse

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  11. Luminescent Cyclometalated Platinum and Palladium Complexes with Novel Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Turner, Eric

    Organic light emitting diodes (OLEDs) is a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. In less than a decade, OLEDs have grown from a promising academic curiosity into a multi-billion dollar global industry. At the heart of an OLED are emissive molecules that generate light in response to electrical stimulation. Ideal emitters are efficient, compatible with existing materials, long lived, and produce light predominantly at useful wavelengths. Developing an understanding of the photophysical processes that dictate the luminescent properties of emissive materials is vital to their continued development. Chapter 1 and Chapter 2 provide an introduction to the topics presented and the laboratory methods used to explore them. Chapter 3 discusses a series of tridentate platinum complexes. A synthetic method utilizing microwave irradiation was explored, as well as a study of the effects ligand structure had on the excited state properties. Results and techniques developed in this endeavor were used as a foundation for the work undertaken in later chapters. Chapter 4 introduces a series of tetradentate platinum complexes that share a phenoxy-pyridyl (popy) motif. The new molecular design improved efficiency through increased rigidity and modification of the excited state properties. This class of platinum complexes were markedly more efficient than those presented in Chapter 3, and devices employing a green emitting complex of the series achieved nearly 100% electron-to-photon conversion efficiency in an OLED device. Chapter 5 adapts the ligand structure developed in Chapter 4 to palladium. The resulting complexes exceed reported efficiencies of palladium complexes by an order of magnitude. This chapter also provides the first report of a palladium complex as an emitter in an OLED device. Chapter 6 discusses the continuation of development efforts to include carbazolyl

  12. Preparation and property of polyurethane/nanosilver complex fibers

    NASA Astrophysics Data System (ADS)

    Qu, Rongjun; Gao, Jingjing; Tang, Bo; Ma, Qianli; Qu, Baohan; Sun, Changmei

    2014-03-01

    Utilizing terminal reactive groups in polyurethane, nanometer silvers were reduced in situ. The formation mechanism of nanosilver in PU was under preliminary discussion. UV-vis spectroscopy and TEM analysis were used to monitor reduction process; and the PU/nanosilver complex fibers were produced by dry spinning, which were characterized by X-ray diffraction, Fourier transform infrared spectra, thermogravimetric analysis, differential scanning calorimetry and so on. The influence of nanosilver on the thermal, mechanical and antimicrobial properties of PU was studied. It is inferred that 0.030% Ag should be a proper concentration for the PU/nanosilver complex fibers with favorable mechanical properties and highly effective antibacterial activities.

  13. The role of unintentional hydrogen on magnetic properties of Co doped ZnO

    NASA Astrophysics Data System (ADS)

    Assadi, M. H. N.; Zhang, Y. B.; Li, S.

    2011-12-01

    The correlation between the positioning of hydrogen and magnetic properties of Co doped ZnO are investigated using ab initio methodology. It is found that hydrogen can both sit in interstitial Zn-O mid bonds and substitute oxygen forming multicentre bonds with zinc. However the substitutional hydrogen is slightly more stable by 0.37 eV than the interstitial hydrogen. It is also found that mobile hydrogen ions in ZnO are trapped by Co ions or Co complexes to form variety of highly stable Co-H complexes in ZnO host lattice. Charge transfer from hydrogen to neighboring Co's 3d orbitals leads to both the stabilization of ferromagnetic ordering among Co ions and the reduction of Co ion magnetic moment.

  14. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    SciTech Connect

    Irshad, M. I. Mohamed, N. M. Yar, A.; Ahmad, F. Abdullah, M. Z.

    2015-07-22

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO{sub 4.}6H{sub 2}O buffered with H{sub 3}BO{sub 3} and acidized by dilute H{sub 2}SO{sub 4}. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (∼ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  15. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    NASA Astrophysics Data System (ADS)

    Irshad, M. I.; Ahmad, F.; Mohamed, N. M.; Abdullah, M. Z.; Yar, A.

    2015-07-01

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO4.6H2O buffered with H3BO3 and acidized by dilute H2SO4. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (˜ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  16. Magnetic and transport properties of PrRhSi3.

    PubMed

    Anand, V K; Adroja, D T; Hillier, A D

    2013-05-15

    We have investigated the magnetic and transport properties of a noncentrosymmetric compound PrRhSi3 by dc magnetic susceptibility χ(T), isothermal magnetization M(H), thermoremanent magnetization M(t), specific heat Cp(T), electrical resistivity ρ(T,H) and muon spin relaxation (μSR) measurements. At low fields χ(T) shows two anomalies near 15 and 7 K with an irreversibility between ZFC and FC data below 15 K. In contrast, no anomaly is observed in Cp(T) or ρ(T) data. M(H) data at 2 K exhibit very sharp increase below 0.5 T and a weak hysteresis. M(t) exhibits very slow relaxation, typical for a spin-glass system. Even though the absence of any anomaly in Cp(T) is consistent with the spin-glass type behavior, there is no obvious origin of spin-glass behavior in this structurally well ordered compound. The crystal electric field (CEF) analysis of Cp(T) data indicates a CEF-split singlet ground state lying below a doublet at 81(1) K and a quasi-triplet at 152(2) K. The ρ(T) data indicate a metallic behavior, and ρ(H) exhibits a very high positive magnetoresistance, as high as ~300% in 9 T at 2 K. No long range magnetic order or spin-glass behavior was detected in a μSR experiment down to 1.2 K.

  17. Possible Properties of Kinetic Flux Ropes Generated by Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ng, C. S.

    2015-12-01

    We present latest results of numerical studies of a recently obtained analytic solution that can describe small-scale kinetic flux ropes. Such exact nonlinear solution of the Vlasov-Poisson-Ampere system of equations can be regarded as two-dimensional Bernstein-Greene-Kruskal (BGK) mode, generalizing from a solution in a magnetized plasma with finite magnetic field strength [Ng, Bhattacharjee, and Skiff, Phys. Plasmas 13, 055903 (2006)], with the additional effect of field-aligned current. Such solution might explain magnetic flux ropes observed to form within the diffusion region in 3D kinetic simulations of magnetic reconnection, and the 2D version of them (plasmoids, secondary islands). We will present properties of solutions based on a range of typical plasma parameters within regions of the magnetosphere where magnetic reconnection could happen. These solutions could potentially be used to compare with future Magnetospheric Multiscale Mission (MMS) observation. This work is supported by a National Science Foundation grant PHY-1004357 and the Alaska NASA EPSCoR Program (NNX13AB28A).

  18. Cryogenic properties of dispersion strengthened copper for high magnetic fields

    SciTech Connect

    Toplosky, V. J.; Han, K.; Walsh, R. P.; Swenson, C. A.

    2014-01-27

    Cold deformed copper matrix composite conductors, developed for use in the 100 tesla multi-shot pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), have been characterized. The conductors are alumina strengthened copper which is fabricated by cold drawing that introduces high dislocation densities and high internal stresses. Both alumina particles and high density of dislocations provide us with high tensile strength and fatigue endurance. The conductors also have high electrical conductivities because alumina has limited solubility in Cu and dislocations have little scattering effect on conduction electrons. Such a combination of high strength and high conductivity makes it an excellent candidate over other resistive magnet materials. Thus, characterization is carried out by tensile testing and fully reversible fatigue testing. In tensile tests, the material exceeds the design criteria parameters. In the fatigue tests, both the load and displacement were measured and used to control the amplitude of the tests to simulate the various loading conditions in the pulsed magnet which is operated at 77 K in a non-destructive mode. In order to properly simulate the pulsed magnet operation, strain-controlled tests were more suitable than load controlled tests. For the dispersion strengthened coppers, the strengthening mechanism of the aluminum oxide provided better tensile and fatigue properties over convention copper.

