Sample records for magnetic properties existence

  1. Phase composition and magnetic properties in nanocrystalline permanent magnets based on misch-metal

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Wang, J.; Zhang, Z. Y.; Zhang, X. F.; Liu, F.; Liu, Y. L.; Jv, X. M.; Li, Y. F.; Wang, G. F.

    2017-09-01

    The magnetic properties and phase composition of magnets based on misch-metal (MM) with nominal composition of MM13+xFe84-xB6.5 with x = 0.5, 1, 1.5, 2 and 2.5 using melt-spinning method were investigated. For x = 1.5, it could exhibit best magnetic properties (Hcj = 753.02 kA m-1, (BH)max = 70.77 kJ m-3). X-ray diffraction and energy dispersive spectroscopy show that the multi hard magnetic phase of RE2Fe14B (RE = La, Ce, Pr, Nd) existed in the magnets. The domain wall pinning effect and the exchange coupling interaction between grains are dependent on the abnormal RE-rich phase composition. Optimizing the phase constitution is necessary to improve magnetic properties in MM-Fe-B magnets for utilizing the rare earth resource in a balanced manner.

  2. Magnetic Properties and Microstructure of Some 2:17 High Temperature Magnets

    NASA Astrophysics Data System (ADS)

    Meng-Burany, X.; Hadjipanayis, George C.; Chui, S. T.

    1997-03-01

    Recent DOD demands for electric vehicle/plane applications require the use of magnets with operating temperatures > 450^circ C . Of existing high performance magnets, only the Sm(Co,Fe,Cu,Zr)z precipitation--hardened magnets have an operating temperature (300^circ C) which is close to the desired temperature and this makes these magnets potential candidates for further optimization studies. We have started a systematic study and modeling of the high temperature magnetic properties of several commercial magnets and other specially designed magnets supplied to us by Crucible Research. All the samples studied had a room temperature coercivity above 15 kOe. The coercivity was found to decrease with increasing temperature, with values of less than 4 kOe at 450^circ C , except for one sample which had a better temperature dependence with a coercivity above 6 kOe. TEM studies showed a cellular microstructure in all samples. The sample with better temperature properties had a smaller cell size but thicker cell walls. Lorentz electron microscopy studies are underway to image the domain walls and study their interaction with the cellular structure. The results of these studies will hopefully help us to understand the composition--microstructure--property relation in these magnets.

  3. Microstructure and Magnetic Properties of Magnetic Material Fabricated by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Jhong, Kai Jyun; Huang, Wei-Chin; Lee, Wen Hsi

    Selective Laser Melting (SLM) is a powder-based additive manufacturing which is capable of producing parts layer-by-layer from a 3D CAD model. The aim of this study is to adopt the selective laser melting technique to magnetic material fabrication. [1]For the SLM process to be practical in industrial use, highly specific mechanical properties of the final product must be achieved. The integrity of the manufactured components depend strongly on each single laser-melted track and every single layer, as well as the strength of the connections between them. In this study, effects of the processing parameters, such as the space distance of surface morphology is analyzed. Our hypothesis is that when a magnetic product is made by the selective laser melting techniques instead of traditional techniques, the finished component will have more precise and effective properties. This study analyzed the magnitudes of magnetic properties in comparison with different parameters in the SLM process and compiled a completed product to investigate the efficiency in contrast with products made with existing manufacturing processes.

  4. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement

    PubMed Central

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  5. Magnetic properties and heavy metal contents of automobile emission particulates*

    PubMed Central

    Lu, Sheng-gao; Bai, Shi-qiang; Cai, Jing-bo; Xu, Chang

    2005-01-01

    Measurements of the magnetic properties and total contents of Cu, Cd, Pb and Fe in 30 automobile emission particulate samples indicated the presence of magnetic particles in them. The values of frequency dependent susceptibility (χ fd) showed the absence of superparamagnetic (SP) grains in the samples. The IRM20 mT (isothermal remanent magnetization at 20 mT) being linearly proportional to SIRM (saturation isothermal remanent magnetization) (R 2=0.901), suggested that ferrimagnetic minerals were responsible for the magnetic properties of automobile emission particulates. The average contents of Cu, Cd, Pb and Fe in automobile emission particulates were 95.83, 22.14, 30.58 and 34727.31 mg/kg, respectively. Significant positive correlations exist between the magnetic parameters and the contents of Pb, Cu and Fe. The magnetic parameters of automobile emission particulates reflecting concentration of magnetic particles increased linearly with increase of Pb and Cu content, showed that the magnetic measurement could be used as a preliminary index for detection of Pb and Cu pollution. PMID:16052705

  6. Recent advances in magnetic nanoparticles with bulk-like properties

    NASA Astrophysics Data System (ADS)

    Batlle, Xavier

    2013-03-01

    Magnetic nanoparticles (NP) are an excellent example of nanostructured materials and exhibit fascinating properties with applications in high-density recording and biomedicine. Controlling the effects of the nanostructure and surface chemistry and magnetism at the monolayer level have become relevant issues. As the size is reduced below 100 nm, deviations from bulk behavior have been attributed to finite-size effects and changes in the magnetic ordering at the surface, thus giving rise to a significant decrease in the magnetization and increase in the magnetic anisotropy. The existence of a surface spin glass-like state due to magnetic frustration has been widely suggested in ferrimagnetic NP. However, in this talk, we will show that high crystal quality magnetite Fe3-xO4 NP of about a few nanometers in diameter and coated with different organic surfactants display bulk-like structural, magnetic and electronic properties. Magnetic measurements, transmission electron microscopy, X-ray absorption and magnetic circular dichroism and Monte Carlo simulations, evidenced that none of the usual particle-like behavior is observed in high quality NP of a few nm. Consequently, the magnetic and electronic disorder phenomena typically observed in those single-phase ferrimagnetic NP should not be considered as an intrinsic effect. We also performed a real-space characterization at the sub-nanometer scale, combining scanning transmission electron microscopy, electron energy loss spectroscopy and electron magnetic chiral dichroism. For the first time, we found that the surface magnetization is as high as about 70% of that of the core. The comparison to density functional theory suggested the relevance of the strong surface bond between the Fe ions and the organic surfactant. All the foregoing demonstrates the key role of both the crystal quality and surface bond on the physical properties of ferrimagnetic NP and paves the way to the fabrication of the next generation of NP with

  7. Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites

    NASA Astrophysics Data System (ADS)

    Ateia, Ebtesam E.; Takla, E.; Mohamed, Amira T.

    2017-10-01

    In the presented paper, strontium (Sr) and barium (Ba) nano ferrites were synthesized by citrate auto combustion method. The investigated samples are characterized by X-ray diffraction technique (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The structural properties of the obtained samples were examined by XRD analysis showing that the synthesized nanoparticles are in cubic spinel structure. The average crystallite sizes are in the range of 22.66 and 21.95 nm for Mg0.7Ba0.3Fe2O4 and Mg0.7 Sr0.3Fe2O4 respectively. The VSM analysis confirms the existence of ferromagnetic nature of Sr2+/Ba2+ substituted magnesium nano particles. Exchange interaction between hard (Sr/Ba) and soft (Mg) magnetic phases improves the structural and magnetic properties of nano ferrite particles. Rigidity modulus, longitudinal and shear wave velocities are predicted theoretically from Raman spectroscopy and structural data of the investigated spinel ferrite. The magnetic and structural properties of magnesium are enhanced by doping with barium and strontium nano particles. The saturation magnetization, remanent magnetization and coercivity reported on vibrating sample magnetometer curve illustrate the promising industrial and magnetic recording applications of the prepared samples.

  8. Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine.

    PubMed

    Samadishadlou, Mehrdad; Farshbaf, Masoud; Annabi, Nasim; Kavetskyy, Taras; Khalilov, Rovshan; Saghfi, Siamak; Akbarzadeh, Abolfazl; Mousavi, Sepideh

    2017-10-18

    Magnetic carbon nanotubes (MCNTs) have been widely studied for their potential applications in medicine, diagnosis, cell biology, analytical chemistry, and environmental technology. Introduction of MCNTs paved the way for the emergence of new approaches in nanobiotechnology and biomedicine as a result of their multifarious properties embedded within either the carbon nanotubes (CNTs) or magnetic parts. Numerous preparation techniques exists for functionalizing CNTs with magnetic nanoparticles, and these versatile strategies lay the ground for the generation of novel and versatile systems which are applicable to many industries and biological areas. Here, we review and discuss the recent papers dealing with MCNTs and their application in biomedical and industrial fields.

  9. Magnetic properties of the synthetically charged neutral bosons

    NASA Astrophysics Data System (ADS)

    Hassan, Ahmed S.; Abbas, Abbas H.; El-Sherbini, Tharwat M.; Seif, Walaa M.

    2018-07-01

    In this paper, we conclude that BEC of synthetically charged bosons is possible and leads to several new and interesting phenomena. Thermal and magnetic properties of the system are investigated. The temperature dependence of the magnetic parameters, including the magnetization, magnetic susceptibility and the heat capacity at constant synthetic magnetic field are calculated. These properties are investigated for finite atoms number and synthetic magnetic field strength. We show that those properties, in particular Bose- Einstein transition temperature, depends upon the strength of the synthetic magnetic field. A diffuse condensation of the synthetically charged bosons appears for changing the synthetic field. The obtained results provide important magnetic properties.

  10. Magnetic properties in polycrystalline and single crystal Ca-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Debnath, J. C.; Chen, D. P.; Shamba, P.; Wang, J. L.; Kennedy, S. J.; Campbell, S. J.; Silver, T.; Dou, S. X.

    2011-04-01

    Polycrystalline (PC) and single crystalline (SC) Ca-doped LaCoO3 (LCCO) samples with the perovskite structure were synthesized by conventional solid-state reaction and the floating-zone growth method. We present the results of a comprehensive investigation of the magnetic properties of the LCCO system. Systematic measurements have been conducted on dc magnetization, ac susceptibility, exchange-bias, and the magnetocaloric effect. These findings suggest that complex structural phases, ferromagnetic (FM), and spin-glass/cluster-spin-glass (CSG), and their transitions exist in PC samples, while there is a much simpler magnetic phase in SC samples. It was also of interest to discover that the CSG induced a magnetic field memory effect and an exchange-bias-like effect, and that a large inverse irreversible magnetocaloric effect exists in this system.

  11. Estimation of hydrothermal deposits location from magnetization distribution and magnetic properties in the North Fiji Basin

    NASA Astrophysics Data System (ADS)

    Choi, S.; Kim, C.; Park, C.; Kim, H.

    2013-12-01

    The North Fiji Basin is belong to one of the youngest basins of back-arc basins in the southwest Pacific (from 12 Ma ago). We performed the marine magnetic and the bathymetry survey in the North Fiji Basin for finding the submarine hydrothermal deposits in April 2012. We acquired magnetic and bathymetry datasets by using Multi-Beam Echo Sounder EM120 (Kongsberg Co.) and Overhouser Proton Magnetometer SeaSPY (Marine Magnetics Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly, reduce to the pole(RTP), analytic signal and magnetization. The study areas composed of the two areas(KF-1(longitude : 173.5 ~ 173.7 and latitude : -16.2 ~ -16.5) and KF-3(longitude : 173.4 ~ 173.6 and latitude : -18.7 ~ -19.1)) in Central Spreading Ridge(CSR) and one area(KF-2(longitude : 173.7 ~ 174 and latitude : -16.8 ~ -17.2)) in Triple Junction(TJ). The seabed topography of KF-1 existed thin horst in two grabens that trends NW-SE direction. The magnetic properties of KF-1 showed high magnetic anomalies in center part and magnetic lineament structure of trending E-W direction. In the magnetization distribution of KF-1, the low magnetization zone matches well with a strong analytic signal in the northeastern part. KF-2 area has TJ. The seabed topography formed like Y-shape and showed a high feature in the center of TJ. The magnetic properties of KF-2 displayed high magnetic anomalies in N-S spreading ridge center and northwestern part. In the magnetization distribution of KF-2, the low magnetization zone matches well with a strong analytic signal in the northeastern part. The seabed topography of KF-3 presented a flat and high topography like dome structure at center axis and some seamounts scattered around the axis. The magnetic properties of KF-3 showed high magnetic anomalies in N-S spreading ridge center part. In the magnetization of KF-2, the low magnetization zone mismatches to strong analytic signal in this area. The difference of KF-3

  12. Laves phase UTi2 stabilized by hydrogen and its magnetic properties

    NASA Astrophysics Data System (ADS)

    Buturlim, V.; Havela, L.; Sowa, S.; Kim-Ngan, N.-. T. H.; Paukov, M.; Drozdenko, D.; Dopita, M.; Minarik, P.; Mašková, S.

    2018-05-01

    We describe basic magnetic properties of uranium-based hydrides UTi2Hx, reported in literature as a cubic Laves phase, although the UTi2 binary phase does not exist. Using a high-temperature hydrogenation, we successfully synthesized two types of such hydrides, presumably with different H concentrations, one with a smaller lattice parameter a = 850.3 pm, which is a paramagnet close to the verge of magnetic ordering, the other with a = 858.8 pm, with a ferromagnetic ground state and ordering temperature TC = 54 K.

  13. Magnetic and electrical properties of Martian particles

    NASA Technical Reports Server (NTRS)

    Olhoeft, G. R.

    1991-01-01

    The only determinations of the magnetic properties of Martian materials come from experiments on the two Viking Landers. The results suggest Martian soil containing 1 to 10 percent of a highly magnetic phase. Though the magnetic phase mineral was not conclusively identified, the predominate interpretation is that the magnetic phase is probably maghemite. The electrical properties of the surface of Mars were only measured remotely by observations with Earth based radar, microwave radiometry, and inference from radio-occultation of Mars orbiting spacecraft. No direct measurements of electrical properties on Martian materials have been performed.

  14. Chondrule magnetic properties

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.; Obryan, M. V.

    1994-01-01

    The topics discussed include the following: chondrule magnetic properties; chondrules from the same meteorite; and REM values (the ratio for remanence initially measured to saturation remanence in 1 Tesla field). The preliminary field estimates for chondrules magnetizing environments range from minimal to a least several mT. These estimates are based on REM values and the characteristics of the remanence initially measured (natural remanence) thermal demagnetization compared to the saturation remanence in 1 Tesla field demagnetization.

  15. Magnetic properties changes due to hydrocarbon contaminated groundwater table fluctuations

    NASA Astrophysics Data System (ADS)

    Ameen, Nawrass

    2013-04-01

    This study aims to understand the mechanisms and conditions which control the formation and transformation of ferro(i)magnetic minerals caused by hydrocarbon contaminated groundwater, in particular in the zone of fluctuating water levels. The work extends previous studies conducted at the same site. The study area is a former military air base at Hradčany, Czech Republic (50°37'22.71"N, 14°45'2.24"E). The site was heavily contaminated with petroleum hydrocarbons, due to leaks in petroleum storage tanks and jet fuelling stations over years of active use by the Soviet Union, which closed the base in 1991. The site is one of the most important sources of high quality groundwater in the Czech Republic. In a previous study, Rijal et al. (2010) concluded that the contaminants could be flushed into the sediments as the water level rose due to remediation processes leading to new formation of magnetite. In this previous study three different locations were investigated; however, from each location only one core was obtained. In order to recognize significant magnetic signatures versus depth three cores from each of these three locations were drilled in early 2012, penetrating the unsaturated zone, the groundwater fluctuation (GWF) zone and extending to about one meter below the groundwater level (~2.3 m depth at the time of sampling). Magnetic susceptibility (MS) profiles combined with other magnetic properties were analyzed to obtain a significant depth distribution of the ferro(i)magnetic concentration. Sediment properties, hydrocarbon content and bacterial activity were additionally studied. The results show that the highest ferrimagnetic mineral concentrations exist between 1.4-1.9 m depth from the baseline which is interpreted as the top of the GWF zone. Spikes of MS detected in the previous studies turned out to represent small-scale isolated features, but the trend of increasing MS values from the lowermost position of the groundwater table upward was verified

  16. Magnetic properties and core electron binding energies of liquid water

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Cabral, Benedito J. C.

    2018-01-01

    The magnetic properties and the core and inner valence electron binding energies of liquid water are investigated. The adopted methodology relies on the combination of molecular dynamics and electronic structure calculations. Born-Oppenheimer molecular dynamics with the Becke and Lee-Yang-Parr functionals for exchange and correlation, respectively, and includes an empirical correction (BLYP-D3) functional and classical molecular dynamics with the TIP4P/2005-F model were carried out. The Keal-Tozer functional was applied for predicting magnetic shielding and spin-spin coupling constants. Core and inner valence electron binding energies in liquid water were calculated with symmetry adapted cluster-configuration interaction. The relationship between the magnetic shielding constant σ(17O), the role played by the oxygen atom as a proton acceptor and donor, and the tetrahedral organisation of liquid water are investigated. The results indicate that the deshielding of the oxygen atom in water is very dependent on the order parameter (q) describing the tetrahedral organisation of the hydrogen bond network. The strong sensitivity of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between σ(17O) and the energy gap between the 1a1[O1s] (core) and the 2a1 (inner valence) orbitals of water. Although several studies discussed the eventual connection between magnetic properties and core electron binding energies, such a correlation could not be clearly established. Here, we demonstrate that for liquid water this correlation exists although involving the gap between electron binding energies of core and inner valence orbitals.

  17. Effect of sintering process on the magnetic and mechanical properties of sintered Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Hu, Z. H.; Qu, H. J.; Zhao, J. Q.; Yan, C. J.; Liu, X. M.

    2014-11-01

    The magnetic and mechanical properties of sintered Nd-Fe-B magnets prepared by different sintering processes were investigated. The results showed that the intrinsic coercivity and fracture toughness of sintered Nd-Fe-B magnets first increased, and then declined with increasing annealing temperature. The optimum magnetic properties and fracture toughness of sintered Nd-Fe-B magnets were obtained at the annealing temperature of 540 °C. Sintering temperature increasing from 1047 °C to 1071 °C had hardly effect on the magnetic properties of sintered Nd-Fe-B magnets. The variation of Vickers hardness and fracture toughness was not the same with increasing sintering temperature, and the effect of sintering temperature on the mechanical properties was complex and irregular. The reasons for the variation on magnetic and mechanical properties were analyzed, and we presumed that the effect of microstructure on the mechanical properties was more sensitive than the magnetic properties through analyzing the microstructure of sintered Nd-Fe-B magnets.

  18. Fluxing purification and its effect on magnetic properties of high-Bs FeBPSiC amorphous alloy

    NASA Astrophysics Data System (ADS)

    Pang, Jing; Wang, Anding; Yue, Shiqiang; Kong, Fengyu; Qiu, Keqiang; Chang, Chuntao; Wang, Xinmin; Liu, Chain-Tsuan

    2017-07-01

    A high-Bs amorphous alloy with the base composition Fe83B11P3Si2C1 was used to study the effects of fluxing purification on amorphous forming ability and magnetic properties of the alloy prepared with raw materials in industrialization. By using fluxing purification, the surface crystallization was suppressed and fully amorphous Fe83B11P3Si2C1 ribbons with a maximum thickness of 48 μm were successfully achieved by using an industrial process and materials. The amorphous ribbons made with industrial-purified alloys exhibit excellent magnetic properties, containing high-Bs of 1.65 T, low Hc of 2.0 A/m, and high μe of 9.7 × 103 at 1 kHz. Impurities in the melting alloys exist in three forms and have different effluences on magnetic properties. The surface crystallization was triggered by the impurities which exist as high melting point inclusions serving as nuclei. Thus, fluxing purification is a feasible way for industrialization of high-Bs FeBPSiC amorphous alloys.

  19. Evidences on the Existence of Magnetic Flux Rope Before and During a Solar Eruption

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Cheng, Xin; Liu, Kai

    2013-03-01

    We report the observational evidences from the advanced SDO observations that magnetic flux ropes exist before and during solar eruptions. The solar eruption is defined as coronal mass ejection, whether or not associated with a solar flare. Magnetic flux ropes are directly observed as hot EUV channels as seen in the hot AIA 131 (10 MK) and/or AIA 94 (6.4 MK) passbands, but are absent in cool AIA passbands. The fact that flux ropes are only seen in hot temperatures explains their evasion of detection from previous EUV observations, such as SOHO/EIT, TRACE and STEREO/EUVI. The hot channel usually appears as a writhed sigmoidal shape and slowly rises prior to the onset of the impulsive acceleration as well as the onset of the flare. The hot channel transforms into a CME-like semi-circular shape in a continuous way, indicating its trapping or organization by a coherent magnetic structure. The dynamic and thermal properties of flux ropes will also be presented. We further discuss the critical role of flux ropes in CME initiation and subsequent acceleration, in light of contrasting the standard eruptive flare models.

  20. Impact of the interaction of material production and mechanical processing on the magnetic properties of non-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Leuning, Nora; Steentjes, Simon; Stöcker, Anett; Kawalla, Rudolf; Wei, Xuefei; Dierdorf, Jens; Hirt, Gerhard; Roggenbuck, Stefan; Korte-Kerzel, Sandra; Weiss, Hannes A.; Volk, Wolfram; Hameyer, Kay

    2018-04-01

    Thin laminations of non-grain oriented (NO) electrical steels form the magnetic core of rotating electrical machines. The magnetic properties of these laminations are therefore key elements for the efficiency of electric drives and need to be fully utilized. Ideally, high magnetization and low losses are realized over the entire polarization and frequency spectrum at reasonable production and processing costs. However, such an ideal material does not exist and thus, achievable magnetic properties need to be deduced from the respective application requirements. Parameters of the electrical steel such as lamination thickness, microstructure and texture affect the magnetic properties as well as their polarization and frequency dependence. These structural features represent possibilities to actively alter the magnetic properties, e.g., magnetization curve, magnetic loss or frequency dependence. This paper studies the influence of production and processing on the resulting magnetic properties of a 2.4 wt% Si electrical steel. Aim is to close the gap between production influence on the material properties and its resulting effect on the magnetization curves and losses at different frequencies with a strong focus on occurring interdependencies between production and mechanical processing. The material production is realized on an experimental processing route that comprises the steps of hot rolling, cold rolling, annealing and punching.

  1. Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies.

    PubMed

    Vereda, Fernando; de Vicente, Juan; Hidalgo-Alvarez, Roque

    2009-06-02

    Anisotropy counts: A brief review of the main physical properties of elongated magnetic particles (EMPs) is presented. The most important characteristic of an EMP is the additional contribution of shape anisotropy to the total anisotropy energy of the particle, when compared to spherical magnetic particles. The electron micrograph shows Ni-ferrite microrods fabricated by the authors.We present an overview of the main physical properties of elongated magnetic particles (EMPs), including some of their more relevant properties in suspension. When compared to a spherical magnetic particle, the most important characteristic of an EMP is an additional contribution of shape anisotropy to the total anisotropy energy of the particle. Increasing aspect ratios also lead to an increase in both the critical single-domain size of a magnetic particle and its resistance to thermally activated spontaneous reversal of the magnetization. For single-domain EMPs, magnetization reversal occurs primarily by one of two modes, coherent rotation or curling, the latter being facilitated by larger aspect ratios. When EMPs are used to prepare colloidal suspensions, other physical properties come into play, such as their anisotropic friction coefficient and the consequent enhanced torque they experience in a shear flow, their tendency to align in the direction of an external field, to form less dense sediments and to entangle into more intricate aggregates. From a more practical point of view, EMPs are discussed in connection with two interesting types of magnetic colloids: magnetorheological fluids and suspensions for magnetic hyperthermia. Advances reported in the literature regarding the use of EMPs in these two systems are included. In the final section, we present a summary of the most relevant methods documented in the literature for the fabrication of EMPs, together with a list of the most common ferromagnetic materials that have been synthesized in the form of EMPs.

  2. Superconducting and magnetic properties of Sr 3 Ir 4 Sn 13

    DOE PAGES

    Biswas, P. K.; Amato, A.; Khasanov, R.; ...

    2014-10-10

    In this research, magnetization and muon spin relaxation or rotation (µSR) measurements have been performed to study the superconducting and magnetic properties of Sr₃Ir₄Sn₁₃. From magnetization measurements the lower and upper critical fields of Sr₃Ir₄Sn₁₃ are found to be 81(1) Oe and 14.4(2) kOe, respectively. Zero-field µSR data show no sign of any magnetic ordering or weak magnetism in Sr₃Ir₄Sn₁₃. Transverse-field µSR measurements in the vortex state provided the temperature dependence of the magnetic penetration depth λ. The dependence of λ⁻² with temperature is consistent with the existence of single s-wave energy gap in the superconducting state of Sr₃Ir₄Sn₁₃ withmore » a gap value of 0.82(2) meV at absolute zero temperature. The magnetic penetration depth at zero temperature λ(0) is 291(3) nm. The ratio Δ(0)/k BT c = 2.1(1) indicates that Sr₃Ir₄Sn₁₃ should be considered as a strong-coupling superconductor.« less

  3. Tailoring Magnetic Properties in Bulk Nanostructured Solids

    NASA Astrophysics Data System (ADS)

    Morales, Jason Rolando

    Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally

  4. Magnetic and electrical properties of several Mn-based amorphous alloys

    NASA Astrophysics Data System (ADS)

    Obi, Y.; Morita, H.; Fujimori, H.

    1987-03-01

    Magnetic and electrical properties of amorphous Mn-Y, Mn-Zr, and Mn-Nb alloys have been investigated. All these alloys have a temperature-dependent susceptibility which is well fitted by a Curie-Weiss law. This implies the existence of localized magnetic moments associated with the Mn atoms. In addition, amorphous Mn-Y alloys exhibit spin-glass characteristics at low temperature. The experimental results of the electrical resistivity show that the temperature coefficient of resistivity (TCR) of both Mn-Y and Mn-Zr are negative, while Mn-Nb has a positive TCR. On the other hand, the resistivity-temperature curves of Mn-Zr and Mn-Nb have nearly the same tendency but are different from that of Mn-Y.

  5. Experimental evaluation of the magnetic properties of commercially available magnetic microspheres.

    PubMed

    Connolly, Joan; St Pierre, Timothy G; Dobson, Jon

    2005-01-01

    The magnetic properties of 5 commercially available magnetic microsphere samples are tested and compared with those stated by their manufacturers. A suspension of magnetic, iron oxide nanoparticles is studied for comparison. Two of the microsphere samples have magnetic properties which do not support the manufacturer's claims of superparamagnetism. The remaining 3 microsphere samples as well as the nanoparticle suspension are superparamagnetic or ferromagnetic as claimed by the manufacturers. Field cooled and zero field cooled magnetisations indicate that the non-superparamagnetic microsphere samples contain blocked magnetic particles at room temperature. This observation is supported by the open hysteresis loops of the room temperature, field dependent magnetisation measurement. There is a significant paramagnetic component in the superparamagnetic microspheres. This is also present to a lesser extent in a nanoparticle suspension.

  6. Effects of Zr alloying on the microstructure and magnetic properties of Alnico permanent magnets

    NASA Astrophysics Data System (ADS)

    Rehman, Sajjad Ur; Ahmad, Zubair; Haq, A. ul; Akhtar, Saleem

    2017-11-01

    Alnico-8 permanent magnets were produced through casting and subsequent thermal treatment process. Magnetic alloy of nominal composition 32.5 Fe-7.5 Al-1.0 Nb-35.0 Co-4.0 Cu-14.0 Ni-6.0 Ti were prepared by arc melting and casting technique. The Zr was added to 32.5 Fe-7.5 Al-1.0 Nb-35.0 Co-4.0 Cu-14.0 Ni-6.0 Ti alloy ranging from 0.3 to 0.9 wt%. The magnets were developed by employing two different heat treatment cycles known as conventional treatment and thermo-magnetic annealing treatment. The samples were characterized by X-ray diffraction method, Scanning electron microscope and magnetometer by plotting magnetic hysteresis demagnetization curves. The results indicate that magnetic properties are strongly depended upon alloy chemistry and process. The 0.6 wt% Zr added alloys yielded the best magnetic properties among the studied alloys. The magnetic properties obtained through conventional heat treatment are Hc = 1.35 kOe, Br = 5.2 kG and (BH)max = 2 MGOe. These magnetic properties were enhanced to Hc = 1.64 kOe, Br = 6.3 kG and (BH)max = 3.7 MGOe by thermo-magnetic annealing treatment.

  7. Structural and magnetic properties on the Fe-B-P-Cu-W nano-crystalline alloy system

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wang, Yaocen; Makino, Akihiro

    2018-04-01

    In the present article, the structural and soft magnetic properties of Fe-B-P-Cu alloy system with W addition have been studied as well as the annealing configurations required for magnetic softness. It is found that the substitution of B by W deteriorates the soft magnetic properties after annealing. The reason of such impact with W addition may lie in the insufficient bonding strength between W and B so that the addition of W is not effective enough to suppress grain growth against the high concentration and high crystallization tendency of Fe during annealing. The addition of 4 at.% W is also found to reduce the saturation magnetization of the nano-crystalline alloy by 14%. It is also found that the addition of P in the Fe-based alloys could help reduce the coercivity upon annealing with high heating rate. The existence of P could also help slightly increase the overall saturation magnetization by enhancing the electron transfer away from Fe in the residual amorphous structure.

  8. Thermal properties of a large-bore cryocooled 10 T superconducting magnet for a hybrid magnet

    NASA Astrophysics Data System (ADS)

    Ishizuka, M.; Hamajima, T.; Itou, T.; Sakuraba, J.; Nishijima, G.; Awaji, S.; Watanabe, K.

    2010-11-01

    A cryocooled 10 T superconducting magnet with a 360 mm room temperature bore has been developed for a hybrid magnet. The superconducting magnet cooled by four Gifford-McMahon cryocoolers has been designed to generate a magnetic field of 10 T. Since superconducting wires composed of coils were subjected to large hoop stress over 150 MPa and Nb3Sn superconducting wires particularly showed a low mechanical strength due to those brittle property, Nb3Sn wires strengthened by NbTi-filaments were developed for the cryocooled superconducting magnet. We have already reported that the hybrid magnet could generate the resultant magnetic field of 27.5 T by adding 8.5 T from the superconducting magnet and 19 T from a water-cooled Bitter resistive magnet, after the water-cooled resistive magnet was inserted into the 360 mm room temperature bore of the cryocooled superconducting magnet. When the hybrid magnet generated the field of 27.5 T, it achieved the high magnetic-force field (B × ∂Bz/∂z) of 4500 T2/m, which was useful for magneto-science in high fields such as materials levitation research. In this paper, we particularly focus on the cause that the cryocooled superconducting magnet was limited to generate the designed magnetic field of 10 T in the hybrid magnet operation. As a result, it was found that there existed mainly two causes as the limitation of the magnetic field generation. One was a decrease of thermal conductive passes due to exfoliation from the coil bobbin of the cooling flange. The other was large AC loss due to both a thick Nb3Sn layer and its large diameter formed on Nb-barrier component in Nb3Sn wires.

  9. Flattening Property and the Existence of Global Attractors in Banach Space

    NASA Astrophysics Data System (ADS)

    Aris, Naimah; Maharani, Sitti; Jusmawati, Massalesse; Nurwahyu, Budi

    2018-03-01

    This paper analyses the existence of global attractor in infinite dimensional system using flattening property. The earlier stage we show the existence of the global attractor in complete metric space by using concept of the ω-limit compact concept with measure of non-compactness methods. Then we show that the ω-limit compact concept is equivalent with the flattening property in Banach space. If we can prove there exist an absorbing set in the system and the flattening property holds, then the global attractor exist in the system.

  10. Transport Optical and Magnetic Properties of Solids.

    DTIC Science & Technology

    Solid state physics, Band theory of solids, Semiconductors, Strontium compounds, Superconductors, Magnetic properties, Chalcogens, Transport properties, Optical properties, Bibliographies, Scientific research, Magnons

  11. Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-10-01

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  12. Synthesization and magnetic properties of Ba1-xYxFe12O19 hexaferrites prepared by solid-state reaction method

    NASA Astrophysics Data System (ADS)

    Rehman, Khalid Mehmood Ur; Liu, Xiansong; Li, Mingling; Jiang, Shuai; Wu, Yingchun; Zhang, Cong; Liu, Chaocheng; Meng, Xiangyu; Li, Haohao

    2017-03-01

    M-type hexaferrite Ba(1-x)YxFe12O19 (x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13) magnetic powder and magnets existed to ready according to the conventional ceramic reaction method. X-ray difractometer was used to study the phase compositions of the calcites powder samples. There was a single magnetoplumbite segment in the calcanei magnetic powder with the intensification of x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13. The influence of yttrium aggregation on attractive possessions of the magnets was studied scientifically. The magnetic properties of the magnets were measured by a magnetic properties test instrument (VSM). The saturation magnetization (σs) and coercivity (Hcj) of the Ba(1-x)YxFe12O19 (x=0.00, 0.02, 0.05, 0.08, 0.10, 0.13) magnetic powders with different Yttrium aggregation (x) were determined. The saturation magnetization (σs) was decreased whereas coercivity (Hcj) was increased. The magnetic properties of the magnet at x=0.13 reached the maximum values.

  13. The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Panwar, Kalpana; Tiwari, Shailja; Bapna, Komal; Heda, N. L.; Choudhary, R. J.; Phase, D. M.; Ahuja, B. L.

    2017-01-01

    We have studied the structural, electronic and magnetic properties of pulsed laser deposited thin films of Ni1-xCrxFe2O4 (x=0.02 and 0.05) on Si (111) and Si (100) substrates. The films reveal single phase, polycrystalline structure with larger grain size on Si (111) substrate than that on Si (100) substrate. Contrary to the expected inverse spinel structure, x-ray photoemission (XPS) studies reveal the mixed spinel structure. XPS results suggest that Ni and Fe ions exist in 2+ and 3+ states, respectively, and they exist in tetrahedral as well as octahedral sites. The deviation from the inverse spinel leads to modified magnetic properties. It is observed that saturation magnetization drastically drops compared to the expected saturation value for inverse spinel structure. Strain in the films and lattice distortion produced by the Cr doping also appear to influence the magnetic properties.

  14. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    NASA Astrophysics Data System (ADS)

    Irshad, M. I.; Ahmad, F.; Mohamed, N. M.; Abdullah, M. Z.; Yar, A.

    2015-07-01

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO4.6H2O buffered with H3BO3 and acidized by dilute H2SO4. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (˜ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  15. Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet

    NASA Astrophysics Data System (ADS)

    Chung, E. M. L.; Lees, M. R.; McIntyre, G. J.; Wilkinson, C.; Balakrishnan, G.; Hague, J. P.; Visser, D.; McK Paul, D.

    2004-11-01

    The possibilities of two-dimensional (2D) short-range magnetic correlations and frustration effects in the mineral tapiolite are investigated using bulk-property measurements and neutron Laue diffraction. In this study of the magnetic properties of synthetic single-crystals of tapiolite, we find that single crystals of FeTa2O6 order antiferromagnetically at TN = 7.95 ± 0.05 K, with extensive two-dimensional correlations existing up to at least 40 K. Although we find no evidence that FeTa2O6 is magnetically frustrated, hallmarks of two-dimensional magnetism observed in our single-crystal data include: (i) broadening of the susceptibility maximum due to short-range correlations, (ii) a spin-flop transition and (iii) lambda anomalies in the heat capacity and d(χT)/dT. Complementary neutron Laue diffraction measurements reveal 1D magnetic diffuse scattering extending along the c* direction perpendicular to the magnetic planes. This magnetic diffuse scattering, observed for the first time using the neutron Laue technique by VIVALDI, arises directly as a result of 2D short-range spin correlations.

  16. A new method to determine magnetic properties of the unsaturated-magnetized rotor of a novel gyro

    NASA Astrophysics Data System (ADS)

    Li, Hai; Liu, Xiaowei; Dong, Changchun; Zhang, Haifeng

    2016-06-01

    A new method is proposed to determine magnetic properties of the unsaturated-magnetized, small and irregular shaped rotor of a novel gyro. The method is based on finite-element analysis and the measurements of the magnetic flux density distribution, determining magnetic parameters by comparing the magnetic flux intensity distribution differences between the modeling results under different parameters and the measured ones. Experiment on a N30 Grade NdFeB magnet shows that its residual magnetic flux density is 1.10±0.01 T, and coercive field strength is 801±3 kA/m, which are consistent with the given parameters of the material. The method was applied to determine the magnetic properties of the rotor of the gyro, and the magnetic properties acquired were used to predict the open-loop gyro precession frequency. The predicted precession frequency should be larger than 12.9 Hz, which is close to the experimental result 13.5 Hz. The result proves that the method is accurate in estimating the magnetic properties of the rotor of the gyro.

  17. Magnetic Properties of Heavy Fermion Compound Ce5Si4 with Chiral Structure

    NASA Astrophysics Data System (ADS)

    Sato, Yoshiki J.; Shimizu, Yusei; Nakamura, Ai; Homma, Yoshiya; Li, Dexin; Maurya, Arvind; Honda, Fuminori; Aoki, Dai

    2018-07-01

    The low-temperature magnetic properties of Ce5Si4 with a chiral structure have been studied by electrical resistivity, heat capacity, and magnetization measurements using single-crystalline samples. It is found that Ce5Si4 is an antiferromagnet with moderately correlated electronic states. The resistivity decreases strongly under magnetic fields, indicating scaling behavior based on the Coqblin-Schrieffer model. The obtained characteristic energy scale of the Kondo effect is clearly anisotropic for the magnetic field H ∥ a-axis and H ∥ c-axis in the tetragonal structure, possibly related to the anisotropic antiferromagnetic phase. Furthermore, in the antiferromagnetic phase, a shoulderlike crossover anomaly is observed in C/T. A possible scenario is that non-ordered Ce atoms exist even below TN in this chiral system.

  18. Magnetic properties of cobalt ferrite synthesized by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Dedi, Idayanti, Novrita; Kristiantoro, Tony; Alam, Ginanjar Fajar Nur; Sudrajat, Nanang

    2018-05-01

    Cobalt ferrite (CoFe2O4) is a well-known hard magnetic material with high coercivity and moderate magnetization. These properties, along with their great physical and chemical stability, make CoFe2O4 suitable for many applications such as generator, audio, video-tape etc. In this study, the magnetic properties of cobalt ferrite synthesized via the mechanical alloying using α-Fe2O3 of Hot Strip Mill (HSM) waste and cobalt carbonate as the precursors have been investigated. Structural and magnetic properties were systematically investigated. The X-ray diffraction (XRD) pattern exhibited the single phase of cobalt ferrite when the sintering temperature was 1000 °C. Permagraph measurements of the sintered sample revealed a saturation magnetization (Ms) of 77-83 emu/g and coercivity (Hc) of 575 Oe which closely to the magnetic properties of references; Ms = 47.2-56.7 emu/g and Hc =233-2002 Oe.

  19. Amorphous Iron Borides: Preparation, Structure and Magnetic Properties.

    DTIC Science & Technology

    1982-09-28

    temperature. External magnetic field experiments were performed in a superconducting solenoid with both source and absor- ber at 4.2 K. The observed...D-Ai20 919 AMORPHOUS IRON BORIDES: PREPARATION STRUCTURE AND i/i MAGNETIC PROPERTIES(U) JOHNS HOPKINS UNIV LAUREL NO APPLIED PHYSICS LRB K MOORJRNI...NATIONAL BUREAU OF STANOANOS-93-A 10 AMORPHOUS IRON BORIDES: PREPARATION, STRUCTURE ~AND MAGNETIC PROPERTIES FINAL REPORT Kishin Moorjani September 1982 U

  20. Magnetic properties of alluvial soils polluted with heavy metals

    NASA Astrophysics Data System (ADS)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on

  1. Magnetic properties of permalloy-coated organic tubules

    NASA Astrophysics Data System (ADS)

    Krebs, J. J.; Rubinstein, M.; Lubitz, P.; Harford, M. Z.; Baral, S.; Shashidar, R.; Ho, Y. S.; Chow, G. M.; Qadri, S.

    1991-11-01

    An initial investigation is presented of the ferromagnetic properties of a novel type of magnetic composite, viz., permalloy-coated submicron diameter hollow cylinders or tubules. The tubules form spontaneously from an organic material, a diacetylenic phosopholipid, and were used as templates on which the ferromagnetic material was deposited by electroless deposition. The permalloy-coated tubules were dispersed in an epoxy matrix to measure the magnetization and ferromagnetic resonance (FMR) properties of individual tubules. The nature of the magnetic anisotropy and the FMR spectra observed confirmed that the tubules are well aligned by a magnetic field during the epoxy curing. The FMR spectra are interpreted in terms of a powder pattern distribution of thin-film spectra consistent with the large diameter-to-thickness ratio.

  2. Structural and magnetic properties of non-stoichiometric Fe1-xO thin films

    NASA Astrophysics Data System (ADS)

    Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil

    2018-04-01

    The Fe1-xO thin films of various iron deficiencies (x) have been grown at ambient temperature by reactive dc magnetron sputtering technique and their structural and magnetic properties are studied. The structural study shows that the films are polycrystalline. As the iron content (1-x) varies from 0.924 to 0.855 a clear consistent change in the preferential orientation of the grains from [111] to the [200] direction is observed. The magnetization measurements show the possible existence of small superparamagnetic defect clusters at 300 K and large spinel-type defect clusters below the Neel temperature.

  3. Thermodynamic properties of a hard/soft-magnetic bilayer model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taaev, T. A., E-mail: taaev89@mail.ru; Khizriev, K. Sh.; Murtazaev, A. K.

    2016-05-15

    A model for describing the thermodynamic properties of a hard/soft-magnetic bilayer is proposed and thoroughly studied using the Monte Carlo method. Temperature dependences of the heat capacity, total magnetization, magnetizations of the hard- and soft-magnetic layers, total magnetic susceptibility, and susceptibilities of the hard- and soft-magnetic layers have been calculated by this method in the framework of the proposed model. The obtained temperature dependences of the heat capacity and magnetic susceptibility display double maxima that result from the two phase transitions that take place in the system. The influence of system dimensions on the thermodynamic properties of the model hasmore » been considered.« less

  4. Comparison of Microinstability Properties for Stellarator Magnetic Geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Rewoldt; L.-P. Ku; W.M. Tang

    2005-06-16

    The microinstability properties of seven distinct magnetic geometries corresponding to different operating and planned stellarators with differing symmetry properties are compared. Specifically, the kinetic stability properties (linear growth rates and real frequencies) of toroidal microinstabilities (driven by ion temperature gradients and trapped-electron dynamics) are compared, as parameters are varied. The familiar ballooning representation is used to enable efficient treatment of the spatial variations along the equilibrium magnetic field lines. These studies provide useful insights for understanding the differences in the relative strengths of the instabilities caused by the differing localizations of good and bad magnetic curvature and of the presencemore » of trapped particles. The associated differences in growth rates due to magnetic geometry are large for small values of the temperature gradient parameter n identical to d ln T/d ln n, whereas for large values of n, the mode is strongly unstable for all of the different magnetic geometries.« less

  5. Magnetic properties measurement of soft magnetic composite material (SOMALOY 700) by using 3-D tester

    NASA Astrophysics Data System (ADS)

    Asari, Ashraf; Guo, Youguang; Zhu, Jianguo

    2017-08-01

    Core losses of rotating electrical machine can be predicted by identifying the magnetic properties of the magnetic material. The magnetic properties should be properly measured since there are some variations of vector flux density in the rotating machine. In this paper, the SOMALOY 700 material has been measured under x, y and z- axes flux density penetration by using the 3-D tester. The calibrated sensing coils are used in detecting the flux densities which have been generated by the Labview software. The measured sensing voltages are used in obtaining the magnetic properties of the sample such as magnetic flux density B, magnetic field strength H, hysteresis loop which can be used to calculate the total core loss of the sample. The results of the measurement are analyzed by using the Mathcad software before being compared to another material.

  6. Effect of deposition temperature on morphological, magnetic and elastic properties of ultrathin Co49Pt51 films

    NASA Astrophysics Data System (ADS)

    Si Abdallah, F.; Chérif, S. M.; Bouamama, Kh.; Roussigné, Y.; Hsu, J.-H.

    2018-03-01

    Morphological, magnetic and elastic properties of 5 nm-thick Co49Pt51 films, sputtered on glass substrates, with 20 nm-thick Ta (seed) and Pt (buffer) layers were studied as function of the deposition temperature Td ranging between room temperature and 350° C. Atomic and magnetic force microscopy, vibrating sample magnetometer and Brillouin light scattering techniques were used to investigate the root mean square (RMS) roughness, the magnetic domain configuration, the coercive field (Hc), the perpendicular magnetic anisotropy (PMA), and the dynamic magnetic and elastic properties of the films with Td. The results show that surface uniformity was enhanced since the RMS roughness decreases with Td while magnetic domains typical of films with high PMA are observed. Hc and PMA are found to sensibly increase with Td. The dynamic magnetization behavior is characterized by magnetic modes related with the co-existence of hard and soft magnetic areas within the samples. The elastic properties of the stack were first analyzed by means of a model describing the main variation of the elastic wave frequencies within the frame of weighted average thickness, density, Young's modulus and Poisson coefficient of all the layers constituting the stacks. However, while Hc and PMA keep increasing with Td, a more precise experimental analysis of the mechanical behavior shows that the group velocity starts increasing and finally decreases with Td, suggesting that knowledge of the influence of Td on the mechanical properties of each individual layer composing the stack is required to obtain a more accurate analysis.

  7. Magnetic properties of partially oxidized Fe films

    NASA Astrophysics Data System (ADS)

    Garcia, Miguel Angel; Lopez-Dominguez, Victor; Hernando, Antonio

    Hybrid magnetic nanostructures exhibit appealing properties due to interface and proximity effects. A simple and interesting system of hybrid magnetic nanomaterials are partially oxidized ferromagnetic films. We have fabricated Fe films by thermal evaporation and performed a partial oxidation to magnetite (Fe3O4) by annealing in air at different times and temperatures. The magnetic properties of the films evolve from those of pure metallic iron to pure magnetite, showing intermediate states where the proximity effects control the magnetic behavior. At some stages, the magnetization curves obtained by SQUID and MOKE magnetometry exhibit important differences due to the dissimilar contribution of both phases to the magneto-optical response of the system This work has been supported by the Ministerio Español de Economia y Competitividad (MINECO) MAT2013-48009-C4-1. V.L.D and M.A.G. acknowledges financial support from BBVA foundation.

  8. Development of Ferrite-Coated Soft Magnetic Composites: Correlation of Microstructure to Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Sunday, Katie Jo

    Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and boast high melting temperatures, thus providing adequate electrical barriers between metallic particles. These insulating layers are necessary for reducing eddy current losses by increasing resistivity in order to improve the overall magnetic efficiency and subsequent frequency range. The goals of this work are to correlate ferrite-coated Fe powder composites microstructure for the coating and core powder to magnetic properties such as permeability, coercivity, and core loss. We first explore the relevant concepts of SMC materials from their composition to processing steps to pertinent properties. This thesis employs a suite of characterization techniques for powder and composite properties. We use X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to provide a complete understanding of the effect of processing conditions on ferrite-coated Fe-based SMCs. Magnetic, mechanical, and electrical properties are then analyzed to correlate microstructural features and determine their effect on such properties. In the second part of this thesis, we present a proof of concept study on Al2O3- and Al2O3- Fe3O4-coated Fe powder composites, illustrating magnetization is highly dependent on ferromagnetic volume. We then expand on previous work to compare an ideal, crystalline state using Fe3O 4-Fe thin film heterostructures to a highly strained state using bulk powder studies. Fe3O4-coated Fe composites are produced via mechanical

  9. Study on magnetic properties of magnetic minerals in the quartzofeldspathic schist by using magnetic force microscope

    NASA Astrophysics Data System (ADS)

    Ni, C. H.; Chen, Y. H.

    2016-12-01

    The pseudotachylyte generated from the fault sliding during an earthquake plays an important role in the geology. In general, the pseudotachylyte vein has a magnetic susceptibility which is higher than wall rocks attributed by the fine-grained magnetic minerals. In this study, the fault pseudotachylyte formed by frictional melting in quartzofeldspathic schist rocks from Alpine Fault, New Zealand, was investigated. The scanning electron microscopy (SEM) was used to obtain the morphology of magnetic minerals and magnetic force microscopy (MFM) was utilized to observe magnetic domain structures. We want to realize how the growth process of magnetic minerals affects magnetic structures and magnetic properties. It was observed exsoluted-titanomagnetite was especially around outer edge of pseudotachylyte. These titanomagnetite had a single domain (SD) and distributed paralleling to the direction of exsolution. In contrast, the magnetic minerals (magnetite) in the pseudotachylyte vein had two different magnetic structures: one is the detrital magnetite showed multiple domains (MD) without regular arrangement, which may be indicated the thermal remanent magnetization (TRM). One the other is neoformed fine-grained magnetite scattering in the matrix and showed SD to pseudo-single-domain (PSD) and their magnetic direction was perpendicular to the direction of pseudotachylyte veins, suggesting the chemical remanent magnetization (CRM). However, the macroscopic magnetic property, based on Day's plot, measured from superconducting quantum interference device (SQUID) was shown the sample belonged to MD structures. These results indicated that MFM is a more powerful and precise tool to figure out the magnetic structure. The related studies will be further investigated.

  10. Magnetic and Optical Properties of Submicron-Size Hollow Spheres

    PubMed Central

    Ye, Quan-Lin; Yoshikawa, Hirofumi; Awaga, Kunio

    2010-01-01

    Magnetic hollow spheres with a controlled diameter and shell thickness have emerged as an important class of magnetic nanomaterials. The confined hollow geometry and pronouncedly curved surfaces induce unique physical properties different from those of flat thin films and solid counterparts. In this paper, we focus on recent progress on submicron-size spherical hollow magnets (e.g., cobalt- and iron-based materials), and discuss the effects of the hollow shape and the submicron size on magnetic and optical properties.

  11. Magnetic properties of (misch metal, Nd)-Fe-B melt-spun magnets

    NASA Astrophysics Data System (ADS)

    Li, R.; Shang, R. X.; Xiong, J. F.; Liu, D.; Kuang, H.; Zuo, W. L.; Zhao, T. Y.; Sun, J. R.; Shen, B. G.

    2017-05-01

    The effect of replacing Nd with misch metal (MM) on magnetic properties and thermal stability has been investigated on melt-spun (Nd1-xMMx)13.5Fe79.5B7 ribbons by varying x from 0 to 1. All of the alloys studied crystallize in the tetragonal 2:14:1 structure with single hard magnetic phase. Curie temperature (Tc), coercivity (Hcj), remanence magnetization (Br) and maximum energy product ((BH)max) all decrease with MM content. The melt-spun MM13.5Fe79.5B ribbons with high ratio of La and Ce exhibit high magnetic properties of Hcj = 8.2 kOe and (BH)max= 10.3 MGOe at room temperature. MM substitution also significantly strengthens the temperature stability of coercivity. The coercivities of the samples with x = 0.2 and even 0.4 exhibit large values close to that of Nd13.5Fe79.5B7 ribbons above 400 K.

  12. Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.; Wincheski, Russell A.; Park, Cheol

    2008-01-01

    Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.

  13. Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina

    NASA Astrophysics Data System (ADS)

    Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya

    Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.

  14. Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles

    NASA Astrophysics Data System (ADS)

    Stepanov, G. V.; Borin, D. Yu; Bakhtiiarov, A. V.; Storozhenko, P. A.

    2017-03-01

    Hybrid magnetic elastomers belonging to the family of magnetorheological elastomers contain magnetically hard components and are of the utmost interest for the development of semiactive and active damping devices as well as actuators and sensors. The processes of magnetizing of such elastomers are accompanied by structural rearrangements inside the material. When magnetized, the elastomer gains its own magnetic moment resulting in changes of its magneto-mechanical properties, which remain permanent, even in the absence of external magnetic fields. Influenced by the magnetic field, magnetized particles move inside the matrix forming chain-like structures. In addition, the magnetically hard particles can rotate to align their magnetic moments with the new direction of the external field. Such an elastomer cannot be demagnetized by the application of a reverse field.

  15. Magnetic properties of solid oxygen under pressure (Review Article)

    NASA Astrophysics Data System (ADS)

    Freiman, Yu. A.

    2015-11-01

    Solid oxygen is a unique crystal combining properties of a simple molecular solid and a magnet. Unlike ordinary magnets, the exchange interaction in solid oxygen acts on a background of weak Van der Waals forces, providing a significant part of the total lattice energy. Therefore, the magnetic and lattice properties of solid oxygen are very closely related. This manifests itself in a very rich phase diagram and numerous anomalies of thermal, magnetic and optical properties. Low-temperature low-pressure α-O2 is a two-sublattice collinear Neel antiferromagnet. At a pressure of ˜6 GPa, α-O2 is transformed into δ-O2, in which three different magnetic structures are realized upon increasing temperature. At ˜8 GPa δ-O2 is transformed into ɛ-O2. In this transition, O2 molecules combine into four-molecule clusters (O2)4. This transformation is accompanied by a magnetic collapse. This review describes the evolution of the magnetic structure with increasing pressure, and analyzes the causes behind this behavior.

  16. Properties and biomedical applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Regmi, Rajesh Kumar

    Magnetic nanoparticles have a number of unique properties, making them promising agents for applications in medicine including magnetically targeted drug delivery, magnetic hyperthermia, magnetic resonance imaging, and radiation therapy. They are biocompatible and can also be coated with biocompatible surfactants, which may be further functionalized with optically and therapeutically active molecules. These nanoparticles can be manipulated with non-invasive external magnetic field to produce heat, target specific site, and monitor their distribution in vivo. Within this framework, we have investigated a number of biomedical applications of these nanoparticles. We synthesized a thermosensitive microgel with iron oxide adsorbed on its surface. An alternating magnetic field applied to these nanocomposites heated the system and triggered the release of an anticancer drug mitoxantrone. We also parameterized the chain length dependence of drug release from dextran coated iron oxide nanoparticles, finding that both the release rate and equilibrium release fraction depend on the molecular mass of the surfactant. Finally, we also localized dextran coated iron oxide nanoparticles labeled with tat peptide to the cell nucleus, which permits this system to be used for a variety of biomedical applications. Beyond investigating magnetic nanoparticles for biomedical applications, we also studied their magnetohydrodynamic and dielectric properties in solution. Magnetohydrodynamic properties of ferrofluid can be controlled by appropriate selection of surfactant and deielctric measurement showed magnetodielectric coupling in this system. We also established that some complex low temperature spin structures are suppressed in Mn3O4 nanoparticles, which has important implications for nanomagnetic devices. Furthermore, we explored exchange bias effects in Ni-NiO core-shell nanoparticles. Finally, we also performed extensive magnetic studies in nickel metalhydride (NiMH) batteries to

  17. Magnetic properties of magnetic bilayer Kekulene structure: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.

    2018-06-01

    In the present work, we have studied the magnetic properties of magnetic bilayer Kekulene structure with mixed spin-5/2 and spin-2 Ising model using Monte Carlo study. The magnetic phase diagrams of mixed spins Ising model have been given. The thermal total, partial magnetization and magnetic susceptibilities of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure are obtained. The transition temperature has been deduced. The effect of crystal field and exchange interactions on the this bilayers has been studied. The partial and total magnetic hysteresis cycles of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure have been given. The superparamagnetism behavior is observed in magnetic bilayer Kekulene structure. The magnetic coercive field decreases with increasing the exchange interactions between σ-σ and temperatures values and increases with increasing the absolute value of exchange interactions between σ-S. The multiple hysteresis behavior appears.

  18. EM Properties of Magnetic Minerals at RADAR Frequencies

    NASA Technical Reports Server (NTRS)

    Stillman, D. E.; Olhoeft, G. R.

    2005-01-01

    Previous missions to Mars have revealed that Mars surface is magnetic at DC frequency. Does this highly magnetic surface layer attenuate RADAR energy as it does in certain locations on Earth? It has been suggested that the active magnetic mineral on Mars is titanomaghemite and/or titanomagnetite. When titanium is incorporated into a maghemite or magnetite crystal, the Curie temperature can be significantly reduced. Mars has a wide range of daily temperature fluctuations (303K - 143K), which could allow for daily passes through the Curie temperature. Hence, the global dust layer on Mars could experience widely varying magnetic properties as a function of temperature, more specifically being ferromagnetic at night and paramagnetic during the day. Measurements of EM properties of magnetic minerals were made versus frequency and temperature (300K- 180K). Magnetic minerals and Martian analog samples were gathered from a number of different locations on Earth.

  19. Bulk magnetic properties of La1-xCaxMnO3 (0⩽x⩽0.14) : Signatures of local ferromagnetic order

    NASA Astrophysics Data System (ADS)

    Terashita, Hirotoshi; Neumeier, J. J.

    2005-04-01

    We report the bulk magnetic properties of hole-doped La1-xCaxMnO3 (0⩽x⩽0.14) in the paramagnetic and antiferromagnetic regions; the Mn4+ concentration was determined with chemical analysis. Significant enhancement of the effective paramagnetic moment illustrates the existence of ferromagnetic clusters (polarons). The data reveal a distinct crossover in the paramagnetic region, signifying competition between ferromagnetic clusters and antiferromagnetic correlations associated with the low-temperature magnetically ordered state. The results suggest similarity in the magnetic properties at low temperatures between hole-doped LaMnO3 and electron-doped CaMnO3 .

  20. GEMAS: Unmixing magnetic properties of European agricultural soil

    NASA Astrophysics Data System (ADS)

    Fabian, Karl; Reimann, Clemens; Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Nurgaliev, Danis

    2016-04-01

    High resolution magnetic measurements provide new methods for world-wide characterization and monitoring of agricultural soil which is essential for quantifying geologic and human impact on the critical zone environment and consequences of climatic change, for planning economic and ecological land use, and for forensic applications. Hysteresis measurements of all Ap samples from the GEMAS survey yield a comprehensive overview of mineral magnetic properties in European agricultural soil on a continental scale. Low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k were measured using a Bartington MS2B sensor. Hysteresis properties were determined by a J-coercivity spectrometer, built at the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T. The resulting data are used to create the first continental-scale maps of magnetic soil parameters. Because the GEMAS geochemical atlas contains a comprehensive set of geochemical data for the same soil samples, the new data can be used to map magnetic parameters in relation to chemical and geological parameters. The data set also provides a unique opportunity to analyze the magnetic mineral fraction of the soil samples by unmixing their IRM acquisition curves. The endmember coefficients are interpreted by linear inversion for other magnetic, physical and chemical properties which results in an unprecedented and detailed view of the mineral magnetic composition of European agricultural soils.

  1. Magnetization reversal properties of Pr{sub 1-x}(Gd/Nd){sub x}MnO{sub 3} (x=0.3, 0.5, 0.7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Sanjay; Pal, Sudipta, E-mail: sudipta.pal@rediffmail.com; Bose, Esa

    2015-06-24

    We report measurements of the temperature dependent magnetic properties of single phase orthorhombic perovskites system associated with space group Pbnm compounds Pr{sub 1-x}(Gd/Nd){sub x}MnO{sub 3} (x=0.3, 0.5, 0.7). Magnetic properties radically changes with the doping of Gd or Nd. A magnetization reversal is observed below the Neel temperature (T{sub N}), in DC magnetization measurements (at 50 Oe) in the doped compounds. The reversal of magnetization may be due to the antiparallel coupling between the two magnetic sublattices (|Pr+ Gd/ Nd | and Mn). The hysteresis plot taken at 50K indicates a ferrimagnetic characteristic and existence of spin canting of ionsmore » in the magnetic sublattices.« less

  2. Dynamical properties of magnetized two-dimensional one-component plasma

    NASA Astrophysics Data System (ADS)

    Dubey, Girija S.; Gumbs, Godfrey; Fessatidis, Vassilios

    2018-05-01

    Molecular dynamics simulation are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional interacting electron system. In this simulation we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb and the magnetic forces are included directly in the electron dynamics to study their combined effect on the dynamical properties of the 2D system. Results are presented for the velocity autocorrelation function and the diffusion constants in the presence and absence of an external magnetic field. Our simulation results clearly show that the external magnetic field has an effect on the dynamical properties of the system.

  3. Meson properties in magnetized quark matter

    NASA Astrophysics Data System (ADS)

    Wang, Ziyue; Zhuang, Pengfei

    2018-02-01

    We study neutral and charged meson properties in the magnetic field. Taking the bosonization method in a two-flavor Nambu-Jona-Lasinio model, we derive effective meson Lagrangian density with minimal coupling to the magnetic field, by employing derivative expansion for both the meson fields and Schwinger phases. We extract from the effective Lagrangian density the meson curvature, pole and screening masses. As the only Goldstone mode, the neutral pion controls the thermodynamics of the system and propagates the long range quark interaction. The magnetic field breaks down the space symmetry, and the quark interaction region changes from a sphere in vacuum to a ellipsoid in magnetic field.

  4. Effects of heat treatment on crystallographic and magnetic properties of magnetic steels

    NASA Astrophysics Data System (ADS)

    Battistini, L.; Benasciutti, R.; Tassi, A.

    1994-05-01

    The keeper and the head of a modern electrovalve for electronic injection can be succesfully realized using AISI 430 ferromagnetic steel. Important improvements in the performance of the device, mainly in terms of its regularity and energy savings, are possible by means of a better comprehension of the origins of the steel's magnetic properties. The magnetic behaviour of the AISI 430 steel upon different heat treatments was investigated, looking for the best compromise between time saving in the heat treatments and the ensuing magnetic properties of the material. In particular, the relationships between the structural effects of the heat treatments and the magnetic behaviour of the samples were studied. Values of the coercive force Hc, residual induction Br, maximum permeability μ max and the approach to saturation values for H and B were determined by mean of a computerized permeameter, based on a Sanford-Bennet closed yoke for differently shaped samples.

  5. Effect of structural defects on the magnetic properties of the EuBaCo1.90O5.36 single crystal

    NASA Astrophysics Data System (ADS)

    Arbuzova, T. I.; Naumov, S. V.; Telegin, S. V.

    2018-01-01

    The effect of structural defects in cobalt and oxygen sublattices with the constant average oxidation level 3+ of all cobalt ions on the magnetic properties of the EuBaCo1.90O5.36 single crystal has been studied. The magnetic properties of the single crystal and the polycrystalline sample of the corresponding composition are compared in the range T = 200-650 K. The results show that the cobalt-deficient EuBaCo2- x O5.5-δ samples demonstrate a three-dimensional XY ferromagnetic ordering of magnetic sublattices. The values of the effective magnetic moment at T > 480 K indicate the existence of the IS and HS states of Co3+ ions. The large difference of values of μeff of the EuBaCo1.90O5.36 single crystal and polycrystal can be due to that the magnetic ion spins lie in plane ab. The magnetic field directed along plane ab substantially influences the magnetic ordering at T < 300 K.

  6. MAGNETIC PROPERTIES OF TWO-LAYERS FILMS,

    DTIC Science & Technology

    DATA STORAGE SYSTEMS, METAL FILMS), (*THIN FILM STORAGE DEVICES, MAGNETIC PROPERTIES ), VAPOR PLATING, VACUUM APPARATUS, NICKEL ALLOYS, IRON ALLOYS, COBALT ALLOYS, ANISOTROPY, MULTIPLE OPERATION, USSR

  7. Estimation Model for Magnetic Properties of Stamped Electrical Steel Sheet

    NASA Astrophysics Data System (ADS)

    Kashiwara, Yoshiyuki; Fujimura, Hiroshi; Okamura, Kazuo; Imanishi, Kenji; Yashiki, Hiroyoshi

    Less deterioration in magnetic properties of electrical steel sheets in the process of stamping out iron-core are necessary in order to maintain its performance. First, the influence of plastic strain and stress on magnetic properties was studied by test pieces, in which plastic strain was added uniformly and residual stress was not induced. Because the influence of plastic strain was expressed by equivalent plastic strain, at each equivalent plastic strain state the influence of load stress was investigated. Secondly, elastic limit was determined about 60% of macroscopic yield point (MYP), and it was found to agree with stress limit inducing irreversible deterioration in magnetic properties. Therefore simulation models, where beyond elastic limit plastic deformation begins and magnetic properties are deteriorated steeply, are proposed. Besides considered points in the deformation analysis are strain-rate sensitivity of flow stress, anisotropy under deformation, and influence of stress triaxiality on fracture. Finally, proposed models have been shown to be valid, because magnetic properties of 5mm width rectangular sheets stamped out from non-oriented electrical steel sheet (35A250 JIS grade) can be estimated with good accuracy. It is concluded that the elastic limit must be taken into account in both stamping process simulation and magnetic field calculation.

  8. Effect of magnetic field on the physical properties of water

    NASA Astrophysics Data System (ADS)

    Wang, Youkai; Wei, Huinan; Li, Zhuangwen

    2018-03-01

    In this study, the effect of magnetic field (MF) on the partial physical properties of water are reported, tap water (TW) and 4 types of magnetized water (MW) were measured in the same condition. It was found that the properties of TW were changed following the MF treatment, shown as the increase of evaporation amount, the decrease of specific heat and boiling point after magnetization, the changes depend on the magnetization effect. In addition, magnetic field strength (MFS) has a marked influence on the magnetization effect, the optimal magnetizing condition was determined as the MFS of 300 mT. The findings of this study offered a facile approach to improve cooling and power generation efficiency in industrial.

  9. Anisotropic Mechanical Properties of Magnetically Aligned Fibrin Gels Measured by Magnetic Resonance Elastography

    PubMed Central

    Namani, Ravi; Wood, Matthew D.; Sakiyama-Elbert, Shelly E.; Bayly, Philip V.

    2009-01-01

    The anisotropic mechanical properties of magnetically aligned fibrin gels were measured by magnetic resonance elastography (MRE) and by a standard mechanical test: unconfined compression. Soft anisotropic biomaterials are notoriously difficult to characterize, especially in vivo. MRE is well-suited for efficient, non-invasive, and nondestructive assessment of shear modulus. Direction-dependent differences in shear modulus were found to be statistically significant for gels polymerized at magnetic fields of 11.7T and 4.7T compared to control gels. Mechanical anisotropy was greater in the gels polymerized at the higher magnetic field. These observations were consistent with results from unconfined compression tests. Analysis of confocal microscopy images of gels showed measurable alignment of fibrils in gels polymerized at 11.7T. This study provides direct, quantitative measurements of the anisotropy in mechanical properties that accompanies fibril alignment in fibrin gels. PMID:19656516

  10. Proton Magnetic Form Factor from Existing Elastic e-p Cross Section Data

    NASA Astrophysics Data System (ADS)

    Ou, Longwu; Christy, Eric; Gilad, Shalev; Keppel, Cynthia; Schmookler, Barak; Wojtsekhowski, Bogdan

    2015-04-01

    The proton magnetic form factor GMp, in addition to being an important benchmark for all cross section measurements in hadron physics, provides critical information on proton structure. Extraction of GMp from e-p cross section data is complicated by two-photon exchange (TPE) effects, where available calculations still have large theoretical uncertainties. Studies of TPE contributions to e-p scattering have observed no nonlinear effects in Rosenbluth separations. Recent theoretical investigations show that the TPE correction goes to 0 when ɛ approaches 1, where ɛ is the virtual photon polarization parameter. In this talk, existing e-p elastic cross section data are reanalyzed by extrapolating the reduced cross section for ɛ approaching 1. Existing polarization transfer data, which is supposed to be relatively immune to TPE effects, are used to produce a ratio of electric and magnetic form factors. The extrapolated reduced cross section and polarization transfer ratio are then used to calculate GEp and GMp at different Q2 values.

  11. The low temperature specific heat and electrical transport, magnetic properties of Pr0.65Ca0.35MnO3

    NASA Astrophysics Data System (ADS)

    Han, Zhiyong

    2017-02-01

    The magnetic properties, electrical transport properties, and low temperature specific heat of polycrystalline perovskite manganese oxide Pr0.65Ca0.35MnO3 have been investigated experimentally. It is found that there exists cluster glass state in the sample at low temperature besides the antiferromagnetic insulating state. With the increase of magnetic field, antiferromagnetic insulating state converts to ferromagnetic metal state and the Debye temperature decreases gradually. In addition, the low temperature electron specific heat in zero magnetic field is obviously larger than that of ordinary rare-earth manganites oxide and this phenomenon is related to the itinerant electrons in ferromagnetic cluster state and the disorder in Pr0.65Ca0.35MnO3.

  12. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    PubMed Central

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

  13. Transport and magnetic properties in topological materials

    NASA Astrophysics Data System (ADS)

    Liang, Tian

    The notion of topology has been the central topic of the condensed matter physics in recent years, ranging from 2D quantum hall (QH) and quantum spin hall (QSH) states, 3D topological insulators (TIs), topological crystalline insulators (TCIs), 3D Dirac/Weyl semimetals, and topological superconductors (TSCs) etc. The key notion of the topological materials is the bulk edge correspondence, i.e., in order to preserve the symmetry of the whole system (bulk+edge), edge states must exist to counter-compensate the broken symmetry of the bulk. Combined with the fact that the bulk is topologically protected, the edge states are robust due to the bulk edge correspondence. This leads to interesting phenomena of chiral edge states in 2D QH, helical edge states in 2D QSH, "parity anomaly'' (time reversal anomaly) in 3D TI, helical edge states in the mirror plane of TCI, chiral anomaly in Dirac/Weyl semimetals, Majorana fermions in the TSCs. Transport and magnetic properties of topological materials are investigated to yield intriguing phenomena. For 3D TI Bi1.1Sb0.9Te 2S, anomalous Hall effect (AHE) is observed, and for TCI Pb1-x SnxSe, Seebeck/Nernst measurements reveal the anomalous sign change of Nernst signals as well as the massive Dirac fermions. Ferroelectricity and pressure measurements show that TCI Pb1-xSnxTe undergoes quantum phase transition (QPT) from trivial insulator through Weyl semimetal to anomalous insulator. Dirac semimetals Cd3As2, Na 3Bi show interesting results such as the ultrahigh mobility 10 7cm2V-1s-1 protected from backscattering at zero magnetic field, as well as anomalous Nernst effect (ANE) for Cd3As2, and the negative longitudinal magnetoresistance (MR) due to chiral anomaly for Na3Bi. In-plane and out-of-plane AHE are observed for semimetal ZrTe5 by in-situ double-axes rotation measurements. For interacting system Eu2Ir2O7, full angle torque magnetometry measurements reveal the existence of orthogonal magnetization breaking the symmetry of

  14. Low-temperature magnetic properties of greigite (Fe3S4)

    NASA Astrophysics Data System (ADS)

    Chang, Liao; Roberts, Andrew P.; Rowan, Christopher J.; Tang, Yan; Pruner, Petr; Chen, Qianwang; Horng, Chorng-Shern

    2009-01-01

    We provide comprehensive low-temperature magnetic results for greigite (Fe3S4) across the spectrum from superparamagnetic (SP) to multidomain (MD) behavior. It is well known that greigite has no low-temperature magnetic transitions, but we also document that it has strong domain-state dependence of magnetic properties at low temperatures. Blocking of SP grains and increasing thermal stability with decreasing temperature is apparent in many magnetic measurements. Thermally stable single-domain greigite undergoes little change in magnetic properties below room temperature. For pseudo-single-domain (PSD)/MD greigite, hysteresis properties and first-order reversal curve diagrams exhibit minor changes at low temperatures, while remanence continuously demagnetizes because of progressive domain wall unpinning. The low-temperature demagnetization is grain size dependent for PSD/MD greigite, with coarser grains undergoing larger remanence loss. AC susceptibility measurements indicate consistent blocking temperatures (TB) for all synthetic and natural greigite samples, which are probably associated with surficial oxidation. Low-temperature magnetic analysis provides much more information about magnetic mineralogy and domain state than room temperature measurements and enables discrimination of individual components within mixed magnetic mineral assemblages. Low-temperature rock magnetometry is therefore a useful tool for studying magnetic mineralogy and granulometry of greigite-bearing sediments.

  15. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    USGS Publications Warehouse

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  16. Properties and applications of submicron magnetic structures

    NASA Astrophysics Data System (ADS)

    Silevitch, Daniel Marc

    The interactions between an array of magnetic dots and a superconducting thin film were studied using transport measurements and magnetic imaging. The transport measurements examined the enhancement in the pinning of flux vortices when the vortex lattice was commensurate with the dot array. The degradation of the pinning enhancement due to the controlled introduction of disorder into the dot lattice was studied. Enhanced pinning was observed to persist in disordered arrays when the vortex lattice had the same density as the dot lattice. When the vortex density was an integral multiple of the dot lattice density, the enhanced pinning was suppressed with increasing disorder. Magnetic imaging was carried out on superconductors with ordered arrays of pinning sites. The vortices were observed to form regions of local order even when the vortex density was less than the dot density. There were also a significant number of vortices pinned in the interstitials of the dot lattice, indicating that the pinning potential is comparable in strength to the inter-vortex repulsion. The transport properties of ferromagnetic nanowires were also investigated. The behavior of straight nanowires was studied as a function of the magnitude and angle of the applied magnetic field. A model was developed for the magnetization behavior of the nanowire which reproduced the observed transport properties. The magnetic reversal properties were examined and found to be consistent with the curling mode of reversal, and an estimate for the initial nucleation volume was obtained. This behavior was compared to the behavior of mechanically bent nanowires. The bent wires were qualitatively similar to two independent straight wires. The bent wires, however, also showed interaction effects due to the domain configuration that had an effect on the magnetization behavior. An estimate for the energy barrier of nucleating a domain wall in a nanowire was derived from these interaction effects. A resistance

  17. Properties of Magnetic Reconnection as a function of magnetic shear

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Daughton, W. S.; Karimabadi, H.; Li, H.; Gary, S. P.; Guo, F.

    2013-12-01

    Observations of reconnection events at the Earth's magnetopause and in the solar wind show that reconnection occurs for a large range in magnetic shear angles extending to the very low shear limit 1. Here we report a fully kinetic study of the influence of the magnetic shear on details of reconnection such as its structure and rate. In previous work, we found that the electron diffusion region bifurcates into two or more distinct layers in regimes with weak magnetic shear2, a new feature that may be observable by NASA's up-coming Magnetospheric Multiscale mission. In this work, we have systematically extended the study to lower shear cases and found a new regime, where the reconnection electric field becomes much smaller and the properties of the reconnection changes significantly. We will discuss the role of various physics mechanisms in determining the observed scaling of the reconnection rate, including the dispersive properties of the waves in the system, the dissipation mechanisms and the tearing instability. 1 J. T. Goslings and T. D. Phan. APJL 763, L39, 2013 2 Yi-Hsin Liu et al. Phys. Rev. Lett. 110 , 265004, 2013

  18. Conditions for the existence of Kelvin-Helmholtz instability in a CME

    NASA Astrophysics Data System (ADS)

    Páez, Andrés; Jatenco-Pereira, Vera; Falceta-Gonçcalves, Diego; Opher, Merav

    The presence of Kelvin-Helmholtz instability (KHI) in the sheaths of Coronal Mass Ejections (CMEs) has been proposed and observed by several authors in the literature. In the present work, we assume their existence and propose a method to constrain the local properties, like the CME magnetic field intensity for the development of KHI. We study a CME in the initiation phase interacting with the slow solar wind (Zone I) and with the fast solar wind (Zone II). Based on the theory of magnetic KHI proposed by Chandrasekhar (1961) we found the radial heliocentric interval for the KHI existence, in particular we constrain it with the CME magnetic field intensity. We conclude that KHI may exist in both CME Zones but it is perceived that Zone I is more appropriated for the KHI formation.

  19. Magnetic properties of ZnO nanoparticles.

    PubMed

    Garcia, M A; Merino, J M; Fernández Pinel, E; Quesada, A; de la Venta, J; Ruíz González, M L; Castro, G R; Crespo, P; Llopis, J; González-Calbet, J M; Hernando, A

    2007-06-01

    We experimentally show that it is possible to induce room-temperature ferromagnetic-like behavior in ZnO nanoparticles without doping with magnetic impurities but simply inducing an alteration of their electronic configuration. Capping ZnO nanoparticles ( approximately 10 nm size) with different organic molecules produces an alteration of their electronic configuration that depends on the particular molecule, as evidenced by photoluminescence and X-ray absorption spectroscopies and altering their magnetic properties that varies from diamagnetic to ferromagnetic-like behavior.

  20. Spacer layer thickness dependent structural and magnetic properties of Co/Si multilayers

    NASA Astrophysics Data System (ADS)

    Roy, Ranjan; Singh, Dushyant; Kumar, M. Senthil

    2018-05-01

    In this article, the study of high resolution x-ray diffraction and magnetization of sputter deposited Co/Si multilayer is reported. Multilayers are prepared at ambient temperature by dc magnetron sputtering. Structural properties are studied by high resolution x-ray diffraction. Magnetic properties are studied at room temperature by vibrating sample magnetometer. Structural properties show that the Co layer is polycrystalline and the Si layer is amorphous. The magnetization study indicates that the samples are soft ferromagnetic in nature. The study of magnetization also shows that the easy axis of magnetization lies in the plane of the film.

  1. Magnetic Properties of Bermuda Rise Sediments Controlled by Glacial Cycles During the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Roud, S.

    2015-12-01

    Sediments from ODP site 1063 (Bermuda Rise, North Atlantic) contain a high-resolution record of geomagnetic field behavior during the Brunhes Chron. We present rock magnetic data of the upper 160 mcd (<900 ka) from hole 1063D that show magnetic properties vary in concert with glacial cycles. Magnetite appears to be the main magnetic carrier in the carbonate-dominated interglacial horizons, yet exhibits contrasting grain size distributions depending on the redox state of the horizons. Higher contributions of single domain magnetite exist above the present day sulfate reduction zone (ca. 44 mcd) with relatively higher multidomain magnetite components below that likely arise from the partial dissolution of SD magnetite in the deeper, anoxic horizons. Glacial horizons on the other hand, characterized by enhanced terrigenous deposition, show no evidence for diagenetic dissolution but do indicate the presence of authigenic greigite close to glacial maxima (acquisition of gyro-remanence, strong magnetostatic interactions and SD properties). Glacial horizons contain hematite (maxima in HIRM and S-Ratio consistent with a reddish hue) and exhibit higher ARM anisotropy and pronounced sedimentary fabrics. We infer that post depositional processes affected the magnetic grain size and mineralogy of Bermuda rise sediments deposited during the late Pleistocene. Hematite concentration is interpreted to reflect primary terrigenous input that is likely derived from the Canadian Maritime Provinces. A close correlation between HIRM and magnetic foliation suggests that changes in sediment composition (terrigenous vs. marine biogenic) were accompanied by changes in the depositional processes at the site.

  2. Re-creation of single phase, and improvement of magnetic property of CoFe2O4 nanoparticles versus heat treatment

    NASA Astrophysics Data System (ADS)

    Tran, N.; Kim, D. H.; Phan, T. L.; Dang, N. T.; Bach, T. N.; Manh, D. H.; Lee, B. W.

    2018-03-01

    Our studies on the crystal characterization and magnetic property of CoFe2O4 nanoparticles (NPs) point out their instability in a specific temperature range. While as-prepared NPs exhibit single phase in a cubic spinel structure, annealing at temperatures T=673-1273 K leads to the development of an impurity phase of Fe2O3. Interestingly, annealing at higher temperatures re-creates the single phase of NPs. This strongly influences their magnetic property. The magnetic inhomogeneity and/or multiple phase exist in as-prepared NPs and in those annealed below 1273 K, better magnetic property is found in the samples with annealing temperature (Tan) higher than 1273 K. Ferromagnetic-paramagnetic phase transition temperatures of these samples are located around 815-850 K, and are less dependent on Tan. At room temperature, their saturation magnetization is located in the range of 41-55 emu/g, while the coercivity can be changed from 600 to 3200 Oe. These results are related to microstructures, structural phases, and exchange interactions between Fe and Co ions situated in the A and B sites of the spinel structure, which are modified by heat treatment.

  3. Environmental Magnetism and Geochemical Properties of Urban Soils from Baton Rouge, Louisiana: Implications for Anthropogenic Pollution Monitoring

    NASA Astrophysics Data System (ADS)

    Richter, C.; Taylor, D.; Schramm, W.; Day, L.; Vedrines, H.

    2016-12-01

    Magnetic properties (susceptibility and SIRM) of urban soils have been shown to be very effective tracers of anthropogenic pollution. They provide a highly sensitive and easily obtainable measurement of the compositional changes of the mineral and chemical composition in soils. The main objective of this study is to detect the presence of magnetic anthropogenic particles related to environmental pollution by measuring the magnetic signature of soil samples and relating it to heavy metal concentrations obtained by XRF analysis. For this large-scale study carried out over the past eight years, we sampled an area of 260 km2 in and around Baton Rouge, Louisiana, with a total of 257 sites, 5140 individual susceptibility measurements obtained with a hand-held field probe, and 514 discrete samples for laboratory analysis of SIRM, susceptibility, and XRF analysis. In this area rural, industrial, metropolitan, and suburban settings exist in close proximity and allow for the direct comparison of results without significant changes in pedological, climatic, or the bedrock, which influence the magnetic properties. Contour maps and histograms indicate a strong correlation between the magnetic susceptibility, SIRM, and the environmental setting, with the mode of the susceptibility shifting from 0.006x10-3 SI in rural areas to 0.273x10-3 SI in the industrialized parts of the city. The industrialized western area of Baton Rouge especially shows significantly enhanced magnetic properties. For selected sites we determined the concentrations of Mo, Zr, Sr, Ba, U, Rb, Th, Pb, Au, Se, As, Hg, Zn, W, Cu, Cr, Ni, Co, Fe, and Mn with an XRF scanner. A linear correlation between magnetic susceptibility and U, Ba, Cr, Pb, Th, and Zn is statistically significant and suggests that anthropogenic input of heavy metals has a significant influence on magnetic properties. Detailed rock magnetic, geochemical, and statistical analysis will be presented and used, together with soil maps and land

  4. Hygroscopic properties of magnetic recording tape

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1976-01-01

    Relative humidity has been recognized as an important environmental factor in many head-tape interface phenomena such as headwear, friction, staining, and tape shed. Accordingly, the relative humidity is usually specified in many applications of tape use, especially when tape recorders are enclosed in hermetically sealed cases. Normally, the relative humidity is believed regulated by humidification of the fill gas to the specification relative humidity. This study demonstrates that the internal relative humidity in a sealed case is completely controlled by the time-dpendence of the hygroscopic properties of the pack of magnetic recording tape. Differences are found in the hygroscopic properties of the same brand of tape, which apparently result from aging, and which may have an effect on the long-term humidity-regulating behavior in a sealed case, and on the occurrence of head-tape interface phenomena from the long-term use of the tape. Results are presented on the basic hygroscopic properties of magnetic tape, its humidity-regulating behavior in a sealed case, and a theoretical commentary on the relative humidity dependence of head-wear by tape, is included.

  5. Investigation of the electronic, magnetic and optical properties of newest carbon allotrope

    NASA Astrophysics Data System (ADS)

    Kazemi, Samira; Moradian, Rostam

    2018-05-01

    We investigate triple properties of monolayer pentagon graphene that include electronic, magnetic and optical properties based on density functional theory (DFT). Our results show that in the electronic and magnetic properties this structure with a direct energy gap of about 2.2 eV along Γ - Γ direction and total magnetic moment of 0.0013 μB per unit cell is almost a non-magnetic semiconductor. Also, its optical properties show that if this allotrope used in solar cell technology, its efficiency in the low energy will be better, because, in the range of energy, its loss energy function and reflectivity will be minimum.

  6. Magnetic and electrical transport properties of the pyrochlore iridate Bi2-xCoxIr2O7

    NASA Astrophysics Data System (ADS)

    Feng, Yuan; Zhu, Shoujin; Bian, Jian; Chen, Feng; Chen, Shiyun; Ma, Cuiling; Liu, Hui; Fang, Baolong

    2018-04-01

    In the present paper, we have studied the magnetic order and electrical transport properties of frustrated magnet Bi2-xCoxIr2O7 (x = 0, 0.2, 0.4, 0.6) polycrystalline. The behavior of the electrical resistivity above 50 K in the composites emanate from the electron-electron scattering processes. Grain boundary effects play a dominant role in the conduction process. It is also found from M-T data that the antiferromagnetic interaction and frustration enhances with increasing content of Co. Effective magnetic moments show a possibility of mixed valence state of Co (Co3+ and Co4+). The M-H data of doped samples taken at 2 K show hysteresis loops, which suggests the existence of ferromagnetic interaction originated from canted antiferromagnetic state. The magnetic behavior results from the competition between ferromagnetic and antiferromagnetic interaction at each magnetic site.

  7. Remanent magnetic properties of unbrecciated eucrites

    NASA Technical Reports Server (NTRS)

    Cisowski, Stanley M.

    1991-01-01

    This study examines the remanent magnetic properties of five unbrecciated eucrites, ranging from the coarse-grained cumulate Moore County to the quenched melt rock ALH 81001 in order to assess the strength of the magnetic field associated with their parent body during their formation. Two of the meteorites are judged as unlikely to have preserved their primary thermal remanence because of large variations in subsample remanence intensity and direction (Ibitira), and lack of NRM resistance to AF and thermal demagnetization (PCA 82502). The lack of a strong (greater than 0.01 mT) magnetizing field during their cooling on the eucrite parent body is inferred from the low normalized NRM intensities for subsamples of ALH 81001 and Yamato 791195.

  8. Electrical Machines Laminations Magnetic Properties: A Virtual Instrument Laboratory

    ERIC Educational Resources Information Center

    Martinez-Roman, Javier; Perez-Cruz, Juan; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Roger-Folch, Jose; Riera-Guasp, Martin; Sapena-Baño, Angel

    2015-01-01

    Undergraduate courses in electrical machines often include an introduction to their magnetic circuits and to the various magnetic materials used in their construction and their properties. The students must learn to be able to recognize and compare the permeability, saturation, and losses of these magnetic materials, relate each material to its…

  9. Thermal to electricity conversion using thermal magnetic properties

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  10. Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties.

    PubMed

    de la Fuente, Jesús M; Alcántara, David; Eaton, Peter; Crespo, Patricia; Rojas, Teresa C; Fernandez, Asunción; Hernando, Antonio; Penadés, Soledad

    2006-07-06

    The preparation, characterization and the magnetic properties of gold and gold-iron oxide glyconanoparticles (GNPs) are described. Glyconanoparticles were prepared in a single step procedure in the presence of aqueous solution of thiol functionalized neoglycoconjugates and either gold salts or both gold and iron salts. Neoglycoconjugates of lactose and maltose disaccharides with different linkers were used. Iron-free gold or gold-iron oxide GNPs with controlled gold-iron ratios were obtained. The average core-size diameters are in the range of 1.5-2.5 nm. The GNPs are fully characterized by (1)H NMR spectrometry, transmission electron microscopy (TEM), and UV-vis and X-ray absorption (XAS) spectroscopies. Inductive plasma-atomic emission spectrometry (ICP) and elemental analysis gave the average number of neoglycoconjugates per cluster. The magnetic properties were measured in a SQUID magnetometer. The most remarkable results was the observation of a permanent magnetism up to room temperature in the iron-free gold GNPs, that was not present in the corresponding gold-iron oxide GNPs.

  11. Tailoring magnetic properties of Co nanocluster assembled films using hydrogen

    NASA Astrophysics Data System (ADS)

    Romero, C. P.; Volodin, A.; Paddubrouskaya, H.; Van Bael, M. J.; Van Haesendonck, C.; Lievens, P.

    2018-07-01

    Tailoring magnetic properties in nanocluster assembled cobalt (Co) thin films was achieved by admitting a small percentage of H2 gas (∼2%) into the Co gas phase cluster formation chamber prior to deposition. The oxygen content in the films is considerably reduced by the presence of hydrogen during the cluster formation, leading to enhanced magnetic interactions between clusters. Two sets of Co samples were fabricated, one without hydrogen gas and one with hydrogen gas. Magnetic properties of the non-hydrogenated and the hydrogen-treated Co nanocluster assembled films are comparatively studied using magnetic force microscopy and vibrating sample magnetometry. When comparing the two sets of samples the considerably larger coercive field of the H2-treated Co nanocluster film and the extended micrometer-sized magnetic domain structure confirm the enhancement of magnetic interactions between clusters. The thickness of the antiferromagnetic CoO layer is controlled with this procedure and modifies the exchange bias effect in these films. The exchange bias shift is lower for the H2-treated Co nanocluster film, which indicates that a thinner antiferromagnetic CoO reduces the coupling with the ferromagnetic Co. The hydrogen-treatment method can be used to tailor the oxidation levels thus controlling the magnetic properties of ferromagnetic cluster-assembled films.

  12. REVIEWS OF TOPICAL PROBLEMS: Properties of matter in ultrahigh magnetic fields and the structure of the surface of neutron stars

    NASA Astrophysics Data System (ADS)

    Liberman, Mikhail A.; Johansson, B.

    1995-02-01

    The physical properties of atoms, molecules, and solids in ultrahigh magnetic fields B gg 109 G that are believed to exist on the surface of neutron stars are discussed. In these fields, atoms are strongly deformed and elongated along the magnetic field lines; the binding energy and ionizing energy of the atoms are substantially increased and the interatomic interaction is dramatically changed. This strongly modifies the properties of matter at the surface of magnetic neutron stars which are crucial for modelling the pulsar magnetosphere. A scenario for magnetosphere evolution is proposed which suggests free emission for a young pulsar and strong binding of the matter to the surface at a later stage. This later stage is due to strongly bound chains of alternate heavy atoms and light atoms accreted on the surface of the star.

  13. Determining the Magnetic Properties of 1 kg Mass Standards

    PubMed Central

    Davis, Richard S.

    1995-01-01

    Magnetic interactions may lead to errors in precision mass metrology. An analytical description of such magnetic errors is presented in which the roles of both the volume magnetic susceptibility and permanent magnetization are discussed. The same formalism is then used to describe in detail the calibration and operation of a susceptometer developed at the Bureau International des Poids et Mesures (BIPM). The device has been optimized for the determination of the magnetic properties of 1 kg mass standards. PMID:29151735

  14. Direct observation of local magnetic properties in strain engineered lanthanum cobaltate thin films

    NASA Astrophysics Data System (ADS)

    Park, S.; Wu, Weida; Freeland, J. W.; Ma, J. X.; Shi, J.

    2009-03-01

    Strain engineered thin film devices with emergent properties have significant impacts on both technical application and material science. We studied strain-induced modification of magnetic properties (Co spin state) in epitaxially grown lanthanum cobaltate (LaCoO3) thin films with a variable temperature magnetic force microscopy (VT-MFM). The real space observation confirms long range magnetic ordering on a tensile-strained film and non-magnetic low-spin configuration on a low-strained film at low temperature. Detailed study of local magnetic properties of these films under various external magnetic fields will be discussed. Our results also demonstrate that VT-MFM is a very sensitive tool to detect the nanoscale strain induced magnetic defects.

  15. Focused-ion-beam induced interfacial intermixing of magnetic bilayers for nanoscale control of magnetic properties.

    PubMed

    Burn, D M; Hase, T P A; Atkinson, D

    2014-06-11

    Modification of the magnetic properties in a thin-film ferromagnetic/non-magnetic bilayer system by low-dose focused ion-beam (FIB) induced intermixing is demonstrated. The highly localized capability of FIB may be used to locally control magnetic behaviour at the nanoscale. The magnetic, electronic and structural properties of NiFe/Au bilayers were investigated as a function of the interfacial structure that was actively modified using focused Ga(+) ion irradiation. Experimental work used MOKE, SQUID, XMCD as well as magnetoresistance measurements to determine the magnetic behavior and grazing incidence x-ray reflectivity to elucidate the interfacial structure. Interfacial intermixing, induced by low-dose irradiation, is shown to lead to complex changes in the magnetic behavior that are associated with monotonic structural evolution of the interface. This behavior may be explained by changes in the local atomic environment within the interface region resulting in a combination of processes including the loss of moment on Ni and Fe, an induced moment on Au and modifications to the spin-orbit coupling between Au and NiFe.

  16. Magnetic properties of Surabaya river sediments, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Mariyanto, Bijaksana, Satria

    2017-07-01

    Surabaya river is one of urban rivers in East Java Province, Indonesia that is a part of Brantas river that flows in four urban and industrial cities of Mojokerto, Gresik, Sidoarjo, and Surabaya. The urban populations and industries along the river pose serious threat to the river mainly for their anthropogenic pollutants. This study aims to characterize the magnetic properties of sediments in various locations along Surabaya river and correlate these magnetic properties to the level of pollution along the river. Samples are taken and measured through a series of magnetic measurements. The mass-specific magnetic susceptibility of sediments ranges from 259.4 to 1134.8 × 10-8 m3kg-1. The magnetic minerals are predominantly PSD to MD magnetite with the grain size range from 6 to 14 μm. The mass-specific magnetic susceptibility tends to decreases downstream as accumulation of magnetic minerals in sediments is affected not only by the amount of household and industrial wastes but also by sediment dredging, construction of embankments, and extensive erosion arround the river. Sediments located in the industrial zone on the upstream area tend to have higher mass-specific magnetic susceptibility than in the non-industrial zones on the downstream area.

  17. Burnt clay magnetic properties and palaeointensity determination

    NASA Astrophysics Data System (ADS)

    Avramova, Mariya; Lesigyarski, Deyan

    2014-05-01

    Burnt clay structures found in situ are the most valuable materials for archaeomagnetic studies. From these materials the full geomagnetic field vector described by inclination, declination and intensity can be retrieved. The reliability of the obtained directional results is related to the precision of samples orientation and the accuracy of characteristic remanence determination. Palaeointensity evaluations depend on much more complex factors - stability of carried remanent magnetization, grain-size distribution of magnetic particles and mineralogical transformations during heating. In the last decades many efforts have been made to shed light over the reasons for the bad success rate of palaeointensity experiments. Nevertheless, sometimes the explanation of the bad archaeointensity results with the magnetic properties of the studied materials is quite unsatisfactory. In order to show how difficult is to apply a priory strict criteria for the suitability of a given collection of archaeomagnetic materials, artificial samples formed from four different baked clays are examined. Two of the examined clay types were taken from clay deposits from different parts of Bulgaria and two clays were taken from ancient archaeological baked clay structures from the Central part of Bulgaria and the Black sea coast, respectively. The samples formed from these clays were repeatedly heated in known magnetic field to 700oC. Different analyses were performed to obtain information about the mineralogical content and magnetic properties of the samples. The obtained results point that all clays reached stable magnetic mineralogy after the repeated heating to 700oC, the main magnetic mineral is of titano/magnetite type and the magnetic particles are predominantly with pseudo single domain grain sizes. In spite that, the magnetic properies of the studied clays seem to be very similar, reliable palaeointensity results were obtained only from the clays coming from clay deposits. The

  18. Magnetic and electric control of multiferroic properties in monodomain crystals of BiFeO3

    NASA Astrophysics Data System (ADS)

    Tokunaga, Masashi

    One of the important goals for multiferroics is to develop the non-volatile magnetic memories that can be controlled by electric fields with low power consumption. Among numbers of multiferroic materials, BiFeO3 has been the most extensively studied because of its substantial ferroelectric polarization and magnetic order up to above room temperature. Recent high field experiments on monodomain crystals of BiFeO3 revealed the existence of additional electric polarization normal to the three-fold rotational axis. This transverse component is coupled with the cycloidal magnetic domain, and hence, can be controlled by external magnetic fields. Application of electric fields normal to the trigonal axis modifies volume fraction of these multiferroic domains, which involves change in resistance of the sample, namely exhibits the bipolar resistive memory effect. In this talk, I will introduce the effects of magnetic and electric fields on magnetoelectric and structural properties observed in monodomain crystals of BiFeO3. This work was supported by JSPS Grant Number 16K05413 and by a research Grant from The Murata Science Foundation.

  19. EXIST Perspective for SFXTs

    NASA Astrophysics Data System (ADS)

    Ubertini, Pietro; Sidoli, L.; Sguera, V.; Bazzano, A.

    2009-12-01

    Supergiant Fast X-ray Transients (SFXTs) are one of the most interesting (and unexpected) results of the INTEGRAL mission. They are a new class of HMXBs displaying short hard X-ray outbursts (duration less tha a day) characterized by fast flares (few hours timescale) and large dinamic range (10E3-10E4). The physical mechanism driving their peculiar behaviour is still unclear and highly debated: some models involve the structure of the supergiant companion donor wind (likely clumpy, in a spherical or non spherical geometry) and the orbital properties (wide separation with eccentric or circular orbit), while others involve the properties of the neutron star compact object and invoke very low magnetic field values (B < 1E10 G) or alternatively very high (B>1E14 G, magnetars). The picture is still highly unclear from the observational point of view as well: no cyclotron lines have been detected in the spectra, thus the strength of the neutron star magnetic field is unknown. Orbital periods have been measured in only 4 systems, spanning from 3.3 days to 165 days. Even the duty cycle seems to be quite different from source to source. The Energetic X-ray Imaging Survey Telescope (EXIST), with its hard X-ray all-sky survey and large improved limiting sensitivity, will allow us to get a clearer picture of SFXTs. A complete census of their number is essential to enlarge the sample. A long term and continuous as possible X-ray monitoring is crucial to -(1) obtain the duty cycle, -(2 )investigate their unknown orbital properties (separation, orbital period, eccentricity),- (3) to completely cover the whole outburst activity, (4)-to search for cyclotron lines in the high energy spectra. EXIST observations will provide crucial informations to test the different models and shed light on the peculiar behaviour of SFXTs.

  20. 13 CFR 120.922 - Pre-existing debt on the Project Property.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Pre-existing debt on the Project Property. 120.922 Section 120.922 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Development Company Loan Program (504) Third Party Loans § 120.922 Pre-existing debt on the...

  1. Effect of multi-element addition of Alnico alloying elements on structure and magnetic properties of SmCo5-based ribbons

    NASA Astrophysics Data System (ADS)

    Bian, Lu-peng; Li, Ying; Han, Xu-hao; Cheng, Jin-yun; Qin, Xiao-ning; Zhao, Yan-qiu; Sun, Ji-bing

    2018-02-01

    New SmCo5 + x wt% Alnico composite ribbons melt-spun at 40 m/s are designed by multi-element addition of Alnico alloy into SmCo5 matrix, and their structure and magnetic properties are investigated. The results show that the main phase in x ≤ 2.5 ribbons is Sm(Co,M)5, whereas the main phase changes into Sm(Co,M)7 at x = 4.0-8.5, and simultaneously that the content of Al-rich and amorphous phases increases with increasing x. The hard magnetic properties of the ribbons are found to improve with an increase in Alnico content, and particularly the average magnetic properties reach maximum, i.e., Hc = 19.6 ± 1.2 kOe, Mr = 47.7 ± 3.4 emu/g and M2T = 59.1 ± 5.6 emu/g, at x = 4.0. The main reasons for such improvement are that the finer grains divided by three grain boundaries exist in main phase, the dispersed Al-Ni and Al-Co-rich phases distribute in grains and grain boundaries, and the Fe-rich Alnico alloying elements dissolve into Sm(Co,M)7 matrix phase. However, when x > 4.0, the gradually increasing Al-Co and amorphous phases lead to the reduction of hard magnetic properties.

  2. Dinuclear lanthanide complexes based on amino alcoholate ligands: Structure, magnetic and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Sun, Gui-Fang; Zhang, Cong-Ming; Guo, Jian-Ni; Yang, Meng; Li, Li-Cun

    2017-05-01

    Two binuclear lanthanide complexes [Ln2(hfac)6(HL)2] (LnIII = Dy(1), Tb(2); hfac = hexafluoroacetylacetonate, HL = (R)-2-amino-2-phenylethanol) have been successfully obtained by using amino alcoholate ligand. In two complexes, the Ln(III) ions are bridged by two alkoxido groups from HL ligands, resulting in binuclear complexes. The variable-temperature magnetic susceptibility studies indicate that there exists ferromagnetic interaction between two Ln(III) ions. Frequency dependent out-of-phase signals are observed for complex 1, suggesting SMM type behavior. Complexes 1 and 2 display intensely characteristic luminescent properties.

  3. Magnetic properties and energy-mapping analysis.

    PubMed

    Xiang, Hongjun; Lee, Changhoon; Koo, Hyun-Joo; Gong, Xingao; Whangbo, Myung-Hwan

    2013-01-28

    The magnetic energy levels of a given magnetic solid are closely packed in energy because the interactions between magnetic ions are weak. Thus, in describing its magnetic properties, one needs to generate its magnetic energy spectrum by employing an appropriate spin Hamiltonian. In this review article we discuss how to determine and specify a necessary spin Hamiltonian in terms of first principles electronic structure calculations on the basis of energy-mapping analysis and briefly survey important concepts and phenomena that one encounters in reading the current literature on magnetic solids. Our discussion is given on a qualitative level from the perspective of magnetic energy levels and electronic structures. The spin Hamiltonian appropriate for a magnetic system should be based on its spin lattice, i.e., the repeat pattern of its strong magnetic bonds (strong spin exchange paths), which requires one to evaluate its Heisenberg spin exchanges on the basis of energy-mapping analysis. Other weaker energy terms such as Dzyaloshinskii-Moriya (DM) spin exchange and magnetocrystalline anisotropy energies, which a spin Hamiltonian must include in certain cases, can also be evaluated by performing energy-mapping analysis. We show that the spin orientation of a transition-metal magnetic ion can be easily explained by considering its split d-block levels as unperturbed states with the spin-orbit coupling (SOC) as perturbation, that the DM exchange between adjacent spin sites can become comparable in strength to the Heisenberg spin exchange when the two spin sites are not chemically equivalent, and that the DM interaction between rare-earth and transition-metal cations is governed largely by the magnetic orbitals of the rare-earth cation.

  4. Growth, structure, morphology, and magnetic properties of Ni ferrite films.

    PubMed

    Dong, Chunhui; Wang, Gaoxue; Guo, Dangwei; Jiang, Changjun; Xue, Desheng

    2013-04-27

    The morphology, structure, and magnetic properties of nickel ferrite (NiFe2O4) films fabricated by radio frequency magnetron sputtering on Si(111) substrate have been investigated as functions of film thickness. Prepared films that have not undergone post-annealing show the better spinel crystal structure with increasing growth time. Meanwhile, the size of grain also increases, which induces the change of magnetic properties: saturation magnetization increased and coercivity increased at first and then decreased. Note that the sample of 10-nm thickness is the superparamagnetic property. Transmission electron microscopy displays that the film grew with a disorder structure at initial growth, then forms spinel crystal structure as its thickness increases, which is relative to lattice matching between substrate Si and NiFe2O4.

  5. Influence of oxygen partial pressure on the microstructural and magnetic properties of Er-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Bin; Li, Fei; Chen, Hong-Ming

    2015-06-15

    Er-doped ZnO thin films have been prepared by using inductively coupled plasma enhanced physical vapor deposition at different O{sub 2}:Ar gas flow ratio (R = 0:30, 1:30, 1:15, 1:10 and 1:6). The influence of oxygen partial pressure on the structural, optical and magnetic properties was studied. It is found that an appropriate oxygen partial pressure (R=1:10) can produce the best crystalline quality with a maximum grain size. The internal strain, estimated by fitting the X-ray diffraction peaks, varied with oxygen partial pressure during growth. PL measurements show that plenty of defects, especially zinc vacancy, exist in Er-doped ZnO films. Allmore » the samples show room-temperature ferromagnetism. Importantly, the saturation magnetization exhibits similar dependency on oxygen partial pressure with the internal strain, which indicates that internal strain has an important effect on the magnetic properties of Er-doped ZnO thin films.« less

  6. Point defect-induced magnetic properties in CuAlO2 films without magnetic impurities

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Lin, Yow-Jon

    2016-03-01

    The magnetic properties of the undoped CuAlO2 thin films with different compositions are examined. In order to understand this phenomenon and to determine the correlation between the magnetic and electrical properties and point defects, the X-ray photoelectron spectroscopy and Hall effect measurements are performed. Combining with Hall effect, X-ray photoelectron spectroscopy and alternating gradient magnetometer measurements, a direct link between the hole concentration, magnetism, copper vacancy (VCu), oxygen vacancy, and interstitial oxygen (Oi) is established. It is shown that an increase in the number of acceptors (VCu and Oi) leads to an increase in the hole concentration. Based on theoretical and experimental investigations, the authors confirmed that both acceptors (VCu and Oi) in CuAlO2 could induce the ferromagnetic behavior at room temperature.

  7. Magnetic and magnetocaloric properties in Gd1-yPryNi2 compounds

    NASA Astrophysics Data System (ADS)

    Alho, B. P.; Lopes, P. H. O.; Ribeiro, P. O.; Alvarenga, T. S. T.; Nóbrega, E. P.; de Sousa, V. S. R.; Carvalho, A. M. G.; Caldas, A.; Tedesco, J. C. G.; Coelho, A. A.; de Oliveira, N. A.; von Ranke, P. J.

    2018-03-01

    In this work, we report the magnetic and magnetocaloric properties of the Gd1-yPryNi2 compounds from both experimental and theoretical points of view. It is worth noting that this series shows a variety of magnetic arrangements depending on the Pr concentration, including paramagnetism, ferrimagnetism and ferromagnetism. Our experimental work consists of the systematic analysis of the magnetic properties of the compounds with y = 0.0, 0.25, 0.5, 0.75 and 1.0, which includes temperature and magnetic field dependence of the magnetization, heat capacity and isothermal entropy change obtained by isothermal magnetization curves. Also, we developed a model Hamiltonian, which takes into account the exchange interactions among Gd-Gd, Gd-Pr and Pr-Pr ions, the Zeeman interaction for both ions and the crystalline electrical field interaction for the Pr ions. We systematically investigated the magnetic properties of the series and obtained a good agreement when compared with our experimental data.

  8. Effect of tungsten (W) on structural and magnetic properties of electroplated NiFe thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Devaki, P.; Premkumar, P. S.; Selvambikai, M.

    2018-04-01

    Electrodeposition of nanocrystalline NiFe and NiFeW thin films were carried out from ammonium citrate bath at a constant current density and controlled pH of 8 by varying the bath temperature from 40 °C to 70 °C. The surface morphology and chemical composition of the electrodeposited NiFe and NiFeW soft magnetic thin films were studied by using SEM and EDAX. The SEM micrographs of the films coated at higher electrodeposited bath temperature have no micro cracks and also the films have more uniform surface morphology. The existence of crystalline nature of the coated films were analysed by XRD. The presence of predominant peaks in x-ray diffraction pattern (compared with JCPDS data) reveal that the average crystalline size was in the order of few tens of nano meters. The magnetic properties such as coercivity, saturation magnetization and magnetic flux density have been calculated from vibrating sample magnetometer analysis. The VSM result shows that the NiFeW thin film synthesised at 70 °C exhibit the lower coercivity with higher saturation magnetization. The hardness and adhesion of the electroplated films have been investigated. Reasons for variation in magnetic properties and structural characteristics are also discussed. The electroplated NiFe and NiFeW thin films can be used for Micro Electro Mechanical System (MEMS) applications due to their excellent soft magnetic behaviour.

  9. Magnetic Properties of selected Prussian Blue Analogs

    NASA Astrophysics Data System (ADS)

    Shrestha, Manjita

    Prussian Blue Analogs (PBAs) of composition M[M(C,N)6 ] 2.xH2O are bimetallic cyanide complexes, where M and M are bivalent or trivalent transition metals and x is number of water molecule per unit cell. The PBAs form cubic framework structures, which consist mostly of alternating MIIIN6 and MIIC 6 octahedrals. However, occupancies of the octrahedrals are not perfect: they may be empty and the charges are balanced by the guest water molecules at the lattice site (C or N site) or the interstitial site (between the octahedrals) of the unit cell. Most (but not all) PBAs exhibit negative thermal expansion behavior, i.e. volume decrease with increasing temperature. Another area of interest in PBA research is the occurrence of unusual magnetic properties. Similar to other molecular magnets, large crystal-field splitting due to the octrahedral environment may result in a combination of low- or high-spin configurations of the localized magnetic moments, i.e. spin crossover effects may be found. My dissertation focuses on the magnetic properties of the selected 3d transition-metal PBAs, namely metal hexacyanochromates M3[Cr(C,N)6 ]2.xH2O, metal hexcyanoferrates M3[Fe(C,N)6]2.xH2O and metal hexcyanocobaltates M3[Co(C,N)6]2 .xH2O where M = Mn, Co, Ni and Cu. In particular, I analyzed the temperature and field dependencies of the bulk magnetic response of those PBAs. My results show that the magnetic susceptibility of all studied PBAs follows the Curie-Weiss behavior in the paramagnetic region up to room temperature; however, some of the compounds exhibit long-range magnetic order at lower temperatures (ferromagnetic or antiferromagnetic). In particular, the data provide evidence for magnetic ground states for most of the metal hexacyanochromates and all of the metal hexacyanoferrates but none of the hexacyanocobaltates that were studied. For each of the compounds, my analysis provides a measure of the effective magnetic moment, which is then compared with the predicted

  10. Nanofabrication and ion milling introduced effects on magnetic properties in magnetic recording

    NASA Astrophysics Data System (ADS)

    Sun, Zhenzhong

    Perpendicular magnetic nanostructures have played an important role in magnetic recording technologies. In this dissertation, a systematic study on the CoPt magnetic nanostructures from fabrication, characterization to computer simulation has been performed. During the fabrication process, ion irradiation/bombardment in ion mill can cause physical damage to the magnetic nanostructures and degrade their magnetic properties. To study the effect of ion damage on CoPt nanostructures, different degrees of ion damage are introduced into CoPt nanopillars by varying the accelerating voltage in ion mill. The results demonstrate that the ion damage can reduce the coercivity by softening circumferential edge, and therefore changes the switching mechanism from coherent rotation to nucleation followed by rapid domain wall propagation. The SFD of CoPt nanostructures is independent of ion damage and is mainly determined by the intrinsic anisotropy distribution of the film rather than the nanostructure size distribution. Anisotropy-graded bit-patterned media are fabricated and studied based on high anisotropy L10-FePt material system. L10-FePt thin films with linearly and quadratically distributed anisotropy are achieved by varying substrate temperature during film growth. After patterning, the anisotropy-graded L10-FePt nanopillars display a reduced switching field and maintain a good thermal stability compared to the non-graded one. Experimental investigation and comparison further prove the concept of "anisotropy-graded" bit-patterned media and their potential application in the future magnetic recording. During magnetic write head fabrication, ion-beam damage may degrade the performance of the magnetic write pole. A surface sensitive MOKE is used to characterize the magnetic properties of these etched FeCo films. MOKE measurement shows a hard axis hysteresis loop with a high Mr in the high power etched film due to the ion beam introduced defects. The high power etched film

  11. Effects of aluminum substitution on the crystal structure and magnetic properties in Zn{sub 2}Y-type hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wenfei; Yang, Jing, E-mail: jyang@ee.ecnu.edu.cn, E-mail: xdtang@sist.ecnu.edu.cn; Bai, Wei

    2015-05-07

    Crystal structure and magnetic properties of multiferroic Y-type hexaferrites Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22} (x = 0, 0.04, 0.08, and 0.12) were investigated. The Z- and M-type impurity phases decrease with increasing Al content, and the pure phase samples can be obtained by modulating Al-doping. Lattice distortion exists in Al-doped samples due to the different radius of Al ion (0.535 Å) and Fe ion (0.645 Å). The microstructural morphologies show that the hexagonal shape grains can be observed in all the samples, and grain size decreases with increasing Al content. As for magnetic properties of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){submore » 12}O{sub 22}, there exist rich thermal- and field-driven magnetic phase transitions. Temperature dependence of zero-field cooling magnetization curves from 5 K to 800 K exhibit three magnetic phase transitions involving conical spin phase, proper-screw spin phase, ferromagnetic phase, and paramagnetic phase, which can be found in all the samples. Furthermore, the phase-transition temperatures can be modulated by varying Al content. In addition, four kinds of typical hysteresis loops are observed in pure phase sample at different temperatures, which reveal different magnetization processes of above-motioned magnetic spin structures. Typically, triple hysteresis loops in low magnetic field range from 0 to 0.5 T can be observed at 5 K, which suggests low-field driven magnetic phase transitions from conical spin order to proper-screw spin order and further to ferrimagnetic spin order occur. Furthermore, the coercive field (H{sub C}) and the saturation magnetization (M{sub S}) enhance with increasing Al content from x = 0 to 0.08, and drop rapidly at x = 0.12, which could be attribute to that in initial Al-doped process the pitch of spin helix increases and therefore magnetization enhances, but conical spin phase eventually collapses in higher

  12. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Leandro Londoño-Calderón, César; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-01

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  13. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires.

    PubMed

    Londoño-Calderón, César Leandro; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-16

    A straightforward method for the synthesis of CoFe 2.7 /CoFe 2 O 4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe 2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe 2 O 4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe 2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  14. Microstructures, magnetic properties and coercivity mechanisms of Nd-Ce-Fe-B based alloys by Zr substitution

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Quan, Qichen; Zhang, Lili; Hu, Xianjun; Ur Rehman, Sajjad; Jiang, Qingzheng; Du, Junfeng; Zhong, Zhenchen

    2018-03-01

    In this paper, the effects of Zr addition on microstructures, magnetic properties, exchange coupling, and coercivity mechanisms of Nd-Ce-Fe-B alloys fabricated by melt-spinning technique are investigated. It is found that the coercivity Hcj is enhanced significantly by Zr substitution in the (Nd0.8Ce0.2)13Fe82-xZrxB5 alloys, while the remanence Jr is reduced slightly. The Hcj increases from 12.2 to 13.7 kOe by adding Zr up to 1.5 at. %, whereas Hcj is decreased with a further increase in Zr content. The larger lattice constants and unit cell volumes of the matrix phase indicate that Zr atoms enter into the hard magnetic phase by substituting Fe sites. The reduction of Tc implies the attenuation of the exchange interaction in the 2:14:1 phase with Zr occupying the Fe sites. The weakened intergranular exchange coupling of the Zr added alloy may be attributed to the formation of a non-magnetic intergranular phase. It is worth noting that the coercivity is dominated by the pinning of domain walls at defect positions even though the nucleation of reversal domains still exists. The synergistic function between the pinning effect and the exchange coupling leads to improved magnetic properties.

  15. Influence of Stoichiometry on the Magnetic Properties of Electrodeposited Thin Films of Iron Chromium Hexacyanide Based Molecular Magnet

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Yusuf, S. M.; Mukadam, M. D.; Yakhmi, J. V.

    2010-12-01

    Present paper deals with investigation of magnetic properties of electrochemically prepared crystalline films of Prussian blue analogues (PBAs) based molecular magnet, KjFek[Cr(CN)6]lṡmH2O with varying film stoichiometry. Film stoichiometry has been varied by depositing films at -0.5, -0.6 and -0.8 V at room temperature. It has been observed that the alkali metal ions are introduced into the films just by using suitable electrode voltage, contrary to usual method where alkali metal ions are intentionally introduced into the lattice by using additional compounds of alkali metals as starting materials. Magnetization data show ferromagnetic (parallel spin ordering) nature of all deposited film with the Curie temperature (TC)˜11 K for Fe1.5[Cr(CN)6]ṡ7.5H2O film. Changes in the magnetic properties such as TC, coercivity and saturation magnetization have also been observed with variation in film stoichiometry. The observed changes are mainly attributed to the inclusion of potassium ion, which alters FeII/CrIII ratio, thus magnetic properties.

  16. General properties of magnetic CP stars

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2017-07-01

    We present the review of our previous studies related to observational evidence of the fossil field hypothesis of formation and evolution of magnetic and non-magnetic chemically peculiar stars. Analysis of the observed data shows that these stars acquire their main properties in the process of gravitational collapse. In the non-stationary Hayashi phase, a magnetic field becomes weakened and its configuration complicated, but the fossil field global orientation remains. After a non-stationary phase, relaxation of young star's tangled field takes place and by the time of joining ZAMS (Zero Age Main Sequence) it is generally restored to a dipole structure. Stability of dipole structures allows them to remain unchanged up to the end of their life on the Main Sequence which is 109 years at most.

  17. Structural and magnetic properties of spark plasma sintered Co-Mg-Zn substituted Ba-Sr hexagonal ferrite magnets

    NASA Astrophysics Data System (ADS)

    Harikrishnan, V.; Vizhi, R. Ezhil; Rajan Babu, D.; Saravanan, P.

    2018-02-01

    The effect of conventional and spark plasma sintering processes on the structural and magnetic properties of Ba0.5Sr0.5Fe12-2xCox(MgZn)x/2O19 (x = 0.2, 0.4 and 0.6) was investigated in this study. XRD patterns of both conventionally sintered (CS) and spark plasma sintered (SPS) samples with x = 0.2 and 0.4 showed the crystallization of Ba0.5Sr0.5Fe12O19-phase with space group of P63/mmc. However, in the case of SPS sample with x = 0.4, a secondary peak of α-Fe2O3 was observed. SEM analysis on the SPS samples revealed dense morphology with low porosity; while the CS samples showed the presence of aggregated particles with spherical shapes. Maximum values of saturation magnetization, MS (58 emu/g) and coercivity, HC (3.5 kOe) were obtained for the CS samples with x = 0.4; while their SPS counterparts revealed increased MS (65 emu/g) and HC (3.9 kOe) values. The observed magnetization reversal behaviour for both sintering conditions were not smooth in the case of x = 0.2, which indicated the existence of two-phase behavior. The temperature dependent magnetization studies for x = 0.2 and 0.4 were performed in order to analyze the variation in Curie temperature against Co-Mg-Zn substitution and the obtained results are discussed on the basis of crystallization of hexaferrite-phase.

  18. Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition.

    PubMed

    Dupuis, V; Khadra, G; Hillion, A; Tamion, A; Tuaillon-Combes, J; Bardotti, L; Tournus, F

    2015-11-14

    In this paper, we present some specific chemical and magnetic order obtained very recently on characteristic bimetallic nanoalloys prepared by mass-selected Low Energy Cluster Beam Deposition (LECBD). We study how the competition between d-atom hybridization, complex structure, morphology and chemical affinity affects their intrinsic magnetic properties at the nanoscale. The structural and magnetic properties of these nanoalloys were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of the nanoalloys we observe different magnetic responses compared to their bulk counterparts. In particular, we show how specific relaxation in nanoalloys impacts their magnetic anisotropy; and how finite size effects (size reduction) inversely enhance their magnetic moment.

  19. Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites

    NASA Astrophysics Data System (ADS)

    Li, Bin; Dong, Shuai; Wang, Caiping; Wang, Xiaojie; Fang, Jun

    2016-04-01

    This paper proposes a method for preparing multi-walled carbon nanotubea/polydimethylsiloxane (MWCNTs/PDMS) composites with enhanced thermal properties by using a high magnetic field (up to 10T). The MWCNT are oriented magnetically inside a silicone by in-situ polymerization method. The anisotropic structure would be expected to produce directional thermal conductivity. This study will provide a new approach to the development of anisotropic thermal-conductive polymer composites. Systematic studies with the preparation of silicone/graphene composites corresponding to their thermal and mechanical properties are carried out under various conditions: intensity of magnetic field, time, temperature, fillings. The effect of MWCNT/graphene content and preparation procedures on thermal conductivity of composites is investigated. Dynamic mechanical analysis (DMA) is used to reveal the mechanical properties of the composites in terms of the filling contents and magnetic field strength. The scanning electron microscope (SEM) is used to observe the micro-structure of the MWCNT composites. The alignment of MWCNTs in PDMS matrix is also studied by Raman spectroscopy. The thermal conductivity measurements show that the magnetically aligned CNT-composites feature high anisotropy in thermal conductivity.

  20. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    NASA Astrophysics Data System (ADS)

    Xu, Ziming; Sun, Hongjing; Gao, Faming; Hou, Li; Li, Na

    2012-12-01

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe@Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe@Au process.

  1. Evaluation of Stress Distribution in Magnetic Materials Using a Magnetic Imaging System

    NASA Astrophysics Data System (ADS)

    Lo, C. C. H.; Paulsen, J. A.; Jiles, D. C.

    2004-02-01

    The feasibility of detecting stress distribution in magnetic materials by magnetic hysteresis and Barkhausen effect measurements has been evaluated using a newly developed magnetic imaging system. The system measured hysteresis loops and Barkhausen effect signals with the use of a surface sensor that was scanned over the material. The data were converted into a two-dimensional image showing spatial variations of the magnetic properties from which mechanical conditions of the materials can be inferred. In this study a nickel plate machined into a shear-beam load cell configuration was used. By applying a stress along the neutral axis, various stress patterns such as shear stress and stress concentration could be produced in different regions of the sample. The scanned images of magnetic properties such as coercivity and rms value of Barkhausen effect signal exhibited patterns similar to the stress distribution calculated using finite element model (FEM), in particular in the regions where a high stress level and a high stress gradient existed. For direct comparison, images of magnetic properties were simulated based on the results of FEM stress calculation and experimental calibration of the magnetomechanical effect. The simulated images were found to closely resemble the scanned images, indicating the possibility of measuring stress distribution by mapping magnetic properties using the magnetic imaging system.

  2. Growth, structure, morphology, and magnetic properties of Ni ferrite films

    PubMed Central

    2013-01-01

    The morphology, structure, and magnetic properties of nickel ferrite (NiFe2O4) films fabricated by radio frequency magnetron sputtering on Si(111) substrate have been investigated as functions of film thickness. Prepared films that have not undergone post-annealing show the better spinel crystal structure with increasing growth time. Meanwhile, the size of grain also increases, which induces the change of magnetic properties: saturation magnetization increased and coercivity increased at first and then decreased. Note that the sample of 10-nm thickness is the superparamagnetic property. Transmission electron microscopy displays that the film grew with a disorder structure at initial growth, then forms spinel crystal structure as its thickness increases, which is relative to lattice matching between substrate Si and NiFe2O4. PMID:23622034

  3. Microstructure and magnetic properties of alnico permanent magnetic alloys with Zr-B additives

    NASA Astrophysics Data System (ADS)

    Rehman, Sajjad Ur; Jiang, Qingzheng; Ge, Qing; Lei, Weikai; Zhang, Lili; Zeng, Qingwen; ul Haq, A.; Liu, Renhui; Zhong, Zhenchen

    2018-04-01

    Alnico alloys are prepared with nominal composition of 31.4-xFe-7.0Al-36.0Co-4.0Cu-1.0Nb-14.0Ni-6.0Ti-0.6Zr-xB (x = 0.02, 0.04, 0.06, 0.08, in wt%) by arc melting and casting techniques and subsequent heat treatment. The alloys are characterized by X-ray diffraction method, optical microscope, scanning electron microscope and pulse field magnetometer by plotting magnetic hysteresis demagnetization curve. The results of HRSEM show at least two new phases at α-grain boundaries and triple junctions. These phases, when retained at low concentration, help in enhancing magnetic properties of alnico alloys by purifying spinodal phases and reducing the adverse effects of impurity elements. Two different heat treatment cycles are employed. In the first phase, the alloys are processed by using heat treatment cycles without magnetic field; and Hc of 1.35 kOe, Br of 4.87 kGs and (BH)max of 1.96 MGOe are obtained by furnace cooling below TC and subsequent tempering at 680 °C and 550 °C. In the second phase, the alloy with best magnetic properties is treated thermo-magnetically; and Hc of 1.68 kOe, Br of 7.1 kG and (BH)max of 4.45 MGOe are obtained.

  4. Magnetic Resonance-Based Electrical Property Tomography (MR-EPT) for Prostate Cancer Grade Imaging

    DTIC Science & Technology

    2016-07-01

    Award Number: W81XWH-13-1-0127 TITLE: Magnetic Resonance-Based Electrical Property Tomography (MR- EPT) for Prostate Cancer Grade Imaging...SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0127 Magnetic Resonance-Based Electrical Property Tomography (MR- EPT) for Prostate Cancer Grade Imaging...developing Magnetic Resonance – Electrical Property Tomography (MR-EPT) specifically for prostate imaging. MR-EPT is an imaging modality that may enable

  5. Magnetic properties of Co-doped Nb clusters

    NASA Astrophysics Data System (ADS)

    Diaz-Bachs, A.; Peters, L.; Logemann, R.; Chernyy, V.; Bakker, J. M.; Katsnelson, M. I.; Kirilyuk, A.

    2018-04-01

    Magnetic deflection experiments on isolated Co-doped Nb clusters demonstrate a strong size dependence of magnetic properties, with large magnetic moments in certain cluster sizes and fully nonmagnetic behavior of others. There are in principle two explanations for this behavior. Either the local moment at the Co site is absent or it is screened by the delocalized electrons of the cluster, i.e., the Kondo effect. In order to reveal the physical origin, first, we established the ground state geometry of the clusters by experimentally obtaining their vibrational spectra and comparing them with a density functional theory study. Then, we performed an analysis based on the Anderson impurity model. It appears that the nonmagnetic clusters are due to the absence of the local Co moment and not due to the Kondo effect. In addition, the magnetic behavior of the clusters can be understood from an inspection of their electronic structure. Here magnetism is favored when the effective hybridization around the chemical potential is small, while the absence of magnetism is signaled by a large effective hybridization around the chemical potential.

  6. (The relationship between microstructure and magnetic properties in high-energy permanent magnets characterized by polytwinned structures)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    This report summarizes the results of a study of the relationship between microstructure and magnetic properties in a unique genre of ferromagnetic material characterized by a polysynthetically twinned structure which arises during solid state transformation. These results stem from the work over a period of approximately 27 months of a nominal 3 year grant period. The report also contains a proposal to extend the research project for an additional 3 years. The polytwinned structures produce an inhomogeneous magnetic medium in which the easy axis of magnetization varies quasi-periodically giving rise to special domain configurations which are expected to markedly influencemore » the mechanism of magnetization reversal and hysteresis behavior of these materials in bulk or thin films. The extraordinary permanent magnet properties exhibited by the well-known Co-Pt alloys as well as the Fe-Pt and Fe-Pd systems near the equiatomic composition derive from the formation of a polytwinned microstructure.« less

  7. [The relationship between microstructure and magnetic properties in high-energy permanent magnets characterized by polytwinned structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This report summarizes the results of a study of the relationship between microstructure and magnetic properties in a unique genre of ferromagnetic material characterized by a polysynthetically twinned structure which arises during solid state transformation. These results stem from the work over a period of approximately 27 months of a nominal 3 year grant period. The report also contains a proposal to extend the research project for an additional 3 years. The polytwinned structures produce an inhomogeneous magnetic medium in which the easy axis of magnetization varies quasi-periodically giving rise to special domain configurations which are expected to markedly influencemore » the mechanism of magnetization reversal and hysteresis behavior of these materials in bulk or thin films. The extraordinary permanent magnet properties exhibited by the well-known Co-Pt alloys as well as the Fe-Pt and Fe-Pd systems near the equiatomic composition derive from the formation of a polytwinned microstructure.« less

  8. The relationship between microstructure and magnetic properties in high-energy permanent magnets characterized by polytwinned structures

    NASA Astrophysics Data System (ADS)

    This report summarizes the results of a study of the relationship between microstructure and magnetic properties in a unique genre of ferromagnetic material characterized by a polysynthetically twinned structure which arises during solid state transformation. These results stem from the work over a period of approximately 27 months of a nominal 3 year grant period. The report also contains a proposal to extend the research project for an additional 3 years. The polytwinned structures produce an inhomogeneous magnetic medium in which the easy axis of magnetization varies quasi-periodically giving rise to special domain configurations which are expected to markedly influence the mechanism of magnetization reversal and hysteresis behavior of these materials in bulk or thin films. The extraordinary permanent magnet properties exhibited by the well-known Co-Pt alloys as well as the Fe-Pt and Fe-Pd systems near the equiatomic composition derive from the formation of a polytwinned microstructure.

  9. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electricmore » field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.« less

  10. Magnetic properties of epitaxial bismuth ferrite-garnet mono- and bilayers

    NASA Astrophysics Data System (ADS)

    Semuk, E. Yu.; Berzhansky, V. N.; Prokopov, A. R.; Shaposhnikov, A. N.; Karavainikov, A. V.; Salyuk, O. Yu.; Golub, V. O.

    2015-11-01

    Magnetic properties of Bi1.5Gd1.5Fe4.5Al0.5O12 (84 nm) and Bi2.8Y0.2Fe5O12 (180 nm) films epitaxially grown on gallium-gadolinium garnet (GGG) single crystal (111) substrate as well as Bi1.5Gd1.5Fe4.5Al0.5O12/Bi2.8Y0.2Fe5O12 bilayer were investigated using ferromagnetic resonance technique. The mismatch of the lattice parameters of substrate and magnetic layers leads to formation of adaptive layers which affect on the high order anisotropy constant of the films but practically do not affect on uniaxial perpendicular magnetic anisotropy The magnetic properties of the bilayer film were explained in supposition of strong exchange coupling between magnetic layers taking into account film-film and film-substrate elastic interaction.

  11. Modeling Magnetic Properties in EZTB

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul

    2007-01-01

    A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.

  12. Effect of finite size in magnetic properties of BaFe12O19

    NASA Astrophysics Data System (ADS)

    Kumar, A. Sendil; Bhatnagar, Anil K.

    2018-05-01

    BaFe12O19 Nanoparticles are prepared through auto ignition method and structure, microstructure and magnetic properties are characterized. Samples having spherical shapes and elongated nanorods are chosen to investigate the role of finite size effect in magnetic properties. Magnetization studies show superparamagnetic, antiferromagnetic and ferrimagnetic behaviors depending on the size and shape. Very small coercive field of around 200 Oe is observed for spherical nanoparticles and a large coercive field of around 7000 Oe for nanorods is found. The shape and size plays an important role in magnetic properties of BaFe12O19 nanoparticles. Shape anisotropy has significant value compared to other anisotropies. Therefore shape of nanoparticles influences the magnetic order.

  13. Examining the Magnetic Properties of LaCoO3 Thin Films Using Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Berg, Morgann; Posadas, Agham; de Lozanne, Alex; Demkov, Alexander

    2011-03-01

    In contrast to the non-magnetic ground state of bulk LaCo O3 (LCO) at low temperatures, ferromagnetism has been observed in elastically strained thin film specimens. The origins of ferromagnetism in strained LCO thin films have been obscured by conflicting experimental results. Pulsed laser deposition (PLD) is the current standard of preparation techniques used to grow thin films of LCO, but results from thin film LCO samples prepared by PLD have been questioned on the basis of chemical inhomogeneity and film defects. Using magnetic force microscopy, we investigate the microscale magnetic properties of strained thin films of LCO prepared by molecular beam epitaxy and deposited on lanthanum aluminate and strontium titanate substrates. We observe these properties across a temperature range surrounding the Curie temperature (Tc ~ 80 K) and compare our results to global magnetic characteristics of these films as measured by a SQUID magnetometer. Supported by NSF-DMR and NSF-IGERT.

  14. Investigation properties of superparamagnetic nanoparticles and magnetic field-dependent hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Hedayatnasab, Z.; Abnisa, F.; Daud, W. M. A. Wan

    2018-03-01

    The application of superparamagnetic nanoparticles as heating agents in hyperthermia therapy has made a therapeutic breakthrough in cancer treatment. The high efficiency of this magnetic hyperthermia therapy has derived from a great capability of superparamagnetic nanoparticles to generate focused heat in inaccessible tumors being effectively inactivated. The main challenges of this therapy are the improvement of the induction heating power of superparamagnetic nanoparticles and the control of the hyperthermia temperature in a secure range of 42 °C to 47 °C, at targeted area. The variation of these hyperthermia properties is principally dependent on the magnetic nanoparticles as well as the magnetic field leading to enhance the efficiency of magnetic hyperthermia therapy at targeted area and also avoid undue heating to healthy cells. The present study evaluates the magnetic hyperthermia therapy through the determination of superparamagnetic nanoparticles properties and magnetic field’ parameters.