  19. Nonaqueous magnetic nanoparticle suspensions with controlled particle size and nuclear magnetic resonance properties.

    PubMed

    Meledandri, Carla J; Stolarczyk, Jacek K; Ghosh, Swapankumar; Brougham, Dermot F

    2008-12-16

    We report the preparation of monodisperse maghemite (gamma-Fe2O3) nanoparticle suspensions in heptane, by thermal decomposition of iron(III) acetylacetonate in the presence of oleic acid and oleylamine surfactants. By varying the surfactant/Fe precursor mole ratio during synthesis, control was exerted both over the nanocrystal core size, in the range from 3 to 6 nm, and over the magnetic properties of the resulting nanoparticle dispersions. We report field-cycling 1H NMR relaxation analysis of the superparamagnetic relaxation rate enhancement of nonaqueous suspensions for the first time. This approach permits measurement of the relaxivity and provides information on the saturation magnetization and magnetic anisotropy energy of the suspended particles. The saturation magnetization was found to be in the expected range for maghemite particles of this size. The anisotropy energy was found to increase significantly with decreasing particle size, which we attribute to increased shape anisotropy. This study can be used as a guide for the synthesis of maghemite nanoparticles with selected magnetic properties for a given application.

  20. Properties of mesons in a strong magnetic field.

    PubMed

    Zhang, Rui; Fu, Wei-Jie; Liu, Yu-Xin

    By extending the [Formula: see text]-derivable approach in the Nambu-Jona-Lasinio model to a finite magnetic field we calculate the properties of pion, [Formula: see text], and [Formula: see text] mesons in a magnetic field at finite temperature not only in the quark-antiquark bound state scheme but also in the pion-pion scattering resonant state scenario. Our calculation as a result makes manifest that the masses of [Formula: see text] and [Formula: see text] meson can be nearly degenerate at the pseudo-critical temperature which increases with increasing magnetic field strength, and the [Formula: see text] mass ascends suddenly at almost the same critical temperature. Meanwhile the [Formula: see text] mesons' masses decrease with the temperature but increase with the magnetic field strength. We also check the Gell-Mann-Oakes-Renner relation and find that the relation can be violated clearly with increasing temperature, and the effect of the magnetic field becomes pronounced around the critical temperature. With different criteria, we analyze the effect of the magnetic field on the chiral phase transition and find that the pseudo-critical temperature of the chiral phase cross, [Formula: see text], is always enhanced by the magnetic field. Moreover, our calculations indicate that the [Formula: see text] mesons will get melted as the chiral symmetry has not yet been restored, but the [Formula: see text] meson does not disassociate even at very high temperature. Particularly, it is the first to show that there does not exist a vector meson condensate in the QCD vacuum in the pion-pion scattering scheme.

  1. Spectral, Magnetic and Biological Studie on Some Bivalent 3d Metal Complexes of Hydrazine Derived Schiff-Base Ligands

    PubMed Central

    Sherazi, Syed K. A.

    1997-01-01

    Metal(II) complexes of hydrazine derived Schiff-base ligands of the type M(L)2Cl2 where M = Co, Cu, Ni and Zn and L = L1 and L2 have been prepared and characterised by molar conductance, magnetic moment, elemental analysis and electronic, IR, H-NMR and 13C spectral data.The different modes of chelation of the ligands and their comparative biological properties against different bacterial species are reported. PMID:18475770

  2. Fermi surface, magnetic, and superconducting properties in actinide compounds

    NASA Astrophysics Data System (ADS)

    Ōnuki, Yoshichika; Settai, Rikio; Haga, Yoshinori; Machida, Yo; Izawa, Koichi; Honda, Fuminori; Aoki, Dai

    2014-08-01

    The de Haas-van Alphen effect, which is a powerful method to explore Fermi surface properties, has been observed in cerium, uranium, and nowadays even in neptunium and plutonium compounds. Here, we present the results of several studies concerning the Fermi surface properties of the heavy fermion superconductors UPt3 and NpPd5Al2, and of the ferromagnetic pressure-induced superconductor UGe2, together with those of some related compounds for which fascinating anisotropic superconductivity, magnetism, and heavy fermion behavior has been observed. xml:lang="fr"

  3. [Analysis on complex characteristics of traditional Chinese medicine property theory].

    PubMed

    Jin, Rui; Zhang, Bing

    2012-11-01

    The traditional Chinese medicine property theory refers to a concept for medicines and their effects under the guidance of traditional Chinese medicine theories. The traditional Chinese medicine property theory studies the formation mechanism and the application regularity of traditional Chinese medicine properties, including four Qi, five flavors, meridian entry, direction of medicinal actions (upward, downward, outward and inward) and toxicity. Embryologically, the traditional Chinese medicine property theory is closely related to medicines and their effects and heavily influenced by philosophical thoughts such as yin-yang and five elements and comparative state, thereby showing complex characteristics. This mainly reflects in that: first, medical properties are formed from multiple sources, with non-unique determination approach in early stage and non-unique corresponding effects and actions; second, medical properties are expressed in multiple characteristics, with diverse representation indicators and factors influencing actual expressions. The modern studies on the traditional Chinese medicine property theory shall focus on these complex characteristics, give attention to the dialectical unity of medical properties and effects and look for individuality as well as generality.

  4. Magnetic properties of Fe-Cu-Nb-Si-B nanocrystalline magnetic alloys

    SciTech Connect

    Garcia del Muro, M.; Batlle, X.; Zquiak, R.; Tejada, J.; Polak, C.; Groessinger, R.

    1994-03-01

    Several ribbons of composition Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 16.5}B{sub 6} and Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} were prepared by annealing the as-quenched samples between 525 C and 700 C, which induced nucleation of nanocrystallites of Fe bcc-type composition. Mean grain sizes were obtained from X-ray diffraction. Static magnetic properties were measured with both a Magnet Physik Hysteresis-Graph (up to 200 Oe) and a SHE S.Q.U.I.D. Magnetometer (up to 50 kOe). Soft magnetic parameters (coercive field and initial permeability) were very sensitive to grain size. The ZFC magnetization at low field showed a broad peak at a temperature T{sub M}, thus signaling a certain distribution of nanocrystalline sizes, and T{sub M} strongly decreased when the mean grain size decreased. Isothermal magnetization curves at low temperature showed the expected asymptotic behavior of a random magnet material at low and high fields.