  15. Effects Of Hydrothermal Alteration On Magnetic Properties And Magnetic Signatures - Implications For Predictive Magnetic Exploration Models

    NASA Astrophysics Data System (ADS)

    Clark, D.

    2012-12-01

    Magnetics is the most widely used geophysical method in hard rock exploration and magnetic surveys are an integral part of exploration programs for many types of mineral deposit, including porphyry Cu, intrusive-related gold, volcanic-hosted epithermal Au, IOCG, VMS, and Ni sulfide deposits. However, the magnetic signatures of ore deposits and their associated mineralized systems are extremely variable and exploration that is based simply on searching for signatures that resemble those of known deposits and systems is rarely successful. Predictive magnetic exploration models are based upon well-established geological models, combined with magnetic property measurements and geological information from well-studied deposits, and guided by magnetic petrological understanding of the processes that create, destroy and modify magnetic minerals in rocks. These models are designed to guide exploration by predicting magnetic signatures that are appropriate to specific geological settings, taking into account factors such as tectonic province; protolith composition; post-formation tilting/faulting/ burial/ exhumation and partial erosion; and metamorphism. Patterns of zoned hydrothermal alteration are important indicators of potentially mineralized systems and, if properly interpreted, can provided vectors to ore. Magnetic signatures associated with these patterns at a range of scales can provide valuable information on prospectivity and can guide drilling, provided they are correctly interpreted in geological terms. This presentation reviews effects of the important types of hydrothermal alteration on magnetic properties within mineralized systems, with particular reference to porphyry copper and IOCG deposits. For example, an unmodified gold-rich porphyry copper system, emplaced into mafic-intermediate volcanic host rocks (such as Bajo de la Alumbrera, Argentina) exhibits an inner potassic zone that is strongly mineralized and magnetite-rich, which is surrounded by an outer

  16. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Esa, Mohammad Faris Mohammad; Rahim, Faszly; Hassan, Ibrahim Haji; Hanifah, Sharina Abu

    2015-09-01

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.

  17. Effect of magnetic soft phase on the magnetic properties of bulk anisotropic Nd2Fe14B/α-Fe nanocomposite permanent magnets

    NASA Astrophysics Data System (ADS)

    Li, Yuqing; Yue, Ming; Zhao, Guoping; Zhang, Hongguo

    2018-01-01

    The effects of soft phase with different particle sizes and distributions on the Nd2Fe14B/α-Fe nanocomposite magnets have been studied by the micro-magnetism simulation. The calculated results show that smaller and/or scattered distribution of soft phase can benefit to the coercivity (H ci) of the nanocomposite magnets. The magnetization moment evolution during magnetic reversal is systematically analyzed. On the other hand, magnetic properties of anisotropic Nd-Fe-B/α-Fe nanocomposite magnets prepared by hot pressing and hot deformation methods also provide evidences for the calculated results.

  18. Measured iron-gallium alloy tensile properties under magnetic fields

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyeong; Flatau, Alison B.

    2004-07-01

    Tension testing is used to identify Galfenol material properties under low level DC magnetic bias fields. Dog bone shaped specimens of single crystal Fe100-xGax, where 17<=x<=33, underwent tensile testing along two crystalographic axis orientations, [110] and [100]. The material properties being investigated and calculated from measured quantities are: Young's modulus and Poisson's ratio. Data are presented that demonstrate the dependence of these material properties on applied magnetic field levels and provide a preliminary assessment of the trends in material properties for performance under varied operating conditions. The elastic properties of Fe-Ga alloys were observed to be increasingly anisotropic with rising Ga content for the stoichiometries examined. The largest elastic anisotropies were manifested in [110] Poisson's ratios of as low as -0.63 in one specimen. This negative Poisson's ratio creates a significant in-plane auxetic behavior that could be exploited in applications that capitalize on unique area effects produced under uniaxial loading.

  19. Magnetic properties of nearly stoichiometric CeAuBi2 heavy fermion compound

    NASA Astrophysics Data System (ADS)

    Adriano, C.; Rosa, P. F. S.; Jesus, C. B. R.; Grant, T.; Fisk, Z.; Garcia, D. J.; Pagliuso, P. G.

    2015-05-01

    Motivated by the interesting magnetic anisotropy found in the heavy fermion family CeTX2 (T = transition metal and X = pnictogen), here, we study the novel parent compound CeAu1-xBi2-y by combining magnetization, pressure dependent electrical resistivity, and heat-capacity measurements. The magnetic properties of our nearly stoichiometric single crystal sample of CeAu1-xBi2-y (x = 0.92 and y = 1.6) revealed an antiferromagnetic ordering at TN = 12 K with an easy axis along the c-direction. The field dependent magnetization data at low temperatures reveal the existence of a spin-flop transition when the field is applied along the c-axis (Hc ˜ 7.5 T and T = 5 K). The heat capacity and pressure dependent resistivity data suggest that CeAu0.92Bi1.6 exhibits a weak heavy fermion behavior with strongly localized Ce3+ 4f electrons. Furthermore, the systematic analysis using a mean field model including anisotropic nearest-neighbors interactions and the tetragonal crystalline electric field (CEF) Hamiltonian allows us to extract a CEF scheme and two different values for the anisotropic J RKKY exchange parameters between the Ce3+ ions in this compound. Thus, we discuss a scenario, considering both the anisotropic magnetic interactions and the tetragonal CEF effects, in the CeAu1-xBi2-y compounds, and we compare our results with the isostructural compound CeCuBi2.

  20. Preparation and magnetic properties of magnetic photonic crystal by using monodisperse polystyrene covered Fe3O4 nanoparticles onto glass substrate

    NASA Astrophysics Data System (ADS)

    Azizi, Zahra Sadat; Tehranchi, Mohammad Mehdi; Vakili, Seyed Hamed; Pourmahdian, Saeed

    2018-05-01

    Engineering approach towards combined photonic band gap properties and magnetic/polymer composite particles, attract considerable attention of researchers due to their unique properties. In this research, two different magnetic particles were prepared by nearly monodisperse polystyrene spheres as bead with two concentrations of Fe3O4 nanoparticles to prepare magnetic photonic crystals (MPCs). The crystal surfaces and particles morphology were investigated employing scanning electron microscopy and transmission electron microscopy. The volume fraction of magnetic material embedded into colloidal spheres and their morphology was found to be a key parameter in the optical and magneto-optical properties of transparent MPC.

  1. Preparation and properties of isotropic Nd-Fe-B bonded magnets with sodium silicate binder

    NASA Astrophysics Data System (ADS)

    Liu, W. Q.; Hu, R. J.; Yue, M.; Yin, Y. X.; Zhang, D. T.

    2017-08-01

    In present study, sodium silicate, a kind of heat-resistant binder, was used to prepare bonded Nd-Fe-B magnets with improved thermal stability and mechanical strength. Effect of curing temperature and curing time of the new binder to the magnetic properties, microstructure, and mechanical strength of the magnets was systematically investigated. Fracture surface morphology observation show that sodium silicate in bonded magnets could completely be cured at 175 °C for 40 min, and the magnets prepared under this condition exhibit optimal properties. They exhibit usable magnetic properties of Br of 4.66 kGs, Hcj of 4.84 kOe, and (BH)max of 4.06 MGOe at 200 °C. Moreover, the magnets possess high compressive strength of 63 MPa.

  2. Electronic and magnetic properties of Mn-doped WSe2 monolayer under strain

    NASA Astrophysics Data System (ADS)

    Xin, Qianqian; Zhao, Xu; Wang, Tianxing

    2017-04-01

    Electronic and magnetic properties of Mn-doped WSe2 monolyer subject to isotropic strain are investigated using the first-principles methods based on the density functional theory. Our results indicate that Mn-doped WSe2 monolayer is a magnetic semiconductor nanomaterial with strong spontaneous magnetism without strain and the total magnetic moment of Mn-doped system is 1.038μB. We applied strain to Mn-doped WSe2 monolayer from -10% to 10%. The doped system transforms from magnetic semiconductor to half-metallic material from -10% to -2% compressive strain and from 2% to 6% tensile strain. The largest half-metallic gap is 0.450 eV at -2% compressive strain. The doped system shows metal property from 7% to 10%. Its maximum magnetic moment comes to 1.181μB at 6% tensile strain. However, the magnetic moment of system decreases to zero sharply when tensile strain arrived at 7%. Strain changes the redistribution of charges and arises to the magnetic effect. The coupling between the 3d orbital of Mn atom, 5d orbital of W atom and 4p orbital of Se atom is analyzed to explain the strong strain effect on the magnetic properties. Our studies predict Mn-doped WSe2 monolayers under strain to be candidates for thin dilute magnetic semiconductors, which is important for application in semiconductor spintronics.

  3. Effect of Fe-Mn addition on microstructure and magnetic properties of NdFeB magnetic powders

    NASA Astrophysics Data System (ADS)

    Kurniawan, C.; Purba, A. S.; Setiadi, E. A.; Simbolon, S.; Warman, A.; Sebayang, P.

    2018-03-01

    In this paper, the effect of Fe-Mn alloy addition on microstructures and magnetic properties of NdFeB magnetic powders was investigated. Varied Fe-Mn compositions of 1, 5, and 10 wt% were mixed with commercial NdFeB type MQA powders for 15 minutes using shaker mill. The characterizations were performed by powder density, PSA, XRD, SEM, and VSM. The Fe-Mn addition increased the powder density of NdFeB/Fe-Mn powders. On the other side, particle size distribution slightly decreased as the Fe-Mn composition increases. Magnetic properties of NdFeB/Fe-Mn powders changed with the increasing of Fe-Mn content. SEM analysis showed the particle size of NdFeB/Fe-Mn powder was smaller as the Fe-Mn composition increases. It showed that NdFeB/Fe-Mn particles have different size and shape for NdFeB and Fe-Mn particles separately. The optimum magnetic properties of NdFeB/Fe-Mn powder was achieved on the 5 wt% Fe-Mn composition with remanence M r = 49.45 emu/g, coercivity H c = 2.201 kOe, and energy product, BH max = 2.15 MGOe.

  4. Universal features underlying the magnetism in diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Andriotis, Antonis N.; Menon, Madhu

    2018-04-01

    Investigation of a diverse variety of wide band gap semiconductors and metal oxides that exhibit magnetism on substitutional doping has revealed the existence of universal features that relate the magnetic moment of the dopant to a number of physical properties inherent to the dopants and the hosts. The investigated materials consist of ZnO, GaN, GaP, TiO2, SnO2, Sn3N4, MoS2, ZnS and CdS doped with 3d-transition metal atoms. The primary physical properties contributing to magnetism include the orbital hybridization and charge distribution, the d-band filling, d-band center, crystal field splitting, electron pairing energy and electronegativity. These features specify the strength of the spin-polarization induced by the dopants on their first nearest neighboring anions which in turn specify the long range magnetic coupling among the dopants through successively induced spin polarizations (SSP) on neighboring dopants. The proposed local SSP process for the establishment of the magnetic coupling among the TM-dopants appears as a competitor to other classical processes (superexchange, double exchange, etc). Furthermore, these properties can be used as a set of descriptors suitable for developing statistical predictive theories for a much larger class of magnetic materials.

  5. Synthesis, structure and magnetic properties ofβ-MnO2nanorods

    PubMed Central

    Kim, HaeJin; Lee, JinBae; Kim, Young-Min; Jung, Myung-Hwa; Jagličić, Z; Umek, P

    2007-01-01

    We present synthesis, structure and magnetic properties of structurally well-ordered single-crystalline β-MnO2nanorods of 50–100 nm diameter and several µm length. Thorough structural characterization shows that the basic β-MnO2material is covered by a thin surface layer (∼2.5 nm) of α-Mn2O3phase with a reduced Mn valence that adds its own magnetic signal to the total magnetization of the β-MnO2nanorods. The relatively complicated temperature-dependent magnetism of the nanorods can be explained in terms of a superposition of bulk magnetic properties of spatially segregated β-MnO2and α-Mn2O3constituent phases and the soft ferromagnetism of the thin interface layer between these two phases.

  6. Ab initio study of (Fe, Ni) doped GaAs: Magnetic, electronic properties and Faraday rotation

    NASA Astrophysics Data System (ADS)

    Sbai, Y.; Ait Raiss, A.; Bahmad, L.; Benyoussef, A.

    2017-06-01

    The interesting diluted magnetic semiconductor (DMS), Gallium Arsenide (GaAs), was doped with the transition metals magnetic impurities: iron (Fe) and Nickel (Ni), in one hand to study the magnetic and magneto-optical properties of the material Ga(Fe, Ni) As, in the other hand to investigate the effect of the doping on the properties of this material, the calculations were performed within the spin polarized density functional theory (DFT) and generalized gradient approximation (GGA) with AKAI KKR-CPA method, the density of states (DOS) for different doping concentrations were calculated, giving the electronical properties, as well as the magnetic state and magnetic states energy, also the effect of these magnetic impurities on the Faraday rotation as magneto-optical property. Furthermore, we found the stable magnetic state for our doped material GaAs.

  7. Magnetic Properties and Magnetic Phase Diagrams of Trigonal DyNi3Ga9

    NASA Astrophysics Data System (ADS)

    Ninomiya, Hiroki; Matsumoto, Yuji; Nakamura, Shota; Kono, Yohei; Kittaka, Shunichiro; Sakakibara, Toshiro; Inoue, Katsuya; Ohara, Shigeo

    2017-12-01

    We report the crystal structure, magnetic properties, and magnetic phase diagrams of single crystalline DyNi3Ga9 studied using X-ray diffraction, electrical resistivity, specific heat, and magnetization measurements. DyNi3Ga9 crystallizes in the chiral structure with space group R32. The dysprosium ions, which are responsible for the magnetism in this compound, form a two-dimensional honeycomb structure on a (0001) plane. We show that DyNi3Ga9 exhibits successive phase transitions at TN = 10 K and T'N = 9 K. The former suggests quadrupolar ordering, and the latter is attributed to the antiferromagnetic order. It is considered that DyNi3Ga9 forms the canted-antiferromagnetic structure below T'N owing to a small hysteresis loop of the low-field magnetization curve. We observe the strong easy-plane anisotropy, and the multiple-metamagnetic transitions with magnetization-plateaus under the field applied along the honeycomb plane. For Hallel [2\\bar{1}\\bar{1}0], the plateau-region arises every 1/6 for saturation magnetization. The magnetic phase diagrams of DyNi3Ga9 are determined for the fields along principal-crystal axes.

  8. Investigations of mechanical, electronic, and magnetic properties of non-magnetic MgTe and ferro-magnetic Mg0.75 TM 0.25Te (TM = Fe, Co, Ni): An ab-initio calculation

    NASA Astrophysics Data System (ADS)

    Q, Mahmood; S, M. Alay-e.-Abbas; I, Mahmood; Mahmood, Asif; N, A. Noor

    2016-04-01

    The mechanical, electronic and magnetic properties of non-magnetic MgTe and ferro-magnetic (FM) Mg0.75 TM 0.25Te (TM = Fe, Co, Ni) in the zinc-blende phase are studied by ab-initio calculations for the first time. We use the generalized gradient approximation functional for computing the structural stability, and mechanical properties, while the modified Becke and Johnson local (spin) density approximation (mBJLDA) is utilized for determining the electronic and magnetic properties. By comparing the energies of non-magnetic and FM calculations, we find that the compounds are stable in the FM phase, which is confirmed by their structural stabilities in terms of enthalpy of formation. Detailed descriptions of elastic properties of Mg0.75 TM 0.25Te alloys in the FM phase are also presented. For electronic properties, the spin-polarized electronic band structures and density of states are computed, showing that these compounds are direct bandgap materials with strong hybridizations of TM 3d states and Te p states. Further, the ferromagnetism is discussed in terms of the Zener free electron model, RKKY model and double exchange model. The charge density contours in the (110) plane are calculated to study bonding properties. The spin exchange splitting and crystal field splitting energies are also calculated. The distribution of electron spin density is employed in computing the magnetic moments appearing at the magnetic sites (Fe, Co, Ni), as well as at the non-magnetic sites (Mg, Te). It is found that the p-d hybridization causes not only magnetic moments on the magnetic sites but also induces negligibly small magnetic moments at the non-magnetic sites.

  9. Improved magnetic properties and thermal stabilities of Pr-Nd-Fe-B sintered magnets by Hf addition

    NASA Astrophysics Data System (ADS)

    Jiang, Qingzheng; Lei, Weikai; Zeng, Qingwen; Quan, Qichen; Zhang, Lili; Liu, Renhui; Hu, Xianjun; He, Lunke; Qi, Zhiqi; Ju, Zhihua; Zhong, Minglong; Ma, Shengcan; Zhong, Zhenchen

    2018-05-01

    Nd2Fe14B-type permanent magnets have been widely applied in various fields such as wind power, voice coil motors, and medical instruments. The large temperature dependence of coercivity, however, limits their further applications. We have systematically investigated the magnetic properties, thermal stabilities and coercivity mechanisms of the (Pr0.2Nd0.8)13Fe81-xB6Hfx (x=0, 0.5) nanocrystalline magnets fabricated by a spark plasma sintering (SPS) technique. The results indicate that the influence of Hf addition is significant on magnetic properties and thermal stabilities of the (PrNd)2Fe14B-type sintered magnets. It is shown that the sample with x = 0.5 at 300 K has much higher coercivity and remanent magnetization than those counterparts without Hf. The temperature coefficients of remanence (α) and coercivity (β) of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets are improved significantly from -0.23 %/K, -0.57 %/K for the sample at x = 0 to -0.17 %/K, -0.49 %/K for the sample at x = 0.5 in the temperature range of 300-400 K. Furthermore, it is found out that the domain wall pinning mechanism is more likely responsible for enhancing the coercivity of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets.

  10. Magnetic cluster expansion simulation and experimental study of high temperature magnetic properties of Fe-Cr alloys.

    PubMed

    Lavrentiev, M Yu; Mergia, K; Gjoka, M; Nguyen-Manh, D; Apostolopoulos, G; Dudarev, S L

    2012-08-15

    We present a combined experimental and computational study of high temperature magnetic properties of Fe-Cr alloys with chromium content up to about 20 at.%. The magnetic cluster expansion method is applied to model the magnetic properties of random Fe-Cr alloys, and in particular the Curie transition temperature, as a function of alloy composition. We find that at low (3-6 at.%) Cr content the Curie temperature increases with the increase of Cr concentration. It is maximum at approximately 6 at.% Cr and then decreases for higher Cr content. The same feature is found in thermo-magnetic measurements performed on model Fe-Cr alloys, where a 5 at.% Cr alloy has a higher Curie temperature than pure Fe. The Curie temperatures of 10 and 15 at.% Cr alloys are found to be lower than the Curie temperature of pure Fe.

  11. Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Wu, Shen; Sun, Aizhi; Zhai, Fuqiang; Wang, Jin; Zhang, Qian; Xu, Wenhuan; Logan, Philip; Volinsky, Alex A.

    2012-03-01

    This paper focuses on novel iron-based soft magnetic composites synthesis utilizing high thermal stability silicone resin to coat iron powder. The effect of an annealing treatment on the magnetic properties of synthesized magnets was investigated. The coated silicone insulating layer was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Silicone uniformly coated the powder surface, resulting in a reduction of the imaginary part of the permeability, thereby increasing the electrical resistivity and the operating frequency of the synthesized magnets. The annealing treatment increased the initial permeability, the maximum permeability, and the magnetic induction, and decreased the coercivity. Annealing at 580 °C increased the maximum permeability by 72.5%. The result of annealing at 580 °C shows that the ferromagnetic resonance frequency increased from 2 kHz for conventional epoxy resin coated samples to 80 kHz for the silicone resin insulated composites.

  12. Interface effects in ultra-thin films: Magnetic and chemical properties

    NASA Astrophysics Data System (ADS)

    Park, Sungkyun

    When the thickness of a magnetic layer is comparable to (or smaller than) the electron mean free path, the interface between magnetic and non-magnetic layers becomes very important factor to determine magnetic properties of the ultra-thin films. The quality of interface can enhance (or reduce) the desired properties. Several interesting physical phenomena were studied using these interface effects. The magnetic anisotropy of ultra-thin Co films is studied as function of non-magnetic underlayer thickness and non- magnetic overlayer materials using ex situ Brillouin light scattering (BLS). I observed that perpendicular magnetic anisotropy (PMA) increases with underlayer thickness and saturates after 5 ML. This saturation can be understood as a relaxation of the in-plane lattice parameter of Au(111) on top of Cu(111) to its bulk value. For the overlayer study, Cu, Al, and Au are used. An Au overlayer gives the largest PMA due to the largest in-plane lattice mismatch between Co and Au. An unusual effect was found by adding an additional layer on top of the Au overlayer. An additional Al capping layer on top of the Au overlayer reduces the PMA significantly. The possible explanation is that the misfit strain at the interface between the Al and the Au can be propagated through the Au layer to affect the magnetic properties of Co even though the in- plane lattice mismatch is less than 1%. Another interesting problem in interface interdiffusion and thermal stability in magnetic tunnel junction (MTJ) structures is studied using X-ray photoelectron spectroscopy (XPS). Since XPS is a very chemically sensitive technique, it allows us to monitor interface interdiffusion of the MTJ structures as-deposited and during post-deposition processing. For the plasma- oxidized samples, Fe only participates in the oxidation reduction process. In contrast to plasma-oxidized samples, there were no noticeable chemical shifts as- deposited and during post-deposition processing in air

  13. Effect of Soft Phase on Magnetic Properties of Bulk Sm-Co/alpha-Fe Nanocomposite Magnets (Postprint)

    DTIC Science & Technology

    2012-11-01

    plasma sintering , and warm compaction [4][5]–[9]. In our previous study [10], bulk Sm–Co –Fe nanocomposite magnets were fabricated by hot pressing of...no. 5, pp. 2974–2976, Jul. 2003. [8] T. Saito and H. Miyoshi, “Magnetic properties of Sm5Fe17/Fe com- posite magnets produces by spark plasma ...Fe and Fe-Co. Bulk composite magnets have been prepared using compaction techniques such as hot pressing/deforma- tion, dynamic shock compaction, spark

  14. Influence of Al substitution on magnetism and adsorption properties of hematite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shanshan; Kang, Feifei; Yang, Xin

    2015-08-15

    A series of Al-substituted hematite was prepared. The structures and properties of as-prepared samples were characterized by various techniques. The magnetic property of the samples was determined and the adsorption of three dyes Acid Blue 74, Methylene Blue and Phenol Red onto the samples was investigated. The results showed that Al incorporation into the crystal structure of hematite occurs via isomorphous ionic substitution of Al for Fe. With increasing Al content, the particle size of samples decreases, the magnetization increases and the remanent magnetization remains unchanged. The coercivity of the samples increases with Al substitution up to n{sub Al}/n{sub Fe}more » 0.03, and then decreases as Al content further increases. Compared with Al-free hematite, Al-substituted samples exhibit better adsorption ability to all of the three dyes. The adsorption rates of the three dyes on the surface of Al substituted samples depend on the structure of dye, pH and Al content in hematite. - Graphical abstract: Effect of Al on the structure, magnetic properties and adsorption performance of hematite was investigated. - Highlights: • A series of Al-substituted α-Fe{sub 2}O{sub 3} was prepared. • Effect of Al content on the crystal structure and magnetic property of hematite was investigated. • Al-substituted hematite exhibits better adsorption ability than hematite.« less

  15. Preparation and electrical properties of oil-based magnetic fluids

    NASA Astrophysics Data System (ADS)

    Sartoratto, P. P. C.; Neto, A. V. S.; Lima, E. C. D.; Rodrigues de Sá, A. L. C.; Morais, P. C.

    2005-05-01

    This paper describes an improvement in the preparation of magnetic fluids for electrical transformers. The samples are based on surface-coated maghemite nanoparticles dispersed in transformer insulating oil. Colloidal stability at 90°C was higher for oleate-grafted maghemite-based magnetic fluid, whereas decanoate and dodecanoate-grafted samples were very unstable. Electrical properties were evaluated for samples containing 0.80%-0.0040% maghemite volume fractions. Relative permittivity varied from 8.8 to 2.1 and the minimum value of the loss factor was 12% for the most diluted sample. The resistivity falls in the range of 0.7-2.5×1010Ωm, whereas the ac dielectric strength varied from 70to79kV. These physical characteristics reveal remarkable step forward in the properties of the magnetic fluid samples and may result in better operation of electrical transformers.

  16. Magnetic and dielectric properties of lunar samples

    NASA Technical Reports Server (NTRS)

    Strangway, D. W.; Pearce, G. W.; Olhoeft, G. R.

    1977-01-01

    Dielectric properties of lunar soil and rock samples showed a systematic character when careful precautions were taken to ensure there was no moisture present during measurement. The dielectric constant (K) above 100,000 Hz was directly dependent on density according to the formula K = (1.93 + or - 0.17) to the rho power where rho is the density in g/cc. The dielectric loss tangent was only slightly dependent on density and had values less than 0.005 for typical soils and 0.005 to 0.03 for typical rocks. The loss tangent appeared to be directly related to the metallic ilmenite content. It was shown that magnetic properties of lunar samples can be used to study the distribution of metallic and ferrous iron which shows systematic variations from soil type to soil type. Other magnetic characteristics can be used to determine the distribution of grain sizes.

  17. Bulk dielectric and magnetic properties of PFW-PZT ceramics: absence of magnetically switched-off polarization.

    PubMed

    Kempa, M; Kamba, S; Savinov, M; Maryško, M; Frait, Z; Vaněk, P; Tomczyk, M; Vilarinho, P M

    2010-11-10

    We investigated ceramics samples of solid solutions of [PbFe(2/3)W(1/3)O(3)](x)-[PbZr(0.53)Ti(0.47)O(3)](1 - x) (PFW(x)-PZT(1 - x), x = 0.2 and 0.3) by means of broad-band dielectric spectroscopy, differential scanning calorimetry and SQUID magnetometry. We did not confirm the observations of Kumar et al (2009 J. Phys.: Condens. Matter 21 382204), who reported on reversible suppression of ferroelectric polarization in polycrystalline PFW(x)-PZT(1 - x) thin films for magnetic fields above 0.5 T. We did not observe any change of ferroelectric polarization with external magnetic fields up to 3.2 T. Pirc et al (2009 Phys. Rev. B 79 214114) developed a theory explaining the reported large magnetoelectric effect in PFW(x)-PZT(1 - x), taking into account relaxor magnetic and relaxor ferroelectric properties of the system. Our data revealed classical ferroelectric properties below 525 K and 485 K in samples with x = 0.2 and 0.3, respectively. Moreover, paramagnetic behavior was observed down to 4.5 K instead of previously reported relaxor magnetic behavior. It seems that the reported switching-off of ferroelectric polarization in PFW(x)-PZT(1 - x) thin films is not an intrinsic property, but probably an effect of electrodes, interlayers, grain boundaries or second phases presented in polycrystalline thin films.

  18. Magnetic properties of Apollo 14 breccias and their correlation with metamorphism.

    NASA Technical Reports Server (NTRS)

    Gose, W. A.; Pearce, G. W.; Strangway, D. W.; Larson, E. E.

    1972-01-01

    The magnetic properties of Apollo 14 breccias can be explained in terms of the grain size distribution of the interstitial iron which is directly related to the metamorphic grade of the sample. In samples 14049 and 14313 iron grains less than 500 A in diameter are dominant as evidenced by a Richter-type magnetic aftereffect and hysteresis measurements. Both samples are of lowest metamorphic grade. The medium metamorphic-grade sample 14321 and the high-grade sample 14312 both show a logarithmic time-dependence of the magnetization indicative of a wide range of relaxation times and thus grain sizes, but sample 14321 contains a stable remanent magnetization whereas sample 14312 does not. This suggests that small multidomain particles (less than 1 micron) are most abundant in sample 14321 while sample 14312 is magnetically controlled by grains greater than 1 micron. The higher the metamorphic grade, the larger the grain size of the iron controlling the magnetic properties.

  19. Structural and magnetic properties of granular CoPd multilayers

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Figueroa, A. I.; Bartolomé, F.; Rubín, J.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Brookes, N. B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-02-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk.

  20. Effect of the carbonyl iron particles on acoustic absorption properties of magnetic polyurethane foam

    NASA Astrophysics Data System (ADS)

    Geng, Jialu; Wang, Caiping; Zhu, Honglang; Wang, Xiaojie

    2018-03-01

    Elastomeric matrix embedded with magnetic micro-sized particles has magnetically controllable properties, which has been investigated extensively in the last decades. In this study we develop a new magnetically controllable elastomeric material for acoustic applications at lower frequencies. The soft polyurethane foam is used as matrix material due to its extraordinary elastic and acoustic absorption properties. One-step method is used to synthesize polyurethane foam, in which all components including polyether polyols 330N, MDI, deionized water, silicone oil, carbonyl iron particle (CIP) and catalyst are put into one container for curing. Changing any component can induce the change of polyurethane foam's properties, such as physical and acoustic properties. The effect of the content of MDI on acoustic absorption is studied. The CIPs are aligned under extra magnetic field during the foaming process. And the property of polyurethane foam with aligned CIPs is also investigated. Scanning electron microscope (SEM) is used to observe the structure of pore and particle-chain. The two-microphone impedance tube and the transfer function method are used to test acoustic absorption property of the magnetic foams.

  1. Ni substitution effect on magnetic and transport properties in metallic ferromagnet Co3Sn2S2

    NASA Astrophysics Data System (ADS)

    Kubodera, Takashi; Okabe, Hirotaka; Kamihara, Yoichi; Matoba, Masanori

    2006-05-01

    We investigated the magnetic and transport properties of polycrystalline (Co1-xNix)3Sn2S2(0⩽x⩽1) to ascertain the magnetism of the new metallic ferromagnet Co3Sn2S2. In Co3Sn2S2 magnetization does not saturate up to 5.5 T at 10 K, and the estimated saturation moment ( ps) is small ( ≅0.2μB per Co atom). In ( Co1-xNix)3Sn2S2, the electrical resistivity shows metallic behavior without a hump but has a kink at TC. The TC and magnetic susceptibility gradually decrease with increasing x, and there is no antiferromagnetic phase throughout the full range of composition. These results indicate that Co3Sn2S2 is a weak itinerant ferromagnet; while, the same order of the Rhodes-Wohlfarth pc/ps value as CoS2 suggests the existence of a localized moment.

  2. Role of aging time on the magnetic properties of Sm2Co17 permanent magnets processed through cold isostatic pressing

    NASA Astrophysics Data System (ADS)

    Ramudu, M.; Rajkumar, D. M.

    2018-04-01

    The effect of aging time on the magnetic properties of Sm2Co17 permanent magnets processed through a novel method of cold isostatic pressing was investigated. Sintered Sm2Co17 samples were subjected to different aging times in the range of 10-30 h and their respective microstructures were correlated with the magnetic properties obtained. The values of remanant magnetization (Br) were observed to be constant in samples aged from 10-20 h beyond which a gradual decrease in Br values was observed. The values of coercivity (Hc) displayed a sharp increase in samples aged from 10 to 20 h beyond which the coercivity values showed marginal improvement. Hence a good combination of magnetic properties could be achieved in samples aged for 20 h. A maximum energy product of 27 MGOe was achieved in the 20 h aged sample processed through a novel route.

  3. Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe 3GeTe 2

    DOE PAGES

    León-Brito, Neliza; Bauer, Eric Dietzgen; Ronning, Filip; ...

    2016-08-28

    Here, magnetic force microscopy was used to observe the magnetic microstructure of Fe 3GeTe 2 at 4 K on the (001) surface. The surface magnetic structure consists of a two-phase domain branching pattern that is characteristic for highly uniaxial magnets in the plane perpendicular to the magnetic easy axis. The average surface magnetic domain width D s = 1.3 μm determined from this pattern, in combination with intrinsic properties calculated from bulk magnetization data (the saturation magnetization M s = 376 emu/cm 3 and the uniaxial magnetocrystalline anisotropy constant K u = 1.46 × 10 7 erg/cm 3), was usedmore » to determine the following micromagnetic parameters for Fe 3GeTe 2 from phenomenological models: the domain wall energy γ w = 4.7 erg/cm 2, the domain wall thickness δ w = 2.5 nm, the exchange stiffness constant A ex = 0.95 × 10 –7 erg/cm, the exchange length l ex = 2.3 nm, and the critical single domain particle diameter d c = 470 nm.« less

  4. A comparative work on the magnetic field-dependent properties of plate-like and spherical iron particle-based magnetorheological grease.

    PubMed

    Mohamad, N; Ubaidillah; Mazlan, S A; Imaduddin, F; Choi, Seung-Bok; Yazid, I I M

    2018-01-01

    In this study, a new magnetorheological (MR) grease was made featuring plate-like carbonyl iron (CI) particles, and its magnetic field-dependent rheological properties were experimentally characterized. The plate-like CI particles were prepared through high-energy ball milling of spherical CI particles. Then, three different ratios of the CI particles in the MR grease, varying from 30 to 70 wt% were mixed by dispersing the plate-like CI particles into the grease medium with a mechanical stirrer. The magnetic field-dependent rheological properties of the plate-like CI particle-based MR grease were then investigated using a rheometer by changing the magnetic field intensity from 0 to 0.7 T at room temperature. The measurement was undertaken at two different modes, namely, a continuous shear mode and oscillation mode. It was shown that both the apparent viscosity and storage modulus of the MR grease were heavily dependent on the magnetic field intensity as well as the CI particle fraction. In addition, the differences in the yield stress and the MR effect between the proposed MR grease featuring the plate-like CI particles and the existing MR grease with the spherical CI particles were investigated and discussed in detail.

  5. Morphology and Magnetic Properties of Ferriferous Two-Phase Sodium Borosilicate Glasses

    PubMed Central

    Naberezhnov, Alexander; Porechnaya, Nadezda; Nizhankovskii, Viktor; Filimonov, Alexey; Nacke, Bernard

    2014-01-01

    This contribution is devoted to the study of morphology and magnetic properties of sodium borosilicate glasses with different concentrations (15, 20, and 25 wt.%) of α-Fe2O3 in an initial furnace charge. These glasses were prepared by a melt-quenching method. For all glasses a coexistence of drop-like and two-phase interpenetrative structures is observed. The most part of a drop structure is formed by self-assembling iron oxides particles. All types of glasses demonstrate the magnetic properties and can be used for preparation of porous magnetic matrices with nanometer through dendrite channel structure. PMID:25162045

  6. Structural, Mechanical, and Magnetic Properties of W Reinforced FeCo Alloys

    NASA Astrophysics Data System (ADS)

    Li, Gang; Corte-Real, Michelle; Yarlagadda, Shridhar; Vaidyanathan, Ranji; Xiao, John; Unruh, Karl

    2002-03-01

    Despite their superior soft magnetic properties, the poor mechanical properties of FeCo alloys have limited their potential use in rotating machines operating at elevated temperatures. In an attempt to address this shortcoming we have prepared bulk FeCo alloys at near equiatomic compositions reinforced by a relatively small volume fraction of continuous W fibers. These materials have been assembled by consolidating individual FeCo coated W fibers at elevated temperatures and moderate pressures. The mechanical and magnetic properties of the fiber reinforced composites have been studied and correlated with results of microstructural characterization.

  7. Influence of nitrogen on magnetic properties of indium oxide

    NASA Astrophysics Data System (ADS)

    Ashok, Vishal Dev; De, S. K.

    2013-07-01

    Magnetic properties of indium oxide (In2O3) prepared by the decomposition of indium nitrate/indium hydroxide in the presence of ammonium chloride (NH4Cl) has been investigated. Structural and optical characterizations confirm that nitrogen is incorporated into In2O3. Magnetization has been convoluted to individual diamagnetic paramagnetic and ferromagnetic contributions with varying concentration of NH4Cl. Spin wave with diverging thermal exponent dominates in both field cool and zero field cool magnetizations. Uniaxial anisotropy plays an important role in magnetization as a function of magnetic field at higher concentration of NH4Cl. Avrami analysis indicates the absence of pinning effect in the magnetization process. Ferromagnetism has been interpreted in terms of local moments induced by anion dopant and strong hybridization with host cation.

  8. The properties of fast and slow oblique solitons in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.; Doyle, T. B.

    2002-01-01

    This work builds on a recent treatment by McKenzie and Doyle [Phys. Plasmas 8, 4367 (2001)], on oblique solitons in a cold magnetized plasma, to include the effects of plasma thermal pressure. Conservation of total momentum in the direction of wave propagation immediately shows that if the flow is supersonic, compressive (rarefactive) changes in the magnetic pressure induce decelerations (accelerations) in the flow speed, whereas if the flow is subsonic, compressive (rarefactive) changes in the magnetic pressure induce accelerations (decelerations) in the flow speed. Such behavior is characteristic of a Bernoulli-type plasma momentum flux which exhibits a minimum at the plasma sonic point. The plasma energy flux (kinetic plus enthalpy) also shows similar Bernoulli-type behavior. This transonic effect is manifest in the spatial structure equation for the flow speed (in the direction of propagation) which shows that soliton structures may exist if the wave speed lies either (i) in the range between the fast and Alfven speeds or (ii) between the sound and slow mode speed. These conditions follow from the requirement that a defined, characteristic "soliton parameter" m exceeds unity. It is in this latter slow soliton regime that the effects of plasma pressure are most keenly felt. The equilibrium points of the structure equation define the center of the wave. The structure of both fast and slow solitons is elucidated through the properties of the energy integral function of the structure equation. In particular, the slow soliton, which owes its existence to plasma pressure, may have either a compressive or rarefactive nature, and exhibits a rich structure, which is revealed through the spatial structure of the longitudinal speed and its corresponding transverse velocity hodograph.

  9. Magnetic Nanoparticles with Dual Functional Properties: Drug Delivery and Magnetic Resonance Imaging

    PubMed Central

    Jain, Tapan K.; Richey, John; Strand, Michelle; Leslie-Pelecky, Diandra L.; Flask, Chris; Labhasetwar, Vinod

    2008-01-01

    There is significant interest in recent years in developing MNPs having multifunctional characteristics with complimentary roles. In this study, we investigated the drug delivery and magnetic resonance imaging (MRI) properties of our novel oleic acid-coated iron-oxide and pluronic-stabilized magnetic nanoparticles (MNPs). The drug incorporation efficiency of doxorubicin and paclitaxel (alone or in combination) in MNPs was 74–95%; the drug release was sustained and the incorporated drugs had marginal effects on physical (size and zeta potential) or magnetization properties of the MNPs. The drugs in combination incorporated in MNPs demonstrated highly synergistic antiproliferative activity in breast cancer cells. The T2 relaxivity (r2) was higher for our MNPs than Feridex IV, whereas the T1 relaxivity (r1) was better for Feridex IV than for our MNPs, suggesting greater sensitivity of our MNPs than Feridex IV in T2 weighted imaging. The circulation half-life (t1/2), determined from the changes in the MRI signal intensity in carotid arteries in mice, was longer for our MNPs than Feridex IV (t1/2 = 31.2 vs 6.4 min). MNPs with combined characteristics of MRI and drug delivery could be of high clinical significance in the treatment of various disease conditions. PMID:18649936

  10. Magnetic and thermodynamic properties of Ising model with borophene structure in a longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Shi, Kaile; Jiang, Wei; Guo, Anbang; Wang, Kai; Wu, Chuang

    2018-06-01

    The magnetic and thermodynamic properties of borophene structure have been studied for the first time by Monte Carlo simulation. Two-dimensional borophene structure consisting of seven hexagonal B36 units is described by Ising model. Each B36 basic unit includes three benzene-like with spin-3/2. The general formula for the borophene structure is given. The numerical results of the magnetization, the magnetic susceptibility, the internal energy and the specific heat are studied with various parameters. The possibility to test the predicted magnetism in experiment are illustrated, for instance, the maximum on the magnetization curve. The multiple hysteresis loops and the magnetization plateaus are sensitive to the ferromagnetic or ferrimagnetic exchange coupling in borophene structure. The results show the borophene structure could have applications in spintronics, which deserves further studies in experiments.

  11. Magnetic and transport properties of Fe-based nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Barandiarán, J. M.

    1994-01-01

    Fe-rich amorphous alloys containing late transition metals like Nb, V, Zr,..., sometimes with the addition of Cu, can crystallize in ultrafine grains of a crystalline phase, a few nanometers in diameter, embedded in a disordered matrix. In such state they have shown excellent soft magnetic properties for technical applications, rising the interest for deep studies. In this paper, recent work on some Fe-Nb and Fe-Zr based alloys both in amorphous state and after several degrees of nanocrystallization is presented. The nanocrystallization process has been achieved by conventional heat treatments (about 1 h at temperatures around 400-500 °C in a controlled atmosphere furnance) as well as by Joule heating using an electrical current flowing through the sample. Magnetic measurements, electrical resistivity, x-rays diffraction and 57Fe Mössbauer spectroscopy were used in the study of the crystalline phases appearing after the thermal treatments. The basic magnetic and transport properties of the nanocrystals do not differ appreciably from their bulk values. The magnetic anisotropy, however, is very sensitive to grain size and to the intergranular magnetic coupling. The effect of such coupling is deduced from the coercivity changes at the Curie Temperature of the amorphous matrix remaining after nanocrystallization.

  12. Magnetic properties of four dimensional fermions

    NASA Astrophysics Data System (ADS)

    Bergman, Oren; Lifschytz, Gilad; Lippert, Matthew

    2013-12-01

    We investigate the Sakai-Sugimoto model at nonzero baryon chemical potential in a background magnetic field in the chiral symmetric phase. We find that a new form of baryonic matter shows up, and we investigate its properties. We find a generated axial current, a reduction in the amount of charge participating in dissipative interactions and a metamagnetic like phase transition at low temperature.

  13. Magnetic properties of TOAB-capped CuO nanoparticles.

    NASA Astrophysics Data System (ADS)

    Seehra, M.; Punnoose, A.; Mahamuni, S.

    2002-03-01

    Synthesis of CuO nanoparticles (NP) capped with TOAB (tetraoctylammonium bromide) and their structural properties were reported recently [1]. Here we report on the magnetic properties of the TOAB-capped CuO-NP of size 4, 6 and 10 nm and compare these properties with those of uncapped CuO-NP in the size range of 6.6-37 nm described in the above abstract [2] and in a recent publication [3]. Temperature (5 K 350 K) and magnetic field (up to 55 kOe) variations of magnetization M, coercivity H_c, exchange bias He (field-cooled in 55 kOe) and the Neel temperature TN (where He goes to zero) were measured. The TOAB-capped NP have higher magnitudes of Ms (the weak ferromagnetic component of M) and lower He values, confirming the 1/Ms variation of He observed in uncapped CuO-NP for size < 16 nm. The reasons for the larger Ms in the capped vs. uncapped CuO-NP are now under investigation. TN decreases with the decrease in the particle size, as also observed for the uncapped CuO-NP. Supported in part by U.S. DOE (contract DE-FC26-99FT40540). [1]. K. Borgohain et al, Phys. Rev. B61, 11093 (2000). [2]. A. Punnoose and M. S. Seehra, preceding abstract. [3]. Punnoose, Magnone, Seehra & Bonevich, Phys. Rev. B64, 174420 (2001).

  14. Effect of oxygen concentration on the magnetic properties of La2CoMnO6 thin films

    NASA Astrophysics Data System (ADS)

    Guo, H. Z.; Gupta, A.; Zhang, Jiandi; Varela, M.; Pennycook, S. J.

    2007-11-01

    The dependence of the magnetic properties on oxygen concentration in epitaxial La2CoMnO6 thin films deposited on (100)-oriented SrTiO3 substrates has been investigated by varying the oxygen background pressure during growth using pulsed laser deposition. Two distinct ferromagnetic (FM) phases are revealed, and the relative fraction varies with the oxygen concentration. The existence of oxygen vacancies induces the local vibronic Mn3+-O -Co3+ superexchange interactions in direct competition with the static FM Mn4+-O-Co2+ interactions. This results in the appearance of a new low temperature FM phase and suppression of the high-temperature FM phase, creating two distinct magnetic phase transitions.

  15. Shape and edge dependent electronic and magnetic properties of silicene nano-flakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Brij, E-mail: brijmohanhpu@yahoo.com; Pooja,; Ahluwalia, P. K.

    2015-06-24

    We performed first-principle study of the geometric, electronic and magnetic properties of arm-chair and zigzag edge silicene nano-flakes of triangular and hexagonal shapes. Electronic properties of silicene nano-flakes show strong dependence on their edge structure and shape. The considered nanostructures shows energy gap ranging ∼ 0.4 – 1.0 eV. Zigzag edged triangular nano-flake is magnetic and semiconducting in nature with 4.0 µ{sub B} magnetic moment and ∼ 0.4 eV energy gap.

  16. Anisotropic magnetic properties of the triangular plane lattice material TmMgGaO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cevallos, F. Alex; Stolze, Karoline; Kong, Tai

    Here, the crystal growth, structure, and basic magnetic properties of TmMgGaO 4 are reported. The Tm ions are located in a planar triangular lattice consisting of distorted TmO6 octahedra, while the Mg and Ga atoms randomly occupy intermediary bilayers of M-O triangular bipyramids. The Tm ions are positionally disordered. The material displays an antiferromagnetic Curie Weiss theta of ~ -20 -25 K, with no clear ordering visible in the magnetic susceptibility down to 1.8 K; the structure and magnetic properties suggest that ordering of the magnetic moments is frustrated by both structural disorder and the triangular magnetic motif. Single crystalmore » magnetization measurements indicate that the magnetic properties are highly anisotropic, with large moments measured perpendicular to the triangular planes. At 2 K, a broad step-like feature is seen in the field-dependent magnetization perpendicular to the plane on applied field near 2 Tesla.« less

  17. Anisotropic magnetic properties of the triangular plane lattice material TmMgGaO 4

    DOE PAGES

    Cevallos, F. Alex; Stolze, Karoline; Kong, Tai; ...

    2018-04-30

    Here, the crystal growth, structure, and basic magnetic properties of TmMgGaO 4 are reported. The Tm ions are located in a planar triangular lattice consisting of distorted TmO6 octahedra, while the Mg and Ga atoms randomly occupy intermediary bilayers of M-O triangular bipyramids. The Tm ions are positionally disordered. The material displays an antiferromagnetic Curie Weiss theta of ~ -20 -25 K, with no clear ordering visible in the magnetic susceptibility down to 1.8 K; the structure and magnetic properties suggest that ordering of the magnetic moments is frustrated by both structural disorder and the triangular magnetic motif. Single crystalmore » magnetization measurements indicate that the magnetic properties are highly anisotropic, with large moments measured perpendicular to the triangular planes. At 2 K, a broad step-like feature is seen in the field-dependent magnetization perpendicular to the plane on applied field near 2 Tesla.« less

  18. Magnetic properties of Dy nano-islands on graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron

    Here, we have determined the magnetic properties of epitaxially grown Dy islands on graphene/SiC(0001) that are passivated by a gold film (deposited in the ultra-high vacuum growth chamber) for ex-situ X-ray magnetic circular dichroism (XMCD). Our sum-rule analysis of the Dy M 4,5 XMCD spectra at low temperatures ( T = 15 K) as a function of magnetic field assuming Dy 3+ (spin configuration 6 H 15/2) indicate that the projection of the magnetic moment along an applied magnetic field of 5 T is 3.5(3) μ B. Temperature dependence of the magnetic moment (extracted from the M 5 XMCD spectra)more » shows an onset of a change in magnetic moment at about 175 K in proximity of the transition from paramagnetic to helical magnetic structure at T H = 179 K in bulk Dy. No feature at the vicinity of the ferromagnetic transition of hcp bulk Dy at T c = 88 K is observed. However, below ~130 K, the inverse magnetic moment (extracted from the XMCD) is linear in temperature as commonly expected from a paramagnetic system suggesting different behavior of Dy nano-island than bulk Dy.« less

  19. Magnetic properties of Dy nano-islands on graphene

    DOE PAGES

    Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron; ...

    2017-04-07

    Here, we have determined the magnetic properties of epitaxially grown Dy islands on graphene/SiC(0001) that are passivated by a gold film (deposited in the ultra-high vacuum growth chamber) for ex-situ X-ray magnetic circular dichroism (XMCD). Our sum-rule analysis of the Dy M 4,5 XMCD spectra at low temperatures ( T = 15 K) as a function of magnetic field assuming Dy 3+ (spin configuration 6 H 15/2) indicate that the projection of the magnetic moment along an applied magnetic field of 5 T is 3.5(3) μ B. Temperature dependence of the magnetic moment (extracted from the M 5 XMCD spectra)more » shows an onset of a change in magnetic moment at about 175 K in proximity of the transition from paramagnetic to helical magnetic structure at T H = 179 K in bulk Dy. No feature at the vicinity of the ferromagnetic transition of hcp bulk Dy at T c = 88 K is observed. However, below ~130 K, the inverse magnetic moment (extracted from the XMCD) is linear in temperature as commonly expected from a paramagnetic system suggesting different behavior of Dy nano-island than bulk Dy.« less

  20. Electronic and magnetic properties of transition metal decorated monolayer GaS

    NASA Astrophysics Data System (ADS)

    Lin, Heng-Fu; Liu, Li-Min; Zhao, Jijun

    2018-07-01

    Inducing controllable magnetism in two dimensional non-magnetic materials is very important for realizing dilute magnetic semiconductor. Using density functional theory, we have systematically investigated the effect of surface adsorption of various 3d transition metal (TM) atoms (Sc-Cu) on the electronic and magnetic properties of the monolayer GaS as representative of group-IIIA metal-monochalcogenide. We find that all adatoms favor the top site on the Ga atom. All the TM atoms, except for the Cr and Mn, can bond strongly to the GaS monolayer with sizable binding energies. Moreover, the TM decorated GaS monolayers exhibit interesting magnetic properties, which arise from the strong spin-dependent hybridization of the TM 3d orbitals with S 3p and Ga 4s orbitals. After examining the magnetic interaction between two same types of TM atoms, we find that most of them exhibit antiferromagnetic coupling, while Fe and Co atoms can form long-range ferromagnetism. Furthermore, we find that the electronic properties of metal decorated systems strongly rely on the type of TM adatom and the adsorption concentration. In particular, the spin-polarized semiconducting state can be realized in Fe doped system for a large range of doping concentrations. These findings indicate that the TM decorated GaS monolayers have potential device applications in next-generation electronics and spintronics.

  1. Properties of radiation stable insulation composites for fusion magnet

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiong; Huang, Rongjin; Huang, Chuanjun; Li, Laifeng

    2017-09-01

    High field superconducting magnets made of Nb3Al will be a suitable candidate for future fusion device which can provide magnetic field over 15T without critical current degradation caused by strain. The higher magnetic field and the larger current will produce a huge electromagnetic force. Therefore, it is necessary to develop high strength cryogenic structural materials and electrical insulation materials with excellent performance. On the other hand, superconducting magnets in fusion devices will experience significant nuclear radiation exposure during service. While typical structural materials like stainless steel and titanium have proven their ability to withstand these conditions, electrical insulation materials used in these coils have not fared as well. In fact, recent investigations have shown that electrical insulation breakdown is a limiting factor in the performance of high field magnets. The insulation materials used in the high field fusion magnets should be characterized by excellent mechanical properties, high radiation resistivity and good thermal conductivity. To meet these objectives, we designed various insulation materials based on epoxy resins and cyanate ester resins and investigated their processing characteristic and mechanical properties before and after irradiation at low temperature. In this paper, the recent progress of the radiation stable insulation composites for high field fusion magnet is presented. The materials have been irradiated by 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min. The total doses of 1 MGy, 5 MGy and 10 MGy were selected to the test specimens.

  2. Magnetic mineralogy and rock magnetic properties of silicate and carbonatite rocks from Oldoinyo Lengai volcano (Tanzania)

    NASA Astrophysics Data System (ADS)

    Mattsson, H. B.; Balashova, A.; Almqvist, B. S. G.; Bosshard-Stadlin, S. A.; Weidendorfer, D.

    2018-06-01

    Oldoinyo Lengai, a stratovolcano in northern Tanzania, is most famous for being the only currently active carbonatite volcano on Earth. The bulk of the volcanic edifice is dominated by eruptive products produced by silica-undersaturated, peralkaline, silicate magmas (effusive, explosive and/or as cumulates at depth). The recent (2007-2008) explosive eruption produced the first ever recorded pyroclastic flows at this volcano and the accidental lithics incorporated into the pyroclastic flows represent a broad variety of different rock types, comprising both extrusive and intrusive varieties, in addition to various types of cumulates. This mix of different accidental lithics provides a unique insight into the inner workings of the world's only active carbonatite volcano. Here, we focus on the magnetic mineralogy and the rock magnetic properties of a wide selection of samples spanning the spectrum of Oldoinyo Lengai rock types compositionally, as well from a textural point of view. Here we show that the magnetic properties of most extrusive silicate rocks are dominated by magnetite-ulvöspinel solid solutions, and that pyrrhotite plays a larger role in the magnetic properties of the intrusive silicate rocks. The natrocarbonatitic lavas, for which the volcano is best known for, show distinctly different magnetic properties in comparison with the silicate rocks. This discrepancy may be explained by abundant alabandite crystals/blebs in the groundmass of the natrocarbonatitic lavas. A detailed combination of petrological/mineralogical studies with geophysical investigations is an absolute necessity in order to understand, and to better constrain, the overall architecture and inner workings of the subvolcanic plumbing system. The results presented here may also have implications for the quest in order to explain the genesis of the uniquely natrocarbonatitic magmas characteristic of Oldoinyo Lengai.

  3. Transport properties of electrons in fractal magnetic-barrier structures

    NASA Astrophysics Data System (ADS)

    Sun, Lifeng; Fang, Chao; Guo, Yong

    2010-09-01

    Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.

  4. From surfaces to magnetic properties: special section dedicated to Juan Rojo

    NASA Astrophysics Data System (ADS)

    Mascaraque, A.; Rodríguez de la Fuente, O.; González-Barrio, Miguel A.

    2013-12-01

    Surface physics and magnetism, in particular the connection between surface defects, reduced dimensionality or size, crystal structure, electronic density of states and the mechanical and magnetic properties of solids, were always at the core of Juan Rojo's scientific interest and output. Both fields seem to meet at the nanoscale, a privileged playing field which is ideal for testing theoretical concepts, exploring new physics or probing a wealth of new, stunning and unheard-of applications. Upon reducing size or dimensionality, either in bulk systems or in thin films, surfaces and surface effects are telling. Thus, for instance, an ultra-thin coating can make nanoparticles of non-magnetic materials exhibit magnetic behaviour; or atomic steps can modify the local mechanical properties of a metallic single crystal. In this special section there are eight invited papers by disciples and close collaborators of Juan Rojo, that cover an ample spectrum of the above mentioned topics. The first paper, by Palacio et al, investigates the temperature and oxygen partial pressure conditions for FeO mono- and bi-layer growth on Ru(0001). The following paper, by Cortés-Gil et al, reports on the dramatic change in the electric resistivity of the manganite perovskite (La0.5Ca0.5)z MnO3 as a function of Ca content, an effect related to the removal of a charge-ordered state and a magnetic transition. Baeza et al study biomaterials for bone cancer treatment and skeletal reinforcing, as well as targeted magnetic nanoparticles used for intracell hyperthermia in cancer therapies. In the following paper, Marcano et al, assisted by a multi-technique approach, revisit the extraordinarily rich magnetic phase diagram of the Kondo system CeNi1- x Cux down to 100 mK temperatures. The magnetic field dependence of the martensitic transition temperature of the meta-magnetic shape memory alloy Ni50Mn34.5In15.5 in a crystalline and amorphous phase, in fields up to 13 T, is the subject of the paper

  5. Plasma constraints on the cosmological abundance of magnetic monopoles and the origin of cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail V.; Loeb, Abraham

    2017-06-01

    Existing theoretical and observational constraints on the abundance of magnetic monopoles are limited. Here we demonstrate that an ensemble of monopoles forms a plasma whose properties are well determined and whose collective effects place new tight constraints on the cosmological abundance of monopoles. In particular, the existence of micro-Gauss magnetic fields in galaxy clusters and radio relics implies that the scales of these structures are below the Debye screening length, thus setting an upper limit on the cosmological density parameter of monopoles, ΩM lesssim 3 × 10-4, which precludes them from being the dark matter. Future detection of Gpc-scale coherent magnetic fields could improve this limit by a few orders of magnitude. In addition, we predict the existence of magnetic Langmuir waves and turbulence which may appear on the sky as ``zebra patterns'' of an alternating magnetic field with k·B ≠ 0. We also show that magnetic monopole Langmuir turbulence excited near the accretion shock of galaxy clusters may be an efficient mechanism for generating the observed intracluster magnetic fields.

  6. Redesigning existing transcranial magnetic stimulation coils to reduce energy: application to low field magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Wang, Boshuo; Shen, Michael R.; Deng, Zhi-De; Smith, J. Evan; Tharayil, Joseph J.; Gurrey, Clement J.; Gomez, Luis J.; Peterchev, Angel V.

    2018-06-01

    Objective. To present a systematic framework and exemplar for the development of a compact and energy-efficient coil that replicates the electric field (E-field) distribution induced by an existing transcranial magnetic stimulation coil. Approach. The E-field generated by a conventional low field magnetic stimulation (LFMS) coil was measured for a spherical head model and simulated in both spherical and realistic head models. Then, using a spherical head model and spatial harmonic decomposition, a spherical-shaped cap coil was synthesized such that its windings conformed to a spherical surface and replicated the E-field on the cortical surface while requiring less energy. A prototype coil was built and electrically characterized. The effect of constraining the windings to the upper half of the head was also explored via an alternative coil design. Main results. The LFMS E-field distribution resembled that of a large double-cone coil, with a peak field strength around 350 mV m‑1 in the cortex. The E-field distributions of the cap coil designs were validated against the original coil, with mean errors of 1%–3%. The cap coil required as little as 2% of the original coil energy and was significantly smaller in size. Significance. The redesigned LFMS coil is substantially smaller and more energy-efficient than the original, improving cost, power consumption, and portability. These improvements could facilitate deployment of LFMS in the clinic and potentially at home. This coil redesign approach can also be applied to other magnetic stimulation paradigms. Finally, the anatomically-accurate E-field simulation of LFMS can be used to interpret clinical LFMS data.

  7. Electronic and magnetic properties of zigzag silicene nanoribbons with Stone–Wales defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Haixia; Institute of Solid State Physics, Shanxi Datong University, Datong 037009; Fang, Dangqi

    2015-02-14

    The structural, electronic, and magnetic properties of zigzag silicene nanoribbons (ZSiNRs) with Stone–Wales (SW) defects were investigated using first-principles calculations. We found that two types of SW defects (named SW-Ι and SW-ΙΙ) exist in ZSiNRs. The SW defect was found to be the most stable at the edge of the ZSiNR, independently of the defect orientation, even more stable than it is in an infinite silicene sheet. In addition, the ZSiNRs can transition from semiconductor to metal or half-metal by modifying the SW defect location and concentration. For the same defect concentration, the band structures influenced by the SW-Ι defectmore » are more distinct than those influenced by the SW-ΙΙ when the SW defect is at the edge. The present study suggests the possibility of tuning the electronic properties of ZSiNRs using the SW defects and might motivate their potential application in nanoelectronics and spintronics.« less

  8. Magnetic and Geochemical Properties of Andic Soils from the Massif Central, France

    NASA Astrophysics Data System (ADS)

    Grison, H.; Petrovsky, E.; Dlouha, S.; Kapicka, A.

    2014-12-01

    Ferrimagnetic iron oxides are the key magnetic minerals responsible for enhancement of the magnetic susceptibility in soils. Soils with andic properties contain high amount of Fe-oxides, but only few attempts were made to characterize these soils using magnetic methods. Magnetic susceptibility is in particular suitable for its sensitivity and fast measurement; the presence of Fe-oxides can be easily identified directly in the field. The aim of our study is to describe main magnetic and geochemical properties of soils rich in Fe oxides derived from strongly magnetic volcanic basement. The studied sites are located at the basalt parent rock formed during Pleistocene, Pliocene and Miocene. Investigated soils are exposed to the mountainous climate with the perudic soil moisture regime and cryic temperature soil regime. Seven basalt soil profiles with typical andic properties were analyzed down to parent rock by a set of magnetic and geochemical methods. The magnetic susceptibility was measured in situ and in laboratory using the Bartington MS2D and AGICO MFK1. Its temperature dependence was measured in order to assess phase transformations of magnetic minerals using the KLY4. Magnetic data were completed by the hysteresis, IRM and DCD measurements using ADE EV9 VSM. Geochemical data include soil reaction (pH), organic carbon, cations exchange capacity, and extractable iron and aluminium in the soil extracted by a dithionite-citrate, acid-ammonium oxalate and a pyrophosphate solution. Scanning electron microscopy was done for top/sub-soil and rock samples. Geochemical soil properties reflecting iron oxide stability correlate well with mass-specific magnetic susceptibility. Well pronounced relationship was observed between magnetic grain size, precipitation and soil pH, second group is reflecting concentration of feri-magnetic particles and age of parent rock, and the third group reflects degree of weathering and the thermomagnetic indices expressing changes in magneto

  9. Mineral Magnetic Properties of Partially Oxidized Siderite

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; Hanckmann, W. J. F.; Spassov, S.; Behrends, T.

    2017-12-01

    Siderite (FeCO3) is an important mineral in iron redox cycling in the subsurface. It is often characterized geochemically by means of various sequential extraction schemes. However, a mineralogical siderite determination remains rather tedious, particularly when dealing with trace amounts and very fine particles, often the rule in soils and sediments. Here we explore the suitability of the very sensitive magnetic methods to this end, exploiting siderite's magnetic properties at low temperature. The basic magnetic properties of siderite are surprisingly poorly characterized. To contribute to this issue, we have synthesized siderite with varying amounts of ferric iron in a chemostat, next to the magnetic characterization of several siderites from mineral collections. By slowly adding ferrous iron perchlorate to a carbonate solution the synthesis could be tweaked in order to deliver products as crystalline as possible. Synthesis products were verified with XRD; at pH below 7 siderite was the dominant phase, at higher pH the mineral chukanovite (Fe2(OH)2CO3) was found. The degree of oxidation was measured wet-chemically with the ferrozine method. Samples appeared to be oxidized between 1 and 80%, most samples between 1 and 6%. The sequence of low temperature magnetic measurements (on an MPMS3 system) included 1) cooling in a field of 15 mT to 5 K, 2) warming of a 5 T IRM given at 5 K in zero field to 300 K, 3) cooling in a field of 5 T to 5 K, and 4) warming of the field-cooled 5 T IRM in zero field to 300 K. For mineral collection siderite also hysteresis loops were determined at several temperatures to determine the exchange bias field. Conform literature data siderite was found to have a magnetic ordering temperature of 38 K. Oxidation appears to smear out the remanence warming curves while also shifting the ordering temperature upward. Specific magnetic moments were found to vary distinctly, being both lower and higher than reference values. We relate this

  10. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Chandra Babu Naidu, K.; Madhuri, W.

    2016-12-01

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni-Mg ferrites of general chemical formula Ni1-xMgxFe2O4 (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K-873 K and 42 Hz-5 MHz.

  11. Magnetic and exchange bias properties of YCo thin films and IrMn/YCo bilayers

    NASA Astrophysics Data System (ADS)

    Venkat Narayana, M.; Manivel Raja, M.; Jammalamadaka, S. Narayana

    2018-02-01

    We report on the structural and magnetic properties of YCo thin films and IrMn/YCo bilayers. X-ray diffraction infer that all the films are amorphous in nature. Magnetization versus magnetic field measurements reveal room temperature soft ferromagnetism in all the YCo films. Thin films which were grown at 100 W sputter power with growth rates of 0.677, 0.694 and 0.711 Å/sec show better morphology and composition than 50 W (0.333, 0.444 and 0.277 Å/sec) grown films. Perpendicular exchange bias in as deposited bilayers is evident for IrMn/YCo bilayers. Exchange bias (EB) decreases in case of in plane measurements and enhances for out of plane measurements after perpendicular field annealing. EB is more in case of out of plane direction due to large perpendicular anisotropy in comparison with in plane direction. Above the critical thickness, EB variation is explained on the basis of random field model in the Heisenberg regime, which has been proposed by Malozemoff. Indeed there exists an inverse relationship between EB and IrMn layer thickness. Evidenced vertical shift apart from the horizontal shift for magnetization loops is attributed to frozen magnetic moments in one of the layers at the interface. Present results would prove to be helpful in spintronic device applications.

  12. Influence of Nb addition on vacancy defects and magnetic properties of the nanocrystalline Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Szwaja, Małgorzata; Gębara, Piotr; Filipecki, Jacek; Pawlik, Katarzyna; Przybył, Anna; Pawlik, Piotr; Wysłocki, Jerzy J.; Filipecka, Katarzyna

    2015-05-01

    In present work, influence of Nb addition on vacancy defects and magnetic properties of nanocrystalline Nd-Fe-B permanent magnets, was investigated. Samples with composition (Nd,Fe,B)100-xNbx (where x=6,7,8) were studied in as-cast state and after annealing. Samples were prepared by arc-melting with high purity of constituent elements under Ar atmosphere. Ribbons were obtained by melt-spinning technique under low pressure of Ar. Ribbon samples in as-cast state had amorphous structure and soft magnetic properties. Positron annihilation lifetime spectroscopy PALS has been applied to detection of positron - trapping voids (vacancy defects). With increase of Nb in alloy increasing of vacancy defects concentration was observed. Heat treatment of the samples was carried out at various temperatures (from 923 K to 1023 K) for 5 min, in order to obtain nanocrystalline structure. The aim of present work was to determine the influence of Nb addition and annealing conditions on the vacancy defects and magnetic properties of the Nd-Fe-B- type alloys in as-cast state and after heat treatment.