  5. Magnetic properties changes due to hydrocarbon contaminated groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Ameen, Nawrass

    2013-04-01

    This study aims to understand the mechanisms and conditions which control the formation and transformation of ferro(i)magnetic minerals caused by hydrocarbon contaminated groundwater, in particular in the zone of fluctuating water levels. The work extends previous studies conducted at the same site. The study area is a former military air base at Hradčany, Czech Republic (50°37'22.71"N, 14°45'2.24"E). The site was heavily contaminated with petroleum hydrocarbons, due to leaks in petroleum storage tanks and jet fuelling stations over years of active use by the Soviet Union, which closed the base in 1991. The site is one of the most important sources of high quality groundwater in the Czech Republic. In a previous study, Rijal et al. (2010) concluded that the contaminants could be flushed into the sediments as the water level rose due to remediation processes leading to new formation of magnetite. In this previous study three different locations were investigated; however, from each location only one core was obtained. In order to recognize significant magnetic signatures versus depth three cores from each of these three locations were drilled in early 2012, penetrating the unsaturated zone, the groundwater fluctuation (GWF) zone and extending to about one meter below the groundwater level (~2.3 m depth at the time of sampling). Magnetic susceptibility (MS) profiles combined with other magnetic properties were analyzed to obtain a significant depth distribution of the ferro(i)magnetic concentration. Sediment properties, hydrocarbon content and bacterial activity were additionally studied. The results show that the highest ferrimagnetic mineral concentrations exist between 1.4-1.9 m depth from the baseline which is interpreted as the top of the GWF zone. Spikes of MS detected in the previous studies turned out to represent small-scale isolated features, but the trend of increasing MS values from the lowermost position of the groundwater table upward was verified

  6. Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers

    SciTech Connect

    Xu, Jing; Hu, Chenguo; Xi, Yi; Peng, Chen; Wan, Buyong; He, Xiaoshan

    2011-06-15

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: {yields} In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. {yields} The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. {yields} The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g. {yields} The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V{sub 2}O{sub 5} and BaCl{sub 2} at 200 {sup o}C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba{sub 3}V{sub 2}O{sub 8} with small amount of Ba{sub 3}VO{sub 4.8} coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of {approx}20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO{sub 4} tetrahedron with T{sub d} symmetry in Ba{sub 3}V{sub 2}O{sub 8}. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g, which is mainly due to the presence of a non

  7. Metal nanoparticle fluids with magnetically induced electrical switching properties

    NASA Astrophysics Data System (ADS)

    Kim, Younghoon; Cho, Jinhan

    2013-05-01

    We report the successful preparation of solvent-free metal nanoparticle (NP) fluids with multiple-functionalities, such as rheological properties, magnetism, ionic conductivity, and electrical properties, allowing for facile synthesis and mass production. The gold nanoparticles (AuNPs) used in this study were synthesized using tetraoctylammonium bromide (TOABr) in toluene and then directly phase-transferred to solvent-free low-molecular-weight (Mw) imidazolium-type ionic liquid media containing thiol groups (i.e., IL-SH). Magnetic metal fluids (i.e., MIL-SH-AuNPs) were prepared by the addition of FeCl3 powder to metal fluids (i.e., IL-SH-AuNPs). These fluids showed relatively high ionic and electrical conductivities compared with those of conventional metal NP fluids based on organic ILs with high Mw. Furthermore, it was demonstrated that these fluids could be used as electric switches operated using an external magnetic field in organic media.We report the successful preparation of solvent-free metal nanoparticle (NP) fluids with multiple-functionalities, such as rheological properties, magnetism, ionic conductivity, and electrical properties, allowing for facile synthesis and mass production. The gold nanoparticles (AuNPs) used in this study were synthesized using tetraoctylammonium bromide (TOABr) in toluene and then directly phase-transferred to solvent-free low-molecular-weight (Mw) imidazolium-type ionic liquid media containing thiol groups (i.e., IL-SH). Magnetic metal fluids (i.e., MIL-SH-AuNPs) were prepared by the addition of FeCl3 powder to metal fluids (i.e., IL-SH-AuNPs). These fluids showed relatively high ionic and electrical conductivities compared with those of conventional metal NP fluids based on organic ILs with high Mw. Furthermore, it was demonstrated that these fluids could be used as electric switches operated using an external magnetic field in organic media. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00653k

  8. Nanofabrication and ion milling introduced effects on magnetic properties in magnetic recording

    NASA Astrophysics Data System (ADS)

    Sun, Zhenzhong

    Perpendicular magnetic nanostructures have played an important role in magnetic recording technologies. In this dissertation, a systematic study on the CoPt magnetic nanostructures from fabrication, characterization to computer simulation has been performed. During the fabrication process, ion irradiation/bombardment in ion mill can cause physical damage to the magnetic nanostructures and degrade their magnetic properties. To study the effect of ion damage on CoPt nanostructures, different degrees of ion damage are introduced into CoPt nanopillars by varying the accelerating voltage in ion mill. The results demonstrate that the ion damage can reduce the coercivity by softening circumferential edge, and therefore changes the switching mechanism from coherent rotation to nucleation followed by rapid domain wall propagation. The SFD of CoPt nanostructures is independent of ion damage and is mainly determined by the intrinsic anisotropy distribution of the film rather than the nanostructure size distribution. Anisotropy-graded bit-patterned media are fabricated and studied based on high anisotropy L10-FePt material system. L10-FePt thin films with linearly and quadratically distributed anisotropy are achieved by varying substrate temperature during film growth. After patterning, the anisotropy-graded L10-FePt nanopillars display a reduced switching field and maintain a good thermal stability compared to the non-graded one. Experimental investigation and comparison further prove the concept of "anisotropy-graded" bit-patterned media and their potential application in the future magnetic recording. During magnetic write head fabrication, ion-beam damage may degrade the performance of the magnetic write pole. A surface sensitive MOKE is used to characterize the magnetic properties of these etched FeCo films. MOKE measurement shows a hard axis hysteresis loop with a high Mr in the high power etched film due to the ion beam introduced defects. The high power etched film

  9. Single molecule magnet behavior of a pentanuclear Mn-based metallacrown complex: solid state and solution magnetic studies.

    PubMed

    Zaleski, Curtis M; Tricard, Simon; Depperman, Ezra C; Wernsdorfer, Wolfgang; Mallah, Talal; Kirk, Martin L; Pecoraro, Vincent L

    2011-11-21

    The magnetic behavior of the pentanuclear complex of formula Mn(II)(O(2)CCH(3))(2)[12-MC(Mn(III)(N)shi)-4](DMF)(6), 1, was investigated using magnetization and magnetic susceptibility measurements both in the solid state and in solution. Complex 1 has a nearly planar structure, made of a central Mn(II) ion surrounded by four peripheral Mn(III) ions. Solid state variable-field dc magnetic susceptibility experiments demonstrate that 1 possesses a low value for the total spin in the ground state; fitting appropriate expressions to the data results in antiferromangetic coupling both between the peripheral Mn(III) ions (J = -6.3 cm(-1)) and between the central Mn(II) ion and the Mn(III) ones (J' = -4.2 cm(-1)). In order to obtain a reasonable fit, a relatively large single ion magnetic anisotropy (D) value of 1 cm(-1) was necessary for the central Mn(II) ion. The single crystal magnetization measurements using a microsquid array display a very slight opening of the hysteresis loop but only at a very low temperature (0.04 K), which is in line with the ac susceptibility data where a slow relaxation of the magnetization occurs just around 2 K. In frozen solution, complex 1 displays a frequency dependent ac magnetic susceptibility signal with an energy barrier to magnetization reorientation (E) and relaxation time at an infinite temperature (τ(o)) of 14.7 cm(-1) and 1.4 × 10(-7) s, respectively, demonstrating the single molecule magnetic behavior in solution.

  10. Measuring Viscosity with a Levitating Magnet: Application to Complex Fluids

    ERIC Educational Resources Information Center

    Even, C.; Bouquet, F.; Remond, J.; Deloche, B.

    2009-01-01

    As an experimental project proposed to students in fourth year of university, a viscometer was developed, consisting of a small magnet levitating in a viscous fluid. The viscous force acting on the magnet is directly measured: viscosities in the range 10-10[superscript 6] mPa s are obtained. This experiment is used as an introduction to complex…

  11. Magnetic and magnetodielectric properties of erbium iron garnet ceramic

    SciTech Connect

    Maignan, A.; Singh, K.; Simon, Ch.; Lebedev, O. I.; Martin, C.