  13. Structural, electrical, magnetic and magnetoelectric properties of composites

    NASA Astrophysics Data System (ADS)

    Rani, Renu; Juneja, J. K.; Singh, Sangeeta; Prakash, Chandra; Raina, K. K.

    2013-11-01

    The magnetoelectric (ME) composites with composition (y)Ni0.8Zn0.2Fe2O4+(1-y) Ba0.90Sr0.10Zr0.04Ti0.96O3 ((y)NZF+(1-y)BSZT) (where y=0.00-0.15 in wt%) were prepared by the conventional solid state reaction route. The existence of both phases was confirmed by the X-Ray diffraction technique and the lattice parameters for all samples were calculated. The dielectric properties such as dielectric constant and dielectric loss were measured as a function of temperature at different frequencies. P-E hysteresis loops and M-H hysteresis loops confirm the ferroelectric and ferrimagnetic nature of the composite samples. M-H loops for electrically poled and un-poled samples were compared to prove ME evidences. Variation of ME coefficient (α) with dc magnetic field was also studied for all composite samples. The maximum value of α (1.6 mV/cm Oe) was observed for y=0.10 at 750 Oe.

  14. Synthesis and magnetic properties of bundled and dispersed Co{sub 3}O{sub 4} nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.B.; Wang, P.F.; Xu, J.C.

    Highlights: • Co{sub 3}O{sub 4} nanowires possessed the same diameter and the different interwires distance. • All samples possessed antiferromagnetism and superparamagnetism at high temperature. • The exchange bias effect was observed at low temperature. • The surface spin coupling restrained the surface effect of magnetic nanostructures. - Abstract: The magnetic Co{sub 3}O{sub 4} nanowires were synthesized using the templates of SBA-15, and then the well-dispersed nanowires (D-wires) were separated from the bundled ordered nanowires (B-wires) with the centrifugal technique. TEM images indicated that D-wires were highly dispersed Co{sub 3}O{sub 4} nanowires and B-wires existed in bundles. All samples possessedmore » the antiferromagnetism and superparamagnetism at high temperature. After revealing the intrinsic magnetic properties of Co{sub 3}O{sub 4} nanowires with D-wires, the magnetic behavior of B-wires was discussed in detail, and then the magnetic interaction between neighboring nanowires could be deduced. The exchange bias effect from the body Co{sub 3}O{sub 4} antiferromagnetism and surface ferromagnetism was observed at low temperature. The magnetization of B-wires was higher than that of D-wires, which was attributed to the constraint of the surface spin coupling between the neighboring nanowires to the surface affect of nanostructures.« less

  15. Crystal structure, magnetic properties and advances in hexaferrites: A brief review

    NASA Astrophysics Data System (ADS)

    Jotania, Rajshree

    2014-10-01

    Hexaferrites are hard magnetic materials and specifically ferri-magnetic oxides with hexagonal magnetoplumbite type crystallographic structure. Hexagonal ferrites are used as permanent magnets, high-density perpendicular and magneto-optical recording media, and microwave devices like resonance isolators, filters, circulators, phase shifters because of their high magnetic permeability, high electrical resistivity and moderable permittivity. In addition to these; hexagonal ferrites have excellent chemical stability, mechanical hardness and low eddy current loss at high frequencies. The preparation of hexaferrites is a complicated process. Various experimental techniques like standard ceramic techniques, solvent free synthesis route, co precipitation, salt-melt, ion exchange, sol-gel, citrate synthesis, hydrothermal synthesis, spray drying, water-in-oil microemulsion, reverse micelle etc are used to prepare hexaferrite materials. Structural, dielectric and magnetic properties, crystallite size of hexaferrites depend upon nature of substituted ions, method of preparation, sintering temperature and time. The recent interest is nanotechnology, the development of hexaferrite fibres and composites with carbon nano tubes (CNT). Magnetic properties of some doped and un-doped hexaferrites are discussed here. Recent advances in hexaferrites also highlighted in present paper.

  16. Existence of a component corotating with the earth in high-latitude disturbance magnetic fields

    NASA Technical Reports Server (NTRS)

    Suzuki, A.; Kim, J. S.; Sugiura, M.

    1982-01-01

    A study of the data from the high-latitude North American IMS network of magnetic stations suggests that there is a component in substorm perturbations that corotates with the earth. It is as yet not certain whether the existence of this component stems from the corotation of a part of the magnetospheric plasma involved in the substorm mechanism or if it is a 'phase change' resulting from the control of the substorm manifestations by the earth's main magnetic field which is not axially symmetric. There are other geophysical phenomena showing a persistence of longitudinal variations corotating with the earth. These phenomena are of significance for a better understanding of ionosphere-magnetosphere coupling.

  17. The effect of nanocrystalline silicon host on magnetic properties of encapsulated iron oxide nanoparticles.

    PubMed

    Granitzer, P; Rumpf, K; Gonzalez-Rodriguez, R; Coffer, J L; Reissner, M

    2015-12-21

    The purpose of this work is a detailed comparison of the fundamental magnetic properties of nanocomposite systems consisting of Fe3O4 nanoparticle-loaded porous silicon as well as silicon nanotubes. Such composite structures are of potential merit in the area of magnetically guided drug delivery. For magnetic systems to be utilized in biomedical applications, there are certain magnetic properties that must be fulfilled. Therefore magnetic properties of embedded Fe3O4-nanoparticles in these nanostructured silicon host matrices, porous silicon and silicon nanotubes, are investigated. Temperature-dependent magnetic investigations have been carried out for four types of iron oxide particle sizes (4, 5, 8 and 10 nm). The silicon host, in interplay with the iron oxide nanoparticle size, plays a sensitive role. It is shown that Fe3O4 loaded porous silicon and SiNTs differ significantly in their magnetic behavior, especially the transition between superparamagnetic behavior and blocked state, due to host morphology-dependent magnetic interactions. Importantly, it is found that all investigated samples meet the magnetic precondition of possible biomedical applications of exhibiting a negligible magnetic remanence at room temperature.

  18. Magnetic properties and loss separation in iron-silicone-MnZn ferrite soft magnetic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan

    This paper investigates the magnetic and structural properties of iron-based soft magnetic composites coated with silicone-MnZn ferrite hybrid. The organic silicone resin was added to improve the flexibility of the insulated iron powder and causes better adhesion between particles to increase the mechanical properties. Scanning electron microscopy and distribution maps show that the iron particle surface is covered with a thin layer of silicone-MnZn ferrite. Silicone-MnZn ferrite coated samples have higher permeability when compared with the non-magnetic silicone resin coated compacts. The real part of permeability increases by 34.18% when compared with the silicone resin coated samples at 20 kHz.more » In this work, a formula for calculating the total loss component by loss separation method is presented and finally the different parts of total losses are calculated. The results show that the eddy current loss coefficient is close to each other for the silicone-MnZn ferrite, silicone resin and MnZn ferrite coated samples (0.0078« less

  19. Effects of wear on structure-sensitive magnetic properties of ceramic ferrite in contact with magnetic tape

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1985-01-01

    Wear experiments and electron microscopy and diffraction studies were conducted to examine the wear and deformed layers in single-crystal Mn-Zn (ceramic) ferrite magnetic head material in contact with magnetic tape and the effects of that contact on magnetic properties. The crystalline state of the single-crystal magnetic head was changed drastically during the sliding process. A nearly amorphous structure was produced on its wear surface. Deformation in the surficial layer of the magnetic head was a critical factor in readback signal loss above 2.5 dB. The signal output level was reduced as applied normal load was increased. Considerable plastic flow occurred on the magnetic tape surface with sliding, and the signal loss due to the tape wear was approximately 1 dB.

  20. Magnetic and mineralogical properties of salt rocks from the Zechstein of the Northern German Basin

    NASA Astrophysics Data System (ADS)

    Heinrich, Frances C.; Schmidt, Volkmar; Schramm, Michael; Mertineit, Michael

    2017-03-01

    Magnetic properties of rocks are often studied to characterize composition and fabric of rocks. For salt rocks, the basic relationships between their magnetic properties and composition, which are necessary to interpret rock magnetic data, are not yet established. Therefore, we studied different types of natural salt rock and pure salt minerals. We measured their magnetic properties (magnetic susceptibility, isothermal remanent magnetization acquisition curves, first-order reversal curve diagrams and temperature-dependent magnetic susceptibility) and used analytical methods such as microscopy, X-ray diffraction and inductively coupled plasma atomic emission spectroscopy to understand the relationship between magnetic properties and mineralogy. Salt rocks mainly consist of the diamagnetic minerals halite, carnallite, sylvine and anhydrite with negative magnetic susceptibilities. The magnetic susceptibilities of pure synthetic NaCl and KCl single crystals, show values of -14.5 × 10-6 and -13.5 × 10-6 SI, respectively. In contrast, in natural salt rocks higher magnetic susceptibility values were measured. The magnetic susceptibility of the samples investigated in this study shows a general increase from light rock salt (maximum -10 × 10-6 SI) over carnallitite (maximum 134 × 10-6 SI) to red sylvinite (maximum 270 × 10-6 SI). Whole rock analyses suggest that increased magnetic susceptibility can be attributed to paramagnetic and ferromagnetic minerals that are contained within the insoluble residue. The magnetic susceptibility is mainly controlled by magnetite and phyllosilicates. Its measurement can therefore be used to detect subtle changes in the content of these minerals.

  1. Magnetic properties of chemical remanent magnetization in synthetic and natural goethite - Prospects for a natural remanent magnetization/thermoremanent magnetization ratio paleomagnetic stability test?

    NASA Astrophysics Data System (ADS)

    Dekkers, Mark J.; Rochette, Pierre

    1992-11-01

    Results are presented of measurements of chemical remanent magnetization properties in natural goethite and in goethite samples synthesized under controlled field conditions (horizontally directed field of 0.30 mT) at 30 C and 55 C, with and without the presence of microfiber glass filters. Results indicate that both the temperature and the presence of a substrate (microfiber glass filters) affect the goethite aging process and the magnetic properties of the resulting goethite. The goethite aging from ferrihydrite was much faster at 55 C than at 30 C, likely because of increased ion diffusion velocity in solution. Results of goethite aging in the presence of other mineral substrate (gibbsite) indicate that the type of mineral substrate is important.

  2. Magnetic Resonance Based Electrical Properties Tomography: A Review

    PubMed Central

    Zhang, Xiaotong; Liu, Jiaen

    2014-01-01

    Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g. tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced Specific Absorption Rate (SAR) which is a major safety concern in high- and ultrahigh-field Magnetic Resonance Imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced Electrical Properties Tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and non-invasively with a spatial resolution of a few millimeters or less. This paper reviews the Electrical Properties Tomography approach from its basic theory in electromagnetism to the state of the art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed. PMID:24803104

  3. Phase composition and magnetic properties in hot deformed magnets based on Misch-metal

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Zhang, Z. Y.; Zhang, X. F.; Hu, Z. F.; Liu, Y. L.; Liu, F.; Jv, X. M.; Wang, J.; Li, Y. F.; Zhang, J. X.

    2018-04-01

    In this paper, the Rare-earth Iron Boron (RE-Fe-B) magnets were fabricated successfully by using the double main phase method through mixing the Neodymium Iron Boron (Nd-Fe-B) powders and Misch-metal Iron Boron (MM-Fe-B) powders with different ratio. Aiming at the nanocrystalline RE2Fe14B magnets prepared by using spark plasma sintering technology, phase structure and magnetic properties were investigated. It is found that the Misch-metal (MM) alloys promote the domain nucleation during the the process of magnetization reversal and then damage the coercivity (Hcj) of isotropic RE2Fe14B magnets, while the Hcj could still remain more than 1114.08 kA/m when the mass proportion of MM (simplified as: "a") is 30%. Curie temperature and phase structure were also researched. Two kinds of mixed-solid-solution (MSS) main phases with different Lanthanum (La) and Cerium (Ce) content were believed to be responsible for the two curie temperature of the RE2Fe14B magnets with "a" ≥20%. This is resulted from the inhomogeneous elemental distribution of RE2Fe14B phase.

  4. Magnetic and electrical properties of Nd7Pt3 studied on single crystals

    NASA Astrophysics Data System (ADS)

    Tsutaoka, Takanori; Ueda, Koyo; Matsushita, Takuya

    2018-07-01

    Magnetic and electrical properties of Nd7Pt3 with the Th7Fe3 type hexagonal structure have been studied on single crystals by measuring magnetization, magnetic susceptibility and electrical resistivity. Nd7Pt3 possesses a ferromagnetic state below TC = 38 K; a canted antiferromagnetic state takes place at Tt2 = 34 K. Another magnetic phase transition has also been observed at Tt1 = 25 K. The magnetization curve along the a- and b-axes at 2 K shows anomalous first-order irreversible behavior. The direction of the magnetic moment in the canted state can be tilted from the c-plane. Electrical resistivity measurement results show metallic property; three anomalies were observed at Tt1, Tt2 and TC, respectively.

  5. Investigation of electronic and magnetic properties of Ni0.5Cu0.5Fe2O4: theoretical and experimental

    NASA Astrophysics Data System (ADS)

    Sharma, Uma Shankar; Shah, Rashmi

    2018-05-01

    In present study, Ni0.5Cu0.5Fe2O4 been was synthesized with Co-precipitation method and prepared samples were annealed at 300°C and 500°C. The single phase formation of nickel ferrite was confirmed through powder X-ray diffraction (XRD). The presence of various functional groups was confirmed through FTIR analysis. The effects of the annealing temperature on the particle sizes and magnetic properties of the ferrite samples were investigated and interpret with valid reasons. The structural and magnetic properties of the ferrite samples were strongly affected by the annealing temperature. The annealing temperature increases coercivity and saturation magnetization values are continuously increased. Spin­ polarization calculations are performed on the Ni0.5Cu0.5Fe2O4, compounds within density functional theory (DFT) and find out equilibrium lattice constants 8.2 Å and DOS show there exists large spin splitting between the spin up and spin down channels near the Fermi level confirm p-d hybridization. The theoretical calculated magnetic are slightly higher than our experimental results. The other results have been discussed in detail.

  6. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Peterson, G.P. (Bud) (Inventor); Hong, Haiping (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  7. Nd2Fe14C-based magnet with better permanent magnetic properties prepared by a simple mechanochemical method

    NASA Astrophysics Data System (ADS)

    Geng, Hongmin; Ji, Yuan; Zhang, Jingjing; Gao, Yuchao; Yan, Yu; Wang, Wenquan; Su, Feng; Du, Xiaobo

    2017-11-01

    Nd2Fe14C-based magnet is prepared by a mechanochemical method, namely high-energy ball-milling Nd2Fe11Bx (x = 0-0.15) alloy in heptane (C7H16), followed by annealing to 850 °C in vacuum. Under the action of high-energy ball-milling, Nd2Fe11Bx react with heptane to form NdH2+δ, Fe-(CB), C, etc. H2 is released and Nd2Fe17, Nd2Fe17Cx (x = 0-3), Nd2Fe14C, Nd carbides and α-Fe are formed in the subsequent annealing. C amount depends on ball-milling time t. Long time ball milling or high C content suppresses the formation of 2:17 phase and favors the formation of 2:14:1 phase in the final products. Excessive ball-milling results in the quick increase of α-Fe. The maximum of magnetically hard Nd2Fe14C is obtained at t = 4 h. For Nd2Fe11 samples, there exists considerable quantity of Nd carbides and α-Fe phase appears earlier and increases rapidly with extending the ball-milling time t. The addition of B element shortens the ball-milling time of the formation of maximum Nd2Fe14C and prominently suppresses the formation of Nd carbide and α-Fe. The optimum magnetic properties, coercivity iHc of 1193.7 kA/m, remanence Mr of 580.9 kA/m, maximum magnetic energy product (BH)max of 91.7 kJ/m3 is approaching to its theoretic value of 99.2 kJ/m3 for isotropic Nd2Fe14C magnet, are obtained in Nd2Fe11B0.06 alloy ball milled for 3.5 h.

  8. Magnetic and structural properties of yellow europium oxide compound and Eu(OH){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongwook, E-mail: dongwookleedl324@gmail.com; Seo, Jiwon, E-mail: jiwonseo@yonsei.ac.kr; Valladares, Luis de los Santos

    A new material based on a yellow europium oxide compound was prepared from europium oxide in a high vacuum environment. The structural and magnetic properties of the material were investigated. Owing to the absence of a crystal structure, the material exhibited a disordered magnetic behavior. In a reaction with deionized (DI) water without applied heat, the compound assumed a white color as soon as the DI water reached the powder, and the structure became polycrystalline Eu(OH){sub 3}. The magnetic properties, such as the thermal hysteresis, disappeared after the reaction with DI water, and the magnetic susceptibility of the yellow oxidemore » compound weakened. The magnetic properties of Eu(OH){sub 3} were also examined. Although Eu{sup 3+} is present in Eu(OH){sub 3}, a high magnetic moment due to the crystal field effect was observed. - Graphical abstract: (top left) Optical image of the yellow europium oxide compound. (top right) Optical image of the product of DI water and yellow europium oxide. (bottom) Magnetization curves as a function of temperature measured in various magnetic field. - Highlights: • We prepared a new material based on a yellow europium oxide compound from europium oxide. • We characterized the magnetic properties of the material which exhibits a disordered magnetic behavior such as thermal hysteresis. • The compound turned white (Eu(OH){sub 3}) as soon as the DI water reached the powder. • The thermal hysteresis disappeared after the reaction with DI water and the magnetic susceptibility of the yellow oxide compound weakened.« less

  9. Synthesis and magnetic properties of tin spinel ferrites doped manganese

    NASA Astrophysics Data System (ADS)

    El Moussaoui, H.; Mahfoud, T.; Habouti, S.; El Maalam, K.; Ben Ali, M.; Hamedoun, M.; Mounkachi, O.; Masrour, R.; Hlil, E. K.; Benyoussef, A.

    2016-05-01

    In this work we report the synthesis, the microstructural characterization and the magnetic properties of tin spinel ferrites doped manganese (Sn1-xMnxFe2O4 with x=0.25, 0.5, 0.75, and 1) nanoparticles prepared by co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of Sn0.5Mn0.5Fe2O4 has been investigated. The synthesized nanoparticle sizes have been controlled between 4 and 9 nm, with uniform spherical morphology as confirmed by transmission electron microscopy (TEM). All the samples prepared possess single domain magnetic. The nanoparticles of Sn0.5Mn0.5Fe2O4 with 4 nm in diameter have a blocking temperature close to 100 K. In addition, the cation distribution obtained from the X-ray diffraction of this sample was confirmed by magnetic measurement. For the Sn1-xMnxFe2O4; (0≤x≤1) samples, the magnetization and coercive fields increase when the augmentation of Mn content increases. For x=0.5, such parameters decrease when the calcination temperature increases.

  10. Magnetic Cellulose Nanocrystal Based Anisotropic Polylactic Acid Nanocomposite Films: Influence on Electrical, Magnetic, Thermal, and Mechanical Properties.

    PubMed

    Dhar, Prodyut; Kumar, Amit; Katiyar, Vimal

    2016-07-20

    This paper reports a single-step co-precipitation method for the fabrication of magnetic cellulose nanocrystals (MGCNCs) with high iron oxide nanoparticle content (∼51 wt % loading) adsorbed onto cellulose nanocrystals (CNCs). X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopic studies confirmed that the hydroxyl groups on the surface of CNCs (derived from the bamboo pulp) acted as anchor points for the adsorption of Fe3O4 nanoparticles. The fabricated MGCNCs have a high magnetic moment, which is utilized to orient the magnetoresponsive nanofillers in parallel or perpendicular orientations inside the polylactic acid (PLA) matrix. Magnetic-field-assisted directional alignment of MGCNCs led to the incorporation of anisotropic mechanical, thermal, and electrical properties in the fabricated PLA-MGCNC nanocomposites. Thermomechanical studies showed significant improvement in the elastic modulus and glass-transition temperature for the magnetically oriented samples. Differential scanning calorimetry (DSC) and XRD studies confirmed that the alignment of MGCNCs led to the improvement in the percentage crystallinity and, with the absence of the cold-crystallization phenomenon, finds a potential application in polymer processing in the presence of magnetic field. The tensile strength and percentage elongation for the parallel-oriented samples improved by ∼70 and 240%, respectively, and for perpendicular-oriented samples, by ∼58 and 172%, respectively, in comparison to the unoriented samples. Furthermore, its anisotropically induced electrical and magnetic properties are desirable for fabricating self-biased electronics products. We also demonstrate that the fabricated anisotropic PLA-MGCNC nanocomposites could be laminated into films with the incorporation of directionally tunable mechanical properties. Therefore, the current study provides a novel noninvasive approach of orienting nontoxic bioderived CNCs in the presence of low

  11. Active Region Photospheric Magnetic Properties Derived from Line-of-Sight and Radial Fields

    NASA Astrophysics Data System (ADS)

    Guerra, J. A.; Park, S.-H.; Gallagher, P. T.; Kontogiannis, I.; Georgoulis, M. K.; Bloomfield, D. S.

    2018-01-01

    The effect of using two representations of the normal-to-surface magnetic field to calculate photospheric measures that are related to the active region (AR) potential for flaring is presented. Several AR properties were computed using line-of-sight (B_{los}) and spherical-radial (Br) magnetograms from the Space-weather HMI Active Region Patch (SHARP) products of the Solar Dynamics Observatory, characterizing the presence and features of magnetic polarity inversion lines, fractality, and magnetic connectivity of the AR photospheric field. The data analyzed correspond to {≈ }4{,}000 AR observations, achieved by randomly selecting 25% of days between September 2012 and May 2016 for analysis at 6-hr cadence. Results from this statistical study include: i) the Br component results in a slight upwards shift of property values in a manner consistent with a field-strength underestimation by the B_{los} component; ii) using the Br component results in significantly lower inter-property correlation in one-third of the cases, implying more independent information as regards the state of the AR photospheric magnetic field; iii) flaring rates for each property vary between the field components in a manner consistent with the differences in property-value ranges resulting from the components; iv) flaring rates generally increase for higher values of properties, except the Fourier spectral power index that has flare rates peaking around a value of 5/3. These findings indicate that there may be advantages in using Br rather than B_{los} in calculating flare-related AR magnetic properties, especially for regions located far from central meridian.

  12. Controllable synthesis, crystal structure and magnetic properties of Monomer-Dimer Cocrystallized MnIII Salen-type composite material

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Wu, Wei; Wu, Yongmei; Li, Weili; Qiao, Yongfeng; Wang, Ying; Wang, Baoling

    2018-04-01

    By the reaction of manganese-Schiff-base complexes with penta-anionic Anderson heteropolyanion, a new supramolecular architecture [Mn2(Salen)2(H2O)2][Mn(Salen)(H2O)2]2Na[IMo6O24]·8H2O (1) (salen = N,N‧-ethylene-bis (salicylideneiminate) has been isolated. Compound 1 was characterized by the single-crystal X-ray diffraction, elemental, IR and thermal gravimetric analyses. Structural analysis reveals that the unit cell simultaneously contains MnIII-Salen dimer and monomer cation fragments, for which the Anderson-type polyanions serve as counter anions. In the packing arrangement, all the MnIII dimers are well separated by polyoxometalate units and form tertiary structure together with MnIII monomers. Interestingly, different from the previous work, in the exact same reaction conditions, we are able to template MnIII-Salen complexes into different configurations by varying the charge state of polyanions. Besides, the magnetic properties of 1 were also examined by using both dc and ac magnetic field of the superconducting quantum interference devices. Most importantly, our fitting of the experimental data to a Heisenberg-type spin model shows that there exists a ferromagnetic exchange interaction ∼5 K between the spins (S = 2) on MnIII in the dimer, while antiferromagnetic ones exist among monomers and dimer (∼2 K). This meta-magnetic state could induce a slight spin frustration at low temperature, which would in turn affect the magnetic behavior. In addition, our ac field measurement of the susceptibilities suggests a typical signature for a single-molecule magnet.

  13. Zigzag nanoribbons of two-dimensional silicene-like crystals: magnetic, topological and thermoelectric properties.

    PubMed

    Wierzbicki, Michał; Barnaś, Józef; Swirkowicz, Renata

    2015-12-09

    The effects of electron-electron and spin-orbit interactions on the ground-state magnetic configuration and on the corresponding thermoelectric and spin thermoelectric properties in zigzag nanoribbons of two-dimensional hexagonal crystals are analysed theoretically. The thermoelectric properties of quasi-stable magnetic states are also considered. Of particular interest is the influence of Coulomb and spin-orbit interactions on the topological edge states and on the transition between the topological insulator and conventional gap insulator states. It is shown that the interplay of both interactions also has a significant impact on the transport and thermoelectric characteristics of the nanoribbons. The spin-orbit interaction also determines the in-plane magnetic easy axis. The thermoelectric properties of nanoribbons with in-plane magnetic moments are compared to those of nanoribbons with edge magnetic moments oriented perpendicularly to their plane. Nanoribbons with ferromagnetic alignment of the edge moments are shown to reveal spin thermoelectricity in addition to the conventional one.

  14. Magnetic properties of CoNiFe alloys electrodeposited under potential and current control conditions

    NASA Astrophysics Data System (ADS)

    Perez, L.; Attenborough, K.; De Boeck, J.; Celis, J. P.; Aroca, C.; Sánchez, P.; López, E.; Sánchez, M. C.

    2002-04-01

    Electrodeposited CoNiFe alloys have been produced under potential and current control conditions. It was found that composition, crystalline structure and magnetic properties are the same irrespective of which plating control is used. Magnetic anisotropy is present in the softest samples. A study of the dependence of magnetic properties and domain structure on the thickness of the films is also reported.

  15. Properties of highly frustrated magnetic molecules studied by the finite-temperature Lanczos method

    NASA Astrophysics Data System (ADS)

    Schnack, J.; Wendland, O.

    2010-12-01

    The very interesting magnetic properties of frustrated magnetic molecules are often hardly accessible due to the prohibitive size of the related Hilbert spaces. The finite-temperature Lanczos method is able to treat spin systems for Hilbert space sizes up to 109. Here we first demonstrate for exactly solvable systems that the method is indeed accurate. Then we discuss the thermal properties of one of the biggest magnetic molecules synthesized to date, the icosidodecahedron with antiferromagnetically coupled spins of s = 1/2. We show how genuine quantum features such as the magnetization plateau behave as a function of temperature.

  16. Magnetic properties of Fe-Nd silica glass ceramics

    NASA Astrophysics Data System (ADS)

    Nayak, Manjunath T.; Desa, J. A. Erwin; Babu, P. D.

    2018-04-01

    Soda lime silica glass ceramics containing iron and neodymium have been synthesized. The XRD pattern revealed that the glass samples devitrified into multiple phases. Fe2O3 as an initial component converted into Fe3O4 in the sample during the synthesis, and was the main contributor to the magnetic property of the sample. The inclusion of Nd was found to enhance the magnetization of the sample at 5K. The coercivity of the sample increased with decrease in temperature from room to 5K.

  17. Systematics of electronic and magnetic properties in the transition metal doped Sb2Te3 quantum anomalous Hall platform

    NASA Astrophysics Data System (ADS)

    Islam, M. F.; Canali, C. M.; Pertsova, A.; Balatsky, A.; Mahatha, S. K.; Carbone, C.; Barla, A.; Kokh, K. A.; Tereshchenko, O. E.; Jiménez, E.; Brookes, N. B.; Gargiani, P.; Valvidares, M.; Schatz, S.; Peixoto, T. R. F.; Bentmann, H.; Reinert, F.; Jung, J.; Bathon, T.; Fauth, K.; Bode, M.; Sessi, P.

    2018-04-01

    The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here, we report on a detailed and systematic investigation of transition metal (TM) doped Sb2Te3 . By combining density functional theory calculations with complementary experimental techniques, i.e., scanning tunneling microscopy, resonant photoemission, and x-ray magnetic circular dichroism, we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM doped topological insulators. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V- and Fe-doped Sb2Te3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity dependent and can vary from in plane to out of plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM doped Sb2Te3 in the ferromagnetic state.

  18. A comparative work on the magnetic field-dependent properties of plate-like and spherical iron particle-based magnetorheological grease

    PubMed Central

    Ubaidillah; Imaduddin, F.; Choi, Seung-Bok; Yazid, I. I. M.

    2018-01-01

    In this study, a new magnetorheological (MR) grease was made featuring plate-like carbonyl iron (CI) particles, and its magnetic field-dependent rheological properties were experimentally characterized. The plate-like CI particles were prepared through high-energy ball milling of spherical CI particles. Then, three different ratios of the CI particles in the MR grease, varying from 30 to 70 wt% were mixed by dispersing the plate-like CI particles into the grease medium with a mechanical stirrer. The magnetic field-dependent rheological properties of the plate-like CI particle-based MR grease were then investigated using a rheometer by changing the magnetic field intensity from 0 to 0.7 T at room temperature. The measurement was undertaken at two different modes, namely, a continuous shear mode and oscillation mode. It was shown that both the apparent viscosity and storage modulus of the MR grease were heavily dependent on the magnetic field intensity as well as the CI particle fraction. In addition, the differences in the yield stress and the MR effect between the proposed MR grease featuring the plate-like CI particles and the existing MR grease with the spherical CI particles were investigated and discussed in detail. PMID:29630595

  19. Implications of neutron star properties for the existence of light dark matter

    NASA Astrophysics Data System (ADS)

    Motta, T. F.; Guichon, P. A. M.; Thomas, A. W.

    2018-05-01

    It was recently suggested that the discrepancy between two methods of measuring the lifetime of the neutron may be a result of an unseen decay mode into a dark matter particle which is almost degenerate with the neutron. We explore the consequences of this for the properties of neutron stars, finding that their known properties are in conflict with the existence of such a particle.

  20. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  1. Structure and magnetic properties of iron-based soft magnetic composite with Ni-Cu-Zn ferrite-silicone insulation coating

    NASA Astrophysics Data System (ADS)

    Li, Wangchang; Wang, Wei; Lv, Junjun; Ying, Yao; Yu, Jing; Zheng, Jingwu; Qiao, Liang; Che, Shenglei

    2018-06-01

    This paper investigates the structure and magnetic properties of Ni-Cu-Zn ferrite-silicone coated iron-based soft magnetic composites (SMCs). Scanning electron microscopy coupled with a energy-dispersive spectroscopy (EDS) analysis revealed that the Ni-Cu-Zn ferrite and silicone resin were uniformly coated on the surface of iron powders. By controlling the composition of the coating layer, low total core loss of 97.7 mW/cm3 (eddy current loss of 48 mW/cm3, hysteresis loss of 49.7 mW/cm3, measured at 100 kHz and 0.02 T) and relatively high effective permeability of 72.5 (measured at 100 kHz) were achieved. In addition, the as-prepared SMCs displayed higher electrical resistivity, good magnetic characteristics over a wide range of frequencies (20-200 kHz) and ideal the D-C bias properties (more than 75% at H = 50 Oe). Furthermore, higher elastic modulus and hardness of SMCs, which means that the coating layer has good mechanical properties and is not easily damaged during the pressing process, were obtained in this paper. The results of this work indicate that the Ni-Cu-Zn ferrite-silicone coated SMCs have desirable properties which would make them suitable for application in the fields of the electric-magnetic switching devices, such as inductance coils, transformer cores, synchronous electric motors and resonant inductors.

  2. Magnetic and optoelectronic properties of gold nanocluster-thiophene assembly.

    PubMed

    Qin, Wei; Lohrman, Jessica; Ren, Shenqiang

    2014-07-07

    Nanohybrids consisting of Au nanocluster and polythiophene nanowire assemblies exhibit unique thermal-responsive optical behaviors and charge-transfer controlled magnetic and optoelectronic properties. The ultrasmall Au nanocluster enhanced photoabsorption and conductivity effectively improves the photocurrent of nanohybrid based photovoltaics, leading to an increase of power conversion efficiency by 14 % under AM 1.5 illumination. In addition, nanohybrids exhibit electric field controlled spin resonance and magnetic field sensing behaviors, which open up the potential of charge-transfer complex system where the magnetism and optoelectronics interact. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis of FeCo magnetic nanoalloys and investigation of heating properties for magnetic fluid hyperthermia

    NASA Astrophysics Data System (ADS)

    Çelik, Özer; Fırat, Tezer

    2018-06-01

    In this study, size controlled FeCo colloidal magnetic nanoalloys in the range of 11.5-37.2 nm were synthesized by surfactant assistant ball milling method. Magnetic separation technique was performed subsequent to synthesis process so as to obtain magnetic nanoalloy fluid with narrow size distribution. Particle distribution was determined by transmission electron microscope (TEM) while X-ray diffraction (XRD) measurements verified FeCo alloy formation as BCC structure. Vibrating sample magnetometer (VSM) method was used to investigate magnetic properties of nanoalloys. Maximum saturation magnetization and maximum coercivity were obtained as 172 Am2/kg for nanoparticles with the mean size of 37.2 nm and 19.4 mT for nanoparticles with the mean size of 13.3 nm, respectively. The heating ability of FeCo magnetic nanoalloys was determined through calorimetrical measurements for magnetic fluid hyperthermia (MFH) applications. Heat generation mechanisms were investigated by using linear response theory and Stoner-Wohlfarth (S-W) model. Specific absorption rate (SAR) values were obtained in the range of 2-15 W/g for magnetic field frequency of 171 kHz and magnetic field strength in between 6 and 14 mT.

  4. Electronic and magnetic properties of small rhodium clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework.more » The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.« less

  5. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    DOE PAGES

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; ...

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed bymore » soft x-ray resonant magnetic scattering measurements.« less

  6. Fabrication and properties of Nd(Tb,Dy)Co/Cr films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Cheng, Weiming; Miao, Xiangshui; Yan, Junbing; Cheng, Xiaomin

    2009-08-01

    Light rare earth-heavy rare earth-transition metal films (LRE-HRE-TM)have large saturation magnetization (Ms) and are the promising media for hybrid recording. In this paper, Nd(Tb,Dy)Co/Cr films with perpendicular magnetic anisotropy were successfully fabricated onto glass substrate by RF magnetron sputtering and the effects of sputtering technology parameters and Nd substitution for HRE atoms on the magnetic properties were investigated. It was found that when the sputtering power and sputtering time are 250W and 4min, respectively, the magnetic properties of Nd(Tb,Dy)Co/Cr films obtain optimization, perpendicular coercivity, Ms and remanence square ratio(S) of NdTbCo/Cr film reach 3.8kOe, 247emu/cm3 and 0.801, respectively. With the increasing of Nd concentration, Ms increases, while the coercivity (Hc)and the temperature stability of magnetic properties decrease distinctly. These results can be explained by the ferri-magnetic structure of the RE-TM alloy.

  7. Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamidi, S. M.

    2012-01-15

    In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-opticalmore » rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.« less

  8. Low-temperature magnetic properties of GdCoIn5

    NASA Astrophysics Data System (ADS)

    Betancourth, D.; Facio, J. I.; Pedrazzini, P.; Jesus, C. B. R.; Pagliuso, P. G.; Vildosola, V.; Cornaglia, Pablo S.; García, D. J.; Correa, V. F.

    2015-01-01

    A comprehensive experimental and theoretical study of the low temperature properties of GdCoIn5 was performed. Specific heat, thermal expansion, magnetization and electrical resistivity were measured in good quality single crystals down to 4He temperatures. All the experiments show a second-order-like phase transition at 30 K probably associated with the onset of antiferromagnetic order. The magnetic susceptibility shows a pronounced anisotropy below TN with an easy magnetic axis perpendicular to the crystallographic ĉ-axis. Total energy GGA+U calculations indicate a ground state with magnetic moments localized at the Gd ions and allowed a determination of the Gd-Gd magnetic interactions. Band structure calculations of the electron and phonon contributions to the specific heat together with Quantum Monte Carlo calculations of the magnetic contributions show a very good agreement with the experimental data. Comparison between experiment and calculations suggests a significant anharmonic contribution to the specific heat at high temperature (T ≳ 100 K).

  9. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    NASA Astrophysics Data System (ADS)

    de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.

    2010-04-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  10. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles.

    PubMed

    de Julián Fernández, C; Mattei, G; Paz, E; Novak, R L; Cavigli, L; Bogani, L; Palomares, F J; Mazzoldi, P; Caneschi, A

    2010-04-23

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO(2) matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  11. Electronic and magnetic properties of SnS2 monolayer doped with non-magnetic elements

    NASA Astrophysics Data System (ADS)

    Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Wang, Ling-Ling

    2018-05-01

    We performed a systematic study of the electronic structures and magnetic properties of SnS2 monolayer doped with non-magnetic elements in groups IA, IIA and IIIA based on the first-principles methods. The doped systems exhibit half-metallic and metallic natures depending on the doping elements. The formation of magnetic moment is attributable to the cooperative effect of the Hund's rule coupling and hole concentration. The spin polarization can be stabilized and enhanced through confining the delocalized impurity states by biaxial tensile strain in hole-doped SnS2 monolayer. Both the double-exchange and p-p exchange mechanisms are simultaneously responsible for the ferromagnetic ground state in those hole-doped materials. Our results demonstrate that spin polarization can be induced and controlled in SnS2 monolayers by non-magnetic doping and tensile strain.

  12. Electrochemical corrosion behavior, microstructure and magnetic properties of sintered Nd-Fe-B permanent magnet doped by CuZn5 powders

    NASA Astrophysics Data System (ADS)

    Liu, W. Q.; Wang, Z.; Sun, C.; Yue, M.; Liu, Y. Q.; Zhang, D. T.; Zhang, J. X.

    2014-05-01

    Nd-Fe-B permanent magnets with a small amount of CuZn5 powders doping were prepared by conventional sintered method. The effects of CuZn5 contents on magnetic properties and microstructure, electrochemical corrosion resistance of sintered Nd-Fe-B magnets were systematically studied. The results show that the magnetic properties of magnets do not have a significant variation by CuZn5 powders doping; the coercivity of magnets rises gradually, while the remanence of the magnets decreases a little with increasing of the CuZn5 amount. The CuZn5 doped magnets have more positive corrosion potential, Ecorr, and much lower corrosion current density, icorr, than the magnets without CuZn5 doping, indicating CuZn5 doping could improve the corrosion resistance. Both Zn and Cu enrich mainly into the Nd-rich phase, fully improve the wettability between the Nd-rich phase and the Nd2Fe14B phase, and repair the defects of the main phase, so the coercivity of magnets doped with CuZn5 powders rises. Such microstructure modification effectively restrains the aggressive inter-granular corrosion. As a result, the CuZn5 doped magnet possesses excellent corrosion resistance in NaCl electrolyte.

  13. Plasma Constraints on the Cosmological Abundance of Magnetic Monopoles and the Origin of Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail; Loeb, Abraham

    2017-10-01

    Existing theoretical and observational constraints on the abundance of magnetic monopoles are limited. Here we demonstrate that an ensemble of monopoles forms a plasma whose properties are well determined and whose collective effects place new tight constraints on the cosmological abundance of monopoles. In particular, the existence of micro-Gauss magnetic fields in galaxy clusters and radio relics implies that the scales of these structures are below the Debye screening length, thus setting an upper limit on the cosmological density parameter of monopoles, ΩM <= 3 ×10-4 , which precludes them from being the dark matter. Future detection of Gpc-scale coherent magnetic fields could improve this limit by a few orders of magnitude. In addition, we predict the existence of magnetic Langmuir waves and turbulence which may appear on the sky as ``zebra patterns'' of an alternating magnetic field with k . B ≠ 0 . We also show that magnetic monopole Langmuir turbulence excited near the accretion shock of galaxy clusters may be an efficient mechanism for generating the observed intracluster magnetic fields. The authors acknowledge DOE partial support via Grant DE-SC0016368.

  14. Plasma constraints on the cosmological abundance of magnetic monopoles and the origin of cosmic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Mikhail V.; Loeb, Abraham, E-mail: mmedvedev@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    Existing theoretical and observational constraints on the abundance of magnetic monopoles are limited. Here we demonstrate that an ensemble of monopoles forms a plasma whose properties are well determined and whose collective effects place new tight constraints on the cosmological abundance of monopoles. In particular, the existence of micro-Gauss magnetic fields in galaxy clusters and radio relics implies that the scales of these structures are below the Debye screening length, thus setting an upper limit on the cosmological density parameter of monopoles, Ω {sub M} {sub ∼<} {sub 3} {sub ×} {sub 10}{sup −4}, which precludes them from being themore » dark matter. Future detection of Gpc-scale coherent magnetic fields could improve this limit by a few orders of magnitude. In addition, we predict the existence of magnetic Langmuir waves and turbulence which may appear on the sky as ''zebra patterns'' of an alternating magnetic field with k·B ≠ 0. We also show that magnetic monopole Langmuir turbulence excited near the accretion shock of galaxy clusters may be an efficient mechanism for generating the observed intracluster magnetic fields.« less

  15. Structural and magnetic properties of Ga-substituted Co 2 ‑W hexaferrites

    NASA Astrophysics Data System (ADS)

    Mahmood, Sami H.; Al Sheyab, Qusai; Bsoul, Ibrahim; Mohsen, Osama; Awadallah, Ahmad

    2018-05-01

    Precursor powders of BaMg2-xCoxFe16O27 with (x = 0.0, 1.0, and 2.0) were prepared using high-energy ball milling, and the effects of chemical composition and sintering temperature on the structural and magnetic properties were investigated using x-ray diffractometer (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). XRD patterns of the prepared samples indicated that crystallization of pure BaW hexaferrite phase was achieved at sintering temperature of 1300{\\deg} C, while BaM and cubic spinel phase intermediate phases were obtained at lower sintering temperatures of 1100{\\deg} C and 1200{\\deg} C. SEM images revealed improvement of the crystallization of the structural phases, and growth of the particle size with increasing the sintering temperature. The magnetic data of the samples sintered at 1300{\\deg} C revealed an increase of the saturation magnetization from 59.44 emu/g to 72.56 emu/g with increasing Co concentration (x) from 0.0 to 2.0. The coercive field Hc decreased from 0.07 kOe at x = 0.0, to 0.03 kOe at x = 1.0, and then increases to 0.09 kOe at x = 2.0. The thermomagnetic curves of the samples sintered at 1300{\\deg} C confirmed the existence of the W-type phase, and revealed spin reorientation transitions above room temperature.

  16. Magnetic and Magnetocaloric Properties of Ca0.97La0.03MnO3 Manganites

    NASA Astrophysics Data System (ADS)

    Gong, G. D.; Hu, P. F.; Li, Y.; Kim, D. H.; Liu, C. L.; Phan, T. L.; Ho, T. A.; Yu, S. C.; Telegin, A.; Naumov, S. V.

    2016-07-01

    In spite of many previous studies on electron-doped CaMnO3 perovskite manganites, detailed investigations into the influence of low-doping concentrations on their magnetic and magnetocaloric (MC) properties have not been carried out yet. Additionally, there is still the lack of the comparison between single-crystal (SC) and polycrystalline (PC) materials. Dealing with these problems, we prepared orthorhombic Ca0.97La0.03MnO3 SC and PC samples. Magnetization measurements versus the temperature and magnetic field revealed remarkable differences in the magnetic property, particularly around the antiferromagnetic/ferromagnetic-paramagnetic phase-transition region. The analyses of the magnetization versus magnetic field, M( H), data indicated a weak MC effect with magnetic-entropy changes less than 0.1 J kg-1 K-1 for an applied field interval H = 10 kOe because ferromagnetic interactions between Mn3+ and Mn4+ ions are insignificant. The differences in the magnetic and MC properties of the SC and PC samples are ascribed to the effects of grain boundary, magnetic anisotropy, and nonstoichiometry in oxygen.

  17. Axisymmetric Flow Properties for Magnetic Elements of Differing Strength

    NASA Technical Reports Server (NTRS)

    Rightmire-Upton, Lisa; Hathaway, David H.

    2012-01-01

    Aspects of the structure and dynamics of the flows in the Sun's surface shear layer remain uncertain and yet are critically important for understanding the observed magnetic behavior. In our previous studies of the axisymmetric transport of magnetic elements we found systematic changes in both the differential rotation and the meridional flow over the course of Solar Cycle 23. Here we examine how those flows depend upon the strength (and presumably anchoring depth) of the magnetic elements. Line of sight magnetograms obtained by the HMI instrument aboard SDO over the course of Carrington Rotation 2097 were mapped to heliographic coordinates and averaged over 12 minutes to remove the 5-min oscillations. Data masks were constructed based on the field strength of each mapped pixel to isolate magnetic elements of differing field strength. We used Local Correlation Tracking of the unmasked data (separated in time by 1- to 8-hours) to determine the longitudinal and latitudinal motions of the magnetic elements. We then calculated average flow velocities as functions of latitude and longitude from the central meridian for approx 600 image pairs over the 27-day rotation. Variations with longitude indicate and characterize systematic errors in the flow measurements associated with changes in the signal from disk center to limb. Removing these systematic errors reveals changes in the axisymmetric flow properties that reflect changes in flow properties with depth in the surface shear layer.

  18. 7 CFR 1955.134 - Loss, damage, or existing defects in inventory real property.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 14 2013-01-01 2013-01-01 false Loss, damage, or existing defects in inventory real... Disposal of Inventory Property General § 1955.134 Loss, damage, or existing defects in inventory real... a result of fire, vandalism, or an act of God between the time of acceptance of the bid or offer and...

  19. 7 CFR 1955.134 - Loss, damage, or existing defects in inventory real property.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Loss, damage, or existing defects in inventory real... Disposal of Inventory Property General § 1955.134 Loss, damage, or existing defects in inventory real... a result of fire, vandalism, or an act of God between the time of acceptance of the bid or offer and...

  20. 7 CFR 1955.134 - Loss, damage, or existing defects in inventory real property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 14 2014-01-01 2014-01-01 false Loss, damage, or existing defects in inventory real... Disposal of Inventory Property General § 1955.134 Loss, damage, or existing defects in inventory real... a result of fire, vandalism, or an act of God between the time of acceptance of the bid or offer and...

  1. 7 CFR 1955.134 - Loss, damage, or existing defects in inventory real property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 14 2012-01-01 2012-01-01 false Loss, damage, or existing defects in inventory real... Disposal of Inventory Property General § 1955.134 Loss, damage, or existing defects in inventory real... a result of fire, vandalism, or an act of God between the time of acceptance of the bid or offer and...

  2. 7 CFR 1955.134 - Loss, damage, or existing defects in inventory real property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 14 2011-01-01 2011-01-01 false Loss, damage, or existing defects in inventory real... Disposal of Inventory Property General § 1955.134 Loss, damage, or existing defects in inventory real... a result of fire, vandalism, or an act of God between the time of acceptance of the bid or offer and...

  3. Fe-based magnetic nanomaterials: Wet chemical synthesis, magnetic properties and exploration on applications

    NASA Astrophysics Data System (ADS)

    Xiaoliang, Hong

    Even though the start of research based on Fe-based magnetic nanomaterials could be dated back to hundreds years ago, the considerably large amount of emerging fields for their applications, including spintronic structures in information storage, biomedical and environmental applications, magnetic sensors, magnetic energy harvesters, has spurred renewed interest on the application-related properties of Fe-based nanomaterial in both the nanoparticle and film forms. Besides, an exploration of a simple, wide, effective technique that can be used for growth of high-quality Fe-based magnetic nanoparticles and films is of great importance for better materialization of these potential Fe-based devices. This thesis mainly focuses on fabricating different magnetic Fe-based materials (ferrites and ferrous alloys, nanoparticle and film) with wet chemical method, investigating their growth mechanism and magnetic and electrical properties. In addition, the possible applications of as-fabricated Fe-based nanoparticles and films are studied. The contribution of the work is summarized as below: (1) Investigation indicated that the external magnetic field plays an important role in determining the microstructure, magnetic properties of the Fe3O4 nanoparticles. The magnetic field can promote the change of Fe3O4 nanocuboctahedrons to nanocubes. Compared the hyperthermia property of as-fabricated nanocuboctahedrons and nanocubes Fe3O4, the intrinsic loss power (ILP) of the Fe3O4 nanocubes was much higher than that of nanocuboctahedrons due to the surface magnetic effect. (2) A general and facile method for broadly deposition of thick Fe 3O4 film and other ferrites has been demonstrated. It had been found that the epitaxial high-quality Fe3O4 film could be deposited either on MgO substrates directly or Si substrates with Fe3O4 seed layer deposited by PLD. As-deposited Fe 3O4 film could be easily patterned and shows potential applications for microwave and MEMS supercapacitor. Besides

  4. Study of AC Magnetic Properties and Core Losses of Fe/Fe3O4-epoxy Resin Soft Magnetic Composite

    NASA Astrophysics Data System (ADS)

    Laxminarayana, T. A.; Manna, Subhendu Kumar; Fernandes, B. G.; Venkataramani, N.

    Soft Magnetic Composites (SMC) were prepared by coating of nanocrystalline Fe3O4 particles, synthesized by co-precipitation method, on atomized iron powder of particle size less than 53 μm in size using epoxy resin as a binder between iron and Fe3O4. Fe3O4 was chosen, for its high electric resistivity and suitable magnetic properties, to keep the coating layer magnetic and seek improvement to the magnetic properties of SMC. SEM images and XRD patterns were recorded in order to investigate the coatings on the surface of iron powder. A toroid was prepared by cold compaction of coated iron powder at 1050 MPa and subsequently cured at 150˚C for 1 hr in argon atmosphere. For comparison of properties, a toroid of uncoated iron powder was also compacted at 1050 MPa and annealed at 600˚C for 2 hr in argon atmosphere. The coated iron powder composite has a resistivity of greater than 200 μΩm, measured by four probe method. A comparison of Magnetic Hysteresis loops and core losses using B-H Loop tracer in the frequency range 0 to 1500 Hz on the coated and uncoated iron powder is reported.

  5. High damping properties of magnetic particles doped rubber composites at wide frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Ye, E-mail: schtiany@163.com; College of Material Science and Engineering, North University of China, Taiyuan 030051; Liu, Yaqing, E-mail: lyq@nuc.edu.cn

    Highlights: ► A new kind of permanent magnetic rubber was prepared. ► The microstructure and magnetic properties were investigated. ► The mechanical and damping properties were discussed. ► The new material is expected to be an isolator material to a changed frequency. - Abstract: A new kind of rubber composite was prepared by doping SrFe{sub 12}O{sub 19} nanoparticles coated with silane coupling agents (Si-69) into nitrile butadiene rubber (NBR) matrix, which was characterized by the scanning electron microscopy and X-ray spectroscopy. The results showed that the SrFe{sub 12}O{sub 19} nanoparticles were well dispersed in rubber matrix. Furthermore, the mechanical andmore » magnetic properties of the rubber composites were investigated, in which the high tensile strength (15.8 MPa) and high saturation magnetization (22.9 emu/g) were observed. What is more, the high loss factor of the rubber composites was also obtained in a wide frequency range (0–100 Hz) at high loading (80 phr). The result is attributed to that the permanent magnetic field in rubber nanocomposites can absorb shock energy. These results indicate that the new kind of permanent magnetic rubber is expected to be a smart isolator material, in which the isolator will be able to adapt to a changed frequency.« less

  6. On The Constitutive Properties Of Strongly Magnetized Matter Observed In A Class Of Solar Ejecta

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D. B.

    2013-12-01

    Several studies of the transient events known as magnetic clouds at 1 AU suggest that they possess the ';1/2' anomalous value for its adiabatic, polytropic index, i.e., γ= 1/2, which implies that the temperature of the plasma decreases with increased density[1-3]. Coronal mass ejections commonly observed by missions like The Solar Terrestrial Relations Observatory (STEREO) have been successfully modeled previously by Berdichevsky Stenborg and Vourlidas[4] as magnetic flux-ropes which propagate from the Sun with uniform velocity. Building on this existing analytical three-dimensional magnetohydrodynamic (MHD) model of a magnetic flux-rope, we present an interpretation of the anomalous and somewhat counterintuitive dynamic property mentioned above. Using plasma and magnetic field observations by the Wind spacecraft for the magnetic cloud of June 2, 1998, we argue that this anomalous polytropic index is indeed a consequence of thermodynamic processes in this strongly magnetized matter. We show that the derived models of Berdichevsky et al.[5, 6] easily accommodate a familiar thermodynamic explanation of this property. Such an explanation may shed light also on the evolution of other astrophysical observations such as remnants in nebulae of past super-novae, as well other transient interstellar events. This MHD solution may be a good way to go beyond gas-dynamics in the development of a coherent picture of shock and its driver, as they are becoming a current interpretation. 1Osherovich, V.A., 1997, Proc. 31st, ESLAB Symp. Correlated Phenomena at the Sun, in the Heliosphere and in Geospace. 2Sittler, E.C., and L.F., Burlaga, 1998, J. Geophys. Res., 103, 17447. 3Nieves-Chinchilla T., and A., Figueroa-Viñas, 2008, J. Geophys. Res., 113, DOI: 10.1029/2007JA012703 4Berdichevsky, Stenborg, and Vourlidas, 2011, ApJ, 741, 47. 5Berdichevsky, D.B., R.L., Lepping, C.J., Farrugia, 2003, Phys.Rev. E, 67, DOI: 10.1103/PhysRevE036405. 6Berdichevsky, D.B. , 2012, Sol. Phys., 284

  7. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Shi, Donglu; Sadat, M. E.; Dunn, Andrew W.; Mast, David B.

    2015-04-01

    Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagnetism is an important property for biomedical applications such as magnetic hyperthermia therapy of cancer. In this review article, we report on some of the most recent experimental and theoretical studies on magnetic heating mechanisms under an alternating (AC) magnetic field. The heating mechanisms are interpreted based on Néel and Brownian relaxations, and hysteresis loss. We also report on the recently discovered photoluminescence of Fe3O4 and explain the emission mechanisms in terms of the electronic band structures. Both optical and magnetic properties are correlated to the materials parameters of particle size, distribution, and physical confinement. By adjusting these parameters, both optical and magnetic properties are optimized. An important motivation to study iron oxide is due to its high potential in biomedical applications. Iron oxide nanoparticles can be used for MRI/optical multimodal imaging as well as the therapeutic mediator in cancer treatment. Both magnetic hyperthermia and photothermal effect has been utilized to kill cancer cells and inhibit tumor growth. Once the iron oxide nanoparticles are up taken by the tumor with sufficient concentration, greater localization provides enhanced effects over disseminated delivery while simultaneously requiring less therapeutic mass to elicit an equal response. Multi-modality provides highly beneficial co-localization. For magnetite (Fe3O4) nanoparticles the co-localization of diagnostics and therapeutics is achieved through magnetic based imaging and local hyperthermia generation through magnetic field or photon

  8. Magnetic properties of four Cu(ii)-amino acid salts

    NASA Astrophysics Data System (ADS)

    Calvo, Rafael

    1984-03-01

    We report a comparative study of magnetic properties of the Cu(II) salts of the amino acids l-alanine, dl-α-amino-n-butyric acid, α-amino isobutyric acid, and l-isoleucine. The position of the EPR lines of these quasi-two-dimensional magnetic systems was measured as a function of temperature T between 293 and 1.5 K, at 9.3 GHz and for magnetic fields applied along three axes of single crystal samples. Large changes of the gyromagnetic factor with T have been observed. They are attributed to an internal mean field, proportional to the applied field, which appears when the temperature is lowered due to short range magnetic order in the paramagnetic phase of the salts. The problem of short range magnetic order and g shifts in Cu-amino acid salts is discussed and compared with previous observations in Mn one-dimensional systems.

  9. Influence of Cobalt Substitution on the Magnetic Properties of Fe5PB2.

    PubMed

    Cedervall, Johan; Nonnet, Elise; Hedlund, Daniel; Häggström, Lennart; Ericsson, Tore; Werwiński, Mirosław; Edström, Alexander; Rusz, Ján; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin

    2018-01-16

    The substitutional effects of cobalt in (Fe 1-x Co x ) 5 PB 2 have been studied with respect to crystalline structure and chemical order with X-ray diffraction and Mössbauer spectroscopy. The magnetic properties have been determined from magnetic measurements, and density functional theory calculations have been performed for the magnetic properties of both the end compounds, as well as the chemically disordered intermediate compounds. The crystal structure of (Fe 1-x Co x ) 5 PB 2 is tetragonal (space group I4/mcm) with two different metal sites, with a preference for cobalt atoms in the M(2) position (4c) at higher cobalt contents. The substitution also affects the magnetic properties with a decrease of the Curie temperature (T C ) with increasing cobalt content, from 622 to 152 K for Fe 5 PB 2 and (Fe 0.3 Co 0.7 ) 5 PB 2 , respectively. Thus, the Curie temperature is dependent on composition, and it is possible to tune T C to a temperature near room temperature, which is one prerequisite for magnetic cooling materials.

  10. Predicting the Magnetic Properties of ICMEs: A Pragmatic View

    NASA Astrophysics Data System (ADS)

    Riley, P.; Linker, J.; Ben-Nun, M.; Torok, T.; Ulrich, R. K.; Russell, C. T.; Lai, H.; de Koning, C. A.; Pizzo, V. J.; Liu, Y.; Hoeksema, J. T.

    2017-12-01

    The southward component of the interplanetary magnetic field plays a crucial role in being able to successfully predict space weather phenomena. Yet, thus far, it has proven extremely difficult to forecast with any degree of accuracy. In this presentation, we describe an empirically-based modeling framework for estimating Bz values during the passage of interplanetary coronal mass ejections (ICMEs). The model includes: (1) an empirically-based estimate of the magnetic properties of the flux rope in the low corona (including helicity and field strength); (2) an empirically-based estimate of the dynamic properties of the flux rope in the high corona (including direction, speed, and mass); and (3) a physics-based estimate of the evolution of the flux rope during its passage to 1 AU driven by the output from (1) and (2). We compare model output with observations for a selection of events to estimate the accuracy of this approach. Importantly, we pay specific attention to the uncertainties introduced by the components within the framework, separating intrinsic limitations from those that can be improved upon, either by better observations or more sophisticated modeling. Our analysis suggests that current observations/modeling are insufficient for this empirically-based framework to provide reliable and actionable prediction of the magnetic properties of ICMEs. We suggest several paths that may lead to better forecasts.

  11. Interface-Induced Phenomena in Magnetism

    PubMed Central

    Hoffmann, Axel; Tserkovnyak, Yaroslav; Beach, Geoffrey S. D.; Fullerton, Eric E.; Leighton, Chris; MacDonald, Allan H.; Ralph, Daniel C.; Arena, Dario A.; Dürr, Hermann A.; Fischer, Peter; Grollier, Julie; Heremans, Joseph P.; Jungwirth, Tomas; Kimel, Alexey V.; Koopmans, Bert; Krivorotov, Ilya N.; May, Steven J.; Petford-Long, Amanda K.; Rondinelli, James M.; Samarth, Nitin; Schuller, Ivan K.; Slavin, Andrei N.; Stiles, Mark D.; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L.

    2017-01-01

    This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes. PMID:28890576

  12. Magnetic properties of NdFeB-coated rubberwood composites

    NASA Astrophysics Data System (ADS)

    Noodam, Jureeporn; Sirisathitkul, Chitnarong; Matan, Nirundorn; Rattanasakulthong, Watcharee; Jantaratana, Pongsakorn

    2013-01-01

    Magnetic properties of composites prepared by coating lacquer containing neodymium iron boron (Nd-Fe-B) powders on rubberwood were characterized by vibrating sample magnetometry (VSM), magnetic moment measurements, and attraction tests with an iron-core solenoid. The Nd-Fe-B powders were recycled from electronic wastes by the ball-milling technique. Varying the milling time from 20 to 300 min, the magnetic squareness and the coercive field of the Nd-Fe-B powders were at the minimum when the powders were milled for 130 min. It followed that the coercive field of the magnetic wood composites was increased with the milling time increasing from 130 to 300 min. For the magnetic wood composites using Nd-Fe-B obtained from the same milling time, the magnetic squareness and the coercive field were rather insensitive to the variation of Nd-Fe-B concentration in coating lacquer from 0.43 to 1.00 g/cm3. By contrast, the magnetization and magnetic moment were increased with the Nd-Fe-B concentration increasing. Furthermore, the electrical current in the solenoid required for the attraction of the magnetic wood composites was exponentially reduced with the increase in the amount of Nd-Fe-B used in the coating.

  13. Magnetic properties of ultrathin tetragonal Heusler D022-Mn3Ge perpendicular-magnetized films

    NASA Astrophysics Data System (ADS)

    Sugihara, A.; Suzuki, K. Z.; Miyazaki, T.; Mizukami, S.

    2015-05-01

    We investigated the crystal structure and magnetic properties of Manganese-germanium (Mn3Ge) films having the tetragonal D022 structure, with varied thicknesses (5-130 nm) prepared on chromium (Cr)-buffered single crystal MgO(001) substrates. A crystal lattice elongation in the in-plane direction, induced by the lattice mismatch between the D022-Mn3Ge and the Cr buffer layer, increased with decreasing thickness of the D022-Mn3Ge layer. The films exhibited clear magnetic hysteresis loops with a squareness ratio close to unity, and a step-like magnetization reversal even at a 5-nm thickness under an external field perpendicular to the film's plane. The uniaxial magnetic anisotropy constant of the films showed a reduction to less than 10 Merg/cm3 in the small thickness range (≤20 nm), likely due to the crystal lattice elongation in the in-plane direction.

  14. Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping

    PubMed Central

    Tan, Changlong; Tai, Zhipeng; Zhang, Kun; Tian, Xiaohua; Cai, Wei

    2017-01-01

    Both magnetic-field-induced reverse martensitic transformation (MFIRMT) and mechanical properties are crucial for application of Ni-Mn-Sn magnetic shape memory alloys. Here, we demonstrate that substitution of Fe for Ni can simultaneously enhance the MFIRMT and mechanical properties of Ni-Mn-Sn, which are advantageous for its applications. The austenite in Ni44Fe6Mn39Sn11 shows the typical ferromagnetic magnetization with the highest saturation magnetization of 69 emu/g at 223 K. The result shows that an appropriate amount of Fe substitution can really enhance the ferromagnetism of Ni50Mn39Sn11 alloy in austenite, which directly leads to the enhancement of MFIRMT. Meanwhile, the mechanical property significantly improves with Fe doping. When there is 4 at.% Fe added, the compressive and maximum strain reach the maximum value (approximately 725.4 MPa and 9.3%). Furthermore, using first-principles calculations, we clarify the origin of Fe doping on martensitic transformation and magnetic properties. PMID:28230152

  15. Transport properties of interacting magnetic islands in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianakon, T.A.; Callen, J.D.; Hegna, C.C.

    1993-10-01

    This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly non-overlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to: a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficientmore » which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.« less

  16. Magnetic properties of Ni nanoparticles dispersed in silica prepared by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    González, E. M.; Montero, M. I.; Cebollada, F.; de Julián, C.; Vicent, J. L.; González, J. M.

    1998-04-01

    We analyze the magnetic properties of mechanically ground nanosized Ni particles dispersed in a SiO2 matrix. Our magnetic characterization of the as-milled samples show the occurrence of two blocking processes and that of non-monotonic milling time evolutions of the magnetic-order temperature, the high-field magnetization and the saturation coercivity. The measured coercivities exhibit giant values and a uniaxial-type temperature dependence. Thermal treatment carried out in the as-prepared samples result in a remarkable coercivity reduction and in an increase of the high-field magnetization. We conclude, on the basis of the consideration of a core (pure Ni) and shell (Ni-Si inhomogeneous alloy) particle structure, that the magnetoelastic anisotropy plays the dominant role in determining the magnetic properties of our particles.

  17. New Soft Magnetic Composites for electromagnetic applications with improved mechanical properties

    NASA Astrophysics Data System (ADS)

    Ferraris, Luca; Pošković, Emir; Franchini, Fausto

    2016-05-01

    The chance to move from 2D to 3D approach in the design of the electrical machines is made possible by the availability of Soft Magnetic Composites (SMC), iron based powders, insulated and pressed to realize shapes otherwise impossible with the traditional lamination sheets technology. Some commercial products are available on the market as "ready to press" powders, which presents good magnetic and energetic properties but are sometimes weak under the mechanical point of view; other products aim at improving this aspect but with considerable process complications and relative cost. The experience of the Authors in the realization of bonded magnets with the adoption of selected organic resins has been partly transferred in the research field of the SMC in order to investigate the possibility to obtain good mechanical properties maintaining the magnetic characteristics of the Insulated Iron Powder Compounds (I.I.P.C.) taken as reference. The paper presents the activity that has been carried out in the realization of SMC mixing iron powders and phenolic resin, in different weight percentages and mold pressures. The obtained results are considered satisfactory under the point of view of the compromise between magnetic and mechanical properties, considering also that the required productive process is simpler. The comparison of the obtained results with those related to commercial products encourages to carry on the research, also because of the reduced cost of the proposed SMC at parity (or better) performance.

  18. Atomic-scale investigation and magnetic properties of Cu80Co20 nanowires

    NASA Astrophysics Data System (ADS)

    Hannour, A.; Lardé, R.; Jean, M.; Bran, J.; Pareige, P.; Le Breton, J. M.