    2013-01-21

    An Er{sub 3}Fe{sub 5}O{sub 12} ceramic has been sintered in oxygen atmosphere at 1400 Degree-Sign C for dielectric measurements. Its structural quality at room temperature has been checked by combining transmission electron microscopy and X-ray diffraction. It crystallizes in the cubic space group Ia3d with a = 12.3488(1). The dielectric permittivity ({epsilon} Prime ) and losses (tan {delta}) measurements as a function of temperature reveal the existence of two anomalies, a broad one between 110 K and 80 K, attributed to the Er{sup 3+} spin reorientation, and a second sharper feature at about 45 K associated to the appearance of irreversibility on the magnetic susceptibility curves. In contrast to the lack of magnetic field impact on {epsilon} Prime for the former anomaly, a complex magnetic field effect has been evidenced below 45 K. The isothermal {epsilon} Prime (H) curves show the existence of positive magnetodielectric effect, reaching a maximum of 0.14% at 3 T and 10 K. Its magnitude decreases as H is further increased. Interestingly, for the lowest H values, a linear regime in the {epsilon} Prime (H) curve is observed. From this experimental study, it is concluded that the {epsilon} Prime anomaly, starting above the compensation temperature T{sub c} (75 K) and driven by the internal magnetic field, is not sensitive to an applied external magnetic field. Thus, below 45 K, it is the magnetic structure which is responsible for the coupling between spin and charge in this iron garnet.

  12. Properties of Magnetic Tongues over a Solar Cycle

    NASA Astrophysics Data System (ADS)

    Poisson, Mariano; Démoulin, Pascal; López Fuentes, Marcelo; Mandrini, Cristina H.

    2016-08-01

    The photospheric spatial distribution of the main magnetic polarities of bipolar active regions (ARs) present during their emergence deformations are known as magnetic tongues. They are attributed to the presence of twist in the toroidal magnetic-flux tubes that form the ARs. The aim of this article is to study the twist of newly emerged ARs from the evolution of magnetic tongues observed in photospheric line-of-sight magnetograms. We apply the procedure described by Poisson et al. ( Solar Phys. 290, 727, 2015a) to ARs observed over the full Solar Cycle 23 and the beginning of Cycle 24. Our results show that the hemispherical rule obtained using the tongues as a proxy of the twist has a weak sign dominance (53 % in the southern hemisphere and 58 % in the northern hemisphere). By defining the variation of the tongue angle, we characterize the strength of the magnetic tongues during different phases of the AR emergence. We find that there is a tendency of the tongues to be stronger during the beginning of the emergence and to become weaker as the AR reaches its maximum magnetic flux. We compare this evolution with the emergence of a toroidal flux-rope model with non-uniform twist. The variety of evolution of the tongues in the analyzed ARs can only be reproduced when using a broad range of twist profiles, in particular having a large variety of twist gradients in the direction vertical to the photosphere. Although the analytical model used is a special case, selected to minimize the complexity of the problem, the results obtained set new observational constraints to theoretical models of flux-rope emergence that form bipolar ARs.

  13. Effect of hydriding degree on the microstructure and magnetic properties of sintered NdFeB magnets

    NASA Astrophysics Data System (ADS)

    Guo, Shuai; Liu, Youhao; Chen, Bicheng; Yan, Changjiang; Chen, Renjie; Lee, Don; Yan, Aru

    2012-04-01

    The effects of hydriding degree on the microstructure and magnetic properties of sintered NdFeB magnets have been studied. The degree of crushing depends on the absorption content of hydrogen and affects the magnetic properties of final magnet. Insertion of hydrogen atoms leads to a significant increase of the unit cell volume. And the crush mechanism depends on the internal stress resulting from differences in the expansion rates of the two phases. The remanence of final magnets increases monotonously while the coercivity decreases sharply with the increasing of hydriding degree, attributed to the strip fracture features and the morphology of particles.

  14. Experimental deformation of synthetic magnetite-bearing calcite sandstones - Effects on remanence, bulk magnetic properties, and magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Jackson, Mike; Borradaile, Graham; Hudleston, Peter; Banerjee, Subir

    1993-01-01

    The simultaneous effects of deformation on the magnetic remanence, bulk magnetic properties, and magnetic anisotropy of magnetite-bearing calcite sandstones were investigated in a set of synthetic magnetite-bearing samples prepared as described by Borradaile and Alford (1987). Experimental deformations of synthetic sandstone analogs containing 40-micron magnetite were found to produce significant changes in the orientation of anhysteretic remanence, in bulk magnetic properties, and in magnetic anisotropy. These changes proceeded slowly for shortening strains below about 10 percent, but much more rapidly at higher strains.

  15. [Synthesis of functionalized cyanines. Fluorescence properties following complexation of cations].

    PubMed

    Mazières, M R; Duprat, C; Sutra, E; Lamandé, L; Bergon, M; Bellan, J; Wolf, J G; Roques, C

    2003-01-01

    The ionophoric properties of podands containing dioxazaphosphocane moieties linked by inactive spacers were studied. To increase the detection sensibility of these compounds we introduced a cyanine as spacer. Fluorescence analysis demonstrated the interest of cyanines as active spacers since the complexation by cations as Ca2+ and Mg2+ gives an enhancement of the emission intensity.

  16. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes.

    PubMed

    Chilton, Nicholas F; Collison, David; McInnes, Eric J L; Winpenny, Richard E P; Soncini, Alessandro

    2013-01-01

    Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=±(15)/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes.

  17. MAGNETIC COMPLEXITY AS AN EXPLANATION FOR BIMODAL ROTATION POPULATIONS AMONG YOUNG STARS

    SciTech Connect

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    2015-07-01

    Observations of young open clusters have revealed a bimodal distribution of fast and slower rotation rates that has proven difficult to explain with predictive models of spin down that depend on rotation rates alone. The Metastable Dynamo Model proposed recently by Brown, employing a stochastic transition probability from slow to more rapid spin down regimes, appears to be more successful but lacks a physical basis for such duality. Using detailed 3D MHD wind models computed for idealized multipole magnetic fields, we show that surface magnetic field complexity can provide this basis. Both mass and angular momentum losses decline sharply with increasing field complexity. Combined with observation evidence for complex field morphologies in magnetically active stars, our results support a picture in which young, rapid rotators lose angular momentum in an inefficient way because of field complexity. During this slow spin-down phase, magnetic complexity is eroded, precipitating a rapid transition from weak to strong wind coupling.

  18. Dielectric and magnetic properties of some gadolinium silica nanoceramics

    SciTech Connect

    Coroiu, I. Pascuta, P. Bosca, M. Culea, E.

    2013-11-13

    Some nanostructure gadolinium silica glass-ceramics were obtained undergoing a sol gel method and a heat-treatment at 1000°C about two hours. The magnetic and dielectric properties of these samples were studied. The magnetic properties were evidenced performing susceptibility measurements in the 80-300K temperature range. A Curie-Weiss behavior has acquired. The values estimated for paramagnetic Curie temperature being small and positive suggest the presence of weak ferromagnetic interactions between Gd{sup 3+} ions. The dielectric properties were evaluated from dielectric permittivity (ε{sub r}) and dielectric loss (tanδ) measurements at the frequency 1 kHz, 10 kHz and 100 kHz, in the 25-225°C temperature range and dielectric dispersion at room temperature for 79.5 kHz - 1GHz frequency area. The dielectric properties suggest that the main polarization mechanism corresponds to interfacial polarization, characteristic for polycrystalline-structured dielectrics. The polycrystalline structure of the samples is due to the polymorphous transformations of the nanostructure silica crystallites in the presence of gadolinium oxide. They were highlighted by SEM micrographs.

  19. Structural and magnetic properties of L10 -FePt nanoparticles aligned by external magnetic field

    NASA Astrophysics Data System (ADS)

    Tamada, Yoshinori; Yamamoto, Shinpei; Nasu, Saburo; Ono, Teruo

    2008-12-01

    We investigated structural and magnetic properties of the easy-axis aligned L10 -FePt nanoparticles by the combined use of x-ray diffraction (XRD), magnetization, and F57e Mössbauer measurements. The L10 -FePt nanoparticles were fixed in a polystyrene matrix by performing free radical polymerization of styrene under an aligning external magnetic field. Mössbauer spectrum of the L10 -FePt nanoparticles/polystyrene composite showed tremendous decrease in the second and fifth absorption lines under the condition that the incident γ ray was parallel to the aligning field. This result indicates that the easy axes of the L10 -FePt nanoparticles in the composite have a strong preferred orientation with a finite distribution. We estimated the distribution of easy-axis orientation by using the Mössbauer hyperfine parameters, which is in good agreement with that determined by the XRD rocking curve.

  20. Switchable molecular magnets

    PubMed Central

    SATO, Osamu

    2012-01-01

    Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes. PMID:22728438

  1. Switchable molecular magnets.

    PubMed

    Sato, Osamu

    2012-01-01

    Various molecular magnetic compounds whose magnetic properties can be controlled by external stimuli have been developed, including electrochemically, photochemically, and chemically tunable bulk magnets as well as a phototunable antiferromagnetic phase of single chain magnet. In addition, we present tunable paramagnetic mononuclear complexes ranging from spin crossover complexes and valence tautomeric complexes to Co complexes in which orbital angular momentum can be switched. Furthermore, we recently developed several switchable clusters and one-dimensional coordination polymers. The switching of magnetic properties can be achieved by modulating metals, ligands, and molecules/ions in the second sphere of the complexes.

  2. Magnetic Properties of Iron Oxide Nanoparticles Obtained by Laser Evaporation

    NASA Astrophysics Data System (ADS)

    Novoselova, Iu. P.; Samatov, O. M.; Kupriyanova, G. S.; Murzakaev, A. M.; Safronov, A. P.; Kurlyandskaya, G. V.

    2017-01-01

    The paper concentrates on a synthesis of spherical magnetic particles obtained by laser evaporation under various process conditions. Depending on the process conditions, which include the pressure in a process chamber, laser pulse duration, mean laser power, and the type of power gas, the stoichiometry of the material ranges from Fe 2.70 O 4 to Fe 2.84 O 4 , while the average diameter of nanoparticles ranges between 10-23 nm. The nanoparticles have an inverse spinel structure. In terms of the magnetic properties, the samples are a superparamagnetic ensemble. The spherical shape of the majority of nanoparticles as well as the existence of merely one magnetic phase are verified by the characteristics of microwave absorption. A relatively high saturation magnetization and a narrow size distribution of small nanoparticles obtained at 700 mmHg working pressure, 100 ms pulse duration, and 200 W laser power allow the authors to consider these conditions to be the most optimum for the nanopowder synthesis and recommend them for biological applications.

  3. Magnetic properties of nickel halide hydrates including deuteration effects

    NASA Astrophysics Data System (ADS)

    DeFotis, G. C.; Van Dongen, M. J.; Hampton, A. S.; Komatsu, C. H.; Trowell, K. T.; Havas, K. C.; Davis, C. M.; DeSanto, C. L.; Hays, K.; Wagner, M. J.

    2017-01-01

    Magnetic measurements on variously hydrated nickel chlorides and bromides, including deuterated forms, are reported. Results include locations and sizes of susceptibility maxima, Tmax and χmax, ordering temperatures Tc, Curie constants and Weiss theta in the paramagnetic regime, and primary and secondary exchange interactions from analysis of low temperature data. For the latter a 2D Heisenberg model augmented by interlayer exchange in a mean-field approximation is applied. Magnetization data to 16 kG as a function of temperature show curvature and hysteresis characteristics quite system dependent. For four materials high field magnetization data to 70 kG at 2.00 K are also obtained. Comparison is made with theoretical relations for spin-1 models. Trends are apparent, primarily that Tmax of each bromide hydrate is less than for the corresponding chloride, and that for a given halide nD2O (n=1 or 2) deuterates exhibit lesser Tmax than do nH2O hydrates. A monoclinic unit cell determined from powder X-ray diffraction data on NiBr2·2D2O is different from and slightly larger than that of NiBr2·2H2O. This provides some rationale for the difference in magnetic properties between these.

  4. Nano-structured magnetic metamaterial with enhanced nonlinear properties

    PubMed Central

    Kobljanskyj, Yuri; Melkov, Gennady; Guslienko, Konstantin; Novosad, Valentyn; Bader, Samuel D.; Kostylev, Michael; Slavin, Andrei

    2012-01-01

    Nano-structuring can significantly modify the properties of materials. We demonstrate that size-dependent modification of the spin-wave spectra in magnetic nano-particles can affect not only linear, but also nonlinear magnetic response. The discretization of the spectrum removes the frequency degeneracy between the main excitation mode of a nano-particle and the higher spin-wave modes, having the lowest magnetic damping, and reduces the strength of multi-magnon relaxation processes. This reduction of magnon-magnon relaxation for the main excitation mode leads to a dramatic increase of its lifetime and amplitude, resulting in the intensification of all the nonlinear processes involving this mode. We demonstrate this experimentally on a two-dimensional array of permalloy nano-dots for the example of parametric generation of a sub-harmonic of an external microwave signal. The characteristic lifetime of this sub-harmonic is increased by two orders of magnitude compared to the case of a continuous magnetic film, where magnon-magnon relaxation limits the lifetime. PMID:22745899

  5. Nano-structured magnetic metamaterial with enhanced nonlinear properties.

    PubMed

    Kobljanskyj, Yuri; Melkov, Gennady; Guslienko, Konstantin; Novosad, Valentyn; Bader, Samuel D; Kostylev, Michael; Slavin, Andrei

    2012-01-01

    Nano-structuring can significantly modify the properties of materials. We demonstrate that size-dependent modification of the spin-wave spectra in magnetic nano-particles can affect not only linear, but also nonlinear magnetic response. The discretization of the spectrum removes the frequency degeneracy between the main excitation mode of a nano-particle and the higher spin-wave modes, having the lowest magnetic damping, and reduces the strength of multi-magnon relaxation processes. This reduction of magnon-magnon relaxation for the main excitation mode leads to a dramatic increase of its lifetime and amplitude, resulting in the intensification of all the nonlinear processes involving this mode. We demonstrate this experimentally on a two-dimensional array of permalloy nano-dots for the example of parametric generation of a sub-harmonic of an external microwave signal. The characteristic lifetime of this sub-harmonic is increased by two orders of magnitude compared to the case of a continuous magnetic film, where magnon-magnon relaxation limits the lifetime.

  6. Magnetic and magnetocaloric properties of bulk dysprosium chromite

    SciTech Connect

    McDannald, A.; Kuna, L.; Jain, M.