    2011-09-01

    Cu80Co20 granular alloy nanowires were synthesized by electrodeposition method and investigated by x-ray diffraction (XRD), Laser Assisted Wide Angle Tomographic Atom Probe (LAWATAP), and SQUID magnetometry. XRD results reveal the existence of a fcc Cu matrix and fcc Co-rich nanograins, with a preferred orientation along the [200] direction (perpendicular to the substrate surface). The Co-rich nanograins could be coherent with the Cu matrix. 3D reconstructions of a nano-sized volume, obtained by LAWATAP, reveal the heterogeneous aspect of the Cu80Co20 nanowires: Co-rich nanoclusters with size between 2 and 10 nm are detected, and the presence of Cu and Co oxides is evidenced. Magnetization measurements indicate that the Co-rich nanoclusters are superparamagnetic, with a blocking temperature that extends up to, at least, room temperature. The presence of ferromagnetic domains at room temperature indicates that some Co-rich nanoclusters are correlated within a volume that corresponds to a so-called interacting superparamagnetic phase. As a matter of fact, by LAWATAP atomic-scale analysis, a very good correlation is obtained between microstructure and magnetic properties.

  19. Thermal and magnetic properties of electron gas in toroidal quantum dot

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. A.; Hayrapetyan, D. B.; Kazaryan, E. M.; Sarkisyan, H. A.

    2018-07-01

    One-electron states in a toroidal quantum dot in the presence of an external magnetic field have been considered. The magnetic field operator and the Schrodinger equation have been written in toroidal coordinates. The dependence of one-electron energy spectrum and wave function on the geometrical parameters of a toroidal quantum dot and magnetic field strength have been studied. The energy levels are employed to calculate the canonical partition function, which in its turn is used to obtain mean energy, heat capacity, entropy, magnetization, and susceptibility of noninteracting electron gas. The possibility to control the thermodynamic and magnetic properties of the noninteracting electron gas via changing the geometric parameters of the QD, magnetic field, and temperature, was demonstrated.

  20. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

    DOE PAGES

    Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; ...

    2015-06-23

    The structures and magnetic properties of Co-Zr-B alloys near the composition of Co 5Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co 11Zr 2” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculationsmore » showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co 5Zr phase and larger than that of the low-temperature Co 5.25Zr phase. As a result, our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.« less

  1. Effect of magnetic exchange, double exchange, vibronic coupling, and asymmetry on magnetic properties in d2-d3 mixed-valence dimers

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohua; Hu, Haiquan; Chen, Zhida

    The effect of magnetic exchange, double exchange, vibronic coupling, and asymmetry on magnetic properties of d2-d3 systems is discussed. The temperature-dependent magnetic moment was calculated with the semiclassical adiabatic approach. The results show that the vibronic coupling from the out-of-phase breathing vibration on the metal sites (Piepho, Krausz, and Schatz [PKS] model) and the vibronic coupling from the stretching vibration between the metal sites (P model) favor the localization and delocalization of the "extra" electron in mixed-valence dimers, respectively. The magnetic properties are determined by the interplay among magnetic exchange, double exchange, and vibronic coupling. The results obtained by analyzing d2-d3 systems can be generalized to other full delocalized dinuclear mixed valence systems with a unique transferable electron.

  2. Investigation of the electronic, magnetic and optical properties of {\\sf Co}_{\\sf 2}{\\sf CrZ} (Z = Si, Ge) under pressure—a density functional theory study

    NASA Astrophysics Data System (ADS)

    Seema, K.; Kumar, Ranjan

    2014-01-01

    The structural, electronic, magnetic and optical properties of Co-based Heusler compounds, Co2CrZ (Z = Si, Ge), are studied using first-principle density functional theory. The calculations are performed within the generalized gradient approximation. Our calculated structural parameters at 0 GPa agree well with previous available results. The calculated magnetic moment agrees well with the Slater-Pauling (SP) rule. We have studied the effect of pressure on the electronic and magnetic properties of Co2CrSi and Co2CrGe. With an increase in applied pressure, a decrease in cell volume is observed. Under application of external pressure, the valence band and conduction band are shifted downward which leads to a modification of electronic structure. There exists an indirect band gap along Γ-X for both the alloys. Co2CrSi and Co2CrGe retain 100% spin polarization up to 60 and 50 GPa, respectively. The local magnetic moments of the Co and Si (Ge) atoms increase with an increase in pressure whereas the local magnetic moment of the Cr atom decreases. In addition, the optical properties such as dielectric function, absorption spectra, optical conductivity and energy loss function of these alloys have also been investigated. To our knowledge this is the first theoretical prediction of the pressure dependence of the structural, electronic, magnetic and optical properties of Co2CrSi and Co2CrGe.

  3. Mossbauer Study of Low Temperature Magnetic and magnetooptic Properties of Amorphous Tb/Fe Multilayers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ataur

    Magnetic and magnetooptic properties of multilayers critically depend on detailed magnetic and structural ordering of the interface. To study these properties in Tb/Fe multilayers, samples with varying layer thicknesses were fabricated by planar magnetic sputtering on polyester substrates. Mossbauer effect spectra were recorded at different temperatures ranging between 20 K and 300 K. The results show that perpendicular magnetic anisotropy (PMA) increases as temperature decreases for samples that show parallel anisotropy at room temperature, and for samples that show strong PMA at room temperature, no significant change in PMA is observed at low temperature (<100 K). Hyperfine field of samples that display parallel anisotropy at room temperature shows oscillatory behavior, reminiscent of RKKY oscillations, at low temperatures (<100 K). Plausible causes of these properties will be discussed in the paper.

  4. Investigation of the magnetic properties of Nd-Fe-B based hard magnetic materials

    NASA Astrophysics Data System (ADS)

    Grössinger, R.; Hilscher, G.; Kirchmayr, H.; Sassik, H.; Strnat, R.; Wiesinger, G.

    1985-05-01

    Nd-Fe-B type magnets were prepared by a melt spinning technique. The resulting ribbons were used as starting material for plastic bonded aligned powder magnets. The hard magnetic properties were studied in static fields up to 50 kG as well as in pulsed fields up to 150 kG. The coercivity measured on ribbons ( 1H' c) was found for high values to be larger than that obtained from the plastic bonded magnets ( 1Hc), which we attribute to the influence of the grinding procedure. The anisotropy field HA determined by applying the SPD (Singular Point Detection) technique, was found (for υ < 13 m/s) to depend strongly on the wheel velocity υ, however for velocities exceeding this value, HA remained essentially constant (∼ 75 kG). Mössbauer spectra were recorded at room as well as at liquid helium temperature. The different shape of the respective spectra reflects the change of the easy axis with temperature. A phase analysis performed by computer fitting the spectra showed that the amount of Fe-precipitates influences the formation of the coercivity.

  5. Magnetic properties of Co/Ni grain boundaries after annealing

    NASA Astrophysics Data System (ADS)

    Coutts, Chris; Arora, Monika; Hübner, René; Heinrich, Bret; Girt, Erol

    2018-05-01

    Magnetic and microstructural properties of <111> textured Cu/N×[Co/Ni] films are studied as a function of the number of bilayer repeats N and annealing temperature. M(H) loop measurements show that coercivity, Hc, increases with annealing temperature and that the slope of the saturation curve at Hc has a larger reduction for smaller N. An increase of the magnetic anisotropy (Ku) to saturation magnetization (Ms) ratio after annealing N×[Co/Ni] with N < 15 only partially describes the increase to Hc. Energy-dispersive X-ray spectroscopy analyses performed in scanning transmission electron microscopy mode across cross-sections of as-deposited and annealed Cu/16×[Co/Ni] films show that Cu diffuses from the seed layer into grain boundaries of Co/Ni. Diffusion of Cu reduces exchange coupling (Hex) between the magnetic grains and explains the increase in Hc. Additionally, the difference in the slope of the M(H) curves at Hc between the thick (N = 16) and thin (N = 4) magnetic multilayers is due to Cu diffusion more effectively decoupling magnetic grains in the thinner multilayer.

  6. Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Angadi, V. Jagdeesha; Choudhury, Leema; Sadhana, K.; Liu, Hsiang-Lin; Sandhya, R.; Matteppanavar, Shidaling; Rudraswamy, B.; Pattar, Vinayak; Anavekar, R. V.; Praveena, K.

    2017-02-01

    Sc3+ doped Mn0.5Zn0.5ScyFe2-yO4 (y=0.00, 0.01, 0.03 and 0.05) nanoparticles were synthesized by solution combustion method using mixture of fuels were reported for the first time. The mixture of fuels plays an important role in obtaining nano crystalline, single phase present without any heat treatment. X-ray diffraction (XRD) results confirm the formation of the single-phase ferrites which crystallize in cubic spinel structure. The Fourier transform infrared spectra (FTIR) exhibit two prominent bands around 360 cm-1 and 540 cm-1 which are characteristic feature of spinel ferrite. The transmission electron microscope (TEM) micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The room temperature impedance spectra (IS) and vibrating sample magnetometry (VSM) measurements were carried out in order to study the effect of doping (Sc3+) on the characteristic properties of Mn-Zn ferrites. Further, the frequency dependent dielectric constant and dielectric loss were found to decrease with increasing multiple Sc3+ concentration. Nyquist plot in the complex impedance spectra suggest the existence of multiple electrical responses. Magnetic measurements reveals that saturation magnetization (Ms), remnant magnetization (Mr), magnetic moment (ηB) and magnetic particle size (Dm) increase with Sc3+ ion concentration up to x=0.03 and then decrease. The values of spin canting angle (αY-K) and the magnetic particle size (Dm) are found to be in the range of 68-75° and 10-19 nm respectively with Sc3+ concentration. The room temperature Mössbauer spectra were fitted with two sextets corresponding to ions at tetrahedral (A-) and octahedral (B-) sites confirms the spinel lattice. The ferromagnetic resonance (FMR) spectra's has shown that high concentration of scandium doping leads to an increase in dipolar interaction and decrease in super exchange interaction.

  7. Effect of Molybdenum Incorporation on the Structure and Magnetic Properties of Cobalt Ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orozco, C.; Melendez, A.; Manadhar, S.

    Here, we report on the effect of molybdenum (Mo) incorporation on the crystal structure, surface morphology, Mo chemical valence state, and magnetic properties of cobalt ferrite (CoFe 2O 4, referred to CFO). Molybdenum incorporated cobalt ferrite (CoFe 2–xMo xO 4, referred to CFMO) ceramics were prepared by the conventional solid-state reaction method by varying the Mo concentration in the range of x = 0.0–0.3. X-ray diffraction studies indicate that the CFMO materials crystallize in inverse spinel cubic phase. Molybdenum incorporation induced lattice parameter increase from 8.322 to 8.343 Å coupled with a significant increase in density from 5.4 to 5.7more » g/cm 3 was evident in structural analyses. Scanning electron microscopy imaging analyses indicate that the Mo incorporation induces agglomeration of particles leading to larger particle size with increasing x(Mo) values. Detailed X-ray photoelectron spectroscopic (XPS) analyses indicate the increasing Mo content with increasing x from 0.0 to 0.3. XPS confirms that the chemistry of Mo is complex in these CFMO compounds; Mo ions exist in the lower oxidation state (Mo 4+) for higher x while in a mixed chemical valence state (Mo 4+, Mo 5+, Mo 6+) for lower x values. From the temperature-dependent magnetization, the samples show ferrimagnetic behavior including the pristine CFO. From the isothermal magnetization measurements, we find almost 2-fold decrease in coercive field ( H c) from 2143 to 1145 Oe with the increase in Mo doping up to 30%. This doping-dependent H c is consistently observed at all the temperatures measured (4, 100, 200, and 300 K). Furthermore, the saturation magnetization estimated at 4 K and at 1.5 T (from M–H loops) goes through a peak at 92 emu/g (at 15% Mo doping) from 81 emu/g (pristine CFO), and starts decreasing to 79 emu/g (at 30% Mo doping). The results demonstrate that the crystal structure, microstructure, and magnetic properties can be tuned by controlling the Mo-content in

  8. Effect of Molybdenum Incorporation on the Structure and Magnetic Properties of Cobalt Ferrite

    DOE PAGES

    Orozco, C.; Melendez, A.; Manadhar, S.; ...

    2017-09-26

    Here, we report on the effect of molybdenum (Mo) incorporation on the crystal structure, surface morphology, Mo chemical valence state, and magnetic properties of cobalt ferrite (CoFe 2O 4, referred to CFO). Molybdenum incorporated cobalt ferrite (CoFe 2–xMo xO 4, referred to CFMO) ceramics were prepared by the conventional solid-state reaction method by varying the Mo concentration in the range of x = 0.0–0.3. X-ray diffraction studies indicate that the CFMO materials crystallize in inverse spinel cubic phase. Molybdenum incorporation induced lattice parameter increase from 8.322 to 8.343 Å coupled with a significant increase in density from 5.4 to 5.7more » g/cm 3 was evident in structural analyses. Scanning electron microscopy imaging analyses indicate that the Mo incorporation induces agglomeration of particles leading to larger particle size with increasing x(Mo) values. Detailed X-ray photoelectron spectroscopic (XPS) analyses indicate the increasing Mo content with increasing x from 0.0 to 0.3. XPS confirms that the chemistry of Mo is complex in these CFMO compounds; Mo ions exist in the lower oxidation state (Mo 4+) for higher x while in a mixed chemical valence state (Mo 4+, Mo 5+, Mo 6+) for lower x values. From the temperature-dependent magnetization, the samples show ferrimagnetic behavior including the pristine CFO. From the isothermal magnetization measurements, we find almost 2-fold decrease in coercive field ( H c) from 2143 to 1145 Oe with the increase in Mo doping up to 30%. This doping-dependent H c is consistently observed at all the temperatures measured (4, 100, 200, and 300 K). Furthermore, the saturation magnetization estimated at 4 K and at 1.5 T (from M–H loops) goes through a peak at 92 emu/g (at 15% Mo doping) from 81 emu/g (pristine CFO), and starts decreasing to 79 emu/g (at 30% Mo doping). The results demonstrate that the crystal structure, microstructure, and magnetic properties can be tuned by controlling the Mo-content in

  9. Impact of tillage on soil magnetic properties: results over thirty years different cultivation plots

    NASA Astrophysics Data System (ADS)

    Thiesson, Julien; Kessouri, Pauline; Buvat, Solène; Tabbagh, Alain

    2010-05-01

    Cultivation may favour or not different processes such as air and water circulation, organic matter and fertilizers supplies..., consequently it can a priori induce significant changes in local oxido-reduction conditions which determine the magnetic properties of soils: the soil magnetic signal. If laboratory measurements on soil samples can be slow and irreversible, it is also possible to perform in field measurements by using electromagnetic devices that allow quick and easy measuring over the relevant soil thicknesses both in time (TDEM) and frequency (FDEM) domains. The object of this study is to compare the variation of two magnetic properties (magnetic susceptibility, measured by FDEM apparatus and magnetic viscosity measured by TDEM apparatus) and there ratio along depth for three different types of tillage (no tillage, ploughing, and simplified tillage). An experimental plot of 80 m by 50 m total area, on which these three types of tillage have been conducted for more than thirty years, was surveyed. The plot is divided in five strips of 16 m by 50 m area, each of which being cultivated by one type of tillage only. Each strip is divided in two parts, one half with nitrogen-fixing crop during intercultivation winter period and the other half with bare soil during this period. On each part, the variation along depth of both magnetic properties was assessed by surveying with different devices corresponding to three different volumes of investigation. For the magnetic susceptibility measurements the devices used were the MS2 of Bartington Ltd with the MS2D probe and the CS60 a slingram prototype use in VCP and HCP configurations. For the magnetic viscosity, the devices used were the DECCO from Littlemore ltd. And the VC100, a slingram prototype, used at two heights. Eleven values of the two magnetic properties have been recorded using each device and their medians calculated. The data were inverted to define the median magnetic profiles of each half

  10. Magnetic properties of dendrimer structures with different coordination numbers: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.

    2016-11-01

    We investigate the magnetic properties of Cayley trees of large molecules with dendrimer structure using Monte Carlo simulations. The thermal magnetization and magnetic susceptibility of a dendrimer structure are given with different coordination numbers, Z=3, 4, 5 and different generations g=3 and 2. The variation of magnetizations with the exchange interactions and crystal fields have been given of this system. The magnetic hysteresis cycles have been established.

  11. Optical and magnetic properties of porous anodic alumina/Ni nanocomposite films

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Jing; Li, Zi-Yue; Zhang, Zhi-Jun; Wu, Tian-Shan; Sun, Hui-Yuan

    2013-06-01

    A simple method to tune the optical properties of porous anodic alumina (PAA) films embedded with Ni is reported. The films display highly saturated colors after being synthesized by an ac electrodeposition method. The optical properties of the samples can be effectively tuned by varying the oxidation time of aluminum. The ultrashort Ni nanowires (100 nm long and 50 nm in diameter) present only fcc phase and show no apparent averaged effective magnetic anisotropy. The coercivity mechanism of the Ni nanowires in our case is consistent with fanning mechanism based on a chain-of-spheres model. PAA/Ni films with structural color and magnetic properties have friability-resistant feature and can be used in many areas, including decoration, display, and multifunctional anti-counterfeiting technology.

  12. Magnetic properties of GdMnO3 nanoparticles embedded in mesoporous silica

    NASA Astrophysics Data System (ADS)

    Tajiri, Takayuki; Mito, Masaki; Deguchi, Hiroyuki; Kohno, Atsushi

    2018-05-01

    Perovskite manganite GdMnO3 nanoparticles were synthesized using mesoporous silica as a template, and their magnetic properties and crystal structure were investigated. Powder X-ray diffraction data indicated successful synthesis of the GdMnO3 nanoparticles, with mean particle sizes of 13.9 and 20.9 nm. The lattice constants for the nanoparticles were slightly different from those for the bulk material and varied with the particle size. The magnetic transition temperatures for the nanoparticles were higher than those of the bulk crystal. The synthesized GdMnO3 nanoparticles exhibited superparamagnetic behaviors: The blocking temperature, coercive field, and transition temperature depended on the particle size. Magnetic measurements and crystal structure analysis suggest that the changes in the magnetic properties for GdMnO3 nanoparticles can be attributed to the modulation of the crystallographic structure.

  13. Effect of deformation ratios on grain alignment and magnetic properties of hot pressing/hot deformation Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Guo, Zhaohui; Li, Mengyu; Wang, Junming; Jing, Zheng; Yue, Ming; Zhu, Minggang; Li, Wei

    2018-05-01

    The magnetic properties, microstructure and orientation degrees of hot pressing magnet and hot deformation Nd-Fe-B magnets with different deformation ratios have been investigated in this paper. The remanence (Br) and maximum magnetic energy product ((BH)max) were enhanced gradually with the deformation ratio increasing from 0% to 70%, whereas the coercivity (HCj) decreased. The scanning electron microscopy (SEM) images of fractured surfaces parallel to the pressure direction during hot deformation show that the grains tend to extend perpendicularly to the c-axes of Nd2Fe14B grains under the pressure, and the aspect ratios of the grains increase with the increase of deformation ratio. Besides, the compression stress induces the long axis of grains to rotate and the angle (θ) between c-axis and pressure direction decreases. The X-ray diffraction (XRD) patterns reveal that orientation degree improves with the increase of deformation ratio, agreeing well with the SEM results. The hot deformation magnet with a deformation ratio of 70% has the best Br and (BH)max, and the magnetic properties are as followed: Br=1.40 T, HCj=10.73 kOe, (BH)max=42.30 MGOe.

  14. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    NASA Astrophysics Data System (ADS)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.

    2017-11-01

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry

  15. Effect of La3+ Substitution on Electric, Dielectric and Magnetic Properties of Cobalt Nano-Ferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Singh, M.

    2011-07-01

    Ultrafine particles of CoLaxFe2-xO4 (x = 0, 0.20) were prepared by using co-precipitation method. X-ray diffraction studies show that the samples have cubic spinel structure and average crystallite size of x = 0 and x = 0.2 are 49.84 nm and 27.73 nm respectively. Dielectric and magnetic properties have been studied by impedance analyzer and magnetic properties of the ferrite system were studied using VSM respectively. La3+ ions modulate significantly the electric, dielectric and magnetic properties of cobalt spinel ferrites.

  16. Molecular packing and magnetic properties of lithium naphthalocyanine crystals: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen

    PubMed Central

    Pandian, Ramasamy P.; Dolgos, Michelle; Marginean, Camelia; Woodward, Patrick M.; Hammel, P. Chris; Manoharan, Periakaruppan T.; Kuppusamy, Periannan

    2009-01-01

    The synthesis, structural framework, magnetic and oxygen-sensing properties of a lithium naphthalocyanine (LiNc) radical probe are presented. LiNc was synthesized in the form of a microcrystalline powder using a chemical method and characterized by electron paramagnetic resonance (EPR) spectroscopy, magnetic susceptibility, powder X-ray diffraction analysis, and mass spectrometry. X-Ray powder diffraction studies revealed a structural framework that possesses long, hollow channels running parallel to the packing direction. The channels measured approximately 5.0 × 5.4 Å2 in the two-dimensional plane perpendicular to the length of the channel, enabling diffusion of oxygen molecules (2.9 × 3.9 Å2) through the channel. The powdered LiNc exhibited a single, sharp EPR line under anoxic conditions, with a peak-to-peak linewidth of 630 mG at room temperature. The linewidth was sensitive to surrounding molecular oxygen, showing a linear increase in pO2 with an oxygen sensitivity of 31.2 mG per mmHg. The LiNc microcrystals can be further prepared as nano-sized crystals without the loss of its high oxygen-sensing properties. The thermal variation of the magnetic properties of LiNc, such as the EPR linewidth, EPR intensity and magnetic susceptibility revealed the existence of two different temperature regimes of magnetic coupling and hence differing columnar packing, both being one-dimensional antiferromagnetic chains but with differing magnitudes of exchange coupling constants. At a temperature of ∼50 K, LiNc crystals undergo a reversible phase transition. The high degree of oxygen-sensitivity of micro- and nano-sized crystals of LiNc, combined with excellent stability, should enable precise and accurate measurements of oxygen concentration in biological systems using EPR spectroscopy. PMID:19809598

  17. Magnetic properties of sputtered Permalloy/molybdenum multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romera, M.; Ciudad, D.; Maicas, M.

    2011-10-15

    In this work, we report the magnetic properties of sputtered Permalloy (Py: Ni{sub 80}Fe{sub 20})/molybdenum (Mo) multilayer thin films. We show that it is possible to maintain a low coercivity and a high permeability in thick sputtered Py films when reducing the out-of-plane component of the anisotropy by inserting thin film spacers of a non-magnetic material like Mo. For these kind of multilayers, we have found coercivities which are close to those for single layer films with no out-of-plane anisotropy. The coercivity is also dependent on the number of layers exhibiting a minimum value when each single Py layer hasmore » a thickness close to the transition thickness between Neel and Bloch domain walls.« less

  18. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Shi, Jun-jie; Zhang, Min; Ding, Yi-min; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang; Zhu, Yao-hui

    2018-05-01

    Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 103 cm2V‑1s‑1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5–0.7 μ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.

  19. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.

    PubMed

    Wu, Meng; Shi, Jun-Jie; Zhang, Min; Ding, Yi-Min; Wang, Hui; Cen, Yu-Lang; Guo, Wen-Hui; Pan, Shu-Hang; Zhu, Yao-Hui

    2018-05-18

    Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 10 3 cm 2 V -1 s -1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5-0.7 μ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.

  20. Magnetic and interface properties of the core-shell Fe3O4/Au nanocomposites

    NASA Astrophysics Data System (ADS)

    Baskakov, A. O.; Solov'eva, A. Yu.; Ioni, Yu. V.; Starchikov, S. S.; Lyubutin, I. S.; Khodos, I. I.; Avilov, A. S.; Gubin, S. P.

    2017-11-01

    Core-shell Fe3O4/Au nanostructures were obtained with an advanced method of two step synthesis and several complementary methodics were applied for investigation structural and magnetic properties of the samples. Along with X-ray diffraction and transmission electron microscopy, electron diffraction, optical, Raman and Mössbauer spectroscopy were used for nanoparticle characterization. It was established that the physical and structural properties Fe3O4/Au nanocomposites are specific of intrinsic properties of gold and magnetite. Mössbauer and Raman spectroscopy data indicated that magnetite was in a nonstoichiometric state with an excess of trivalent iron both in the initial Fe3O4 nanoparticles and in the Fe3O4/Au nanocomposites. As follows from the Mössbauer data, magnetic properties of iron ions in the internal area (in core) and in the surface layer of magnetite nanoparticles are different due to the rupture of exchange bonds at the particles surface. This leads to decrease in an effective magnetic moment at the surface. Gold atoms at the interface of the composites interact with dangling bonds of magnetite and stabilize the magnetic properties of the surface layers of magnetite.

  1. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging

    PubMed Central

    Eguchi, Haruki; Umemura, Masanari; Kurotani, Reiko; Fukumura, Hidenobu; Sato, Itaru; Kim, Jeong-Hwan; Hoshino, Yujiro; Lee, Jin; Amemiya, Naoyuki; Sato, Motohiko; Hirata, Kunio; Singh, David J.; Masuda, Takatsugu; Yamamoto, Masahiro; Urano, Tsutomu; Yoshida, Keiichiro; Tanigaki, Katsumi; Yamamoto, Masaki; Sato, Mamoru; Inoue, Seiichi; Aoki, Ichio; Ishikawa, Yoshihiro

    2015-01-01

    Research on controlled drug delivery for cancer chemotherapy has focused mainly on ways to deliver existing anti-cancer drug compounds to specified targets, e.g., by conjugating them with magnetic particles or encapsulating them in micelles. Here, we show that an iron-salen, i.e., μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)), but not other metal salen derivatives, intrinsically exhibits both magnetic character and anti-cancer activity. X-Ray crystallographic analysis and first principles calculations based on the measured structure support this. It promoted apoptosis of various cancer cell lines, likely, via production of reactive oxygen species. In mouse leg tumor and tail melanoma models, Fe(Salen) delivery with magnet caused a robust decrease in tumor size, and the accumulation of Fe(Salen) was visualized by magnetic resonance imaging. Fe(Salen) is an anti-cancer compound with magnetic property, which is suitable for drug delivery and imaging. We believe such magnetic anti-cancer drugs have the potential to greatly advance cancer chemotherapy for new theranostics and drug-delivery strategies. PMID:25779357

  2. Magnetic and transport properties of Ga-Mn-Co full Heusler alloy

    NASA Astrophysics Data System (ADS)

    Samanta, Tamalika; Bhobe, P. A.

    2018-04-01

    We report structural, electrical and magnetic studies of the Ga rich Heusler compound Ga48Mn25Co27. The Ga-Co-Mn compounds have been predicted to be useful candidates for spintronic applications. We found that the Ga48Mn25Co27 compound crystallizes in cubic L21 structure. It shows a very low curie temperature of 88 K and a soft magnetic behavior. We observed an unusual, non-saturating magnetic hysteresis loop where the virgin curve stays out of the loop. The origin of such behavior might lie in the fact that there exist two competing magnetic sub-lattices with different exchange interactions.

  3. Oxygen content tailored magnetic and electronic properties in cobaltite double perovskite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrell, Zach John; Enriquez, Erik M.; Chen, Aiping

    Oxygen content in transition metal oxides is one of the most important parameters to control for the desired physical properties. Recently, we have systematically studied the oxygen content and property relationship of the double perovskite PrBaCo 2O 5.5+δ (PBCO) thin films deposited on the LaAlO 3 substrates. The oxygen content in the films was varied by in-situ annealing in a nitrogen, oxygen, or ozone environment. Associated with the oxygen content, the out-of-plane lattice parameter progressively decreases with increasing oxygen content in the films. The saturated magnetization shows a drastic increase and resistivity is significantly reduced in the ozone annealed samples,more » indicating the strong coupling between physical properties and oxygen content. Furthermore, these results demonstrate that the magnetic properties of PBCO films are highly dependent on the oxygen contents, or the film with higher oxygen uptake has the largest magnetization.« less

  4. Oxygen content tailored magnetic and electronic properties in cobaltite double perovskite thin films

    DOE PAGES

    Harrell, Zach John; Enriquez, Erik M.; Chen, Aiping; ...

    2017-02-27

    Oxygen content in transition metal oxides is one of the most important parameters to control for the desired physical properties. Recently, we have systematically studied the oxygen content and property relationship of the double perovskite PrBaCo 2O 5.5+δ (PBCO) thin films deposited on the LaAlO 3 substrates. The oxygen content in the films was varied by in-situ annealing in a nitrogen, oxygen, or ozone environment. Associated with the oxygen content, the out-of-plane lattice parameter progressively decreases with increasing oxygen content in the films. The saturated magnetization shows a drastic increase and resistivity is significantly reduced in the ozone annealed samples,more » indicating the strong coupling between physical properties and oxygen content. Furthermore, these results demonstrate that the magnetic properties of PBCO films are highly dependent on the oxygen contents, or the film with higher oxygen uptake has the largest magnetization.« less

  5. Structural, electronic and magnetic properties of chevron-type graphene, BN and BC2N nanoribbons

    NASA Astrophysics Data System (ADS)

    Guerra, T.; Azevedo, S.; Kaschny, J. R.

    2017-04-01

    Graphene nanoribbons are predicted to be essential components in future nanoelectronics. The size, edge type, arrangement of atoms and width of nanoribbons drastically change their properties. Boronnitrogencarbon nanoribbons properties are not fully understood so far. In the present contribution it was investigated the structural, electronic and magnetic properties of chevron-type carbon, boron nitride and BC2N nanoribbons, using first-principles calculations. The results indicate that the structural stability is closely related to the discrepancies in the bond lengths, which can induce structural deformations and stress. Such nanoribbons present a wide range of electronic behaviors, depending on their composition and particularities of the atomic arrangement. A net magnetic moment is found for structures that present carbon atoms at the nanoribbon borders. Nevertheless, the calculated magnetic moment depends on the peculiarities of the symmetric arrangement of atoms and imbalance of carbon atoms between different sublattices. It was found that all structures which have a significant energy gap do not present magnetic moment, and vice-versa. Such result indicates the strong correlation between the electronic and magnetic properties of the chevron-type nanoribbons.

  6. Why Is Benzene Unique? Screening Magnetic Properties of C6 H6 Isomers.

    PubMed

    Janda, Tomáš; Foroutan-Nejad, Cina

    2018-05-25

    Magnetic properties are commonly used to identify new aromatic molecules because it is generally believed that magnetization and energetic stability are correlated. To verify the potential correlation between the energy and magnetic response properties, we examined a set of 198 isomers of C 6 H 6 . The energy and magnetic properties of these molecules can be directly compared with no need to invoke any arbitrary reference state because the studied systems are all isomers. Benzene is the global minimum on the potential energy surface of C 6 H 6 , 35 kcal mol -1 lower in energy than the second most stable isomer, fulvene. Unlike its electronic energy, isotropic magnetizability of benzene is slightly lower than the average magnetizability of its isomers. Altogether, 44 isomers of C 6 H 6 were identified to have more negative magnetic susceptibility than benzene but were between 67.0 to 168.6 kcal mol -1 higher in energy than benzene. However, benzene is unique in two ways. Analyzing the paramagnetic contribution to the magnetic susceptibility as originally suggested by Bilde and Hansen (Mol. Phys., 1997, 92, 237) revealed that 53 molecules have lower paramagnetic susceptibility than benzene but among monocyclic systems benzene has the least paramagnetic susceptibility. Furthermore, benzene has the largest out-of-plane magnetic susceptibility that originates from the strongest ring current among all studied species. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The microstructure and magnetic properties of melt-spun Fe 76Nd 16B 8 magnetic materials

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, G. C.; Dickenson, R. C.; Lawless, K. R.

    1986-02-01

    The origin of magnetic hardening has been examined in melt-spun Fe 76Nd 16B 8 samples heat-treated at around 700°C. Microstructure studies show the same phases as in sintered magnets consisting of Fe 14Nd 2B, Fe 4NdB 4 and two high-Nd content phases. These phases exist in both equiaxed and faceted crystallites of submicron size. Lorentz microscopy shows domain walls which end at grain boundaries indicating that they are pinned there.

  8. Rietveld refinement, dielectric and magnetic properties of Nb modified Bi0.80Ba0.20FeO3 ceramic

    NASA Astrophysics Data System (ADS)

    Jangra, Sandhaya; Sanghi, Sujata; Agarwal, Ashish; Rangi, Manisha

    2018-05-01

    Bi0.80Ba0.20Fe0.95Nb0.05O3 ceramic has been prepared via conventional solid state reaction method. Structure analysis was carried out by X-ray diffraction (XRD) technique at room temperature. XRD pattern confirmed the crystalline nature of prepared sample. Rietveld analysis used for further structural investigations and confirmed the existence of rhombohedral symmetry (R3c space group). The dielectric response shows dispersion at lower frequency range and becomes frequency independent at high frequency. The approximation of conduction mechanism is determined by the temperature dependent behavior of frequency exponent `s'. Fitting results suggests the applicability of small polaron conduction mechanism at lower temperatures and CBH model at higher temperature. Room temperature magnetic measurements give the evidence of significant enhancement in magnetic properties with remanent magnetization (Mr = 0.1218 emu/g) and coercive field (Hc = 3.5342 kOe).

  9. Fe and Co nanostructures embedded into the Cu(100) surface: Self-Organization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesnikov, S. V., E-mail: kolesnikov@physics.msu.ru; Klavsyuk, A. L.; Saletsky, A. M.

    The self-organization and magnetic properties of small iron and cobalt nanostructures embedded into the first layer of a Cu(100) surface are investigated using the self-learning kinetic Monte Carlo method and density functional theory. The similarities and differences between the Fe/Cu(100) and the Co/Cu(100) are underlined. The time evolution of magnetic properties of a copper monolayer with embedded magnetic atoms at 380 K is discussed.

  10. A Cost-Effective Approach to Optimizing Microstructure and Magnetic Properties in Ce17Fe78B₆ Alloys.

    PubMed

    Tan, Xiaohua; Li, Heyun; Xu, Hui; Han, Ke; Li, Weidan; Zhang, Fang

    2017-07-28

    Optimizing fabrication parameters for rapid solidification of Re-Fe-B (Re = Rare earth) alloys can lead to nanocrystalline products with hard magnetic properties without any heat-treatment. In this work, we enhanced the magnetic properties of Ce 17 Fe 78 B₆ ribbons by engineering both the microstructure and volume fraction of the Ce₂Fe 14 B phase through optimization of the chamber pressure and the wheel speed necessary for quenching the liquid. We explored the relationship between these two parameters (chamber pressure and wheel speed), and proposed an approach to identifying the experimental conditions most likely to yield homogenous microstructure and reproducible magnetic properties. Optimized experimental conditions resulted in a microstructure with homogeneously dispersed Ce₂Fe 14 B and CeFe₂ nanocrystals. The best magnetic properties were obtained at a chamber pressure of 0.05 MPa and a wheel speed of 15 m·s -1 . Without the conventional heat-treatment that is usually required, key magnetic properties were maximized by optimization processing parameters in rapid solidification of magnetic materials in a cost-effective manner.

  11. Equilibrium properties of superconducting niobium at high magnetic fields: A possible existence of a filamentary state in type-II superconductors [Possible existence of a filamentary state in type-II superconductors

    DOE PAGES

    Kozhevnikov, V.; Valente-Feliciano, A. -M.; Curran, P. J.; ...

    2017-05-17

    The standard interpretation of the phase diagram of type-II superconductors was developed in the 1960s and has since been considered a well-established part of classical superconductivity. However, upon closer examination a number of fundamental issues arises that leads one to question this standard picture. To address these issues we studied equilibrium properties of niobium samples near and above the upper critical field H c2 in parallel and perpendicular magnetic fields. The samples investigated were very high quality films and single-crystal disks with the Ginzburg-Landau parameters 0.8 and 1.3, respectively. A range of complementary measurements has been performed, which include dcmore » magnetometry, electrical transport, muon spin rotation spectroscopy, and scanning Hall-probe microscopy. Contrary to the standard scenario, we observed that a superconducting phase is present in the sample bulk above H c2 and the field H c3 is the same in both parallel and perpendicular fields. Our findings suggest that above H c2 the superconducting phase forms filaments parallel to the field regardless of the field orientation. Near H c2 the filaments preserve the hexagonal structure of the preceding vortex lattice of the mixed state, and the filament density continuously falls to zero at H c3. Finally, our paper has important implications for the correct interpretation of the properties of type-II superconductors and can be essential for practical applications of these materials.« less

  12. Magnetic properties enhancement of melt spun CoZrB ribbons by elemental substitutions

    NASA Astrophysics Data System (ADS)

    Chang, H. W.; Tsai, C. F.; Hsieh, C. C.; Shih, C. W.; Chang, W. C.; Shaw, C. C.

    2013-11-01

    Effect of elemental substitution of M (M=C, Cu, Ga, Al and Si) for Zr on the magnetic properties, phase evolution, and microstructure of melt spun Co80Zr18-xMxB2 (x=0-2) ribbons have been investigated. The x-ray diffraction (XRD) and thermal magnetic analysis (TMA) results showed that two magnetically soft phases, namely fcc-Co and Co23Zr6, coexisted with hard phase Co5Zr in Co80Zr17M1B2 ribbons with M=Cu, Ga, Al and Si, while an extra unknown magnetic phase was present in ribbons with M=C. The ribbons with M=C and Si were found to improve the remanence (σr) of the Co80Zr17M1B2 ribbons. However, only M=Si could improve the whole magnetic properties, including Br, intrinsic coercivity (iHc) and energy product ((BH)max) of the above ribbons. The optimal magnetic properties of Br=5.2 kG, iHc=4.5 kOe, and (BH)max=5.3 MGOe were obtained in Co80Zr17Si1B2 ribbons, which possessed Co5Zr and minor fcc-Co phases with much finer grain size (10-30 nm) in comparison with its counterpart Co80Zr18B2 (20-60 nm).

  13. The influence of assist gas on magnetic properties of electrotechnical steel sheets cut with laser

    NASA Astrophysics Data System (ADS)

    Gaworska-Koniarek, Dominika; Szubzda, Bronisław; Wilczyński, Wiesław; Drosik, Jerzy; Karaś, Kazimierz

    2011-07-01

    The paper presents the influence of assist gas (air and nitrogen) during laser cutting on magnetization, magnetic permeability and loss characteristics of non-oriented electrical steels. The research was made on an non-oriented M330-50A grade electrical steels by means of single sheet tester. In order to enhance the effect of cutting and the same degradation zone on magnetic properties, strips with different width were achieved. Measurements results indicate that application of air as assist gas has more destructive effect on magnetic properties of electrical steels than nitrogen one.

  14. Magnetization processes and existence of reentrant phase transitions in coupled spin-electron model on doubly decorated planar lattices

    NASA Astrophysics Data System (ADS)

    Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej

    2018-04-01

    An alternative model for a description of magnetization processes in coupled 2D spin-electron systems has been introduced and rigorously examined using the generalized decoration-iteration transformation and the corner transfer matrix renormalization group method. The model consists of localized Ising spins placed on nodal lattice sites and mobile electrons delocalized over the pairs of decorating sites. It takes into account a hopping term for mobile electrons, the Ising coupling between mobile electrons and localized spins as well as the Zeeman term acting on both types of particles. The ground-state and finite-temperature phase diagrams were established and comprehensively analyzed. It was found that the ground-state phase diagrams are very rich depending on the electron hopping and applied magnetic field. The diversity of magnetization curves can be related to intermediate magnetization plateaus, which may be continuously tuned through the density of mobile electrons. In addition, the existence of several types of reentrant phase transitions driven either by temperature or magnetic field was proven.

  15. Magnetic properties of checkerboard lattice: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.; Hamedoun, M.; Benyoussef, A.

    2017-12-01

    The magnetic properties of ferrimagnetic mixed-spin Ising model in the checkerboard lattice are studied using Monte Carlo simulations. The variation of total magnetization and magnetic susceptibility with the crystal field has been established. We have obtained a transition from an order to a disordered phase in some critical value of the physical variables. The reduced transition temperature is obtained for different exchange interactions. The magnetic hysteresis cycles have been established. The multiples hysteresis cycle in checkerboard lattice are obtained. The multiples hysteresis cycle have been established. The ferrimagnetic mixed-spin Ising model in checkerboard lattice is very interesting from the experimental point of view. The mixed spins system have many technological applications such as in domain opto-electronics, memory, nanomedicine and nano-biological systems. The obtained results show that that crystal field induce long-range spin-spin correlations even bellow the reduced transition temperature.

  16. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles.

    PubMed

    Araujo, J F D F; Bruno, A C; Louro, S R W

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10(-8) Am(2) was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  17. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  18. Magnetic Properties of Al-Gd-TM Glass-Forming Alloys

    NASA Astrophysics Data System (ADS)

    Uporov, Sergey; Estemirova, Svetlana; Bykov, Viktor; Mitrofanov, Valentin

    2016-01-01

    We report results of magnetic studies of glass-forming alloys with nominal composition of Al86Gd6TM8 (where TM = Cu, Ni, Co, Fe, Mn, Cr, Ti, Zr, Mo, Ta) synthesized by arc-melting. X-ray diffraction analysis and vibrating sample magnetometry were applied to characterize the prepared samples. All the alloys exhibit antiferromagnetic ordering at low temperatures. In some compositions, we observed metamagnetic transitions in external magnetic fields up to 3 T. Analysis of the paramagnetic susceptibility of the considered Al-Gd-TM systems has revealed non-magnetic behavior of the transition metals. We found that the magnetic properties of the studied samples can be described satisfactorily using only the Gd trivalent ions. But in some cases the magnetic moments of gadolinium are slightly larger than the theoretical values, probably, because of an additional contribution of the 5 d electrons. The obtained results are discussed in framework of the assumptions of the strong s- p- d hybridization and frustrated magnetic states of gadolinium. We argue that the hybridization might be one of the main factors improving the glass-forming ability in these ternary alloys.

  19. Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China.

    PubMed

    Wang, Bo; Xia, Dunsheng; Yu, Ye; Jia, Jia; Xu, Shujing

    2014-01-01

    Increasing urbanization and industrialization over the world has caused many social and environmental problems, one of which drawing particular concern is the soil pollution and its ecological degradation. In this study, the efficiency of magnetic methods for detecting and discriminating contaminates in the arid and semi-arid regions of northwestern China was investigated. Topsoil samples from six typical cities (i.e. Karamay, Urumqi, Lanzhou, Yinchuan, Shizuishan and Wuhai) were collected and a systematic analysis of their magnetic properties was conducted. Results indicate that the topsoil samples from the six cities were all dominated by coarse low-coercivity magnetite. In addition, the average magnetite contents in the soils from Urumqi and Lanzhou were shown to be much higher than those from Karamay, Yinchuan, Shizuishan and Wuhai, and they also have relatively higher χlf and χfd% when compared with cities in eastern China. Moreover, specific and distinctive soil pollution signals were identified at each sampling site using the combined various magnetic data, reflecting distinct sources. Industrial and traffic-derived pollution was dominant in Urumqi and Lanzhou, in Yinchuan industrial progress was observed to be important with some places affected by vehicle emission, while Karamay, Shizuishan and Wuhai were relatively clean. The magnetic properties of these latter three cities are significantly affected by both anthropogenic pollution and local parent materials from the nearby Gobi desert. The differences in magnetic properties of topsoil samples affected by mixed industrial and simplex traffic emissions are not obvious, but significant differences exist in samples affected by simplex industrial/vehicle emissions and domestic pollution. The combined magnetic analyses thus provide a sensitive and powerful tool for classifying samples according to likely sources, and may even provide a valuable diagnostic tool for discriminating among different cities

  20. Interface-induced phenomena in magnetism

    DOE PAGES

    Hellman, Frances; Hoffmann, Axel; Tserkovnyak, Yaroslav; ...

    2017-06-05

    Our article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important conceptsmore » include spin accumulation, spin currents, spin transfer torque, and spin pumping. We provide an overview for the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. Our article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.« less

  1. Relevance of magnetic properties for the characterisation of burnt clays and archaeological tiles

    NASA Astrophysics Data System (ADS)

    Beatrice, C.; Coïsson, M.; Ferrara, E.; Olivetti, E. S.

    The archaeomagnetism of pottery, bricks and tiles is typically employed for dating inferences, yet the magnetic properties of ancient ceramics can also be convenient for their characterisation, to evaluate the technological conditions applied for their production (temperature, atmosphere, and duration of firing), as well as to distinguish groups of sherds having different provenance. In this work, the measurement of hysteresis loops has been applied and combined with colour survey to characterise the magnetic properties of burnt clays and archaeological tiles. Four calcareous and non-calcareous clays, along with seventeen tile fragments excavated from the sites of the ancient Roman towns of Pompeii and Gravina di Puglia, in Southern Italy, are examined. The ferrimagnetic character of the clays, in general, enhances with increasing firing temperatures until vitrification processes occur (900-1000 °C) dissolving iron oxides and dispersing the colour and magnetic properties they provide. High values of saturation magnetization are observed in clays with relevant calcareous content after firing above 900 °C, which results in the formation of Ca-silicates able to delay the onset of the vitrification processes. Magnetic properties of the tiles have been evaluated in terms of the high coercivity (i.e. mainly ferrimagnetic) or low coercivity behaviour (i.e. including relevant paramagnetic and superparamagnetic contributions). Enhanced ferrimagnetic character, mostly depending on the growth in number and volume of iron oxide particles, is associated with the development of an intense reddish hue.

  2. Efficient micromagnetics for magnetic storage devices

    NASA Astrophysics Data System (ADS)

    Escobar Acevedo, Marco Antonio

    Micromagnetics is an important component for advancing the magnetic nanostructures understanding and design. Numerous existing and prospective magnetic devices rely on micromagnetic analysis, these include hard disk drives, magnetic sensors, memories, microwave generators, and magnetic logic. The ability to examine, describe, and predict the magnetic behavior, and macroscopic properties of nanoscale magnetic systems is essential for improving the existing devices, for progressing in their understanding, and for enabling new technologies. This dissertation describes efficient micromagnetic methods as required for magnetic storage analysis. Their performance and accuracy is demonstrated by studying realistic, complex, and relevant micromagnetic system case studies. An efficient methodology for dynamic micromagnetics in large scale simulations is used to study the writing process in a full scale model of a magnetic write head. An efficient scheme, tailored for micromagnetics, to find the minimum energy state on a magnetic system is presented. This scheme can be used to calculate hysteresis loops. An efficient scheme, tailored for micromagnetics, to find the minimum energy path between two stable states on a magnetic system is presented. This minimum energy path is intimately related to the thermal stability.

  3. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same asmore » that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.« less

  4. Magnetic properties of vanadium doped CdTe: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Goumrhar, F.; Bahmad, L.; Mounkachi, O.; Benyoussef, A.

    2017-04-01

    In this paper, we are applying the ab initio calculations to study the magnetic properties of vanadium doped CdTe. This study is based on the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA), within the local density approximation (LDA). This method is called KKR-CPA-LDA. We have calculated and plotted the density of states (DOS) in the energy diagram for different concentrations of dopants. We have also investigated the magnetic and half-metallic properties of this compound and shown the mechanism of exchange interaction. Moreover, we have estimated the Curie temperature Tc for different concentrations. Finally, we have shown how the crystal field and the exchange splittings vary as a function of the concentrations.

  5. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopymore » and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.« less

  6. Anisotropic nanomaterials: Synthesis, optical and magnetic properties, and applications

    NASA Astrophysics Data System (ADS)

    Banholzer, Matthew John

    As nanoscience and nanotechnology mature, anisotropic metal nanostructures are emerging in a variety of contexts as valuable class of nanostructures due to their distinctive attributes. With unique properties ranging from optical to magnetic and beyond, these structures are useful in many new applications. Chapter two discusses the nanodisk code: a linear array of metal disk pairs that serve as surface-enhanced Raman scattering substrates. These multiplexing structures employ a binary encoding scheme, perform better than previous nanowires designs (in the context of SERS) and are useful for both convert encoding and tagging of substrates (based both on spatial disk position and spectroscopic response) as well as biomolecule detection (e.g. DNA). Chapter three describes the development of improved, silver-based nanodisk code structures. Work was undertaken to generate structures with high yield and reproducibility and to reoptimize the geometry of each disk pair for maximum Raman enhancement. The improved silver structures exhibit greater enhancement than Au structures (leading to lower DNA detection limits), convey additional flexibility, and enable trinary encoding schemes where far more unique structures can be created. Chapter four considers the effect of roughness on the plasmonic properties of nanorod structures and introduces a novel method to smooth the end-surfaces of nanorods structures. The smoothing technique is based upon a two-step process relying upon diffusion control during nanowires growth and selective oxidation after each step of synthesis is complete. Empirical and theoretical work show that smoothed nanostructures have superior and controllable optical properties. Chapter five concerns silica-encapsulated gold nanoprisms. This encapsulation allows these highly sensitive prisms to remain stable and protected in solution, enabling their use as class-leading sensors. Theoretical study complements the empirical work, exploring the effect of

  7. Obtaining Magnetic Properties of Meteorites Using Magnetic Scanner

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Nabelek, L.; Mazanec, M.; Simon, K.; Hruba, J.

    2015-12-01

    Magnetic images of Murchison meteorite's and Chelyabinsk meteorite's thin section have been obtained from magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses (Nabelek et al., 2015). Nabelek, L., Mazanec, M., Kdyr, S., and Kletetschka, G., 2015, Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section: Meteoritics & Planetary Science.

  8. Magnetic properties of superparamagnetic nanoparticles loaded into silicon nanotubes.

    PubMed

    Granitzer, Petra; Rumpf, Klemens; Gonzalez, Roberto; Coffer, Jeffery; Reissner, Michael

    2014-01-01

    In this work, the magnetic properties of silicon nanotubes (SiNTs) filled with Fe3O4 nanoparticles (NPs) are investigated. SiNTs with different wall thicknesses of 10 and 70 nm and an inner diameter of approximately 50 nm are prepared and filled with superparamagnetic iron oxide nanoparticles of 4 and 10 nm in diameter. The infiltration process of the NPs into the tubes and dependence on the wall-thickness is described. Furthermore, data from magnetization measurements of the nanocomposite systems are analyzed in terms of iron oxide nanoparticle size dependence. Such biocompatible nanocomposites have potential merit in the field of magnetically guided drug delivery vehicles. 61.46.Fg; 62.23.Pq; 75.75.-c; 75.20.-g.

  9. Magnetic characterization of the stator core of a high-speed motor made of an ultrathin electrical steel sheet using the magnetic property evaluation system

    NASA Astrophysics Data System (ADS)

    Oka, Mohachiro; Enokizono, Masato; Mori, Yuji; Yamazaki, Kazumasa

    2018-04-01

    Recently, the application areas for electric motors have been expanding. For instance, electric motors are used in new technologies such as rovers, drones, cars, and robots. The motor used in such machinery should be small, high-powered, highly-efficient, and high-speed. In such motors, loss at high-speed rotation must be especially minimal. Eddy-current loss in the stator core is known to increase greatly during loss at high-speed rotation of the motor. To produce an efficient high-speed motor, we are developing a stator core for a motor using an ultrathin electrical steel sheet with only a small amount of eddy-current loss. Furthermore, the magnetic property evaluation for efficient, high-speed motor stator cores that use conventional commercial frequency is insufficient. Thus, we made a new high-speed magnetic property evaluation system to evaluate the magnetic properties of the efficient high-speed motor stator core. This system was composed of high-speed A/D converters, D/A converters, and a high-speed power amplifier. In experiments, the ultrathin electrical steel sheet dramatically suppressed iron loss and, in particular, eddy-current loss. In addition, a new high-speed magnetic property evaluation system accurately evaluated the magnetic properties of the efficient high-speed motor stator core.

  10. Effects of biomass reducing agent on magnetic properties and phase transformation of Baotou low-grade limonite during magnetizing-roasting

    PubMed Central

    Guo, Wen chao; Luo, Hui juan; Gong, Zhi jun; Li, Bao wei; Wu, Wen fei

    2017-01-01

    Biomass was used as reducing agent to roast the Baotou low-grade limonite in a high temperature vacuum atmosphere furnace. The effect of calcination temperature, time and ratio of reducing agent on the magnetic properties of calcined ore was studied by VSM. The phase and microstructure changes of limonite before and after calcination were analyzed by XRD and SEM. The results show that in the roasting process the phase transition process of the ferrous material in limonite is first dehydrated at high temperature to formα-Fe2O3, and then it is converted into Fe3O4 by the reduction of biomass. With the increase of calcination temperature, the magnetic properties of the calcined ore first increase and then decrease. When the temperature is higher than 650°C, Fe3O4 will become Fe2SiO4, resulting in reduced the magnetic material in calcined ore and the magnetic weakened. The best magnetization effect was obtained when the roasting temperature is 550°C, the percentage of biomass was 15% and the roasting time was 30min. The saturation magnetization can reach 60.13emu·g-1, the recovery of iron was 72% and the grade of iron was 58%. PMID:29040307

  11. Effects of biomass reducing agent on magnetic properties and phase transformation of Baotou low-grade limonite during magnetizing-roasting.

    PubMed

    Zhang, Kai; Chen, Xiu Li; Guo, Wen Chao; Luo, Hui Juan; Gong, Zhi Jun; Li, Bao Wei; Wu, Wen Fei

    2017-01-01

    Biomass was used as reducing agent to roast the Baotou low-grade limonite in a high temperature vacuum atmosphere furnace. The effect of calcination temperature, time and ratio of reducing agent on the magnetic properties of calcined ore was studied by VSM. The phase and microstructure changes of limonite before and after calcination were analyzed by XRD and SEM. The results show that in the roasting process the phase transition process of the ferrous material in limonite is first dehydrated at high temperature to formα-Fe2O3, and then it is converted into Fe3O4 by the reduction of biomass. With the increase of calcination temperature, the magnetic properties of the calcined ore first increase and then decrease. When the temperature is higher than 650°C, Fe3O4 will become Fe2SiO4, resulting in reduced the magnetic material in calcined ore and the magnetic weakened. The best magnetization effect was obtained when the roasting temperature is 550°C, the percentage of biomass was 15% and the roasting time was 30min. The saturation magnetization can reach 60.13emu·g-1, the recovery of iron was 72% and the grade of iron was 58%.

  12. The calcination temperature dependence of microstructural, vibrational spectra and magnetic properties of nanocrystalline Mn0.5Zn0.5Fe2O4

    NASA Astrophysics Data System (ADS)

    Indrayana, I. P. T.; Siregar, N.; Suharyadi, E.; Kato, T.; Iwata, S.

    2016-11-01

    Effect of calcination temperature on microstructural, vibrational, and magnetic properties of Mn0.5Zn0.5Fe2O4 nanoparticles have been successfully investigated. The nanoparticles were synthesized via coprecipitation method and calcined at different temperatures varying from 400, 600, 800, and 1000°C. The X-ray diffraction (XRD) pattern confirmed the formation of cubic spinel structure Mn0.5Zn0.5Fe2O4 with crystallite size ranging from 18.3 nm to 24.8 nm. The TEM micrograph showed the morphology of nanoparticles change from nearly spherical to cubic form after calcination. The FTIR spectra confirmed the existence of vibrations at 416.6 cm-1 - 455.2 cm-1 and 555.5 cm-1 -578.6 cm-1 which corresponds to the intrinsic stretching vibration of metal-oxygen at octahedral and tetrahedral sites, respectively. The maximum specific magnetization and coercivity increase with increasing calcination temperature. The maximum specific magnetization value of 54.7emu/gram was obtained for sample calcined at 1000°C. The results showed that calcination treatment will facilitate the tunability of microstructural and magnetic properties of nanoparticles for expanding the field of application.

  13. Magnetic properties of Proxima Centauri b analogues

    NASA Astrophysics Data System (ADS)

    Zuluaga, Jorge I.; Bustamante, Sebastian

    2018-03-01

    The discovery of a planet around the closest star to our Sun, Proxima Centauri, represents a quantum leap in the testability of exoplanetary models. Unlike any other discovered exoplanet, models of Proxima b could be contrasted against near future telescopic observations and far future in-situ measurements. In this paper we aim at predicting the planetary radius and the magnetic properties (dynamo lifetime and magnetic dipole moment) of Proxima b analogues (solid planets with masses of ∼ 1 - 3M⊕ , rotation periods of several days and habitable conditions). For this purpose we build a grid of planetary models with a wide range of compositions and masses. For each point in the grid we run the planetary evolution model developed in Zuluaga et al. (2013). Our model assumes small orbital eccentricity, negligible tidal heating and earth-like radiogenic mantle elements abundances. We devise a statistical methodology to estimate the posterior distribution of the desired planetary properties assuming simple lprior distributions for the orbital inclination and bulk composition. Our model predicts that Proxima b would have a mass 1.3 ≤Mp ≤ 2.3M⊕ and a radius Rp =1.4-0.2+0.3R⊕ . In our simulations, most Proxima b analogues develop intrinsic dynamos that last for ≥4 Gyr (the estimated age of the host star). If alive, the dynamo of Proxima b have a dipole moment ℳdip >0.32÷2.9×2.3ℳdip , ⊕ . These results are not restricted to Proxima b but they also apply to earth-like planets having similar observed properties.

  14. Magnetic and magneto-optical properties and domain structure of Co/Pd multilayers

    NASA Technical Reports Server (NTRS)

    Gadetsky, S.; Wu, Teho; Suzuki, T.; Mansuripur, M.

    1993-01-01

    The domain structure of Co/Pd(1.6/6.3 A)xN multilayers and its relation to the bulk magnetic properties of the samples were studied. The Co/Pd multilayers were deposited by rf and dc magnetron sputtering onto different substrates. It was found that magnetic and magnetooptical properties and domain structure of the multilayers were affected by total film thickness and substrate condition. Magnetization, coercivity, and anisotropy of the films decreased significantly as the film thickness dropped below 100 A. However, Kerr rotation angle had a maximum at the same thickness. The width of the domain structure increased with the decrease of the film thickness attaining the single domain state at N = 10. The initial curves in Co/Pd multilayers were found to depend on demagnetization process. The samples demagnetized by inplane field showed the largest difference between initial curves and the corresponding parts of the loops. Different domain structures were observed in the samples demagnetized by perpendicular and in-plane magnetic fields.

  15. Progression in structural, magnetic and electrical properties of La-doped group IV elements

    NASA Astrophysics Data System (ADS)

    Deepapriya, S.; Annie Vinosha, P.; Rodney, John D.; Jerome Das, S.

    2018-04-01

    Progression of group IV elements such as zinc ferrite (ZnFe2O4), cobalt ferrite (CoFe2O4) was synthesized by doping lanthanum (La), via adopting a facile co-precipitation method. Doping hefty rare earth ion in spinel structure can amend to the physical properties of the lattice, which can be used in the enhancement of magnetic and electrical properties of the as-synthesized nanomaterial, it is vital to metamorphose and optimize its micro structural and magnetic features. The structural properties of the samples was analysed by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), Transmission electron microscopy (TEM) and UV-visible spectral analysis (UV-vis) reveals the optical property and optical band gap. The magnetic properties were evaluated using a vibrating sample magnetometer (VSM), the presence of functional group was confirmed by FTIR. XRD analyses elucidates that the synthesized samples zinc and cobalt had a spinel structure. From TEM analyses the morphology and diameter of the particle was observed. The substituted rare earth ions in Zinc ferrite inhibit the grain growth of the materials in an efficient manner compared with that of the Cobalt ferrite.

  16. Electronic and magnetic properties of bare armchair BC2N nanoribbons

    NASA Astrophysics Data System (ADS)

    Li, Hong; Xiao, Xiang; Tie, Jun; Lu, Jing

    2017-03-01

    We present the electronic and magnetic properties of bare armchair BC2N nanoribbons (ABC2NNRs) in the view of density functional calculations. We consider three types of edge terminations with a width of 0.75 2.10 nm. All the investigated ribbons exhibit magnetic ground states with the magnetic moments mainly located on the edge C atoms. Room temperature accessible magnetic stabilities are obtained for ABC2NNRs with NC-NC and NC-BC edge alignments. We find the ABC2NNRs have various electronic structures, where half-metal, metal, and semiconductor are all acquired depend on the edge alignment and magnetic coupling state. The results show the ABC2NNRs can be a promising candidate material in nanoelectronics and nanospintronics.

  17. Effects of annealing process on magnetic properties and structures of Nd-Pr-Ce-Fe-B melt-spun powders

    NASA Astrophysics Data System (ADS)

    Pei, Kun; Lin, Min; Yan, Aru; Zhang, Xing

    2016-05-01

    The effects of annealing process on magnetic properties and structures of Nd-Pr-Ce-Fe-B melt-spun powders have been investigated. The magnetic properties improve a lot when the annealing temperature is 590-650 °C and the annealing time exceeds 1 min. The magnetic properties is stable when the annealing time is 590-650 °C. The powders contains obvious grains when the annealing time is only 1 min, while the grains grow up obviously, leading to the decrease of Br and (BH)max, when the annealing time is more than 9 min. The Hcj changes little for different annealing time. The cooling rate also affects the magnetic properties of powders with different Ce-content. Faster cooling rate is favorable to improve magnetic properties with low Ce-content powders, while high Ce-content powders need slower cooling rate.

  18. Magneto-optical and catalytic properties of Fe3O4@HA@Ag magnetic nanocomposite

    NASA Astrophysics Data System (ADS)

    Amir, Md.; Güner, S.; Yıldız, A.; Baykal, A.

    2017-01-01

    Fe3O4@HA@Ag magnetic nanocomposites (MNCs) were successfully synthesized by the simple reflux method for the removal of azo dyes from the industrial aqueous media. Fe3O4@HA@AgMNCs exhibited high catalytic activity to reduce MB within 20 min from the waste water. The obtained materials were characterized by the means of different techniques. Powder X-ray diffraction (XRD) analysis confirmed the single-phase of Fe3O4 spinel structure. SEM and TEM analysis indicated that Fe3O4@HA@AgMNCs were nanoparticles like structure with small agglomeration. TG result showed that the products contained 9% of HA. The characteristic peaks of HA at 1601 cm-1 and 1703 cm-1 was observed by the means of FT-IR spectra of Fe3O4@HA@AgMNCs. The hysteresis (σ-H) curves revealed Fe3O4@HA@Ag MNCs exhibit a typical superparamagnetic characteristic with a saturation magnetization of 59.11 emu/g and measured magnetic moment is 2.45 μB. The average magnetic particle dimension (Dmag) is 13.25 nm. In accordance, the average crystallite and particle dimensions were obtained as 11.50 nm and 13.10 nm from XRD and TEM measurements, respectively. Magnetocrystalline anisotropy was offered as uniaxial and calculated effective anisotropy constant (Keff) is 2.96×105 Erg/g. The blocking temperature was estimated as 522 K. The size-dependent saturation magnetization suggests the existence of a magnetically dead layer as 0.793 nm for Fe3O4@HA@Ag MNCs. The UV-vis diffuse reflectance spectroscopy (DRS) and Kubelka-Munk theory were applied to determine the optical properties of powder samples. The direct optical energy band gap (Eg) values were estimated from Tauc plots between 1.62 eV and 2.12 eV.

  19. Magnetic properties of doped Mn-Ga alloys made by mechanical milling and heat treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Daniel R.; National High Magnetic Field Laboratory, Tallahassee, FL 32310; Han, Ke

    2016-05-15

    Mn-Ga alloys have shown hard magnetic properties, even though these alloys contain no rare-earth metals. However, much work is needed before rare-earth magnets can be replaced. We have examined the magnetic properties of bulk alloys made with partial replacement of both the Mn and Ga elements in the Mn{sub 0.8}Ga{sub 0.2} system. Bulk samples of Mn-Ga-Bi, Mn-Ga-Al, Mn-Fe-Ga and Mn-(FeB)-Ga alloys were fabricated and studied using mechanically milling and heat treatments while altering the atomic percentage of the third element between 2.5 and 20 at%. The ternary alloy exhibits all hard magnetic properties at room temperature with large coercivity. Annealedmore » Mn-Ga-X bulk composites exhibit high coercivities up to 16.6 kOe and remanence up to 9.8 emu/g, that is increased by 115% over the binary system.« less

  20. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Debnath, A.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl3) and Calcium chloride dihydrate (CaCl2.2H2O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  1. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, A., E-mail: debnathanimesh@gmail.com; Bera, A.; Saha, B.

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl{sub 3}) and Calcium chloride dihydrate (CaCl{sub 2}.2H{sub 2}O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneousmore » powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.« less

  2. Structure-related frustrated magnetism of nanosized polyoxometalates: aesthetics and properties in harmony.

    PubMed

    Kögerler, Paul; Tsukerblat, Boris; Müller, Achim

    2010-01-07

    The structural versatility characterizing polyoxometalate chemistry, in combination with the option to deliberately use well-defined building blocks, serves as the foundation for the generation of a large family of magnetic clusters, frequently comprising highly symmetric spin arrays. If the spin centers are coupled by antiferromagnetic exchange, some of these systems exhibit spin frustration, which can result in novel magnetic properties of purely molecular origins. We discuss here the magnetic properties of selected nanosized polyoxometalate clusters featuring spin triangles as their magnetic 'building blocks' or fragments. This includes unique porous Keplerate clusters of the type {(Mo)Mo(5)}(12)M(30) (M = Fe(III), Cr(III), V(IV)) with the spin centers defining a regular icosidodecahedron and the {V(15)As(6)}-type cluster sphere containing a single equilateral spin triangle; these species are widely discussed and studied in the literature for their role in materials science as molecular representations of Kagomé lattices and in relation to quantum computing, respectively. Exhibiting fascinating and unique structural features, these magnetic molecules allow the study of the implications of frustrated spin ordering. Furthermore, this perspective covers the impact of spin frustration on the degeneracy of the ground state and related problems, namely strong magnetic anisotropy and the interplay of antisymmetric exchange and structural Jahn-Teller effects.

  3. Structure and properties of sintered MM-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Shang, R. X.; Xiong, J. F.; Li, R.; Zuo, W. L.; Zhang, J.; Zhao, T. Y.; Chen, R. J.; Sun, J. R.; Shen, B. G.

    2017-05-01

    MM14Fe79.9B6.1 magnets were prepared by conventional sintering method. The Curie temperature of the sintered MM2Fe14B magnet was about 210 °C. When the sintering temperature increased from 1010 °C to 1030 °C, the density of the magnet increased from 6.85 g/cm3 to 7.52 g/cm3. After the first stage tempering at 900 °C, the (BH)max and Hcj had a slight increase. The maximum value of (BH)max = 7.6 MGOe and Hcj = 1080 Oe was obtained when sintered at 1010 °C and tempering at 900 °C, respectively. The grain size grew very large when the sintering temperature increased to 1050 °C, and the magnetic properties deteriorated rapidly. La reduced by ˜ 7.5 at. % in grains, which is almost equal to the increased percentage of Nd. That is mainly because La-Fe-B is very difficult to form the 2: 14: 1 phase.

  4. 238U Mössbauer study on the magnetic properties of uranium-based heavy fermion superconductors

    NASA Astrophysics Data System (ADS)

    Tsutsui, Satoshi; Nakada, Masami; Nasu, Saburo; Haga, Yoshinori; Honma, Tetsuo; Yamamoto, Etsuji; Ohkuni, Hitoshi; Ōnuki, Yoshichika

    2000-07-01

    We have performed 238U Mössbauer spectroscopy of uranium-based heavy fermion superconductors, UPd2Al3 and URu2Si2, in order to investigate their physical properties, mainly their magnetic properties. The slow relaxation of magnetic hyperfine interaction in a paramagnetic state and the static hyperfine field has been observed in an antiferromagnetic ordered state for each compound. The line-widths have maximum at their characteristic temperatures where their magnetic susceptibilities have maximum values.

  5. Strain effect on magnetic property of antiferromagnetic insulator SmFeO3

    NASA Astrophysics Data System (ADS)

    Kuroda, M.; Tanahashi, N.; Hajiri, T.; Ueda, K.; Asano, H.

    2018-05-01

    Thin films and heterostructures of antiferromagnetic insulator SmFeO3 were fabricated on LaAlO3 (001) substrates by magnetron sputtering, and their structural, magnetic properties were investigated. It was found that epitaxially strained thin films showed a pronounced magnetic anisotropy with the enhanced magnetization up to 65 emu/cc, which is approximately ten times larger than the bulk value. The observed enhancement of magnetization was considered to be due to the lattice distortion and the non-collinear antiferromagnetic spin ordering of SmFeO3.

  6. Magnetic properties experiments on the Mars exploration Rover Spirit at Gusev Crater.

    PubMed

    Bertelsen, P; Goetz, W; Madsen, M B; Kinch, K M; Hviid, S F; Knudsen, J M; Gunnlaugsson, H P; Merrison, J; Nørnberg, P; Squyres, S W; Bell, J F; Herkenhoff, K E; Gorevan, S; Yen, A S; Myrick, T; Klingelhöfer, G; Rieder, R; Gellert, R

    2004-08-06

    The magnetic properties experiments are designed to help identify the magnetic minerals in the dust and rocks on Mars-and to determine whether liquid water was involved in the formation and alteration of these magnetic minerals. Almost all of the dust particles suspended in the martian atmosphere must contain ferrimagnetic minerals (such as maghemite or magnetite) in an amount of approximately 2% by weight. The most magnetic fraction of the dust appears darker than the average dust. Magnetite was detected in the first two rocks ground by Spirit.

  7. Magnetostructural Properties of Colossal Magnetoresistance Manganites Under External Magnetic Fields and Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Kaplan, Michael; Zimmerman, George

    2002-03-01

    In the colossal magnetoresistance manganites the transport and magnetostructural properties are tightly connected [1,2]. Many magnetic field induced structural phase transitions and anomalous magnetoacoustical properties continue to be discovered in various manganite derivatives. Nevertheless the mechanism of structural transitions and microscopic theory of corresponding anomalous properties are still to be completely understood. Here we present a microscopic model of magnetic field and uniaxial pressure induced structural phase transitions in lightly doped manganites. The model is based on the cooperative Jahn-Teller effect which takes into account the Mn3+-ground doublet and excited triplet electronic states. Numerous calculations for different orientation magnetic field suggest the explanations of the origin of the structural transitions and of the measured magnetostriction data. The calculations for the two-sublattice antiferrodistortive crystals under uniaxial pressure support the idea of metaelasticity - a property typical for Jahn-Teller antiferroelastics. 1.Y. Tokura, ed. Colossal Magnetoresistance Oxides. Gordon & Breach, London, 2000. 2.M. Kaplan, G. Zimmerman, eds. Vibronic Interactions: Jahn-Teller Effect in Crystal and Molecules. NATO Science Series, Dordrecht/Boston/London, 2001

  8. Energy band and transport properties in magnetic aperiodic graphene superlattices of Thue-Morse sequence

    NASA Astrophysics Data System (ADS)

    Yin, Yiheng; Niu, Yanxiong; Zhang, Huiyun; Zhang, Yuping; Liu, Haiyue

    2016-02-01

    Utilizing the transfer matrix method, we develop the electronic band structure and transport properties in Thue-Morse aperiodic graphene superlattices with magnetic barriers. It is found that the normal transmission is blocked and the position of the Dirac point can be shifted along the wavevector axis by changing the height and width ratio of magnetic barriers, which is intrinsic different from electronic field modulated superlattices. In addition, the angular threshold property of the transmission spectra and the oscillatory property of the conductance have been studied.

  9. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    DOE PAGES

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, Durga

    2017-05-17

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spinmore » orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low

  10. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, Durga

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spinmore » orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low

  11. Electrical and Magnetic Properties of Binary Amorphous Transition Metal Alloys.

    NASA Astrophysics Data System (ADS)

    Liou, Sy-Hwang

    The electrical, superconductive and magnetic properties of several binary transition metal amorphous and metastable crystalline alloys, Fe(,x)Ti(,100-x) (30 (LESSTHEQ) x (LESSTHEQ) 100), Fe(,x)Zr(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 93), Fe(,x)Hf(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 100), Fe(,x)Nb(,100 -x) (22 (LESSTHEQ) x (LESSTHEQ) 85), Ni(,x)Nb(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 80), Cu(,x)Nb(,100-x) (10 (LESSTHEQ) x (LESSTHEQ) 90) were studied over a wide composition range. Films were made using a magnetron sputtering system, and the structure of the films was investigated by energy dispersive x-ray diffraction. The composition region of each amorphous alloys system was determined and found in good agreement with a model proposed by Egami and Waseda. The magnetic properties and hyperfine interactions in the films were investigated using a conventional Mossbauer spectrometer and a ('57)Co in Rh matrix source. In all Fe-early transition metal binary alloys systems, Fe does not retain its moment in the low iron concentration region and the result is that the critical concentration for magnetic order (x(,c)) is much larger than anticipated from percolation considerations. A direct comparison between crystalline alloys and their amorphous counterparts of the same composition illustrate no clear correlation between crystalline and amorphous states. Pronounced discontinuities in the magnetic properties with variation in Fe content of all Fe-early transition metal alloys at phase boundaries separating amorphous and crystalline states have been observed. This is caused by the differences in the atomic arrangement and the electronic structure between crystalline and amorphous solids. The temperature dependence of resistivity, (rho)(T), of several binary amorphous alloys of Fe-TM (where TM = Ti, Zr, Hf, Nb etc.) has been studied from 2K to 300K. The Fe-poor (x < x(,c)) samples and the Fe-rich (x > x(,c)) samples have distinctive differences in (rho)(T) at low temperature

  12. Investigation on the structural, magnetic and magnetocaloric properties of nanocrystalline Pr-deficient Pr1-xSrxMnO3-δ manganites

    NASA Astrophysics Data System (ADS)

    Arun, B.; Athira, M.; Akshay, V. R.; Sudakshina, B.; Mutta, Geeta R.; Vasundhara, M.

    2018-02-01

    We have investigated the structural, magnetic and magnetocaloric properties of nanocrystalline Pr-deficient Pr1-xSrxMnO3-δ Perovskite manganites. Rietveld refinement of the X-ray powder diffraction patterns confirms that all the studied compounds have crystallized into an orthorhombic structure with Pbnm space group. Transmission electron microscopy analysis reveals nanocrystalline compounds with crystallite size less than 50 nm. The selected area electron diffraction patterns reveal the highly crystalline nature of the compounds and energy dispersive X-ray spectroscopic analysis shows that the obtained compositions are nearly identical with the nominal one. The oxygen stoichiometry is estimated by iodometric titration method and stoichiometric compositions are confirmed by X-ray Fluorescence Spectrometry analysis. A large bifurcation is observed in the ZFC/FC curves and Arrott plots not show a linear relation but have a convex curvature nature. The temperature dependence of inverse magnetic susceptibility at higher temperature confirms the existence of ferromagnetic clusters. The experimental results reveal that the reduction of crystallite size to nano metric scale in Pr-deficient manganites adversely influences structural, magnetic and magnetocaloric properties as compared to its bulk counterparts reported earlier.

  13. Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part II: Texture analysis and magnetic properties

    DOE PAGES

    Kustas, Andrew B.; Michael, Joseph R.; Susan, Don F.; ...

    2018-06-04

    In Part I, equal channel angular extrusion (ECAE) was demonstrated as a novel, simple-shear deformation process for producing bulk forms of the low ductility Fe–Co–2V (Hiperco 50A®) soft ferromagnetic alloy with refined grain sizes. Microstructures and mechanical properties were discussed. In this Part II contribution, the crystallographic textures and quasi-static magnetic properties of ECAE-processed Hiperco were characterized. The textures were of a simple-shear character defined by partial {110} and <111> fibers inclined relative to the extrusion direction, in agreement with the expectations for simple-shear deformation textures of BCC metals. These textures were observed throughout all processing conditions and only slightlymore » reduced in intensity by subsequent recrystallization heat treatments. Characterization of the magnetic properties revealed a lower coercivity and higher permeability for ECAE-processed Hiperco specimens relative to the conventionally processed and annealed Hiperco bar. In conclusion, the effects of the resultant microstructure and texture on the coercivity and permeability magnetic properties are discussed.« less

  14. Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part II: Texture analysis and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kustas, Andrew B.; Michael, Joseph R.; Susan, Don F.

    In Part I, equal channel angular extrusion (ECAE) was demonstrated as a novel, simple-shear deformation process for producing bulk forms of the low ductility Fe–Co–2V (Hiperco 50A®) soft ferromagnetic alloy with refined grain sizes. Microstructures and mechanical properties were discussed. In this Part II contribution, the crystallographic textures and quasi-static magnetic properties of ECAE-processed Hiperco were characterized. The textures were of a simple-shear character defined by partial {110} and <111> fibers inclined relative to the extrusion direction, in agreement with the expectations for simple-shear deformation textures of BCC metals. These textures were observed throughout all processing conditions and only slightlymore » reduced in intensity by subsequent recrystallization heat treatments. Characterization of the magnetic properties revealed a lower coercivity and higher permeability for ECAE-processed Hiperco specimens relative to the conventionally processed and annealed Hiperco bar. In conclusion, the effects of the resultant microstructure and texture on the coercivity and permeability magnetic properties are discussed.« less

  15. Magnetoelastic Properties of Magnetic Thin Films Using the Magnetooptic Kerr Effect

    NASA Astrophysics Data System (ADS)

    Mayo, Elizabeth; Lederman, David

    1998-03-01

    The magnetoelastic properties of Co and Fe thin films were measured using the magnetooptic Kerr effect (MOKE). Films were grown via magnetron sputtering on thin mica substrates. Magnetization loops were measured using MOKE with the magnetic field along different in-plane directions. Subsequently, the samples were mounted on a cylindrical sample holder, which imposed a well-defined strain to the film. This caused the magnetization loops to change dramatically due to the magnetoelastic coefficient of the thin film materials. The effects of the surface roughness and film thickness will also be discussed.

  16. Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.

    2017-05-01

    In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).

  17. Crystal growth and magnetic properties of equiatomic CeAl

    NASA Astrophysics Data System (ADS)

    Das, Pranab Kumar; Thamizhavel, A.

    2015-03-01

    Single crystal of CeAl has been grown by flux method using Ce-Al self-flux. Several needle like single crystals were obtained and the length of the needle corresponds to the [001] crystallographic direction. Powder x-ray diffraction revealed that CeAl crystallizes in orthorhombic CrB-type structure with space group Cmcm (no. 63). The magnetic properties have been investigated by means of magnetic susceptibility, isothermal magnetization, electrical transport, and heat capacity measurements. CeAl is found to order antiferromagnetically with a Neel temperature TN = 10 K. The magnetization data below the ordering temperature reveals two metamagentic transitions for fields less than 20 kOe. From the inverse magnetic susceptibility an effective moment of 2.66 μB/Ce has been estimated, which indicates that Ce is in its trivalent state. Electrical resistivity data clearly shows a sharp drop at 10 K due to the reduction of spin disorder scattering of conduction electrons thus confirming the magnetic ordering. The estimated residual resistivity ratio (RRR) is 33, thus indicating a good quality of the single crystal. The bulk nature of the magnetic ordering is also confirmed by heat capacity data. From the Schottky anomaly of the heat capacity we have estimated the crystal field level splitting energies of the (2J + 1) degenerate ground state as 25 K and 175 K respectively for the fist and second excited states.

  18. Electronic transport properties of nanostructured MnSi-films

    NASA Astrophysics Data System (ADS)

    Schroeter, D.; Steinki, N.; Scarioni, A. Fernández; Schumacher, H. W.; Süllow, S.; Menzel, D.

    2018-05-01

    MnSi, which crystallizes in the cubic B20 structure, shows intriguing magnetic properties involving the existence of skyrmions in the magnetic phase diagram. Bulk MnSi has been intensively investigated and thoroughly characterized, in contrast to MnSi thin film, which exhibits widely varying properties in particular with respect to electronic transport. In this situation, we have set out to reinvestigate the transport properties in MnSi thin films by means of studying nanostructure samples. In particular, Hall geometry nanostructures were produced to determine the intrinsic transport properties.

  19. Accurate quantification of magnetic particle properties by intra-pair magnetophoresis for nanobiotechnology

    NASA Astrophysics Data System (ADS)

    van Reenen, Alexander; Gao, Yang; Bos, Arjen H.; de Jong, Arthur M.; Hulsen, Martien A.; den Toonder, Jaap M. J.; Prins, Menno W. J.

    2013-07-01

    The application of magnetic particles in biomedical research and in-vitro diagnostics requires accurate characterization of their magnetic properties, with single-particle resolution and good statistics. Here, we report intra-pair magnetophoresis as a method to accurately quantify the field-dependent magnetic moments of magnetic particles and to rapidly generate histograms of the magnetic moments with good statistics. We demonstrate our method with particles of different sizes and from different sources, with a measurement precision of a few percent. We expect that intra-pair magnetophoresis will be a powerful tool for the characterization and improvement of particles for the upcoming field of particle-based nanobiotechnology.

  20. Synthesis, structure stability and magnetic properties of nanocrystalline Ag-Ni alloy

    NASA Astrophysics Data System (ADS)

    Santhi, Kalavathy; Thirumal, E.; Karthick, S. N.; Kim, Hee-Je; Nidhin, Marimuthu; Narayanan, V.; Stephen, A.

    2012-05-01

    Silver-nickel alloy nanoparticles with an average size of 30-40 nm were synthesized by chemically reducing the mixture of silver and nickel salts using sodium borohydride. The structure and the magnetic properties of the alloy samples with different compositions were investigated. The phase stability of the material was analysed after annealing the sample in vacuum at various temperatures. The material exhibits single fcc phase which is stable up to 400 °C and Ni precipitation sets in when the sample is annealed to 500 °C. The thermal analysis using DSC was carried out to confirm the same. The alloy compositions are found to be in close correlation with the metal salt ratios in the precursors. The synthesized samples exhibit weak paramagnetic to ferromagnetic behaviour. The magnetic measurements reveal that by adjusting the precursor ratio, the Ni content in the material can be altered and hence its magnetic properties tailored to suit specific requirements. The formation of Ag-Ni alloy is confirmed by the observed Curie temperature from the magneto thermogram. Annealing the sample helps to produce significant enhancement in the magnetization of the material.

  1. Magnetic properties of X-ray bright points. [in sun

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Harvey, J. W.; Vaiana, G. S.

    1977-01-01

    Using high-resolution Kitt Peak National Observatory magnetograms and sequences of simultaneous S-054 soft X-ray solar images, the properties of X-ray bright points (XBP) and ephemeral active regions (ER) are compared. All XBP appear on the magnetograms as bipolar features, except for very recently emerged or old and decayed XBP. The separation of the magnetic bipoles is found to increase with the age of the XBP, with an average emergence growth rate of 2.2 plus or minus 0.4 km per sec. The total magnetic flux in a typical XBP living about 8 hr is found to be about two times ten to the nineteenth power Mx. A proportionality is found between XBP lifetime and total magnetic flux, equivalent to about ten to the twentieth power Mx per day of lifetime.

  2. Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcination temperatures

    NASA Astrophysics Data System (ADS)

    Loganathan, A.; Kumar, K.

    2016-06-01

    In the present work, pure and Sr2+ ions substituted Mg ferrite nanoparticles (NPs) had been prepared by co-precipitation method and their structural, optical, and magnetic properties at different calcination temperatures were studied. On this purpose, thermo gravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy, UV-Visible diffused reflectance spectroscopy, impedance spectroscopy, and vibrating sample magnetometer were carried out. The exo- and endothermic processes of synthesized precursors were investigated by TG-DTA measurements. The structural properties of the obtained products were examined by XRD analysis and show that the synthesized NPs are in the cubic spinel structure. The existence of two bands around 578-583 and 430-436 cm-1 in FT-IR spectrum also confirmed the formation of spinel-structured ferrite NPs. The lattice constants and particle size are estimated using XRD data and found to be strongly dependent on calcination temperatures. The optical, electrical, and magnetic properties of ferrite compositions also investigated and found to be strongly dependant on calcination temperatures.

  3. Do steady fast magnetic dynamos exist?

    NASA Technical Reports Server (NTRS)

    Finn, John M.; Ott, Edward; Hanson, James D.; Kan, Ittai

    1989-01-01

    This paper considers the question of the existense of a steady fast kinematic magnetic dynamo for a conducting fluid with a steady velocity field and vanishingly small electrical resistivity. The analysis of examples of steady dynamos, found by considering the zero-resistivity dynamics, indicated that, for sufficiently small resistivity, dynamo action can indeed occur in steady smooth three-dimensional chaotic fluid flows and that fast dynamos should consequently be a typical occurrence for such flows.

  4. Structural and magnetic properties of Ni-Zn doped BaM nanocomposite via citrate precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Kush; Thakur, Preeti; Thakur, Atul, E-mail: atulphysics@gmail.com

    2016-05-23

    Ni-Zn substituted M-type barium ferrite nanocomposite has been prepared via citrate precursor method. Nanocomposite having composition BaNi{sub 0.5}Zn{sub 0.5}Fe{sub 11}O{sub 19} was sintered at 900°C for 3hrs and characterized by using different characterization techniques. X-ray diffraction (XRD) confirmed the formation of double phase with most prominent peak at (114). Average crystallite size for pure BaM and BNZFO were found to be 36 nm & 45 nm. Field emission scanning electron microscopy (FESEM) confirmed the formation of hexagonal platelets with a layered structure. Magnetic properties of these samples were investigated by using vibrating sample magnetometer (VSM). Magnetic parameters like saturation magnetization (M{sub s}),more » coericivity (H{sub c}) and squareness ratio (SQR) of nanocomposite were found to be 60 emu/g, 3663 Oe and 0.6163 respectively. These values were noticed to be higher as compared to pure BaM. Enhanced magnetic properties of nanocomposite were strongly dependent on exchange coupling. Therefore these properties make this nanocomposite a suitable candidate for magnetic recording and high frequency applications.« less

  5. Structural and magnetic properties of chromium doped zinc ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian, Rintu Mary; Thankachan, Smitha; Xavier, Sheena

    2014-01-28

    Zinc chromium ferrites with chemical formula ZnCr{sub x}Fe{sub 2−x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were prepared by Sol - Gel technique. The structural as well as magnetic properties of the synthesized samples have been studied and reported here. The structural characterizations of the samples were analyzed by using X – Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). The single phase spinel cubic structure of all the prepared samples was tested by XRD and FTIR. The particle size was observed to decrease from 18.636 nm to 6.125more » nm by chromium doping and induced a tensile strain in all the zinc chromium mixed ferrites. The magnetic properties of few samples (x = 0.0, 0.4, 1.0) were investigated using Vibrating Sample Magnetometer (VSM)« less

  6. Magnetic Vortices in Nanodisks: What are the implications in macroscopic magnetic properties?

    NASA Astrophysics Data System (ADS)

    Gelvez Pedroza, Ciro Fernando; Patino, Edgar J.; Superconductivity; Nanodevices Laboratory Team

    The study of nanodevices is of great importance nowadays. In particular nanodisks present extraordinary properties when varying their size, shape and materials. One of the most interesting ones has been the presence of magnetic vortices which are normally not present in continuous films or bulk materials. For that reason, these constitute of great interest in potential applications such as data storage, binary logic gates or nano-plasmonics. Although there are many high cost methods for fabrication we have chosen a low cost technique based on Colloidal Lithography. Using Polystyrene Nanoparticles (100nm) nanodisks of about 180 nm in diameter have been grown using Electron Beam evaporation. The fabrication technique requires a number of steps such as spin coating, oxygen plasma and Ion Beam Etching. The samples obtained with this method were Ti/Co/Nb nanodisks with various thickness of the Co layer. Micromagnetic simulations were carried out in OOMMF giving magnetic domain structure and hysteresis loops which were later compared with those obtained experimentally using Vibrating Sample Magnetometry. Simulation results suggest a critical thickness for the appearance of magnetic vortices, revealed by hysteresis loops with substantially lower coercive fields. Facultad de Ciencias,Vicerrectoria de Investigaciones - Universidad de los Andes.

  7. Exchange interactions and magnetic properties of hexagonal rare-earth-cobalt compounds

    NASA Astrophysics Data System (ADS)

    Burzo, E.

    2018-03-01

    The magnetic properties of some GdxY1-xCo4A compounds with A = Co, Si or B are analysed including the pressure effects. Isomorphous structure transitions, parallelly with changes of cobalt moments from high spin states to low spin states, were shown as pressure increases. The magnetic data, obtained from band structures, were compared with those predicted by the mean field model.

  8. Magnetic properties of the upper mantle beneath the continental United States

    NASA Astrophysics Data System (ADS)

    Friedman, S. A.; Ferre, E. C.; Demory, F.; Rochette, P.; Martin Hernandez, F.; Conder, J. A.

    2012-12-01

    The interpretation of long wavelength satellite magnetic data (Magsat, Oersted, CHAMP, SWARM) requires an understanding of magnetic mineralogy in the lithospheric mantle and reliable models of induced and remanent magnetic sources in the lithospheric mantle and the crust. Blakely et al. (2005) proposed the hypothesis of a magnetic lithospheric mantle in subduction zones. This prompted us to reexamine magnetic sources in the lithospheric mantle in different tectonic settings where unaltered mantle xenolith have been reported since the 1990s. Xenoliths from the upper mantle beneath the continental United States show different magnetic properties depending on the tectonic setting in which they equilibrated. Three localities in the South Central United States (San Carlos, AZ; Kilbourne Hole, NM; Knippa, TX) produced lherzolite and harzburgite xenoliths, while the Bearpaw Mountains in Montana (subduction zone) produced dunite and phlogopite-rich dunite xenoliths. Paleomagnetic data on these samples shows the lack of secondary alteration which is commonly caused by post-eruption serpentinization and the lack of basalt contamination. The main magnetic carrier is pure magnetite. The ascent of mantle xenoliths to the surface of the Earth generally takes only a few hours. Numerical modelling shows that nucleation of magnetite during ascent would form superparamagnetic grains and therefore cannot explain the observed magnetic grain sizes. This implies that the ferromagnetic phases present in the studied samples formed at mantle depth. The samples from the South Central United States exhibit a small range in low-field magnetic susceptibility (+/- 0.00003 [SI]), and Natural Remanent Magnetization (NRM) between 0.001 - 0.100 A/m. To the contrary samples from the Bearpaw Mountains exhibit a wider range of low-field susceptibilities (0.00001 to 0.0015 [SI]) and NRM (0.01 and 9.00 A/m). These samples have been serpentinized in-situ by metasomatic fluids related to the Farallon

  9. Interplay of structural, optical and magnetic properties in Gd doped CeO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soni, S.; Dalela, S., E-mail: sdphysics@rediffmail.com; Kumar, Sudish

    In this research wok systematic investigation on the synthesis, characterization, optical and magnetic properties of Ce{sub 1-x}Gd{sub x}O{sub 2} (where x=0.02, 0.04, 0.06, and 0.10) synthesized using the Solid-state method. Structural, Optical and Magnetic properties of the samples were investigated by X-ray diffraction (XRD), UV-VIS-NIR spectroscopy and VSM. Fluorite structure is confirmed from the XRD measurement on Gd doped CeO{sub 2} samples. Magnetic studies showed that the Gd doped polycrystalline samples display room temperature ferromagnetism and the ferromagnetic ordering strengthens with the Gd concentration.

  10. Anomalous thermal hysteresis in the high-field magnetic moments of magnetic nanoparticles embedded in multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Meng; Wang, Jun; Ren, Yang; Beeli, Pieder

    2012-02-01

    We report high-temperature (300-1120 K) magnetic properties of Fe and Fe3O4 nanoparticles embedded in multi-walled carbon nanotubes. We unambiguously show that the magnetic moments of Fe and Fe3O4 nanoparticles are seemingly enhanced by a factor of about 3 compared with what they would be expected to have for free (unembedded) magnetic nanoparticles. What is more intriguing is that the enhanced moments were completely lost when the sample was heated up to 1120 K and the lost moments at 1120 K were completely recovered through several thermal cycles below 1020 K. The anomalous thermal hysteresis of the high-field magnetic moments is unlikely to be explained by existing physical models except for the high-field paramagnetic Meissner effect due to the existence of ultrahigh temperature superconductivity in the multi-walled carbon nanotubes.

  11. Effects of Exsolution Lamellae on Magnetic Properties of Crustal Rocks and Contributions to Remanent Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    McEnroe, S. A.; Robinson, P.; Fabian, K.; Brown, L. L.; Harrison, R. J.

    2011-12-01

    Magnetic anomalies from crustal sources are measured over a wide range of scales and elevations, from near-surface to satellites. They reflect magnetic minerals in rocks, which respond to the changing planetary magnetic field. Anomalies are influenced by the geometry of the geological bodies, and magnetic properties of the minerals. Commonly, magnetism of continental crust has been described in terms of bulk ferrimagnetism of minerals, and much attributed to induced magnetization. Though remanent magnetization was crucial for dating the ocean floor, and is important in mineral exploration, its contribution to continental magnetic anomalies is commonly ignored. Over the last decade studying remanent anomalies in crustal rocks, we discovered a new type of remanence, 'lamellar magnetism'. This is due to layers of mixed Fe2+/Fe3+ valence at (001) contacts between exsolution lamellae and hosts of ilmenite and hematite. The mixed-valence contact layers are placed by chemistry between hematite Fe3+ layers and ilmenite Ti4+ layers, where they provide reduction of ionic charge imbalance. Placement requires that the uncompensated spin of contact layers on opposite sides of a lamella be in-phase magnetically. This produces a net ferrimagnetic moment per lamella of ~4 uB per formula unit, regardless of lamella thickness, thus net moment is greatest with the greatest density of magnetically in-phase fine lamellae created during slow cooling. We can show that in-phase magnetization of lamellae is greatly enhanced in foliated samples, where the statistical (001) plane is parallel to the Earth field at the time of exsolution. Strictly speaking, the resulting magnetization is a chemical remanence with very high stability. Lamellar magnetism is responsible for numerous remanent magnetic anomalies in continental rocks we present here. We highlight some bodies with NRMs > 20 A/m which are possible analogs for sources of remanent anomalies on Mars.

  12. Relationship between microstructural and magnetic properties of PrCo-based films prepared by the vacuum evaporation method

    NASA Astrophysics Data System (ADS)

    Fersi, R.; Bouzidi, W.; Bezergheanu, A.; Cizmas, C. B.; Bessais, L.; Mliki, N.

    2018-04-01

    In this work, Ce2Ni7 type structural PrCo-based films were deposited on Si(1 0 0) substrate by ultra-high (UHV) vacuum evaporation process. The structural and magnetic properties of these films have been performed using X-ray diffraction (XRD), atomic force microscopy (AFM), vibrating sample magnetometer (VSM) and magnetic force microscopy (MFM) techniques. Two effects on structural and magnetic properties of PrCo films have been investigated: the effect of the annealing temperature (Ta) and the effect of the variation of the magnetic X-layer thickness. The as deposited PrCo films have a magnetic coercivity (Hc) of about 40-100 Oe. But after annealing at 600 °C, Hc has increased hight about 9.5 kOe for PrCo(X = 20 nm) and 10.2 kOe for PrCo(X = 50 nm) were observed. The magnetic properties were affected by the thickness due to the morphology, also the relationship between the intergrain exchange coupling (IEC), the size and quantity of the PrCo grains. The hight extrinsic properties of Hc = 10.2 kOe, maximum energy product (BH)max of 5.12 MGOe and remanence ratio Mr /Ms = 0.53 are reported for the PrCo(X = 50 nm) films. These properties are highly desirable for extremely high-density magnetic recording media applications.

  13. Co-based amorphous thin films on silicon with soft magnetic properties

    NASA Astrophysics Data System (ADS)

    Masood, Ansar; McCloskey, P.; Mathúna, Cian Ó.; Kulkarni, S.

    2018-05-01

    The present work investigates the emergence of multiple modes in the high-frequency permeability spectrum of Co-Zr-Ta-B amorphous thin films. Amorphous thin films of different thicknesses (t=100-530 nm) were deposited by DC magnetron sputtering. Their static and dynamic soft magnetic properties were investigated to explore the presence of multi-magnetic phases in the films. A two-phase magnetic behavior of the thicker films (≥333 nm) was revealed by the in-plane hysteresis loops. Multiple resonance peaks were observed in the high-frequency permeability spectrum of the thicker films. The thickness dependent multiple resonance peaks below the main ferromagnetic resonance (FMR) can be attributed to the two-phase magnetic behaviors of the films.

  14. Ni(II)/Zn(II)-triazolate clusters based MOFs constructed from a V-shaped dicarboxylate ligand: Magnetic properties and phosphate sensing

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Qiang; Tian, Yuan; Li, Na; Liu, Sui-Jun

    2018-06-01

    Two isomorphous metal-organic frameworks (MOFs) {[M2(μ3-OH)(trz)(sdba)(H2O)]·3H2O}∞ (M = Ni for 1, Zn for 2, Htrz = 1,2,4-triazole, H2sdba = 4,4‧-sulfonyldibenzoate) were obtained under the same reaction condition. Both of complexes present a three dimensional 8-c framework with whc1 topology based on M4-(μ3-OH) units. Moreover, the magnetic properties of 1 and anion sensing of 2 were investigated. The magnetic study show that the domain antiferromagnetic interactions exist in 1. However, complex 2 can be considered as a promising chemical sensor for detecting PO43barby means of fluorescence enhancement among various anions in aqueous solutions.

  15. Hubbard pair cluster in the external fields. Studies of the magnetic properties

    NASA Astrophysics Data System (ADS)

    Balcerzak, T.; Szałowski, K.

    2018-06-01

    The magnetic properties of the two-site Hubbard cluster (dimer or pair), embedded in the external electric and magnetic fields and treated as the open system, are studied by means of the exact diagonalization of the Hamiltonian. The formalism of the grand canonical ensemble is adopted. The phase diagrams, on-site magnetizations, spin-spin correlations, mean occupation numbers and hopping energy are investigated and illustrated in figures. An influence of temperature, mean electron concentration, Coulomb U parameter and external fields on the quantities of interest is presented and discussed. In particular, the anomalous behaviour of the magnetization and correlation function vs. temperature near the critical magnetic field is found. Also, the effect of magnetization switching by the external fields is demonstrated.

  16. Magnetic Properties of PMx Collected at Sites with Different Level of Air Pollution

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Kotlik, B.; Kapicka, A.; Zboril, R.

    2012-12-01

    Magnetic properties of environmental samples can serve as fast and relatively cheap proxy method to investigate occurrence of iron oxides. These methods are very sensitive in detecting strongly magnetic compounds such as magnetite and maghemite and can reveal concentration and assess grain-size distribution of these minerals. This information can be significant in estimating e.g. the source of pollutants, monitoring pollution load, or investigating seasonal and climatic effects. We studied magnetic properties of PM1, PM2.5 and PM10 and total suspended matter (TSP), collected over 12-48 hours at sites with different level of air pollution: a small clean settlement in south Bohemia, industrial site close to steel works, industrial site close to open mine pit, urban and traffic site. In our contribution we will show typical differences in PMx properties. SEM observations will be complemented by magnetic measurements and Mossbauer spectroscopy. In all the ssampled sites, the SEM images clearly reveal spherules rich in iron oxides. Thermomagentic measurements (temperature dependence of magnetic susceptibility) prove that magnetite is the dominant magnetic phase in atmospheric dust in samples from all sites. Hysteresis loops and IRM acquisition curve could be reliably measured. Surprisingly, finer dust particles show smaller coercive force than the coarser ones. Mossbauer spectroscopy could be interpreted in terms of multi-domain magnetite only in the samples with PMx dominated by the steel works, where the content of magnetite was the highest. The results demonstrate that magnetic measurements are extremely sensitive to trace amount of ferrimagnetic iron oxides, which were in many cases below the sensitivity limit of Mossbauer spectroscopy. This study is supported by the Czech Science Foundation through grant #P210/10/0554.

  17. Magnetic properties of rare-earth sulfide YbAgS2

    NASA Astrophysics Data System (ADS)

    Iizuka, Ryosuke; Numakura, Ryosuke; Michimura, Shinji; Katano, Susumu; Kosaka, Masashi

    2018-05-01

    We have succeeded in synthesizing single-phase polycrystalline samples of YbAgS2 belonging to the tetragonal system with space group I41 md . YbAgS2 shows an antiferromagnetic transition at TN = 6.6 K . The effective magnetic moment is in good agreement with the theoretical value for Yb3+ free ion. A broad anomaly is observed just above TN in the temperature dependence of magnetic susceptibility. The entropy released at TN is only about half of Rln2 expected for a Kramers doublet ground state. We consider that these phenomena are due to the existence of short-range magnetic correlations rather than the partial screening of the Yb moments by conduction electrons via the Kondo effect.

  18. Evaluation of aging and hydration in natural volcanic glass: magnetic property variations during artificial aging and hydration experiments

    NASA Astrophysics Data System (ADS)

    Bowles, J. A.; Patiman, A.

    2017-12-01

    The recorded geomagnetic field intensity is a function of magnetic mineralogy, grain size, and mineral concentration as well as material stability in nature and during laboratory experiments. Fresh, unhydrated, volcanic glasses are recognized as a nearly ideal natural material for use in paleointensity experiments because they contain the requisite single domain to pseudo-single-domain magnetic particles. Although alteration of magnetic mineralogy can be monitored during the experiments, it is unclear how mineralogy and hence magnetization might change with age as the metastable glass structure relaxes and/or the glass becomes hydrated. Bulk magnetic properties as a function of age show no clear trend, even over hundreds of millions of years. This may be due to the fact that even in fresh, unhydrated glass, there are small-scale differences in magnetic properties due to variation cooling rate or composition variations. Therefore, in order to better understand how magnetic mineralogy evolves with time and hydration, we conducted artificial aging and hydration experiments on fresh, unhydrated rhyolitic (South Deadman Creek, California, 650-yr) and basaltic (Axial Seamount, 2011) end-member glasses. Here, we present the results of artificial aging and hydration experiments. Elevated temperatures accelerate the glass relaxation process in a way that relaxation time decreases with increasing temperature. Aged samples are dry-annealed at 200, 300 and 400 °C for up to 240 days. A second set of samples are hydrated under pressure at 300°C and 450°C. In all cases, isothermal remanent magnetization (IRM) acquisition is monitored to assess changes in the coercivity spectrum and saturation IRM. Preliminary aging results show that in basaltic and rhyolitic glass there is one main peak coercivity at 150 mT and 35 mT, respectively. An increasing sIRM and decreasing peak coercivity trend is observed in basaltic glass whereas no trend is shown in the rhyolitic glass in both

  19. Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.

    PubMed

    Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V

    2016-06-08

    Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.

  20. Preparation and magnetic properties of the Sr-hexaferrite with foam structure

    NASA Astrophysics Data System (ADS)

    Guerrero, A. L.; Espericueta, D. L.; Palomares-Sánchez, S. A.; Elizalde-Galindo, J. T.; Watts, B. E.; Mirabal-García, M.

    2016-12-01

    This work reports an optimal way to fabricate strontium hexaferrite with porous-reticulated structure using a variation of the replication technique and taking two different precursors, one obtained from the coprecipitation and the other from the ceramic method. Changes made to the original replication technique include the addition of Arabic gum as binder, and the addition of ethylene glycol to form the ceramic sludge. In addition, some parameters such as the relation between solid material and liquid phase, the quantity of binder and the heat treatment were varied to obtain high quality magnetic foams. Two polymeric sponges were used as patterns, one with average pore size of 300 μm diameter and the other with 1100 μm. The characterization of the samples included the analysis of the structure and phase purity, the magnetic properties, the remanence properties, magnetic interactions and the microstructural characteristics. Results indicate that both, the powder precursors and the polymeric pattern play an important role in the configuration of the foam structure and this configuration has an important influence on the dipolar interactions which tend to demagnetize the samples. In addition, it was analyzed the behavior between the minimum value of the δM curves and the hysteresis properties.

  1. Magnetic properties of Fe implanted SrTiO{sub 3} perovskite crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Şale, A.G.; Kazan, S.; Gatiiatova, Ju.I.

    2013-08-01

    Graphical abstract: - Highlights: • The results of investigations of magnetic properties of Fe implanted SrTiO{sub 3} are presented. • The measurements of the temperature dependence of the magnetization were performed. • Ferromagnetic hysteresis loops in Fe implanted SrTiO{sub 3} were observed at low temperatures. • Superparamagnetic behavior of the samples at high temperatures was revealed. • It was shown that the magnetization of the samples depends on the fluency of implantation. - Abstract: The results of investigations of magnetic properties of SrTiO{sub 3} perovskite crystal implanted with 40 keV Fe ions at the fluencies between 0.5 × 10{sup 17}more » and 1.5 × 10{sup 17} ion/cm{sup 2} are presented. It has been revealed that high-fluency implantation with Fe ions results in the formation of a granular metal particulate composite in the irradiated near-surface layer of SrTiO{sub 3} substrate, which exhibits remarkable ferromagnetic behavior. The measurements of the temperature dependence of the magnetic moment showed that the samples exhibit blocking temperature at about 350 K, above which a superparamagnetic behavior has been observed. Ferromagnetic ordering and magnetic hysteresis loops were observed in Fe implanted SrTiO{sub 3} at the temperatures lower than 350 K. It has been shown that the magnetization of the ferromagnetic state depends on the fluency of implantation.« less

  2. Copper tellurium oxides - A playground for magnetism

    NASA Astrophysics Data System (ADS)

    Norman, M. R.

    2018-04-01

    A variety of copper tellurium oxide minerals are known, and many of them exhibit either unusual forms of magnetism, or potentially novel spin liquid behavior. Here, I review a number of the more interesting materials with a focus on their crystalline symmetry and, if known, the nature of their magnetism. Many of these exist (so far) in mineral form only, and most have yet to have their magnetic properties studied. This means a largely unexplored space of materials awaits our exploration.

  3. Copper Tellurium Oxides - A Playground for Magnetism.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, M. R.

    A variety of copper tellurium oxide minerals are known, and many of them exhibit either unusual forms of magnetism, or potentially novel spin liquid behavior. Here, I review a number of the more interesting materials with a focus on their crystalline symmetry and, if known, the nature of their magnetism. Many of these exist (so far) in mineral form only, and most have yet to have their magnetic properties studied. This means a largely unexplored space of materials awaits our exploration.

  4. Structure and magnetic properties of Ni-poly(p-xylylene) nanocomposites synthesized by vapor deposition polymerization

    NASA Astrophysics Data System (ADS)

    Ozerin, Sergei A.; Vdovichenko, Artem Yu.; Streltsov, Dmitry R.; Davydov, Alexander B.; Orekhov, Anton S.; Vasiliev, Alexander L.; Zubavichus, Yan V.; Grigoriev, Evgenii I.; Zavyalov, Sergei A.; Oveshnikov, Leonid N.; Aronzon, Boris A.; Chvalun, Sergei N.

    2017-12-01

    The relationship between structure, electrical and magnetic properties of thin poly(p-xylylene) - nickel nanocomposite films with Ni concentrations from 5 to 30 vol% was studied. It was found that metal concentration strongly affects size and oxidation state of the nanoparticles and composites morphology. At nickel concentration below 5 vol% the nanoparticles are oxidized to NiO and homogeneously distributed within fine-grained polymer matrix. An increase of Ni concentration up to 10 vol% results in the development of coarse-grained morphology with preferable localization of the nanoparticles at the boundaries of polymeric grains. And finally, in the composite films with nickel concentration above 20 vol%, the fine-grained morphology is observed again, but the nanoparticles are mainly metallic. Effect of the filler content on electrical and magnetic properties of the nanocomposites was elucidated showing that they are determined by percolation phenomenon with the threshold value of about 10 vol%. The well-pronounced magnetic hysteresis as well as ferromagnetic ordering were observed at Ni content above the percolation threshold. The diagrams of magnetic properties of these composites as a function of composition and temperature were elaborated. It was demonstrated that film annealing can be used to control magnetic properties of the composites and strongly enhance magnetoresistance.

  5. Magnetic and Dielectric Property Studies in Fe- and NiFe-Based Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sharma, Himani; Jain, Shubham; Raj, Pulugurtha Markondeya; Murali, K. P.; Tummala, Rao

    2015-10-01

    Metal-polymer composites were investigated for their microwave properties in the frequency range of 30-1000 MHz to assess their application as inductor cores and electromagnetic isolation shield structures. NiFe and Fe nanoparticles were dispersed in epoxy as nanocomposites, in different volume fractions. The permittivity, permeability, and loss tangents of the composites were measured with an impedance analyzer and correlated with the magnetic properties of the particle such as saturation magnetization and field anisotropy. Fe-epoxy showed lower magnetic permeability but improved frequency stability, compared to the NiFe-epoxy composites of the same volume loading. This is attributed to the differences in nanoparticle's structure such as effective metal core size and particle-porosity distribution in the polymer matrix. The dielectric properties of the nanocomposites were also characterized from 30 MHz to 1000 MHz. The instabilities in the dielectric constant and loss tangent were related to the interfacial polarization relaxation of the particles and the dielectric relaxation of the surface oxides.

  6. Structure organization and magnetic properties of microscale ferrogels: The effect of particle magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ryzhkov, Aleksandr V.; Melenev, Petr V.; Balasoiu, Maria; Raikher, Yuriy L.

    2016-08-01

    The equilibrium structure and magnetic properties of a ferrogel object of small size (microferrogel(MFG)) are investigated by coarse-grained molecular dynamics. As a generic model of a microferrogel (MFG), a sample with a lattice-like mesh is taken. The solid phase of the MFG consists of magnetic (e.g., ferrite) nanoparticles which are mechanically linked to the mesh making some part of its nodes. Unlike previous models, the finite uniaxial magnetic anisotropy of the particles, as it is the case for real ferrogels, is taken into account. For comparison, two types of MFGs are considered: MFG-1, which dwells in virtually non-aggregated state independently of the presence of an external magnetic field, and MFG-2, which displays aggregation yet under zero field. The structure states of the samples are analyzed with the aid of angle-resolved radial distribution functions and cluster counts. The results reveal the crucial role of the matrix elasticity on the structure organization as well as on magnetization of both MFGs. The particle anisotropy, which plays insignificant role in MFG-1 (moderate interparticle magnetodipole interaction), becomes an important factor in MFG-2 (strong interaction). There, the restrictions imposed on the particle angular freedom by the elastic matrix result in notable diminution of the particle chain lengths as well as the magnetization of the sample. The approach proposed enables one to investigate a large variety of MFGs, including those of capsule type and to purposefully choose the combination of their magnetoelastic parameters.

  7. Spin Polarized Transport in Multilayer Structures with Complex Magnetic Configurations

    NASA Astrophysics Data System (ADS)

    Sahakyan, Avag; Poghosyan, Anahit; Movsesyan, Ruzan; Kocharian, Armen

    The spin transport and spin polarization in a new class of multilayer structures are investigated for non-collinear and noncoplanar magnetic configurations containing repetitive magnetic layers. The magnetic configuration of the structure dictates the existence of certain degrees of freedom that determines magnetic transport and polarization properties. We consider magnetic structures in magnetic multilayers with canted spin configurations separated by non-magnetic quantum well so that the exchange interaction between the neighbor barriers can be ignored. Configurations of magnetizations in barriers include some structures consisting of two ''ferromagnetic'' or ''antiferromagnetic'' domains twisted relative to each other by a certain angle (angle noncollinearity). The similar system, formed from two noncollinear domains separated by canted ''magnetic defect'' is also considered. The above mentioned properties of these systems depend strongly on the type of magnetic configuration and variation of certain degrees of freedom. Simple theoretical approach with the transfer matrix method is carried out to understand and predict the magnetic properties of the multilayer systems. The work at California University Los Angeles was supported by the National Science Foundation-Partnerships for Research and Education in Materials under Grant DMR-1523588.

  8. Hydrothermal synthesis, crystal structure, luminescent and magnetic properties of a new mononuclear GdIII coordination complex

    NASA Astrophysics Data System (ADS)

    Coban, Mustafa Burak

    2018-06-01

    A new GdIII coordination complex, {[Gd(2-stp)2(H2O)6].2(4,4'-bipy).4(H2O)}, complex 1, (2-stp = 2-sulfoterephthalate anion and 4,4'-bipy = 4,4'-bipyridine), has been synthesized by hydrothermal method and characterized by elemental analysis, solid state UV-Vis and FT-IR spectroscopy, single-crystal X-ray diffraction, solid state photoluminescence and variable-temperature magnetic measurements. The crystal structure determination shows that GdIII ions are eight coordinated and adopt a distorted square-antiprismatic geometry. Molecules interacting through intra- and intermolecular (O-H⋯O, O-H⋯N) hydrogen bonds in complex 1, give rise to 3D hydrogen bonded structure and the discrete lattice 4,4'-bipy molecules occupy the channel of the 3D structure. π-π stacking interactions also exist 4,4'-bipy-4,4'-bipy and 4,4'-bipy-2-stp molecule rings in 3D structures. Additionally, solid state photoluminescence properties of complex 1 at room temperature have been investigated. Under the excitation of UV light (at 349 nm), the complex 1 exhibited green emissions (at 505 nm) of GdIII ion in the visible region. Furthermore, Variable-temperature magnetic susceptibility and isothermal magnetization as function of external magnetic field studies reveal that complex 1 displays possible antiferromagnetic interaction.

  9. Effect of magnetic field on the optical properties of an inhomogeneously broadened multilevel Λ-system in Rb vapor

    NASA Astrophysics Data System (ADS)

    Kaur, Paramjit; Wasan, Ajay

    2017-03-01

    We present a theoretical model, using density matrix approach, to study the effect of external longitudinal and transverse magnetic fields on the optical properties of an inhomogeneously broadened multilevel Λ-system using the D2 line in 85Rb and 87Rb atoms. The presence of closely spaced multiple excited states causes asymmetry in the absorption and dispersion profiles. We observe a wide EIT window with a positive slope at the line center for a stationary atom. While for a moving atom, the linewidth of EIT window reduces and positive dispersion becomes steeper. When magnetic field is applied, our calculations show multiple EIT subwindows that are significantly narrower and shallow than single EIT window. The number of EIT subwindows depend on the orientation of the magnetic field. We also obtain multiple positive dispersive regions for subluminal propagation in the medium. The anomalous dispersion exists in between two subwindows showing the superluminal light propagation. Our theoretical analysis explain the experiments performed by Wei et al. [Phys. Rev. A 72, 023806 (2005)] and Iftiquar et al. [Phys. Rev. A 79, 013808 (2009)].

  10. Physical properties of Moving Magnetic Features observed around a pore

    NASA Astrophysics Data System (ADS)

    Criscuoli, S.; Del Moro, D.; Giannattasio, F.; Viticchié, B.; Giorgi, F.; Ermolli, I.; Zuccarello, F.; Berrilli, F.

    2012-06-01

    Movies of magnetograms of sunspots often show small-size magnetic patches that move radially away and seem to be expelled from the field of the spot. These patches are named Moving Magnetic Features (MMFs). They have been mostly observed around spots and have been interpreted as manifestations of penumbral filaments. Nevertheless, few observations of MMFS streaming out from spots without penumbra have been reported. He we investigate the physical properties of MMFs observed around the field of a pore derived by the analyses of high spectral, spatial and temporal resolution data acquired at the Dunn Solar Telescope with IBIS. We find that the main properties of the investigated features agree with those reported for MMFs observed around regular spots. These results indicate that an improvement of current numerical simulations is required to understand the generation of MMFs in the lack of penumbrae.

  11. Sorting Rotating Micromachines by Variations in Their Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Howell, Taylor A.; Osting, Braxton; Abbott, Jake J.

    2018-05-01

    We consider sorting for the broad class of micromachines (also known as microswimmers, microrobots, micropropellers, etc.) propelled by rotating magnetic fields. We present a control policy that capitalizes on the variation in magnetic properties between otherwise-homogeneous micromachines to enable the sorting of a select fraction of a group from the remainder and prescribe its net relative movement, using a uniform magnetic field that is applied equally to all micromachines. The method enables us to accomplish this sorting task using open-loop control, without relying on a structured environment or localization information of individual micromachines. With our method, the control time to perform the sort is invariant to the number of micromachines. The method is verified through simulations and scaled experiments. Finally, we include an extended discussion about the limitations of the method and address open questions related to its practical application.

  12. Effect of Al doping on the magnetic and electrical properties of Zn(Cu)O based diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Chakraborti, D.; Trichy, G.; Narayan, J.; Prater, J. T.; Kumar, D.

    2007-12-01

    The effect of Al doping on the magnetic properties of Zn(Cu)O based dilute magnetic semiconducting thin films has been systematically investigated. Epitaxial thin films have been deposited onto sapphire c-plane single crystals using pulsed laser deposition technique. X-ray diffraction and high resolution transmission electron microscopy studies show that the Zn(Cu,Al)O films are epitaxially grown onto (0001) sapphire substrates with a 30°/90° rotation in the basal plane. The large lattice misfit of the order of 16% is accommodated by matching integral multiples of lattice and substrate planes. In these large mismatch systems, the resulting films are fully relaxed following deposition of the first complete monolayer of ZnO (consistent with a critical thickness that is less than one monolayer). Magnetic hysteresis measurements indicate that the pure Zn(Cu)O thin films are ferromagnetic at room temperature. Doping with up to 5% Al (n type) does not significantly affect the ferromagnetism even though it results in an increase in carrier densities of more than 3 orders of magnitude, rising from 1×1017 to 1.5×1020 cm-3. However, for Al additions above 5%, a drop in net magnetization is observed. Annealing the films in an oxygen atmosphere at 600 °C also resulted in a dramatic drop in magnetic moment of the samples. These results strongly suggest that carrier induced exchange is not directly responsible for the magnetic properties of these materials. Rather, a defect mediated exchange mechanism needs to be invoked for this system.

  13. Magnetic properties of electrospun non-woven superconducting fabrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koblischka, Michael R.; Zeng, Xian Lin; Karwoth, Thomas

    2016-03-15

    Non-woven superconducting fabrics were prepared by the electrospinning technique, consisting of Bi{sub 2}Sr{sub 2}CaCuO{sub 8} (Bi-2212) nanowires. The individual nanowires have a diameter of ∼150-200 nm and lengths of up to 100 μm. A non-woven fabric forming a network with a large number of interconnects results, which enables the flow of transport currents through the entire network. We present here magnetization data [M(T) and M(H)-loops] of this new class of superconducting material. The magnetic properties of these nanowire networks are discussed including the irreversibility line and effects of different field sweep rates, regarding the microstructure of the nanowire networks investigatedmore » by electron microscopy.« less

  14. An Update on Results from the Magnetic Properties Experiments on the Mars Exploration Rovers, Spirit and Opportunity

    NASA Technical Reports Server (NTRS)

    Madsen, M. B.; Arneson, H. M.; Bertelsen, P.; Bell, J. F., III; Binau, C. S.; Gellert, R.; Goetz, W.; Gunnlaugsson, H. P.; Herkenhoff, K. E.; Hviid, S. F.

    2005-01-01

    The Magnetic Properties Experiments were designed to investigate the properties of the airborne dust in the Martian atmosphere. A preferred interpretation of previous experiments (Viking and Pathfinder) was that the airborne dust is primarily composed by composite silicate particles containing as a minor constituent the mineral maghemite (gamma-Fe2O3). In this abstract we show how the magnetic properties experiments on Spirit and Opportunity provide information on the distribution of magnetic mineral(s) in the dust on Mars, with emphasis on results from Opportunity.

  15. Magnetic dynamic properties of electron-doped La(0.23)Ca(0.77)MnO3 nanoparticles.

    PubMed

    Dolgin, B; Puzniak, R; Mogilyansky, D; Wisniewski, A; Markovich, V; Jung, G

    2013-02-20

    Magnetic properties of basically antiferromagnetic La(0.23)Ca(0.77)MnO(3) particles with average sizes of 12 and 60 nm have been investigated in a wide range of magnetic fields and temperature. Particular attention has been paid to magnetization dynamics through measurements of the temperature dependence of ac-susceptibility at various frequencies, the temperature and field dependence of thermoremanent and isothermoremanent magnetization originating from nanoparticles shells, and the time decay of the remanent magnetization. Experimental results and their analysis reveal the major role in magnetic behaviour of investigated antiferromagnetic nanoparticles played by the glassy component, associated mainly with the formation of the collective state formed by ferromagnetic clusters in frustrated coordination at the surfaces of interacting antiferromagnetic nanoparticles. Magnetic behaviour of nanoparticles has been ascribed to a core-shell scenario. Magnetic transitions have been found to play an important role in determining the dynamic properties of the phase separated state of coexisting different magnetic phases.

  16. Size effects in the magnetic properties of ε-Fe{sub 2}O{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubrovskiy, A. A., E-mail: andre-do@yandex.ru; International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw 53-421; Balaev, D. A.

    2015-12-07

    We report the results of comparative analysis of magnetic properties of the systems based on ε-Fe{sub 2}O{sub 3}, nanoparticles with different average sizes (from ∼3 to 9 nm) and dispersions. The experimental data for nanoparticles higher than 6–8 nm in size are consistent with the available data, specifically, the transition to the magnetically ordered state occurs at a temperature of ∼500 K and the anomalies of magnetic properties observed in the range of 80–150 K correspond to the magnetic transition. At the same time, Mőssbauer and ferromagnetic resonance spectroscopy data as well as the results of static magnetic measurements show that at room temperaturemore » all the investigated samples contain ε-Fe{sub 2}O{sub 3} particles that exhibit the superparamagnetic behavior. It was established that the magnetic properties of nanoparticles significantly change with a decrease in their size to ∼6 nm. According to high-resolution electron microscopy and Mőssbauer spectroscopy data, the particle structure can be attributed to the ε–modification of trivalent iron oxide; meanwhile, the temperature of the magnetic order onset in these particles is increased, the well-known magnetic transition in the range of 80–150 K does not occur, the crystallographic magnetic anisotropy constant is significantly reduced, and the surface magnetic anisotropy plays a decisive role. This is apparently due to redistribution of cations over crystallographic positions with decreasing particle size, which was established using Mössbauer spectra. As the particle size is decreased and the fraction of surface atoms is increased, the contribution of an additional magnetic subsystem formed in a shell of particles smaller than ∼4 nm becomes significant, which manifests itself in the static magnetic measurements as paramagnetic contribution.« less

  17. Magnetic Properties and Phase Diagram of Ni50Mn_{50-x}Ga_{x/2}In_{x/2} Magnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Yoshida, Yasuki; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2016-12-01

    Ni50Mn50- x Ga x/2In x/2 magnetic shape memory alloys were systematically prepared, and the magnetic properties as well as the phase diagram, including atomic ordering, martensitic and magnetic transitions, were investigated. The B2- L21 order-disorder transformation showed a parabolic-like curve against the Ga+In composition. The martensitic transformation temperature was found to decrease with increasing Ga+In composition and to slightly bend downwards below the Curie temperature of the parent phase. Spontaneous magnetization was investigated for both parent and martensite alloys. The magnetism of martensite phase was found to show glassy magnetic behaviors by thermomagnetization and AC susceptibility measurements.

  18. An experimental study on the magnetic and exchange bias properties of selected Mn rich Ni-Mn-Ga based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Albagami, Abdullah Mohamed

    In this Thesis project, an experimental study on the magnetic and exchange bias properties of a series of polycrystalline Ni1.7-xMn1.7+x Ga0.6 alloys have been investigated by x-ray diffraction, dc magnetization, and ac susceptibility measurements. X-ray diffraction measurement showed that all prepared samples have a tetragonal L10 martensitic structure at room temperature. Scanning electron microscopy measurements show that the compounds are single phase. With increasing Mn concentration x, the lattice parameters marginally increases. The temperature dependence of magnetization data show two distinct transitions in the alloys. At lower temperatures, a peak in the data is observed while the ferromagnetic to paramagnetic transition occurs at higher temperatures. With increasing Mn concentration, the temperature of both transitions increases. Thermomagnetic irreversibility is observed in the magnetization data of all alloys. The ac susceptibility measurements on the materials show the existence of frequency dependence, which suggest that the thermomagnetic irreversibility in the magnetization data is due to the spin glass like ground state in the alloys. The spin glass like ground state with competing magnetic interactions result in the observation of double-shifted hysteresis loop and exchange bias effects in the alloys. The magnitude of the exchange bias field is strongly dependent on the cooling field.

  19. Endowing carbon nanotubes with superparamagnetic properties: applications for cell labeling, MRI cell tracking and magnetic manipulations.

    PubMed

    Lamanna, Giuseppe; Garofalo, Antonio; Popa, Gabriela; Wilhelm, Claire; Bégin-Colin, Sylvie; Felder-Flesch, Delphine; Bianco, Alberto; Gazeau, Florence; Ménard-Moyon, Cécilia

    2013-05-21

    Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or "click chemistry". The presence of the NPs on the nanotube surface allows conferring magnetic properties to CNTs. We have evaluated the potential of the NP/CNT hybrids as a contrast agent for magnetic resonance imaging (MRI) and their interactions with cells. The capacity of the hybrids to magnetically monitor and manipulate cells has also been investigated. The NP/CNTs can be manipulated by a remote magnetic field with enhanced contrast in MRI. They are internalized into tumor cells without showing cytotoxicity. The labeled cells can be magnetically manipulated as they display magnetic mobility and are detected at a single cell level through high resolution MRI.

  20. The effect of compaction parameters and dielectric composition on properties of soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Xiao, Ling; Sun, Y. H.; Yu, Lie

    2011-07-01

    This paper investigated the effect of compaction parameters and dielectric composition on mechanical, magnetic and electrical properties of iron-organosilicon epoxy resin soft magnetic composites. In this work, iron powders with high purity were covered by an organic material (organosilicon epoxy resin) and then by coupling agent (KH-550). The coated powders were then cold compacted at 600, 800 and 1000 MPa and cured under vacuum respectively. The results show that the saturation magnetic flux density and electrical resistivity are dependent on compaction pressure and resin content. Increase in the organic phase content leads to decrease of the saturation magnetic flux density, while increase of the electrical resistivity. Furthermore, the samples with 0.9 wt% resins + 0.1 wt% coupling agent at compaction pressure of 800 MPa shows better properties than the others.

  1. Magnetic field controlled electronic state and electric field controlled magnetic state in α-Fe1.6Ga0.4O3 oxide

    NASA Astrophysics Data System (ADS)

    Lone, Abdul Gaffar; Bhowmik, R. N.

    2018-04-01

    We have prepared α-Fe1.6Ga0.4O3 (Ga doped α-Fe2O3) system in rhombohedral phase. The material has shown room temperature ferroelectric and ferromagnetic properties. The existence of magneto-electric coupling at room temperature has been confirmed by the experimental observation of magnetic field controlled electric properties and electric field controlled magnetization. The current-voltage characteristics were controlled by external magnetic field. The magnetic state switching and exchange bias effect are highly sensitive to the polarity and ON and OFF modes of external electric field. Such materials can find novel applications in magneto-electronic devices, especially in the field of electric field controlled spintronics devices and energy storage devices which need low power consumption.

  2. Controlling the microstructure and associated magnetic properties of Ni 0.2Mn 3.2Ga 0.6 melt-spun ribbons by annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Mahmud; Alshammari, Ohud; Balasubramanian, Balamurugan

    2017-03-01

    Here we report on the structural and magnetic properties of Ni 0.2Mn 3.2Ga 0.6 melt-spun ribbons. The as-spun ribbons were found to exhibit mixed cubic phases that transform to non-cubic structure upon annealing. Additionally, an amorphous phase was found to co-exist in all ribbons. The SEM images show that minor grain formation occurs on the as-spun ribbons. However, the formation of extensive nano-grains was observed on the surfaces of the annealed ribbons. While the as-spun ribbons exhibit predominantly paramagnetic behavior, the ribbons annealed under various thermal conditions were found to be ferromagnetic with a Curie temperature of about 380 K.more » The ribbons annealed at 450 °C for 30 minutes exhibit a large coercive field of about 2500 Oe. The experimental results show that the microstructure and associated magnetic properties of the ribbons can be controlled by annealing techniques. The coercive fields and the shape of the magnetic hysteresis loops vary significantly with annealing conditions. As a result, exchange bias effects have also been observed in the annealed ribbons.« less

  3. Technique to quantitatively measure magnetic properties of thin structures at <10 NM spatial resolution

    DOEpatents

    Bajt, Sasa

    2003-07-08

    A highly sensitive and high resolution magnetic microscope images magnetic properties quantitatively. Imaging is done with a modified transmission electron microscope that allows imaging of the sample in a zero magnetic field. Two images from closely spaced planes, one in focus and one slightly out of focus, are sufficient to calculate the absolute values of the phase change imparted to the electrons, and hence obtain the magnetization vector field distribution.

  4. Enhancing Mechanical and Thermal Properties of Epoxy Nanocomposites via Alignment of Magnetized SiC Whiskers.

    PubMed

    Townsend, James; Burtovyy, Ruslan; Aprelev, Pavel; Kornev, Konstantin G; Luzinov, Igor

    2017-07-12

    This research is focused on the fabrication and properties of epoxy nanocomposites containing magnetized SiC whiskers (MSiCWs). To this end, we report an original strategy for fabrication of magnetically active SiCWs by decorating the whiskers with magnetic (iron oxide) nanoparticles via polymer-polymer (poly(acrylic acid)/poly(2-vinyl pyridine)) complexation. The obtained whiskers demonstrated a substantial magnetic response in the polymerizing epoxy resin, with application of only a 20 mT (200 G) magnetic field. We also found that the whiskers chemically reacted with the epoxy resin, causing formation of an extended interphase near the boundary of the whiskers. The SiC whiskers oriented with the magnetic field demonstrated positive effects on the behavior of epoxy-based nanocomposites. Namely, the aligned MSiCWs enhanced the thermomechanical properties of the materials significantly above that of the neat epoxy and epoxy nanocomposite, with randomly oriented whiskers.

  5. Properties of magnetized Coulomb crystals of ions with polarizable electron background

    NASA Astrophysics Data System (ADS)

    Kozhberov, A. A.

    2018-06-01

    We have studied phonon and thermodynamic properties of a body-centered cubic (bcc) Coulomb crystal of ions with weakly polarized electron background in a uniform magnetic field B. At B = 0, the difference between phonon moments calculated using the Thomas-Fermi (TF) and random phase approximations is always less than 1% and for description of phonon properties of a crystal, TF formalism was used. This formalism was successfully applied to investigate thermodynamic properties of magnetized Coulomb crystals. It was shown that the influence of the polarization of the electron background is significant only at κ TF a > 0.1 and T ≪ T p ( 1 + h2 ) - 1 / 2 , where κTF is the Thomas-Fermi wavenumber, a is the ion sphere radius, T p ≡ ℏ ω p is the ion plasma temperature, h ≡ ω B / ω p , ωB is the ion cyclotron frequency, and ωp is the ion plasma frequency.

  6. Comparison of magnetic properties of austenitic stainless steel after ion irradiation

    NASA Astrophysics Data System (ADS)

    Xu, Chaoliang; Liu, Xiangbing; Xue, Fei; Li, Yuanfei; Qian, Wangjie

    2018-07-01

    Specimens of austenitic stainless steel (ASS) were irradiated with H, Fe and Xe ions at room temperature. The vibrating sample magnetometer (VSM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the magnetic properties and martensite formation. The magnetic hysteresis loops indicated that higher irradiation damage causes more significant magnetization phenomenon. Under the same damage level, Xe irradiation causes the most significant magnetization, Fe irradiation is the second, and H irradiation is the least. A similar martensite amount variation with irradiation can be obtained. The coercivity Hc increases first to 2 dpa and then decreases continuously with irradiation damage for Xe irradiation. At the same damage lever, H irradiation causes a largest Hc and Xe irradiation causes a minimal one.

  7. A comprehensive overview on the structure and comparison of magnetic properties of nanocrystalline synthesized by a thermal treatment method

    NASA Astrophysics Data System (ADS)

    Naseri, Mahmoud Goodarz; Halimah, M. K.; Dehzangi, Arash; Kamalianfar, Ahmad; Saion, Elias B.; Majlis, Burhanuddin Y.