    2013-09-21

    In this work, a polycrystalline bulk DyCrO{sub 3} sample was prepared by a solution route and the structural and magnetic properties were investigated. The phase purity and ionic valence state of the DyCrO{sub 3} sample were determined by x-ray diffraction/Raman spectroscopy and x-ray photoelectron spectroscopy, respectively. The AC and DC magnetization measurements revealed the onset of antiferromagnetic order at 146 K with an effective moment of 8.88 μ{sub B}. Isothermal magnetization measurements of this material are presented for the first time, showing a peak in the coercive field at 80 K that is explained by the competition between the paramagnetic Dy{sup 3+} and Cr{sup 3+} sublattices. DyCrO{sub 3} was found to display a large magnetocaloric effect (8.4 J/kg K) and relative cooling power (217 J/kg) at 4 T applied field, which renders DyCrO{sub 3} useful for magnetic refrigeration between 5 K and 30 K.

  7. Electronic and magnetic properties of monolayer MnS2

    NASA Astrophysics Data System (ADS)

    Yue, Yunliang

    2016-12-01

    First-principles calculations are performed to study the electronic and magnetic properties of monolayer MnS2. Based on the electronic structure, a half-metallic state is predicted for monolayer MnS2. The magnetic moment is 3.0 μB per formula unit, and the main contribution is localized at the transition metal site Mn with a local moment of 3.733 μB. The magnetic anisotropy energy (MAE) is 0.056 meV per formula unit with an easy axis perpendicular to the plane, and it indicates that monolayer MnS2 belongs to the category of Ising magnets. The positive MAE of nanosheets mainly stems from the area around Γ in the reciprocal space. To find the microscopic origin, we take the method of the second-order spin orbit coupling. The occupied spin-up dz2 state and the unoccupied spin-down dyz states in the Γ point through the Lx operator make positive contributions to the MAE.

  8. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    NASA Astrophysics Data System (ADS)

    de la Vega, A. Estrada; Garza-Navarro, M. A.; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V.

    2016-01-01

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  9. Size-dependent magnetic properties of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  10. Magnetic and structural properties of ferrihydrite/hematite nanocomposites

    NASA Astrophysics Data System (ADS)

    Pariona, N.; Camacho-Aguilar, K. I.; Ramos-González, R.; Martinez, Arturo I.; Herrera-Trejo, M.; Baggio-Saitovitch, E.

    2016-05-01

    A rich variety of ferrihydrite/hematite nanocomposites (NCs) with specific size, composition and properties were obtained in transformation reactions of 2-line ferrihydrite. Transmission electron microscopy (TEM) observations showed that the NCs consist of clusters of strongly aggregated nanoparticles (NPs) similarly to a "plum pudding", where hematite NPs "raisins" are surrounded by ferrihydrite "pudding". Magnetic measurements of the NCs correlate very well with TEM results; i.e., higher coercive fields correspond to greater hematite crystallite size. First order reversal curve (FORC) measurements were used for the characterization of the magnetic components of the NCs. FORC diagrams revealed that the NCs prepared at short times are composed by single domains with low coercivity, and NCs prepared at times larger than 60 min exhibited elongated distribution along the Hc axis. It suggested that these samples consist of mixtures of different kinds of hematite particles, ones with low coercivity and others with coercivity greater than 600 Oe. For NCs prepared at times larger than 60 min, Mossbauer spectroscopy revealed the presence of two sextets, which one was assigned to fine hematite particles and other to hematite particles with hyperfine parameters near to bulk hematite. The correlation of the structural and magnetic properties of the ferrihydrite/hematite NCs revealed important characteristics of these materials which have not been reported elsewhere.

  11. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole

    NASA Astrophysics Data System (ADS)

    Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  12. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole.

    PubMed

    Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan

    2015-10-05

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M=Mn(II), Fe(II) or Co(II); etim=1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  13. Some properties of the circular waveguide with azimuthally magnetized ferrite

    NASA Astrophysics Data System (ADS)

    Ivanov, Kamen P.; Georgiev, Georgi N.

    1990-05-01

    A comprehensive analysis of normal rotationally symmetric TE modes in a circular waveguide, filled with ferrite, magnetized azimuthally to remanence by a coaxial switching conductor of finite radius, is presented. The characteristic equation of the structure, derived in terms of Kummer and Tricomi confluent hypergeometric functions of complex parameter and variable, is solved numerically, using specially compiled tables of wave functions. Families of theoretically calculated nonreciprocal phase characteristics of the gyrotropic waveguide are shown in normalized form for the two latched states of remanent magnetization, a variety of ferrite parameters, and different values of switching conductor to waveguide radius ratio. The influence of structure geometry and parameters of anisotropic ferrite on normalized differential phase shift and cutoff frequency spectrum of the TE01 mode is discussed.

  14. Drug delivery property, bactericidal property and cytocompatibility of magnetic mesoporous bioactive glass.

    PubMed

    Liu, Yi-Zhuo; Li, Yang; Yu, Xi-Bin; Liu, Li-Na; Zhu, Zhen-An; Guo, Ya-Ping

    2014-08-01

    A multifunctional magnetic mesoporous bioactive glass (MMBG) has been widely used for a drug delivery system, but its biological properties have been rarely reported. Herein, the effects of mesopores and Fe3O4 nanoparticles on drug loading-release property, bactericidal property and biocompatibility have been investigated by using mesoporous bioactive glass (MBG) and non-mesoporous bioactive glass (NBG) as control samples. Both MMBG and MBG have better drug loading efficiency than NBG because they possess ordered mesoporous channels, big specific surface areas and high pore volumes. As compared with MBG, the Fe3O4 nanoparticles in MMBG not only provide magnetic property, but also improve sustained drug release property. For gentamicin-loaded MMBG (Gent-MMBG), the sustained release of gentamicin and the Fe3O4 nanoparticles minimize bacterial adhesion significantly and prevent biofilm formation against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). Moreover, the magnetic Fe3O4 nanoparticles in MMBG can promote crucial cell functions such as cell adhesion, spreading and proliferation. The excellent biocompatibility and drug delivery property of MMBG suggest that Gent-MMBG has great potentials for treatment of implant-associated infections.

  15. Control of electronic and magnetic coupling via bridging ligand geometry in a bimetallic ytterbocene complex.

    PubMed

    Carlson, Christin N; Scott, Brian L; Martin, Richard L; Thompson, Joe D; Morris, David E; John, Kevin D

    2007-06-11

    The ligand 1-methyl-3,5-bis(2,2':6',2' '-terpyridin-4'-yl)benzene has been employed in the synthesis of a new bimetallic ytterbocene complex [(Cp*)2Yb](1-methyl-3,5-bis(2,2':6',2' '-terpyridin-4'-yl)benzene)[Yb(Cp*)2] (1) and the doubly oxidized congener [1]2+ in an attempt to determine the impact of the bridging ligand geometry on the magnetic/electronic properties as compared to the previously reported 1,4-analog [(Cp*)2Yb](1,4-di(terpyridyl)benzene)[Yb(Cp*)2] (2). Electrochemical, electronic, and magnetic data provide compelling evidence that the 1,3-geometry associated with the bridging ligand of 1 has done an effective job of inhibiting electronic communication between metal centers and magnetic coupling of spin carriers at room temperature as compared to 2. In fact, the physical data associated with 1 are quite similar to those reported for the monometallic analog (Cp*)2Yb(tpy) (3). In particular, the f-f profile of [1]2+ is nearly identical to that of [3]+ in its spectral features but with an almost exact doubling of the intensities. Further, the electronic coupling between metal centers as manifested in the potential separation between metal-based reduction waves has for the first time in these bimetallic ytterbocene complexes been found to go to zero for 1. Thus, the linkage isomerism at the phenyl coupling unit has induced a change in the ground-state electronic configuration from the singlet dianion-bridged (4f)13(pi*)2(4f)13 state found in 2 to the diradical-bridged (4f)13(piA*)1(piB*)1(4f)13 state in 1. This diradical formulation on the bridging ligand in 1 is supported by DFT calculations for the uncomplexed doubly reduced ligand that indicate the ground-state configuration is a singlet diradical state with the triplet-diradical state lying to slightly higher energy. Magnetic characterization of 1 is most consistent with the behavior previously observed for monometallic analogs such as 3, and there is no evidence of long-range magnetic ordering such

  16. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

    SciTech Connect

    Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai-Zhuang Ho, Kai-Ming

    2015-06-28

    The structures and magnetic properties of Co-Zr-B alloys near the composition of Co{sub 5}Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co{sub 11}Zr{sub 2}” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co{sub 5}Zr phase and larger than that of the low-temperature Co{sub 5.25}Zr phase. Our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.