    2014-03-01

    This study reports the simple synthesis of MFe2O4 (where M=Zn, Mn and Co) nanostructures by a thermal treatment method, followed by calcination at various temperatures from 723 to 873 K. Poly(vinyl pyrrolidon) (PVP) was used as a capping agent to stabilize the particles and prevent them from agglomeration. The pyrolytic behaviors of the polymeric precursor were analyzed by use of simultaneous thermo-gravimetry analyses (TGA) and derivative thermo-gravimetry (DTG) analyses. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of metal oxide bands for all the calcined samples. Magnetic properties were demonstrated by a vibrating sample magnetometer (VSM), which displayed that the calcined samples exhibited different types of magnetic behavior. The present study also substantiated that magnetic properties of ferrite nanoparticles prepared by the thermal treatment method, from viewing microstructures of them, can be explained as the results of the two important factors: cation distribution and impurity phase of α-Fe2O3. These two factors are subcategory of the preparation method which is related to macrostructure of ferrite. Electron paramagnetic resonance (EPR) spectroscopy showed the existence of unpaired electrons ZnFe2O4 and MnFe2O4 nanoparticles while it did not exhibit resonance signal for CoFe2O4 nanoparticles.

  8. Structural, magnetic, and electrical properties of perpendicularly magnetized Mn4-xFexGe thin films

    NASA Astrophysics Data System (ADS)

    Niesen, Alessia; Teichert, Niclas; Matalla-Wagner, Tristan; Balluf, Jan; Dohmeier, Niklas; Glas, Manuel; Klewe, Christoph; Arenholz, Elke; Schmalhorst, Jan-Michael; Reiss, Günter

    2018-03-01

    We investigated the structural, magnetic, and electrical properties of the perpendicularly magnetized Mn4-xFexGe thin films (0.3 ≤ x ≤ 1). The tetragonally distorted structure was verified for all investigated stoichiometries. High coercive fields in the range of 1.61 T to 3.64 T at room temperature were measured and showed increasing behavior with decreasing Fe content. The magnetic moments range from (0.16 ± 0.02) μB/f.u for Mn3Fe1Ge to (0.08 ± 0.01) μB/f.u for Mn3.4Fe0.6Ge. X-ray absorption spectroscopy revealed ferromagnetic coupling of the Mn and Fe atoms in Mn4-xFexGe and the ferrimagnetic ordering of the Mn magnetic moments. Anomalous Hall effect measurements showed sharp magnetization switching. The resistivity values are in the range of 207 μΩ cm to 457 μΩ cm depending on the stoichiometry. From the contribution of the ordinary Hall effect in the anomalous Hall effect measurements, Hall constants, the charge carrier density, and mobility were deduced. The thermal conductivity was calculated using the Wiedemann-Franz law. All these values are strongly influenced by the stoichiometry. An alternative method was introduced for the determination of perpendicular magnetic anisotropy. The values range between 0.26 MJ/m3 and 0.36 MJ/m3.

  9. Novel Fe-based nanocrystalline powder cores with excellent magnetic properties produced using gas-atomized powder

    NASA Astrophysics Data System (ADS)

    Chang, Liang; Xie, Lei; Liu, Min; Li, Qiang; Dong, Yaqiang; Chang, Chuntao; Wang, Xin-Min; Inoue, Akihisa

    2018-04-01

    FeSiBPNbCu nanocrystalline powder cores (NPCs) with excellent magnetic properties were fabricated by cold-compaction of the gas-atomized amorphous powder. Upon annealing at the optimum temperature, the NPCs showed excellent magnetic properties, including high initial permeability of 88, high frequency stability up to 1 MHz with a constant value of 85, low core loss of 265 mW/cm3 at 100 kHz for Bm = 0.05 T, and superior DC-bias permeability of 60% at a bias field of 100 Oe. The excellent magnetic properties of the present NPCs could be attributed to the ultrafine α-Fe(Si) phase precipitated in the amorphous matrix and the use of gas-atomized powder coated with a uniform insulation layer.

  10. Physical properties and phase diagram of the magnetic compound Cr0.26NbS1.74 at high pressures

    NASA Astrophysics Data System (ADS)

    Sidorov, V. A.; Petrova, A. E.; Pinyagin, A. N.; Kolesnikov, N. N.; Khasanov, S. S.; Stishov, S. M.

    2016-06-01

    We report the results of a study of magnetic, electrical, and thermodynamic properties of a single crystal of the magnetic compound Cr0.26NbS1.74 at ambient and high pressures. Results of the measurements of magnetization as a function of temperature reveal the existence of a ferromagnetic phase transition in Cr0.26NbS1.74. The effective number of Bohr magnetons per Cr atom in the paramagnetic phase of Cr0.26NbS1.74 is µeff ≈ 4.6µB, which matches the literature data for Cr1/3NbS2. Similarly, the effective number of Bohr magnetons per Cr atom in the saturation fields is rather close in both substances and corresponds to the number of magnetons in the Cr+3 ion. In contrast to the stoichiometric compound, Cr0.26NbS1.74 does not show a metamagnetic transition, that indicates the lack of a magnetic soliton. A high-pressure phase diagram of the compound reveals the quantum phase transition at T = 0 and P ≈ 4.2 GPa and the triple point situated at T ≈ 20 K and P ≈ 4.2 GPa.

  11. Synthesis and optimization of the magnetic properties of aligned strontium ferrite nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, Fatemeh, E-mail: F.Ebrahimi@ma.iut.ac.ir; Bakhshi, Saeed Reza; Ashrafizadeh, Fakhreddin

    Highlights: • Dip coating method was used to synthesize strontium ferrite nanowires in template. • Size of nanowires was controlled via anodization parameters. • Fe/Sr ratio was optimized in precursor. • Magnetic properties of nanowires and nanopowders were compared. - Abstract: High aspect ratio strontium hexaferrite nanowires were fabricated by dip coating in alumina template. Fe/Sr ratio was changed from 10 to 12 in precursor, and the samples were annealed at a range of temperatures 500–900 °C in order to optimize the magnetic properties of strontium ferrite in the form of nanowires. Field emission scanning electron microscope (FESEM) proved themore » formation of nanowires in the templates, while TEM images revealed a high degree of crystallinity. The ferrites were further characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectrometer (EDS). Magnetic properties of the specimens were studied by a SQUID at 10–300 K. The results showed that the coercivity of packed density nanowires in the template was much less than that of the nanopowders. On the other hand, the coercivity of nanowires at ambient temperature was less than low temperature coercivity.« less

  12. Magnetic Properties of Submarine and Subaerial Basaltic Glass From the Emperor Seamounts (ODP Leg 197)

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.; Tarduno, J. A.

    2002-12-01

    To evaluate the magnetic properties of submarine and subaerial basaltic glass recovered by drilling during ODP Leg 197 at Detroit Seamount (ODP Site 1203) and Koko Seamount (ODP Site 1206) we have conducted a series of rock magnetic measurements and transmission electron microscopy (TEM) analyses. These glass samples have very low natural remanent magnetizations (NRM < 50 nAm2/g) and their magnetic hysteresis properties are dominated by paramagnetism. After correction for the large paramagnetic signal, samples which show a ferromagnetic component have pseudo-single domain behavior, implying magnetic grain sizes larger than those reported for Holocene glasses. Transmission electron microscopy confirms a very low concentration of crystalline inclusions in the glass. A striking feature often observed during the TEM analyses is the partial (or complete) melting of samples by the electron beam and the apparent formation of new crystalline particles. Thellier experiments on submarine basaltic glass (SBG) show a rapid acquisition of thermoremanent magnetization (TRM) with respect to NRM demagnetization which, taken at face value, implies magnetization in a very weak (<17 μT) ambient field. Yet monitoring of magnetic hysteresis properties during the Thellier experiments (on splits used for paleointensity determinations) indicates a systematic variation in values over the same temperature range where rapid TRM acquisition is observed. We suggest that the experimental data can be explained by the partial melting and neocrystallization of magnetic grains in our SBG samples during the thermal treatments required by the Thellier method, resulting in paleointensity values biased to low values. Magnetic hysteresis monitoring may provide a straight-forward means of detecting partial melting during Thellier experiments.

  13. Dynamic response of a sensor element made of magnetic hybrid elastomer with controllable properties

    NASA Astrophysics Data System (ADS)

    Becker, T. I.; Zimmermann, K.; Borin, D. Yu.; Stepanov, G. V.; Storozhenko, P. A.

    2018-03-01

    Smart materials like magnetic hybrid elastomers (MHEs) are based on an elastic composite with a complex hybrid filler of magnetically hard and soft particles. Due to their unique magnetic field depending characteristics, these elastomers offer great potential for designing sensor systems with a complex adaptive behaviour and operating sensitivity. The present paper deals with investigations of the material properties and motion behaviour displayed by synthesised MHE beams in the presence of a uniform magnetic field. The distribution and structure formation of the magnetic components inside the elastic matrix depending on the manufacturing conditions are examined. The specific magnetic features of the MHE material during the magnetising process are revealed. Experimental investigations of the in-plane free vibrational behaviour displayed by the MHE beams with the fixed-free end conditions are performed for various magnitudes of an imposed uniform magnetic field. For the samples pre-magnetised along the length axis, it is demonstrated that the deflection of the beam can be identified unambiguously by magnetic field distortion measurements. It is shown that the material properties of the vibrating MHE element can be specifically adjusted by means of an external magnetic field control. The dependence of the first eigenfrequency of free bending vibrations of the MHE beams on the strength of an imposed uniform magnetic field is obtained. The results are aimed to assess the potential of MHEs to design acceleration sensor systems with an adaptive magnetically controllable sensitivity range.

  14. Xenon-ion irradiation of Co/Si bilayers: Magnetic and structural properties

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Popović, M.; Zhang, K.; Čubrović, V.; Bibić, N.; Rakočević, Z.

    2018-07-01

    Evolution of the structure of cobalt-silicon films during Xe ions irradiation has been studied and the same is correlated with magnetic properties. The polycrystalline cobalt films were deposited by electron beam evaporation method to a thickness of 50 nm on crystalline silicon (c-Si) and silicon with pre-amorphized surface (a-Si). After deposition the layers were irradiated with 400 keV Xe ions to the fluences in the range of 2-30 × 1015 ions/cm2. Structural analysis was done by means of transmission electron microscopy, atomic force microscopy (AFM) and X-ray diffraction (XRD), while the magnetic properties were analyzed by using magneto-optical Kerr effect (MOKE) technique. For the both types of substrate the AFM and XRD results show that after Xe ions irradiation the layers become more rough and the grain size of the crystallites increases; the effects being more evidenced for all fluences for the layers deposited on pre-amorphized Si. The MOKE measurements provided the in-plane azimuthal angular dependence of the hysteresis loops and the change of magnetization with the structural parameters. Although the coercive field is influenced by the surface roughness, in the case of c-Si substrate we found it is much more determined by the size of the crystallites. Additionally, independently on the substrate used the magnetic anisotropy in the Co films disappeared as the Xe ion fluence increased, indicating that the changes of magnetization in both systems occur for similar reasons.

  15. High-pressure synthesis, crystal structure and magnetic properties of TlCrO3 perovskite.

    PubMed

    Yi, Wei; Matsushita, Yoshitaka; Katsuya, Yoshio; Yamaura, Kazunari; Tsujimoto, Yoshihiro; Presniakov, Igor A; Sobolev, Alexey V; Glazkova, Yana S; Lekina, Yuliya O; Tsujii, Naohito; Nimori, Shigeki; Takehana, Kanji; Imanaka, Yasutaka; Belik, Alexei A

    2015-06-21

    TlMO(3) perovskites (M(3+) = transition metals) are exceptional members of trivalent perovskite families because of the strong covalency of Tl(3+)-O bonds. Here we report on the synthesis, crystal structure and properties of TlCrO(3) investigated by Mössbauer spectroscopy, specific heat, dc/ac magnetization and dielectric measurements. TlCrO(3) perovskite is prepared under high pressure (6 GPa) and high temperature (1500 K) conditions. The crystal structure of TlCrO(3) is refined using synchrotron X-ray powder diffraction data: space group Pnma (no. 62), Z = 4 and lattice parameters a = 5.40318(1) Å, b = 7.64699(1) Å and c = 5.30196(1) Å at 293 K. No structural phase transitions are found between 5 and 300 K. TlCrO(3) crystallizes in the GdFeO(3)-type structure similar to other members of the perovskite chromite family, ACrO(3) (A(3+) = Sc, In, Y and La-Lu). The unit cell volume and Cr-O-Cr bond angles of TlCrO(3) are close to those of DyCrO(3); however, the Néel temperature of TlCrO(3) (TN≈ 89 K) is much smaller than that of DyCrO(3) and close to that of InCrO(3). Isothermal magnetization studies show that TlCrO(3) is a fully compensated antiferromagnet similar to ScCrO(3) and InCrO(3), but different from RCrO(3) (R(3+) = Y and La-Lu). Ac and dc magnetization measurements with a fine step of 0.2 K reveal the existence of two Néel temperatures with very close values at T(N2) = 87.0 K and T(N1) = 89.3 K. Magnetic anomalies near T(N2 )are suppressed by static magnetic fields and by 5% iron doping.

  16. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic

    NASA Astrophysics Data System (ADS)

    Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang

    2018-05-01

    Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.

  17. Magnetic and structural properties of glass-coated Heusler-type microwires exhibiting martensitic transformation.

    PubMed

    Zhukov, A; Ipatov, M; Del Val, J J; Zhukova, V; Chernenko, V A

    2018-01-12

    We have studied magnetic and structural properties of the Heusler-type Ni-Mn-Ga glass-coated microwires prepared by Tailor-Ulitovsky technique. As-prepared sample presents magnetoresistance effect and considerable dependence of magnetization curves (particularly magnetization values) on magnetic field attributed to the magnetic and atomic disorder. Annealing strongly affects the temperature dependence of magnetization and Curie temperature of microwires. After annealing of the microwires at 973 K, the Curie temperature was enhanced to about 280 K which is beneficial for the magnetic solid state refrigeration. The observed hysteretic anomalies on the temperature dependences of resistance and magnetization in the as-prepared and annealed samples are produced by the martensitic transformation. The magnetoresistance and magnetocaloric effects have been investigated to illustrate a potential technological capability of studied microwires.

  18. Critical Current Properties in Longitudinal Magnetic Field of YBCO Superconductor with APC

    NASA Astrophysics Data System (ADS)

    Kido, R.; Kiuchi, M.; Otabe, E. S.; Matsushita, T.; Jha, A. K.; Matsumoto, K.

    The critical current density (Jc) properties of the Artificial Pinning Center (APC) introduced YBa2Cu3O7 (YBCO) films in the longitudinal magnetic field were measured. Y2O3 or Y2BaCuO5 (Y211) was introduced as APCs to YBCO, and YBCO films with APC were fabricated on SrTiO3 single crystal substrate. The sizes of Y2O3 and Y211 were 5-10 nm and 10-20 nm, respectively. As a result, Jc enhancement in the longitudinal magnetic field was observed in Y2O3 introduced YBCO films. However, it was not observed in Y211 introduced YBCO films. Therefore, it was considered that Jc properties in the longitudinal magnetic field were affected by introducing of small size APC, and it was necessary that APC does not disturb the current pathway in the superconductor.

  19. A magnetically focused molecular beam of ortho-water.

    PubMed

    Kravchuk, T; Reznikov, M; Tichonov, P; Avidor, N; Meir, Y; Bekkerman, A; Alexandrowicz, G

    2011-01-21

    Like dihydrogen, water exists as two spin isomers, ortho and para, with the nuclear magnetic moments of the hydrogen atoms either parallel or antiparallel. The ratio of the two spin isomers and their physical properties play an important role in a wide variety of research fields, ranging from astrophysics to nuclear magnetic resonance (NMR). Unlike ortho and para H(2), however, the two water isomers remain challenging to separate, and as a consequence, very little is currently known about their different physical properties. Here, we report the formation of a magnetically focused molecular beam of ortho-water. The beam we formed also had a particular spin projection. Thus, in the presence of holding magnetic fields, the water molecules are hyperpolarized, laying the foundation for ultrasensitive NMR experiments in the future.

  20. Magnetic Properties of Hard Magnetic Alloy Fe - 28% Cr - 13.4% Co - 2% Mo - 0.5% Si

    NASA Astrophysics Data System (ADS)

    Vompe, T. A.; Milyaev, I. M.; Yusupov, V. S.

    2017-01-01

    The method of regression analysis is used to obtain equations describing the dependences of magnetic hysteresis properties of magnetically hard powder alloy Fe - 28% Cr - 13.4% Co - 2% Mo - 0.5% Si on regimes of thermomagnetic treatment (the temperatures of the start of the treatment and the rates of cooling in magnetic field). The determined treatment modes make it possible to obtain in an alloy with a coercive force H c up to 40 kA/m, a residual induction B r up to 1.2 T, and a maximum energy product ( BH)max up to 25 kJ/m3. The alloy may find application in the production of rotors of synchronous hysteresis-reluctance motors.

  1. Fullerene faraday cage keeps magnetic properties of inner cluster pristine.

    PubMed

    Avdoshenko, Stanislav M

    2018-04-21

    Any single molecular magnets (SMMs) perspective for application is as good as its magnetization stability in ambient conditions. Endohedral metallofullerenes (EMFs) provide a solid basis for promising SMMs. In this study, we investigated the behavior of functionalized EMFs on a gold surface (EMF-L-Au). Having followed the systems molecular dynamics paths, we observed that the chemically locked inner cluster inside fullerene cage will remain locked even at room temperature due to the ligand-effect. We have located multiple possible minima with different charge arrangements between EMF-L-Au fragments. Remarkably, the charge state of the EMF inner cluster remained virtually constant and so magnetic properties are expected to be untouched. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  2. Influence of magnetic materials on the transport properties of superconducting composite conductors

    NASA Astrophysics Data System (ADS)

    Glowacki, B. A.; Majoros, M.; Campbell, A. M.; Hopkins, S. C.; Rutter, N. A.; Kozlowski, G.; Peterson, T. L.

    2009-03-01

    Magnetic materials can help to improve the performance of practical superconductors on the macro/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces ac losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa2Cu3O7 and (Pb,Bi)2Sr2Ca2Cu3O9 conductors, and buffer layers have to be used. In contrast, in MgB2 conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On the one hand, magnetic components reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause the destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.

  3. Magnetic hyperthermia properties of iron oxide nanoparticles: The effect of concentration

    NASA Astrophysics Data System (ADS)

    Ebrahimisadr, Saeid; Aslibeiki, Bagher; Asadi, Reza

    2018-06-01

    We investigated the effect of concentration on magnetic hyperthermia properties of Fe3O4 nanoparticles (NPs). The NPs were synthesized by co-precipitation method at 80 °C. Scanning electron microscope image showed that the mean diameter of NPs is about 18 nm. The XRD pattern indicated that the sample is pure Fe3O4 with spinel structure and the FT-IR spectroscopy confirmed formation of metal-oxygen bonds in the octahedral and tetrahedral spinel sub-lattice which further confirmed crystalline structure of the sample. The hyperthermia property of Fe3O4 NPs was investigated via an induction heater generating alternating magnetic field with frequency of 92 kHz. The temperature rise (ΔT) of suspension in the AC magnetic field was studied on different concentrations of NPs and the specific absorption rate (SAR) was obtained from Box-Lucas equation and linear fitting of ΔT-time curve. The results showed that the ΔT sharply increases with increasing the NPs concentration while the SAR remains almost constant.

  4. Magnetic properties of the UNiGe2 at low temperature

    NASA Astrophysics Data System (ADS)

    Ohashi, Kohei; Ohashi, Masashi; Sawabu, Masaki; Miyagawa, Masahiro; Maeta, Kae; Yamamura, Tomoo

    2018-03-01

    We report on the magnetic characterization of a novel ternary uranium intermetallic UNiGe2. When we assume that UNiGe2 has the orthorhombic structure of CeNiGe2-type which is same as that of UNiSi2, the lattice constants were obtained to be a = 3.97 Å, b = 16.48 Å, and c = 4.08 Å. The unit cell volume of UNiGe2 is larger than that of UNiSi2. It comes from the fact that the atomic radius of Ge is larger than that of Si. The temperature dependence of the magnetic susceptibility shows two peaks at T N=45 K and T N‧=65 K. Taking an account that UNi2Ge2 secondary phase exists in the compound, UNiGe2 is an antiferromagnet below T N while T N‧ may come from the antiferromagnetic order of UNi2Ge2. At 5 K, the slope of the magnetization curve increases as increasing the magnetic field up to 5 T, indicating the presence of a metamagnetic transition. The residual magnetization remains on the magnetization curve at 5 K, which may come from a week ferromagnetism of UNi2Ge2 at low temperature.

  5. Magneto-Optical Properties of Hybrid Magnetic Material Semiconductor Nanostructures

    DTIC Science & Technology

    2007-09-14

    Angeles, March 2005, Bull. Am. Phys. Soc. 50 Abstract L10.00012 18. First-principles Study of the Structural and Magnetic Properties of Cobalt Indium...follows. The numbers in brackets refer to the above lists of published paper. " A study was made of transition metal dopants in SiC. This led to two

  6. Electronic and magnetic properties of Ni nanoparticles embedded in various organic semiconductor matrices.

    PubMed

    Bräuer, Björn; Vaynzof, Yana; Zhao, Wei; Kahn, Antoine; Li, Wen; Zahn, Dietrich R T; Fernández, César de Julián; Sangregorio, Claudio; Salvan, Georgeta

    2009-04-09

    Ni nanoparticles with a size distribution from 2 to 6 nm, embedded in various organic matrices, were fabricated in ultrahigh vacuum. For this purpose metal free and Ni phthalocyanine, fullerene C(60), and pentacene were coevaporated with Ni. When coevaporated, Ni and H(2)Pc react, leading to the formation of NiPc and Ni nanoparticles. The molecular structure of the matrix was found to have negligible effect on the size of the nanoparticles but to influence the magnetic anisotropy of the nanoparticles: Ni nanoparticles formed in the buckyball matrix have a cubic symmetry, while nanoparticles formed in matrices consisting of planar molecules exhibit a uniaxial symmetry. After exposure to atmosphere, photoelectron spectroscopy investigations demonstrate the presence of metallic Ni nanoparticles accompanied by Ni oxide and the existence of a charge transfer from the organic matrix to the particles in all investigated systems. The oxidized Ni nanoparticles exhibit a larger magnetic anisotropy compared to the freshly prepared particles which show superparamagnetic properties above 17 K. Moreover, photoelectron spectroscopy was used to probe the oxidation process of the Ni nanoparticles in different organic matrices. It could thus be shown that a matrix consisting of spherical molecules like C(60) prevent the particles much better from oxidation compared to matrices of flat molecules.

  7. Unusual doping effect of non-magnetic ion on magnetic properties of CuFe1-xGaxO2

    NASA Astrophysics Data System (ADS)

    Shi, Liran; Jin, Zhao; Chen, Borong; Xia, Nianming; Zuo, Huakun; Wang, Yeshuai; Ouyang, Zhongwen; Xia, Zhengcai

    2014-12-01

    The structural and magnetic properties of nonmagnetic Ga3+ ion doped CuFe1-xGaxO2 (x=0, 0.02, 0.03, and 0.05) single crystal samples have been investigated. In pulsed high magnetic fields, the field-induced multi-step transitions were observed in all the samples. Compared with pure CuFeO2, the transition temperatures, critical magnetic fields decrease and the magnetic hysteresis of the doped samples become small, which may result from the partial release of the spin frustration and the changes of the magnetic coupling both inter- and intra-planes due to the Ga3+ dopant. The magnetization measurements show an abnormal dilution behavior, especially in a lower temperature region, the magnetic moment was enhanced due to the nonmagnetic Ga3+ ion doping, the enhancement becomes more obviously in the sample with the Ga3+ doping level of x=0.03. These results may connected with the substitution of nonmagnetic Ga3+ ions destroying the stability of ground state and affecting the stability of the ferroelectricity incommensurate phase. Based on the experimental results, a super-cell model and their magnetic diagram were assumed.

  8. The Magnetic Properties Of Aggregate Polycrystalline Diamond: Implications For Carbonado Petrogenesis

    NASA Technical Reports Server (NTRS)

    Kleteschka, Gunther; Taylor, Patrick T.; Wasilewski, Peter J.; Hill, Hugh G. M.

    2000-01-01

    Carbonados are a type of diamond, which are made up of many aggregrates of small crystalline diamonds or microdiamonds. The term "carbonado" comes from the Portuguese word carbonated. They are only found in sedimentary deposits in the Central African Republic (CAR) and the Bahia Province of Brazil. They were once the source of the world's supply of industrial diamonds. Their origin is uncertain but several mutually exclusive hypotheses have been proposed. This theories are: (1) extraterrestrial, that is they formed from the dust cloud of original solar nebulae; (2) produced by the high temperatures and pressures of the Earth's mantle; (3) or as the result of an extra-terrestrial impact into a carbon rich layer of sediment. Our study was done to further the understanding of their origin. We measured the magnetic properties on some twenty samples from the CAR. An earlier study was done on whole samples of carbonados and the "common" or kimberlitic diamond. Our work differed in that we started at the surface and subsequently removed the surface layers (by days of acid immersion) into the interior; measuring the magnetic properties at each interval. This procedure permits us to monitor the distribution of magnetic substances within the samples. Our results showed that the magnetic carriers are distributed on the surface including the open pores and that the carbonado interior is essentially non-magnetic. This result suggests that the initial formation environment was deficient in magnetic particles. Such a situation could indicate that their formation was the result of an extra-terrestrial body impacting carbon-rich sediment. Obviously, more work will be required on isotopic and chemical analyses before a more detailed ori-in can be determined.

  9. Magnetic Properties of Three Impact Structures in Canada

    NASA Astrophysics Data System (ADS)

    Scott, R. G.; Pilkington, M.; Tanczyk, E. I.; Grieve, R. A. F.

    1995-09-01

    . The Clearwater Lakes impact structures are two complex craters formed in Archean retrograde granulite facies rocks [4]. Clearwater West, at 36 km diameter, has an annular ring of islands and a shallowly submerged central uplift. Clearwater East, at 26 km diameter, has a more deeply submerged central uplift. The structures are characterised by highly oxidized melt rock and melt- breccia lenses exposed at the surface. Shocked crystalline basement rocks and minor amounts of breccia and melt rock occur in the central uplifts [5]. Despite relatively little alteration at depth, these rocks exhibit both susceptibilities and remanent magnetizations well below the regionally high values. The Clearwater rocks also contain a thermoremanent reversed magnetization, acquired at the time of impact, and characteristic of the Permo-Carboniferous Reversed Polarity Superchron. The magnetization is carried by titanomagnetite in Clearwater West, and both magnetite and pyrrhotite in Clearwater East. This reversed magnetization contributes to the magnetic low, but cannot account for all of it. The intense airborne magnetic low (> 500 nT) requires a significant contribution from the shocked basement at depth, produced by either alteration of magnetic phases along fractures, or reduction in magnetic properties by lower shock levels away from the point of impact [6]. References: [1] Pilkington M. and Grieve R. A. F. (1992) Rev. Geophys., 30, 161-181. [2] Innes M. J. S. et al. (1964) Publ. Dom. Obs. Ottawa, 31, 19-52. [3] Halliday I. and Griffin A. A. (1967) J. Roy. Astron. Soc. Can., 61, 1-8. [4] Simonds C. H. et al. (1978) LPS IX, 2633-2658. [5] Hische R. (1994) Unpublished Ph.D. thesis, Munster. [6] Pohl J. (1994) 3rd Intl. Wkshp., ESF Network Impact Cratering and Evol. of Planet Earth, Shockwave Behavior in Nature and Expt., Progr. Abstr., 51.

  10. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    PubMed

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Structural, electronic and magnetic properties of chevron-type graphene, BN and BC{sub 2}N nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra, T.; Azevedo, S.; Kaschny, J.R.

    2017-04-15

    Graphene nanoribbons are predicted to be essential components in future nanoelectronics. The size, edge type, arrangement of atoms and width of nanoribbons drastically change their properties. Boronnitrogencarbon nanoribbons properties are not fully understood so far. In the present contribution it was investigated the structural, electronic and magnetic properties of chevron-type carbon, boron nitride and BC{sub 2}N nanoribbons, using first-principles calculations. The results indicate that the structural stability is closely related to the discrepancies in the bond lengths, which can induce structural deformations and stress. Such nanoribbons present a wide range of electronic behaviors, depending on their composition and particularities ofmore » the atomic arrangement. A net magnetic moment is found for structures that present carbon atoms at the nanoribbon borders. Nevertheless, the calculated magnetic moment depends on the peculiarities of the symmetric arrangement of atoms and imbalance of carbon atoms between different sublattices. It was found that all structures which have a significant energy gap do not present magnetic moment, and vice-versa. Such result indicates the strong correlation between the electronic and magnetic properties of the chevron-type nanoribbons. - Highlights: • Small discrepancies between distinct bond lengths can influence the formation energy of the BC{sub 2}N nanoribbons. • The electronic behavior of the BC{sub 2}N chevron-type nanoribbons depends on the atomic arrangement and structural symmetries. • There is a strong correlation between the electronic and magnetic properties for the BC{sub 2}N structures.« less

  12. Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Krajewski, Marcin; Brzozka, Katarzyna; Tokarczyk, Mateusz; Kowalski, Grzegorz; Lewinska, Sabina; Slawska-Waniewska, Anna; Lin, Wei Syuan; Lin, Hong Ming

    2018-07-01

    The main objective of this work is to study the influence of thermal oxidation on the chemical composition and magnetic properties of iron nanoparticles which were manufactured in a simple chemical reduction of Fe3+ ions coming from iron salt with sodium borohydride. The annealing processing was performed in an argon atmosphere containing the traces of oxygen to avoid spontaneous oxidation of iron at temperatures ranging from 200 °C to 800 °C. The chemical composition and magnetic properties of as-prepared and thermally-treated nanoparticles were determined by means of X-ray diffractometry, Raman spectroscopy, Mössbauer spectroscopy and vibrating sample magnetometry. Due to the magnetic interactions, the investigated iron nanoparticles tended to create the dense aggregates which were difficult to split even at low temperatures. This caused that there was no empty space between them, which led to their partial sintering at elevated temperatures. These features hindered their precise morphological observations using the electron microscopy techniques. The obtained results show that the annealing process up to 800 °C resulted in a progressive change in the chemical composition of as-prepared iron nanoparticles which was associated with their oxidation. As a consequence, their magnetic properties also depended on the annealing temperature. For instance, considering the values of saturation magnetization, its highest value was recorded for the as-prepared nanoparticles at 1 T and it equals 149 emu/g, while the saturation point for nanoparticles treated at 600 °C and higher temperatures was not reached even at the magnetic field of about 5 T. Moreover, a significant enhancement of coercivity was observed for the iron nanoparticles annealed over 600 °C.

  13. First principles calculation of the structural, electronic, and magnetic properties of Au-Pd atomic chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dave, Mudra R., E-mail: mdave-phy@yahoo.co.in; Sharma, A. C.

    2015-06-24

    The structural, electronic and magnetic properties of free standing Au-Pd bimetallic atomic chain is studied using ab-initio method. It is found that electronic and magnetic properties of chains depend on position of atoms and number of atoms. Spin polarization factor for different atomic configuration of atomic chain is calculated predicting a half metallic behavior. It suggests a total spin polarised transport in these chains.

  14. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru

    2016-12-01

    Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained.

  15. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment

    PubMed Central

    Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru

    2016-01-01

    Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained. PMID:27922060

  16. Improved magnetic properties of barium hexaferrite by CoFe2O4 nanoparticles prepared by ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Nastiti, G.; Manaf, A.

    2017-07-01

    Magnetic properties of composite magnets made of nanoparticles of Barium Hexaferrite (BHF) and CoFe2O4 were reported in this paper. The two types of magnetic particles have a high total magnetization value which was required for permanent magnet applications. Both CoFe2O4 and BHF were synthesized through mechanical alloying coupled with high-frequency ultrasonic irradiation. In this respect, mechanically milled BHF precursors was sintered at a temperature of 1250 °C for 2 hours leading to single-phase powders. A similar method was also employed in the preparation of CoFe2O4 materials, but this required a relatively longer sintering time up to 12 hours at a sintering temperature of 900 °C. Composite magnets were obtained after sintering the mechanically mixed the two types of nanoparticles as constituted components of the composite. The hysteresis loop of CoFe2O4 materials as evaluated by Vibrating Sample Magnetometer (VSM) showing soft magnetic phase with a total magnetization value of 0.47 T and a coercivity of 47.37 kA/m. It is shown that the magnetic properties of composite magnets are a composition dependent in which the remanent was enhanced above the value of an isotropic single phase BHF magnet. The enhancement in remanent magnetization raised the effect of grain exchange interaction between hard and soft magnetic phases. The microstructure studied by X-Ray diffraction (XRD), Particle Size Analyzer (PSA) and their respective enhancement in magnetic properties are discussed in detail in term of grain exchange interactions.

  17. Effect of grain alignment distribution on magnetic properties in (MM, Nd)-Fe-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoqiang; Yue, Ming; Zhu, Minggang; Liu, Weiqiang; Li, Yuqing; Xi, Longlong; Li, Jiajie; Zhang, Jiuxing; Li, Wei

    2018-03-01

    H cj of (MM x Nd1-x )-Fe-B sintered magnets decreases distinctly with x increasing when misch metal (MM) content (x) ranges from 0.3 to 1. Practical application is taken into consideration so that the (MM0.6Nd0.4)-Fe-B components are chosen to analyze the changes in behavior of the magnetic properties. Both Magnet II and Magnet III belong to (MM0.6Nd0.4)-Fe-B sintered magnets, however, it should be noted that Magnet II is prepared by the single alloying method (SAM) and Magnet III is prepared by the double main phase alloy method (DMPAM). Core-shell structures of the magnets prepared by DMPAM can result in the higher H cj and lower knee-point coercivity (H k) compared with that by SAM. Furthermore, for Magnet II, the abnormal grain growth contributes to a better grain alignment and smaller distribution coefficient (σ) defined as the degree of grain alignment, which will enforce a higher tendency of the H cj decreasing and H k increasing. The expression of their normalized coercivity h(σ) is deduced by combining Gao’s starting field model with Kronmüller’s nucleation mechanism. Based on the overall h(σ) ~ σ curve, the best desirable h(σ) value is calculated when σ  =  0.09. Theoretically, for Magnet III, the resultant larger σ should be attributed to the more uniform grain alignment. In addition, the deviations of grain size distributions on the c-plane become more remarkable with more MM concentrates, which can be presented by SEM images. Meanwhile, by means of the pole figures, it is also verified that the grain alignment distribution becomes much more diverse with x increasing. Therefore, it can be predicted whether the grain alignment distribution is significant for H k and H cj of (MM x Nd1-x )-Fe-B sintered magnets (x  ≠  0.6) prepared by SAM/DMPAM or not.

  18. Electronic structure and magnetic properties of Ni-doped SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Mayuri; Kumar, Shalendra; Alvi, P. A.

    2018-05-01

    This paper reports the electronic structure and magnetic properties of Ni-doped SnO2 thin film which were grown on Si (100) substrate by PLD (pulse laser deposition) technique under oxygen partial pressure (PO2). For getting electronic structure and magnetic behavior, the films were characterized using near edge X-ray absorption fine structure spectroscopy (NEXAFS) and DC magnetization measurements. The NEXAFS study at Ni L3,2 edge has been done to understand the local environment of Ni and Sn ions within SnO2 lattice. DC magnetization measurement shows that the saturation magnetization increases with the increase in substitution of Ni2+ ions in the system.

  19. Structure and magnetic properties of mechanically alloyed Co and Co-Ni

    NASA Astrophysics Data System (ADS)

    Guessasma, S.; Fenineche, N.

    The influence of milling process on magnetic properties of Co and Co-Ni materials is studied. Coercivity, squareness ratio and crystallite size of mechanically alloyed Co-Ni material were related to milling time. For Co material, coercivity, cubic phase ratio and crystallite size were related to milling energy considering the vial and plateau rotation velocities. An artificial neural network (ANN) combining the parameters for both materials is used to predict magnetic and structure results versus milling conditions. Predicted results showed that milling energy is mostly dependent on the ratio vial to plateau rotation velocities and that milling times larger than 40 h do not add significant change to both structure and magnetic responses. Magnetic parameters were correlated to crystallite size and the D 6 law was only valid for small sizes.

  20. Measurement of magnetic property of FePt granular media at near Curie temperature

    NASA Astrophysics Data System (ADS)

    Yang, H. Z.; Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.

    2017-02-01

    The characterization of the magnetic switching behavior of heat assisted magnetic recording (HAMR) media at near Curie temperature (Tc) is important for high density recording. In this study, we measured the magnetic property of FePt granular media (with room temperature coercivity 25 kOe) at near Tc with a home built HAMR testing instrument. The local area of HAMR media is heated to near Tc by a flat-top optical heating beam. The magnetic property in the heated area was in-situ measured by a magneto-optic Kerr effect (MOKE) testing beam. The switching field distribution (SFD) and coercive field (Hc) of the FePt granular media and their dependence on the optical heating power at near Tc were studied. We measured the DC demagnetization (DCD) signal with pulsed laser heating at different optical powers. We also measured the Tc distribution of the media by measuring the AC magnetic signal as a function of optical heating power. In a summary, we studied the SFD, Hc of the HAMR media at near Tc in a static manner. The present methodology will facilitate the HAMR media testing.

  1. Magnetic properties of carbon-coated, ferromagnetic nanoparticles produced by a carbon-arc method

    NASA Astrophysics Data System (ADS)

    Brunsman, E. M.; Sutton, R.; Bortz, E.; Kirkpatrick, S.; Midelfort, K.; Williams, J.; Smith, P.; McHenry, M. E.; Majetich, S. A.; Artman, J. O.; De Graef, M.; Staley, S. W.

    1994-05-01

    The Krätschmer-Huffman carbon-arc method of preparing fullerenes has been used to generate carbon-coated transition metal (TM) and TM-carbide nanocrystallites. The magnetic nanocrystallites were extracted from the soot with a magnetic gradient field technique. For TM=Co the majority of nanocrystals exist as nominally spherical particles, 0.5-5 nm in radius. Hysteretic and temperature-dependent magnetic response, in randomly and magnetically aligned powder samples frozen in epoxy, correspond to fine particle magnetism associated with monodomain TM particles. The magnetization exhibits a unique functional dependence on H/T, and hysteresis below a blocking temperature TB. Below TB, the temperature dependence of the coercivity can be expressed as Hc=Hc0[1-(T/TB)1/2], where Hc0 is the 0 K coercivity.

  2. Structural and magnetic properties of two- and three-dimensional molecule-based magnets (cat) +[M IIM III(C 2O 4) 3] -

    NASA Astrophysics Data System (ADS)

    Ovanesyan, Nikolai S.; Shilov, Gena V.; Pyalling, Alex A.; Train, Cyrille; Gredin, Patrick; Gruselle, Michel; Kiss, László F.; Bottyán, László

    2004-05-01

    We discuss the different structural arrangements of NBu 4[Fe IICr III(C 2O 4) 3] layered compounds in their racemic and enantiomeric forms and related magnetic properties. For [Mn IIFe III(C 2O 4) 3] networks of dimensionalities 2 and 3 Mössbauer spectroscopy was applied to study the Fe III sublattice magnetization. Unusual magnetic relaxation phenomena below TN were observed for both 2D and 3D networks.

  3. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.

    PubMed

    Sedlacik, Michal; Pavlinek, Vladimir; Peer, Petra; Filip, Petr

    2014-05-14

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating sample magnetometer showed that an increase in the annealing temperature leads to the increase in the magnetization saturation and, in contrast, a decrease in the coercivity. The effect of annealing on the magnetic properties of ferrite particles has been explained by the recrystallization process at high temperatures. This resulted in grain size growth and a decrease in an imposed stress relating to defects in the crystal lattice structure of the nanoparticles. The magnetorheological characteristics of suspensions of ferrite particles in silicone oil were measured using a rotational rheometer equipped with a magnetic field generator in both steady shear and small-strain oscillatory regimes. The magnetorheological performance expressed as a relative increase in the magnetoviscosity appeared to be significantly higher for suspensions of particles annealed at 1000 °C.

  4. Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.

    2018-05-01

    The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.

  5. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-04-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  6. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-06-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  7. Magnetic properties of fishes from rivers near Semarang, Central Java

    NASA Astrophysics Data System (ADS)

    Khumaedi; Nurbaiti, U.; Setyaningsi, N. E.

    2018-03-01

    Magnetic properties, in the form of magnetic susceptibility (χ) and frequency-dependent susceptibility (χ fd) were measured on scores of samples made of fishes from river nearby Semarang, Central Java. Semarang is one of the major cities in Indonesia, where the river systems are very likely to be contaminated by anthropogenic activities. The objective of this study is to identify the presence of heavy metals in the fishes that will determine the suitability of these fishes for healthy food. The results show that magnetic susceptibility varies from -0.3 to 13.8 × 10-8 m3/kg, while the frequency-dependent susceptibility is less than 3% indicating the predominance of ferromagnetic minerals. Quantitative chemical analyses on four samples show consistently high concentration of Ca, while Fe, Hg, Cu, Pb, Cd, and Ni present a few in some of the samples. This finding shows that the fishes are suitable for the ongoing research on environmental magnetism.

  8. The Fabrication Technique and Property Analysis of Racetrack-Type High Temperature Superconducting Magnet for High Power Motor

    NASA Astrophysics Data System (ADS)

    Xie, S. F.; Wang, Y.; Wang, D. Y.; Zhang, X. J.; Zhao, B.; Zhang, Y. Y.; Li, L.; Li, Y. N.; Chen, P. M.

    2013-03-01

    The superconducting motor is now the focus of the research on the application of high temperature superconducting (HTS) materials. In this manuscript, we mainly introduce the recent progress on the fabrication technique and property research of the superconducting motor magnet in Luoyang Ship Material Research Institute (LSMRI) in China, including the materials, the winding and impregnation technique, and property measurement of magnet. Several techniques and devices were developed to manufacture the magnet, including the technique of insulation and thermal conduction, the device for winding the racetrack-type magnet, etc. At last, the superconducting magnet used for the MW class motor were successfully developed, which is the largest superconducting motor magnet in china at present. The critical current of the superconducting magnet exceeds the design value (90 A at 30 K).

  9. Quantitative interpretation of magnetic properties as a way to characterize biogeophysical signatures of biodegraded contaminated sites

    NASA Astrophysics Data System (ADS)

    Ustra, A.; Kessouri, P.; Leite, A.; Mendonça, C. A.; Bandeira, N.

    2017-12-01

    Magnetic minerals in soils and rocks are one way to study biogechemical and paleoenvironmental processes. The ultrafine fraction of these minerals (superparmagnetic (SP) and stable single domain (SSD)) are usually investigated in environmental magnetism studies, since changes in mineralogy, concentration, size and morphology of the magnetic grains can be related to biogeochemical processes. In this study, we use low-field frequency dependent susceptibility (FDS) and isothermal remanent magnetization (IRM) to characterize the magnetic properties of materials in environmental magnetism. Magnetic susceptibility (MS) measurements are frequently used as a proxy of magnetic minerals present in soils and rocks. MS is a complex function of magnetic mineralogy and grain size, as well as magnitude and frequency of the applied field. This work presents a method for inverting low-field FDS data. The inverted parameters can be interpreted in terms of grain size variations of magnetic particles on the SP-SSD transition. This work also presents a method for inverting IRM demagnetization curves, to obtain the saturation magnetization, the individual magnetic moment for an assemblage of ultrafine SP minerals and estimate the concentration of magnetic carriers. IRM magnetization curves can be interpreted as resulting from distinct contributions of different mineral phases, which can be described by Cummulative Log-Gaussian (CLG) distributions. Each acquisition curve provides fundamental parameters that are characteristic of the respective mineral phase. The CLG decomposition is widely used in an interpretation procedure named mineral unmixing. In this work we present an inversion method for mineral unmixing, implementing the genetic algorithm to find the parameters of distinct components. These methodologies have been tested by synthetic models and applied to data from environmental magnetism studies. In this work we apply the proposed methodologies to characterize the magnetic

  10. Magnetic separation of coal fly ash from Bulgarian power plants.

    PubMed

    Shoumkova, Annie S

    2011-10-01

    Fly ash from three coal-burning power plants in Bulgaria: 'Maritza 3', 'Republika' and 'Rousse East' were subjected to wet low-intensity magnetic separation. The tests were performed at different combinations of magnetic field intensity, flow velocity and diameter of matrix elements. It was found that all parameters investigated affected the separation efficiency, but their influence was interlinked and was determined by the properties of the material and the combination of other conditions. Among the fly ash characteristics, the most important parameters, determining the magnetic separation applicability, were mineralogical composition and distribution of minerals in particles. The main factors limiting the process were the presence of paramagnetic Fe-containing mineral and amorphous matter, and the existence of poly-mineral particles and aggregates of magnetic and non-magnetic particles. It was demonstrated that the negative effect of both factors could be considerably limited by the selection of a proper set of separation conditions. The dependences between concentration of ferromagnetic iron in the ash, their magnetic properties and magnetic fraction yields were studied. It was experimentally proved that, for a certain set of separation conditions, the yields of magnetic fractions were directly proportional to the saturation magnetization of the ferromagnetic components of the ash. The main properties of typical magnetic and non-magnetic fractions were studied.

  11. Properties predictive modeling through the concept of a hybrid interphase existing between phases in contact

    NASA Astrophysics Data System (ADS)

    Portan, D. V.; Papanicolaou, G. C.

    2018-02-01

    From practical point of view, predictive modeling based on the physics of composite material behavior is wealth generating; by guiding material system selection and process choices, by cutting down on experimentation and associated costs; and by speeding up the time frame from the research stage to the market place. The presence of areas with different properties and the existence of an interphase between them have a pronounced influence on the behavior of a composite system. The Viscoelastic Hybrid Interphase Model (VHIM), considers the existence of a non-homogeneous viscoelastic and anisotropic interphase having properties depended on the degree of adhesion between the two phases in contact. The model applies for any physical/mechanical property (e.g. mechanical, thermal, electrical and/or biomechanical). Knowing the interphasial variation of a specific property one can predict the corresponding macroscopic behavior of the composite. Moreover, the model acts as an algorithm and a two-way approach can be used: (i) phases in contact may be chosen to get the desired properties of the final composite system or (ii) the initial phases in contact determine the final behavior of the composite system, that can be approximately predicted. The VHIM has been proven, amongst others, to be extremely useful in biomaterial designing for improved contact with human tissues.

  12. Arctic lake sediments as records of climate change using rock magnetic properties and paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Murdock, Kathryn J.

    Two lakes were studied in detail for rock magnetic properties: Lake El'gygytgyn, a crater lake formed 3.6Ma in the Far Eastern Russian Arctic, and Heimerdalsvatnet, a Holocene coastal lake located in the Lofotens off the coast of northern Norway. These two lakes have vastly different environmental histories, the former a terrestrial lake formed from a meteor impact and never covered by continental ice sheets whereas the latter went from a coastal marine setting to a completely lacustrine environment due to isostatic rebound and sea level fluctuations. Their differences are considerable, however they provide the opportunity to compare Arctic lake systems to discern similarities and differences in their magnetic properties for application to future climatic investigations. Paleomagnetic measurements and down-core magnetic susceptibility were performed at the GFZ German Research Centre for Geosciences in Potsdam for Lake El'gygytgyn and at the Laboratoire de paleomagnetisme sedimentaire at ISMER for Heimerdalsvatnet. Rock magnetic properties were measured at the University of Massachusetts Amherst, Institute of Rock Magnetism, and/or Trinity College. These measurements included: magnetic susceptibility, hysteresis parameters, Curie temperatures, and low-temperature magnetic behavior. Imaging of magnetite grains was also performed. Magnetic susceptibility measurements in Lake El'gygytgyn suggested a correlation between glacials (interglacials) and low (high) susceptibility. The large range in susceptibility indicated there could be magnetite dissolution. The first study supported this hypothesis with evidence at low temperatures (10-35K) of minerals such as siderite, rhodochrosite, and/or vivianite which could form from iron released during dissolution. Marine Isotope Stage 31 was investigated for rock magnetic properties that could continue to support or oppose findings from the first study. It was determined the presence of siderite only occurred in interglacial

  13. Magnetic adsorbent constructed from the loading of amino functionalized Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalates nanoparticle and its tetracycline adsorption removal property study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Jinzhao; Mei, Mingliang; Xu, Xinxin, E-mail: xuxx@mail.neu.edu.cn

    2016-06-15

    A magnetic polyoxometalates based adsorbent has been synthesized successfully through the loading of amino functionalized Fe{sub 3}O{sub 4} (NH{sub 2}-Fe{sub 3}O{sub 4}) on nanoparticle of a coordination complex modified polyoxometalates (CC/POMNP). FTIR illustrate there exist intense hydrogen bonds between NH{sub 2}-Fe{sub 3}O{sub 4} and CC/POMNP, which keep the stability of this adsorbent. At room temperature, this adsorbent exhibits ferromagnetic character with saturation magnetization of 8.19 emu g{sup −1}, which provides prerequisite for fast magnetic separation. Water treatment experiment illustrates this POM based magnetic adsorbent exhibits high adsorption capacity on tetracycline. The adsorption process can be described well with Temkin model,more » which illustrates the interaction between adsorbent and tetracycline plays the dominated role in tetracycline removal. The rapid, high efficient tetracycline adsorption ability suggests this POM based magnetic adsorbent exhibits promising prospect in medical and agriculture waste water purification. A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalates - Graphical abstract: A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalate. Display Omitted - Highlights: • A POM based magnetic adsorbent was fabricated through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on POM nanoparticle. • This adsorbent possesses excellent tetracycline adsorption property. • Saturation magnetization value of this adsorbent is 8.19 emug−1, which is enough for magnetic separation.« less

  14. Tunable magnetic properties and magnetocaloric effect of off-stoichiometric LaMnO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Tola, P. S.; Kim, H. S.; Kim, D. H.; Phan, T. L.; Rhyee, J. S.; Shon, W. H.; Yang, D. S.; Manh, D. H.; Lee, B. W.

    2017-12-01

    The crystal and electronic structures and the magnetic and magnetocaloric properties of off-stoichiometric LaMnO3 nanoparticles (NPs) with various particle sizes D = 20-100 nm were studied. The Rietveld refinement revealed that all NPs were crystallized in the rhombohedral structure, with varied structural parameters dependent on D. Magnetization (M) measurements indicated a considerable difference between zero-field-cooled and field-cooled magnetizations at temperatures below ferromagnetic-paramagnetic (FM-PM) phase transition, particularly for the samples with D = 25-40 nm. These results are ascribed to spin-glass-like behaviors and magnetic inhomogeneity. We also found the possibility of tuning the FM-PM phase transition temperature (TC) from 77 to 262 K, which is dependent on both D and W (the eg-electron bandwidth). Under an applied field of H = 50 kOe, the absolute maximum magnetic entropy change that achieved around TC can be improved from 4.02 J kg-1 K-1 for D = 40 nm to 6.36 Jṡ kg-1ṡ K-1 for D = 100 nm, corresponding to the relative-cooling-power values of 241-245 Jṡ kg-1. We also analyzed the data of M and magnetic entropy change based on theoretical models to further understand the magnetic property and phase-transition type of the NP samples.

  15. Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties

    NASA Astrophysics Data System (ADS)

    Agzamova, P. A.; Leskova, Yu. V.; Nikiforov, A. E.

    2013-05-01

    Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions 139La and 89Y in LaTiO3 and YTiO3, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.

  16. Combining unique properties of dendrimers and magnetic nanoparticles towards cancer theranostics.

    PubMed

    Chandra, Sudeshna; Nigam, Saumya; Bahadur, Dhirendra

    2014-01-01

    Magnetic nanoparticles (MNPs) are a well explored class of nanomaterials, known for their high magnetization and biocompatibility thus finding their way in several biomedical applications viz., drug delivery, magnetic resonance imaging contrast agent, immunoassay, detoxification of biological fluids and cell separation, biosensing and hyperthermia. On other hand, dendrimers are a class of hyperbranched, mostly symmetrical polymers that originate from a central core with repetitive branching units, called monomers, thus forming a globular structure. Due to their structural properties and controlled size, dendrimers have emerged as an attractive material for biomedical applications particularly as carriers for therapeutic cargo. Of late, researchers have started attempting to combine the unique features of dendrimer chemistry with the versatile magnetic nanoparticles to provide a facile platform for enhanced therapeutics and biomedical applications. This review intends to present the advances made towards fabrication of dendrimer based magnetic nanoparticles with varied surface architecture and their contribution towards theranostics, particularly for cancer.

  17. Bending effects on magnetic properties of nearly zeromagnetostrictive Co-rich amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Buttino, G.; Cecchetti, A.; Poppi, M.; Zini, G.

    1991-06-01

    In as received nearly zeromagnetostriction Co-based Metglas, magnetic properties in low magnetic field are anomalously affected by bending stresses. The behavior of Co-based alloys, in particular 2714A Metglas, is here compared with that of Fe-rich Metglas for which λ s ranges between 10 × 10 -6 and 35 × 10 -6. The specimens here analyzed are in the form of flat ribbons and tape-wound toroids with different radii. In 2714A Metglas, the bending effects on the ac initial permeability are unexpectedly large and depend on the way of winding the ribbons. These results emphasize a significant and different role of the two ribbon sides in determining the magnetomechanical properties of Co-based alloys.

  18. Trapped magnetic-field properties of prototype for Gd-Ba-Cu-O/MgB2 hybrid-type superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Naito, Tomoyuki; Mochizuki, Hidehiko; Fujishiro, Hiroyuki; Teshima, Hidekazu

    2016-03-01

    We have studied experimentally and numerically the trapped magnetic-field properties of a hybrid-type superconducting bulk magnet, which comprised an inner Gd-Ba-Cu-O (GdBCO) disk-bulk and an outer MgB2 ring-bulk, under field-cooled magnetization (FCM) and pulsed-field magnetization (PFM). The trapped field by FCM at the center of the hybrid bulk was 4.5 T at 20 K, which was 0.2 T higher than that of the inner GdBCO disk-bulk without MgB2 ring-bulk. The experimental results by FCM were quantitatively reproduced by the numerical estimations for a model, which makes it possible to understand the trapped field properties of the hybrid bulk. The total magnetic flux by FCM, which was estimated numerically, was enhanced by about 1.7 times from 0.91 mWb of the single GdBCO bulk to 1.53 mWb of the hybrid bulk. We also succeeded in magnetizing the whole hybrid bulk by applying multi-pulsed-fields. The central trapped field of 1.88 T was not enhanced, but the total magnetic flux, which was obtained experimentally, was evidently increased by 2.5 times (0.25 \\to 0.62 mWb) for the hybrid bulk. The obtained results suggest that the hybridization is effective to enhance the total magnetic flux. To confirm the reinforcing effect of the MgB2 ring to the GdBCO disk during the cooling and magnetization processes, we have measured the thermal dilatation, {\\text{}}{dL}({\\text{}}T)/{\\text{}}L(300 K), of the GdBCO, MgB2 and stainless steel. As a result, the thermal dilatation of MgB2 was smaller than that of GdBCO. MgB2 ring-bulk shows no compression effect to resist the hoop stress of the GdBCO disk-bulk during the FCM process. The reinforcing material such as the stainless steel ring must be set outside the GdBCO disk-bulk.

  19. Magnetic, electronic and optical properties of different graphene, BN and BC2N nanoribbons

    NASA Astrophysics Data System (ADS)

    Guerra, T.; Leite, L.; Azevedo, S.; de Lima Bernardo, B.

    2017-04-01

    Graphene nanoribbons are predicted to be essential components in future nanoelectronics. The size, edge type, form, arrangement of atoms and width of nanoribbons drastically change their properties. However, magnetic, electronic and optical properties of armchair, chevron and sawtooth of graphene, BN and BC2N nanoribbons are not fully understood so far. Here, we make use of first-principles calculations based on the density functional theory (DFT) to investigate the structural, magnetic, electronic and optical properties of nanoribbons of graphene, boron nitride and BC2N with armchair edge, chevron-type and sawtooth forms. The lowest formation energies were found for the armchair and chevron nanoribbons of graphene and boron nitride. We have shown that the imbalance of carbon atoms between different sublattices generates a net magnetic moment. Chevron-type nanoribbons of BC2N and graphene showed a band gap comparable with silicon, and a high light absorption in the visible spectrum when compared to the other configurations.

  20. Magnetic Properties of the Chelyabinsk meteorite

    NASA Astrophysics Data System (ADS)

    Bezaeva, N. S.; Badyukov, D. D.; Nazarov, M. A.; Rochette, P.; Feinberg, J. M.

    2013-12-01

    The Chelyabinsk meteorite (the fall of February 15, 2013; Russia) is a LL5 ordinary chondrite. Numerous (thousands) stones fell as a shower to the south and the south-west of the city of Chelyabinsk. The stones consist of two intermixed lithologies, with the majority (2/3) being a light lithology with a typical chondritic texture and shock stage S4 (~30 GPa). The second lithology (1/3) is an impact melt breccia (IMB) consisting of blackened chondrite fragments embedded in a fine-grained matrix. We investigated the magnetic properties of the meteorite stones collected immediately after the fall by the expedition of the Vernadsky Institute, Moscow. The low-field magnetic susceptibility (χ0) of 174 fragments (135 chondritic and 39 IMB) weighing >3 g was measured. Each sample was measured three times in mutually perpendicular directions to average anisotropy. Also hysteresis loops (saturation magnetization Ms, coercivity Bc) and back-field remanence demagnetization curves (coercivity of remanence Bcr) in the temperature range from 10K to 700°C and other characteristics of some pieces (NRM, SIRM with their thermal and alternating field demagnetization spectra) were acquired. The mean logχ0 is 4.57×0.09 (s.d.) for the light lithology and 4.65×0.09 (s.d.) (×10-9 m3/kg) for the IMB, indicating that IMB is slightly richer in metal than the light chondritic lithology. According to [1], Chelyabinsk is three times more magnetic than the average LL5 fall, but similar to other metal-rich LL5 (e.g., Paragould, Aldsworth, Bawku, Richmond), as well as L/LL chondrites (e.g., Glanerbrug, Knyahinya, Qidong). The estimation of metal content from the Ms value gives 3.7 wt.% for the light fragments and 4.1 wt.% for IMB whereas the estimation from χ0 yields overestimated contents, e.g., 6.9 wt.% for the light lithology. Thermomagnetic curves Ms(T) up to 800°C identify the main magnetic carriers at room temperature (T0) and above as taenite and kamacite (no tetrataenite found), in

  1. Magnetic properties of point defects in proton irradiated diamond

    NASA Astrophysics Data System (ADS)

    Makgato, T. N.; Sideras-Haddad, E.; Ramos, M. A.; García-Hernández, M.; Climent-Font, A.; Zucchiatti, A.; Muñoz-Martin, A.; Shrivastava, S.; Erasmus, R.

    2016-09-01

    We investigate the magnetic properties of ultra-pure type-IIa diamond following irradiation with proton beams of ≈1-2 MeV energy. SQUID magnetometry indicate the formation of Curie type paramagnetism according to the Curie law. Raman and Photoluminescence spectroscopy measurements show that the primary structural features created by proton irradiation are the centers: GR1, ND1, TR12 and 3H. The Stopping and Range of Ions in Matter (SRIM) Monte Carlo simulations together with SQUID observations show a strong correlation between vacancy production, proton fluence and the paramagnetic factor. At an average surface vacancy spacing of ≈1-1.6 nm and bulk (peak) vacancy spacing of ≈0.3-0.5 nm Curie paramagnetism is induced by formation of ND1 centres with an effective magnetic moment μeff~(0.1-0.2)μB. No evidence of long range magnetic ordering is observed in the temperature range 4.2-300 K.

  2. Structural and magnetic properties of ytterbium substituted spinel ferrites

    NASA Astrophysics Data System (ADS)

    Alonizan, Norah H.; Qindeel, Rabia

    2018-06-01

    Chemical co-precipitation route adopted to synthesize the magnetic materials. In the present work, iron is replaced by ytterbium ion in manganese-based spinel ferrites. The yield chemically represented by MnYb x Fe2- x O4 ( x = 0.00, 0.025, 0.05, 0.075, 0.10) and its structural, magnetic and electrical properties were observed. The cubic structure of spinel ferrites was confirmed by X-ray diffraction analysis. Spherically shaped grains were perceived in SEM pictures and size lessened with the growth of ytterbium concentration. SEM profile also shows little irregularity in spherical particles. The substitution of ytterbium (Yb) results in the enhancement of electrical resistivity. The resistivity was reduced with the gradual increase in temperature from 303 to 693 K. The trend of activation energy was found to be similar to that of room temperature resistivity. The coercivity of samples was raised with Yb-ion substitution while saturation magnetization and remanence reduced.

  3. Characterization of Cerebral White Matter Properties Using Quantitative Magnetic Resonance Imaging Stains

    PubMed Central

    Hurley, Samuel A.; Samsonov, Alexey A.; Adluru, Nagesh; Hosseinbor, Ameer Pasha; Mossahebi, Pouria; Tromp, Do P.M.; Zakszewski, Elizabeth; Field, Aaron S.

    2011-01-01

    Abstract The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues. In this article, three quantitative MRI (qMRI) methods for characterizing white matter (WM) microstructural properties are reviewed. All of these measures measure complementary aspects of how water interacts with the tissue environment. Diffusion MRI, including diffusion tensor imaging, characterizes the diffusion of water in the tissues and is sensitive to the microstructural density, spacing, and orientational organization of tissue membranes, including myelin. Magnetization transfer imaging characterizes the amount and degree of magnetization exchange between free water and macromolecules like proteins found in the myelin bilayers. Relaxometry measures the MRI relaxation constants T1 and T2, which in WM have a component associated with the water trapped in the myelin bilayers. The conduction of signals between distant brain regions occurs primarily through myelinated WM tracts; thus, these methods are potential indicators of pathology and structural connectivity in the brain. This article provides an overview of the qMRI stain mechanisms, acquisition and analysis strategies, and applications for these qMRI stains. PMID:22432902

  4. Impact of Ion Bombardment on the Structure and Magnetic Properties of Fe78Si13B9 Amorphous Alloy

    NASA Astrophysics Data System (ADS)

    Wu, Yingwei; Peng, Kun

    2018-06-01

    Amorphous Fe78Si13B9 alloy ribbons were bombarded by ion beams with different incident angles ( θ ). The evolution of the microstructure and magnetic properties of ribbons caused by ion beam bombardment was investigated by x-ray diffraction, transmission electron microscope and vibrating sample magnetometer analysis. Low-incident-angle bombardment led to atomic migration in the short range, and high-incident-angle bombardment resulted in the crystallization of amorphous alloys. Ion bombardment induces magnetic anisotropy and affects magnetic properties. The effective magnetic anisotropy was determined by applying the law of approach to saturation, and it increased with the increase of the ion bombardment angle. The introduction of effective magnetic anisotropy will reduce the permeability and increase the relaxation frequency. Excellent high-frequency magnetic properties can be obtained by selecting suitable ion bombardment parameters.

  5. Comparison of hysteresis, thermomagnetic, and low-temperature magnetic properties of particle-size fractions from loess and paleosol samples in Central Asia and the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zan, Jinbo; Fang, Xiaomin; Yan, Maodu; Shen, Miaomiao

    2018-05-01

    Hysteresis, thermomagnetic and low-temperature magnetic experiments on particle-size fractioned samples from the Chinese Loess Plateau (CLP) can be used to better characterize the magnetic mineralogy and magnetic granulometry of Chinese loess/paleosols. However, a systematic study of the grain-size-dependent magnetic mineralogy of the Central Asian loess deposits has not been undertaken. In this paper, four size fractions of seventeen loess and paleosol samples from Central Asia and the CLP were subjected to aforementioned rock magnetic measurements. Our findings are as follows: (1) In Central Asia, the fractionated samples from loess and paleosol couplets exhibit no obvious differences in their magnetic mineralogy due to weak pedogenesis. (2) Thermomagnetic analyses suggest that the content of maghemite in the clay fraction of paleosols from the CLP is one or two orders of magnitude larger than that of the loess samples from the CLP and Central Asia. This result does not support the view that maghemite in the loess/palaeosol sequences of the CLP originated mainly from eolian sources. (3) Both hysteresis and low-temperature magnetic experiments demonstrate that detrital ferrimagnetic grains are mostly enriched in the 20-75 μm fraction of loess/paleosols from Central Asia and the CLP. The relative paucity of coarser magnetic grains in the > 75 μm fractions indicate that a positive correlation does not always exist between the magnetic concentration parameters and the sedimentological particle size in Chinese loess deposits. (4) The regional variations in the magnetic properties of the 20-75 μm fraction suggest that the supply of clastic sediments is the main control on the magnetic properties of loess deposits in Central Asia.

  6. Simultaneous effect of crystal lattice and non magnetic substitution on magnetic properties of barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Supriya, Sweety; Pradhan, Lagen Kumar; Pandey, Rabichandra; Kar, Manoranjan

    2018-05-01

    The aluminium doped barium hexaferrite BaFe12-xAlxO19 with x =0.0, 1.0, 2.0, 4.0 and 6.0 have been synthesized by the sol-gel method to modify the magnetic properties for technological applications. The crystal structure and phase purity of all the samples have been explored by employing the X-ray diffraction (XRD) technique. It confirms that the sample is nanocrystalline, hexagonal symmetry and all the intense peaks could be indexed to the P63/mmc space group. The obtained lattice parameters from the XRD analysis decrease with the increase in Al3+ content in the samples. The microstructural morphology and particle sizes of all samples were studied by using the Field Emission Scanning Electron Microscopy (FESEM-Hitachi-S4800) technique. The magnetic hysteresis (M-H) loops measurement has been carried out at room temperature by employing the vibrating sample magnetometer (VSM) over a field range of +20 kOe to -20 kOe. The magnetic hysteresis (M-H) loops revealed the ferromagnetic (hard magnetic materials) nature of the samples and, analyzed by using the Law of Approach to Saturation.

  7. Structural and magnetic properties of new uniaxial nanocrystalline Pr5Co19 compound

    NASA Astrophysics Data System (ADS)

    Bouzidi, W.; Mliki, N.; Bessais, L.

    2017-11-01

    Highly-coercive nanocrystalline Pr5Co19 powders have been synthesized by mechanical milling for the first time. The structural properties are studied by X-ray diffraction and refined with Rietveld method. This analysis revealed that whatever annealing temperature, samples crystallize in the rhombohedral (3R) of Ce5Co19-type structure (space group R 3 bar m). The magnetization curve as a function of temperature shows a magnetic transition state at the Curie temperature TC = 690 K. The optimum hard magnetic properties have been obtained for Pr5Co19 milled for 5 h and annealed at 1048 K for 30 min. These alloys exhibit a coercivity of 15 kOe at room temperature. This high coercivity is attributed to the high uniaxial magnetocrystalline anisotropy, nanoscale grain size, and to the homogeneous nanostructure developed by mechanical milling process and subsequent annealing.

  8. Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping

    NASA Astrophysics Data System (ADS)

    Zhong, X. C.; Guo, X. J.; Zou, S. Y.; Yu, H. Y.; Liu, Z. W.; Zhang, Y. F.; Wang, K. X.

    2018-04-01

    Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.

  9. Preparation, Structural Characterization and Magnetic Properties of La-SUBSTITUTED co Ferrites via a Modified Citrate Precursor Route

    NASA Astrophysics Data System (ADS)

    Ai, Lunhong; Jiang, Jing

    CoLaxFe2-xO4 (x = 0.00, 0.05 and 0.1) nanoparticles were prepared simply by a modified citrate precursor route. Effects of La-substituting level on the their magnetic properties were investigated on the basis of the structural analysis. The thermal evolution of the precursor, as well as the microstructure of as-prepared products were studied by means of a thermogravimetric analyzer (TGA), X-ray diffractometer (XRD) and Fourier transform infrared (FTIR) spectrometer. The magnetic properties of the as-prepared samples were measured using a vibrating sample magnetometer (VSM). It was found that the magnetic properties were dependent on many factors such as La-substituting level, particle size and microstructure. The observed saturation magnetization decreased with increasing La content, whereas coercivity exhibited reverse behavior.

  10. Influence of Fabrication Conditions on the Structural and the Magnetic Properties of Co-doped BaFe12O19 Hexaferrites

    NASA Astrophysics Data System (ADS)

    Tran, Ngo; Kim, Deok Hyeon; Lee, Bo Wha

    2018-03-01

    BaFe11CoO19 hexaferrites were prepared by using a co-precipitation method and heat treatment. By changing the ion molar ratio of (Fe + Co)/Ba = ( x + 1)/1, we found a clear difference in the crystalline structural and magnetic properties. Particularly, the magnetic properties became optimal at x = 11 - 13 based on the saturation magnetization and coercivity values. The effects of heat treatment on the morphological, structural and magnetic properties were assessed. With the results of thermal gravimetric analyses, X-ray diffraction patterns, and magnetic-field-dependent magnetization, we found that M-type hexaferrite nanocrystals start being formed at a temperature of 650°C, which was much lower than temperatures reported previously.

  11. Phoenix Magnetic Properties Experiments Using the Surface Stereo Imager and the MECA Microscopy Station

    NASA Astrophysics Data System (ADS)

    Madsen, M. B.; Drube, L.; Falkenberg, T. V.; Haspang, M. P.; Ellehoj, M.; Leer, K.; Olsen, L. D.; Goetz, W.; Hviid, S. F.; Gunnlaugsson, H. P.; Hecht, M. H.; Parrat, D.; Lemmon, M. T.; Morris, R. V.; Pike, T.; Sykulska, H.; Vijendran, S.; Britt, D.; Staufer, U.; Marshall, J.; Smith, P. H.

    2008-12-01

    Phoenix carries as part of its scientific payload a series of magnetic properties experiments designed to utilize onboard instruments for the investigation of airborne dust, air-fall samples stirred by the retro-rockets of the lander, and sampled surface and sub-surface material from the northern plains of Mars. One of the aims of these experiments on Phoenix is to investigate any possible differences between airborne dust and soils found on the northern plains from similar samples in the equatorial region of Mars. The magnetic properties experiments are designed to control the pattern of dust attracted to or accumulated on the surfaces to enable interpretation of these patterns in terms of certain magnetic properties of the dust forming the patterns. The Surface Stereo Imager (SSI) provides multi-spectral information about dust accumulated on three iSweep targets on the lander instrument deck. The iSweeps utilize built in permanent magnets and 6 different background colors for the dust compared to only 1 for the MER sweep magnet. Simultaneously these iSweep targets are used as in-situ radiometric calibration targets for the SSI. The visible/near-infrared spectra acquired so far are similar to typical Martian dust and soil spectra. Because of the multiple background colors of the iSweeps the effect of the translucence of thin dust layers can be estimated. High resolution images (4 micrometers/px) acquired by the Optical Microscope (OM) showed subtle differences between different soil samples in particle size distribution, color and morphology. Most samples contain (typically 50 micrometer) large, subrounded particles that are substantially magnetic. The colors of these particles range from red, brown to (almost) black. Based on results from the Mars Exploration Rovers, these dark particles are believed to be enriched in magnetite. Occasionally, also very bright, whitish particles were found on the magnet substrates, likely held by cohesion forces to the magnet

  12. Magnetic properties of Co-based multilayers with layer-alloyed modulations

    NASA Astrophysics Data System (ADS)

    Poulopoulos, P.; Angelakeris, M.; Niarchos, D.; Krishnan, R.; Porte, M.; Batas, C.; Flevaris, N. K.

    1995-07-01

    Various types of Co-based multilayers such as Pt mCo n, Pt m[CoPt] n, Co m[CoPd] n and Co m[CoPt] n were prepared by e-gun evaporation. Strong perpendicular anisotropy with considerable coercivity of ˜ 1 kOe was found for PtCo samples with thin Co layers. Moreover, the magnetization of Pt m[CoPt] n samples was found to approach that of pure Co and in the case of n > 5 enhancement of 30% or more exhibited. Magnetic properties were found to be strongly influenced by variations of modulation parameters.

  13. Magnetic properties of electrical iron sheet under controlled magnetization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takada, Shunji; Sasaki, Tadashi

    1993-11-01

    Power losses of electrical iron sheet were measured under the controlled magnetizing condition in which magnetic induction changes at a constant time rate for a fixed time and pauses at a certain induction for a varied time in every half magnetizing cycle. Considerable increase of losses per magnetizing cycle with a pause time has been found only in the case of magnetization pause at the maximum induction. The increase of losses is considered from magnetostriction measurements to be caused by internal magnetization rearrangement accompanied with flux reversal after the pause period.

  14. Magnetic Properties of Copper Doped Nickel Ferrite Nanoparticles Synthesized by Co Precipitation Method

    NASA Astrophysics Data System (ADS)

    Anjana, V.; John, Sara; Prakash, Pooja; Nair, Amritha M.; Nair, Aravind R.; Sambhudevan, Sreedha; Shankar, Balakrishnan

    2018-02-01

    Nickel ferrite nanoparticles with copper atoms as dopant have been prepared using co-precipitation method with general formula Ni1-xCuxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) and are sintered at quite ambient temperature. Structural and magnetic properties were examined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction method (XRD) and Vibrating Sample Magnetometer (VSM) to study the influence of copper doping in nickel ferrite magnetic nanoparticles. X-ray studies proves that the particles are possessing single phase spinel structure with an average particle size calculated using Debye Scherer formula. Magnetic measurements reveal that saturation magnetization value (Ms) decreases while magnetic coercivity (Hc) increases upon doping.

  15. Development and application of measurement techniques for evaluating localised magnetic properties in electrical steel

    NASA Astrophysics Data System (ADS)

    Lewis, N. J.; Anderson, P. I.; Gao, Y.; Robinson, F.

    2018-04-01

    This paper reports the development of a measurement probe which couples local flux density measurements obtained using the needle probe method with the local magnetising field attained via a Hall effect sensor. This determines the variation in magnetic properties including power loss and permeability at increasing distances from the punched edge of 2.4% and 3.2% Si non-oriented electrical steel sample. Improvements in the characterisation of the magnetic properties of electrical steels would aid in optimising the efficiency in the design of electric machines.

  16. Crystallographic and magnetic properties of Cu2U-type hexaferrite

    NASA Astrophysics Data System (ADS)

    Kamishima, K.; Tajima, R.; Watanabe, K.; Kakizaki, K.; Fujimori, A.; Sakai, M.; Watanabe, K.; Abe, H.

    2015-02-01

    We have investigated the synthesis conditions, and the magnetic properties of the Cu2U-type hexagonal ferrite, Ba4Cu2Fe36O60. The Cu2U-type hexaferrite was synthesized at the sintering temperature of 1050 °C with the initial composition of Ba4.4Cu2Fe37.6O62.8 (Cu2U+0.2T-block). The saturation magnetizations at 300 K and 5 K are 46.8 A m2/kg and 65.0 A m2/kg, respectively. The Curie temperature is 420 °C which is lower than that of the M-type ferrite (450 °C) but higher than that of the Cu2Y-type ferrite (320 °C). The amount of the nonmagnetic impurity in this sample is estimated to be about 10 wt% by the electron probe micro analysis. We estimated the expected saturation magnetization to be 65.2 A m2/kg, by assuming the model of a Néel-type ferrimagnetic structure and the reduction of magnetization by the 10 wt% nonmagnetic impurity. This is consistent with the observed magnetization of 65.0 A m2/kg at 5 K.

  17. Bi-layer graphene structure with non-equivalent planes: Magnetic properties study

    NASA Astrophysics Data System (ADS)

    Mhirech, A.; Aouini, S.; Alaoui-Ismaili, A.; Bahmad, L.

    2018-05-01

    In this paper, we study the magnetic properties of a ferromagnetic bi-layer graphene structure with non-equivalent planes. The geometry of the studied system is formed by two layers (A) and (B) consisting of the spins σ = 1 / 2 and S = 1 . For this purpose, the influence of the coupling exchange interactions, the external magnetic and the crystal fields are investigated and presented as well as the ground state phase diagrams. The Monte Carlo simulations have been used to examine the behavior of the partial and the total magnetizations as a function of the system parameters. These effects on the compensation and critical temperatures behavior are also presented in different phase diagrams, for the studied system.

  18. Electrical, thermal, catalytic and magnetic properties of nano-structured materials and their applications

    NASA Astrophysics Data System (ADS)

    Liu, Zuwei

    Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their

  19. Influence of Bi(3+)-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite.

    PubMed

    Gore, Shyam K; Mane, Rajaram S; Naushad, Mu; Jadhav, Santosh S; Zate, Manohar K; Alothman, Z A; Hui, Biz K N

    2015-04-14

    The influence of Bi(3+)-doping on the magnetic and Mössbauer properties of cobalt ferrite (CoFe2O4), wherein the Fe(3+) ions are replaced by the Bi(3+) ions to form CoBixFe2-xO4 ferrites, where x = 0.0, 0.05, 0.1, 0.15 or 0.2, has been investigated. The structural and morphological properties of undoped and doped ferrites, synthesized chemically through a self-igniting sol-gel method, are initially screened using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The changes in magnetic moment of ions, their coupling with neighboring ions and cation exchange interactions are confirmed from the Mössbauer spectroscopy analysis. The effect of Bi(3+)-doping on the magnetic properties of CoFe2O4 ferrite is examined from the vibrating sample magnetometry spectra. Saturation magnetization and coercivity values are increased initially and then decreased, as result of Bi(3+)-doping. The obtained results with improved saturation magnetization (from 26.36 to 44.96 emu g(-1)), coercivity (from 1457 to 1863 Oe) and remanence magnetization (from 14.48 to 24.63 emu g(-1)) on 0.1-0.15 mol Bi(3+)-doping of CoBixFe2-xO4 demonstrate the usefulness for magnetic recording and memory devices.

  20. Longitudinal magnetization dynamics in Heisenberg magnets: Spin Green functions approach (Review Article)

    NASA Astrophysics Data System (ADS)

    Krivoruchko, V. N.

    2017-11-01

    In spite of the fact that dynamical properties of magnets have been extensively studied over the past years, the longitudinal magnetization dynamics is still much less understood than transverse one even in the equilibrium state of a system. In this paper, we give a review of existing, based on quantum-mechanical approach, theoretical descriptions of the longitudinal magnetization dynamics for ferro-, ferri- and antiferromagnetic dielectrics. The aim is to reveal specific features of this type of magnetization vibrations under description a system within the framework of one of the basic model theory of magnetism—the Heisenberg model. Related experimental investigations as well as open questions are also briefly discussed. We hope that understanding of the longitudinal magnetization dynamics distinctive features in the equilibrium state have to be a reference point for a theory uncovering the physical mechanisms that govern ultrafast spin dynamics after femtosecond laser pulse demagnetization when a system is far beyond an equilibrium state.

  1. Nanolaminated FeCoB/FeCo and FeCoB/NiFe soft magnetic thin films with tailored magnetic properties deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hida, Rachid; Falub, Claudiu V.; Perraudeau, Sandrine; Morin, Christine; Favier, Sylvie; Mazel, Yann; Saghi, Zineb; Michel, Jean-Philippe

    2018-05-01

    Thin films based on layers of Fe52Co28B20 (at%), Fe65Co35 (at%), and Ni80Fe20 (at%) were deposited by sputtering on 8″ bare Si and Si/200 nm-thermal-SiO2 wafers by simultaneous use of two or more cathodes. Due to the continuous rotation of the substrate cage, such that the substrates faced different targets alternately, the multilayers consisted of stacks of alternating, nanometer-thick regular layers. The composition of the films was determined by Rutherford Backscattering Spectrometry (RBS) and Nuclear Reactive Analysis (NRA), whereas Plasma Profiling Time of Flight Mass Spectrometry (PP-TOFMS) analysis gave depth profile information about the chemical elements. The structural and magnetic properties of the films were investigated by X-ray Diffraction and by TEM analysis, B-H loop tracer and high frequency single coil technique permeametry, respectively. The linear dependence of the coercivity of these thin films versus the grain size can be explained by the random anisotropy model. These novel, composite soft magnetic multilayers, with tunable in-plane anisotropy, allow operation at tunable frequencies, as shown by broadband (between 100 MHz and 10 GHz) RF measurements that exhibit a classical Landau-Lifschitz-Gilbert (LLG) behavior and, combine the magnetic properties of the individual materials in an advantageous way. This article presents a method to produce nanostructured soft magnetic multilayers, the properties of which can easily be tuned by choosing the ratio of the individual nanolayers. In this way it's possible to combine soft magnetic materials with complementary properties, e.g. high saturation magnetization, low coercivity, high specific resistivity and low magnetostriction

  2. Self-induced quasistationary magnetic fields.

    PubMed

    Kamenetskii, E O

    2006-01-01

    The interaction of electromagnetic radiation with temporally dispersive magnetic solids of small dimensions may show very special resonant behaviors. The internal fields of such samples are characterized by magnetostatic-potential scalar wave functions. The oscillating modes have the energy orthogonality properties and unusual pseudoelectric (gauge) fields. Because of a phase factor, that makes the states single valued, a persistent magnetic current exists. This leads to appearance of an eigenelectric moment of a small disk sample. One of the intriguing features of the mode fields is dynamical symmetry breaking.

  3. Defect characterization and magnetic properties in un-doped ZnO thin film annealed in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Ning, Shuai; Zhan, Peng; Wang, Wei-Peng; Li, Zheng-Cao; Zhang, Zheng-Jun

    2014-12-01

    Highly c-axis oriented un-doped zinc oxide (ZnO) thin films, each with a thickness of ~ 100 nm, are deposited on Si (001) substrates by pulsed electron beam deposition at a temperature of ~ 320 °C, followed by annealing at 650 °C in argon in a strong magnetic field. X-ray photoelectron spectroscopy (XPS), positron annihilation analysis (PAS), and electron paramagnetic resonance (EPR) characterizations suggest that the major defects generated in these ZnO films are oxygen vacancies. Photoluminescence (PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped ZnO film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the ZnO films are also discussed.

  4. Tuning magnetic properties of magnetoelectric BiFeO 3-NiFe 2O 4 nanostructures

    NASA Astrophysics Data System (ADS)

    Crane, S. P.; Bihler, C.; Brandt, M. S.; Goennenwein, S. T. B.; Gajek, M.; Ramesh, R.

    2009-02-01

    Multifunctional thin film nanostructures containing soft magnetic materials such as nickel ferrite are interesting for potential applications in microwave signal processing because of the possibility to shrink the size of device architecture and limit device power consumption. An essential prerequisite to future applications of such a system is a firm understanding of its magnetic properties. We show that nanostructures composed of ferrimagnetic NiFe 2O 4 pillars in a multiferroic BiFeO 3 matrix can be tuned magnetically by altering the aspect ratio of the pillars by depositing films of varying thickness. Magnetic anisotropy is studied using ferromagnetic resonance, which shows that the uniaxial magnetic anisotropy in the growth direction changes sign upon increasing the film thickness. The magnitude of this anisotropy contribution can be explained via a combination of shape and magnetostatic effects, using the object-oriented micromagnetic framework (OOMMF). The key factors determining the magnetic properties of the films are shown to be the aspect ratio of individual pillars and magnetostatic interactions between neighboring pillars.

  5. New bioactive bone-like microspheres with intrinsic magnetic properties obtained by bio-inspired mineralisation process.

    PubMed

    Fernandes Patrício, Tatiana Marisa; Panseri, Silvia; Sandri, Monica; Tampieri, Anna; Sprio, Simone

    2017-08-01

    A bio-inspired mineralisation process was investigated and applied to develop novel hybrid magnetic materials by heterogeneous nucleation of Fe 2+ /Fe 3+ -doped hydroxyapatite nanocrystals onto a biopolymeric matrix made of a Type I collagen-based recombinant peptide (RCP). The effect of the synthesis temperature on the phase composition, crystallinity and magnetic properties of the nucleated inorganic phase was studied. The as-obtained magnetic materials were then engineered, by using a water-in-oil emulsification process, into hybrid magnetic microspheres, which were stabilized by de-hydrothermal treatment yielding cross-linking of the macromolecular matrix. Thorough investigation of the physicochemical, morphological and biological properties of the new hybrid microspheres, as induced by the presence of the inorganic nanophase and controlled iron substitution into hydroxyapatite lattice, revealed bone-like composition, good cytocompatibility, designed shape and size, and tailored magnetization. Such features are interesting and promising for application as new biomaterials with ability of remote activation and control by using external magnetic fields, for smart and personalized applications in medicine, particularly in bone tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Growth process and magnetic properties of α-FeSe nanostructures

    NASA Astrophysics Data System (ADS)

    Li, S. J.; Li, D.; Jiang, J. J.; Liu, G. B.; Ma, S.; Liu, W.; Zhang, Z. D.

    2014-05-01

    Growth process and magnetic properties of PbO-type α-FexSe nanostructures with shape changing from nanocacti to nanopetals and then to nanosheets are investigated. With iron acetylacetonate [Fe(acac)3] and Se powder as raw materials, the diffusion process of Fe atoms dominates the synthesis of α-FexSe nanocacti following phase transitions from FeSe2 to Fe3Se4 and finally to α-FexSe. When a mixed solution containing Se precursor and Fe(acac)3 was used as the raw material, the formation of FeSe2 and Fe3Se4 can be avoided and, bended α-FexSe nanopetals can be prepared at 345 °C, which became flat nanosheets with a [001] preferred orientation as extending the reaction time from 1 to 4 h. No superconducting transition occurs in the α-FexSe (0.84 ≤ x ≤ 1.05) nanostructures due to composition heterogeneity or size effect. Magnetic measurements indicate that an antiferromagnetic component with a Néel point at about 45 K dominates the magnetic properties of the α-Fe0.87Se nanosheets.

  7. Magnetic property in the ferromagnetic superconductor UGe2 at pressures above the ferromagnetic critical pressure

    NASA Astrophysics Data System (ADS)

    Tateiwa, Naoyuki; Haga, Yoshinori; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Ōnuki, Yoshichika; Fisk, Zachary

    2013-08-01

    We have studied the high-pressure magnetic property in UGe2 where ferromagnetic superconductivity appears under high pressure. In this study, we focus on the magnetic property at pressures above the ferromagnetic critical pressure P c =1.6 GPa. The temperature and magnetic field dependences of the dc-magnetization have been measured under high pressures up to 5.1 GPa by using a ceramic anvil high pressure cell. At pressures above P c , the magnetic susceptibility x shows a broad maximum around T χmax and the magnetization at 2.0 K shows an abrupt increase (metamagnetic transition) at H c . With increasing pressure, the peak structure in x becomes broader, and the peak position T χmax moves to the higher temperature region. The metamagnetic field H c increases rapidly with increasing pressure. At pressures above 4.1 GPa, x shows a simple temperature dependence, and the magnetization increases linearly with increasing field. These phenomena in UGe2 resemble to those in the intermetallic compounds of 3 d transition metals such as Co(S1- x Se x ) and YCo2. We discuss the experimental results by using the phenomenological spin-fluctuation theory.

  8. Magnetic and luminescent properties of multifunctional GdF3:Eu3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Hon-Tung; Chan, H. L. W.; Hao, J. H.

    2009-07-01

    Multifunctional GdF3:Eu3+ nanoparticles were synthesized using a hydrothermal method. Photoluminescent excitation and emission spectra, and lifetime were measured. The average lifetime of the nanoparticles is about 11 ms. The nanoparticle exhibits paramagnetism at both 293 and 77 K, ascribing to noninteracting localized nature of the magnetic moment in the compound. The magnetic properties of GdF3:Eu3+ is intrinsic to the Gd3+ ions, which is unaffected by the doping concentration of the Eu3+ luminescent centers. A measured magnetization of approximately 2 emu/g is close to reported values of other nanoparticles for bioseparation.

  9. Some Peculiar Properties of Magnetic Clouds as Observed by the WIND Spacecraft

    NASA Technical Reports Server (NTRS)

    Berdichevsky, D.; Lepping, R. P.; Szabo, A.; Burlaga, L. F.; Thompson, B. J.; Lazarus, A. J.; Steinburg, J. T.; Mariani, F.

    1999-01-01

    We aimed at understanding the common characteristics of magnetic clouds, relevant to solar-interplanetary connections, but exceptional ones were noted and are stressed here through a short compendium. The study is based on analyses of 28 good or better events (Out of 33 candidates) as identified in WIND magnetic field and plasma data. These cloud intervals are provided by WIND-MFI's Website under the URL (http://lepmfi.gsfc.nasa.gov/mfi/mag_cloud_publ.html#table). The period covered is from early 1995 to November 1998. A force free, cylindrically symmetric, magnetic field model has been applied to the field data in usually 1-hour averaged form for the cloud analyses. Some of the findings are: (1) one small duration event turned out to have an approximately normal size which was due to a distant almost "skimming" passage by the spacecraft; (2) One truly small event was observed, where 10 min averages had to be used in the model fitting; it had an excellent model fit and the usual properties of a magnetic cloud, except it possessed a small axial magnetic flux; (3) One cloud ha a dual axial-field-polarity, in the sense that the "core" had one polarity and the annular region around it had an opposite polarity. This event also satisfied the model and with a ve3ry good chi-squared value. Some others show a hint of this dual polarity; (4) The temporal distribution of occurrence clouds over the 4 years show a dip in 1996; (5) About 50 % of the clouds had upstream shocks; any others had upstream pressure pulses; (6) The overall average speed (390 km/s) of the best 28 events is less than the normally quoted for the average solar wind speed (420 km/s) The average of central cloud speed to the upstream solar wind speed was not much greater than one (1.08), even though many of these clouds were drivers of interplanetary shocks. Cloud expansion is partly the reason for the existence of upstream shocks; (7) The cloud axes often (about 50 % of the time) revealed reasonable

  10. Structural, electronic and magnetic properties of metal thiophosphate InPS4

    NASA Astrophysics Data System (ADS)

    Rajpoot, Priyanka; Nayak, Vikas; Kumari, Meena; Yadav, Priya; Nautiyal, Shashank; Verma, U. P.

    2017-05-01

    The non-centrosymmetric crystal, InPS4, has been investigated by means of density functional theory (DFT). In this paper we have calculated the structural parameters, electronic band structures, density of states plot and magnetic properties using full potential linearized augmented plane wave (FP-LAPW) method. The exchange correlation has been solved employing the generalised gradient approximation due to Perdew-Burke-Ernzerhof. The calculations are performed both without spin as well as spin polarized. The results show that InPS4 is an indirect band gap semiconductor with (N-Г) energy gap of 2.32eV (without spin) and 1.86eV in spin up and down channels.The obtained lattice parameters and energy gap agree well with the experimental results. Our reported magnetic moment results show that the property of InPS4is nonmagnetic.

  11. Effect of Selective Co Addition on Magnetic Properties of Nd2(FeCo)14B/alpha-Fe Nanocomposite Magnets

    DTIC Science & Technology

    2012-12-13

    pressure of ∼2.5 GPa. The final bulk magnets having dimensions Ø6 mm × 1.5 mm were characterized for morphology and the crystalline structure using scanning... Magnetic properties were measured with a superconducting quantum interference device (SQUID) magnetometer with a maximum applied field of 70 kOe. To...calculate the true energy product (BH)max of the bulk sample, we determined the demagnetization factor experimentally as described in [9]. Figure 1 shows

  12. Magnetic properties and large reversible magnetocaloric effect in Er3Pd2

    NASA Astrophysics Data System (ADS)

    Maji, Bibekananda; Ray, Mayukh K.; Modak, M.; Mondal, S.; Suresh, K. G.; Banerjee, S.

    2018-06-01

    The magnetic properties and magnetocaloric effect (MCE) of binary intermetallic compound Er3Pd2 were studied. It exhibits a paramagnetic (PM) to antiferromagnetic (AFM) transition at Néel temperature (TN) = 10 K. A large reversible MCE was observed which is related to a second order magnetic transition from PM to AFM state. The values of maximum magnetic entropy change (- Δ SMmax) and adiabatic temperature change (Δ Tadmax) reach 8.9 J/kg-K and 2.9 K respectively for the field change of 50 kOe with no obvious hysteresis loss. The effective magnetic moment was determined to be 10.16 μB/Er3+, which is notably higher than that of free ion value of Er3+ (9.59 μB), suggests that Pd ions also have considerable amount of magnetic moments in this compound.

  13. A review of the magnetic properties, synthesis methods and applications of maghemite

    NASA Astrophysics Data System (ADS)

    Shokrollahi, H.

    2017-03-01

    It must be pointed out that maghemite (γ-Fe2O3) with a cubic spinel structure is a crucial material for various applications, including spin electronic devices, high-density magnetic recording, nano-medicines and biosensors. This paper has to do with a review study on the synthesis methods, magnetic properties and application of maghemite in the form of one-dimensional (1D) nanostructured materials, such as nanoparticles, nanotubes, nano-rods, and nanowires, as well as two-dimensional (2D) thin films. The results revealed that maghemite is widely used in the biomedical applications (hyperthermia, magnetic resonance imaging and drug delivery) and magnetic recording devices. The unmodified and Co/Mn modified maghemite thin films prepared by the dc-reactive magnetron sputtering show the excellent values of coercivity 2100 Oe and 3900 Oe, respectively, for the magnetic storage application. The super-paramagnetic particles with 7 nm size and the saturation magnetization of 80 emu/g prepared by the established thermolysis method are good candidates for bio-medical applications.

  14. Effect of Sc{sup 3+} on structural and magnetic properties of Mn-Zn nano ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angadi, Jagadeesha V.; Matteppanavar, Shidaling; Srinatha, N.

    2016-05-23

    In the present investigation, for the first time, we report on the effect of Sc{sup 3+} on the structural and magnetic properties of Mn{sub 0.5}Zn{sub 0.5}Sc{sub y}Fe{sub 2-y}O{sub 4} (y = 0.01, 0.03 and 0.05) nanoferrites synthesized by solution combustion method using the mixture of fuels. As synthesized powders were characterized for the detailed structural analysis by X-ray diffractometer (XRD), Fourier transmission infrared spectroscopy (FTIR) and room temperature magnetic properties by using vibrating sample magnetometer (VSM). The results of XRD and FTIR confirm that the formation of nano crystalline, single-phased Mn-Zn ferrite with cubic spinel structure belongs to Fd-3m spacemore » group. The room temperature magnetic studies shows that, the saturation magnetization (M{sub S}), remanence magnetization (M{sub R}) and magnetic moment (η{sub B}), magnetic particle size (D{sub m}) have found to increase with Sc{sup 3+} ion concentration up to x = 0.3 and then decrease. The values of αY-K and the magnetic particle size (D{sub m}) are found to be in the range of 68-75° and 10-19 nm respectively, with Sc{sup 3+} concentration.« less

  15. An Experimental and Theoretical Investigation of the Magnetization Properties and Basic Electromechanics of Ferrofluids

    DTIC Science & Technology

    1977-09-01

    magnetization properties of ferrofluid samples i - using the Quincke method. 3.2 Height of rise versus external DC magnetic flux 19 * =density. 3.3 Sketch of...determine their electro- mechanical response to magnetic fields have been conducted. Principal among these is the Quincke experiment, in which the...gain confidence in the behavior of ferrofluid, a classical experi- mental technique attributed to Quincke [15] was repeated using a variety of types

  16. Structure and magnetic properties of low-temperature phase Mn-Bi nanosheets with ultra-high coercivity and significant anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Rongming, E-mail: rmliu@iphy.ac.cn, E-mail: shenbg@iphy.ac.cn; Zhang, Ming; Niu, E

    2014-05-07

    The microstructure, crystal structure, and magnetic properties of low-temperature phase (LTP) Mn-Bi nanosheets, prepared by surfactant assistant high-energy ball milling (SA-HEBM) with oleylamine and oleic acid as the surfactant, were examined with scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometer, respectively. Effect of ball-milling time on the coercivity of LTP Mn-Bi nanosheets was systematically investigated. Results show that the high energy ball milling time from tens of minutes to several hours results in the coercivity increase of Mn-Bi powders and peak values of 14.3 kOe around 10 h. LTP Mn-Bi nanosheets are characterized by an average thickness of tensmore » of nanometers, an average diameter of ∼1.5 μm, and possess a relatively large aspect ratio, an ultra-high room temperature coercivity of 22.3 kOe, a significant geometrical and magnetic anisotropy, and a strong (00l) crystal texture. Magnetization and demagnetization behaviors reveal that wall pinning is the dominant coercivity mechanism in these LTP Mn-Bi nanosheets. The ultrafine grain refinement introduced by the SA-HEBM process contribute to the ultra-high coercivity of LTP Mn-Bi nanosheets and a large number of defects put a powerful pinning effect on the magnetic domain movement, simultaneously. Further magnetic measurement at 437 K shows that a high coercivity of 17.8 kOe and a strong positive temperature coefficient of coercivity existed in the bonded permanent magnet made by LTP Mn-Bi nanosheets.« less

  17. Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bo-Wen, E-mail: bowenhu@hit.edu.cn; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-15

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groupsmore » are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.« less

  18. Magnetic properties of Pr-Fe-B thick-film magnets deposited on Si substrates with glass buffer layer

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Kurosaki, A.; Kondo, H.; Shimizu, D.; Yamaguchi, Y.; Yamashita, A.; Yanai, T.; Fukunaga, H.

    2018-05-01

    In order to improve the magnetic properties of PLD-made Pr-Fe-B thick-film magnets deposited on Si substrates, an adoption of a glass buffer layer was carried out. The glass layer could be fabricated under the deposition rate of approximately 70 μm/h on a Si substrate using a Nd-YAG pulse laser in the vacuum atmosphere. The use of the layer enabled us to reduce the Pr content without a mechanical destruction and enhance (BH)max value by approximately 20 kJ/m3 compared with the average value of non-buffer layered Pr-Fe-B films with almost the same thickness. It is also considered that the layer is also effective to apply a micro magnetization to the films deposited on Si ones.

  19. Magnetic and magnetocaloric properties of iron subs tituted holmium chromite and dysprosium chromite

    DOE PAGES

    Yin, Shiqi; Sharma, Vinit; McDannald, Austin; ...

    2016-01-11

    In this work, structural, magnetic, and magnetocaloric properties of HoCrO 3 and Fe substituted HoCrO 3 and DyCrO 3 (i.e. HoCr 0.7Fe 0.3O 3 and DyCr 0.7Fe 0.3O 3) powder samples were synthesized via a solution route. The structural properties of the samples were examined by Raman spectroscopy and x-ray diffraction techniques, which were further confirmed using first-principle calculations. The dc magnetic measurements indicate that the Cr 3+ ordering temperatures for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples are 140 K, 174 K, and 160 K, respectively. The ac magnetic measurements not only confirmedmore » the Cr 3+ ordering transitions in these samples (obtained using dc magnetic measurements), but also clearly showed the Ho 3+ ordering at ~10 K in the present HoCrO 3 and HoCr 0.7Fe 0.3O 3 samples, which to our knowledge, is the first ac magnetic evidence of Ho 3+ ordering in this system. The effective magnetic moments were determined to be 11.67μB, 11.30μB, and 11.27μB for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples, respectively. For the first time, the magnetocaloric properties of HoCrO 3 and HoCr 0.7Fe 0.3O 3 were studied here, showing their potential for applications in magnetic refrigeration. In an applied dc magnetic field of 7 T, the maximum magnetocaloric value were determined to be 7.2 (at 20 K), 6.83 (at 20 K), 13.08 J/kg K (at 5 K) and the relative cooling power were 408, 387, and 500 J/kg for the HoCrO 3, HoCr 0.7Fe 0.3O 3, and DyCr 0.7Fe 0.3O 3 samples, respectively.« less

  20. Magnetic and magnetocaloric properties in second-order phase transition La1-xKxMnO3 and their composites

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Linh, Dinh Chi; Yen, Pham Duc Huyen; Bau, Le Viet; Ky, Vu Hong; Wang, Zhihao; Piao, Hong-Guang; An, Nguyen Manh; Yu, Seong-Cho

    2018-03-01

    In this work, we present a detailed study on the magnetic properties and the magnetocaloric effect (MCE) of La1-xKxMnO3 compounds with x=0.05-0.2. Our results pointed out that the Curie temperature (TC) could be controlled easily from 213 to 306 K by increasing K-doping concentration (x) from 0.05 to 0.2. In the paramagnetic region, the inverse of the susceptibility can be analyzed by using the Curie-Weiss law, χ(T)=C/(T-θ). The results have proved an existence of ferromagnetic clusters at temperatures above TC. Based on Banerjee's criteria, we also pointed out that the samples are the second-order phase transition materials. Their magnetic entropy change was calculated by using the Maxwell relation and a phenomenological model. Interestingly, the samples with x=0.1-0.2 exhibit a large MCE in a range of 282-306 K, which are suitable for room-temperature magnetic refrigeration applications. The composites obtained from single phase samples (x=0.1-0.2) exhibit the high relative cooling power values in a wide temperature range. From the viewpoint of the refrigerant capacity, the composites formed out of La1-xKxMnO3 will become more useful for magnetic refrigeration applications around room-temperature.

  1. Effect of Al-doped YCrO3 on structural, electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Durán, A.; Verdín, E.; Conde, A.; Escamilla, R.

    2018-05-01

    Structural, dielectric and magnetic properties were investigated in the YCr1-xAlxO3 with 0 < x < 0.5 compositions. XRD and XPS studies show that the partial substitution of the Al3+ ion decreases the cell volume of the orthorhombic structure without changes in the oxidation state of the Cr3+ ions. We discuss two mechanisms that could have a significant influence on the magnetic properties. The first is related to local deformation occurring for x < 0.1 of Al content and the second is related to change of the electronic structure. The local deformation is controlled by the inclination of the octahedrons and the octahedral distortion having a strong effect on the TN and the coercive field at low Al concentrations. On the other hand, the decreasing of the magnetization values (Mr and Hc) is ascribed to changes in the electronic structure, which is confirmed by a decreasing of the contribution of Cr 3d states at Fermi level due to increasing Al3+ content. Thus, we analyzed and discussed that both mechanisms influence the electronic properties of the YCr1-xAlxO3 solid solution.

  2. First-Principles Study of Thermodynamic and Magnetic Properties of Alloys

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Ivan

    The standard theoretical framework for predicting phase diagrams and other thermodynamic properties of alloys requires an adequate representation of the formation enthalpy. An important part of the formation enthalpy in size-mismatched alloys comes from atomic relaxations. The harmonic Kanzaki-Krivoglaz-Khachaturyan model of strain-induced interaction is generalized to concentrated size-mismatched alloys and adapted to first-principles calculations. The configuration dependence of both Kanzaki forces and force constants is represented by real-space cluster expansions that can be constructed based on the calculated forces. Developed configuration-dependent lattice deformation model is implemented for the fcc lattice and applied to Cu1-x Aux and Fe1-x Ptx alloys for concentrations x = 0.25, 0.5, and 0.75. The model is further adapted to concentration wave analysis and Monte Carlo. Good agreement with experiment is found for all systems except CuAu3 and FePt3. The structural and ordering energetics are studied in Au-Fe alloys by combining DFT calculations with effective Hamiltonian techniques: a cluster expansion with structural filters, and CLDM. The phase separation tendency in Au-Fe persists even if the fcc-bcc decomposition is suppressed. The relative stability of disordered bcc and fcc phases observed in nanoparticles is reproduced, but the fully ordered L10 AuFe, L12 Au3Fe, and L1 2 AuFe3 structures are unstable in DFT. Effects of magnetism on the chemical ordering are also discussed. Magnetocrystalline anisotropy is one of the key properties of a magnetic material. Understanding of its temperature and concentration dependence is a challenging theoretical problem with implications for the design of better materials for permanent magnets and other applications. The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe 1-xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model

  3. Planetary Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Christensen, Ulrich R.

    2017-06-01

    The Earth's magnetic field has been known for centuries. Since the mid-20th century space missions carrying vector magnetometers showed that most, but not all, solar system planets have a global magnetic field of internal origin. They also revealed a surprising diversity in terms of field strength and morphology. While Jupiter's field, like that of Earth, is dominated by a dipole moderately tilted relative to the planet's spin axis, with multipole components being subordinate but not negligible, the fields of Uranus and Neptune are multipole-dominated, whereas those of Saturn und Mercury are highly symmetric relative to the rotation axis. Planetary magnetism originates from a dynamo process, which requires a fluid and electrically conducting region in the interior with sufficiently rapid and complex flow. The magnetic fields are of interest for three reasons: (1) They provide ground truth for dynamo theory, which is a fundamental and not completely solved physical problem; (2) the magnetic field controls how the planet interacts with its space environment, for example, the solar wind; and (3) the existence (or nonexistence) and the properties of the field allow us to draw inferences on the constitution, dynamics, and thermal evolution of the planet's interior. For example, the lack of global magnetic fields at Mars and Venus can be explained if their iron cores, although liquid, are stably stratified. Numerical simulations of the geodynamo—in which convective flow in a rapidly rotating spherical shell representing the outer liquid iron core of the Earth leads to induction of electric currents and the associated magnetic field—have successfully reproduced many observed properties of the geomagnetic field. They have also provided guidelines on the factors controlling magnetic field strength and, tentatively, their morphology. For numerical reasons the simulations must employ viscosities far greater than those inside planets, and it is debatable whether they truly

  4. 2-Deoxy-D-Glucose Modified Magnetic Nanoparticles with Dual Functional Properties: Nanothermotherapy and Magnetic Resonance Imaging.

    PubMed

    Zhao, Lingyun; Zheng, Yajing; Yan, Hao; Xie, WenSheng; Sun, Xiaodan; Li, Ning; Tang, Jintian

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with appropriate surface chemistry have attracted wild attention in medical and biological application because of their current and potential usefulness such as magnetic resonance imaging (MRI) contrast enhancement, magnetic mediated hyperthermia (MMH), immunoassay, and in drug delivery, etc. In this study, we investigated the MRI contrast agents and MMH mediators properties of the novel 2-deoxy-D-glucose (2-DG) modified SPIONs. As a non-metabolizable glucose analogue, 2-DG can block glycolysis and inhibits protein glycosylation. Moreover, SPIONs coated with 2-DG molecules can be particularly attractive to resource-hungry cancer cells, therefore to realize the targeting strategy for the SPIONs. SPIONs with amino silane as the capping agent for amino-group surface modification were synthesized by the chemical co-precipitation method with modification. Glutaraldehyde was further applied as an activation agent through which 2-DG was conjugated to the amino-coated SPIONs. Physicochemical characterizations of the 2-DG-SPIONs, such as surface morphology, surface charge and magnetic properties were investigated by Transmission Electron Microscopy (TEM), ζ-Potential and Vibrating Sample Magnetometer (VSM), etc. Magnetic inductive heating characteristics of the 2-DG-SPIONs were analyzed by exposing the SPIONs suspension (magnetic fluid) under alternative magnetic field (AMF). U-251 human glioma cells with expression of glucose transport proteins type 1 and 3 (GLUT1 and GLUT 3), and L929 murine fibroblast cell as negative control, were employed to study the effect of 2-DG modification on the cell uptake for SPIONs. TEM images for ultra-thin sections as well as ICP-MS were applied to evaluate the SPIONs internalization within the cells. In vitro MRI was performed after cells were co-incubated with SPIONs and the T2 relaxation time was measured and compared. The results demonstrate that 2-DG-SPIONs were supermagnetic and in

  5. Magnetic, structural and magnetocaloric properties of Ni-Si and Ni-Al thermoseeds for self-controlled hyperthermia.

    PubMed

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad

    2017-11-01

    Self-controlled hyperthermia is a non-invasive technique used to kill or destroy cancer cells while preserving normal surrounding tissues. We have explored bulk magnetic Ni-Si and Ni-Al alloys as a potential thermoseeds. The structural, magnetic and magnetocaloric properties of the samples were investigated, including saturation magnetisation, Curie temperature (T C ), and magnetic and thermal hysteresis, using room temperature X-ray diffraction and magnetometry. The annealing time, temperature and the effects of homogenising the thermoseeds were studied to determine the functional hyperthermia applications. The bulk Ni-Si and Ni-Al binary alloys have Curie temperatures in the desired range, 316 K-319 K (43 °C-46 °C), which is suitable for magnetic hyperthermia applications. We have found that T C strictly follows a linear trend with doping concentration over a wide range of temperature. The magnetic ordering temperature and the magnetic properties can be controlled through substitution in these binary alloys.

  6. Dependence of the magnetic properties of the dilute magnetic semiconductor Zn1-xMnxO nanorods on their Mn doping levels

    NASA Astrophysics Data System (ADS)

    Thongjamroon, S.; Ding, J.; Herng, T. S.; Tang, I. M.; Thongmee, S.

    2017-10-01

    The effects of Mn doping on the ferromagnetic properties of the dilute magnetic semiconductor Zn1-xMnxO nanorods (NR's) having the nominal composit-ions x = 0, 0.01, 0.03, 0.04 and 0.05 grown by a low temperature hydrothermal method are studied. Energy dispersive X-ray (EDX) is used to determine the actual amounts of the elements in each NR's. X-ray diffraction, scanning electron microscopy, photoluminescence and vibrating sample magnetometer measurements are used to observe the effects of the Mn substitution on the properties of the doped ZnO and to relate the changes in the properties to changes in the defect content. It is observed that the saturation magnetization of the Mn ions in the wurtzite structure varies from 0.0210 μB/Mn2+ to 0.0234 μB/Mn2+ reaching a high of 0.0251 μB/Mn2+ as the Mn concentrations is varied from 0.9 to 7.36 atomic%. It is argued that the changes in the saturation magnetization are due to the competition between the direct Mn-Mn exchange interaction and the indirect Mn-O-Mn exchange interaction in the doped Mn ZnO NP's.

  7. Magnetic and electrical properties of FeSi/FeSi-ZrO 2 multilayers prepared by EB-PVD

    NASA Astrophysics Data System (ADS)

    Bi, Xiaofang; Lan, Weihua; Ou, Shengquan; Gong, Shengkai; Xu, Huibin

    2003-04-01

    FeSi/FeSi-ZrO 2 and FeSi/ZrO 2 multilayer materials were prepared by electron beam physical vapor deposition with the FeSi-ZrO 2 layer thickness about 0.6 μm, and their magnetic and electrical properties were studied as a function of FeSi layer thickness. With increasing FeSi layer thickness from 0.3 to 3 μm, the coercivity decreased from 0.92 to 0.31 kA/m and the saturation magnetization changed from 164 to 186 emu/g. The effect of the layer number on the magnetic properties was discussed in terms of interfacial mixing and oxidation. It was also discovered that the magnetic properties of the multilayer materials were affected by the spacer material, exhibiting higher saturation magnetization and lower coercivity for the FeSi/FeSi-ZrO 2 than those for the FeSi/ZrO 2 with the same individual layer thicknesses. This behavior could be explained by the weaker magnetic interaction between FeSi layers separated by the non-magnetic ZrO 2 layer. Furthermore, the electrical resistivity changed from 1850 to 1250 μΩ cm for the multilayer materials for the FeSi thickness increasing from 0.30 to 3 μm.

  8. Magnetic properties of black mud turbidites from ODP Leg 116, distal Bengal Fan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sager, W.W.; Hall, S.A.

    1991-03-01

    Turbidites from the distal Bengal Fan cored on ODP Leg 116 showed large magnetic susceptibility (MS) variations. MS peaks were traced to individual turbidites, the most magnetic being dark gray mud turbidites. In addition to large MS values, the turbidites stand out from surrounding layers because of high NRMs, ARMs, SIRMs, and ratios of ARM and SIRM to susceptibility. Alternating field and thermal demagnetization properties and IRM acquisition curves suggest titanomagnetite grains as the primary magnetic mineral with some amount of hematite present. These properties are similar to those of Deccan flood basalts and suggest this formation as a sourcemore » of magnetic grains. Magnetic granulometry tests implied that the magnetic particles behave as single-domain and pseudo single-domain grains. They also indicate that the large susceptibility peaks result from a tenfold increase in the concentration of titanomagnetite grains. Electron microscope, EDX, and SIRM analyses revealed detrital titanomagnetites with typical sizes around 8-10 {mu}m, but as large as 20-25 {mu}. These are probably the dominant magnetic grains in the black mud turbidites; however, ARM and susceptibility frequency-dependence suggested that there may also be a submicrometer fraction present. Most of the observed titanomagnetite grains are tabular and some display exsolution lamellae, accounting for the pseudo single-domain behavior despite their moderate sizes. Variations in individual MS peak shapes may reflect sedimentological factors such as current velocity changes. Moreover, downhole variations in the amplitudes of turbidite MS peaks suggest a tectonic or environmental influence.« less

  9. Magnetic properties and magnetization reversal mechanism of Nd-Fe-B nanoparticles synthesized by a sol-gel method

    NASA Astrophysics Data System (ADS)

    Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid

    2017-12-01

    Nd-Fe-B oxide powders with various pH were prepared using chloride and nitrate precursors including NdCl3·6H2O, FeCl3·6H2O, H3BO3, Nd2O3, Fe(NO3)3·9H2O, HNO3, citric acid (CA), ethylene glycol (EG) by Pechini type sol-gel method. The pH of chloride and nitrate base sols were 0 and 2.2, respectively. Mixed oxide powders were obtained by calcination and annealing the gels. These oxides by using a reduction-diffusion process under high vacuum and employing CaH2 as reducing agent at 800 °C were hated to prepare Nd2Fe14B nanoparticles. The role of pH on phase, morphologies, microstructure, and magnetic properties of the powders were investigated. The results show that with a decrease in pH, the average particle size and coercivity of Nd-Fe-B oxide powders were decreased and increased, respectively. Nd2Fe14B nanoparticles were formed successfully after reduction process. The average particle size of reduction treated products were 30 and 65 nm for powders which made of chloride and nitrate base metal salts, respectively. Final powders which made of chloride and nitrate base metal salts had a saturation magnetization of 127.7 emu/g and 122.8 emu/g while the coercivity of samples were 3.32 kOe and 1.82 kOe, respectively. The experimental results in the angular dependence of coercivity indicated that the normalized coercivity of the permanent magnets Hc(θ)/Hc(0) obeys the 1/cosθ law and intermediate between the 1/cosθ law and Stoner-Wohlfarth formula for different Nd2Fe14B magnets which made of nitrate and chloride base metal salts, respectively. Also, the results show that different Nd2Fe14B magnets which made of nitrate and chloride base metal salts had the maximum energy product of 5 and 16 MGOe, respectively. The Henkel plot showed that magnetic phases in synthesized NdFeB magnets which made of chloride and nitrate base metal salts were coupled by exchange and dipolar interactions, respectively. Different average particle size, morphology and microstructure were

  10. Interplay of electronic, structural and magnetic properties as the driving feature of high-entropy CoCrFeNiPd alloys

    NASA Astrophysics Data System (ADS)

    Calvo-Dahlborg, M.; Cornide, J.; Tobola, J.; Nguyen-Manh, D.; Wróbel, J. S.; Juraszek, J.; Jouen, S.; Dahlborg, U.

    2017-05-01

    The structural and magnetic properties of CoCrFe y Ni and CoCrFeNi-Pd x alloys earlier investigated experimentally by x-ray and neutron diffraction techniques and magnetometry have been theoretically reproduced using two complementary approaches for electronic structure calculations, i.e. the Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA) and implemented in the ab initio framework of density functional theory and the Vienna ab initio simulation package (VASP) for supercell models of high-entropy alloy (HEA) structures. The comparison between experimental results and calculations of the lattice constants by both calculation methods indicate that the structure of CoCrFe y Ni is well described by ordered fcc configurations. The values of local magnetic moments on Fe, Co, Cr, and Ni atoms depend not only on the Pd concentration but on chemical disordering. In the case of the CoCrFeNi-Pd x alloys, the KKR-CPA and the VASP calculations of disordered configurations reproduce the experimental values at 5 K up to equimolar composition and at 300 K above. The experimental values above the equimolar composition at 5 K are not satisfactorily reproduced by any of the calculations. The divergence between the experimental and calculated values is related to the variation of the ferromagnetic to paramagnetic transition temperature as a function of palladium content and to the existence of several phases, FeCoCr-rich above room temperature and FeCrPd-rich below, observed by diffraction and detected by microscopy and atom probe investigations. VASP calculations of a FeCrPd-rich phase effectively reproduced both the lattice constant and magnetization of the alloy above equimolar composition. An important conclusion of this work is that the combined analysis of the electronic, structural, and magnetic properties plays an important role in understanding the complexity of magnetic HEAs.

  11. Typical and Unusual Properties of Magnetic Clouds during the WIND Era

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Berdichevsky, D.; Szabo, A.; Burlaga, L. F.; Thompson, B. J.; Mariani, F.; Lazarus, A. J.; Steinberg, J. T.

    1999-01-01

    A list of 33 magnetic clouds as identified in WIND magnetic field and plasma data has been compiled. The intervals for these events are provided as part of NASA/GSFC, WIND-MFI's Website under the URL http://lepmfi.qsfc.nasa.gov/mfi/mag_cloud publ.html#table The period covered in this study is from early 1995 to November 1998 which primarily occurs in the quiet part of the solar cycle. A force free, cylindrically symmetric, magnetic field model has been applied to the field data in 1-hour averaged form for all of these events (except one small event where 10 min avg's were used) and the resulting fit-parameters examined. Each event was provided a semi-quantitatively determined quality factor (excellent, good or poor). A set of 28 good or better cases, spanning a surprisingly large range of values for its various properties, was used for further analysis. These properties are, for example, durations, attitudes, sizes, asymmetries, axial field strengths, speeds, and relative impact parameters. They will be displayed and analyzed, along with some related derived quantities, with emphasis on typical vs unusual properties and on the magnetic fields magnetic clouds' relationships to the Sun and to upstream interplanetary shocks, where possible. For example, it is remarkable how narrowly distributed the speeds of these clouds are, and the overall average speed (390 techniques km/s) is less than that normally quoted for the average solar wind speed (420 km/s) despite the fact that many of these clouds are d"drivers" of interplanetary shocks. On average, a cloud appears to be a little less symmetric when the spacecraft is able to pass close to the cloud's axis as compared to a farther out passage. The average longitude and latitude (in GSE) of the axes of the clouds are 85 degrees and 8 degrees, respectively, with standard deviations near 40 degrees. Also, the half=yearly averaged axial magnetic flux has approximately tripled. almost monotonically, from about 6 to 17 X 10

  12. Magnetic properties of a stainless steel irradiated with 6 MeV Xe ions

    NASA Astrophysics Data System (ADS)

    Xu, Chaoliang; Liu, Xiangbing; Qian, Wangjie; Li, Yuanfei

    2017-11-01

    Specimens of austenitic stainless steel were irradiated with 6 MeV Xe ions at room temperature to 2, 7, 15 and 25 dpa. The vibrating sample magnetometer (VSM), grazing incidence X-ray diffraction (GIXRD) and positron annihilation lifetime spectroscopy (PLS) were carried out to analysis the magnetic properties and microstructural variations. The magnetic hysteresis loops indicated that higher irradiation damage causes more significant magnetization phenomenon. The equivalent saturated magnetization Mes and coercive force Hc were obtained from magnetic hysteresis loops. It is indicated that the Mes increases with irradiation damage. While Hc increases first to 2 dpa and then decreases continuously with irradiation damage. The different contributions of irradiation defects and ferrite precipitates on Mes and Hc can explain these phenomena.

  13. Experimental insight into the magnetic and electrical properties of amorphous Ge1-xMnx

    NASA Astrophysics Data System (ADS)

    Conta, Gianluca; Amato, Giampiero; Coïsson, Marco; Tiberto, Paola

    2017-12-01

    We present a study of the electrical and magnetic properties of the amorphous Ge1-xMnx.DMS, with 2% ≤ x ≤ 17%, by means of SQUID magnetometry and low temperature DC measurements. The thin films were grown by physical vapour deposition at 50°C in ultrahigh vacuum. The DC electrical characterizations show that variable range hopping is the main mechanism of charge transport below room temperature. Magnetic characterization reveals that a unique and smooth magnetic transition is present in our samples, which can be attributed to ferromagnetic percolation of bound magnetic polarons.

  14. Magnetic properties as tracers for source-to-sink dispersal of sediments: A case study in the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Horng, Chorng-Shern; Huh, Chih-An

    2011-09-01

    Different lithologies between Taiwan and southeastern China lead to diverse mineralogical composition for weathering products derived from the two shores of the Taiwan Strait. Pyrrhotite and magnetite are respectively the dominant magnetic minerals associated with fluvial sediments from western Taiwan and southeastern China. While magnetite commonly co-exists with pyrrhotite in sediments sourced from Taiwan, pyrrhotite has not been found in sediments sourced from mainland China. Associated with such a distinction are vast differences in magnetic properties, including magnetic susceptibility (χ), SIRM, HIRM and the S-ratio, which can be used to study the provenances of sediments in the Taiwan Strait and adjoining marginal seas. Based on any two of these parameters, the magnetic characteristics of much of the Taiwan Strait sediment can be explained using a two-endmember mixing model. Source-to-sink dispersal of sediments in the Taiwan Strait can then be traced from the distribution of these parameters. The results not only corroborate an earlier study based on radionuclides and particle size distribution ( Huh et al., 2011) but reveal more diagnostic details. Besides spatial distribution based on a large number (216) of surface sediments, we also analyzed temporal variation of magnetic properties in six well-dated cores collected at key sites along the sediment source-to-sink pathways. From profiles of these parameters in cores from the middle of the northern Taiwan Strait, it is calculated that sediment supply from Taiwan has increased substantially in the past five decades, which may very well be related to accelerated land use and increased frequency of intense rainfalls in Taiwan during the same period. The approach described in this work may be extended to other source-to-sink systems around the world and through time, especially the mountainous islands fringing the Pacific and Indian Oceans in southeastern Asia. As with Taiwan, these islands have high

  15. Study on Properties of CoNi Films with mn Doping Prepared by Magnetic Fields Induced Codeposition Technology

    NASA Astrophysics Data System (ADS)

    Gang, Liang; Yu, Yundan; Ge, Hongliang; Wei, Guoying; Jiang, Li; Sun, Lixia

    Magnetic field parallel to electric field was induced during plating process to prepare CoNiMn alloy films on copper substrate. Electrochemistry mechanism and properties of CoNiMn alloy films were investigated in this paper. Micro magnetohydrodynamic convection phenomenon caused by vertical component of current density and parallel magnetic field due to deformation of current distribution contributed directly to the improvement of cathode current and deposition rate. Cathode current of the CoNiMn plating system increased about 30% with 1T magnetic field induced. It was found that CoNiMn films electrodeposited with magnetic fields basically belonged to a kind of progressive nucleation mode. Higher magnetic intensity intended to obtain CoNiMn films with good crystal structures and highly preferred orientations. With the increase of magnetic intensities, surface morphology of CoNiMn alloy films changed from typically nodular to needle-like structures. Compared with coatings electrodeposited without magnetic field, CoNiMn alloy films prepared with magnetic fields possessed better magnetic properties. Coercivity, remanence and saturation magnetization of samples increased sharply when 1T magnetic field was induced during plating process.

  16. Magnetic Properties of Fe-49Co-2V Alloy and Pure Fe at Room and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    De Groh, Henry C., III; Geng, Steven M.; Niedra, Janis M.; Hofer, Richard R.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) has a need for soft magnetic materials for fission power and ion propulsion systems. In this work the magnetic properties of the soft magnetic materials Hiperco 50 (Fe-49wt%Cr-2V) and CMI-C (commercially pure magnetic iron) were examined at various temperatures up to 600 C. Toroidal Hiperco 50 samples were made from stacks of 0.35 mm thick sheet, toroidal CMI-C specimens were machined out of solid bar stock, and both were heat treated prior to testing. The magnetic properties of a Hiperco 50 sample were measured at various temperatures up to 600 C and then again after returning to room temperature; the magnetic properties of CMI-C were tested at temperatures up to 400 C. For Hiperco 50 coercivity decreased as temperature increased, and remained low upon returning to room temperature; maximum permeability improved (increased) with increasing temperature and was dramatically improved upon returning to room temperature; remanence was not significantly affected by temperature; flux density at H = 0.1 kA/m increased slightly with increasing temperature, and was about 20% higher upon returning to room temperature; flux density at H = 0.5 kA/m was insensitive to temperature. It appears that the properties of Hiperco 50 improved with increasing temperature due to grain growth. There was no significant magnetic property difference between annealed and aged CMI-C iron material; permeability tended to decrease with increasing temperature; the approximate decline in the permeability at 400 C compared to room temperature was 30%; saturation flux density, B(sub S), was approximately equal for all temperatures below 400 C; B(sub S) was lower at 400 C.

  17. Microstructural and magnetic property evolution with different heat-treatment conditions in an alnico alloy

    DOE PAGES

    Zhou, Lin; Tang, Wei; Ke, Liqin; ...

    2017-05-08

    Further property enhancement of alnico, an attractive near-term, non-rare-earth permanent magnet alloy system, primarily composed of Al, Ni, Co, and Fe, relies on improved morphology control and size refinement of its complex spinodally decomposed nanostructure that forms during heat-treatment. Using a combination of transmission electron microscopy and atom probe tomography techniques, this study evaluates the magnetic properties and microstructures of an isotropic 32.4Fe-38.1Co-12.9Ni-7.3Al-6.4Ti-3.0Cu (wt.%) alloy in terms of processing parameters such as annealing temperature, annealing time, application of an external magnetic field, as well as low-temperature “draw” annealing. Optimal spinodal morphology and spacing is formed within a narrow temperature andmore » time range (~840 °C and 10 min) during thermal-magnetic annealing (MA). The ideal morphology is a mosaic structure consisting of periodically arrayed ~40 nm diameter (Fe-Co)-rich rods (α 1 phase) embedded in an (Al-Ni)-rich (α 2 phase) matrix. A Cu-enriched phase with a size of ~3–5 nm is located at the corners of two adjacent {110} facets of the α 1 phase. The MA process significantly increased remanence (B r) (~40–70%) of the alloy due to biased elongation of the α 1 phase along the <100> crystallographic direction, which is closest in orientation to the applied magnetic field. As a result, the optimum magnetic properties of the alloy with an intrinsic coercivity (H cj) of 1845 Oe and a maximum energy product (BH max) of 5.9 MGOe were attributed to the uniformity of the mosaic structure.« less

  18. Magnetic susceptibility and dielectric properties of peat in Central Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Budi, Pranitha Septiana; Zulaikah, Siti; Hidayat, Arif; Azzahro, Rosyida

    2017-07-01

    Peatlands dominate almost all regions of Borneo, yet its utilization has not been developed optimally. Any information in this field could be obtained using soil magnetization methods by determining the magnetic succeptibility in terms of magnetic susceptibility value that could describe the source and type of magnetic minerals which could describe the source and type of magnetic minerals. Moreover, the dielectric properties of peat soil were also investigated to determine the level of water content by using the dielectric constant value. Samples was taken at six different locations along Pulang pisau to Berengbengkel. Magnetic susceptibility mass value at these locations ranged between -0.0009 - 0.712 (×10-6 m3/kg). Based on the average magnetic susceptibility value, samples that were taken from T1, T3 and T5 belonged to the type of paramagnetic mineral, while samples which were taken from T2, T4 and T6 belonged to the group of diamagnetic mineral. The low value of magnetic susceptibility of peat was probably derived from the pedogenic process. The average value of peat soil in six locations has a large dielectric constant value that is 28.2 which indicated that there was considerable moisture content due to the hydrophilic nature of peatland which means that the ability of peat in water binding is considerably high.

  19. Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production.

    PubMed

    Paoli, Luca; Winkler, Aldo; Guttová, Anna; Sagnotti, Leonardo; Grassi, Alice; Lackovičová, Anna; Senko, Dušan; Loppi, Stefano

    2017-05-01

    The content of selected elements (Al, As, Ca, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S, Ti, V and Zn) was measured in samples of the lichen Evernia prunastri exposed for 30, 90 and 180 days around a cement mill, limestone and basalt quarries and urban and agricultural areas in SW Slovakia. Lichens transplanted around the investigated quarries and the cement mill rapidly (30 days) reflected the deposition of dust-associated elements, namely Ca (at the cement mill and the limestone quarry) and Fe, Ti and V (around the cement mill and the basalt quarry), and their content remained significantly higher throughout the whole period (30-180 days) with respect to the surrounding environment. Airborne pollutants (such as S) progressively increased in the study area from 30 to 180 days. The magnetic properties of lichen transplants exposed for 180 days have been characterized and compared with those of native lichens (Xanthoria parietina) and neighbouring bark, soil and rock samples, in order to test the suitability of native and transplanted samples as air pollution magnetic biomonitors. The magnetic mineralogy was homogeneous in all samples, with the exception of the samples from the basalt quarry. The transplants showed excellent correlations between the saturation remanent magnetization (Mrs) and the content of Fe. Native samples had a similar magnetic signature, but the values of the concentration-dependent magnetic parameters were up to two orders of magnitude higher, reflecting higher concentrations of magnetic particles. The concentrations of As, Ca and Cr in lichens correlated with Mrs values after neglecting the samples from the basalt quarry, which showed distinct magnetic properties, suggesting the cement mill as a likely source. Conversely, Ti and Mn were mostly (but not exclusively) associated with dust from the basalt quarry. It is suggested that the natural geological characteristics of the substrate may strongly affect the magnetic properties of lichen thalli

  20. Delicate crystal structure changes govern the magnetic properties of 1D coordination polymers based on 3d metal carboxylates.

    PubMed

    Gavrilenko, Konstantin S; Cador, Olivier; Bernot, Kevin; Rosa, Patrick; Sessoli, Roberta; Golhen, Stéphane; Pavlishchuk, Vitaly V; Ouahab, Lahcène

    2008-01-01

    Homo- and heterometallic 1D coordination polymers of transition metals (Co II, Mn II, Zn II) have been synthesized by an in-situ ligand generation route. Carboxylato-based complexes [Co(PhCOO)2]n (1 a, 1 b), [Co(p-MePhCOO)2]n (2), [ZnMn(PhCOO)4]n (3), and [CoZn(PhCOO)4]n (4) (PhCOOH=benzoic acid, p-MePhCOOH=p-methylbenzoic acid) have been characterized by chemical analysis, single-crystal X-ray diffraction, and magnetization measurements. The new complexes 2 and 3 crystallize in orthorhombic space groups Pnab and Pcab respectively. Their crystal structures consist of zigzag chains, with alternating M(II) centers in octahedral and tetrahedral positions, which are similar to those of 1 a and 1 b. Compound 4 crystallizes in monoclinic space group P2 1/c and comprises zigzag chains of M II ions in a tetrahedral coordination environment. Magnetic investigations reveal the existence of antiferromagnetic interactions between magnetic centers in the heterometallic complexes 3 and 4, while ferromagnetic interactions operate in homometallic compounds (1 a, 1 b, and 2). Compound 1 b orders ferromagnetically at TC=3.7 K whereas 1 a does not show any magnetic ordering down to 330 mK and displays typical single-chain magnet (SCM) behavior with slowing down of magnetization relaxation below 0.6 K. Single-crystal measurements reveal that the system is easily magnetized in the chain direction for 1 a whereas the chain direction coincides with the hard magnetic axis in 1 b. Despite important similarities, small differences in the molecular and crystal structures of these two compounds lead to this dramatic change in properties.