  17. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

    DOE PAGES

    Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; ...

    2015-06-23

    The structures and magnetic properties of Co-Zr-B alloys near the composition of Co5Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co11Zr2” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that themore » magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co5Zr phase and larger than that of the low-temperature Co5.25Zr phase. As a result, our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.« less

  18. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

    SciTech Connect

    Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai -Zhuang; Ho, Kai -Ming

    2015-06-23

    The structures and magnetic properties of Co-Zr-B alloys near the composition of Co5Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co11Zr2” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co5Zr phase and larger than that of the low-temperature Co5.25Zr phase. As a result, our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.

  19. Molecular-programmed self-assembly of homo- and heterometallic penta- and hexanuclear coordination compounds: synthesis, crystal structures, and magnetic properties of ladder-type CuII2MIIx (M=Cu, Ni; x=3, 4) oxamato complexes with CuII2 metallacyclophane cores.

    PubMed

    Pardo, Emilio; Ruiz-García, Rafael; Lloret, Francesc; Julve, Miguel; Cano, Joan; Pasán, Jorge; Ruiz-Pérez, Catalina; Filali, Yasmine; Chamoreau, Lise-Marie; Journaux, Yves

    2007-05-28

    New homo- and heterometallic, hexa- and pentanuclear complexes of formula {[Cu2(mpba)2(H2O)F][Cu(Me5dien)]4}(PF6)(3).5H2O (1), {[Cu2(Me3mpba)2(H2O)2][Cu(Me5dien)]4}(ClO4)(4).12H2O (2), {[Cu2(ppba)2][Cu(Me5dien)]4}(ClO4)4 (3), and [Ni(cyclam)]{[Cu2(mpba)2][Ni(cyclam)]3}(ClO4)(4).6H2O (4) [mpba=1,3-phenylenebis(oxamate), Me3mpba=2,4,6-trimethyl-1,3-phenylenebis(oxamate), ppba=1,4-phenylenebis(oxamate), Me5dien=N,N,N'N' ',N' '-pentamethyldiethylenetriamine, and cyclam=1,4,8,11-tetraazacyclotetradecane] have been synthesized through the use of the "complex-as-ligand/complex-as-metal" strategy. The structures of 1-3 consist of cationic CuII6 entities with an overall [2x2] ladder-type architecture which is made up of two oxamato-bridged CuII3 linear units connected through two m- or p-phenylenediamidate bridges between the two central copper atoms to give a binuclear metallacyclic core of the cyclophane-type. Complex 4 consists of cationic CuII2NiII3 entities with an incomplete [2x2] ladder-type architecture which is made up of oxamato-bridged CuIINiII and CuIINiII2 linear units connected through two m-phenylenediamidate bridges between the two copper atoms to give a binuclear metallacyclophane core. The magnetic properties of 1-3 and 4 have been interpreted according to their distinct "dimer-of-trimers" and "dimer-plus-trimer" structures, respectively, (H=-J(S1A.S3A+S1A.S4A+S2B.S5B+S2B.S6B)-J'S1A.S2B). Complexes 1-4 exhibit moderate to strong antiferromagnetic coupling through the oxamate bridges (-JCu-Cu=81.3-105.9 cm-1; -JCu-Ni=111.6 cm-1) in the trinuclear and/or binuclear units. Within the binuclear metallacyclophane core, a weak to moderate ferromagnetic coupling (J'Cu-Cu=1.7-9.0 cm-1) operates through the double m-phenylenediamidate bridge, while a strong antiferromagnetic coupling (J'Cu-Cu=-120.6 cm-1) is mediated by the double p-phenylenediamidate bridge.

  20. Temperature dependent magnetic and microwave absorption properties of doubly substituted nanosized material

    NASA Astrophysics Data System (ADS)

    Sadiq, Imran; Naseem, Shahzad; Rana, M. U.; Ashiq, Muhammad Naeem; Ali, Irshad

    2015-07-01

    The sol gel method has been adopted to synthesize a series of X-type hexagonal ferrites with concentration Sr2-x Gdx Ni2 Fe28-yCdyO46 (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10 and y=0, 0.1, 0.2, 0.3, 0.4, 0.5). The XRD analysis reveals the single phase of the prepared material and the lattice constants a (Å) and c (Å) varies with additives. The crystallite size of the present investigated ferrite is found in the range of 20-30 nm measured from TEM image. The enhancement in the magnetic properties (saturation magnetization, remanance magnetization and coercivity) can be observed with the increase of dopping concentration and the coercivity lies in the range of (484.22-887.47) G. The saturation and remanance magnetization decreases monotonically with the temperature which is the characteristic of the hexagonal ferrites. The Gd-Cd substituted sample possesses low values of complex relative permittivity and permeability than the pure samples. The material exhibits maximum microwave absorption -23 dB at 11.87 GHz and attenuation peak is in good agreement with the reflection loss value. The microwave absorption properties reflect the applications of this material in super high frequency devices (SHF).

  1. Electro-magnetic properties of composites with aligned Fe-Co hollow fibers

    NASA Astrophysics Data System (ADS)

    Cho, Seungchan; Choi, Jae Ryung; Jung, Byung Mun; Choi, U. Hyeok; Lee, Sang-Kwan; Kim, Ki Hyeon; Lee, Sang-Bok

    2016-05-01

    A novel Fe-Co binary hollow fiber was synthesized by electroless plating using hydrolyzed polyester fiber and its anisotropy characteristic was investigated for electromagnetic wave absorbing materials. The hollow fibers in parallel with magnetic field show higher saturated magnetization of 202 emu/g at the applied magnetic field of 10 kOe and lower coercivity (27.658 Oe), compared with the random and vertical oriented hollow fibers. From complex permittivity measurement, the Fe-Co hollow fiber composites clearly display a single dielectric resonance, located at ˜14 GHz. The Fe-Co hollow fibers not only provide excellent EM properties in GHz frequency ranges, resulting mainly from the strong resonance, but also adjust the soft magnetic properties through fiber alignments. The cavitary structure of the Fe-Co hollow fibers, not only giving rise to a dielectric loss resonance and also adjusting its peak frequency, may be a pathway to useful EM wave absorptive devices in GHz frequency ranges.

  2. Microstructure and Magnetic Properties of Magnetic Material Fabricated by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Jhong, Kai Jyun; Huang, Wei-Chin; Lee, Wen Hsi

    Selective Laser Melting (SLM) is a powder-based additive manufacturing which is capable of producing parts layer-by-layer from a 3D CAD model. The aim of this study is to adopt the selective laser melting technique to magnetic material fabrication. [1]For the SLM process to be practical in industrial use, highly specific mechanical properties of the final product must be achieved. The integrity of the manufactured components depend strongly on each single laser-melted track and every single layer, as well as the strength of the connections between them. In this study, effects of the processing parameters, such as the space distance of surface morphology is analyzed. Our hypothesis is that when a magnetic product is made by the selective laser melting techniques instead of traditional techniques, the finished component will have more precise and effective properties. This study analyzed the magnitudes of magnetic properties in comparison with different parameters in the SLM process and compiled a completed product to investigate the efficiency in contrast with products made with existing manufacturing processes.

  3. Magnetic properties of sputtered Permalloy/molybdenum multilayers

    SciTech Connect

    Romera, M.; Ciudad, D.; Maicas, M.; Aroca, C.

    2011-10-15

    In this work, we report the magnetic properties of sputtered Permalloy (Py: Ni{sub 80}Fe{sub 20})/molybdenum (Mo) multilayer thin films. We show that it is possible to maintain a low coercivity and a high permeability in thick sputtered Py films when reducing the out-of-plane component of the anisotropy by inserting thin film spacers of a non-magnetic material like Mo. For these kind of multilayers, we have found coercivities which are close to those for single layer films with no out-of-plane anisotropy. The coercivity is also dependent on the number of layers exhibiting a minimum value when each single Py layer has a thickness close to the transition thickness between Neel and Bloch domain walls.

  4. Electrical and magnetic properties of ion-exchangeable layered ruthenates

    SciTech Connect

    Sugimoto, Wataru . E-mail: wsugi@shinshu-u.ac.jp; Omoto, Masashi; Yokoshima, Katsunori; Murakami, Yasushi; Takasu, Yoshio

    2004-12-01

    An ion-exchangeable ruthenate with a layered structure, K{sub 0.2}RuO{sub 2.1}, was prepared by solid-state reactions. The interlayer cation was exchanged with H{sup +}, C{sub 2}H{sub 5}NH{sub 3}{sup +}, and ((C{sub 4}H{sub 9}){sub 4}N{sup +}) through proton-exchange, ion-exchange, and guest-exchange reactions. The electrical and magnetic properties of the products were characterized by DC resistivity and susceptibility measurements. Layered K{sub 0.2}RuO{sub 2.1} exhibited metallic conduction between 300 and 13K. The products exhibited similar magnetic behavior despite the differences in the type of interlayer cation, suggesting that the ruthenate sheet in the protonated form and the intercalation compounds possesses metallic nature.

  5. Magnetic properties of electrospun non-woven superconducting fabrics

    NASA Astrophysics Data System (ADS)

    Koblischka, Michael R.; Zeng, Xian Lin; Karwoth, Thomas; Hauet, Thomas; Hartmann, Uwe

    2016-03-01

    Non-woven superconducting fabrics were prepared by the electrospinning technique, consisting of Bi2Sr2CaCuO8 (Bi-2212) nanowires. The individual nanowires have a diameter of ˜150-200 nm and lengths of up to 100 μm. A non-woven fabric forming a network with a large number of interconnects results, which enables the flow of transport currents through the entire network. We present here magnetization data [M(T) and M(H)-loops] of this new class of superconducting material. The magnetic properties of these nanowire networks are discussed including the irreversibility line and effects of different field sweep rates, regarding the microstructure of the nanowire networks investigated by electron microscopy.

  6. Ferrite synthesis in microstructured media: Template effects and magnetic properties

    NASA Astrophysics Data System (ADS)

    O'Connor, C. J.; Buisson, Y. S. L.; Li, S.; Banerjee, S.; Premchandran, R.; Baumgartner, T.; John, V. T.; McPherson, G. L.; Akkara, J. A.; Kaplan, D. L.

    1997-04-01

    Inverse micelles and organogels provide novel environments to synthesize ferrite particles. The fluid microstructure provides a template for the synthesis. Our experiments with ferrite synthesis in inverse micelles indicate the formation of superparamagnetic nanoparticles. Of interest is the encapsulation of these particles in polymer microspheres. The encapsulation is done using simple polymer precipitation in the micellar nonsolvent. The process results in a polymer-ferrite composite exhibiting supermagnetism. Low temperature spin glass properties of the composite are characterized through SQUID measurements. These composites have a superparamagnetic blocking temperature of 16 K and follow Curie-Weiss law at temperatures above 60 K with the fitted parameters: C=0.941 emu/g K, θ=-287 K, and TIP=0.0001 emu/g. Since the polymer used is polyphenol, a highly functionalizable material, the composite is well suited for applications in magnetic bioseparations and magnetic coatings.

  7. Tailoring magnetic properties of core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Sun, Shouheng; Li, J.; Wang, Z. L.; Liu, J. P.

    2004-08-01

    Bimagnetic FePt /MFe2O4(M =Fe,Co) core/shell nanoparticles are synthesized via high-temperature solution phase coating of 3.5nm FePt core with MFe2O4 shell. The thickness of the shell is controlled from 0.5 to 3nm. An assembly of the core/shell nanoparticles shows a smooth magnetization transition under an external field, indicating effective exchange coupling between the FePt core and the oxide shell. The coercivity of the FePt /Fe3O4 particles depends on the volume ratio of the hard and soft phases, consistent with previous theoretical predictions. These bimagnetic core/shell nanoparticles represent a class of nanostructured magnetic materials with their properties tunable by varying the chemical composition and thickness of the coating materials.

  8. Preparation and magnetic properties of barium hexaferrite nanorods

    SciTech Connect

    Mu Guohong Pan Xifeng; Chen Na; Gan Keke; Gu Mingyuan

    2008-06-03

    The barium hexaferrite nanorods were successfully prepared by sol-gel technique combined with polymethylmethacrylate as template. The crystal structure, morphology and magnetic properties of BaFe{sub 12}O{sub 19} with different shape were investigated with X-ray diffraction, field emission scanning electron microscope and vibrating sample magnetometry. The results show that diameters and lengths of magnetic nanorods are about 60 nm and 300 nm, respectively. The coercivity of rod-shaped BaFe{sub 12}O{sub 19} is increased to 5350 Oe, in comparison with 4800 Oe with plate-shape. The formation mechanism of BaFe{sub 12}O{sub 19} nanorods and reasons resulting in high coercivity are discussed.

  9. Characterizing petrophysical properties of carbonate rocks using nuclear magnetic resonance and spectral induced polarization

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Chi; Rankey, Eugene

    2016-04-01

    Unlike sandstones, with well-characterized correlations between porosity and permeability, carbonate rocks are well known for their highly complex petrophysical behaviors due to their intrinsically heterogeneous pore shape, pore size, and pore distributions and connectivity. The characterization of petrophysical properties of carbonate rocks, including rock properties and rock-fluid interactions, remains big challenges. This laboratory study focuses on integrating two geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to determine porosity, pore size distribution, and permeability of carbonate rocks. NMR measures the relaxation of hydrogen nuclei at pore scale. Samples with different pore structures saturated by fluids have molecular relaxation responses to the external magnetic field which could generate various NMR signals. Permeability estimation from NMR in siliciclastic rocks is routine, however, is problematic in carbonates. SIP determines complex resistivity of a sample across a wide range of frequency and is sensitive to variations in the properties of solid-fluid and fluid-fluid interfaces in porous media. Previous studies investigated the relationships between permeability and parameters derived from SIP data, but are restricted to narrow lithology range. Our study used carbonate core samples from three depositional environments: tidal zone, shallow marine, and platform/reef margin of an atoll. Samples were fully saturated by water for T2 relaxation measurements and complex conductivity measurements at low frequencies. We compare the pore volume to surface area ratio measured from NMR and SIP and assess the applicability of established petrophysical models to estimate permeability from NMR and SIP data. We hope to build a relationship between NMR signals, SIP responses and petrophysical properties in carbonate rocks. T